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A B S T R A C T 

Using magnetohydrodynamic simulations of fluctuation dynamos in turbulent flows with rms Mach numbers M rms = 0 . 2 , 1 . 1, 
and 3, we show that magnetic pressure forces play a crucial role in dynamo saturation in supersonic flows. First, as expected 

when pressure forces oppose compression, an increase in anticorrelation between density and magnetic field strengths obtains 
even in subsonic flows with the anticorrelation arising from the intense but rarer magnetic structures. In supersonic flows, due 
to stronger compressive motions density and magnetic field strength continue to maintain a positive correlation. However, the 
degree of positive correlation decreases as the dynamo saturates. Secondly, we find that the unit vectors of ∇ρ and ∇B 

2 are 
preferentially antiparallel to each other in subsonic flows. This is indicative of magnetic pressure opposing compression. This 
antiparallel alignment persists in transonic and supersonic flows at dynamo saturation. Howev er, compressiv e motions also lead 

to the emergence of a parallel alignment in these flows. Finally, we consider the work done against the components of the Lorentz 
force and the different sources of magnetic energy growth and dissipation. We show that while in subsonic flows, suppression of 
field line stretching is dominant in saturating the dynamo, the picture is different in supersonic flows. Both field line stretching 

and compression initially amplifies the field. Ho we ver, gro wing magnetic pressure opposes further compression of magnetic 
flux which tends to reduce the compressive motions. Simultaneously, field line stretching also reduces. But, suppression of 
compressive amplification dominates the saturation of the dynamo. 

Key words: dynamo – MHD – turbulence – methods: numerical. 
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 I N T RO D U C T I O N  

t is now well established that dynamically insignificant seed mag-
etic fields embedded in a conducting fluid can be amplified to near-
quipartition strength by a three-dimensional random or turbulent
ow (Batchelor 1950 ; Kazantsev 1968 ; Haugen, Brandenburg &
obler 2004 ; Schekochihin et al. 2004 ; Brandenburg & Subramanian
005 ; Subramanian, Shukurov & Haugen 2006 ; Federrath et al.
011a ; Bhat & Subramanian 2013 ; Sur, Pan & Scannapieco 2014a ;
orter, Jones & Ryu 2015 ; Federrath 2016 ; Xu & Lazarian 2016 ,
020 ; Sur, Bhat & Subramanian 2018 ; Rincon 2019 ; Seta et al. 2020 ;
eta & Federrath 2021a ; Tobias 2021 ; Shukurov & Subramanian
021 ). The growth of the field depends on competition between
nducti ve gro wth and resisti ve dissipation which translates to the
equirement that the magnetic Reynolds number (Rm) is above
 critical instability threshold Rm cr . This process, referred to as
uctuation dynamo (FD) amplifies seed fields exponentially fast
on eddy-turno v er time-scales) by stretching and compression of
eld lines driven by random (in time) motions that is supplied by a
andom/turbulent flow, until a saturation process becomes important.
Ds are crucial to explain the possible presence of magnetic fields
 E-mail: sharanya.sur@iiap.res.in 

a  
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
n elliptical galaxies (Moss & Shukurov 1996 ; Sur 2019 ; Seta et al.
021 ), in young galaxies at high redshifts (Sur, Bhat & Subramanian
018 ) and in clusters of galaxies (Subramanian, Shukurov & Haugen
006 ; Cho & Ryu 2009 ; Bhat & Subramanian 2013 ; Porter, Jones &
yu 2015 ; Donnert et al. 2018 ; Marinacci et al. 2018 ; Vazza et al.
018 ; Sur 2019 ; Shukurov & Subramanian 2021 ; Sur, Basu &
ubramanian 2021 ). In addition, they are also likely to operate in
isc galaxies, generated from turbulent fluid motions (Pakmor et al.
017 ; Gent et al. 2023 ) and provide seed fields for large-scale dynamo
ction. 

Given the ubiquity of the occurrence of FDs in astrophysical
bjects, we revisit the mechanism of FD saturation in turbulent
ows in this work. The standard picture of the non-linear evolution
f the dynamo is the following. For magnetic Prandtl numbers
m > 1 and fluid Reynolds number (Re) large enough such that

he velocity spectrum consists of multiple scales, the dynamo is
xcited initially by random motions on small enough scales � <<

 f , where Rm( � ) > Rm cr (Haugen, Brandenburg & Dobler 2004 ;
chekochihin et al. 2004 ; Shukurov & Subramanian 2021 ), where
 f is the driving scale of turbulence. The amplification of the field
ue to such eddies continue till the local magnetic energy density
pproaches values comparable to the energy density of fluid motions
n similar scales. Further growth of the field by such eddies is
uppressed due to non-linear back reaction arising from the Lorentz
© The Author(s) 2023. 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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orce. Ho we ver, turbulent eddies at a neighbouring larger scale can
till continue to grow the field as they have a larger energy. Gradually
 v er time, scale-by-scale saturation of the field occurs with the
eak of the magnetic energy spectrum approaching a fraction of the 
uter scale (or the forcing scale of turbulent motions) (Shukurov & 

ubramanian 2021 , and references therein). 
Although the abo v e mechanism has been confirmed in numerical 

imulations by a number of authors mentioned earlier, the exact 
anner in which the approach to a global non-linear steady state 

ccurs still remains unclear. For this purpose, it is instructive to 
onsider a qualitative picture of FD amplification. In an ideal plasma, 

B /ρ ∝ δr , where B is the magnetic field, ρ the plasma density, and 
r the infinitesimal separation vector of fluid elements along the 
eld line (Brandenburg & Subramanian 2005 ). If δr increases in a 
ean square sense, due to random stretching of the field, and if ρ is

ssumed strictly constant as would obtain in an incompressible flow, 
he magnetic energy also increases. Suppression of random stretching 
f the magnetic field lines by the growing magnetic tension (of the
orentz force) has been recognized as the key mechanism ushering 

n the saturation of the dynamo (Schekochihin et al. 2002 ). 
Ho we ver, there is another possibility to limit growth in case we do

ot impose strict incompressibility, which obtains due to the effect of
agnetic pressure. When a region containing a flux of field lines (or
 flux tube) of length ‘ L ’ is stretched, magnetic pressure opposes the
ompression of the flux tube cross-section of area ‘ A ’. Consequently,
decreases to conserve mass, and the magnetic field strength B then 

eed not increase. This mechanism could be important for FD satura-
ion in the interstellar medium (ISM) of galaxies, where turbulence 
s expected to be supersonic at the driving scale. Analysis of the
lignment between the magnetic field and the eigenvectors of the rate 
f strain tensor ( S ij ) in compressible magnetohydrodynamic (MHD) 
imulations by Sur, Pan & Scannapieco ( 2014b ) further showed that
ompressive motions are statistically oriented perpendicular to the 
irection of stretching. In a similar vein, magnetic pressure can also 
ppose any purely compressive motions and prevent the increase of 
hence B . We examine here how important is this mode of saturation

or the FD in random compressible flo ws, e ven if the compressibility
ffects are small as in subsonic flows. Note, however, that the role
f magnetic pressure in saturating the dynamo cannot be captured 
n numerical simulations which solves the exactly incompressible 

