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ABSTRACT

Context. Slow waves in solar coronal loops are strongly damped, but the current theory of damping by thermal conduction cannot
explain some observational features.
Aims. We investigated the propagation of slow waves in a coronal loop built up from strands of different temperatures.
Methods. We considered the loop to have a multithermal, Gaussian temperature distribution. The different propagation speeds in
different strands led to a multithermal apparent damping of the wave, similar to observational phase mixing. We used an analytical
model to predict the damping length and propagation speed for the slow waves, including in imaging with filter telescopes.
Results. We compared the damping length due to this multithermal apparent damping with damping due to thermal conduction
and found that the multithermal apparent damping is more important for shorter period slow waves. We quantified the influence of
instrument filters on the wave’s propagation speed and damping. This allowed us to compare our analytical theory to forward models
of numerical simulations.
Conclusions. We find that our analytical model matches the numerical simulations very well. Moreover, we offer an outlook for using
the slow wave properties to infer the loop’s thermal properties.
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1. Introduction

Since the turn of the century, slow waves in coronal loops have
been regularly observed through high resolution space obser-
vations (Berghmans & Clette 1999). These waves are observed
as propagating intensity disturbances along open magnetic
field or in the footpoint of loops (De Moortel et al. 2002;
Krishna Prasad et al. 2012). In previous years, there was a debate
on their interpretation in terms of slow waves or periodic flows
(e.g. De Moortel et al. 2015), but for coronal loops or fans
rooted in sunspots, there is a consensus that these are defi-
nitely slow waves driven by p-mode wave leakage in the sunspot
(Banerjee et al. 2021).

Slow waves in coronal loops have been observed to be very
heavily damped. Traditionally, it has been thought that the damp-
ing is caused by thermal conduction, as concluded in an exten-
sive review of damping mechanisms by De Moortel & Hood
(2003, 2004). Still, some of the observed properties of the
damping may not be adequately explained by this traditional
approach. For instance, in closed-field regions, the damping
was found to scale with the period with a positive coefficient
(Krishna Prasad et al. 2014), which is still more-or-less com-
patible with the damping by thermal conduction (Mandal et al.
2016). However, for open-field regions in coronal holes, the
damping was found to scale with the period with a negative coef-
ficient (Krishna Prasad et al. 2014, 2017), which is incompatible
with that damping theory. Gupta (2014) found different damping

behaviours in slow waves at different heights. At larger heights
(10−70 Mm), they found shorter damping lengths for short
period waves (as expected according to thermal conduction), but
closer to the limb (<10 Mm), the long period waves (>6 min)
appeared to damp faster. Additionally, Mandal et al. (2018) have
shown through a statistical study that the damping length of slow
waves in polar regions indeed displays a negative dependence
on the oscillation period. Moreover, Krishna Prasad et al. (2019)
found that the observed damping lengths of slow waves are much
shorter than those expected from the theory of thermal conduc-
tion. Thus, it seems that other damping mechanisms are also at
work.

Another point to consider is that the propagation speeds of
slow modes in a loop seem to depend on the filter passband of
the spacecraft that is used (King et al. 2003; Kiddie et al. 2012;
Uritsky et al. 2013). This, too, seems to be incompatible with a
slow mode wave propagating through a monolithic loop subject
to damping by thermal conduction. It was originally attributed to
the fact that two adjacent loops (or two loops aligned along the
line of sight) would be observed in different filters. This may be
correct, but it leaves the question as to why the slow waves are
so coherently in phase between the observed structures.

Another reason for disagreeing with the damping of slow
waves by thermal conduction is that slow waves were pre-
viously observed to be damped with a Gaussian envelope
(Krishna Prasad et al. 2014). This feature cannot be explained
by damping by thermal conduction nor by resonant damping
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of slow waves in the cusp continuum (Yu et al. 2017a,b;
Geeraerts et al. 2022). The latter is despite the fact that reso-
nant absorption of kink modes in the Alfvén continuum has
been convincingly shown to result in a Gaussian damping pro-
file (Pascoe et al. 2012, 2017, 2022). However, the mecha-
nism at work for resonant absorption in the Alfvén continuum
(Hood et al. 2013) does not seem to carry over to slow waves
(Hood 2015, priv. comm.).

Furthermore, Wang et al. (2015) argued that the thermal con-
duction coefficient is significantly suppressed in observed coro-
nal loops. Despite the suppression of the thermal conduction,
they still found strong damping of slow waves. In their paper,
they argued that this damping is caused by an enhanced com-
pressive viscosity (Wang & Ofman 2019). However, in this work
we offer a suggestion that may also explain the observed strong
damping of slow waves without invoking unrealistically high
viscosity coefficients (a factor 10 higher than normally con-
sidered, Wang & Ofman 2019). The model we propose does
not need thermal conduction nor viscosity to result in apparent
damping.

