
MNRAS 532, 3839–3846 (2024) https://doi.org/10.1093/mnras/stae1737 
Advance Access publication 2024 July 17 

How does dark matter stabilize disc galaxies? 

K. Aditya 

‹

Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034, India 

Accepted 2024 July 9. Received 2024 June 16; in original form 2023 September 30 

A B S T R A C T 

The study presents a theoretical framework for understanding the role of dark matter on the stability of the galactic disc. We 
model the galaxy as a two-component system consisting of stars and gas in equilibrium with an external dark matter halo. We 
derive the equations governing the growth of perturbations and obtain a stability criterion that connects the potential of the dark 

matter halo and the gas fraction with the stability levels of the galaxy. We find that a two-component disc is more susceptible to 

the growth of gravitational instabilities than individual components, particularly as gas fractions increase. Ho we v er, the e xternal 
field, due to the dark matter halo, acts as a stabilizing agent and increases the net stability le vels e ven in the presence of a cold gas 
component. We apply the stability criterion to models of the Milky Way, low surface brightness galaxies, and baryon-dominated 

cold rotating disc galaxies observed in the early universe. Our results show that the potential due to the dark matter halo plays 
a significant role in stabilizing nearby galaxies, such as the Milky Way, and low surface brightness galaxies, which would 

otherwise be prone to local gravitational instabilities. Ho we ver, we find that the baryon-dominated cold disc galaxies observed 

in the early universe remain susceptible to the growth of local gravitational instabilities despite the stabilizing effect of the dark 

matter halo. 

Key words: hydrodynamics – instabilities – Galaxy: evolution – galaxies: kinematics and dynamics – galaxies: star formation –
galaxies: structure. 
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 I N T RO D U C T I O N  

ravitational instabilities are fundamental processes that drive the 
volution of the galaxy. It provides important clues for understand- 
ng how gas in the galaxies is converted into stars (Dopita &
yder 1994 ; Wang & Silk 1994 ; P ande y & Van De Bruck 1999 ;
rumholz & Burkert 2010 ; Forbes et al. 2014 ), and how non-

xisymmetric structures like bars and spiral arms form in galaxies 
Goldreich & Lynden-Bell 1965 ; Toomre 1977 ; Iye 1978 ; Kalnajs
983 ; Lin & Shu 1987 ; Sell w ood 2000 , 2012 ). One of the simplest
iagnostics for accessing the stability of the galactic disc against 
he growth of axisymmetric gravitational instabilities was proposed 
y Toomre ( 1964 ). It measures the competing effect of self-gravity,
hich tries to destabilize the disc, and the stabilizing effect of the
ifferential rotation and the random velocity dispersion. The balance 
etween the stabilizing agents, i.e. differential rotation and random 

elocity dispersion, and the destabilizing agent, i.e. the self-gravity, 
s classically quantified by the stability criterion proposed by Toomre 
 1964 ): 

 = 

κσ

πG� 

. (1) 

n the abo v e equation, κ is the epic yclic frequenc y, � is the mass
urface density, and σ is the radial velocity dispersion, where 
 > 1 is the condition for stability of the disc against axisymmetric
erturbations. The stability criterion proposed by Toomre ( 1964 ) 
as been modified to include the self-gravity of both stars and gas by
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og & Solomon ( 1984a ), Wang & Silk ( 1994 ), Elmegreen ( 1995 ), Jog
 1996 ), Rafikov ( 2001 ), and Romeo & Wiegert ( 2011 ), and finally
omeo & Falstad ( 2013 ) derive a N -component stability parameter to
uantify the stability of gravitationally coupled multiple stellar and 
aseous discs. The stability parameter has also been modified further 
o include the physical processes like the effects of the turbulence
Hoffmann & Romeo 2012 ; Agertz, Romeo & Grisdale 2015 ) and
he three-dimensional structure of interstellar medium (ISM; Meidt 
022 , Nipoti 2023 , Nipoti et al. 2024 ). 
The two-component model for studying the stability of disc 

 alaxy ag ainst the growth of local axisymmetrical gravitational 
nstabilities was envisaged by Jog & Solomon ( 1984a ). In the two-
omponent model, stars and gas in the galactic disc are modelled
s two isothermal fluids that interact gravitationally with each 
ther. One of the components in the two-component model re- 
embles the ISM with smaller values of the velocity dispersion, 
nd the other resembles the stellar component with higher veloc- 
ty dispersion. The approach has been used e xtensiv ely to study
he role of the cold ISM in driving the instabilities in galactic
isc (Jog & Solomon 1984b ) and for studying the stability of
he Galactic disc by (Jog 1996 ). Further, Rafikov ( 2001 ) presents
he stability criterion for a disc consisting of multiple isothermal 
omponents. Each component is categorized as either collisional, 
uch as the ISM, or collisionless, such as stars. The results obtained
y Rafikov ( 2001 ) for the stability using a collisionless treatment
or stars and collisional approach for the ISM are comparable 
o the results obtained Jog & Solomon ( 1984a ) and Elmegreen
 1995 ). The two-component stability parameter is a valuable diag-
ostic for understanding if the stability levels are driven by stars
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r by gas (see e.g. Romeo & Mogotsi 2017 ; Romeo & Fathi
016 ). 
The stability criterion in the literature considers the self-gravity of

he gas and stars. Ho we ver, it does not consider the role of dark
atter in driving the gravitational instabilities. The initial effort

o incorporate the influence of a dark matter halo on the stability
f a single-component disc was undertaken by Jog ( 2014 ). In this
ork, we present the conditions for appraising the stability of the
ravitationally coupled two-component disc consisting of stars and
as in equilibrium with an external dark matter halo. The differential
quations go v erning the growth rate of perturbations are derived by
onsidering the two-component disc in equilibrium with the external
orce field of the dark matter halo. Each component is specified
y its velocity dispersion, surface density, and angular frequency,
ut the system is under the influence of the force field of the
ark matter halo. We show that the go v erning equations for the
rowth of instabilities resemble a wave equation with extra terms.
e use plane wave ansatz to derive the dispersion relation for the

ravitationally coupled two-component system in equilibrium with
he dark matter halo and obtain a simple stability criterion. The
tability criterion presented in this work explicitly quantifies the
ontribution of dark matter to the o v erall stability lev els. It can be
sed to explore the role of dark matter in regulating various physical
rocesses within the galactic disc where gravitational instabilities are
mportant. 

