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Abstract

The large scale structure in the universe causes arcminute angular scale deflections of

the paths of CMB photons, leading to blurring of the acoustic peaks and correlations

between different modes. This effect can be exploited to reconstruct the matter dis-

tribution in the universe, or equivalently the lensing potential map, integrated along

the line of sight. The aim of this thesis is to carry out a careful investigation of the

imprint of the large scale structure on the CMB fields, and the morphology of the

matter distribution inferred from the observed CMB data. This thesis begins with

an introduction to the field of CMB lensing and CMB lensing reconstruction. Then

in the third chapter we introduce the morphological descriptors, namely Minkowski

functionals and Minkowski Tensors used in our analysis. As the first step we study

the effect of gravitational lensing on the morphology of the intensity patterns of the

CMB temperature and polarization fields using Minkowski tensors (MT). We calculate

the distortion of the CMB patterns at different angular scales which are manifested as

magnification and shearing, by measuring the alignment and shape parameters, α and

β that are constructed from the MTs. We demonstrate that lensing makes all struc-

tures of the fields increasingly more anisotropic as we probe down to smaller scales.

Further, we find that lensing does not induce statistical anisotropy of the fields, which

shows consistency with the isotropic distribution of matter on large scales. This work

constitutes the fourth chapter of this thesis. Next, in the fifth chapter we test the

statistical isotropy of the universe using the reconstructed lensing potential data from a

global as well as local perspective. This analysis is vital in the wake of the detection of

CMB anomalies in the data of concluded and ongoing CMB missions. From the global

analysis we find that the matter distribution is consistent with statistical isotropy of

the universe. From the local analysis we identify several anomalous sky patches in

the observed matter distribution which exhibit levels of alignment that are significantly

higher than expected from isotropic fields having the same power spectrum. In the last



part of the work we clarify the geometrical meaning of statistical isotropy and extend

the analytic calculation of MTs to anisotropic Gaussian random fields. We also calcu-

late the signatures of local type primordial non-Gaussianity on the MTs. Our results

will be useful for accurate searches for non-Gaussianity and departure from isotropy

using high precision cosmological datasets.
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Chapter 1

Introduction

During the last several decades, cosmology has progressed from being a specula-

tive science to one of the most successful fields of physics. This rapid growth is

driven by an exemplary interplay between experiment and theory. A wide vari-

ety of observations of supernovae, galaxy distribution, galaxy clustering, strong

lensing, galaxy weak lensing, cosmic microwave background (CMB) anisotropies

have unveiled a wealth of cosmological information (about its content and the

geometry) across different length scales and different epochs in the universe. To

observe the universe in its full glory, multiwavelength observations, i.e., observa-

tions across the entire electromagnetic spectrum (from x-rays to radio regime),

have been instrumental. Baryonic matter in the universe is constituted by stars,

gas (in the molecular, neutral, ionized state), and dust. Each of these components

emits at different wavelengths depending on the kind of interactions they have

and also on their distance from the observer. For example, dust in our galaxy

or the intergalactic medium is mostly mapped in infrared wavebands. With the

advancement in technology and our theoretical understanding, we have been able

to look back into the universe at much greater distances. Continuous efforts are

made to explore important phases in the history of the universe like dark ages,
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reionization, the peak of star formation, dark energy domination era, etc. Ob-

servations of CMB temperature and polarization anisotropies provide the earliest

snapshot of our universe. Measurements of CMB anisotropies on large scales rep-

resent the primordial seed fluctuations in their most pristine form. However, on

small scales, this primordial picture is distorted by the interactions of the CMB

photons with matter inhomogeneities encountered during their travel from the last

scattering surface to the observer. These secondary effects are a useful source of

information on the universe’s large-scale structure. One of these effects is grav-

itational lensing of CMB photons, causing small but coherent deflections of the

observed CMB temperature and polarization anisotropies, with a typical ampli-

tude of two arcminutes. One of the critical goals of this thesis is to capture the

effect of lensing on the morphology of CMB fields using real space statistical tools

such as Minkowski Tensors (MTs). Also, specific statistical signatures of lensing

enable the reconstruction of the gravitational potential integrated along the line of

sight from observed CMB maps. We also investigate the assumption of statistical

isotropy of the universe by employing MTs on the convergence or lensing potential

field inferred from lensed CMB observations.

Cosmological data encodes information about the origin and evolution of our uni-

verse in a non-trivial way. This information needs to be extracted by using various

statistical tools. Cosmology is intrinsically related to statistics, as theories of the

origin and evolution of the universe do not predict, for example, that a particular

galaxy will form at a specific point in space and time or that a specific patch of the

cosmic microwave background will have a given temperature: any theory predicts

the average statistical properties of our universe, and we only observe one par-

ticular realization of that statistical ensemble. Statistical methods like Bayesian

inference, chi−square, the goodness of fit, confidence regions, likelihood analysis,

Fisher matrix approach, Monte Carlo methods have been extensively used to infer

cosmological parameters and compare different models. CMB fluctuations have

been analyzed so far using statistical tools such as power spectrum, bispectrum,
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trispectrum, skewness, kurtosis, scalar Minkowski Functionals (SMFs), and so on.

Low angular resolution and high noise levels in CMB experiments have limited

the use of real space statistics to analyze the CMB data. However, improvements

in sensitivity and small beam sizes of many recent and upcoming experiments will

enable high signal-to-noise measurements of CMB anisotropies up to very small

angular scales. Real space statistical tools can then be employed to gain com-

plementary information about the underlying physical phenomenon. We use in

our analysis the Minkowski Tensors and the shape and alignment parameters in-

ferred from Contour Minkowski Tensor (CMT) to investigate the effect of weak

gravitational lensing on CMB fields.

The CMB temperature and polarization anisotropies have been measured to very

high precision. They are consistent with the standard six-parameter ΛCDMmodel,

with purely adiabatic, Gaussian initial fluctuations, as predicted by simple infla-

tionary models. In this standard picture, observed galaxies form in matter over-

densities that grow due to gravitational instabilities in an expanding universe and

seeds of which are the primordial inhomogeneities generated during an inflationary

epoch. Observations suggest that the universe is now composed of about 5% ordi-

nary matter, 27% dark matter, and 68% dark energy. Although there is consensus

in the community about the standard ΛCDM or the concordance cosmological

model of the universe, the nature of dark matter and dark energy is yet unknown.