In DC heating models of the corona, it is thought that the
loops are built out of isolated strands (e.g. Aschwanden et al.
2000) that are each individually heated by nanoflares. After this
heating, the higher temperature is redistributed by thermal con-
duction only along the magnetic field and inhibited across (e.g.
Williams et al. 2021, and references therein). The loop strands
are consequently modelled as a collection of 1D field lines and
their thermodynamic evolution. This is in contrast to numerical
evidence that loop strands have a short lifetime because of the
mixing by transverse waves (Magyar & Van Doorsselaere 2016).
The latter would result in a more continuous transverse temper-
ature profile perpendicular to the magnetic field (Judge 2023).

In models of AC heating, transverse waves lead to tur-
bulent behaviour in the loop boundary and the entire cross-
section (Karampelas & Van Doorsselaere 2018), resulting in
patchy heating in the cross-section or in the turbulent layers
(Van Doorsselaere et al. 2018; Shi et al. 2021). Despite the dif-
ferences between AC and DC heating models, it is safe to say
that coronal loops do not have a uniform temperature across their
cross-section. This would have a major impact on the propaga-
tion properties of slow waves in those non-uniform temperature
profiles. In this work, we show that this leads to extra apparent
damping (which we call “multithermal apparent damping”, or
MAD) and different propagation speeds in different filter chan-
nels. In the future, this will allow us to infer the thermal structure
of coronal loops from the propagation and damping behaviour.
Aside from the potential use of slow waves to probe the coro-
nal thermal structure, they are also considered for their ability
to diagnose the coronal heating function (Kolotkov et al. 2019)
through their perturbation of the energy balance equation for the
background corona. Thus, it seems that slow waves are the opti-
mal magnetohydrodynamic (MHD) waves for the seismological
study of thermal effects in the solar corona (perhaps only second
to the entropy mode).

Even though our results were derived independently, it was
pointed out in discussions at conferences that the physical effect
we consider is the same effect that what was considered by
Voitenko et al. (2005)1. They modelled the propagation of sound
waves in a multistranded loop with strands drawn from a uni-
form distribution, as seen in a top hat-shaped instrumental filter.

1 In fact, given their pioneering idea on this, as much as 18 years before
this manuscript, we may consider naming the multithermal apparent
damping “Voitenko damping” of slow waves.

In this work, we go much beyond that initial description of this
phenomena.

2. Results: Theoretical models

We modelled a coronal loop as a superposition of strands, each
with their own temperature and associated sound speed vs. How-
ever, the model also carries over to a loop with a temperature
continuously varying in its cross-section. Neither of these mod-
els have temperature variation along the magnetic field. In these
models, a sound wave front is launched at the footpoint. We
describe the propagation of the sound wave in the multithermal
plasma.

2.1. Intuition

We took the z-direction along the uniform magnetic field and
only considered the hydrodynamic behaviour along the magnetic
field lines (e.g. De Moortel & Hood 2003; Voitenko et al. 2005;
Mandal et al. 2016). We first considered the position zp of the
peak perturbation on the strands. We had that

zp = z0 + vst, (1)

where z0 is the height of the initial excitation of the wave in a
strand with sound speed vs. We considered the initial position of
the peak z0 to be independent of the strand, mimicking a joint
impulsive excitation of the pulse low down in the atmosphere. In
this paper, we consider a loop for which the strands have a sound
speed that is randomly drawn from a normal distribution centred
on v̄ and the standard deviation σv

vs ∼ N(v̄, σ2
v ). (2)

The distribution of the temperature in these strands is tightly
related to the heating mechanism, which is currently not
well understood (e.g. Van Doorsselaere et al. 2020). Thus, this
assumption of a Gaussian distribution of a strand’s sound speed
is an ad hoc assumption in this paper. A sketch of the considered
configuration is included in Fig. 1.

With such a Gaussian distribution of the strands, we then
found that the peak positions zp are also a Gaussian distribution.
Following well-known rules for transforming random variables
in statistics, we found that the random variable’s distribution is

zp ∼ N(z0 + v̄t, t2σ2
v ). (3)

We then considered that all the pulse perturbations on each
strand have the same amplitude. The line-of-sight integration
over all these strands then results in an intensity variation that
is modelled well by Eq. (3). This equation shows that the peak
position distribution (and integrated intensity signal) propagates
up with the average sound speed v̄ in the loop bundle. It also
shows that the peak position distribution steadily widens linearly
in time because its standard deviation has a tendency as tσv.

The crucial realisation for understanding the multithermal
apparent damping of sound waves is that the normalising factor
of the Gaussian distribution with a certainσ is given as 1/σ

√
2π.

Applying this for the distribution of zp, we found that its peak
value will vary over time as

1

tσv
√

2π
, (4)

and thus the wave will have a multithermal apparent damp-
ing that is proportional to t−1. Indeed, given that there is no
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dissipation (all the wave energy
∫
vs

∫
z ρv

2
z dvsdz is still in the

infinitely long system), the damping is only apparent because
of the spreading of the wave front over time. This is due to the
different propagation speeds in each strand leading to an increas-
ing spread in z. Thus, it is very similar to the process of phase
mixing.

