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ABSTRACT

The study presents a theoretical framework for understanding the role of dark matter on the stability of the galactic disc. We
model the galaxy as a two-component system consisting of stars and gas in equilibrium with an external dark matter halo. We
derive the equations governing the growth of perturbations and obtain a stability criterion that connects the potential of the dark
matter halo and the gas fraction with the stability levels of the galaxy. We find that a two-component disc is more susceptible to
the growth of gravitational instabilities than individual components, particularly as gas fractions increase. However, the external
field, due to the dark matter halo, acts as a stabilizing agent and increases the net stability levels even in the presence of a cold gas
component. We apply the stability criterion to models of the Milky Way, low surface brightness galaxies, and baryon-dominated
cold rotating disc galaxies observed in the early universe. Our results show that the potential due to the dark matter halo plays
a significant role in stabilizing nearby galaxies, such as the Milky Way, and low surface brightness galaxies, which would
otherwise be prone to local gravitational instabilities. However, we find that the baryon-dominated cold disc galaxies observed
in the early universe remain susceptible to the growth of local gravitational instabilities despite the stabilizing effect of the dark
matter halo.

Key words: hydrodynamics —instabilities — Galaxy: evolution — galaxies: kinematics and dynamics — galaxies: star formation —

galaxies: structure.

1 INTRODUCTION

Gravitational instabilities are fundamental processes that drive the
evolution of the galaxy. It provides important clues for understand-
ing how gas in the galaxies is converted into stars (Dopita &
Ryder 1994; Wang & Silk 1994; Pandey & Van De Bruck 1999;
Krumholz & Burkert 2010; Forbes et al. 2014), and how non-
axisymmetric structures like bars and spiral arms form in galaxies
(Goldreich & Lynden-Bell 1965; Toomre 1977; Iye 1978; Kalnajs
1983; Lin & Shu 1987; Sellwood 2000, 2012). One of the simplest
diagnostics for accessing the stability of the galactic disc against
the growth of axisymmetric gravitational instabilities was proposed
by Toomre (1964). It measures the competing effect of self-gravity,
which tries to destabilize the disc, and the stabilizing effect of the
differential rotation and the random velocity dispersion. The balance
between the stabilizing agents, i.e. differential rotation and random
velocity dispersion, and the destabilizing agent, i.e. the self-gravity,
is classically quantified by the stability criterion proposed by Toomre
(1964):
Ko
nGxL’

In the above equation, « is the epicyclic frequency, X is the mass
surface density, and o is the radial velocity dispersion, where
g > 1 is the condition for stability of the disc against axisymmetric
perturbations. The stability criterion proposed by Toomre (1964)
has been modified to include the self-gravity of both stars and gas by
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Jog & Solomon (1984a), Wang & Silk (1994), Elmegreen (1995), Jog
(1996), Rafikov (2001), and Romeo & Wiegert (2011), and finally
Romeo & Falstad (2013) derive a N-component stability parameter to
quantify the stability of gravitationally coupled multiple stellar and
gaseous discs. The stability parameter has also been modified further
to include the physical processes like the effects of the turbulence
(Hoffmann & Romeo 2012; Agertz, Romeo & Grisdale 2015) and
the three-dimensional structure of interstellar medium (ISM; Meidt
2022, Nipoti 2023, Nipoti et al. 2024).

The two-component model for studying the stability of disc
galaxy against the growth of local axisymmetrical gravitational
instabilities was envisaged by Jog & Solomon (1984a). In the two-
component model, stars and gas in the galactic disc are modelled
as two isothermal fluids that interact gravitationally with each
other. One of the components in the two-component model re-
sembles the ISM with smaller values of the velocity dispersion,
and the other resembles the stellar component with higher veloc-
ity dispersion. The approach has been used extensively to study
the role of the cold ISM in driving the instabilities in galactic
disc (Jog & Solomon 1984b) and for studying the stability of
the Galactic disc by (Jog 1996). Further, Rafikov (2001) presents
the stability criterion for a disc consisting of multiple isothermal
components. Each component is categorized as either collisional,
such as the ISM, or collisionless, such as stars. The results obtained
by Rafikov (2001) for the stability using a collisionless treatment
for stars and collisional approach for the ISM are comparable
to the results obtained Jog & Solomon (1984a) and Elmegreen
(1995). The two-component stability parameter is a valuable diag-
nostic for understanding if the stability levels are driven by stars
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or by gas (see e.g. Romeo & Mogotsi 2017; Romeo & Fathi
2016).