HD equations. 
The paper is organized as follows. In Section 2 , we present in brief

he initial conditions and the set-up of the simulations. Thereafter, 
esults of our investigation is presented under various sections. To 
uide the readers, we begin by first discussing the evolution of the
ms Mach number of the flows, the ratio of magnetic to kinetic
nergies, and the probability distribution functions (PDFs) of the 
agnetic energy density in Section 3 . With the o v erarching goal

o elucidate the role of magnetic pressure in FD saturation, we 
hen proceed to explore the time evolution of the ρ–B correlation 
nd how regions with varying field strengths (as obtained in the 
D) and o v erdensities contribute to this correlation in Section 4 . If
agnetic pressure plays a role as described earlier, we expect this

orrelation to decrease as the field becomes dynamically important. 
ext, in Section 5 we study in detail the nature of the alignment
etween the magnetic field direction, the gradient of the density, 
nd the components of the Lorentz force, namely the gradient of
he magnetic pressure and the magnetic tension and explore how 

hese alignments manifest themselves in the kinematic and non- 
inear stages of dynamo evolution. In Section 6 , we study the work
one against the magnetic tension and gradient of the magnetic 
ressure and how it underlines the importance of magnetic pressure 
n dynamo saturation. Next, similar to previous studies (e.g. Seta 
t al. 2020 ; Seta & Federrath 2021a ), we also explore the relative
mportance of stretching, advection, compression, and dissipation 
n the growth and saturation of magnetic energy in Section 7 .
inally, in Section 8 we conclude with highlights of the key results
nd emphasize the role of magnetic pressure forces in dynamo 
aturation. 

 N U M E R I C A L  M E T H O D  A N D  I NI TI AL  

O N D I T I O N S  

e focus our analysis on three non-ideal MHD simulations of 
on-helically forced FD simulations in the simplest possible nu- 
erical set-up. The simulations were performed with an isothermal 

quation of state and periodic boundaries using the FLASH code 1 

Eswaran & Pope 1988 ; Fryxell et al. 2000 ; Benzi et al. 2008 ;
ersion 4.2), which solves the three-dimensional compressible MHD 

quations using explicit viscosity and resistivity in a conserv ati ve
orm. Ho we ver, to better elucidate the role of the different terms, we
xpress the MHD equations in a non-conserv ati ve form here: 

∂ t ρ + ∇ · ( ρU ) = 0 , 

[ ∂ t U + ( U · ∇) U ] = ( B · ∇) B − ∇p 

′ + ∇ · (2 νρS) + ρ F , 

∂ t B + ( U · ∇) B = ( B · ∇) U − B ( ∇ · U ) + η∇ 

2 B , 

∇ · B = 0 . (1) 

ere, ρ, U , p 

′ = p + | B | 2 / 2, B , denote density, velocity, total
ressure (thermal and magnetic), and the magnetic field, respectively. 
 ij = (1 / 2)( ∂ i u j + ∂ j u i ) − (1 / 3) δij ∂ k u k is the traceless part of the

ate of strain tensor, ρ F is the artificial driving term, and ν and η are
he constant viscosity and resistivity, respectively. 

In all the simulations, turbulence is driven solenoidally (i.e. 
 · F = 0) o v er a range of wav enumbers between 1 ≤ | k | L/ 2 π ≤ 3

such that the average forcing wavenumber k f L /2 π = 2 and ‘ L ’ is the
ength of the box) as a stochastic Orstein–Ulhenbeck process with a
nite time correlation. To co v er different re gimes of compressibility,
e analyse the data from a subsonic, a transonic, and one supersonic

imulation with steady-state rms Mach numbers M rms = u rms /c s =
 . 2 , 1 . 1, and 3.0, respectiv ely. Here, u rms is the turbulent rms v elocity
nd c s is the isothermal sound speed. All simulations have a resolution
f 512 3 , Pm = Rm / Re = 1 and are in dimensionless units. Both Re
nd Rm are defined with respect to the driving scale of turbulence.
he initial conditions consist of a box of unit length, the density ρ
nd c s set to unity with zero initial velocities. The magnetic field
s initialized as B init = B 0 [0 , 0 , sin (10 πx)], with B 0 adjusted to a
alue such that the initial plasma beta β0 = p th / p mag ≈ 10 6 –10 7 .
hus, the magnetic field is dynamically weak to start with in all the
imulations. Further, to maintain ∇ · B to machine precision level, 
e use the unsplit staggered mesh algorithm in FLASH v4.2 with a

onstrained transport scheme (Lee & Deane 2009 ; Lee 2013 ) and a
arten–Lax–van Leer discontinuities Riemann solver (Miyoshi & 

usano 2005 ). Table 1 lists the important parameters of these
uns. 

 MAGNETI C  E N E R G Y  E VO L U T I O N  A N D  ITS  

R  O B  ABILITY  DI STRI BU TI ON  F U N C T I O N  

efore delving into the details on the role of magnetic pressure
orces in dynamo saturation, it is worthwhile to explore some of
MNRAS 527, 3968–3981 (2024) 
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M

Table 1. Key parameters of simulations used in 
this study. The resolution in each case is 512 3 . 
k f L /2 π = 2 is the average forcing wavenumber 
and M rms is the average values of the rms Mach 
number in the steady state. � f = 2 π / k f is the 
forcing scale and Pm and Re are the magnetic 
Prandtl number and the fluid Reynolds numbers, 
respectively. 

Run k f L /2 π M rms Pm Re = u � f /ν

A 2.0 0.2 1.0 1500 
B 2.0 1.1 1.0 1250 
C 2.0 3.0 1.0 2250 

Figure 1. Time evolution of M rms (top panel) and the ratio of E m 

/ E k (bottom 

panel) for all the runs. The thin horizontal lines in the top panel are the average 
values of M rms in the time interval considered. The thin black lines in the 
bottom panel denote the slopes of E m 

/ E k in the kinematic phase. 
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Figure 2. Total PDFs of ( B / B rms ) 3 P ( B / B rms ) in the kinematic (blue, dashed), 
intermediate (red, dash–dotted), and saturated phases (black, solid) for runs 
A (top panel) and C (bottom panel). 
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he important evolutionary features that we find in our simulations.
pecifically, we show in Fig. 1 the evolution of the rms Mach number
top panel) and the ratio of magnetic to the kinetic energies (bottom
anel) as a function of the eddy-turno v er time ( t ed = l f / u rms ). It takes
bout (1–2) t ed before a steady state of turbulence is established. The
hin horizontal lines in the top panel are the average values of M rms 

hich are estimated in the intervals t / t ed = (10–25), (18–31), and
25–47) for runs A, B, and C, respectively. These values are also
hown in Table 1 . 