The CMB observations have proved to be a precious window to explore and un-

derstand our universe since the time of its first detection by Penzias and Wilson

in 1965 (Penzias and Wilson 1965). The cosmic microwave background (CMB)

is the primordial microwave radiation that fills the universe. It is predicted to

be the afterglow of Big Bang (GAMOW 1948; Alpher and Herman 1948). About

10−36 seconds after the Big Bang, the universe went through a phase of exponen-

tial expansion. This is the cosmic inflation introduced (Guth 1981; Linde 1982) to

explain the homogeneity and isotropy of CMB (horizon-problem) and other prob-

lems like the flatness problem. Quantum fluctuations in the scalar field inflaton
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form the primordial seeds, which eventually evolve into the anisotropies observed

in the CMB and the large-scale structures in the universe. Further at the end of

an inflationary phase, the energy density of the inflaton field decays to form the

standard model particles, a process referred to as the reheating. Consequently,

fluctuations in the initial energy density were transferred into fluctuations in the

particle density.

The early universe was in a hot, dense state, with all the particles being relativistic

and in thermal equilibrium with each other. When the universe’s temperature

was above 200GeV, unbounded quarks, gluons, and dark matter (DM) were the

main constituents of the universe. These different constituents decoupled from

plasma at different epochs in the history of the universe. Table 1.1 summarizes

the various phase transitions our universe underwent at different energy scales.

As the universe expanded, the temperature and the density of the cosmic plasma

dropped further. This led to the decoupling of different particles from the cosmic

soup at different stages in the thermal history of the universe. For instance, when

the temperature falls below 1.4MeV , the weak interaction rate becomes slower

than the universe’s expansion rate, which led to the decoupling of neutrinos. After

this, neutrinos did not interact with the remaining world and continued freely on

their cosmic journey. At a later stage, electrons, protons, photons, few neutrons

formed the components of plasma. The count of photons with energies higher than

the binding energy of Deuterium (2.2MeV) was significant to prevent the survival

of any deuterium nuclei that formed. Only when the temperature dropped below

0.08MeV, Deuterium nuclei could survive. Then the Big bang nucleosynthesis

(BBN) leads to the formation of light nuclei, He4, with the traces of Deuterium,

He3, and Lithium, Li7 in the universe.

At z > 1100, the cosmic plasma consisted of photons, electrons, and protons in

thermal equilibrium. They were tightly coupled to each other via Thomson and

Coulomb scattering. High interaction rates due to high density of particles did



Chapter 1: Introduction 5

Table 1.1: This table summarizes the different phase transitions in the universe
with the corresponding energy scale at which they occurred in history of the
universe.

Inflation T ∼ 1016 Gev 10−36 s

Electroweak Phase Transition T ∼ 100 Gev t ∼ 20 ps

QCD Phase Transition T ∼ 150 Mev t ∼ 20 µs

Neutrino Decoupling T ∼ 1 Mev t ∼ 1 s

Electron-Positron Annhilation T < me ∼ 0.5 Mev t ∼ 10 s

Big Bang Nucleosynthesis T ∼ 50-100 kev t ∼ 10 min

Matter-Radiation Equality T ∼ 0.8 ev ∼ 9000 K t ∼ 60000 yr

Recombination + Photon Decoupling T ∼ 0.3 ev ∼ 3000 K t ∼ 380000 yr

Dark ages t ∼ 380kyr − 400 Million yr

Reionization t ∼ 400 Million yr-present

CMB lensing efficiency peaks at z∼ 2

not allow for the formation of neutral atoms until about z ∼ 1100. However, once

the temperature falls below 0.3eV, protons and electrons combine to form neutral

hydrogen atoms. The photons then decoupled and started free streaming; this

epoch is referred to as the Recombination epoch. This is the CMB radiation that

we receive and measure today, providing us the earliest snapshot of our universe.

The CMB is a fossil from ≈ 380kyrs after the Big Bang when photons decoupled

from the matter and the mean free path of photons exceeded the Hubble horizon at

that epoch. The CMB photons we receive today represents a redshifted snapshot

(the redshift of the CMB is zCMB ∼ 1100) of the universe at the last scattering

surface. The CMB is almost spatially isotropic and uniform, with tiny fluctuations

of the order 10−5 across the sky. These tiny departures from average temperature

are sourced by the inhomogeneities in the photo-baryonic plasma present at the

time of decoupling.
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After decoupling, the mean free path of photons becomes large enough to be con-

sidered to be freely propagating in the intergalactic medium. In reality, CMB

photons interact with matter distribution as they travel from the last scatter-

ing surface to the observer today. These interactions alter the frequency, energy,

or direction of propagation of CMB photons. They are referred to as secondary

anisotropies since they do not originate in the primordial Universe before decou-

pling. There are two broad categories of interaction between CMB photons and

cosmic structures

• Gravitational effects: Integrated Sach Wolfe (ISW) effect, gravitational lens-

ing of CMB photons, the Rees-Sciama effect (RS).

• Scattering of CMB photons of electrons: Kinetic Sunyaev Zeldovich (KSZ)

effect, thermal SZ effect, polarization due to reionization, Ostriker-Vishniac.

(OV) effect

More detailed discussion on CMB secondary anisotropies can be found in a review

by Aghanim et al. (2008).

The focus of this thesis is the gravitational lensing of CMB photons. Gravitational

lensing causes small but coherent deflections of the observed CMB temperature

and polarization anisotropies, with a typical amplitude of two arcminutes. Specific

statistical signatures of lensing in the observed CMB maps enable the reconstruc-

tion of the gravitational potential integrated along the line of sight. It opens a

unique window on underlying physics aspects that affect the structure formation in

the universe, such as dark matter, gravity theories and neutrino sector. CMB lens-

ing physics, its consequences, and matter distribution reconstruction from CMB

will be discussed in detail in the next chapter of the thesis.
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The remaining part of this chapter describes the modeling of the background

universe together with its constituents and the first-order perturbed universe in

section 1.1 and section 1.2, respectively. The mathematical description and physics

of the CMB temperature and polarization anisotropies are discussed in section 1.3.