The paper is organized as follows. In Section 2 , we will formulate
he basic equations and derive the go v erning differential equations.

e will derive the dispersion relation and stability criterion in
ections 3 and 4 . We finally present the results in Section 5 and
iscuss the applications of the stability criterion in Sections 6 and 7 ,
nd conclude in Section 8 . 

 F O R M U L AT I O N  A N D  D E R I VAT I O N  O F  BA SIC  

QUAT I O N S  

e consider a coaxial and coplanar thin disc comprising stars and gas,
hich interact with each other gravitationally. The two-component
isc is supported by random pressure and rotation, and the system is
n equilibrium with a constant external force field of the dark matter
alo. The problem is described in the galactic cylindrical coordinate
ystem ( R, θ, z). We start with the basic hydrodynamic equations in
hich the external force field of the dark matter halo is in equilibrium
ith the two-component disc. We then introduce small perturbations

n the basic equations and derive the dynamic equations go v erning the
volution of the perturbed quantities. The Force equation, continuity
quation, and the Poissons equation for a thin disc in equilibrium
ith an external potential � ext are as follows: 

 i 

∂ V i 

∂ t 
+ � i ( V i . ∇ ) V i = −∇ P i −� i ∇ ( � s + � g ) −� i ∇ � ext , (2) 

∂ � i 

∂ t 
+ ∇ . ( � i V i ) = 0 , (3) 

 

2 ( � s + � g ) = 4 πG ( � s + � g ) δ( z) . (4) 

he abo v e equations, when e xpressed in c ylindrical coordinates,
upplemented with an isothermal equation of state P i = � i c 

2 
i read: 

� i 

∂ u i 

∂ t 
+ � i u i 

∂ u i 

∂ R 

+ 

v i � i 

R 

∂ u i 

∂ θ
− � i v 

2 
i 

R 

= −c 2 i 
∂ � i 

∂ R 

− � i 

∂ ( � s + � g ) 

∂ R 

− � i 

∂ � ext 

∂ R 

, (5) 
NRAS 532, 3839–3846 (2024) 
� i 

∂ v i 

∂ t 
+ � i u i 

∂ v i 

∂ R 

+ 

� i v i 

R 

∂ v i 

∂ θ
+ 

� i v i u i 

R 

= − c 2 i 

R 

∂ � i 

∂ θ
− � i 

R 

∂ ( � s + � g ) 

∂ θ
, (6) 

∂ � i 

∂ t 
+ 

1 

R 

∂ ( Ru i � i ) 

∂ R 

+ 

v i 

R 

∂ � i 

∂ θ
+ 

� i 

R 

∂ v i 

∂ θ
= 0 , (7) 

1 

R 

∂ 

∂ R 

(
R 

∂ ( � s + � g ) 

∂ R 

)
+ 

∂ 2 ( � s + � g ) 

∂ z 2 
+ 

1 

R 

2 

∂ 2 ( � s + � g ) 

∂ θ2 

= 4 πG ( � s + � g ) δ( z) . (8) 

n the abo v e equations, ′ i ′ is used to inde x ‘star’ and ‘gas’, u i and v i 
re the velocity components in the radial and the tangential directions
espectively, � i and � i are the surface density and the gravitational
otential associated with the stellar and the gas disc, respectively,
nd c i is the velocity dispersion of each component. Assuming the
isc is axisymmetric, the abo v e equations can be written as 

� i 

∂ u i 

∂ t 
+ � i u i 

∂ u i 

∂ R 

− � i v 
2 
i 

R 

= −c 2 i 
∂ � i 

∂ R 

− � i 

∂ ( � s + � g ) 

∂ R 

− � i 

∂ � ext 

∂ R 

, (9) 

 i 

∂ v i 

∂ t 
+ � i u i 

∂ v i 

∂ R 

+ 

� i v i u i 

R 

= 0 , (10) 

∂ � i 

∂ t 
+ 

1 

R 

∂ ( Ru i � i ) 

∂ R 

= 0 , (11) 

1 

R 

∂ 

∂ R 

(
R 

∂ ( � s + � g ) 

∂ R 

)
+ 

∂ 2 ( � s + � g ) 

∂ z 2 
= 4 πG ( � s + � g ) δ( z) . 

