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ABSTRACT
Exploration of the tractable size basis set that can provide reliable estimates of computed properties for systems containing heavy elements
has been the subject of interest in quantum chemistry over many decades. In this connection, the recently developed segmented all-electron
relativistically contracted (SARC) basis set proposed by Rolfes et al. [J. Comput. Chem. 41, 1842 (2020)] appears to be worth studying. In
the present attempt, ground and excited state properties of the Ag atom is computed on this basis at the Fock-space multi-reference coupled
cluster (FSMRCC) level of theory with four-component relativistic spinors. The computed quantities resulting from the SARC basis are
subsequently compared with those obtained using an even-tempered basis to assess the efficacy of the SARC basis. Computations have also
been performed with the extended SARC basis to improve the quality of the property of interest. The accuracy of the computed quantities such
ionization energy, electron affinity, excitation energies, etc., obtained using the SARC basis at the FSMRCC level of theory demonstrates that
the SARC basis (particularly the extended one), which is primarily designed for quantum chemical calculations at the two-component scalar
relativistic level for systems containing heavy atoms, can be used for fully relativistic calculations. The magnetic dipole hyperfine structure
constant A, oscillator strengths f and transition rates Afi calculated using the SARC basis also agree well with the experiment and with the
available theoretical estimates.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0128225

I. INTRODUCTION
Despite immense methodological and numerical develop-

ments, relativistic calculations for heavy elements find it difficult
to achieve the same level of precision as the non-relativistic ones
for light elements due to the unavailability of a suitable basis set
for heavy atoms. It is well known that the relativistic and elec-
tron correlation effects in systems containing heavy elements are
often of the same order of magnitude, in which the former one
increases with increasing nuclear charge. Not only that, the size of
the single particle basis that needs to be used for reliable descrip-
tion of the system under investigation also increases as the atom
gets heavier. For instance, the scaling of the second-order many-
body perturbation theory (MBPT), the coupled-cluster method
with single and double (CCSD) excitation, and CCSD with triple

excitation (CCSDT) are of the order O2V3, O2V4, and O3V5, respec-
tively, where O and V represent the numbers of occupied and virtual
orbitals (N=O + V, with N being the total number of one-particle
orbitals). As a result, full-blown correlated relativistic calculations
of heavy atomic and molecular systems become highly prohibitive
(computationally intensive) and almost unattainable. This is also
true in non-relativistic situations where it limits the applications of
reliable and accurate wave function based methods to moderate-
size systems. Several schemes have been proposed to reduce the
computational costs, such as excluding the core and high-lying vir-
tual orbitals from the correlation calculations. It was also shown
that larger computational savings can, in principle, be achieved by
freezing a significant fraction of the virtual space based on their
occupation numbers in natural orbital basis.1–3 Despite all these
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developments, the basis set aspect still remains crucial because
the relativistic calculations on heavy elements, till date, primarily
rely on a large number of uncontracted bases due to the unavail-
ability of an appropriate basis for heavy atoms. Several types of
all-electron basis sets (both in contracted and uncontracted forms)
have been put forward over the years by various research groups to
address these requirements in an optimal and balanced way. Prob-
ably the earliest attempt in this direction was initiated by Raffenetti
and Ruedenberg4 who proposed the so-called even-tempered (ET)
basis set where the name even-tempered comes from the constraint
imposed on the choice of exponents used in generating the one-
electron basis. In a subsequent publication, Bardo and Ruedenberg5

explored the possibility of using a common set of exponent para-
meters, which are independent of orbital angular momentum. In
order to attain high accuracy with a smaller basis size, Huzinaga
et al.6 proposed a generalized formula [the so-called well-tempered
basis (WTB)] in generating the orbital exponent, which is a func-
tion of four parameters (orbital angular momentum dependent).
In recent years, Rolfes et al.7 developed a family of segmented all-
electron relativistically contracted (SARC)8–11 basis sets for routine
calculations, chiefly based on density functional theory (DFT),12,13

in combination with two widely available scalar relativistic Hamil-
tonian, viz., the second-order Douglas–Kroll–Hess (DKH),14–25 the
zeroth-order regular approximation (ZORA).26,27 The SARC basis
has also been successfully applied by Alizadeh and co-workers in
their DKH based multi-reference configuration interaction (MRCI)
on bimetallic clusters of Group XI elements.28–30 The construction
of the SARC basis follows simple rules and strives to provide a rea-
sonable compromise between accuracy and efficiency. The SARC
family basis sets have been developed for a wide range of moderate to
heavy atoms, including the elements of the 6p-block of the Periodic
Table.