Then, section 1.4 sketches how the cosmic structures form and evolve from the

initial conditions set by inflation. In section 1.5 we briefly discuss the real space

statistics, their usefulness, and their applications in cosmology. Finally, we end

this chapter by outlining the main objectives of this thesis work in section 1.6.

1.1 Background cosmology

Einstein’s General Theory of Relativity (GTR) is the metric theory of gravitation,

according to which gravitational force experienced by objects in the universe is

the manifestation of space-time curvature. Einstein’s field equations binds the

curvature of space-time to the energy-momentum content of the universe

Rµν −
1

2
gµνR = 8πGTµν + Λgµν , (1.1)

where Rµν is the Ricci curvature tensor, which is given in terms of second-order

derivatives of the metric tensor, gµν and R is the Ricci scalar, obtained by con-

tracting Ricci tensor. Λ is the famous cosmological constant, the energy density

of space, or vacuum energy. Tµν represents the energy-momentum tensor for a

homogeneous and perfect fluid,

Tµν = (ρ+ p)uµ uν + p gµν , (1.2)

here ρ represents the energy density and p the pressure of the cosmic fluid.
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One of the solutions of Einstein’s field equations, that describes our homogeneous

and isotropic universe is given by,

ds2 = a2(t)[−dτ 2 + dχ2 + f 2
K(χ)dω2]. (1.3)

It is known as Friedmann Robertson Walker metric (FRW). Here, a(t) scale fac-

tor tells us how the distance between two points scales with coordinate time t. χ,

the radial coordinate is known as the comoving distance, and dω is the solid angle

element. The function fK(χ) is called the comoving angular diameter distance

that depending on the curvature (value of K) of the spatial hypersurfaces is given

by,

fK(χ) =


K−1/2 sin(K

1
2χ), forK > 0, closed,

χ, forK = 0, f lat,

|K|−1/2 sinh(|K| 12χ), forK < 0, open.

(1.4)

The conformal time (τ) is defined by dτ = dt
a(t)

.

The fundamental assumption underlying this metric solution is the validity of the

Cosmological Principle, which states that the universe is spatially homoge-

neous and isotropic on large scales. This is one of the main assumptions of the

standard theory of cosmology, ΛCDM (based on cold dark matter and a cosmo-

logical constant). Homogeneity implies translational invariance, while isotropy is

equivalent to rotational invariance of the statistical observables like the density of

the universe. As a consequence of this assumption, scale factor a(t) in the FLRW

metric above is only the function of time and not of the position. Observations

suggest that this assumption is valid on scales > 100 Mpc.
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The time evolution of the scale factor is determined by solving the following Fried-

man equations (obtained by substituting FLRWmetric in Einstein’s field equation)

( ȧ
a

)2

=
8πGρ

3
− K

a2
+

Λ

3
, (1.5)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.6)

In the above equations ρ and p are total energy density and total pressure, i.e.,

sum of the contributions from different constituents of the universe, Λ is the cos-

mological constant. And there are two commonly used choices of a and K given

by,

• K = +1, 0 or -1 depending on whether the shape of the universe is a closed

3-sphere, flat (i.e. Euclidean space) or an open 3-hyperboloid, respectively.

If K = +1, then a is the radius of curvature of the universe. If K = 0, then

a may be fixed to any arbitrary positive number at one particular time. If

K = 1, then (roughly) one can say that i.a is the radius of curvature of the

universe.

• a is the scale factor which is taken to be 1 at the present time. K is the

current spatial curvature (when a = 1). If the shape of the universe is

hyperspherical and Rt is the radius of curvature (R0 at the present), then

a = Rt
R0

. If K is positive, then the universe is hyperspherical. If K = 0, then

the universe is flat. If K is negative, then the universe is hyperbolic.

Eqns 1.5-1.6 are consistent with the first choices of a and K. The ratio of the

time derivative of the scale factor with itself, i.e., ȧ
a
, is known as the Hubble

parameter H(a). The Hubble parameter today or the Hubble constant is often

expressed in terms of the dimensionless constant h, H(a = 1) = H0 = h100 km/(s

Mpc). Measurements of H0 determine the current value of expansion i.e. ȧ. The

expansion of space leads to a redshift of wavelength of the photons. A photon
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emitted at a time tem with wavelength λem will be observed at a time tobs with a

wavelength λobs given by

a(tobs)

a(tem)
=
λobs
λem
≡ 1 + z, (1.7)

where z is the cosmological redshift, which has value zero today (z(t0) = 0). For

the flat universe, i.e., for K = 0, critical energy density of the universe ρcritical is

defined as

ρcritical(t) =
3H2(t)

8πG
, (1.8)

here H is the Hubble parameter. The value of critical density today is O ∼

10−26 kg m−3. The critical density is useful to define dimensionless density param-

eters,

Ωi(t) =
ρi(t)

ρcritical(t)
. (1.9)

The components of the universe are assumed to be barotropic, that is, their pres-

sure is given as an explicit function of their energy density, termed as the Equation

of state (EOS): p = w(ρ) ρ, and the sound speed as c2
s = δp/δρ. From the conser-

vation of the stress energy tensor, ∇µTµν = 0, we can show that the time evolution

of the energy density obeys

ρ̇+ 3H(ρ+ p) = 0. (1.10)

This is the so-called continuity equation. For a constant w, the energy density

scales as ρ ∝ a−3(1+w). The cosmic fluid consist of the following different species

classified according to their contribution to pressure,

• Matter: This is composed of two varieties: baryonic matter (i.e., ordinary

matter) and dark matter (DM). The former corresponds to ordinary matter,
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which we observe (stars, dust, gas, galaxies), while the latter only inter-

acts gravitationally with the former. The nature of DM is still a cosmic

mystery. There are different models for DM, for example, cold dark mat-

ter (CDM), warm dark matter (WDM), or hot dark matter (HDM). They

differ in the physical properties of the fluid (from non-relativistic CDM to

relativistic HDM). In the concordance model, we consider a CDM fluid. Gas

of non-relativistic particles of baryons and dark matter can be assumed to

be pressure-less |p| << ρ with EOS parameter, w ≈ 0. Hence, their energy

density dilutes with cosmic expansion as ρ ∝ a−3.

• Radiation : Relativistic species for which p = 1
3
ρ, like for photons, neutrinos

and other massive particles until they are relativistic, energy density falls as

ρ ∝ a−4.