The stability criterion in the literature considers the self-gravity of
the gas and stars. However, it does not consider the role of dark
matter in driving the gravitational instabilities. The initial effort
to incorporate the influence of a dark matter halo on the stability
of a single-component disc was undertaken by Jog (2014). In this
work, we present the conditions for appraising the stability of the
gravitationally coupled two-component disc consisting of stars and
gas in equilibrium with an external dark matter halo. The differential
equations governing the growth rate of perturbations are derived by
considering the two-component disc in equilibrium with the external
force field of the dark matter halo. Each component is specified
by its velocity dispersion, surface density, and angular frequency,
but the system is under the influence of the force field of the
dark matter halo. We show that the governing equations for the
growth of instabilities resemble a wave equation with extra terms.
We use plane wave ansatz to derive the dispersion relation for the
gravitationally coupled two-component system in equilibrium with
the dark matter halo and obtain a simple stability criterion. The
stability criterion presented in this work explicitly quantifies the
contribution of dark matter to the overall stability levels. It can be
used to explore the role of dark matter in regulating various physical
processes within the galactic disc where gravitational instabilities are
important.

The paper is organized as follows. In Section 2, we will formulate
the basic equations and derive the governing differential equations.
We will derive the dispersion relation and stability criterion in
Sections 3 and 4. We finally present the results in Section 5 and
discuss the applications of the stability criterion in Sections 6 and 7,
and conclude in Section 8.

2 FORMULATION AND DERIVATION OF BASIC
EQUATIONS

We consider a coaxial and coplanar thin disc comprising stars and gas,
which interact with each other gravitationally. The two-component
disc is supported by random pressure and rotation, and the system is
in equilibrium with a constant external force field of the dark matter
halo. The problem is described in the galactic cylindrical coordinate
system (R, 0, 7). We start with the basic hydrodynamic equations in
which the external force field of the dark matter halo is in equilibrium
with the two-component disc. We then introduce small perturbations
in the basic equations and derive the dynamic equations governing the
evolution of the perturbed quantities. The Force equation, continuity
equation, and the Poissons equation for a thin disc in equilibrium
with an external potential ®,,, are as follows:

aV;

% o +Z;(ViV)V; = VP -E,V(®, + D,)—-%;VD,;, (2)
Zi—i—V(ZV)—O 3)
a[ . 1 13 - k)

VA(@, + Bp) = 471G (, + 5,)8(2). )

The above equations, when expressed in cylindrical coordinates,
supplemented with an isothermal equation of state P; = ¥;c? read:
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In the above equations, 'i’ is used to index ‘star’ and ‘gas’, u; and v;
are the velocity components in the radial and the tangential directions
respectively, ¥; and ®; are the surface density and the gravitational
potential associated with the stellar and the gas disc, respectively,
and ¢; is the velocity dispersion of each component. Assuming the
disc is axisymmetric, the above equations can be written as
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‘We now introduce small perturbations in the above basic equations:

Y=o +€X;, Pi = Do +€Dy;, v

= Vo, + €V1;, U; = €U ;. (13)

The quantities Xo; and &g, vo;, uo; are the locally un-
perturbed states, and the perturbed quantities are denoted by
®,;, Xy, v1, Ui, where the value of € << 1. Substituting equa-
tion (13) in equations (9)—(12) and keeping only the first order terms
[€'], we obtain the governing equations for the perturbed quantities.
But, before that, in order to better understand how the external
potential interacts with the two-component ‘star + gas’ disc, we write
down the zeroth order terms [¢®] corresponding to equation (9):

+ a¢ﬁ)€f
R 0R OR OR OR

In the above equation, the contribution of the term c,.za InXy;/0R
is negligible since the velocity dispersion is very small compared to
the rotation velocity (Binney & Tremaine 2011). Further, we write,
V5, = RODo/OR, v}, = RODg /R and v}, = ROD,,;/OR, we
obtain:

U(%,i 2aln Eo,i 4 aq)()Ys T a(Dng (14)

vr%e[ = v(%..v + v(z),g + vele' (15)
In the above equation, we have labelled vy ; as vpe since it contains the
effective contribution from the stars, gas, and the external potential.
The value of vy is typically determined through observations of
neutral hydrogen in galaxies (De Blok, McGaugh & Rubin 2001;
Oh et al. 2011; Lelli, McGaugh & Schombert 2016). We express
the circular velocity of stars, gas, and the external potential in
terms of the circular frequency as vy, = RS2, vo,, = RS2, and
Vext = RS This leads to v2, = R?Q2, = R*(2%.. + Qex), Where