2.2. Gaussian pulses

We build on this intuition to describe a system with an initial
Gaussian pulse in the density perturbation, which could be the
result of an impulsive excitation at the footpoint of the loop
because of granular buffeting or a reconnection event, for exam-
ple. We imagined a group of strands all simultaneously excited
with a pulse W(z, 0) of the form

W(z, 0) = a exp
(
−

(z − z0)2

2w2

)
(5)

at position z0 and with pulse width w and amplitude a. Because
of the propagation of the pulse on each individual strand, at a
later time, it will appear as

W(z, t) = a exp
(
−

(z − (z0 + vst))2

2w2

)
, (6)

in which vs differs from strand to strand. A sketch of the config-
uration is shown in Fig. 1.

Next we look at the integrated signal for a Gaussian strand
distribution for which vs ∼ N(v̄, σ2

v ) as before. We considered
the integral of the different wavepackets (Eq. (6)), with the dis-
tribution of the strand’s sound speeds as the weight function.
So in a sense, the integral computes the intensity of a line-of-
sight integration through the multistranded loop with a Gaussian
distribution in the DEM (differential emission measure, see
e.g. Van Doorsselaere et al. 2018). The emission measure is
defined as

∫
z n2dz (with electron density n), which linearises to

2
∫

z n0n1dz for background density n0 and density perturbation
n1. The integral over the line of sight covers all strands with
density n0 in our loop model, and thus the wave perturbation
W(z, t) has to be multiplied with the Gaussian strand distribution.
Moreover, the integral over z (which traverses the entire loop sys-
tem) is equivalent to integrating over all strands (in sound speed
space).

With this reasoning, the total signal S (z, t) is then given as

S (z, t) =

∫
vs

1

σv

√
2π

exp
(
−

(vs − v̄)2

2σ2
v

)
a exp

(
−

(z − (z0 + vst))2

2w2

)
dvs, (7)

or

S (z, t) =
a

σv
√

2π

∫
vs

exp
(
−

1
2

[
(vs − v̄)2

σ2
v

+
(z − (z0 + vst))2

w2

])
dvs.

(8)

Completing the square, the evaluation of the integral is given as

S (z, t) =
aw√

w2 + σ2
v t2

exp
(
−

(z − (z0 + v̄t))2

2(w2 + σ2
v t2)

)
· (9)

This is a signal that peaks at z0 + v̄t and thus propagates upwards
with the average sound speed. Its Gaussian width (as a function
of z) is given by

√
w2 + σ2

v t2, showing that it steadily increases
in a hyperbolic fashion. For large t, the width increases approxi-
mately linearly.

~B

z0

Fig. 1. Schematic representation of the considered configuration. Three
magnetic strands are shown. The cyan Gaussian pulses are excited at
time t = 0 at z = z0 on all strands simultaneously. On each strand,
the pulses propagate at a different speed, first to the blue line and then
the purple line. The resultant observed intensity, as integrated over the
different strands, is given by the red line, which shows the multithermal
apparent damping and broadening.

As in Sect. 2.1, we also note here that the amplitude of the
peak signal (at z = z0 + v̄t, i.e. co-propagating with the wave)
decreases steadily over time. Its decay d(t) from its initial ampli-
tude is given as

d(t) =
w√

w2 + σ2
v t2

=
1√

1 +
σ2
v t2

w2

· (10)

For a large time t, this scales thus as t−1, recovering the results of
Sect. 2.1. These latter results may also be recovered by consid-
ering the limit of w → 0, corresponding to an initial δ-function
perturbation.

In Fig. 2, we display the predicted damping envelope of
Eq. (10) and compare it to a Monte Carlo simulation of a
Gaussian wave packet on different strands. For the Monte
Carlo simulation, we have drawn 1000 vs from the normal dis-
tribution N(v̄, σ2

v ), with v̄ = 152 km s−1 (corresponding to
1 MK) and σv = 26.4 km s−1 (for a motivation of these par-
ticular values, see Sect. 3.2). The correspondence between
the analytical solution and the Monte Carlo simulation is
excellent.