• Dark energy or cosmological constant (Λ): The question of the true

nature of dark energy is not yet settled; there are plenty of models which

can cause accelerated expansion of the universe. Cosmological constant with

negative pressure and constant EOS parameter, w = −1 is one of the possible

explanations. In this case, the energy density will be constant and will not

dilute with cosmic expansion, ρ ∝ a0.

Friedmann equation 1.5 can be rewritten in a useful form as

H2(z) = H2
0 [Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩK0(1 + z)2 + ΩΛ0], (1.11)

where subscript ′0′ denotes the evaluation of a given quantity today. Here, Ωr0 is

the radiation density today (when a = 1), Ωm0 is the matter (dark plus baryonic)

density today, ΩK0 = 1 − Ω0 is the "spatial curvature density" today, and ΩΛ0 is

the cosmological constant or vacuum density today. Depending on the underlying

cosmological model and the proportion of different components, the history of the

universe will drastically change.
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The cosmological parameters obtained from measuring CMB temperature and

polarization anisotropies by recently concluded Planck mission (Planck Collabo-

ration et al. 2020c) are: dark matter density Ωch
2 = 0.120± 0.001, baryon density

Ωbh
2 = 0.0224± 0.0001, dark energy density ΩΛ = 0.689± 0.006, Hubble constant

H0 = (67.4 ± 0.5)Kms−1Mpc−2. The joint constraint with BAO measurements

on spatial curvature is consistent with a flat universe, ΩK = 0.001± 0.002. These

values are consistent with the standard spatially-flat 6-parameter ΛCDM cosmol-

ogy having a power-law spectrum of adiabatic scalar perturbations. These inferred

values of cosmological parameters are in good agreement with BAO, SNe, and some

galaxy lensing observations, but in slight tension with the Dark Energy Survey’s

combined-probe results, including galaxy clustering (which prefers lower fluctua-

tion amplitudes or matter density parameters) and in significant, 5σ (Riess et al.

2021), tension with local measurements of the Hubble constant (which prefer a

higher value).

1.2 First order perturbed universe

1.2.1 Perturbation equations

The universe is homogeneous and isotropic only on large scales (> 100Mpc). How-

ever, on small scales, we see the violation of this basic assumption in cosmology.

Observations of the galaxy distribution and the CMB fluctuations pattern implies

that the universe is far from being homogeneous, having a complex structure and

rich hierarchy composed of stars, globular clusters, galaxies, galaxy clusters, fila-

ments and voids. These structures are believed to be originated from primordial

fluctuations through gravitational instability. For small perturbations, the met-

ric tensor can be split into a background metric for homogeneous and isotropic
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universe gbgµν plus the small perturbations, hµν , sourced by density fluctuations

gµν = gbgµν + hµν , with |hµν | << 1. (1.12)

These metric perturbations can be classified into scalar, vector, and tensor per-

turbations. At first order, these perturbations are decoupled from each other and

evolve independently and hence, can be studied individually. The general per-

turbed metric is given by,

ds2 = (1 + 2Ψ)dt2 + a2(t)[(1− 2Φ)γij + 2hij]dx
idxj, (1.13)

where Ψ and Φ are the Bardeen potentials, γij is the spatial part of Friedmann

Robertson walker metric and hij is a traceless, divergenceless symmetric tensor.

The Bardeen potentials correspond to the scalar metric perturbations, while hij

describes the tensor perturbations. Inflation tends to produce both vector and ten-

sor perturbations. However, the vector perturbation sourced by inflation would die

out due to the expansion of the universe and hence not included in the perturbed

metric (based on standard inflationary paradigm) above. The density perturba-

tions can generate scalar perturbations while it does not generate tensor pertur-

bations at first order. The tensor-to-scalar ratio, r, parameterizes the ratio of the

amplitude of the tensor and scalar fluctuations.

We need a formalism to determine the evolution of perturbations/anisotropies of

each constituent of the universe. Each species is coupled to every other species

by various types of interactions like gravitational, electromagnetic; for example,

photons are affected by gravity and are coupled to electrons by Compton scatter-

ing. The electrons are tightly coupled to protons via Coulomb interaction. Thus,

to solve photons or dark matter perturbations, one must simultaneously solve the

perturbation equation for all the other components. The Boltzmann equation de-

scribes the evolution of perturbations in photon, neutrino, dark matter, proton,
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and electron distributions. It is given by,

df(~x, ~p, t)

dt
= C[f ], (1.14)

where f is the phase space distribution of particles in consideration, which is the

distribution of position (~x), momentum (~p), and time t. The right−hand side

C[f ] takes into account all possible collision terms or relevant interactions for each

species. The Einstein equation and the Boltzmann equation are solved simultane-

ously to find the distribution of anisotropies of CMB temperature and polariza-

tion. These equations are numerically solved using the publicly available codes like,

Cosmological Initial Conditions and Microwave Anisotropy Codes (COS-

MICS) (Bertschinger 1995), CMBFast (Seljak and Zaldarriaga 1996; Zaldarriaga

et al. 1998), Code for Anisotropies in Microwave Background (CAMB) (Lewis

et al. 2000),Cosmic Linear Anisotropy Solving System (CLASS) (Lesgourgues

2011). These codes simulate the evolution of linear perturbations in the universe

and compute CMB and large−scale structure observables like transfer functions,

matter power spectrum, CMB angular power spectra. The power spectrum of the

CMB field in terms of the radiation transfer function is given as

CXY
` =

∫
dk k2 PΦ(k)|∆X

` (k)∆Y
` (k)|, (1.15)

for X, Y = T,E,B. Here ∆X
` is the radiation transfer function which encapsulates

the information about the physics that has lead to evolution of primordial fluctua-

tions to present day anisotropies. And, PΦ(k) is the power spectrum of primordial

gravitational potential as predicted by inflation.
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1.2.2 Setting the initial conditions: Inflation