(12) 

e now introduce small perturbations in the abo v e basic equations: 

 i = � 0 ,i + ε� 1 ,i , � i = � 0 ,i + ε� 1 ,i , v i 

= v 0 ,i + εv 1 ,i , u i = εu 1 ,i . (13) 

he quantities � 0 ,i and � 0 ,i , v 0 ,i , u 0 ,i are the locally un-
erturbed states, and the perturbed quantities are denoted by
 1 ,i , � 1 ,i , v 1 ,i , u 1 ,i , where the value of ε << 1. Substituting equa-

ion ( 13 ) in equations ( 9 )–(12) and keeping only the first order terms
 ε1 ], we obtain the go v erning equations for the perturbed quantities.
ut, before that, in order to better understand how the external
otential interacts with the two-component ‘star + gas’ disc, we write
own the zeroth order terms [ ε(0) ] corresponding to equation ( 9 ): 

v 2 0 ,i 

R 

= c 2 i 
∂ ln � 0 ,i 

∂ R 

+ 

∂ � 0 ,s 

∂ R 

+ 

∂ � 0 ,g 

∂ R 

+ 

∂ � ext 

∂ R 

. (14) 

n the abo v e equation, the contribution of the term c 2 i ∂ ln � 0 ,i / ∂ R 

s negligible since the velocity dispersion is very small compared to
he rotation velocity (Binney & Tremaine 2011 ). Further, we write,
 

2 
0 ,s = R ∂ � 0 ,s / ∂ R , v 2 0 ,g = R ∂ � 0 ,g / ∂ R and v 2 ext = R ∂ � ext / ∂ R , we
btain: 

 

2 
net = v 2 0 ,s + v 2 0 ,g + v 2 ext . (15) 

n the abo v e equation, we hav e labelled v 0 ,i as v net since it contains the
f fecti ve contribution from the stars, gas, and the external potential.
he value of v net is typically determined through observations of
eutral hydrogen in galaxies (De Blok, McGaugh & Rubin 2001 ;
h et al. 2011 ; Lelli, McGaugh & Schombert 2016 ). We express

he circular velocity of stars, gas, and the external potential in
erms of the circular frequency as v 0 ,s = R�0 ,s , v 0 ,g = R�0 ,g , and
 ext = R�ext . This leads to v 2 net = R 

2 �2 
net = R 

2 ( �2 
disc + �ext ), where

2 
disc = �2 

0 ,s + �2 
0 ,g . 
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The stability criterion derived by Toomre ( 1964 ), Goldreich & 

ynden-Bell ( 1965 ), Jog & Solomon ( 1984a ), and Jog ( 1996 ) applies
 xclusiv ely to star and/or gas disc. The net rotation contains the effect
f only star and/or gas but does not contain the contribution of the
xternal potential to the net rotation, as shown in equation ( 15 ).
n their treatment, the centrifugal force balances the unperturbed 
otential of either star or/and gas, i.e. v 2 net /R = ∂ ( � 0 ,s + � 0 ,g ) / ∂ R 

r v 2 net /R = ∂ � 0 / ∂ R for a single component, but does not consider
he contribution of the dark matter to the net rotation which enters
ur equations as an external potential ( ∂ � ext / ∂ R). Ho we ver, when
econstructing stability using observed properties, the observed 
otation curve is used, which includes contributions from stars, gas, 
nd the dark matter halo. In contrast, the analytic treatment considers
ontributions only from the stars and/or gas disc. Jog ( 2014 ) identifies
his difference between the analytical treatment and the observational 
econstruction of the stability criterion in the literature and derives 
 modified stability criterion for a one-component disc that includes 
he contribution of the dark matter halo to the net rotation. 

Following the short detour aimed at understanding how the 
xternal potential interacts with the ′ sta r + ga s ′ disc, we now write
own the linearized equations go v erning the growth of perturbed 
uantities. The first order terms in ε(1) are given by 

∂ u 1 ,i 

∂ t 
− 2 �net v 1 ,i + 

c 2 i 

� 0 ,i 

∂ � 1 ,i 

∂ R 

+ 

∂ ( � 1 ,s + � 1 ,g ) 

∂ R 

= 0 , (16) 

∂ v 1 ,i 

∂ t 
− 2 B net u 1 ,i = 0 , (17) 

∂ � 1 ,i 

∂ t 
+ � 0 ,i 

∂ u 1 ,i 

∂ R 

= 0 , (18) 

nd the Poisson equation for the thin disc assumes the form (Toomre
964 ); 

∂ ( � 1 ,s + � 1 ,g ) 

∂ R 

= −2 πiG ( � 1 ,s + � 1 ,g ) . (19) 

n equation ( 16 ), v net is expressed as v net = �net R, and the term
 

2 
net /R − ∂ ( � 0 ,s + � 0 ,g + � ext ) / ∂ R cancels, as it is just the cen-
rifugal term balancing the total unperturbed potential of the 
wo-component disc and the external potential. In equation ( 17 ),
e hav e e xpressed [ �net + ∂ ( �net R ) / ∂ R ] = −2 B net , where B net is

he Oort constant. Further, substituting �net = 

√ 

�2 
disc + �2 

ext in 
 �net + ∂ ( �net R ) / ∂ R ] = −2 B net , it is straightforward to show that
2 
net = κ2 

disc + κ2 
ext , where κnet is the net epicyclic frequency defined as 

2 
net = −4 B net �net . In equation ( 18 ), the term 1 /R [ ∂ ( R u 1 ,i � 0 ,i ) / ∂ R]
s approximated as � 0 ,i ∂ u 1 ,i / ∂ R , as R � 0 ,i will vary gradually with
 when compared with the rapid oscillatory behaviour of u 1 ,i . 