5 5 5 net net disc
Qdisc = QO,S + QO.g'
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The stability criterion derived by Toomre (1964), Goldreich &
Lynden-Bell (1965), Jog & Solomon (1984a), and Jog (1996) applies
exclusively to star and/or gas disc. The net rotation contains the effect
of only star and/or gas but does not contain the contribution of the
external potential to the net rotation, as shown in equation (15).
In their treatment, the centrifugal force balances the unperturbed
potential of either star or/and gas, i.e. v2,/R = 3(®o; + Po,)/OR
or v2,,/R = 0d,/0R for a single component, but does not consider
the contribution of the dark matter to the net rotation which enters
our equations as an external potential (0®,,,/0R). However, when
reconstructing stability using observed properties, the observed
rotation curve is used, which includes contributions from stars, gas,
and the dark matter halo. In contrast, the analytic treatment considers
contributions only from the stars and/or gas disc. Jog (2014) identifies
this difference between the analytical treatment and the observational
reconstruction of the stability criterion in the literature and derives
a modified stability criterion for a one-component disc that includes
the contribution of the dark matter halo to the net rotation.

Following the short detour aimed at understanding how the
external potential interacts with the 'star + gas’ disc, we now write
down the linearized equations governing the growth of perturbed
quantities. The first order terms in € are given by

Ouy, 7 0Ty APy + Diy)

SR Yo WA R =T e o, 16
ot L+ Yo.i OR OR (16)
ov i
5~ 2Buattn; =0, (17)
0%y, Ouy;

: Yo ~ =0, 18
ot %" dR (18)

and the Poisson equation for the thin disc assumes the form (Toomre
1964);

(D, , + D
% = —27iG(S1, + Z1p). (19)

In equation (16), vy is expressed as vy = Qe R, and the term
vﬁel/R —0(®gs + Po g + Pex)/OR cancels, as it is just the cen-
trifugal term balancing the total unperturbed potential of the
two-component disc and the external potential. In equation (17),
we have expressed [Qer + 0(Q2petR)/OR] = —2 By, Where By is

the Oort constant. Further, substituting Qe = \/Q%,. + Q2 in

[Qnet + 0(2pet R)/OR] = —2 By, it is straightforward to show that
K2, = Kk + K2, where k., is the net epicyclic frequency defined as

K[%el = —4 By 2ner- In equation (18), the term 1/R[9(Ru; ; X0 ;)/OR]

is approximated as ¥ ;0u;;/OR, as RX; will vary gradually with
R when compared with the rapid oscillatory behaviour of u; ;.

3 DISPERSION RELATION IN THE PRESENCE
OF EXTERNAL FIELD

In this section, we will derive the dispersion relation for the two-
component disc in the presence of an external field of the dark matter
halo. We will show that the linearized equations (16)—(19) governing
the evolution of the perturbed quantities can be recast to resemble
coupled wave equations with extra terms and thus admit solutions of
the form e*" ', Indexing equations (16)—(19) for stars;

auls C2 aElv a(q)ls"_q)lg)

L 2V ’ 2 =0, 20
o1 Vet S OR R (20)
0V
a;" — 2Byt =0, 1)
azl.v auls

: ,— = 0. 22
37 05 3R (22)
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Operating with /0 R on equation (20), and eliminating the terms
0/0R (duy,/dt) by taking the time derivative of equation (22),
which will give 0/9R (aum/at) = (—1/20,5) 9%%,,/0r%. Simi-
larly, dv; ;/OR is eliminating by operating /0 R on equation (21)
and substituting for du; ;0 R from equation (22) to get 0v; ;/OR =
—2B, X1/ Xo.s. And finally substituting for d*(®; ; + ®,,)/0R?
with equation (19), we obtain:

%, L0,
S G e~ QBB
+2ﬂiG20‘x%(El,s + X1, =0. (23)
Similarly, the equation for gas reads;
azai"’ —c a;i‘z“’ — 40 Brer 1
2GS+ By ) =0, 24)

The above equations resemble wave equations and will indeed admit
plane wave ansatz. Substituting e’*" =" for the perturbed quantities
in equations (23) and (24), we obtain