The bottom panel shows that the evolution of E m 

/ E k has three
istinct phases: an initial exponential phase (kinematic) followed by
n intermediate stage of slower growth and eventual saturation. It is
learly evident that the kinematic phase lasts for about t / t ed = 8, 13,
nd 22 in runs A, B, and C, respectively. The slope of the curves in
his phase are denoted by thin solid lines. Thereafter, an intermediate
hase of slower growth ensues. The onset of saturation in runs A,
, and C occurs from t / t ed = 15, 22, and 30, respectively. This can
lso be inferred from the evolution of the magnetic spectra M ( k ) in
ig. A1 , where the spectra tend to bunch together from the aforesaid

imes. The bottom panel further shows that steady-state value of
 m 

/ E k decreases as the compressibility of the flow increases. In the
nterval t / t ed = 15–25, the steady-state value of E m 

/ E k = 0.23 for run
NRAS 527, 3968–3981 (2024) 
, while for runs B and C the steady-state values are 0.22 (for t / t ed =
2–31) and 0.07 (for t / t ed = 30–47), respectively. 
A distinct feature of FD is that it generates both less intense volume

lling fields together with much rarer but strong fields. To illustrate
ur point, we show in Fig. 2 , the PDFs of ( B / B rms ) 3 P ( B / B rms ) in
he kinematic (blue, dotted lines), intermediate (red, dash–dotted),
nd saturated phases (black, solid lines) for run A (subsonic) in
he top panel and run C (supersonic) in the bottom panel. Note that
 B / B rms ) 2 represents the normalized magnetic energy and multiplying
t by an additional factor of B / B rms to obtain ( B / B rms ) 3 measures
he magnetic energy density contributed by fields in a logarithmic
nterval of B / B rms . Here, P ( B / B rms ) is the PDF of the magnetic
eld strength. Two features are evident from these plots. First, in

he kinematic phase, magnetic fields of a wide range of strengths
re present and contribute to the total energy. Especially in the
upersonic case, we find fields with strengths ≈10 B rms contribute
omparable energy density to the total as the rms fields. This is
ot the case with the subsonic run. This feature could be due to
he continuous amplification of fields by density compression in
ddition to amplification by stretching. It is further evident that in
oth intermediate and saturated phases, the peak of the PDFs in
oth subsonic and supersonic cases lies at ≈2 B/B rms . Ho we ver,
he probability of fields B > 6 B rms contributing to the total energy
ecreases gradually from the kinematic to intermediate and saturated
hases in the supersonic case. Strong field regions with B / B rms > 2
lso contribute to the magnetic energy with a probability of 10 −2 for
 / B rms = 6 in the supersonic case. This implies that together with

he general sea of volume filling fields, strong field regions may also
lay a role in dynamo saturation, particularly when compressibility
ffects are significant. We also note that in the supersonic case,
egions with much higher field strengths ( B / B rms > 6) continue to
xist albeit with a much lower probability. This could imply that
ven though the dynamo suppresses the compressive motions when
he fields become dynamically important, density compression still
anages to amplify fields in the rarer regions. 
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Figure 3. Evolution of r p ( ρ, B ) for runs A, B, and C. The blue dotted, 
black solid, and red dashed vertical lines indicate the time of transition to the 
saturation phase in the respective runs. 
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 C O R R E L AT I O N  BETWEEN  DENSITY  A N D  

AGNETIC  FIELD  STRENGTH  

n our simulations, density and magnetic field strength are un- 
orrelated to start with. To explore the temporal evolution of the 
anti)correlation between them as the FD evolves, we compute the 
earson correlation coefficient ( r p ) defined as 

 p ( ρ, B) = 

Cov ( ρ, B) 

σρσB 

= 

∑ 

i,j ,k ( ρi,j,k − ρ̄)( B i,j ,k − B̄ ) √ ∑ 

i,j ,k ( ρi,j,k − ρ̄) 2 
√ ∑ 

i,j ,k ( B i,j ,k − B̄ ) 2 
, (2) 

here B = 

√ 

B 

2 
x + B 

2 
y + B 

2 
z is the magnitude of the field, ρ i , j , k and 

 i , j , k are the density and the magnetic field strength at a point ( i , j ,
 ) in the simulation volume. ρ̄ and B̄ are the mean values of density
nd B , respectively. 

Fig. 3 shows that in the subsonic case (run A, blue dotted line
ith asterisks), ρ and B evolve to become anticorrelated after about 
ne eddy-turno v er time and ev entually settles at an av erage value
 r p 〉 = −0.3 in the saturated state of dynamo. Thus, when the effects
f compressibility are weak, high-density regions correspond to low 

agnetic field strength regions and vice versa. This is a consequence 
f the magnetic pressure acting to oppose the compression of the flux
ube. 

When compressibility effects become important (with the increase 
n M rms ), the growth of the field is expected to be driven by a
ombination of amplification by random stretching and compression 
n converging flows which also enhances the density. The former 
mplifies fields in regions where the vorticity is strong and the 
atter in regions where o v erdensities are large. This is because, the
olenoidal nature of turbulent driving leads to the production of 
ortical motions that drive field amplification by random stretching 
Haugen, Brandenburg & Dobler 2004 ; Federrath et al. 2011a ; 
orter, Jones & Ryu 2015 ; Achikanath Chirakkara et al. 2021 )

n contrast to compressive motions. Howev er, re gions of strong
orticity may not correspond to regions with large o v erdensities. In
he kinematic phase, when fields are dynamically weak, amplification 
ue to density compressions seem to dominate the evolution of the 
orrelation coefficient. This leads to an initial positive correlation 
ith the degree of correlation strongly dependent on the rms M
umber of the flow as shown also by Yoon, Cho & Kim ( 2016 ) and
eta & Federrath ( 2021b ). 
Indeed, in the transonic case (run B, black line with squares), we

bserve a positive correlation with 〈 r p 〉 = 0.33 which then gradually
eclines as the dynamo saturates. After about 25 t ed , the density
nd the magnetic field strength becomes uncorrelated with 〈 r p 〉 =
0.03 in the saturated phase. Thus, with exception to the initial

ositive correlation, the evolution of r p ( ρ, B ) in the transonic case
ears resemblance to the corresponding evolution in the subsonic 
ase. The decrease in r p can be understood as a consequence of
agnetic pressure forces gaining in importance, which acts to further 

esist the compressive motions resulting in suppression of density 
nhancements. This results in regions of strong fields amplified by 
andom stretching, that are not necessarily associated with high- 
ensity regions which arose from compression. 
On the other hand, in the supersonic case (run C, red dotted lines

ith triangles) where δρ/ ̄ρ ∝ M 

2 ∼ 9, the dominance of density
ompressions amplifying the field pushes the 〈 r p 〉 = 0.6 up to ≈20 t ed ,
hich corresponds to the duration of the kinematic phase. Thereafter, 

he correlation decreases only slightly as the field evolves to the non-
inear saturated state with 〈 r p 〉 = 0.43 in the interval t / t ed = (30–
7). This suggests that when compressible effects are strong, field 
mplification due to density compression dominates the evolution of 
 p even when Lorentz forces are strong enough to be dynamically
ignificant. 

.1 Evolution of the correlation coefficient for different ranges 
n B / B rms and o v erdensities 

 generic feature of FD is that it generates magnetic fields consisting
f rarer, intense field structures embedded in a sea of less intense,
olume filling fields. Therefore, it is worthwhile to distinguish the 
ontribution to r p ( ρ, B ) seen in Fig. 3 from regions with differing
agnetic field strengths. Note here that for a given range of B / B rms ,
e focus only on those regions in the simulation volume where the

ange condition is satisfied. Thus, the data in each of the ranges
iscussed below correspond to a subset of the full data set and
quation ( 2 ) is solved for the respective data sets. 

In Fig. 4 , we show the evolution of r p for the subsonic (top panel),
ransonic (middle), and supersonic (bottom panel) for two different 
anges of B / B rms while the black solid lines in each panel depict
he variations of r p as in Fig. 3 , where no such ranges in B / B rms 

re considered. For the subsonic case, it is now clearly evident that
he strong anticorrelation 〈 r p 〉 = −0.46 in the range t / t ed = 13–
5 arises from the rarer, intense field regions where B / B rms > 3
green dashed line with asterisk). In the absence of strong density
ompressions, such intense magnetic field regions solely arise due to 
andom stretching. Thus, the observed strong anticorrelation implies 
hat magnetic pressure e x erted by these strong fields resist further
ompression of flux tubes. At the same time, the sea of less intense
olume filling fields, ho we ver, remain uncorrelated with the density
t all times. 