 DISPER SION  RELATION  IN  T H E  PRESE NCE  

F  EXTERNA L  FIELD  

n this section, we will derive the dispersion relation for the two-
omponent disc in the presence of an external field of the dark matter
alo. We will show that the linearized equations (16)–(19) go v erning
he evolution of the perturbed quantities can be recast to resemble 
oupled wave equations with extra terms and thus admit solutions of
he form e ik.r−ωt . Indexing equations (16)–(19) for stars; 

∂ u 1 ,s 

∂ t 
− 2 �net v 1 ,s + 

c 2 s 

� 0 ,s 

∂ � 1 ,s 

∂ R 

+ 

∂ ( � 1 ,s + � 1 ,g ) 

∂ R 

= 0 , (20) 

∂ v 1 ,s 

∂ t 
− 2 B net u 1 ,s = 0 , (21) 

∂ � 1 ,s 

∂ t 
+ � 0 ,s 

∂ u 1 ,s 

∂ R 

= 0 . (22) 
perating with ∂ / ∂ R on equation ( 20 ), and eliminating the terms
 / ∂ R 

(
∂ u 1 ,s / ∂ t 

)
by taking the time deri v ati ve of equation ( 22 ),

hich will give ∂ / ∂ R 

(
∂ u 1 ,s / ∂ t 

) = 

(−1 /� 0 ,s 

)
∂ 2 � 1 ,s / ∂ t 

2 . Simi-
arly, ∂ v 1 ,s / ∂ R is eliminating by operating ∂ / ∂ R on equation ( 21 )
nd substituting for ∂ u 1 ,s ∂ R from equation ( 22 ) to get ∂ v 1 ,s / ∂ R =
2 B net � 1 ,s /� 0 ,s . And finally substituting for ∂ 2 ( � 1 ,s + � 1 ,g ) / ∂ R 

2 

ith equation ( 19 ), we obtain: 

∂ 2 � 1 ,s 

∂ t 2 
− c 2 s 

∂ 2 � 1 ,s 

∂ R 

2 
− 4 �net B net � 1 ,s 

+ 2 πiG� 0 ,s 
∂ 

∂ R 

( � 1 ,s + � 1 ,g ) = 0 . (23) 

imilarly, the equation for gas reads; 

∂ 2 � 1 ,g 

∂ t 2 
− c 2 g 

∂ 2 � 1 ,g 

∂ R 

2 
− 4 �net B net � 1 ,g 

+ 2 πiG� 0 ,g 
∂ 

∂ R 

( � 1 ,s + � 1 ,g ) = 0 . (24) 

he abo v e equations resemble wav e equations and will indeed admit
lane wave ansatz. Substituting e i( k.r−ωt) for the perturbed quantities 
n equations ( 23 ) and ( 24 ), we obtain 

 1 ,s = 

−2 πGk� 0 ,s � 1 ,g 

( ω 

2 − c 2 s k 
2 − κ2 

dnet + 2 πG� 0 ,s k) 
, (25) 

nd similarly 

 1 ,g = 

−2 πGk� 0 ,g � 1 ,s 

( ω 

2 − c 2 g k 
2 − κ2 

net + 2 πG� 0 ,g k) 
. (26) 

ombining equations ( 25 ) and ( 26 ), the final dispersion relation
eads; 

( ω 

2 − c 2 s k 
2 − κ2 

net + 2 πG� 0 ,s k)( ω 

2 − c 2 g k 
2 − κ2 

net + 2 πG� 0 ,g k) 

= (2 πG� 0 ,s k)(2 πG� 0 ,g k) . (27) 

y setting the contribution of the external field to zero, i.e. κext = 0,
quation ( 27 ) becomes equi v alent to the dispersion relation for a
wo-component galactic disc, as shown in equation ( 17 ) of Jog and
olomon ( 1984a ). Further, if either of � 0 ,s , c s = 0 or � 0 ,g , c g = 0,
quation ( 27 ) reduces to the case of a one-component disc under
he influence of the external field (Jog 2014 ). In deriving the abo v e
ispersion relation, we have started with a two-component disc in 
quilibrium with an external force field of dark matter halo. We
hen introduced small perturbations and compose the linearized 
erturbation equations, which resemble plane wave equations and 
hen use the plane wave ansatz to derive the dispersion relation. 

 C O N D I T I O N  F O R  STABILITY  

n this section, we derive the stability criterion for assessing if the
wo-component disc in the force field of the dark matter halo is
usceptible to the growth of axisymmetric instabilities or not. 

Firstly, we define the following quantities: 

αs = κ2 
net + c 2 s k 

2 − 2 πG� 0 ,s k, 

αg = κ2 
net + c 2 g k 

2 − 2 πG� 0 ,g k, 

βs = 2 πG� 0 ,s k, 

βg = 2 πG� 0 ,g k. (28) 

ubstituting equation ( 28 ) in (27), the dispersion relation and the
espective roots are given by 

ω 

4 − ω 

2 ( αs + αg ) + ( αs αg − βs βg ) = 0 

ω 

2 
± = 

1 

2 
( αs + αg ) ± 1 

2 
(( αs + αg ) 

2 − 4( αs αg − βs βg )) 
1 
2 . (29) 
MNRAS 532, 3839–3846 (2024) 
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Figure 1. The marginal stability of a one-component disc under the influence 
of the external force field of dark matter halo. 
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or a one-component disc, αg ≥ 0 or αs ≥ 0 is the sufficient
ondition for stability. For a marginally stable one-component disc
 function F can be defined as F = 2 πG� 0 k / ( κ2 

net + k 2 c 2 ). A
alue of F = 1 indicates marginal stability, F > 1 represents an
nstable disc and F < 1 represents a stable disc. The value of
 min for the one-component disc is obtained by putting d ω 

2 / d k = 0,
here ω 

2 = κ2 
net − 2 πG� 0 k + c 2 k 2 , which yields k min = πG� 0 /c 

2 .
valuating F at k min yields F = 2 / (1 + Q 

2 ). For the one-component
ystem in the force field of an external potential, Q is defined as
 = κnet c/ πG� 0 = q 

√ 

1 + ( κ2 
ext /κ

2 
disc ) , where q = κdisc c/ πG� 0 . 