The seeds of the perturbations described above were laid during the inflationary

epoch in the universe′s early moments. The early universe went through a phase of

exponential expansion, about 10−36 seconds after Big Bang. The simplest inflation

models consider this expansion driven by a scalar field inflaton that filled the

entire universe. Quantum fluctuations were generated in the inflaton field during

this phase. Inflation generates perturbations, which are stretched by the rapid

expansion, beyond the Hubble horizon scale, cH−1. After crossing the horizon,

the amplitude of the fluctuations remains constant. At some later time, they re-

enter the horizon and start evolving. These form the primordial seeds, which later

evolve into CMB anisotropies and the large scale structure, we see today in the

universe. The simplest inflationary models predict two types of perturbations:

scalar and tensor metric perturbations. The scalar or density perturbations grow

via gravitational instability and lead to structure formation, while the latter can

influence the CMB anisotropies. Some models of inflation also predict an almost

scale-invariant power spectrum of primordial density perturbations. We can define

the power spectrum of the primordial comoving curvature perturbation, R as

PR(k) =
k3PR(k)

2π2
= As

( k
k∗

)ns−1

, (1.16)

where ns is the scalar spectral index which is close to one, thereby ensuring a

scale-invariant spectrum. As is the amplitude of the primordial scalar fluctuations

evaluated at the pivot scale k∗ (commonly taken to be 0.05 Mpc−1 or 0.002 Mpc−1).

Another robust prediction from the inflationary scenario is the generation of a

stochastic background of primordial gravitational waves that are also expected to

be nearly scale-invariant power spectrum. We can define the scale-invariant power

spectrum of tensor fluctuations as

PR(k) = At
( k
k∗

)nt
, (1.17)
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The tensor and scalar fluctuations are related through the tensor-to-scalar ratio

r ≡ At
As , which represent a valuable probe of the inflation physics since it directly

sets the energy scale for inflation, given by the inflaton potential V as (Lyth 1997),

V 1/4 ≈
( r

0.01

)1/4

1016 Gev. (1.18)

1.3 CMB anisotropies

The cosmic microwave background radiation illuminates our entire universe since

380000yrs after the Big Bang. The CMB is uniform and isotropic with the thermal

blackbody frequency spectrum corresponding to the mean temperature of about

∼ 2.725 K. The first measurement of the CMB frequency spectrum over the fre-

quency range ν ∈ [50, 650] GHz has been reported by the Far-InfraRed Absolute

Spectrophotometer (FIRAS) instrument (Mather et al. 1994) on board of the Cos-

mic Background Explorer (COBE) satellite in the early nineties, showing that it

has a Planckian shape with the corresponding brightness temperature of about

T = 2.725 ± 0.001 K (Fixsen et al. 1996). Although the FIRAS measurement

showed excellent agreement between the CMB spectrum and a perfect blackbody

spectrum, there are various physical mechanisms like Silk damping of small scale

perturbations (Silk 1968), decay and annihilation of relic particles (McDonald et al.

2000), primordial magnetic fields (Miyamoto et al. 2014), etc., which can cause

spectral deviation of CMB from the blackbody spectrum. It has now become a

focus of attention as a probe of the thermal history of the Universe. The type of

distortion depends on the epoch and the process of energy injection. Two future

missions, PIXIE and PRISM, have been proposed for precise measurement of the

CMB distortions, as these measurements hold the key to our understanding of early

universe physics. Less than 10% of CMB radiation is linearly polarized (Coulson

et al. 1994; Hu and White 1997). This linear polarization is generated by Thomson
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Figure 1.1: Thomson scattering of radiation with a quadrupole anisotropy
generates linear polarization. Blue colors (thick lines) represent hot and red
colors (thin lines) cold radiation. (Wayne Hu, M. White 1997)

scattering of CMB photons having a quadrupolar pattern in their intensity, off free

electrons during the late stages of recombination epoch (Rees 1968). The presence

of quadrupole anisotropy in photon intensity distribution is one of the necessary

conditions for polarising CMB photons. Before the recombination era, the mean

free path of photons was small relative to the Hubble scale, and the interaction

rate between photons and electrons was so high that it erased any anisotropies

in the photon distribution. While after the recombination, there was no Thom-

son scattering of CMB photons off electrons due to decoupling. Therefore, CMB

photons could get polarized during the recombination phase. CMB polarization

is often described in terms of E-modes and B-modes constructed using Stoke’s

parameters Q and U , and are rotationally invariant, unlike Q and U . E-mode

polarization arises from velocities and has more structure at small scales. CMB

E-mode polarization was detected first by DASI (Kovac et al. 2002) in 2002 after a

lot of experimental efforts. B-mode polarization has mainly two sources: primor-

dial gravitational waves, i.e., waves generated during the inflation era (which is

dominant at low multipole range) (Crittenden et al. 1993; Seljak and Zaldarriaga

1997) and weak gravitational lensing of CMB photons by large scale structures
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in the universe (which is dominant at high multipole range). Lensed B-modes

have been detected by multiple experiments at very small scales, while primordial

B-modes are still beyond the detection limits of the current ongoing missions.

Further, these polarization signals get modified during the epoch of reionization

and by the interaction of CMB photons with Large scale structure (LSS) in the

universe.

The CMB photons carry information about the inhomogeneities in density, veloc-

ity, and gravitational potential fields imprinted by inflation into the photo-baryonic

plasma. These tiny inhomogeneities in the plasma source the tiny fluctuations in

the CMB temperature across the sky. These fluctuations are the so-called pri-

mary CMB temperature anisotropies, which provide a snapshot of the universe at

the time of decoupling. These intrinsic/primary anisotropies are of the order of

∼ 10−5. COBE satellite in 1992 detected anisotropy in CMB temperature field

at the level of 10−5 around the mean value (Smoot et al. 1992). Since their first

detection, CMB anisotropies have been the subject of greater interest and have

provided a solid ground for testing our theories of structure formation and the

early universe.

CMB anisotropy measurements constitute measuring anisotropies in three observ-

ables, temperature (n̂) and, stokes parameters Q(n̂), U(n̂), along each line of sight

n̂. The fluctuation in temperature is expressed as,

Θ(n̂) ≡ ∆T

T0

(n̂) =
T (n̂)− T0

T0

, (1.19)

where T0 is the mean temperature across the whole sky. Scalar CMB temperature

anisotropy field Θ(n̂) can be decomposed in terms of spherical harmonics Y ′`ms as

Θ(n̂) =
∑
`m

a`m Y`m(n̂) where aT`m =

∫
dΩ Θ(n̂)Y ∗`m(n̂). (1.20)
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We cannot make predictions about any particular a`m, but different theories pre-

dicts the probability distribution from which they are drawn. Considering CMB

temperature field to be a Gaussian random field, the harmonic coefficients are

complex Gaussian random variables with zero mean, and a non-zero variance, i.e.,

〈a`m〉 = 0 ; 〈a`m a∗`′m′〉 = δ``′ δmm′ C`, (1.21)

where 〈.〉 denotes an ensemble average over the sky realizations, and C` is the

angular power spectrum. The covariance matrix of the harmonic coefficients is

diagonal as a consequence of the fundamental assumption of homogeneity and

isotropy of the universe. Any preferred direction in the sky will introduce off-

diagonal elements in the covariance matrix, breaking the statistical isotropy of the

temperature field.