To analyze the usefulness of the SARC basis set in a rel-
ativistic context, we have carried out Fock-space multi-reference
coupled cluster (FSMRCC) calculation on the Ag atom using four-
component relativistic spinors with the SARC basis of Rolfes et al.7
Calculations have also been performed with the ET basis (Bardo
and Ruedenberg5 type) using the same number of basis functions
to assess the relative performance of these two basis sets. With
the system being moderately heavy, the relativistic effect will be
non-negligible, and at the same time, it can be studied with a reason-
able number of polarization functions without much computational
complexity. This system is interesting from an application point of
view as the relativistic contraction and stabilization of the ns valence
shell (n = 4–6) of Group XI elements is known to undergo a local
maximum. This phenomenon is known as “Gold maximum” as
Gold exhibits pronounced relativistic effects. The theoretically pre-
dicted relative position of the low-lying excited states of Group XI
elements is also quite interesting. For instance, the non-relativistic
calculations predict the first excited 2P ([Xe]4f145d106p) state of Gold
to be energetically lower than the first excited 2D ([Xe]4f145d95s2)
state whereas experimental values are in reverse order. It was subse-
quently shown that the inclusion of relativistic terms in the Hamil-
tonian (at least the leading one) is necessary to obviate this problem.
The relative stability of the low-lying excited states of the Ag atom
is also unique compared to Cu and Au atoms. To be more spe-
cific, the relative energy of the low-lying excited states of Cu and Au
atoms are in the order 2D 5

2
<

2D 3
2
<

2P 1
2
<

2P 3
2
, whereas those in

the Ag atom appear as 2P 1
2
<

2D 5
2
<

2P 3
2
<

2D 3
2
. The present work

characterizes the ground and excited states of the Ag atom and
its ions by computing their energies using the Fock-space multi-
reference coupled cluster (FSMRCC) method.31–39 It is well known
that the non-uniqueness of the exponential nature of the wave
operator employed in the CC method diversifies this method to
a host of MRCC strategies. The traditional MRCC methods hinge
on the effective Hamiltonian approach and work within the com-
plete model space (CMS), although they are rather more varied
in their scope of applications.40 The effective Hamiltonian based
MRCC strategies fall into two broad classes: (i) state-universal, a
Hilbert-space approach41 and (ii) valence-universal, a Fock-space
approach.31–39 The Hilbert space based method highlights only one
valence sector at a time, where the cluster operators are defined
with respect to each reference function. The Fock space approach,
on the contrary, uses a single wave operator that not only corre-
lates the reference functions of interest but also correlates all the
lower valence (or the so-called subduced) sectors, obtained by delet-
ing the occupancy systematically. At this juncture, we recall that the
cluster amplitudes in Fock-space MRCC are generated hierarchi-
cally through the subsystem embedding condition (SEC),34,37 which is
equivalent to the valence universality condition used by Lindgren32

in his formulation. We reiterate that FSMRCC is an ideal candi-
date for the characterization of the states with varying numbers of
valence electrons through the use of a single “valence universal”
wave operator and hence is very useful for estimating the energy
differences of spectroscopic interest. The FSMRCC method, an all-
order, size-extensive, and multi-root method, has already been used
to estimate transition energies, providing satisfactory accordance
with experiments in general.42

II. COMPUTATIONAL DETAILS
We are not going to discuss or provide theoretical details of the

Dirac–Fock and Fock-space multi-reference coupled cluster meth-
ods as these are well documented in the literature. We shall rather
concentrate on the computational aspects of these methods rele-
vant to the present work. Here, the Dirac–Coulomb equations are
first solved, assuming the nucleus size to be finite and imposing a
kinetic balance43 condition. The solution of the Dirac–Fock equa-
tions provides the single-particle orbitals and orbital energies, which
are subsequently used to incorporate the electron correlation in the
FSMRCC calculations of ionization potential, electron affinity, exci-
tation energy, etc., by projecting out the negative energy states to
avoid continuum dissolution.44,45