The condition for marginal stability of two-component disc reads
 

2 
− = 0 or ( αs αg − βs βg ) = 0, and for the disc to be unstable the
onditions is αs αg − βs βg < 0. With simple algebra the condition
or neutral equilibrium, ( αs αg − βs βg ) = 0 can be written as 

 = 

2 πG� 0 ,s k 

κ2 
disc + κ2 

ext + k 2 c 2 s 
+ 

2 πG� 0 ,g k 

κ2 
disc + κ2 

ext + k 2 c 2 g 
, (30) 

here F = 1. In the abo v e, we hav e e xpressed κ2 
net = κ2 

disc + κ2 
ext to

auge the effect of the external potential on the ‘star + gas’ disc.
ee, the discussion following equation ( 19 ) for deriving κnet in terms
f κdisc and κext . We define the gas fraction f = � 0 ,g / ( � 0 ,s + � 0 ,g ),
nd X s−g = κ2 

disc / [2 πG ( � 0 ,s + � 0 ,g ) k min ]. X s−g is the dimensionless
avelength at which it is hardest to stabilize the two-component

ystem. The value of k min for the two-component system is given by
onditions, d ω 

2 
−/ d k = 0, or d( ω 

2 
+ 

ω 

2 
−) / d k = 0, i.e. finding d( αs αg −

s βg ) / d k which yields 

k 3 (4 c 2 s c 
2 
g ) − 3 k 2 (2 πG� 0 ,s c 

2 
g + 2 πG� 0 ,g c 

2 
s ) 

+ 2 kκ2 
net ( c 

2 
g + c 2 s ) − (2 πG� 0 ,s + 2 πG� 0 ,g ) κ

2 
net = 0 . (31) 

he function F for the two-component model is a superposition of
he one-component cases (Jog & Solomon 1984a ). Thus, in analogy
ith the one-component case, the condition for stability of the two-

omponent disc under the force field of external potential is defined
s 

2 

1 + Q 

2 
T 

= 

(1 − f ) 

X s−g (1 + 

(1 −f ) 2 q 2 s 

4 X 2 s−g 

+ R) 
+ 

f 

X s−g (1 + 

f 2 q 2 g 

4 X 2 s−g 

+ R) 
. 

(32) 

n the abo v e equation, R quantifies the contribution of the external
otential on the two-component ‘star + gas’ and is defined as R =
2 
ext /κ

2 
disc . Also, q s and q g are the classical one-component stability

riterion for stars and gas, defined as q s = κdisc c s / πG� 0 ,s and q g =
disc c g / πG� 0 ,g , respectiv ely. The abo v e condition is equi v alent to
he stability condition Q s−g derived by Jog ( 1996 ) in the absence
f the external force field ( R = 0). For the sake of continuity of
otation, we denote the stability criterion for the two-component
isc in the absence of an external field using q T . The disc is stable
gainst the growth of axisymmetric instabilities when Q T > 1, and
he disc is susceptible to the growth of axisymmetric perturbations
hen Q T < 1. 

 RESU LTS  

.1 Marginal stability of one-component disc under the 
nfluence of dark matter halo 

o gain better insight into the role of dark matter on a two-component
isc, we first investigate the impact of the force field of dark matter
alo in driving the stability levels in a one-component disc. The
NRAS 532, 3839–3846 (2024) 
ispersion relation for a one-component disc is given by 

 

2 = ( κ2 
disc + κ2 

ext ) k 
(0) + c 2 k (2) − 2 πG� 0 k 

(1) . (33) 

n the abo v e equation, at a large value of k , k 2 will dominate; thus,
ressure stabilizes the disc at small scales. At small k , i.e. k (0) the
ifferential rotation of the disc ( κ2 

disc ) and the dark matter halo ( κ2 
ext )

tabilize the disc at large scales. At intermediate k, the self-gravity
f the galactic disc becomes important. The field due to the external
otential ( κ2 

ext ) adds up with the differential rotation of the disc ( κ2 
di s c )

nd will stabilize the disc. Next, we inspect the marginal stability of
he one-component galactic disc. Putting ω 

2 = 0, equation ( 33 ) can
e recast to obtain a quadratic equation in k, 

 + 

Q 

2 

4 

k 2 

k ′ 2 T 

− k 

k ′ T 
= 0 , (34) 

here Q = q(1 + κ2 
ext /κ

2 
disc ) 

1 
2 , k ′ T = k T (1 + κ2 

ext /κ
2 
disc ),

 T = κ2 
disc / 2 πG� 0 and defining ζ ′ = k ′ T /k = k T /k(1 + κ2 

ext /κ
2 
disc ),

.e ζ ′ = ζ (1 + κ2 
ext /κ

2 
di s c ). With the abo v e substitutions, equation ( 34 )

an be written as Q = 2 [ ζ (1 + R) ( 1 − ζ (1 + R) ) ] 
1 
2 , where

 = κ2 
ext /κ

2 
disc . 