The CMB polarization is described in terms of Stokes parameters Q(n̂) and U(n̂)

defined on the sphere in a particular frame of reference. These parameters are

not scalar quantities, they transform as the components of a symmetric trace free

2× 2 tensor under rotation by an angle γ as,Q U

U −Q

⇒
 cos γ sin γ

− sin γ cos γ

Q U

U −Q

 cos γ sin γ

− sin γ cos γ

 ,

or the linear combination of Q and U transforms like a spin-2 field,

(Q± iU)
′
(n̂) = e∓2iγ((Q± iU)(n̂). (1.22)

We may therefore expand these quantities in the appropriate spin weighted ba-

sis (Zaldarriaga and Seljak 1997),

(Q+ iU)
′
(n̂) =

∑
`m

a2,`m 2Y`m(n̂), (1.23)

(Q− iU)
′
(n̂) =

∑
`m

a−2,`m −2Y`m(n̂). (1.24)
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The CMB polarization is described in terms of E-mode and B-mode respectively.

For both the E-mode and B-mode, the polarization varies along direction parallel

to the wave vector, k. For the case of a pure E-mode, the polarization is parallel

or perpendicular to k. For a pure B mode, the polarization is rotated by 45o with

respect to k. E-mode and B-mode multipoles are defined in terms of coefficients

a±2,lm as,

Elm ≡ −1

2
[a2,lm + a−2,lm], (1.25)

Blm ≡ −1

2i
[a2,lm − a−2,lm]. (1.26)

We can now define the E-mode and B-mode polarization sky map as

E(n̂) ≡
∑
lm

ElmYlm(n̂), (1.27)

B(n̂) ≡
∑
lm

BlmYlm(n̂). (1.28)

It can be shown that scalar perturbations in the density only generate gradient-

like polarization patterns at first order, while curl-like polarization requires tensor-

like perturbations. Tensor-like perturbations in the metric describe gravitational

waves. It is believed that a background of gravitational waves was generated

during inflation, which would imprint B-mode polarization in CMB. However,

this primordial component is yet to be detected in CMB experiments.

The CMB fluctuations are statistically isotropic and follow a Gaussian distribution.

The power spectrum of the CMB fields are calculated as,

CXY
` =

1

(2`+ 1)

∑̀
m=−`

aX`m a
∗Y
`m, (1.29)

where X, Y = T,E,B. CMB fluctuations are described using four combinations

only i.e TT,EE,BB and TE. This is because the B-mode field has odd parity,

hence the cross correlation between B-mode and T or E-mode vanishes. A more
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conventional form of power spectrum, D`, can be defined as

DXY
` =

`(`+ 1)

2π
CXY
` . (1.30)

The CMB power spectrum can be modeled using perturbation theory and has been

measured to high precision by several experiments from the largest scales down to

arcminute scales. Figure 1.2 (Choi et al. 2020) shows the recent measurements of

CMB temperature and polarization power spectra from various CMB experiments.

By looking at CTT
` or DTT

` , we can appreciate the wealth of information contained

here. At low `, we see a scatter in the data points compared to the theory. This

arises from the cosmic variance. Since, we only have one universe, which is a

unique realization of a Gaussian random process, and we only have one sky, to

make measurements. There is the fundamental uncertainty in the knowledge we

may get about the C ′`s. This uncertainty is known as a cosmic variance. At these

scales, the number of modes available for C` estimation is limited. For a given `,

the number of modes is (2`+ 1). For independent Gaussian realizations, the error

scales as

∆C`
C`

=

√
2

2`+ 1
. (1.31)

From the C` we can distinguish three main features sourced by different physical

effects:

• the Sachs-Wolfe plateau (almost flat region) at ` . 100, that traces the

initial conditions (which have not had enough time to evolve on such big

scales).

• a prominent primary peak around ` ∼ 220 followed by a series of acoustic

peaks of varying amplitude. These wiggles are the baryon acoustic oscilla-

tions (BAO) sourced by the sound waves in the photon-matter plasma before

recombination (driven by the competing force of gravity and pressure).
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Fig. 25.— Recent measurements of the CMB temperature anisotropy and polarization. The two models, the thin nearly overlapping
grey lines, are from Planck (dashed line) and from ACT plus WMAP (A20, solid line). The primordial BB signal with r = 0.1 is also
shown with the dot-dashed line. For Planck we show the 2018 results (Planck Collab. V et al. 2019). For SPT we show Henning et al.
(2018) for 150 GHz TT ` < 2000, TE and EE, and Sayre et al. (2019) for BB. For ` > 2000 we show the SPT spectrum from George
et al. (2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but uncorrected
spectrum in Reichardt et al. (2020). For Polarbear/Simons Array we show EE from Adachi et al. (2020) and BB from pipeline A in
POLARBEAR Collaboration et al. (2017). For BICEP2/Keck we use Ade et al. (2018). All error bars are one sigma and points with no
lower bound in TT and EE have been dropped at high `. There is much more to each data set than is plotted here, for example additional
frequencies. For ACT we also show preliminary EE results that were not used in the analysis: for ` = [103, 150.5, 200.5, 250.5, 300.5],
DEE` = [1.14± 0.32, 1.40± 0.22, 0.70± 0.14, 2.02± 0.20, 9.74± 0.39] (µK)2.