Since the ground state of Ag is an open-shell doublet (2S1/2)
with one electron in its outermost 5s orbital, we begin with Ag+

ion. which defines the (0h, 0p) valence sector (Fermi vacuum) of
the Fock-space. The ground and excited state energies of Ag are
then computed employing the (0h, 1p) FSMRCC method for one-
electron attachment process. Following this strategy, the ground 2S 1

2

(4d105s) and excited 2P
(

1
2 , 3

2 )
(4d105p), 2S 1

2
(4d106s), 2P

(
1
2 , 3

2 )
(4d106p),

and 2D
(

3
2 , 5

2 )
(4d105d) state energies of Ag are obtained by adding an

electron to the 5s, 5p, 6s, 6p, and 5d unoccupied (virtual) orbitals of
Ag. It is observed that while the FSMRCC for one-electron attach-
ment process offers reasonably accurate estimates of 2S 1

2
and 2P 1

2 , 3
2
,
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as well as 2D 3
2 , 5

2
excited state energies of configurations 4d105s,

4d106s, 4d105p, 4d106p, and 4d105d, it fails to provide correct esti-
mates for the second 2D 5

2
and fourth excited 2D 3

2
state energies of

the configuration 4d95s2. It further shows that the 2D 5
2
(4d95s2) state

is energetically lower but quite close to the 2D 5
2

(4d105d) state. This

is also true for 2D 3
2

states arising from configurations 4d95s2 and

4d105d. This problem, most likely, arises due to the highly bound
character of the single-particle orbitals 4d and 5s resulting from
the Dirac–Fock self-consistent field (SCF) calculations with Ag+ as
the reference state. Also note that the low-lying 2D excited states
of the electronic configuration 4d95s2 are 1h–2p states (shake-off
state) whereas 2D states with completely filled 4d orbitals are 0h–1p
states with respect to Fermi vacuum. This incorrect ordering issue
between 2P

(
1
2 , 3

2 )
(4d105p) and 2D

(
3
2 , 5

2 )
(4d95s2) states can be partly

mitigated by choosing the unperturbed reference function of Ag−
(4d105s2) as the Fermi vacuum, i.e., the (0h–0p) valence sector. With
this particular choice of Fermi vacuum, ground 2S 1

2
(4d105s), low-

lying second 2D 5
2

(4d95s2) ,and fourth excited 2D 3
2

(4d95s2) states
become the 1h–0p particle states (w.r.t. Fermi vacuum) whose ener-
gies can be computed using FSMRCC for one-electron detachment
process. The same problem also exists in Cu and Au where these 2D 5

2

and 2D 3
2

states are the first and second excited states of these atoms.
In fact, Eliav et al.46 adopted this strategy (multiple choice of vac-
uum/reference states) to avoid this problem in their relativistic CC
calculations of the Au atom.

In this work, the ground state and ionized or excited state prop-
erties are computed using the single particle basis functions gener-
ated by solving the Dirac–Fock equations where the one-electron
basis functions are constructed from an uncontracted Gaussian basis
set.47 The exponents for the SARC basis of Ag are taken from
Ref. 7, and those for the “even-tempered” (ET) basis (Bardo and
Ruedenberg5 type) are generated via the relation αi = α0βi−1 where
parameters α0 and β are chosen to be 0.008 25 and 2.23, respec-
tively. In order to compare the SARC and ET bases on equal footing,
we have employed the same number of basis functions (25s18p13d)
in both the cases. The Dirac–Fock energy for the ground state of
Ag resulted from the ET and SARC basis is −5 314.627 315 and
−5 314.783 713 a.u., respectively. The radial expectation values of
the innermost s, p, and d orbitals (in Bohr) determined from the
four-component Dirac–Fock calculations with ET and SARC basis
sets are also in accordance with those reported by Rolfes et al.7
These 25s18p13d uncontracted Gaussian bases are, however, not
good enough for excited/ionized state calculations as there are no
polarization functions in these basis sets. To improve the accuracy
of the ground and excited/ionized states, 6f, 4g, and 2h functions are
added to the existing 25s18p13d basis. Since the correlation contri-
bution from single particle orbitals of energy ϵ greater than ±100 a.u.
is negligibly small,48,49 deep-lying occupied (ϵ < −100 a.u.) and
high-lying virtual (ϵ > 100 a.u.) orbitals can be excluded in the post-
Dirac–Fock treatment, i.e., in FSMRCC calculations. Here, these
energy threshold criteria are applied only for unoccupied orbitals as
there are only four occupied orbitals whose single particle energy
is less than −100 a.u. (1s, 2s, 2p1/2 and 2p3/2). FSMRCC calcu-
lations, in the present context, are carried out at the single and
double excitation (SD) level as full-fledged FSMRCC calculation

with single, double, triple, and higher excitation is computationally
expensive.