In Fig. 1 , we show the effect of the external force field of the dark
atter halo on the stability of the one-component disc. We find that

pon increasing the contribution of the dark matter by increasing the
alue of R, the maximum value of Q is shifted towards a smaller
alue of ζ , indicating that a larger contribution from dark matter to the
otal potential can ef fecti vely stabilize the galaxy o v er large scales.
urther, from Q = q 

√ 

1 + R , we can see that when R = κ2 
ext /κ

2 
disc =

, the value of Q corresponds to the classical stability criterion ( q)
erived by Toomre ( 1964 ). The stability criterion derived by Toomre
 1964 ) considers the self-gravity of only one component and does not
nclude the contribution of the external potential due to dark matter
alo. The centrifugal force is balanced only by the corresponding
orce due to the unperturbed potential of stars/gas. The marginal
tability in the absence of the external potential is given by q = 1.
he maximum value value of Q , when R = 0 . 5 or κext = ( κdisc / 

√ 

2 )
s equal to 1.2 compared to 1 when R = 0, indicating that Q >

. Thus, it is evident that the addition of dark matter to the total
otential increases the marginal stability levels and makes it much
arder to destabilize the one-component disc, making the disc more
table against the growth of instabilities. The stability criterion in the
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resence of the external dark matter halo Q = q(1 + κ2 
ext /κ

2 
disc ) 

1 
2 ,

an be written as Q = κnet c/ πG� 0 . The one-component stability
riterion derived by Toomre ( 1964 ) is applicable only for stars/gas.
o we ver, we note that the mathematical expression for the stability

riterion in the presence of an external halo remains unchanged 
 Q = κnet c/ πG� 0 ). Thus, when reconstructing q from observations
ollowing the classical treatment by Toomre ( 1964 ), the contribution 
f the external force field of dark matter is implicitly accounted for.
n other words, using net epicyclic frequency ( κnet ) derived from
he observed rotation curve in q (Toomre 1964 ) is equi v alent to
omputing Q derived in this work. 

.2 Role of dark matter on the stability of two-component disc 

n §5.1, we found that the external potential due to the dark
atter halo increases the marginal stability of the one-component 

isc, indicating that ef fecti vely Q > q, or that it is now harder to
estabilize the disc due to the force field of the dark matter halo.
og & Solomon ( 1984a ) and Jog ( 1996 ), show that the addition of
as disc makes the galaxy more prone to the growth of instabilities
r in other words, the two-component disc is more unstable than 
ither component by itself. The stability criterion presented in this 
ork allows us to assess if gas is enough to lead to the growth
f local instabilities, even in the presence of a stabilizing dark 
atter component. In Fig. 2 , we present the two-component stability 

riterion Q T as a function of q s and q g , respectively. In the top panel,
e have fixed the value of the gas fraction at f = 0 . 01; in the bottom
anel, we hav e fix ed the gas fraction at 0.3. When the external force
eld due to the dark matter halo is zero R = 0, we find that at a
xed value of the gas fraction, the value of the q T is lower than

he values of q s and q g . This supports the earlier findings by Jog &
olomon ( 1984a ); Jog ( 1996 ), which show that a two-component
isc is less stable than a disc composed only of stars or gas. The
esults indicate that the two-component disc is more prone to the 
evelopment of gravitational instabilities than a single-component 
isc. F or e xample, when f = 0 . 01 , R = 0, value of q T = 1 . 95,
hen q s and q g are equal to 2.5. Similarly, when we increase the
as fraction to f = 0 . 3, keeping R = 0, q T now becomes 1.35 when
 s , q g = 2 . 5. Further, when f = 0 . 3 , R = 0, and q s , q g = 1 . 5, the
alue of q T drops to 0.75. This shows that adding a second disc in the
bsence of external potential due to dark matter ef fecti vely renders
he two-component disc susceptible to the growth of gravitational 
nstabilities, even though the stars and gas are stable by themselves. 

We will now discuss the effect of dark matter on the stability of
he two-component disc by varying the value of R. It is evident from
ig. 2 that for a given gas fraction, when we mo v e from left to
ight, the value of the marginal stability of the two-component disc 
ncreases with increasing R. For example, at a gas fraction equal to
.01, when both q s and q g are equal to 2.5, q T is equal to 1.95 for
 = 0. Ho we ver, upon increasing the contribution of dark matter to

he total potential (i.e. R = 1), Q T becomes 2.4. A similar effect is
bserved at a higher gas fraction, when f = 0 . 3 and both q s and q g 
re equal to 2.5, the value of q T is 1.35 in the absence of dark matter
 R = 0). Ho we ver, when the contribution of dark matter is included
 R = 1), Q T = 1 . 8. The external potential of the dark matter halo
tabilizes the two-component system, which would otherwise be 
rone to the growth of axisymmetric instabilities. At smaller values 
f q s and q g equal to 1.5 and a gas fraction equal to 0.3, the two-
omponent disc becomes susceptible to the growth of gravitational 
nstabilities ( q T = 0 . 75) when R = 0. Ho we ver, upon including the
ontribution of the dark matter halo ( R = 1) at f = 0 . 3, the two-
omponent system stabilizes itself ( Q T > 1). Thus, we note that
n external force due to the dark matter halo ef fecti vely suppresses
he growth of local axisymmetric instabilities. Ho we ver, the two-
omponent system can be susceptible to axisymmetric instabilities on 
arer occasions, even in the presence of stabilizing external potential 
ue to the dark matter halo. An example is provided in Fig. 2 , when
 = 0 . 5, and the gas fraction is equal to 0.3 and q s , q g ≤ 1 . 5. The

wo-component system has Q T ≤ 1, indicating that the system is 
rone to growth of local axisymmetric instabilities. 