In the transonic case, initial density enhancements due to com- 
ression also enhances the magnetic field. This leads to an initial
ositive correlation, although the degree of positive correlation 
s lesser when regions with fields B / B rms > 3 are considered.
o we ver, the plots clearly show that once the dynamo builds up

he fields, the degree of positive correlation steadily decreases even 
n regions where B / B rms ≤ 1, while for the strong field regions,
 p ( ρ, B ) evolves to be anticorrelated. Thus, with exception to the
nitial positive correlation, the general trend of r p ( ρ, B ) is very
imilar to the one observed in the subsonic case. Finally, in the
MNRAS 527, 3968–3981 (2024) 
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Figure 4. Evolution of r p ( ρ, B ) for runs A, B, and C for different ranges of 
B / B rms . The dotted vertical lines denote the transition to the saturated phase 
in the respective runs. 
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upersonic case ρ and B remain positively correlated throughout
he e volution. Ho we v er, re gions with B / B rms > 3 only show a
eaker degree of positive correlation compared to regions with
 / B rms ≤ 1. This again reflects the fact that such strong and intense
eld regions arise due to amplification by field line stretching that
btains in vortical turbulence. Ho we ver, density enhancements due
o strong compressions continue to dominate o v er the magnetic field
nhancements due to random stretching leading to a net albeit weaker
ositive correlation. 
The fact that we consider three simulations with varying degrees

f flow compressibility also makes it equally important to probe the
egree of (anti)correlation in different overdensity ranges. Recall
hat density inhomogenities δρ/ ρ ∝ M 

2 , where δρ = ( ρ − ρ̄) is the
uctuation in density. While δρ/ ρ is negligible in the subsonic case,
ignificant density fluctuations ∝ M 

2 could influence the correlation
n transonic and supersonic regimes. To explore this, we compute
he evolution of r p ( ρ, B ) in density ranges se gre gated by re gions:
ρ/ ρ < M 

2 and δρ/ ρ ≥ M 

2 . The results are shown in Fig. 5
ith panel (a) showing the evolution for the subsonic, panel (b) for

ransonic, and panel (c) for the supersonic run. 
We find that in the subsonic case, the observed anticorrelation

rises from regions with δρ/ ρ < 0 . 04 as the magnetic fields in these
egions are amplified solely due to vortical motions. Regions with
ρ/ ρ ≥ 0 . 04 remain uncorrelated. In the transonic and supersonic
ases, the evolution of r p in regions with δρ/ ρ < M 

2 follow the
attern seen when no cutoffs are introduced (black solid lines). On the
ther hand, in both cases, r p starts out with a much weaker positive
orrelation when o v erdense re gions with δρ/ ρ ≥ M 

2 are considered.
n the transonic case, magnetic field strength eventually becomes
ncorrelated with the density while in the supersonic case, they
aintain a weaker positive correlation. This could be due to the fact

hat such high-density regions are fewer in number in the simulation
omain. Furthermore, we find that the values of r p calculated using
NRAS 527, 3968–3981 (2024) 
 mass-weighted version of equation ( 2 ) are almost identical to the
nes shown in Fig. 5 particularly for o v erdensities δρ/ ̄ρ > M 

2 . 

.2 2D slices of density fluctuations and fluctuations in 

agnetic energy 

urther evidence of the anticorrelation between the density and
agnetic field strength obtained in run A can be easily discerned

rom the two-dimensional (2D) slices of the density and magnetic
nergy. Such slices can also reveal the positive correlation expected
n supersonic flows. To illustrate this, we show in Fig. 6 , 2D slices
f δρ/ ̄ρ (left column) and the corresponding fluctuations in B 

2 ,
B 

2 /B 

2 
rms = ( B 

2 − B 

2 
rms ) /B 

2 
rms (right column). These slices were

btained in the saturated phase of the dynamo in the respective runs.
he top row shows the slices in the x –y plane (at z = 0) corresponding

o t / t ed = 24.5 for run A, while the bottom row shows the same at
 / t ed = 48 from run C. 

It appears that fluctuations in both ρ and B 

2 resemble that of
 cloth which is wrinkled and folded at multiple regions due to
ction of the turbulent driving. Note that even though both ρ and
 

2 are positive definite quantities, there are regions within the
imulation volume where ρ < ρ̄ ( ̄ρ = 1) and B 

2 < B 

2 
rms . Both

he left and right panels of the figure show a wide variety of high
ontrast but smoothly varying structures in δρ/ ̄ρ and δB 

2 /B 

2 
rms .

ore importantly, in run A we find that regions of strong density
uctuations correspond to regions of weak fluctuations in magnetic
nergy and vice versa. The strongest anticorrelation occurs in the
arer, strong field regions with δB 

2 /B 

2 
rms > 7 . 8. This once again

orroborates the results obtained in Section 4.1 . On the other hand,
n comparison to run A the bottom row shows that fluctuations in
oth δρ/ ̄ρ and δB 

2 /B 

2 
rms are much stronger in run C. It is also

learly evident that density fluctuations are positively correlated
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Figure 6. 2D slices of δρ/ ̄ρ (left column) and δB 

2 /B 

2 
rms (right column) from snapshots in the saturated state at t / t ed = 24.5 from run A (top row) and at t / t ed = 

48 from run C (bottom row). The slices are shown in the x –y plane at z = 0. The anticorrelation between the two in subsonic flows is clearly evident with 
bright regions of δρ/ ̄ρ corresponding to dark regions (weaker fluctuations) in δB 

2 /B 

2 
rms and vice versa. On the other hand, the supersonic run exhibits positive 

correlation between δρ/ ̄ρ and δB 

2 /B 

2 
rms . 
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ith fluctuations in magnetic energy in agreement with the results 
resented earlier. 

 A L I G N M E N T  A N G L E S  

he evolution of r p ( ρ, B ) offers a first glimpse into the pos-
ible role of magnetic pressure in saturating the dynamo. Ad- 
itionally, it is also worthwhile to investigate the nature of 
he alignments between the density gradient, magnetic field, 
nd the components of the Lorentz force. Accordingly, we 
how in Fig. 7 , the PDFs of the cosine of the angles be-
ween the magnetic field and the gradient of density (left 
olumn), the gradient of density and gradient of the mag- 
etic pressure (middle column), and finally, between the gra- 
ient of the density and the magnetic tension (right column). 
hese PDFs are computed by averaging over a number of 
MNRAS 527, 3968–3981 (2024) 
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M

Figure 7. PDFs of the cosine of the angles for the subsonic ( M rms = 0 . 2) in the top row, transonic run ( M rms = 1 . 1) in the middle, and for the supersonic 
( M rms = 3 . 0) run in the bottom row. The alignments are shown between: n B · n ∇ρ (left column), n ∇ρ · n ∇ B 2 (middle column), and n ∇ρ · n ( B ·∇) B (right column). 
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ndependent realizations (at different t ed ) in kinematic (blue,
ash–dotted), intermediate (yellow, dashed), and saturated phases
red, solid). 