Figure 1.2: Recent measurements of the CMB temperature anisotropy and
polarization. The two models, the thin, nearly overlapping grey lines, are from
Planck (dashed line) and ACT plus WMAP (A20, solid line). The primordial
BB signal with r = 0 is also shown with the dot-dashed line. For Planck,
2018 results (Planck Collab. V et al. 2019) are shown. For SPT, Henning et
al.(2018) for 150 GHz TT < 2000, TE and EE, and Sayre et al. (2019) for BB
are shown here. For ` > 2000, the plot shows the SPT spectrum from George et
al. (2015), corrected for point source emission. It is visually indistinguishable
from the more precise but uncorrected spectrum in Reichardt et al. (2020). For
Polarbear/Simons Array, figure show EE from Adachi et al. (2020) and BB from
pipeline A in POLARBEAR Collaboration et al. (2017). For BICEP2/Keck,
Ade et al. (2018) is used. All error bars are one sigma, and points with no
lower bound in TT and EE have been dropped at high `. This figure is taken
from Choi et al. (2020).



Chapter 1: Introduction 23

• overall damping of the spectrum for ` & 1000 caused by photon diffusion at

recombination. This process of fall in the power at small scales is referred

to as the Silk damping.

Acoustic peak amplitudes and their locations are sensitive to different cosmological

parameters, which are then constrained using CMB observations.

1.4 Structure formation

Initial density fluctuations grow due to gravitational instability. This leads to

under-dense and over-dense regions in matter density distributed across the dif-

ferent spatial location and redshifts in the universe. We can analytically model

the evolution and structuring of matter at large scales. An analytical description

of the matter density evolution at linear and quasi-linear scales can be obtained

using first order perturbation theory. However, at small scales where the matter

density becomes highly non-linear, we must combine semi-analytical approaches

and simulations to understand the matter density evolution further.

The fluctuation from the mean density of the universe is described using the density

contrast δ, which is defined as,

δ(~x, a) =
ρ(~x, a)− ρ̄(a)

ρ̄(a)
, (1.32)

where ~x is a 3-D position vector and bar indicate mean quantities. In an expanding

universe the velocity can be written as

v = Hx+ au, (1.33)
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Here v is the sum of the Hubble flow plus a peculiar velocity term. In the New-

tonian limit (densities and velocities are assumed to be small, i.e. δ << 1 and

v << c), the evolution of matter fluctuations in the cosmic mean density can be

studied using three non-linear coupled differential equations (on a homogeneously

expanding background)

• The continuity equation, which describes conservation of mass,

δ̇ +∇[(1 + δ)u] = 0. (1.34)

• the Euler equation, describing conservation of momentum

u+Hu+ (u∇)u = −∇Ψ− 1

ρ
∇p. (1.35)

• the Poisson equation, which relates the mass density to the gravitational

potential

∇2Ψ = 4πG ρ̄ δ a2. (1.36)

Ψ is the gravitational potential and p is the pressure. For components with non-

zero (non-negligible) pressure, an equation of state must be added to close this set

of equations.

To study the evolution of the density field these equations are linearlized assuming

small perturbations (δ << 1). Finally we get second order linear differential

equation for the density contrast

δ̈ +H δ̇ − 3

2
Ωm0H

2 δ = 0, (1.37)
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where Ωm0 = Ωm(z = 0). Solution of this equation yields,

δ(~x, a) =
D+(a)

D+(a0)
δ(~x, a0), (1.38)

Here D+ is the linear growth function. For a matter-dominated universe, which

is the picture before dark energy starts to dominate the energy budget of the

universe, one can solve for D+(a) exactly and obtain D+(a) = a. In the presence

of dark energy we have D(a) < a, and the exact solution for D must be evaluated

numerically.

The density contrast has zero mean, i.e., 〈δ(~x, a)〉 = 0, by construction. Inflation

sets the initial conditions for the matter perturbations and its power spectrum.

Hence, the matter power spectrum Pδ(k, a) is assumed to start out nearly scale-

invariant P (k, ainitial) ≡ PR(k) ∝ kns−1 , where ns ≈ 1. The subsequent evolution

of this primordial spectrum can be expressed in term of a matter transfer function

T(k, a),

P (k, a) = T 2(k, a)P (k, ainitial). (1.39)

The transfer function accounts for all the interactions between different compo-

nents and the effects at play on all scales. The matter power spectrum normal-

ization is determined from observations and it is commonly expressed in terms of

the variance on scales of 8 Mpch−1 as

σ2
8 = 4π

∫
k2dk

(2π)3 W̃
2(k,R = 8)Pδδ(k), (1.40)

where W̃ 2(k,R = 0) is the Fourier transform of top-hat window function with

radius R= 8 Mpch−1 and Pδδ(k) is the matter power spectrum defined as a function

of scale k. σ8 is called the amplitude of matter fluctuations.
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As the structures grow via gravitational instability, non-linear terms in the per-

turbation evolution equations shown above become important. The non-linear

evolution can in principle be modeled using perturbation theory, i.e., by consider-

ing the next to leading order terms in δ. However, this approximation is no longer

valid for δ → 1. The halo model which is a semi-analytical approach, has proven

useful to address non-linear clustering (Cooray and Sheth 2002). The basic idea

is that at late times all the matter cluster in virialized DM halos, and the galaxy

distribution can be modeled by an appropriate method that can assign galaxies to

these DM halos. The basic assumption of the halo model is that the average halo

properties, such as its density profile and its baryon content, only depend on the

halo mass.

These DM halos provide the gravitational potential wells for forming large scale

structures of the universe consisting of galaxies, galaxy clusters, superclusters.

This large scale structure distributed across the universe interacts with CMB pho-

tons in various ways leaving their imprint in the CMB frequency spectrum and

its anisotropies. CMB secondary anisotropies on small angular scales encode im-

portant information about the late time interaction of CMB photons with large-

structure in the Universe. One of the most rudimetary of these interactions is the

gravitational effect of the large-scale structure potentials deflecting the photons,

an effect referred to as the Gravitational Lensing of the CMB. The effect of lensing

on CMB and its formalism will be discussed in detail in the next chapter of this

thesis.
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1.5 Real space statistics

The wealth of cosmological information in CMB temperature and polarization

anisotropies is captured using different statistical observables. Conventional sta-

tistical tools employed for analyzing cosmological data are the hierarchy of n-point

functions, fractals, skewness, kurtosis, Minkowski functionals, power spectrum,

bispectrum. These measures capture different aspects of the properties like non-

Gaussianity, statistical isotropy, etc., of the cosmological fields. Another promising

approach to gain insights into the underlying physical processes is studying the

geometry and topology of excursion sets of smooth random fields. Betti numbers,

Minkowski functionals, and Minkowski tensors are the geometrical and topologi-

cal quantities used to study the morphology of cosmological random fields. These

real space statistical measures provide alternative methods, complementary to

the traditional approach, to constrain cosmological parameters. Moreover, above

all, morphological statistics incorporate correlation functions of arbitrary order.