We may calculate the damping time τ as the e-folding time
of this damping profile d(t). We would then have that

e−1 = d(τ) =
1√

1 +
σ2
v τ2

w2

, (11)

A109, page 3 of 9



Van Doorsselaere, T., et al.: A&A, 683, A109 (2024)

Fig. 2. Comparison of Monte Carlo simulation with the analytical result.
The analytically predicted envelope (Eq. (10)) is drawn with a dark
blue line. The progressive evolution in time of the Monte Carlo wave
packet is indicated with the light blue to purple colour. The mean sound
speed was taken as v̄ = 152 km s−1 and the spread in sound speed as
σv = 26.4 km s−1.

resulting in

σvτ

w
=
√

e2 − 1 ≈ 2.53 or τ =
w
σv

√
e2 − 1. (12)

With a substitution ∆z ≡ z − z0 = v̄t, we may transform
Eq. (10) to a damping profile as a function of ∆z. We would find
that

d(∆z) =
1√

1 +
σ2
v∆z2

w2 v̄2

· (13)

Following the same reasoning as in the derivation of the damping
time τ, we may also derive the damping length Ld:

e−1 = d(Ld) =
1√

1 +
σ2
v L2

d
w2 v̄2

or Ld =
wv̄
σv

√
e2 − 1 = v̄τ. (14)

2.3. Driven waves

In this section, we consider the case of driven sinusoidal waves.
At a certain height z = 0, a periodic driver is inserted, resulting
in propagating waves a sin (kz − ωt) with amplitude a, frequency
ω, and wavenumber k. The resulting intensity signal of the loop
bundle is then given as an integral (similar to Eq. (7))

S (z, t) =

∫
vs

1

σv
√

2π
exp

(
−

(vs − v̄)2

2σ2
v

)
a sin (kz − ωt)dvs

=
a

σv
√

2π

∫
vs

exp
(
−

(vs − v̄)2

2σ2
v

)
sin

(
ωz
vs
− ωt

)
dvs, (15)

where we have used the dispersion relation k = ω/vs. The lat-
ter integral is not analytically solvable. We can still compare
it to a Monte Carlo simulation with a 1000 vs drawn from a
N(v̄, σ2

v ) distribution and summed up (see Fig. 3). The Monte
Carlo simulation is shown with the blue line, while the full inte-
gral in Eq. (15) is shown with the light orange line. The two
lines closely match, and the deviation is due to the finite number
of drawn vs values. With a higher number of draws, the two lines
converge.

Fig. 3. Comparison of Monte Carlo simulation of driven sine functions
(blue line) with the full integral (light orange) and the approximations
in Eq. (19) (green). All functions have been normalised to the starting
value of one. The expected Gaussian damping envelope (Eq. (26)) is
shown in red. The time was arbitrarily chosen to be t = 0, and the mean
sound speed 152 km s−1 and spread in sound speed σv = 26.4 km s−1

were chosen as before.

Further analytical progress is possible by making a Taylor
approximation of the denominator in the sine:

sin
(
ωz
vs
− ωt

)
= sin

(
ωz

v̄ + δv
− ωt

)
(16)

≈ sin
(
ωz
v̄

(
1 −

δv

v̄

)
− ωt

)
. (17)

This approximation is valid if δv � v̄. Since 95% of the contri-
bution to the full integral (Eq. (15)) is for |δv| ≤ 3σv, the Taylor
approximation is reasonably satisfied for our considered param-
eters of v̄ = 152 km s−1 and σv = 26.4 km s−1, for which we sub-
sequently have |δv| ≤ 3σv = 79.2 km s−1 � v̄ = 152 km s−1. So
the assumption δv � v̄ seems to be sufficiently well satisfied in
loops that are not too extremely multithermal (i.e. with σv . v̄).
This Taylor approximation allows us to rewrite S (z, t) as

S (z, t) ≈
a

σv
√

2π

{
sin

(
ωz
v̄
− ωt

) ∫
δv

exp
(
−
δv2

2σ2
v

)
cos

(
ωzδv
v̄2

)
dδv

− cos
(
ωz
v̄
− ωt

) ∫
δv

exp
(
−
δv2

2σ2
v

)
sin

(
ωzδv
v̄2

)
dδv

}
.

(18)

It turns out that the rightmost integral in this expression is exactly
zero, because its integrand is an odd function in δv. Thus, we
have that

S (z, t) ≈
a

σv
√

2π
sin

(
ωz
v̄
− ωt

) ∫
δv

exp
(
−
δv2

2σ2
v

)
cos

(
ωzδv
v̄2

)
dδv.

(19)

The numerically calculated result of Eq. (19) is shown in Fig. 3
with the green line. It matches the Monte Carlo simulations
(blue) and full integral (light orange) reasonably well. The inte-
gral in Eq. (19) can be calculated analytically by writing it as a
complex function:∫
δv

exp
(
−
δv2

2σ2
v

)
cos

(
ωzδv
v̄2

)
dδv = <

∫
δv

exp
(
−
δv2

2σ2
v

+ ı
ωzδv
v̄2

)
dδv.