The left column of the abo v e figure shows that the distributions
f the unit vectors of ∇ρ and B are symmetric about cos( θ ) =
 with the unit vector of the magnetic field (directed along the
eld line) preferentially perpendicular (90 ◦ or 270 ◦) to the unit
ector of the density gradient. This is consistent with the simple
icture of a flux tube threaded by a field of strength ‘ B ’ where the
ensity can be enhanced or depleted in the flux tube. Moreo v er,
he degree of orthogonal alignment appears to be stronger in the
aturated and intermediate phases in comparison to the kinematic
hase. This reinforces in a statistical sense, the simple qualita-
ive picture described earlier. Due to magnetic pressure gradient
pposing compression of the field, density is decreased in strong
eld regions and density contrasts are enhanced perpendicular

o the field. On the other hand, the gradient of the magnetic
ressure ( ∇B 

2 ) is directed inwards to the flux tube. The middle
olumn in the figure shows that in the subsonic case (run A), ∇ρ

nd ∇B 

2 are antiparallel (i.e. at 180 ◦) to each other in all the
hree phases. This is a manifestation of the fact that as magnetic
ressure gains in importance due to dynamo amplification, the
orce due to magnetic pressure opposes the compression of the
ux tubes. This results in density variations that are anticorrelated
NRAS 527, 3968–3981 (2024) 
ith variations in magnetic pressure. Thus, force due to magnetic
ressure tends to empty out the flux tubes rather than allowing
he cross-sectional area to decrease. Note that in the subsonic
ase, this antiparallel alignment is caused by the rarer, stronger
eld regions that are strongly anticorrelated with the density, while

he general sea of volume filling fields remain uncorrelated (see
ig. 4 ). The kinematic phase in the transonic case (run B) shows
n antiparallel alignment together with a weak parallel alignment
etween the two, which evolves to a stronger antiparallel align-
ent in the intermediate phase and continuing to the saturated

hase. 
Ho we ver, the picture changes considerably in the supersonic case

run C), where compressibility effects are strong enough that in the
inematic phase, density enhancements drive the amplification of
he magnetic field. In this case, the strong positive correlation seen
n Fig. 3 results in density variations that are also correlated with
agnetic pressure variations. Consequently, ∇ρ and ∇B 

2 are initially
ligned parallel to each other. Ho we v er, o v er time random stretching
lso amplifies magnetic fields in addition to field amplification due
o compressions. Similar to the subsonic case, we find that as the
ynamo saturates force due to magnetic pressure opposes further
ompression of the field lines resulting in the emergence of an
ntiparallel alignment between the two that coexists with the parallel
lignment. 
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Figure 8. Evolution of the first and second term in equation ( 4 ) for runs A 

(top panel), B (middle panel), and C (bottom panel). 
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Figure 9. Evolution of the mean values ( μ) of the PDFs of local stretching 
(blue, asterisks), compression (green, filled stars), advection (red, open 
diamonds), and dissipation term (purple, ‘ + ’) for the subsonic run with 
M rms = 0 . 2. The sum total of the mean values is depicted by black crosses. 

Figure 10. Same as in Fig. 9 but now for the supersonic run with M rms = 

3 . 0. 
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The right column shows that magnetic tension does not show 

ny preferred alignment with the density gradient in the subsonic 
ase. Ho we ver, with the increase in flow compressibility, a weak
rthogonal alignment between the two emerges which becomes more 
rominent at M rms = 3. Thus, the nature of the alignments discussed
bo v e pro vides further appreciation of the role of magnetic pressure
n dynamo saturation. 

 I M PAC T  O F  L O R E N T Z  F O R C E S  O N  

AGNETIC  E N E R G Y  E VO L U T I O N  

n this section, we discuss how the energy exchange between the 
elocity and magnetic fields facilitated by the different components 
f the Lorentz force elucidates the role of magnetic pressure and 
agnetic tension in saturating the dynamo. 
The v olume-a veraged magnetic energy evolution in terms of the 

ork done by the Lorentz force is 

d 

d t 

〈| B | 2 / 2 〉 = − 〈 U · ( J × B ) 〉 −
〈

J 2 

σ

〉

− 〈 ∇ · ( E × B ) 〉 , (3) 

here σ is the conductivity and the angular brackets 〈 ... 〉 denote
 olume a veraging. Substituting J × B = ( B · ∇) B − ∇ ( B 

2 / 2) in
he abo v e equation and multiplying both sides by t ed /B 

2 
rms , the

agnetic energy evolution in dimensionless form is 

d 

d t 

〈 | B | 2 
2 

〉
t ed 

B 

2 
rms 

= − 〈 U · L T 〉 t ed 

B 

2 
rms 

+ 

〈
U · L p 

〉 t ed 

B 

2 
rms 

−
〈

J 2 

σ

〉
t ed 

B 

2 
rms 

. (4) 

he first two terms on the right-hand side correspond to the rate
f work done by the magnetic tension L T = 

˜ L T − ( ̂  B · ˜ L T ) ̂  B and 
he gradient of the magnetic pressure L p = 

˜ L p − ( ̂  B · ˜ L p ) ̂  B . Here,
˜ L T = ( B · ∇) B and ˜ L p = ∇( B 

2 / 2) and ˆ B is the unit vector of
he magnetic field. Thus, L T and L p as defined abo v e only retain
omponents perpendicular to B . This is because the Lorentz force 
as no component parallel to B . The last term represents the decrease
n magnetic energy due to Joule dissipation. 2 The effect of this term
an be gauged from Figs 9 and 10 presented in the following section.

Using the instantaneous values of u rms and B rms for the normaliza-
ion parameter t ed / B rms , we show in Fig. 8 the time evolution of the
verage values of the first term (blue dotted line with diamonds),
nd the second term (red, dashed line with ‘ + ’ symbol). The
uctuations in the velocity are within 10 per cent of the rms value.
n all the three cases corresponding to different degrees of flow
ompressibility, both the terms have positive average values which 
mplies that they contribute to the growth in magnetic energy (see
quation 4 ). In the subsonic and transonic cases (top and middle
anel), the work done against the gradient of the magnetic pressure
s al w ays small compared to the magnetic tension. The plots also
how that both magnetic pressure and magnetic tension are involved 
MNRAS 527, 3968–3981 (2024) 
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n dynamo saturation. We see that the average values of both
he terms decrease as the dynamo evolved from the kinematic to
he saturated phase. In the subsonic case, both magnetic pressure
nd tension contributions decrease by identical factors. Ho we ver,
n the transonic case, the suppression of the magnetic pressure
erm is more compared to the decrease due to the magnetic ten-
ion. 

Interestingly in the supersonic case (bottom panel), the energy
ained from the velocity due to 〈 U · L T 〉 and 

〈
U · L p 

〉
terms are

omparable up to 22 t ed . As can be seen from Fig. 1 , this corresponds
o the time by when the kinematic growth phase of the magnetic
nergy culminates and the intermediate phase of growth begins. Sim-
lar to the transonic case, once the dynamo evolves to the saturated
hase, the work done against the gradient of the magnetic pressure is
uppressed more in comparison to the magnetic tension. This again
eflects the fact that the magnetic pressure gains in importance in
pposing compressive motions as the dynamo saturates. 
Thus, expressing the equation for magnetic energy evolution in

erms of the rate of work done against the components of the Lorentz
orce offers a fresh perspective which highlights the significance of
agnetic pressure in the supersonic case. 