—27TGk20'5211g

i, = , 25
YT (@2 = k2 — kR + 2nG T k) 23)
and similarly
MGk, ¥
Eie = e 26)

(@ — 2k? — ey + 2G T gk)

Combining equations (25) and (26), the final dispersion relation
reads;

(@ =}k — ko + 210G T k)@ — Tk — Koy + 210G T k)

s net net

= (211G £y k)2TG g k). Q7

By setting the contribution of the external field to zero, i.e. kexe = 0,
equation (27) becomes equivalent to the dispersion relation for a
two-component galactic disc, as shown in equation (17) of Jog and
Solomon (1984a). Further, if either of X, ¢, =0 or 2o ,, ¢, =0,
equation (27) reduces to the case of a one-component disc under
the influence of the external field (Jog 2014). In deriving the above
dispersion relation, we have started with a two-component disc in
equilibrium with an external force field of dark matter halo. We
then introduced small perturbations and compose the linearized
perturbation equations, which resemble plane wave equations and
then use the plane wave ansatz to derive the dispersion relation.

4 CONDITION FOR STABILITY

In this section, we derive the stability criterion for assessing if the

two-component disc in the force field of the dark matter halo is

susceptible to the growth of axisymmetric instabilities or not.
Firstly, we define the following quantities:

=Kk + A = 2nG Ty ik,

Qg = Koy + Cok* — 2G Ty 4k,

ﬂs =27nG 2:O,sky

Be = 2G X k. (28)

o

B

Substituting equation (28) in (27), the dispersion relation and the
respective roots are given by

a)4 — 0)2(015 + Olg) + (a.cag - ﬂvﬂg) =0

1 1 1
Wi = 7@ o)+ (o + ay)? — Aoty — BiBe))?. (29)
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For a one-component disc, ag >0 or o, >0 is the sufficient
condition for stability. For a marginally stable one-component disc
a function F can be defined as F = 27G Zok/(k2, + k>c?). A
value of F =1 indicates marginal stability, F > 1 represents an
unstable disc and F < 1 represents a stable disc. The value of
kyin for the one-component disc is obtained by putting dw?/dk = 0,
where ? = Klfe[ —2nG ok + c2k?, which yields ki = G Eo/cz.
Evaluating F at kp,, yields F = 2/(1 + 0?). For the one-component
system in the force field of an external potential, Q is defined as
0 = kpet¢/TGEy = g+/1 + (Kezxt/ffﬁisc), where g = kgiscc /TG .

The condition for marginal stability of two-component disc reads
w* =0 or (ay0 — BsBg) = 0, and for the disc to be unstable the
conditions is oy, — BBy < 0. With simple algebra the condition
for neutral equilibrium, (o, — B, B,) = 0 can be written as

2nG Xy sk 2nG Xy, k

F= + , (30)
Kgisc + Kezxt + kZCSZ Kfisc + KCZX‘ + széz,

where F = 1. In the above, we have expressed k2, = k. + k2, to
gauge the effect of the external potential on the ‘star + gas’ disc.
See, the discussion following equation (19) for deriving k. in terms
of kgisc and Kex. We define the gas fraction f = Xg ,/(Zos + Zo,),
and X,_, = Kdzisc/[ZTCG(Eo,s + 20,¢)kminl. Xs—, is the dimensionless
wavelength at which it is hardest to stabilize the two-component
system. The value of k,,;, for the two-component system is given by
conditions, dwi/dk =0, or d(wia)i)/dk =0, i.e. finding d(as0r, —
BsBg)/dk which yields

kP (4ctcl) — 3K 2nG g s¢l + 2mG g o))
+2kicp (4 ¢7) — QMG T s + 270G T )i = 0. (31
The function F for the two-component model is a superposition of
the one-component cases (Jog & Solomon 1984a). Thus, in analogy
with the one-component case, the condition for stability of the two-

component disc under the force field of external potential is defined
as

2 (1=0 . f
2 = — )22 2,2 .
1+ 07 X o(1+ % + R) Xo—o(1 + 4j;(;1i, +R)

(32)

In the above equation, R quantifies the contribution of the external
potential on the two-component ‘star + gas’ and is defined as R =
K2, /3. Also, g, and g, are the classical one-component stability
criterion for stars and gas, defined as g, = KgiscCs /TG Xo 5 and g, =
KdiseCg /TG X 4, Tespectively. The above condition is equivalent to
the stability condition Q,_, derived by Jog (1996) in the absence
of the external force field (R = 0). For the sake of continuity of
notation, we denote the stability criterion for the two-component
disc in the absence of an external field using g7. The disc is stable
against the growth of axisymmetric instabilities when Q7 > 1, and
the disc is susceptible to the growth of axisymmetric perturbations
when QOr < 1.