(20)
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We subsequently have

<

∫
δv

exp
(
−
δv2

2σ2
v

+ ı
ωzδv
v̄2

)
dδv (21)

= <

∫
δv

exp

−  δv
√

2σv
− ı

√
2σvωz
2v̄2

2

−
σ2
vω

2

2v̄4 z2

dδv (22)

= exp
(
−
σ2
vω

2

2v̄4 z2
)
<

∫
δv

exp

−  δv
√

2σv
− ı

√
2σvωz
2v̄2

2dδv
(23)

=
√

2πσv exp
(
−
σ2
vω

2

2v̄4 z2
)
· (24)

Inserting this into Eq. (19), we find as end result

S (z, t) ≈ a exp
(
−
σ2
vω

2

2v̄4 z2
)

sin
(
ωz
v̄
− ωt

)
· (25)

The wave is thus propagating with the average sound speed and
additionally has a Gaussian damping envelope with a Gaussian
damping length (keeping the traditional factor of two in the
denominator, Pascoe et al. 2017)

LG =
v̄2

σvω
· (26)

For the values considered in this paper (v̄ = 152 km s−1, σv =
26.4 km s−1, ω = 2π/180 s), this reduces to a damping length of
LG = 25.1 Mm.

The formula shows that the damping length is inversely pro-
portional to the frequency. This is a different dependence than
the thermal conduction damping length, which is proportional to
ω−2. In Fig. 4, we compare the multithermal apparent damping
to the damping by thermal conduction. For the latter, we have
taken the results in Mandal et al. (2016), and these are shown
with the blue line. The light orange line corresponds to Eq. (26).
The graph shows that for intermediate periods (i.e. between 300 s
and 1000 s), the damping by thermal conduction is comparable.
However, for shorter or longer periods, the multithermal appar-
ent damping becomes more significant. Caution is appropriate
here because the multithermal apparent damping has a Gaussian
damping profile that is compared in this graph to the exponential
damping profile of the thermal conduction.

3. Results: Loops in filter images

3.1. Influence of a finite filter in imaging observations

In this section, we consider the influence of a filter on the observ-
ability and multithermal apparent damping of slow waves. For a
filter F described by a Gaussian function in vs-space as

F(vs) = aF exp
− (vs − vF)2

2σ2
F

 (27)

with amplitude aF, mean vF, and widthσF, the resulting observed
signal (equivalent to Eq. (7)) would be

S (z, t) =

∫
vs

1

σv
√

2π
exp

(
−

(vs − v̄)2

2σ2
v

)
aF exp

− (vs − vF)2

2σ2
F


× a exp

(
−

(z − (z0 + vst))2

2w2

)
dvs. (28)

Fig. 4. Expected damping lengths (in megameter) as a function of period
(in s) for both multithermal apparent damping (Eq. (26)) and thermal
conduction (Eq. (3) in Mandal et al. 2016). The density was taken to be
109 cm−3, the mean temperature as 106 K, and the spread in temperature
as σv = 26.4 km s−1.

The first two Gaussian distributions may be combined by realis-
ing that

exp
(
−

(vs − v̄)2

2σ2
v

)
aF exp

− (vs − vF)2

2σ2
F

 = aF exp
− (vF − v̄)2

2(σ2
F + σ2

v )


× exp

(
−

(vs − V)2

2Σ2

)
,

(29)

where we have introduced the notation

1
Σ2 =

1
σ2

F

+
1
σ2
v

, V =
σ2
v vF + σ2

Fv̄

σ2
F + σ2

v

(30)

for the width Σ and average V of the resulting Gaussian. This
means that the width of the Gaussian is always decreased due to
the harmonic average.

These expressions for Σ and V may then be inserted in Eq. (9)
while also remembering to also take the extra factors of Eq. (29)
along and incorporate them with a. This results in

S (z, t) =
aaFw

√
w2 + Σ2t2

exp
(
−

(vF − v̄)2

2(σ2
F + σ2

v )

)
exp

(
−

(z − (z0 + Vt))2

2(w2 + Σ2t2)

)
·

(31)

As before, the damping (following a wave packet at a ray of
z = z0 + Vt) has a tendency of

d(t) =
w

√
w2 + Σ2t2

· (32)

This damping is weaker than in the non-filtered case because
Σ < σv.

Likewise, we may also insert Σ and V for σv and v̄, respec-
tively, in the Gaussian damping lengths (Eq. (26)):

LG =
V2

Σω
· (33)

It is also possible to use the propagation speed in different
filters to estimate the temperature spread σv and the mean tem-
perature v̄. This model naturally explains the different propaga-
tion speeds in different filter channels, and this difference may be
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used to measure the loop’s fundamental thermal properties and
to quantify its DEM. As in Eq. (30), we observed that σF and
vF are known for each filter. Then the propagation speed V may
be measured in different filters, allowing us to estimate v̄ and σv
through a least squares fitting.

Moreover, the effective filter width σF is much larger for
imaging observations than spectral observations. Thus, it is to be
expected that imaging observations are much more profoundly
impacted by the effect of multithermal apparent damping. Spec-
tral observations will experience very little damping from the
multithermal apparent damping effect given the narrowness of
the effective filter. Thus, we may use the combination and con-
trast between imaging and spectral observations to disentangle
the real damping mechanism from the multithermal apparent
damping. This approach opens exciting prospects for the seis-
mology of thermal properties of coronal loops.