 I M PAC T  O F  L O C A L  S T R E T C H I N G ,  
DV E C T I O N ,  C OMPRESSION,  A N D  

ISSIPATION  O N  MAGNETIC  E N E R G Y  

VO L U T I O N  

nother approach to understand how the FD saturates is to
nalyse the effects of local stretching, advection, compression,
nd dissipation on the growth or decay of magnetic energy
Seta et al. 2020 ; Seta & Federrath 2021a ). In this context,
t is important to clarify if suppression of field line stretch-
ng is the only agent responsible for saturating the dynamo.
o this end, we take the dot product of the magnetic in-
uction equation with B and then expand the B · [ ∇ × ( U ×

B )] term to obtain the evolution of the mean magnetic en-
rgy. In the following, we present a detailed derivation of the
agnetic energy evolution equation and also highlight a subtle

oint. 
Assuming η to be constant, the i -th component of the magnetic

nduction equation is 

∂B i 

∂t 
= [ ∇ × ( U × B )] i − η( ∇ × J ) i , (5) 

here J = ∇ × B is the current density with μ0 = 1. 
Expanding the cross-product in the induction term using Levi–

ivita symbols yield 

∂B i 

∂t 
= εijk 

∂ 

∂x j 
( εklm 

U l B m 

) − η( ∇ × J ) i . (6) 

Now, substituting εijk εklm = ( δil δjm − δim δjl ) and utilizing the
roperties of Kronecker Delta δij ’s gives 

∂B i 

∂t 
= 

∂ 

∂x j 
( U i B j ) − ∂ 

∂x j 
( U j B i ) − η( ∇ × J ) i . (7) 

Taking a dot product of equation ( 7 ) with B i , and neglecting the
erm ∝ ∇ · B we obtain the evolution equation of the magnetic
nergy in terms of local stretching, advection, compression, and
NRAS 527, 3968–3981 (2024) 
issipation terms 

∂ 

∂t 

(
B 

2 

2 

)
= B i B j 

∂U i 

∂x j ︸ ︷︷ ︸ 
stretching 

−B i 

∂U j 

∂x j 
B i ︸ ︷︷ ︸ 

compression 

−B i U j 

∂B i 

∂x j ︸ ︷︷ ︸ 
advection 

− ηB i ( ∇ × J ) i ︸ ︷︷ ︸ 
dissipation 

. 

(8) 

Next, we define the rate of the strain tensor S ij = ( U i , j + U j , i )/2,
here U i , j denote partial deri v ati ve of U i w.r.t. j and vice versa.
ow, expressing the stretching term in equation ( 8 ) in terms of S ij 

nd recasting the third term B i ( U j ∂ j ) B i as U j ∂ j ( B 

2 
i / 2) the volume

ntegrated magnetic energy evolution is given by 

∫ 

V 

1 

2 

∂| B | 2 
∂t 

d V = 

∫ 

V 

B i B j S ij d V −
∫ 

V 

U · 1 

2 
∇| B | 2 d V 

−
∫ 

V 

| B | 2 ( ∇ · U ) d V 

−η

∫ 

V 

B · ( ∇ × J ) d V . (9) 

Note that in deriving equation ( 9 ), the term ∝ ( U i , j − U j , i ) is
ntisymmetric in ( i , j ) and hence does not contribute to the magnetic
nergy. 

The first term on the right-hand side of equation ( 9 ) represents
he stretching and compression of the magnetic field lines by the
urbulent flow which may increase or decrease the magnetic energy.
he second term reflects the effects of advection of the field lines
y the turbulent flow. The third term representing the effects of
ompression can also reduce the magnetic energy depending on the
ivergence of the velocity field and is generally important in transonic
nd supersonic flows. The last term is dissipative in nature which
cts to reduce the magnetic energy. The effects of local stretching,
dvection, compression, and dissipation on the magnetic energy
rowth (or decay) can then be analysed from the PDFs of each
f the terms on the right-hand side of equation ( 9 ). 
Before proceeding further, we wish to elucidate a subtle point.
e note that the advection term in equation ( 9 ) can be further

implified to [ ∇ · ( U | B 

2 | ) − | B 

2 | ( ∇ · U )] / 2 which together with the
ompression term leads to a term ∝ ( ∇ · U ) and a surface term
 ( U | B 

2 | ). While for periodic boundary conditions, the latter term
anishes, it will still contribute when computing the PDFs at each
esh point. Similar reasoning is applicable to the dissipation term in

quation ( 9 ) which can be expressed as a combination of a divergence
erm ∝ ∇ · ( J × B ) and a term ∝ | J | 2 . Again, the divergence term
anishes for periodic boundaries but will contribute to the PDFs at
ach mesh point. Therefore, while computing the PDFs, it is essential
o retain the contribution from the advection and dissipation terms in
he form given in equation ( 9 ). This is in contrast to Seta & Federrath
 2021a ), where the aforesaid surface terms were neglected. 

Similar to in Section 6 , we express equation ( 9 ) in dimensionless
orm by multiplying both sides of the equation by t ed /B 

2 
rms which

esults in 

∫ 

V 

∂ 

∂t 

( | B | 2 
2 

)
t ed 

B 

2 
rms 

d V = + 

∫ 

V 

S ij B i B j 

t ed 

B 

2 
rms 

d V 

−
∫ 

V 

U · 1 

2 
∇ | B | 2 t ed 

B 

2 
rms 

d V 

−
∫ 

V 

| B | 2 ( ∇ · U ) 
t ed 

B 

2 
rms 

d V 

− η

∫ 

V 

B · ( ∇ × J ) 
t ed 

B 

2 
d V . (10) 
rms 



Fluctuation dynamo saturation 3977 

d
t
t  

c
(  

S  

0  

n  

l
o

e  

m
t

 

e
t  

a
a  

e
r  

n  

B
i  

t  

(  

t  

M  

s  

P
a  

s
 

t
s
b
a
r  

s
s
r
μ  

a  

t
p
T  

c
a
c
a  

t
t  

a  

i  

t
p
o

o
(
G  

r
f  

(  

a  

a
a
d
r  

s
t
T  

t
m
f  

t
r
a
l  

i
i  

s
d  

F

8

O  

h  

i  

t
s
a
s
c  

e  

a  

u  

t  

b  

t
L
t  

K  

V

s
i  

I
t
a  

t  

m
o

 

n  

n  

a  

a  

a  

T
m  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/2/3968/7424993 by Indian Institute of Astrophysics user on 12 January 2024
While computing the PDFs of the compression, advection, and 
issipation terms are fairly straightforward, to compute the PDFs of 
he local stretching we first project the local magnetic field along 
he three eigenvectors of the rate of strain tensor ( e 1 , e 2 , e 3 ). The
orresponding eigenvalues are denoted as λ1 > λ2 > λ3 , respectively 
Brandenburg 1995 ; Sur, Pan & Scannapieco 2014b ; Seta et al. 2020 ;
eta & Federrath 2021a ). In the incompressible case, λ1 + λ2 + λ3 =
 while in the supersonic case the sum of the three eigenvalues need
ot be zero. In general, e 1 and e 3 correspond to the directions of
ocal stretching and compression while e 2 can be either, depending 
n sign of λ2 (Ashurst et al. 1987 ). 
We then compute the local stretching as, � i= 1 , 2 , 3 [ λi t ed ( B ·

 i ) 2 ] /B 

2 
rms , where ( B · e i ) denotes the component of the local

agnetic field along the direction of the eigenvectors, and λi are 
he eigenvalues corresponding to the eigenvectors e i . 