The ionization potential (IP), electron affinity (EA), and exci-
tation energies (EE) of Ag obtained using the relativistic FSMRCC
method with SARC and ET basis sets are summarized in Table I
along with other correlated calculations50–52 and with recommended
data from the National Institute of Standards and Technology
(NIST) database.53 IP, EE, and EA resulting from the Dyall-v4z
(33s25p17d6f4g2h) basis54 are listed in this table for comparison.
The IP of Ag was computed by Neogrady et al.52 using the spin-free
DKH orbitals whereas Safronova et al.50 and Nayak et al.51 employed
four-component relativistic spinors in their third order many-body
perturbation MBPT(3) and FSMRCC calculations. As can be seen in
Table I, the CCSD(T) calculations by Neogrady et al.52 reproduce the
IP of Ag better than the third order MBPT.50 These results indicate
that the higher order correlation contribution is quite significant in
IP calculations for this system. The electron affinity obtained using
the SARC basis is quite encouraging. For instance, the electron affin-
ity yielded by relativistic FSMRCC/SARC is 0.067 eV higher than the
observed value whereas the same from the ET and Dyall-v4z basis
sets is 0.033 and 0.061 eV, respectively, higher than the experimental
value of 1.304 eV. SARC and ET based calculations offer results of
comparable accuracy where the SARC basis fares marginally better
than the ET basis in some cases. While the Dyall-v4z basis pro-
vides quite accurate estimates of IP, EE, and low-lying 2P J (J = 1

2 , 3
2 )

states, it overestimates EE for high-lying 2S 1
2

(4d106s), 2P 1
2

(4d106p),
2P 3

2
(4d106p), 2D 3

2
(4d105d), and 2D 5

2
(4d105d) states. In fact, 2D 3

2

(4d105d) and 2D 5
2

(4d105d) state energies resulted from this basis are
found to be above the ionization threshold.

FSMRCC calculations are also performed with an extended
basis of size 30s25p20d7f5g2h to improve the accuracy of the com-
puted quantities. This extended basis is constructed by adding few s,
p, d, and g functions to the existing 25s18p13d6f4g2h basis. As can
be seen in Table I, use of an extended basis improves the accuracy
of the estimated quantities. For example, use of the extended basis
reduces the difference between the experiment and theoretical esti-
mate of the ionization potential by 0.04–0.05 eV. A similar trend is
also observed for 2S 1

2
–2P 1

2
, 2S 1

2
–2P 3

2
, etc., transition energies.

We reiterate that the FSMRCC method for the one-electron
detachment process is employed to compute the electron affinity
(EA) of the Ag atom. The same strategy is also used to determine
its low-lying 2D 5

2
(4d95s2) and 2D 3

2
(4d95s2) state energies. It is found

that FSMRCC equations for the 4d ionization process encounter
serious convergence issues (also called the intruder state problem55).
This convergence problem is avoided by computing the ioniza-
tion energies via the equation of motion based coupled cluster
(EOMCC)56–63 method, which is formally equivalent to FSMRCC
for the one-valence problem.64 Being an eigenvalue equation, this
alternative scheme does not suffer (normally) from the convergence
problem. EOMCC calculations for the ionization process show that
the configuration state function 4d95s2 contributes 49% and 59%
to 2D 5

2
and 2D 3

2
states wave functions, respectively. Note that this

convergence issue in the FSMRCC scheme normally arises for inner-
valence ionization and not for outer-valence ionization, and that
is why FSMRCC equations for the 5s ionization process were not
plagued by the intruder state problem. Despite all, EE values of
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TABLE I. Ionization potential (IP), excitation energies (EE), and electron affinity (EA) of Ag (in electron volt)
from four-component FSMRCC calculations with even-tempered (25s18p13d6f4g2h) and SARC basis sets. Extended
(30s25p20d7f5g2h) basis set results are shown in the parentheses. Selected results from Dyall-v4z (33s25p17d6f4g2h)
are also listed here.