 APPLI CATI ON  

rom the analysis presented in the previous section, we understand 
hat the external force field of the dark matter halo stabilizes the two-
omponent system of stars + gas. Ho we ver, in rare instances where
he force due to the dark matter halo is insufficient compared to the
estabilizing effect of the gas disc, the two-component system may 
ecome prone to the growth of local axisymmetric instabilities. In 
his section, we will investigate the role of dark matter on the stability
f two-component models of nearby galaxies like the Milky Way and
ow surface brightness galaxies, and models of galaxies observed in 
he early universe. The stellar distribution in our galaxy follows an
xponential surface density given by 

 s ( R) = � s0 e 
−R/R D , (35) 

here � s0 = 640 M � pc −2 and R D 

= 3 . 2 kpc (Mera, Chabrier &
chaeffer 1998 ) are the central surface density and the disc scale

ength. The gas distribution in the Galaxy is given by 

 g ( R) = � g0 e 
−1 . 65 R/R 25 , (36) 

n the abo v e equation � g0 = 28 . 2 M � pc −2 is the central density
f the gas disc and R 25 is the radius at which the B -band surface
rightness drops to 25 . 5 mag arsec −2 , R 25 = 4 R D 

(Bigiel & Blitz
012 ). The stellar velocity dispersion is given by (Leroy et al. 2008 ;
omeo & Mogotsi 2017 ) σs ( R) = (1 / 0 . 6) 

√ 

(2 πGR D 

� s ( R) / 7 . 3 ,
nd we use a constant gas velocity dispersion equal to 10 kms −1 

Tamburro et al. 2009 ; Mogotsi et al. 2016 ). The circular velocity ( v c )
orresponding to the exponential distribution is given as (Binney & 

remaine 2011 ) 

 

2 
c ( R) = 4 πG� 0 R D 

y 2 [ I 0 ( y) K 0 ( y) − I 1 ( y) K 1 ( y)] , (37) 

here y = R/ 2 R D 

and I 0 , I 1 and K 0 , K 1 are the modified Bessel
unctions of the first and second kind. The epicyclic frequency κ at
 radius R is defined as 

2 ( R) = 

(
R 

d �2 ( R) 

d R 

+ 4 �2 ( R) 

)
, (38) 

here � is the angular frequency defined as �2 ( R) = 

v 2 c 
R 2 

. The dark
atter density is given by a pseudo-isothermal halo, with a central

ensity ρ0 = 0 . 035 M � pc −3 and a core radius R c = 5 kpc (Mera
t al. 1998 ). The epicyclic frequency due to the pseudo-isothermal
ark matter halo is given by 

2 
PIS ( R) = 4 πGρ0 

[
2 R 

2 
c 

R 

2 + R 

2 
c 

+ 

R 

4 
c 

R 

2 ( R 

2 + R 

2 
c ) 

−R 

3 
c 

R 

3 
tan −1 

(
R 

R c 

)]
. 

(39) 

ith all the building blocks needed to compute the stability in place,
e will now discuss the role of dark matter halo on different galaxy
odels. 
Case 1: Stability of Milky Way 
MNRAS 532, 3839–3846 (2024) 
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M

Figure 2. The effect of varying the external force of dark matter halo on the stability of the two-component disc. In the top panel, the gas fraction is fixed at f 
= 0.01, and in the bottom panel, the gas fraction is fixed at f = 0.3. The colour bar indicates net stability levels given by Q T . 
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We show the stability analysis of the Milky Way in the first row
f Fig. 3 . We find the minimum value of the stability for stars and
as is q min 

s = 1 . 5 and q min 
g = 1 . 8, indicating that individually stars

nd gas are stable. Ho we ver, the two-component formalism yields
 q min 

T = 0 . 88, indicating that the two-component system is prone
o the growth of local gravitational instabilities in the absence of
he external potential due to the dark matter halo. Now, the addition
f the dark matter to the total potential naturally increases the one-
omponent stability from q min 

s = 1 . 5 to Q 

min 
s = 2 . 7 and q min 

g = 1 . 8
o Q 

min 
g = 3 . 8. Moreo v er, the two-component system, which was

nstable with q min 
T = 0 . 88, now has Q 

min 
T = 1 . 7, highlighting the

mportance of the external potential of the dark matter halo in
tabilizing massive disc galaxy like Milky Way. 

Case 2: Low-mass disc in a high mass halo 
In order to better gauge the role of dark matter on the stability

evels of the two-component disc, we minimize the contribution of
he stars and gas disc to the total potential. We lower the stellar
nd the gas surface density to typical values observed in the low
urface brightness galaxies; � s0 = 100 M � pc −2 and R D 

= 2 . 5 kpc
nd the gas surface density to 14 . 2 M � pc −2 (De Blok et al. 2001 ;
i Paolo, Salucci & Erkurt 2019 ). We keep the values of the dark
atter halo to that of the Milky W ay. W e show the rotation velocity

or this mass distribution in the second row of Fig. 3 . We can see
hat κext is significantly higher than κdisc , highlighting that the dark

atter is the dominant mass component. We find that q min 
s = 1 . 7 and

 

min 
g = 1 . 8, indicating that the stars and gas are stable on their own.
o we ver, similar to the Milky Way, the two-component stars + gas

ystem has q min = 0 . 9, making the disc susceptible to the growth of
NRAS 532, 3839–3846 (2024) 

T 
ocal gravitational instabilities in the absence of the dark matter halo.
o we ver, upon including the contribution of the dark matter halo, we
nd Q 

min 
s = 6 . 9, Q 

min 
g = 8, and Q 

min 
T = 4 . 4, indicating that a higher

ontribution of the dark matter to the total potential is reflected in
igher net stability levels of the two-component system. 
Case 3: Low-mass disc in a low-mass halo 
As a final example, we will inspect the effect of a low-mass

tellar and gas disc embedded in a low-mass dark matter halo
kin to the mass distribution of a low surface brightness galaxy.
e keep the surface density of the stars, gas, and dark matter halo

arameters to the typical values obtained from the mass models of low
urface brightness galaxies: ρ0 = 0 . 066 M � pc −3 and R c = 1 . 5 kpc
De Naray, McGaugh & De Blok 2008 ; Di Paolo et al. 2019 ). The
arameters for the stars and gas are the same as in Case 2. We show the
otation velocity corresponding to this mass distribution in the third
ow of Fig. 3 . The minimum value of q s , q g , and q T are comparable
o values obtained in case 2: q min 

s = 1 . 7, q g = 1 . 8, and q T = 0 . 9.
o we ver, since the contribution of dark matter to the total potential

s small compared to the massive dark matter halo of the Milky Way,
he shift in the stability curves upon adding a dark matter halo is
lso small. We find that Q 

min 
s = 3 . 2, Q 

min 
g = 3 . 6, and Q 

min 
T = 2 . 1.