In the kinematic phase, there is a net growth in the magnetic
nergy, while in the saturated phase the magnetic energy is expected 
o remain constant. It is expected that this is caused by the mutual
djustments between the local stretching, compression, advection, 
nd dissipation terms. In what follows, we discuss the effects of
ach of these terms in two regimes of compressibility focusing on 
un A where M rms = 0 . 2 and run C where M rms = 3 . 0. Since we
ormalized equation ( 10 ) using the instantaneous values of u rms and
 rms , we refrain from computing the total PDFs o v er the range of t ed 

n the kinematic and saturated phases. Instead, we show in Fig. 9 the
ime evolution of the mean values of the PDFs of local stretching
 μs ), advection ( μa ), compression ( μc ), and dissipation ( μd ), and
he sum total of the mean values ( μtot ) for the subsonic run with

 rms = 0 . 2. In the same vein, Fig. 10 shows the evolution for the
upersonic run with M rms = 3. For the sake of completeness, the
DFs of stretching, advection, compression, and dissipation terms at 
 few representative times in the kinematic and saturated phases is
hown in Figs B1 and B2 . 

In the subsonic case (run A), Fig. 9 shows that field amplification in
he kinematic phase is predominantly driven by an increase in local 
tretching of the field by the turbulent flow. This is accompanied 
y an increase in dissipation. The mean values of local stretching, 
dvection, and dissipation peaks ≈3–4 t ed beyond which, the growth 
ate of the magnetic energy changes (see Fig. 1 ). In fact, Fig. B1
how that dissipation is relatively stronger than both field line 
tretching and advection initially. Beyond this, the change in growth 
ate of magnetic energy is manifested by a gradual decrease in 

s , μa , and μd . This continues up to t / t ed ≈ 15 beyond which,
ll three attain steady-state v alues. Ho we v er, μc remains ne gligible
hroughout the evolution. This reconfirms the fact that compression 
lays a negligible role in dynamo saturation in subsonic flows. 
he net growth of magnetic energy in the kinematic phase is
onfirmed from the non-zero value of the total mean. Of course, 
s the dynamo approaches the non-linear phase, the net growth 
onsistently decreases. In the saturated phase, field line stretching 
nd dissipation compensate each other (i.e. | μs | ≈ | μd | ), while μa is
otally suppressed to negligible values. A quick comparison between 
he PDFs in Fig. B1 show that both local stretching and dissipation
re reduced in the saturated phase. Note that the rate of strain tensor
n the stretching term in equation ( 10 ) is only affected by magnetic
ension. Thus, the reduction in stretching observed in the saturated 
hase suggest that magnetic tension is resisting the further stretching 
f the field lines. 
In contrast to the subsonic case, Fig. 10 shows that amplification 

f the magnetic field in the kinematic phase in supersonic turbulence 
run C) is dominated by compression of magnetic field lines. 
rowth of magnetic energy due to stretching of the field lines
emains subdominant to the effects of compression by almost a 
actor of two in this phase. The compressible nature of turbulence
 M rms = 3 . 0) drives local density enhancements which further
mplifies the magnetic field. On the other hand, the effects of
dvection remain marginal compared to compression, stretching, 
nd dissipation. As the magnetic energy transitions to the interme- 
iate phase of growth, both compression and field line stretching 
educes marked by a drop in μs and μc after t / t ed ≈ 22. At the
ame time, advection and dissipation also decreases slightly. In 
he saturated phase, μs and μc become comparable to each other. 
he o v erall evolution of the mean values spanning from kinematic

o saturated phase show that field amplification by compressive 
otions suffer the strongest suppression as μc decreases by a 

actor ≈3.3 (also see Fig. B2 ) compared to a factor of ≈1.5 for
he reduction in stretching. This implies that in the compressible 
egime, in addition to reduction in field line stretching, advection, 
nd dissipation, the suppression of further compression of field 
ines due to the action of magnetic pressure plays a major role
n saturating the dynamo. Interestingly, the aforesaid deduction 
s consistent with Sur, Pan & Scannapieco ( 2014b ) where it was
hown that compressive motions of the strain (perpendicular to the 
irection of stretching) are suppressed in the saturated phase of the
D. 

 C O N C L U S I O N S  

ver the course of the last two decades, a great deal of progress
as been made to understand the manifold features of FDs and
t’s application to magnetic fields in the ISM of galaxies and in
he intracluster medium of galaxy clusters. A majority of these 
tudies were based on direct numerical simulations that dealt with 
mplification of dynamically insignificant seed magnetic fields and 
ubsequent saturation in flows encompassing various degrees of 
ompressibility. Ho we ver, the precise way in which the dynamo
volves to the non-linear saturated state and the factors that play
 deciding role in achieving this steady state remained far from
nderstood, more so in compressible flows. While in a broader sense,
he back reaction due to the Lorentz force is rightly adjudged to
e responsible for saturating the dynamo, it had been argued that
he magnetic tension force is the main ingredient that suppresses 
agrangian chaos via reduction of field line stretching which in 

urn results in the saturation of the dynamo (Cattaneo, Hughes &
im 1996 ; Rincon 2019 ; also see Eyink 2011 ; Eyink, Lazarian &
ishniac 2011 ). 
Although the role of magnetic tension is appreciated for dynamo 

aturation in incompressible flows, a better understanding is required 
n compressible flows which are likely to occur in the galactic
SM where density fluctuations can be significant. In particular, 
wo important questions arise – does magnetic pressure gradient 
ssociated with the Lorentz force also play a role in saturating
he dynamo and, is suppression of field line stretching the only

echanism responsible for dynamo saturation when the condition 
f strict incompressibility is relaxed? 
With the aforesaid questions in mind, here we hav e pro vided a

e w perspecti ve on ho w FDs saturate. To this ef fect, we performed
umerical simulations of FDs at Pm = 1 in turbulent flows driven
t half the scale of the box with the amplitude of turbulent driving
djusted such that the steady state M rms = 0 . 2 , 1 . 1, and 3.0. We then
nalysed the data from these simulations using a variety of probes.
hese include: (i) exploring the correlation between the density and 
agnetic field strength, (ii) the nature of the alignments between the
agnetic field, the gradient of the density, and the components of
MNRAS 527, 3968–3981 (2024) 
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he Lorentz force, (iii) the work done against different parts of the
orentz force to grow the magnetic field, and (iv) the impact of local
tretching, advection, compression, and dissipation on the evolution
f the magnetic energy. Our main conclusions are as follows: 

(i) The PDFs of the magnetic energy density shown in Fig. 2 ,
emonstrate in a no v el manner that together with the general sea
f less intense, volume filling fields, strong fields regions are also
ikely to play a role in dynamo saturation in supersonic turbulence.
n fact, as Fig. 2 shows strong fields of strength ≈10 B rms in the
upersonic case contribute comparable energy density as the rms
trength fields in the kinematic phase. Even after saturation, fields
pto 4 B rms contribute significantly to the magnetic energy density. 
(ii) Density and magnetic fields strength are anticorrelated in

ubsonic flows. Due to the incompressible nature of the flow, densities
annot be changed by a large factor. Thus, saturation of the dynamo
an happen by suppression of field line stretching. This is also
onfirmed from Fig. 9 . 