5 RESULTS
5.1 Marginal stability of one-component disc under the
influence of dark matter halo

To gain better insight into the role of dark matter on a two-component
disc, we first investigate the impact of the force field of dark matter
halo in driving the stability levels in a one-component disc. The

MNRAS 532, 3839-3846 (2024)
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Figure 1. The marginal stability of a one-component disc under the influence
of the external force field of dark matter halo.

dispersion relation for a one-component disc is given by
w? = (ki + k2 )k? + 2k? — 2nG Tk ™. (33)

In the above equation, at a large value of k, k* will dominate; thus,
pressure stabilizes the disc at small scales. At small k, i.e. k@ the
differential rotation of the disc («3,) and the dark matter halo (x2,)
stabilize the disc at large scales. At intermediate k, the self-gravity
of the galactic disc becomes important. The field due to the external
potential («2,) adds up with the differential rotation of the disc (x2;,,.)
and will stabilize the disc. Next, we inspect the marginal stability of
the one-component galactic disc. Putting w”> = 0, equation (33) can
be recast to obtain a quadratic equation in k,

1+ rr _k_ 0 (34)
4k ko
where Q = q(l + Kele/Kc%isc)%’ k/T = kT(l + Kele/Kgisc)’

kr = k2. /2nG % and defining ¢' =k} /k = kr /k(1 + k2, /Kk2.),
iel’ = ¢(l+«2,/k3..). With the above substitutions, equation (34)
can be written as Q=2[¢(1+R)(1—-¢( + R))]%, where
R = Kele/Kt%isc'

In Fig. 1, we show the effect of the external force field of the dark
matter halo on the stability of the one-component disc. We find that
upon increasing the contribution of the dark matter by increasing the
value of R, the maximum value of Q is shifted towards a smaller
value of ¢, indicating that a larger contribution from dark matter to the
total potential can effectively stabilize the galaxy over large scales.
Further, from Q = g+/1 + R, we can see that when R = «2,/x}, =
0, the value of Q corresponds to the classical stability criterion (q)
derived by Toomre (1964). The stability criterion derived by Toomre
(1964) considers the self-gravity of only one component and does not
include the contribution of the external potential due to dark matter
halo. The centrifugal force is balanced only by the corresponding
force due to the unperturbed potential of stars/gas. The marginal
stability in the absence of the external potential is given by ¢ = 1.
The maximum value value of Q, when R = 0.5 or ket = (Kgise/ V2)
is equal to 1.2 compared to 1 when R = 0, indicating that Q >
q. Thus, it is evident that the addition of dark matter to the total
potential increases the marginal stability levels and makes it much
harder to destabilize the one-component disc, making the disc more
stable against the growth of instabilities. The stability criterion in the
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presence of the external dark matter halo Q = q(1 + Kele//cgisc)%,
can be written as Q = kpec/TTGXy. The one-component stability
criterion derived by Toomre (1964) is applicable only for stars/gas.
However, we note that the mathematical expression for the stability
criterion in the presence of an external halo remains unchanged
(Q = knetc/TG Xy). Thus, when reconstructing g from observations
following the classical treatment by Toomre (1964), the contribution
of the external force field of dark matter is implicitly accounted for.
In other words, using net epicyclic frequency (kye) derived from
the observed rotation curve in g (Toomre 1964) is equivalent to
computing Q derived in this work.