3.2. Comparison with simulations

In this section, we verify the analytical results described in
the previous sections using a 3D MHD multithermal loop
model similar to the one presented in Krishna Prasad &
Van Doorsselaere (in prep.). Those authors solved the ideal
MHD equations with MPI-AMRVAC (Porth et al. 2014), where
only numerical diffusion is present and there are no explicit dif-
fusive terms. They considered a bundle of 33 vertical strands
with randomly assigned plasma temperatures and densities to
represent a coronal loop, similar to the setup we consider in this
paper. To elaborate, the plasma temperature T (number density
n) for each strand was selected from a random normal distribu-
tion whose peak value corresponds to log T = 6.0 (log n = 9.2),
with a standard width of 0.15 (0.10). The plasma temperature
outside the strands and outside the loop are kept at the same
value, 1 MK. The corresponding number densities are fixed at
5× 108 cm−3. The magnetic field is vertical and parallel to the
axis of the loop. For further details on the simulation setup, we
refer the interested reader to Krishna Prasad & Van Doorsselaere
(in prep.).

By considering the peak (µlog T = 6.0) and the width (σlog T =
0.15) values of the temperature distribution in the simulations
and assuming that the resulting distribution of sound speeds is
sufficiently normal (so that the theory in Sect. 2 applies), we
can estimate the sound speed distribution properties from the
temperature distribution. For this purpose, we calculated that
log T = 6.0 ± 0.15 corresponds to a sound speed value of
vs = 152+28

−24 km s−1 by calculating the sound speed for µlog T and
µlog T ±σlog T separately. So in what follows, we take the follow-
ing parameters: v̄ = 152 km s−1 and σv = 26.4 km s−1. Since the
period of the driver in the simulation was 180 s, this v̄ is expected
to result in a wavelength of 27.4 Mm. The wavelength values λ
obtained in Fig. 5 indicate a good agreement with this.

In their model, Krishna Prasad & Van Doorsselaere (in prep.)
excited slow magneto-acoustic waves within the loop by peri-
odically (period ≈180 s) driving the vertical velocity (vz) at the
bottom boundary of the loop with an amplitude of ≈7.6 km s−1,
which is approximately 5% of the sound speed at 1 MK. This
driving amplitude was chosen to be small because we wanted to
avoid any damping caused by non-linear effects of the waves. We
used the same driver in this study. However, to highlight the mul-
tithermal effects, we restricted the spatial location of the driver
to the positions of the strands. In other words, the amplitude of
the driver is zero outside the strand locations, and consequently,
the oscillations are restricted to the strands. Once the generated
slow waves start approaching the top boundary of the loop, we

Fig. 5. Average density (top) and vertical velocity vz (bottom) profiles
along the simulated multithermal loop. The solid lines represent a Gaus-
sian damped sinusoid fit to the data following the function given in
Eq. (34). The obtained wavelength (λ) and damping length Ld values
are listed in the plot.

computed the mean density and vertical velocity (vz) across the
loop as a function of distance along the loop in order to analyse
how the oscillation amplitudes evolve. Figure 5 displays the den-
sity and vz profiles along the loop in the top and bottom panels,
respectively. As can be seen, the oscillations appear to damp very
quickly. For a proper quantitative assessment, we measured the
damping lengths by fitting the data with the following damped
sinusoid function

f (z) = A0 exp
 −z2

2 L2
d

 sin
(

2πz
λ

+ φ

)
+ b1z + b0. (34)

Here, z is the coordinate along the loop axis, A0 is the maximum
amplitude, Ld is the damping length, λ is the wavelength, φ is the
initial phase, and b1 and b0 are the appropriate constants. It may
be noted that this function describes a Gaussian-damped sine
wave similar to that described in Pascoe et al. (2016). Although
exponential damping is generally considered for slow waves,
as described in Sect. 2.3, the multithermal apparent damping
is expected to produce a Gaussian damping that justifies our
choice here. The solid light orange lines in Fig. 5 represent the
obtained fits to the data. The damping lengths obtained from the
fits are 20± 0.3 Mm and 21.2± 0.3 Mm for the density and ver-
tical velocity, respectively. These values are within 20% of the
expected value of 25 Mm (see Sect. 2.3, Eq. (26)), and they are
thus a reasonable match. The deviation may be due to (1) the
approximation of the full integral (Eq. (15) by Eq. (19)) or (2)
the “small” number of strands (only 33) in the simulations of
Krishna Prasad & Van Doorsselaere (in prep.), which is insuf-
ficient to fully cover the continuous Gaussian DEM modelled
in Eq. (15) due to the finite sample size. Because of the chosen
small driver amplitude, non-linear effects do not play a role in the
damping of these waves. Numerical diffusion could play a role,
but we have verified that increasing the numerical resolution has
no effect on the measured damping lengths.