n both Cases 2 and 3, we find that the force due to the dark matter
otential stabilizes the two-component low surface brightness disc,
hich is otherwise unstable. The only difference is that a massive
alo contributes significantly to the o v erall stability. This aligns with
he previous finding in Garg & Banerjee ( 2017 ) and Aditya ( 2023 ),
hich shows that dark matter is important in regulating the stability
f low surface brightness galaxies. 
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Figure 3. In the first row, we show stability analysis for model of Milky Way. In the second row, we show the stability analysis for a model of a low-mass stellar 
disc embedded in a massive dark matter halo. In the third row, we depict the analysis for a low-mass stellar disc embedded in a low-mass dark matter halo akin 
to a low surface brightness galaxy. The fourth panel shows the stability analysis for a baryon-dominated galaxy akin to cold rotating disc galaxies observed in 
the early universe. In realistic scenarios, Q g , Q s , and Q T correspond to the stability curves estimated from observations. The red dashed line indicates marginal 
stability levels. 
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 DISCUSSION  

 large number of recent studies show that the galaxies observed at
igh redshift are dominated by baryons (Genzel et al. 2014 , 2017 ,
020 ; Rizzo et al. 2021 ). We construct a galaxy model in which the
ontribution of stars and gas exceeds that of the dark matter halo in
he total mass budget. The rotation curve decomposition by Rizzo 
t al. ( 2021 ) show that stellar disc makes maximum contribution
o the total rotation curve. Ho we ver, the contribution from the
ark matter halo and the gas disc are typically comparable. In our
odel, the stellar disc has a surface density profile comparable to 

he Milky Way: � 0 = 640 M � pc −2 and R d = 3 . 2 kpc . We increase
he gas surface density from 28 . 2 M � pc −2 for the Milky Way to
00 M � pc −2 and keep the scale length comparable to the stellar
isc. Ho we ver, the gas disc continues to be a cold component with
 velocity dispersion of 10 km s −1 . We also lower the contribution 
f the dark matter by reducing the dark matter density and core
adius to 0 . 05 M � pc −3 and 2 kpc , respectively. We aim to ascertain
he contribution of the dark matter halo to the net stability levels
n baryon-dominated systems akin to the cold rotating disc galaxies 
bserved in the early universe. We show the results in the fourth panel
f Fig. 3 . We find that in the absence of potential due to the dark
atter halo, q min 

s = 1 . 5, q min 
g = 0 . 8, and q min 

T = 0 . 5, indicating that a
assive cold two-component disc is susceptible to the growth of local

ravitational instabilities. Although the dark matter halo increases the 
et stability levels, the two-component system is still susceptible to 
ocal gravitational instabilities (Aditya 2023 ; Bacchini et al. 2024 ),
 

min 
s = 2 . 8, Q 

min 
g = 0 . 9, and Q 

min 
T = 0 . 8. This indicates that despite

he stabilizing nature of the dark matter halo, the net contribution of
he dark matter is insufficient to stabilize the baryon-dominated cold 
isc galaxies in the early universe. 

 C O N C L U S I O N S  

n this study, we hav e deriv ed detailed theoretical formalism to
nderstand the role of dark matter and gas fraction on the stability
f the two-component model of galactic disc. We model the galaxy
MNRAS 532, 3839–3846 (2024) 
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s a coplanar and a coaxial system of stars and gas in equilibrium
ith an external dark matter halo. We derive the equations governing

he growth rate of perturbation and, finally, present a simple stability
riterion for appraising the stability of the two-component disc under
he influence of dark matter halo. We find that: 

(i) The two-component disc is more susceptible to the growth of
ravitational instabilities than the individual components. Increasing
he gas fraction at a fixed value of external potential lowers the
tability of the two-component disc, highlighting the role of cold
as in destabilizing the galaxy consistent with the earlier finding of
og & Solomon ( 1984a ). 

(ii) The external field due to the dark matter halo acts as a stabiliz-
ng agent and increases the net stability levels of the two-component
ystem. In dark matter-dominated systems, the gravitational force
 x erted by the dark matter halo stabilizes the two-component system,
ven when the system is locally unstable (Jog 2014 ). This indicates
hat the cold gas component cannot destabilize the two-component
isc when the dark matter halo dominates the mass budget of the
alaxies. 

(iii) We apply the stability criterion to the models of the Milky
ay and low surface brightness galaxies and find that the Milky
ay and the low surface brightness discs are locally unstable, when

ontribution of dark matter is not included in the total potential.
o we ver, the addition of the dark matter to the total potential

ignificantly increases the net stability levels in these galaxies (Aditya
023 ). We note that when the contribution of dark matter to the total
ass budget is small, the corresponding effect on the net stability

evels would also be diminished. 
(iv) In rare cases, the two-component system can be susceptible

o the growth of gravitational instabilities despite the presence of
 stabilizing dark matter halo potential. One example is found in
aryon-dominated cold rotating disc galaxies observed in the early
niverse. The influence of dark matter on the o v erall gravitational
otential is insufficient to stabilize the galaxies observed in early
niverse. 
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