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We study the bound orbit conditions for equatorial and eccentric orbits around a Kerr
black hole both in the parameter space (E, L, a) representing the energy, angular mo-

mentum of the test particle, and spin of the black hole, and also (e, μ, a) space rep-
resenting the eccentricity, inverse-latus rectum of the orbit, and spin. We apply these
conditions and implement the relativistic precession (RP) model to M82X-1, which is an
Intermediate-mass black hole (IMBH) system, where two high-frequency Quasi-Periodic
Oscillations (HFQPOs) and a low-frequency QPO were simultaneously observed. As-
suming that the QPO frequencies can also be generated by equatorial and eccentric
trajectories, we calculate the probability distributions to infer e, a, and periastron dis-
tance, rp, of the orbit giving rise to simultaneous QPOs. We find that an eccentric orbit
solution is possible in the region between innermost stable circular orbit (ISCO) and the
marginally bound circular orbit (MBCO) for e = 0.2768+0.0657

−0.0451 , a = 0.2897 ± 0.0087,

and rp = 4.6164+0.0694
−0.1259 .

Keywords: Classical black holes; Relativity and Gravitation; Infall, accretion and accre-
tion disks; Kerr black hole; QPOs.

1. Introduction

Black holes have been discovered as part of various systems in galaxies; as one of

the components of the transient binary systems known as black hole X-ray bina-

ries (BHXRB) with black hole mass in the range 5 − 30M�, as intermediate mass

black holes (IMBH) with mass range 300 to 600 M�, and as galactic nuclei of mass

106−1010M� (Ref. 1). X-ray emission from such systems gives evidence of the pres-

ence of a compact object as X-rays originate very close to the black hole, and hence

are important probes of the strong gravity regime. One of the important features

discovered in the X-ray emission from these systems is quasi-periodic oscillations

(QPOs), which are broad peaks in the Fourier power density spectrum. QPOs have

been discovered with their frequencies ranging from mHz-kHz (Ref. 2), in BHXRB,

mHz to a few Hz in IMBH (Ref. 3), and expected with the time scales of hours to

days for AGN. The most interesting features among these are the high-frequency

QPOs (HFQPOs) in the range 100-500Hz (Refs. 5, 6), detected in various BHXRB

which may be used to calculate spin a and mass M• of the black hole when detected

simultaneously. Some of these objects have also shown two simultaneous HFQPOs

with their centroid frequencies having ratios ∼3:2 or 5:3 (Ref. 2), indicating a res-

onance. There are also some cases, for example, GROJ1655-40 (Ref. 7), and M82

X-1 (IMBH) (Ref. 3), which are known to show the detection of three simultane-

ous QPOs, two HFQPOs and one low-frequency QPO (LFQPO). There are various

existing models that attempt to explain the origin of QPOs but perhaps the most
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widely accepted is the relativistic precession (RP) model (Ref. 8), which interprets

LFQPO as the nodal precession frequency given by (νφ -νθ), and the two HFQ-

POs as associated with the azimuthal frequency, νφ, and the periastron precession

frequency (νφ -νr) of a particle orbiting around a black hole. RP model has been

previously applied to the cases of BHXRB (Ref. 7), assuming that the frequencies

correspond to circular orbits of an equatorial system.

In this article, we first present the necessary bound orbit conditions both in the

(E, L, a) and in the (e, μ, a) space of the corresponding orbit for the equatorial

bound orbits. Using these conditions, we classify various bound orbits in both

spaces. Then, by applying the RP model to the case of an IMBH M82X-1, we find

that an eccentric equatorial orbit can also originate three simultaneous QPOs. We

also discuss the possible region around the black hole giving rise to these QPOs.

2. Bound orbit conditions for equatorial orbits

In this section, we write the bound orbit conditions in (E, L) and (e, μ) space for

a particle orbiting a Kerr black hole of a given spin, a = J/M•. Throughout this

article, we have scaled E, L, and a parameters by mass of the black hole M•, and

have used geometrical units (G = c = 1).