5.2 Role of dark matter on the stability of two-component disc

In §5.1, we found that the external potential due to the dark
matter halo increases the marginal stability of the one-component
disc, indicating that effectively Q > ¢, or that it is now harder to
destabilize the disc due to the force field of the dark matter halo.
Jog & Solomon (1984a) and Jog (1996), show that the addition of
gas disc makes the galaxy more prone to the growth of instabilities
or in other words, the two-component disc is more unstable than
either component by itself. The stability criterion presented in this
work allows us to assess if gas is enough to lead to the growth
of local instabilities, even in the presence of a stabilizing dark
matter component. In Fig. 2, we present the two-component stability
criterion Q7 as a function of g, and g, respectively. In the top panel,
we have fixed the value of the gas fraction at f = 0.01; in the bottom
panel, we have fixed the gas fraction at 0.3. When the external force
field due to the dark matter halo is zero R = 0, we find that at a
fixed value of the gas fraction, the value of the g7 is lower than
the values of g, and g,. This supports the earlier findings by Jog &
Solomon (1984a); Jog (1996), which show that a two-component
disc is less stable than a disc composed only of stars or gas. The
results indicate that the two-component disc is more prone to the
development of gravitational instabilities than a single-component
disc. For example, when f = 0.01, R =0, value of gy = 1.95,
when ¢, and ¢, are equal to 2.5. Similarly, when we increase the
gas fraction to f = 0.3, keeping R = 0, g7 now becomes 1.35 when
qgs, gy = 2.5. Further, when f = 0.3, R =0, and ¢, , g, = 1.5, the
value of g7 drops to 0.75. This shows that adding a second disc in the
absence of external potential due to dark matter effectively renders
the two-component disc susceptible to the growth of gravitational
instabilities, even though the stars and gas are stable by themselves.

We will now discuss the effect of dark matter on the stability of
the two-component disc by varying the value of R. It is evident from
Fig. 2 that for a given gas fraction, when we move from left to
right, the value of the marginal stability of the two-component disc
increases with increasing R. For example, at a gas fraction equal to
0.01, when both ¢, and ¢, are equal to 2.5, g7 is equal to 1.95 for
R = 0. However, upon increasing the contribution of dark matter to
the total potential (i.e. R = 1), Or becomes 2.4. A similar effect is
observed at a higher gas fraction, when f = 0.3 and both ¢, and ¢,
are equal to 2.5, the value of g7 is 1.35 in the absence of dark matter
(R = 0). However, when the contribution of dark matter is included
(R =1), Or = 1.8. The external potential of the dark matter halo
stabilizes the two-component system, which would otherwise be
prone to the growth of axisymmetric instabilities. At smaller values
of g, and g, equal to 1.5 and a gas fraction equal to 0.3, the two-
component disc becomes susceptible to the growth of gravitational
instabilities (g7 = 0.75) when R = 0. However, upon including the
contribution of the dark matter halo (R = 1) at f = 0.3, the two-
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component system stabilizes itself (Qr > 1). Thus, we note that
an external force due to the dark matter halo effectively suppresses
the growth of local axisymmetric instabilities. However, the two-
component system can be susceptible to axisymmetric instabilities on
rarer occasions, even in the presence of stabilizing external potential
due to the dark matter halo. An example is provided in Fig. 2, when
R = 0.5, and the gas fraction is equal to 0.3 and g,, g, < 1.5. The
two-component system has Qr < 1, indicating that the system is
prone to growth of local axisymmetric instabilities.

6 APPLICATION

From the analysis presented in the previous section, we understand
that the external force field of the dark matter halo stabilizes the two-
component system of stars 4+ gas. However, in rare instances where
the force due to the dark matter halo is insufficient compared to the
destabilizing effect of the gas disc, the two-component system may
become prone to the growth of local axisymmetric instabilities. In
this section, we will investigate the role of dark matter on the stability
of two-component models of nearby galaxies like the Milky Way and
low surface brightness galaxies, and models of galaxies observed in
the early universe. The stellar distribution in our galaxy follows an
exponential surface density given by

Z(R) = By0e R/RD, (35)

where X,y = 640 Mg pc*2 and Rp = 3.2kpc (Mera, Chabrier &
Schaeffer 1998) are the central surface density and the disc scale
length. The gas distribution in the Galaxy is given by

T(R) = Sgoe /s, (36)

in the above equation X, = 28.2Mg pc~? is the central density

of the gas disc and Rjs is the radius at which the B-band surface
brightness drops to 25.5 magarsec™2, R»s = 4R (Bigiel & Blitz
2012). The stellar velocity dispersion is given by (Leroy et al. 2008;
Romeo & Mogotsi 2017) o,(R) = (1/0.6)/CnGRpX,(R)/7.3,
and we use a constant gas velocity dispersion equal to 10kms™!
(Tamburro et al. 2009; Mogotsi et al. 2016). The circular velocity (v.)
corresponding to the exponential distribution is given as (Binney &
Tremaine 2011)

V2(R) = 4n GZoRpy* [1o(y)Ko(y) — LK1 ()], (37

where y = R/2Rp and Iy, I} and Ky, K; are the modified Bessel

functions of the first and second kind. The epicyclic frequency « at

aradius R is defined as

dQ2(R)
dR

K*(R) = <R + 492(R)>, (38)
where Q is the angular frequency defined as Q*(R) = ;—‘22. The dark
matter density is given by a pseudo-isothermal halo, with a central
density pp = 0.035Mg pc~3 and a core radius R, = 5kpc (Mera
et al. 1998). The epicyclic frequency due to the pseudo-isothermal
dark matter halo is given by

ois(R) = 4nG 2R + R R‘S't - (R
K; = —— an —_— .
PIs PRI T RAR+R?) R R.