State ET SARC Dyall-v4z Others NIST

IP 2S 1
2

(4d105s) 7.402 (7.458) 7.439 (7.485) 7.520 7.237,a 7.542,b 7.492c 7.577
EE 2P 1

2
(4d105p) 3.605 (3.641) 3.605 (3.645) 3.671

3.481,a 3.690b 3.664
2D 5

2
(4d95s2) 4.013 (4.219) 4.044 (4.091) 4.345 3.750

2P 3
2

(4d105p) 3.712 (3.751) 3.716 (3.758) 3.786
3.589,a 3.799b 3.778

2D 3
2

(4d95s2) 4.550 (4.797) 4.605 (4.663) 4.985 4.304
2S 1

2
(4d106s) 5.126 (5.178) 5.159 (5.202) 5.504

5.249b 5.277
2P 1

2
(4d106p) 5.845 (5.898) 5.870 (5.913) 6.312 5.988

2P 3
2

(4d106p) 5.871 (5.925) 5.896 (5.943) 6.369 6.014
2D 3

2
(4d105d) 5.879 (5.933) 5.914 (5.960) 5.714,a 6.015b 6.043

2D 5
2

(4d105d) 5.879 (5.936) 5.916 (5.963)
5.717,a 6.018b 6.046

EA 1S0 (4d105s2) 1.347 (1.382) 1.371 (1.377) 1.365 1.304
aReference 50.
bReference 51.
cReference 52.

low-lying 2D 5
2

(4d95s2) and 2D 3
2

(4d95s2) excited states obtained
using FSMRCC for the ionization process are ∼0.3 eV higher than
the experimental value. More importantly, these calculations predict
the 2D 5

2
(4d95s2) state to be energetically higher than 2P 3

2
(4d105p).

To address this issue, effect of triples is included in the FSMRCC
calculations in an approximate way,48,49,65 and the results are dis-
played in Table II. As can be seen in Table II, inclusion of triple

excitation (approximate) not only improves the EA value but also
provides accurate estimates of the excited states and their relative
order (except for the 2D 5

2
state from extended ET basis FSMRCC

calculations). We further note that FSMRCC calculations with the
ET and SARC basis estimate the ground 2S 1

2
(4d105s) state energy

to be −5 314.769 138 and −5 314.759 581 a.u. for electron–electron
attachment and detachment processes, respectively. This minuscule

TABLE II. Ionization potential (IP), excitation energies (EE), and electron affinity (EA) of Ag (in electron volt) from four-
component FSMRCC(T) calculations with even-tempered (ET) and SARC basis sets. Extended basis set results are shown
in the parentheses.

State ET SARC Others NIST

IP 2S 1
2

(4d105s) 7.408 (7.465) 7.442 (7.492) 7.237,a 7.542,b 7.492,c 7.577

EE 2P 1
2

(4d105p) 3.615 (3.652) 3.614 (3.657) 3.481,a 3.690b 3.664
2D 5

2
(4d95s2) 3.646 (3.804) 3.678 (3.714) 3.750

2P 3
2

(4d105p) 3.721 (3.761) 3.723 (3.769) 3.589,a 3.799b 3.778
2D 3

2
(4d95s2) 4.157 (4.363) 4.213 (4.262) 4.304

2S 1
2

(4d106s) 5.131 (5.184) 5.162 (5.209) 5.249b 5.277
2P 1

2
(4d106p) 5.852 (5.903) 5.875 (5.922) 5.988

2P 3
2

(4d106p) 5.878 (5.933) 5.900 (5.948) 6.014
2D 3

2
(4d105d) 5.884 (5.884) 5.918 (5.968) 5.714,a 6.015b 6.043

2D 5
2

(4d105d) 5.886 (5.887) 5.920 (5.970) 5.717,a 6.018b 6.046
EA 1S0 (4d105s2) 1.267 (1.300) 1.286 (1.299) 1.304
aReference 50.
bReference 51.
cReference 52.
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TABLE III. Magnetic dipole hyperfine structure constant A (in MHz), oscillator strengths f , and transition rates Afi (in 108

seconds) of the low-lying excited states of Ag from FSMRCC calculations with extended ET and SARC basis sets.