2.1. Dynamical parameter space {E,L, a}
The equation defining radial motion of a particle (unit mass, m0 = 1) in the equa-

torial plane of a Kerr black hole having spin a is given by (Ref. 9)(
E2 − 1

)
2

=
1

2

(
dr

dτ

)2

− 1

r
+

L2 − a2 (E2 − 1
)

2r2
− (L− aE)2

r3
, (1)

where r is the radial distance from black hole and τ is the proper time. The radial

kinetic energy vanishes at the turning points of the orbit, dr/dτ = 0, which gives(
1− E2

)
r3 − 2r2 +

(
L2 − a2 (E2 − 1

))
r − 2(L− aE)2 = 0. (2)

We apply the Cardano’s method (Ref. 10) to obtain real roots of Eq. (2) in terms

of dynamical parameters {E,L, a}, which corresponds to the case when a bound

orbit exists between the first two turning points. The three real roots of Eq. (2)

can be expressed as (Ref. 14)

r1 = ra =
2
[
1 +

[
4− 3

(
1− E2

) (
L2 − a2 (E2 − 1

))]1/2
cos
(ϕ

3

)]
3 (1− E2)

, (3a)

r2 = rp =

2

[
1 +

[
4− 3

(
1− E2

) (
L2 − a2 (E2 − 1

))]1/2
cos

(
ϕ− 2π

3

)]

3 (1− E2)
, (3b)

r3 =

2

[
1 +

[
4− 3

(
1− E2

) (
L2 − a2 (E2 − 1

))]1/2
cos

(
ϕ+ 2π

3

)]

3 (1− E2)
, (3c)
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where ϕ is defined by

cosϕ =

[
8− 9

(
1− E2

) (
L2 − a2 (E2 − 1

))
+ 27

(
1− E2

)2
(L− aE)

2
]

[4− 3 (1− E2) (L2 − a2 (E2 − 1))]
3/2

; (3d)

where r1 > r2 > r3, r1 and r2 are the apastron and periastron points of the eccentric

orbit respectively. It follows that

−1 < cosϕ < +1 holds for eccentric orbits. (3e)

As per the Cardano’s method, the condition for three real roots is described by the

discriminant of the cubic equation, which we obtain for Eq. (2), given by (Ref. 14)

Δ = 27
(
1− E2

)2
x4 − (L2 − a2 (E2 − 1

))2 − 18x2
(
1− E2

) (
L2 − a2 (E2 − 1

))
+16x2 +

(
1− E2

) (
L2 − a2 (E2 − 1

))3
, (4)

where x = L− aE. Hence, the condition on {E,L, a} to get three real and distinct

roots of r, which is possible only when the orbit is an eccentric bound orbit, is given

by

Δ < 0 and 0 < E < 1. (5)

The case of two equal roots and one distinct real root is possible when Δ = 0, which

corresponds to the stable circular, and the separatrix orbit or the unstable circular

orbit, which are classified using cosϕ by the following conditions:

Stable circular orbit when cosϕ = −1 ⇒ r1 = r2 and 0 < E < 1, (6a)

Separatrix orbit when cosϕ = +1 ⇒ r2 = r3 and 0 < E < 1, (6b)

Unstable circular orbit when cosϕ = +1 ⇒ r2 = r3 and E > 1. (6c)

In this way, we are able to classify the various bound orbits in the {E,L, a} space.

Fig. 1(a) shows this classification as bound orbit region, we call it the Δ region,

in the (E, L) plane which is bounded by the curves representing the stable circular

orbits Eq. (6a), separatrix orbits Eq. (6b), and E = 1. The details of results

presented in this section will be provided in paper in preparation (Ref. 14).

2.2. Conic parameter space {e, µ, a}
Next, we extend and translate the bound orbit conditions to the conic parame-

ter space which is useful for the geometric study of the bound trajectories. The

eccentricity and inverse-latus rectum are defined as

e =
ra − rp
ra + rp

, μ =
ra + rp
2rarp

. (7)

Using the transformation relations between (E, L) and (e, μ) (Refs. 11, 12), we can

express Δ, Eq. (4), in terms of {e, μ, a} as (Ref. 14)

Δ =
−e2
μ2

[
1− x2μ2 (1 + e) (3− e)]2 [1− x2μ2 (1− e) (3 + e)

]2
=
−e2
μ2

Δ2
1Δ2

2.

(8)
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Fig. 1. The bound orbit condition, Δ ≤ 0, is shown as the Δ region (a) bounded by stable
circular Eq. (6a), separatrix orbits Eq. (6b), and E = 1 in the (E, L) plane, and (b) bounded
by stable circular Eq. (9a), separatrix orbits Eq. (9b), and e = 1 in the (e, μ) plane for a = 0.5,
where points A and B represents the innermost stable circular orbit (ISCO) and marginally bound
circular orbit (MBCO) respectively.