(39)

With all the building blocks needed to compute the stability in place,
we will now discuss the role of dark matter halo on different galaxy
models.

Case 1: Stability of Milky Way
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Figure 2. The effect of varying the external force of dark matter halo on the stability of the two-component disc. In the top panel, the gas fraction is fixed at f
= 0.01, and in the bottom panel, the gas fraction is fixed at f = 0.3. The colour bar indicates net stability levels given by Qr.

We show the stability analysis of the Milky Way in the first row
of Fig. 3. We find the minimum value of the stability for stars and
gas is ¢"" = 1.5 and ¢p"" = 1.8, indicating that individually stars
and gas are stable. However, the two-component formalism yields
a ¢"n = (.88, indicating that the two-component system is prone
to the growth of local gravitational instabilities in the absence of
the external potential due to the dark matter halo. Now, the addition
of the dark matter to the total potential naturally increases the one-
component stability from " =15t Q" =27 and ¢ = 1.8
to Oy =3.8. Moreover, the two-component system, which was
unstable with ¢g7"" = 0.88, now has Q7" = 1.7, highlighting the
importance of the external potential of the dark matter halo in
stabilizing massive disc galaxy like Milky Way.

Case 2: Low-mass disc in a high mass halo

In order to better gauge the role of dark matter on the stability
levels of the two-component disc, we minimize the contribution of
the stars and gas disc to the total potential. We lower the stellar
and the gas surface density to typical values observed in the low
surface brightness galaxies; %,9 = 100 Mg pc2 and Rp = 2.5kpc
and the gas surface density to 14.2 Mg pc=2 (De Blok et al. 2001;
Di Paolo, Salucci & Erkurt 2019). We keep the values of the dark
matter halo to that of the Milky Way. We show the rotation velocity
for this mass distribution in the second row of Fig. 3. We can see
that ke is significantly higher than kg, highlighting that the dark
matter is the dominant mass component. We find that g™ = 1.7 and
q;,"i“ = 1.8, indicating that the stars and gas are stable on their own.
However, similar to the Milky Way, the two-component stars + gas
system has ¢gi"" = 0.9, making the disc susceptible to the growth of
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local gravitational instabilities in the absence of the dark matter halo.
However, upon including the contribution of the dark matter halo, we
find QMi" = 6.9, Qg‘i“ =8, and Q" = 4.4, indicating that a higher
contribution of the dark matter to the total potential is reflected in
higher net stability levels of the two-component system.

Case 3: Low-mass disc in a low-mass halo

As a final example, we will inspect the effect of a low-mass
stellar and gas disc embedded in a low-mass dark matter halo
akin to the mass distribution of a low surface brightness galaxy.
We keep the surface density of the stars, gas, and dark matter halo
parameters to the typical values obtained from the mass models of low
surface brightness galaxies: py = 0.066 Mg pc~> and R, = 1.5kpc
(De Naray, McGaugh & De Blok 2008; Di Paolo et al. 2019). The
parameters for the stars and gas are the same as in Case 2. We show the
rotation velocity corresponding to this mass distribution in the third
row of Fig. 3. The minimum value of ¢y, g,, and g7 are comparable
to values obtained in case 2: qsmi“ =1.7,q,=138, and gr =0.9.
However, since the contribution of dark matter to the total potential
is small compared to the massive dark matter halo of the Milky Way,
the shift in the stability curves upon adding a dark matter halo is
also small. We find that Q"™ = 3.2, Q7" = 3.6, and Q" = 2.1.
In both Cases 2 and 3, we find that the force due to the dark matter
potential stabilizes the two-component low surface brightness disc,
which is otherwise unstable. The only difference is that a massive
halo contributes significantly to the overall stability. This aligns with
the previous finding in Garg & Banerjee (2017) and Aditya (2023),
which shows that dark matter is important in regulating the stability
of low surface brightness galaxies.
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Figure 3. In the first row, we show stability analysis for model of Milky Way. In the second row, we show the stability analysis for a model of a low-mass stellar
disc embedded in a massive dark matter halo. In the third row, we depict the analysis for a low-mass stellar disc embedded in a low-mass dark matter halo akin
to a low surface brightness galaxy. The fourth panel shows the stability analysis for a baryon-dominated galaxy akin to cold rotating disc galaxies observed in
the early universe. In realistic scenarios, Qg, Oy, and Q7 correspond to the stability curves estimated from observations. The red dashed line indicates marginal

stability levels.