For a direct comparison with observations, we also forward
modelled the data using the FoMo code (Van Doorsselaere et al.
2016). In particular, we generated synthetic images in the six
coronal channels of SDO/AIA, namely, 94 Å; 131 Å; 171 Å;
193 Å; 211 Å; and 335 Å. As described in Krishna Prasad &
Van Doorsselaere (in prep.), we added appropriate data noise
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Fig. 6. Spatial intensity profiles at a particular instant along the loop
obtained from the synthetic data corresponding to the AIA 171 Å,
193 Å, and 211 Å filters. The solid lines represent a Gaussian damped
sinusoid fit to the data following the function given in Eq. (34). The
obtained wavelength (λ) and damping length Ld values are listed in the
plot.

(following Yuan & Nakariakov 2012) and subsequently built
time-distance maps to study the evolution of oscillations along
the loop. The oscillations were found only in three channels,
171 Å, 193 Å, and 211 Å. The propagation properties are exactly
the same as those found in Krishna Prasad & Van Doorsselaere
(in prep.), so we do not discuss them in detail here. However, we
highlight one crucial point: Krishna Prasad & Van Doorsselaere
(in prep.) found that the forward modelled propagation speeds in
the 211 Å and 193 Å filters were very close to each other despite
their difference in temperature. Here, we quantitatively explain
this phenomena. As can be seen in Table 1, the predicted prop-
agation speeds V are indeed very close to each other for these
filters. We propose that the variation of phase speeds in different
observational filters (e.g. King et al. 2003) may be quantitatively
explained through the proposed formula in Eq. (30). Indeed, that
equation shows that the observed phase speed V is influenced by
that specific filter’s σF and vF.

Next, we focus on the damping properties of the slow waves.
Figure 6 displays the spatial intensity profiles at a particular
instant along the loop for the three AIA channels. The solid
lines in the figure correspond to the fitted profiles following
Eq. (34). We note that the fitted curve in AIA 171 has a signif-
icant deviation beyond a distance of 40 Mm. Imposing tighter
constraints on the fitting function did not improve the results
much. However, the larger uncertainty obtained on the corre-
sponding damping length should have incorporated this sig-
nificant deviation. The resulting associated damping lengths
are 31.8± 1.3 Mm, 36.8± 0.9 Mm, and 34.7± 0.9 Mm, for the
171 Å, 193 Å, and 211 Å channels, respectively. Noticeably,
these values are different from those obtained for the density
and velocity parameters (see Fig. 5). This is due to the temper-

ature response of the observing filter, which also has an influ-
ence on this multithermal apparent damping, as described in
Sect. 3.1.

In order to quantitatively assess the effect of SDO/AIA fil-
ters, we fit the temperature response curves (version 9) for each
coronal filter with a Gaussian function and estimated their stan-
dard width. The temperature response curves and the fitted pro-
files are plotted in Fig. 7. For the curves with multiple peaks, we
chose the peak that is closer to log T = 6.0, which is the charac-
teristic temperature in our simulations. In each of the panels, the
dashed line shows the full response curve, the light orange line
denotes the fitted segment, and the green line shows the fitted
function. The obtained widths σlog T are 0.22± 0.01, 0.17± 0.00,
0.13± 0.00, 0.12± 0.01, 0.12± 0.01, and 0.31± 0.01, for the
94 Å, 131 Å, 171 Å, 193 Å, 211 Å, and 335 Å channels, respec-
tively. These values along with the respective peak locations are
listed in Table 1. From these fitted filter curves in log T -space,
we computed the corresponding peak propagation speed vF from
the sound speed of the fitted peak temperature for each filter.
Then, we calculated σF as the average of sound speeds belong-
ing to the peak temperature plus and minus the filter peak width.
Thus, we assumed that the filter is symmetric in velocity space.
The results of these calculations are listed in Table 1. We subse-
quently used Eq. (30) to compute Σ and V , and we also list the
obtained values in Table 1.

For the density, we calculated the predicted damping time
with Eq. (26). To predict the damping times observed in the
filters, we used the values for Σ and V and inserted them in
Eq. (33). The predicted damping values are listed in Table 2,
along with the measured damping values from the simulations.
The predicted damping times match reasonably well with the
modelled damping times (with a maximum deviation of 30%).
As before, we think that this deviation between the numerical
damping lengths and the predicted damping lengths is due to the
finite number of strands comprising the loop in the simulation.
Thus, the number of strands is insufficient to fill the entire Gaus-
sian DEM. In essence, there are an insufficient number of Monte
Carlo realisations of the strands to completely cover the expected
Gaussian DEM distribution.