It is seen that Δ ≤ 0 is valid for all the real values of x, and Δ = 0 if any one of

the following conditions is satisfied:

e = 0, (9a)

Δ1 = 0⇒ μ2x2 (3− e) (1 + e) = 1, (9b)

Δ2 = 0⇒ μ2x2 (3 + e) (1− e) = 1, (9c)

where Eq. (9a) corresponds to the stable circular orbits, Eq. (9b) corresponds to

the separatrix orbits and they together with e = 1 define the boundaries of the Δ

region in the (e, μ) plane; see Fig. 1(b). Hence, the condition in {e, μ, a} space for

an eccentric bound orbit is given by r3 < rp, which corresponds to (Ref. 14)

μ2x2 (3− e) (1 + e) ≤ 1, (10)

and is the operative condition for eccentric bound orbits representing the ordering

of roots, r1 > r2 > r3. The expression of cosϕ, Eq. (3d), in the {e, μ, a} space is

given by (Ref. 14)

cosϕ =

[
1− 3x2μ2

(
1− e2)] · [−1 + 3e+ 3x2μ2

(
1− e− e2 + e3

)] ·[
1 + 3e− 3x2μ2

(
1 + e− e2 − e3)]

{4− 3 (1− e2) [1− x2μ2 (1− e2)] [1 + μ2x2 (3 + e2)]}3/2
. (11)

3. Parameter estimation from RP model for QPOs

Now, we take a more generalized approach to the RP model by considering e �= 0.

We consider that three simultaneous QPOs can also be originated by a self-emitting

blob orbiting in an equatorial eccentric trajectory around a Kerr black hole. Then,

we calculate the parameters (e, rp) of the orbit and spin a of the black hole using

the fundamental frequency formulae for equatorial orbits derived in Refs. (11, 12),

and presented in Table 1. We search for the parameters in the allowed Δ region
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Table 1. Fundamental frequencies of

equatorial eccentrc orbits, Refs. 11, 12, 13.

νφ (e, μ, a)
c3 · {a1EllipticPi [−p22, π/2,m2

]
+ b1EllipticPi

[−p32, π/2, m2
]}

2πGM

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
a2

[
p12EllipticE

[
π/2, m2

]
2 (1 + p12) (m2 + p12)

− EllipticF
[
π/2, m2

]
2 (1 + p12)

]
+ c2EllipticPi

[−p22, π/2, m2
]

+ EllipticPi
[−p12, π/2, m2

]{
a2

[
p14 + 2p12

(
1 +m2

)
+ 3m2

]
2 (1 + p12) (m2 + p12)

+ b2

}
+ d2EllipticPi

[−p32, π/2, m2
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

νr (e, μ, a)
c3

2GM

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
a2

[
p12EllipticE

[
π/2,m2

]
2 (1 + p12) (m2 + p12)

− EllipticF
[
π/2,m2

]
2 (1 + p12)

]
+ c2EllipticPi

[−p22, π/2,m2
]

+EllipticPi
[−p12, π/2, m2

]{
a2

[
p14 + 2p12

(
1 +m2

)
+ 3m2

]
2 (1 + p12) (m2 + p12)

+ b2

}
+ d2EllipticPi

[−p32, π/2,m2
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

νθ (e, μ, a)
2νra

√
1− E2z+μ1/2EllipticF

[π
2
,m2

]
π [1− μ2x2 (3− e2 − 2e)]1/2

m2 =
4μ2ex2

[1− μ2x2 (3− e2 − 2e)]
, p12 =

2e

1− e
, p22 =

2ea2μ

(a2μ − a2μe− r+)
, p32 =

2ea2μ

(a2μ− a2μe− r−)
, z+2 =

[
a2

(
1−E2

)
+ L2

]
a2 (1− E2)

,

Constants a1 =
μ1/2

[
La2 − 2xr+

]
√
1− a2 (a2μ − a2μe− r+)

√
1− μ2x2 (3− e2 − 2e)

, b1 =
μ1/2

[−La2 + 2xr−
]

√
1− a2 (a2μ − a2μe− r−)

√
1− μ2x2 (3− e2 − 2e)

,

a2 =
2E

μ3/2 (1− e)2
√

1− μ2x2 (3− e2 − 2e)
, b2 =

4E

μ1/2 (1− e)
√

1− μ2x2 (3− e2 − 2e)
,

c2 =
2a2μ1/2 (−La+ 2Er−)

r−
√

[1− μ2x2 (3− e2 − 2e)]
√
1− a2 (a2μ− a2μe− r+)

, d2 =
2aμ1/2

(
−2Lr−

√
1− a2 − 2Er−a+ La2

)
r−

√
[1− μ2x2 (3− e2 − 2e)]

√
1− a2 (a2μ− a2μe− r−)

.