7 DISCUSSION

A large number of recent studies show that the galaxies observed at
high redshift are dominated by baryons (Genzel et al. 2014, 2017,
2020; Rizzo et al. 2021). We construct a galaxy model in which the
contribution of stars and gas exceeds that of the dark matter halo in
the total mass budget. The rotation curve decomposition by Rizzo
et al. (2021) show that stellar disc makes maximum contribution
to the total rotation curve. However, the contribution from the
dark matter halo and the gas disc are typically comparable. In our
model, the stellar disc has a surface density profile comparable to
the Milky Way: Xy = 640 Mg pc~? and R; = 3.2kpc. We increase
the gas surface density from 28.2 Mg pc™2 for the Milky Way to
200 Mg pc~2 and keep the scale length comparable to the stellar
disc. However, the gas disc continues to be a cold component with
a velocity dispersion of 10kms~!. We also lower the contribution
of the dark matter by reducing the dark matter density and core
radius to 0.05 Mg pc~> and 2 kpc, respectively. We aim to ascertain
the contribution of the dark matter halo to the net stability levels

in baryon-dominated systems akin to the cold rotating disc galaxies
observed in the early universe. We show the results in the fourth panel
of Fig. 3. We find that in the absence of potential due to the dark
matter halo, g™" = 1.5, ¢ = 0.8, and ¢ = 0.5, indicating that a
massive cold two-component disc is susceptible to the growth of local
gravitational instabilities. Although the dark matter halo increases the
net stability levels, the two-component system is still susceptible to
local gravitational instabilities (Aditya 2023; Bacchini et al. 2024),
Qrn =2.8, Q7" = 0.9, and Q" = 0.8. This indicates that despite
the stabilizing nature of the dark matter halo, the net contribution of
the dark matter is insufficient to stabilize the baryon-dominated cold
disc galaxies in the early universe.

8 CONCLUSIONS

In this study, we have derived detailed theoretical formalism to
understand the role of dark matter and gas fraction on the stability
of the two-component model of galactic disc. We model the galaxy
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as a coplanar and a coaxial system of stars and gas in equilibrium
with an external dark matter halo. We derive the equations governing
the growth rate of perturbation and, finally, present a simple stability
criterion for appraising the stability of the two-component disc under
the influence of dark matter halo. We find that:

(i) The two-component disc is more susceptible to the growth of
gravitational instabilities than the individual components. Increasing
the gas fraction at a fixed value of external potential lowers the
stability of the two-component disc, highlighting the role of cold
gas in destabilizing the galaxy consistent with the earlier finding of
Jog & Solomon (1984a).

(i1) The external field due to the dark matter halo acts as a stabiliz-
ing agent and increases the net stability levels of the two-component
system. In dark matter-dominated systems, the gravitational force
exerted by the dark matter halo stabilizes the two-component system,
even when the system is locally unstable (Jog 2014). This indicates
that the cold gas component cannot destabilize the two-component
disc when the dark matter halo dominates the mass budget of the
galaxies.

(iii)) We apply the stability criterion to the models of the Milky
Way and low surface brightness galaxies and find that the Milky
Way and the low surface brightness discs are locally unstable, when
contribution of dark matter is not included in the total potential.
However, the addition of the dark matter to the total potential
significantly increases the net stability levels in these galaxies (Aditya
2023). We note that when the contribution of dark matter to the total
mass budget is small, the corresponding effect on the net stability
levels would also be diminished.

(iv) In rare cases, the two-component system can be susceptible
to the growth of gravitational instabilities despite the presence of
a stabilizing dark matter halo potential. One example is found in
baryon-dominated cold rotating disc galaxies observed in the early
universe. The influence of dark matter on the overall gravitational
potential is insufficient to stabilize the galaxies observed in early
universe.
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