State

Property Initial(i) Final(f ) ET SARC Others Refs.

A 4d105s −1726 −1733 −1724,a −1760b
−1713.00c

4d105p 1
2

−167 −171 −180a

4d105p 3
2

−28 −29 −30a

F 4d105s 4d105p 1
2

0.2588 0.2577 0.2497d

4d105p 3
2

0.5289 0.5274 0.5134d

4d105p 1
2

4d105d 3
2

0.5872 0.5768 0.5773d

4d105p 3
2

4d105d 3
2

0.0624 0.0614 0.0613d

4d105d 5
2

0.5584 0.5567 0.5491d

Afi 4d105s 4d105p 1
2

1.4886 1.4861 1.3 e

4d105p 3
2

1.6147 1.6161 1.4 e

aReference 66.
bReference 67.
cReference 68.
dReference 50.
eReference 53.

difference in the estimated ground state energy from two different
schemes validates the use of multiple vacuums in the computation
of IP, EA, and EE for this system.

The magnetic dipole hyperfine structure constant A (in MHz)
obtained from FSMRCC, multi-configuration Dirac–Fock,66 and
infinite-order regular approximation (IORA) based second order
Möller–Plesset (MP2)67 methods is compared in Table III with
the available experimental data.68 The experimental value of the
magnetic dipole hyperfine structure constant, to our knowledge, is
available only for the ground 2S 1

2
(4d105s) state, and the present

work reproduces this quite well. For example, the deviation in the
FSMRCC estimated A value for the ground 2S 1

2
(4d105s) state from

extended SARC and ET basis sets is 20 MHz (1.1%) and 13 MHz
(1%), respectively, from the experimental value reported by Wes-
sel and Lew.68 Among the excited 2P 1

2
(4d105p) and 2P 3

2
(4d105p)

states, the agreement between MCDF and FSMRCC is better for
J = 3

2 (differ by 1 MHz, i.e., 3%) than for J = 1
2 (off by 9 MHz

i.e., 5%). Since our computed A value for the ground state agrees
well with the experiment, we trust that A values predicted for
the excited 2P 1

2
(4d105p) and 2P 3

2
(4d105p) states will also be

quite accurate. It is pertinent to note that the magnetic hyper-
fine structure constant for the ground state resulting from the
25s18p13d6f4g2h SARC basis is ∼50 MHz less than the experi-
mental value. A similar deviation is also found with the ET basis.
This discrepancy may be arising due to the use of an inadequate
basis, which fails to provide an appropriate description of the
ground 2S 1

2
(4d105s) state wave function near the nucleus. FSM-

RCC predicted oscillator strengths f and transition rates Afi for
ground 2S 1

2
(4d105s), Ð→ 2P

(
1
2 , 3

2 )
(4d105p), 2P

(
1
2 , 3

2 )
(4d105p), and

Ð→
2D
(

3
2 , 5

2 )
(4d105d) transitions are shown in Table III. Listed also

are the MBPT(3) numbers reported by Safranova50 and NIST val-
ues.53 Similar to the magnetic dipole hyperfine structure constant
A, oscillator strengths as well as the transition rates yielded by
FSMRCC are also in accordance with the theoretical50 and NIST53

values.

III. CONCLUDING REMARKS
The search for an appropriate but relatively small basis func-

tions is of prime importance from an application point of view as
the quantum chemical calculations often become highly prohibitive
for systems containing heavy elements due to the size of the basis
functions. In this connection, segmented all-electron relativistically
contracted (SARC) basis, which is primarily designed for quan-
tum chemical calculations at the two-component scalar relativistic
level, is, in our opinion, worth venturing. To assess the accuracy
that can be achieved with the SARC basis, the ionization poten-
tial, electron affinity, and excitation energies of the Ag atom are
computed using the relativistic Fock-space multi-reference coupled
cluster (FSMRCC) method with the SARC basis and are compared
with those obtained using the even-tempered basis with the same
number of basis functions. Considering the size and the accuracy of
the computed quantities resulting from the SARC basis, it appears
that significant computational savings can be achieved by using this
basis in combination with the frozen natural orbital scheme.
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