(shown in Fig. 1) and defined by the bound orbit condition, Eq. (10). We apply

this method to the case of an IMBH M82X-1, which has shown three simultaneous

QPOs at ν1 = 5.07±0.06Hz, ν2 = 3.32±0.06Hz, and ν3 =204.8±6.3mHz (Ref. 3, 4)

to find {e, rp, a}. We fix the mass of black hole to be M• = 428M� given in Ref. 3,

and simultaneously solve the equations νφ = ν1, νφ − νr = ν2, and νφ − νθ = ν3
to find the exact solutions for the RP model given by {e0, rp0, a0}. We assume the

QPO frequencies as Gaussian distributed with their mean values at ν1, ν2 and ν3.

We estimate the 1σ errors in the solution {e0, rp0, a0} using the Jacobian of the

transformation to {ν1, ν2, ν3} space whose formulae are given in Table 1, and find

the corresponding normalized joint probability density distribution in the (e, rp, a)

space. As the probability density P (e, rp, a) is three dimensional, we collapse the

profile of the probability density in two dimensions and fit a Gaussian function to

find the mean values, {e0, rp0, a0}, and variances, {σe, σrp , σa} in other dimension.

Using this procedure, we found the exact solution at e = 0.2768+0.0657
−0.0451, a =

0.2897 ± 0.0087, and rp = 4.6164+0.0694
−0.1259 for M82X-1. We see that the probability

density naturally peaks at non-zero eccentricity suggesting that the most proba-

ble solution might not be restricted to circular orbits as was previously assumed

in Ref. 7. Fig. 2 shows this solution in the (rp, a) plane suggesting an eccen-

tric orbit having its periastron point in the region between ISCO and MBCO is

the most probable orbit for the generation of three simultaneous QPOs. We have

implemented a similar approach to various BHXRB to include non-equatorial and

eccentric trajectories in our paper in preparation (Ref. 13).
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4. Summary and discussion

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

rp

a

Horizon

Light radius

MBCO

ISCO

Fig. 2. An equatorial eccentric orbit solution (the
point in magenta color) shown in the (rp, a) plane
for the simultaneous QPOs discovered in M82X-1.
The solution exists in the region between ISCO and
MBCO.

We discussed the bound orbit con-

ditions for the eccentric equatorial

orbits in the {E,L, a}, and {e, μ, a}
spaces. We applied it to the spe-

cific case of M82X-1, where three si-

multaneous QPOs were discovered

(Ref. 3, 4), to find the parameters

e = 0.2768+0.0657
−0.0451, a = 0.2897 ±

0.0087, and rp = 4.6164+0.0694
−0.1259 for

the orbit generating these QPOs

using the RP model. We find

that the eccentric orbit solutions

are possible in the region between

ISCO and MBCO, as shown in

Fig. 2. Hence, by assuming that the

accretion disk ends near ISCO, we

conclude that the blobs that origi-

nate near ISCO and follow equatorial and eccentric trajectories in this region that

produce HFQPOs. In a paper in preparation (Ref. 13), we also discuss the non-

equatorial eccentric trajectories as possible solutions for QPOs assuming the RP

model.

We acknowledge the support from the SERB project CRG 2018/003415.

References

1. R. Narayan and J. E. McClintock, Observational Evidence for Black Holes,

arXiv e-prints , p. arXiv:1312.6698 (Dec 2013).

2. T. M. Belloni and L. Stella, Fast Variability from Black-Hole Binaries, Space

Science Reviews 183, 43 (September 2014).

3. D. R. Pasham, T. E. Strohmayer and R. F. Mushotzky, A 400-solar-mass black

hole in the galaxy M82, Nature 513, 74 (September 2014).

4. D. R. Pasham and T. E. Strohmayer, On the Nature of the mHz X-Ray

Quasi-periodic Oscillations from Ultraluminous X-Ray Source M82 X-1: Search

for Timing-Spectral Correlations, ApJ 771, 2 101, doi: 10.1088/0004-

637X/771/2/101 (July 2013), arXiv:1308.1677 .

5. T. E. Strohmayer, Discovery of a 450 HZ Quasi-periodic Oscillation from the

Microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer, ApJ 552,

L49 (May 2001).

6. R. A. Remillard, G. J. Sobczak, M. P. Muno and J. E. McClintock, Characteriz-

ing the Quasi-periodic Oscillation Behavior of the X-Ray Nova XTE J1550-564,

ApJ 564, 962 (January 2002).

 T
he

 F
if

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
N

D
IA

N
 I

N
ST

IT
U

T
E

 O
F 

A
ST

R
O

PH
Y

SI
C

S 
B

A
N

G
A

L
O

R
E

 o
n 

02
/0

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 18, 2022 13:42 WSPC Proceedings - 9.61in x 6.69in ch20-main page 249

249

7. S. E. Motta, T. M. Belloni, L. Stella, T. Muñoz-Darias and R. Fender, Precise
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