4. Conclusions and discussion

In this paper, we have considered the apparent damping of slow
waves (which we call “multithermal apparent damping” (MAD)
or “Voitenko damping”) due to a different propagation speed in
coronal loop strands. We have considered a superposition of δ-
function impulses, Gaussian pulses, and driven waves. All of
these models led to the multithermal apparent damping of slow
waves due to observational phase mixing. We should stress that
the damping is indeed only apparent and that no wave energy was
harmed dissipated during the production of this paper. This mul-
tithermal apparent damping of the slow waves is expected to be
stronger than damping by thermal conduction for short periods
(less than 200 s) and comparable for longer periods. We found
that the case of driven slow waves leads to a predicted Gaussian
damping profile, with a predicted damping length LG of

LG =
v̄2

σvω
,

where v̄ is the average sound speed in the loop, σv is the spread
in the sound speed, and ω is the frequency. The resulting pre-
dicted value of the damping length matches reasonably well
with the one found in the simulations of Krishna Prasad &
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Fig. 7. SDO/AIA temperature response curves for the six coronal channels as listed. In each of the panels, the blue dashed line represents the
full response curve, the light orange solid line represents the segment fitted with a Gaussian function, and the green solid line represents the fitted
function. The obtained standard widths are listed in the plot.

Table 1. Properties of AIA filter response curves.

Channel name AIA 94 AIA 131 AIA 171 AIA 193 AIA 211 AIA 335

Peak temperature µlog T (log T ) 6.02± 0.01 5.75± 0.0 5.90± 0.0 6.14± 0.01 6.24± 0.01 5.91± 0.00
vF (km s−1) 135 179 200
Peak width σlog T (log T ) 0.22± 0.01 0.17± 0.0 0.13± 0.0 0.12± 0.01 0.12± 0.01 0.31± 0.01
σF (km s−1) 20.3 24.7 27.8
Σ (km s−1) 16.1 18.0 19.1
V (km s−1) 141.6 166.1 174.9

Table 2. Gaussian damping lengths in megameter for various quantities.

Density Velocity AIA 171 AIA 193 AIA 211

Numerical model 20.0± 0.3 21.2± 0.3 31.8± 1.3 36.8± 0.9 34.7± 0.9
Predicted damping 25.1 35.7 43.8 45.8

Van Doorsselaere (in prep.). The predicted damping length scales
linearly with the period of the wave. This is compatible with the
observational synthesis made by Cho et al. (2016), who observed
a unified picture of solar and stellar quasi-periodic pulsations with
a damping time scaling linearly with the period. Moreover, this
different scaling of the multithermal apparent damping time with
the period from thermal conduction may explain the difference not
only in damping scalings in open-field or closed-field regions (e.g.
Krishna Prasad et al. 2014, and follow-up works) but also in dif-
ferent damping regimes at different heights (Gupta 2014). These
different damping regimes could then be associated with different

levels of multithermal structuring of loops or plumes and the rela-
tive importance of thermal conduction damping and multithermal
apparent damping.

In the second part of the paper, we considered the effect of
a finite filter width in imaging instruments such as SDO/AIA.
We found that as an effect of the finite filter, the waves have a
different propagation speed V and damping length LG in each
filter, which are given by

V =
σ2
v vF + σ2

Fv̄

σ2
F + σ2

v

, LG =
V2

Σω
,

1
Σ2 =

1
σ2

F

+
1
σ2
v

,
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where vF is the central sound speed of the filter and σF is the
width of the filter. This explains two phenomena: (1) the depen-
dence of the observed phase speed in different filters on the
thermal properties of the loop and (2) the different damping in
each filter. We also checked these formulas against the damp-
ing in forward models of the simulations of Krishna Prasad &
Van Doorsselaere (in prep.). We found that our predictions match
reasonably well with the simulated values (within 30%). We sus-
pect that the deviation is mostly caused by the small number of
strands in the simulation, in contrast to the continuous DEM dis-
tribution that we considered in this paper.

We expect that these results may be used in the future to per-
form MHD seismology (Nakariakov & Verwichte 2005) of coro-
nal loops with slow waves. With the above formulas, it is possible
to fit the loop’s DEM properties of central temperature (through
the average sound speed v̄) and spread in temperature (through the
value of the spread in sound speed σv). These DEM properties of
the loop are only sensitive to the loop in which the slow wave
propagates. This is in contrast to the currently used method of
DEM inversion (e.g. Hannah & Kontar 2012; Cheung et al. 2015;
Krishna Prasad et al. 2018), which is very sensitive to the careful
background subtraction from the loop’s emission. This proposed
method will at least allow for this sensitivity to be removed and
perhaps reveal more detailed thermal properties of loops.

In addition, the combination of spectral observations with
imaging observations is an interesting avenue to consider
because the spectral observations are much less impacted by the
multithermal apparent damping, and the combination of this with
the imaging observations would allow for the disentangling of
physical damping from the multithermal apparent damping.

Several topics can be pursued in future research as follow-
up to this work. Some of them would be (1) considering the
effect of a combination of multithermal apparent damping and
thermal conduction in a multistranded loop system; (2) mod-
elling the effect of multithermal apparent damping on stand-
ing sound waves in, for example, flaring loops (Wang 2011;
Cho et al. 2016); and (3) investigating of the use of different lines
of sight from different spacecraft (e.g. Solar Orbiter and SDO)
to probe the inner multithermal structure of loops using multi-
thermal apparent damping properties.
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