(iii) As the effects of compressibility become important (e.g. runs
 and C), magnetic fields are amplified by a combination of random

tretching and compression. The latter ensures an initial positive
alue of r p which then decreases as dynamo saturates (see Fig. 3 ).
n transonic flows, ρ and B tend to become uncorrelated in the
aturated state while in the supersonic case, r p shows a lesser degree
f positive correlation in the saturated phase compared to the value
n the kinematic phase. 

(iv) A quick glance at Fig. 4 reveals that the anticorrelation
etween ρ and B seen in the subsonic case stems from the strong
eld regions with B / B rms > 3. Such rarer and intense fields also lead

o negligible r p in the transonic case and a much weaker positive
orrelation in the supersonic case. Interestingly, we find that regions
ith δρ/ ρ < M 

2 (see Fig. 5 ) lead to the anticorrelation in the
ubsonic case. In the transonic case, these o v erdense re gions tend to
e uncorrelated with the magnetic field while in the supersonic case,
hey tend to reduce the degree of positive correlation. 

(v) The fact that magnetic pressure forces play a significant
ole in dynamo saturation is clearly evident from the PDFs of the
lignment presented in Fig. 7 . In the subsonic case, we find that
 ∇ρ is statistically aligned antiparallel to n ∇ B 2 , with the alignment
ecoming stronger in the saturated phase. In the transonic and
ore prominently in the supersonic case, apart from the antiparallel

lignment, a strong parallel alignment between the two emerges in
he kinematic phase. Nevertheless, the antiparallel alignment due to

agnetic pressure forces dominate in the saturated phase. In contrast,
agnetic tension does not show any preferred alignment with the

radient of the density irrespective of the flow compressibility. 
(vi) An analysis of the impact of Lorentz forces on the growth

f magnetic energy (Fig. 8 ) reveals that the contribution from the
agnetic pressure gradient is al w ays small compared to the magnetic

ension up to M rms = 1 . 1. Ho we ver, in the supersonic regime, the
wo are comparable till the time the non-linear saturated phase
shers in. Thereafter, the work done against the gradient of magnetic
ressure (aiding field growth) is suppressed more in comparison
o the magnetic tension. This again illustrates the importance of
agnetic pressure gradients in dynamo saturation for supersonic

urbulence. 
(vii) The time evolution of the mean values of the PDFs of

ocal stretching, advection, compression, and dissipation terms are
hown in Figs 9 and 10 . They clearly demonstrates firstly that local
tretching of the field lines play a crucial role in amplifying the
eld in subsonic flows. And the saturation of the dynamo in such
ows occurs via a reduction in field line stretching. In contrast,
NRAS 527, 3968–3981 (2024) 
n supersonic flows, amplification of magnetic fields is dominated
y compression of the field lines in the kinematic phase with
tretching playing a subdominant role. As the magnetic energy
volves to equipartition strengths, the dynamo saturates more due
o suppression of compressive amplification than due to reduction in
eld line stretching. 

In a nutshell, the results from our work confirm in detail a new
oute to dynamo saturation based on the simple schematic picture of
agnetic flux tubes discussed in Section 1 . In incompressible flows,
here magnetic tension plays a decisive role in dynamo saturation,
agnetic pressure forces nevertheless act simultaneously to oppose

he compression of the flux tubes, especially in rare but intense
agnetic structures. The pivotal role of magnetic pressure forces

n saturating the dynamo comes into prominence in transonic and
articularly in supersonic flo ws. There, gro wing magnetic pressure
orces resist compression of flux tubes and lead to regions of strong
agnetic flux being emptied out rather than a decrease of their cross-

ectional areas. This fact has not been sufficiently appreciated so far
nd could be important as many astrophysical systems host compress-
ble turbulent flows. Future work extending these considerations also
o cases with Pm � 1, and where turbulence is inhomogeneous as
xpected in galaxies, would be of interest. 

FDs play an important role in amplifying weak seed magnetic
elds to strengths of dynamical importance. In astrophysical systems

ike galaxies, where conditions are fa v ourable for large-scale dynamo
ction, the fields amplified by FDs provide a seed for the later
volution (Shukurov & Subramanian 2021 ). Here, turbulence is
ainly driven by supernovae explosions. On the other hand, during

he formation of the first stars FD action can be triggered due
o gravitational collapse which generates turbulent motions (Sur
t al. 2010 , 2012 ; Federrath et al. 2011b ). On even larger scales,
he same mechanism may amplify fields during the formation of
he first galaxies (Latif et al. 2013 ; Schober, Schleicher & Klessen
013 ; Pakmor et al. 2017 ) and also in galaxy clusters (Subramanian,
hukurov & Haugen 2006 ; Cho & Ryu 2009 ; Vazza et al. 2018 ).
n the latter, such dynamo generated fields crucially impact the
roperties of polarized synchrotron emission (Basu & Sur 2021 ;
ur, Basu & Subramanian 2021 ). Thus, elucidating the role of the
agnetic pressure and magnetic tension in dynamo saturation is of

asting importance. 
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PPENDI X  A :  E VO L U T I O N  O F  T H E  KI NETIC  

N D  MAGNETI C  SPECTRA  

n Fig. A1 , we show the time evolution of the kinetic K ( k ) and
agnetic M ( k ) energy spectra as a function of k / k min for the three

imulations presented here. K ( k ) in the kinematic and intermediate
hases are shown by thin, black solid line and in the saturated phase
y thick, black solid lines. On the other hand, red dashed dotted
urves depict the evolution of M ( k ). 

The figure shows that K ( k ) develop a significant inertial range in
ll three runs whose slope is in reasonable agreement with a k −5/3 for
un A (subsonic) and k −2 in runs B (transonic) and C (supersonic).
hin solid lines with power-law behaviour of the form k 3/2 is also
hown in each panel for comparison with the Kazantsev spectra for
agnetic energy (Kazantsev 1968 ). The M ( k ) shows the familiar self-

imilar evolution in the growth phase. Later, as the dynamo saturates
he spectra of M ( k ) bunch together. We find that this happens from
 / t ed = 15, 22 and t / t ed = 30 in runs A, B, and C, respectively. 
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 runs A (left panel), B (middle panel), and C (right panel). K ( k ) is shown by 
r is normalized to k min = 2 π . The thin vertical line in each panel shows the 
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PPENDIX  B:  E VO L U T I O N  O F  T H E  PDFS  O F  

T R E T C H I N G ,  A DV E C T I O N ,  COMPRESSION,  
N D  DISSIPATION  IN  COMPRESSIBLE  FLOW S  

In Figs B1 and B2 , we show the PDFs of local stretching
in panel ‘a’), advection (in panel ‘b’), compression (in panel
c’), and dissipation (in panel ‘d’) at fiv e representativ e times
NRAS 527, 3968–3981 (2024) 

igure B1. Evolution of the PDFs of the stretching term in panel (a), the advecti
erm in panel (d) for run A with M rms = 0 . 2 (subsonic). The values of μ and σ
istribution in each case. 
ncompassing the kinematic and saturated phases of the dynamo.
t is apparent from these plots that the standard deviations ( σ )
alues are much larger compared to the mean ( μ) values. Fig. B1
learly shows that the compression term plays a negligible role
n turbulent incompressible flows. On the other hand, we can see
rom Fig. B2 that it does play an important role in supersonic
ows. 
on term in panel (b), the compression term in panel (c), and the dissipation 
shown in the legends correspond to the mean and standard deviation of the 
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Figure B2. Same as in Fig. B1 but now for run C with M rms = 3 . 0 (supersonic). 
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