Hence, they are sensitive to the signatures of non−Gaussianity in any random

field.

The genus, which is one of the Minkowski functionals, has been used extensively

for analyzing the large scale structure and CMB data (Gott et al. 1986; Mecke

et al. 1994; Vogeley et al. 1994; Hikage et al. 2003). Other scalar Minkowski

functionals have also been applied to investigate statistical properties like the

signature of primordial non-Gaussianity in CMB (Novikov et al. 2000; Shandarin

et al. 2001; Ducout et al. 2012; Buchert et al. 2017; Planck Collaboration et al.

2020d) or LSS data (Pratten and Munshi 2012; Shirasaki et al. 2012), to trace the

level of residual foreground contamination in CMB observed maps (Chingangbam

and Park 2013; Santos et al. 2016), modified theories of gravity. Betti numbers,

which are the number of connected regions and holes and whose difference give

the genus (the third scalar Minkowski Functional), have also been utilized for
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analyzing cosmological fields (Chingangbam et al. 2012; Park et al. 2013; Pranav

et al. 2019).

Vector- and tensor-valued generalizations of the scalar Minkowski Functionals on

two- and three-dimensional Euclidean space have been constructed in Alesker

(1999); Schroder-Turk et al. (2010). They are collectively known as Tensor Minkowski

functionals or Minkowski Tensors (henceforth MTs). In comparison to scalar

Minkowski functionals, they carry additional information related to intrinsic anisotropy

and alignment of structures (Schroder-Turk et al. 2010; Schröder-Turk et al. 2013).

Of these, rank-1 Minkowski tensors have been used to study the substructure of

galaxy clusters (Beisbart et al. 2001a,b). Rank-2 Minkowski tensors can be further

sub-classified into translation covariant and translation invariant ones. Transla-

tion covariant MTs have been used to study the substructure of spiral galaxies

in Beisbart et al. (2002).

The translation-invariant rank-2 MTs have been recently introduced to cosmolog-

ical applications. They were first applied to analyze the CMB in Ganesan and

Chingangbam (2017). The definition of MTs was generalized to smooth random

fields on curved two-dimensional manifolds, in particular spaces of constant cur-

vature such as the sphere, in Chingangbam et al. (2017b). They have also been

applied to search for departure from statistical isotropy of the CMB (Ganesan

and Chingangbam 2017; Joby et al. 2019; Kochappan et al. 2021). They have also

been applied to analyze fields of the epoch of reionization Kapahtia et al. (2018);

Kapahtia et al. (2019); Kapahtia et al. (2021). Most recently, they have been

used to study the effect of redshift-space distortion on matter distribution in the

universe (Appleby et al. 2018a,b; Appleby et al. 2019). We will be using these real

space geometrical observables, specifically the Contour Minkowski Tensor (CMT),

for investigating the effect of gravitational lensing on CMB fields.
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1.6 Goal of the Thesis

This thesis aims to probe the evolution of the universe and its properties by ana-

lyzing the morphology of cosmological fields. We used the method that relies on

novel morphological descriptors known as Minkowski tensors (MTs). One of the

translational invariant MTs, the contour Minkowski tensor (CMT), captures the

information on the shape and alignment of the structures in the excursion sets of

the smooth random fields. The CMT is particularly useful in the context of the

CMB and Large scale structure (LSS). We can probe departures from isotropy and

Gaussian statistics by studying the topology and geometry of CMB fields or the

matter density field using CMT. Hence, we can infer the critical time and length

scales related to the underlying physics causing these deviations from the standard

picture.

The specific questions that we address and the structure of the thesis are outlined

below.

• As a first step towards our goal we have studied cross correlation between

CMB and large scale structure. We studied the morphology changes induced

in the CMB fields, namely temperature fluctuations and E and B modes of

polarization, which are sourced by gravitational lensing of CMB photons by

large scale structures in the Universe. We use the contour Minkowski Tensors

to quantify the distortion induced by lensing in the shapes of connected and

hole regions, and their relative alignment, which gives a measure of departure

from statistical isotropy.

• We test the statistical isotropy of the universe by employing Contour Minkowski

Tensor and hence computing α parameter for the large scale matter dis-

tribution reconstructed using observations of lensed CMB fields by Planck

mission. We compute the alignment parameter, α, for the convergence (κ)
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map over full sky and also in small patches of the sky. From the local anal-

ysis we have identified anomalous regions in the sky with high statistical

significance.

• We are interested in understanding the geometrical meaning of statistical

isotropy that is manifest in excursion sets of smooth random fields in two di-

mensions. We extend the results of Chingangbam et al. (2017b) focusing on

the contour Minkowski tensor. We give an explicit construction for mapping

any arbitrary shaped simple closed curve to an ellipse that is unique upto

translations of its centroid. We also carry out a comparison of the shape

parameters defined using the contour Minkowski tensor with the filamen-

tarity parameter defined using two scalar Minkowski functionals - area and

contour length, and demonstrate that they contain complementary shape

information. Then we discuss the derivation of analytic expression for the

contour Minkowski tensor for Gaussian anisotropic random fields.

• The last part of the thesis will focus on analyzing the prospects of con-

straining primordial non-Gaussianity in CMB fields using MTs and Betti

numbers. MTs being tensorial generalization of the scalar Minkowski Func-

tionals (MFs) contain more independent degrees of freedom. Hence, we ex-

pect that they can provide tighter constraints on primordial non-Gaussianity

parameter fNL in comparison to SMFs.

Outline of the thesis:

The chapter-wise plan of the thesis is given below

• In chapter 2, we sketch the CMB weak lensing formalism, and describe the

deflection angle and the lensing potential. We then qualitatively describe

the effect of lensing on CMB temperature and polarization angular power
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spectrum and discuss the construction of quadratic estimator for lensing

potential.

• In chapter 3, we present a brief overview of the statistical tools used in this

thesis work. We present definitions and the recipe for the numerical compu-

tation of the scalar Minkowski functionals and Minkowski tensors relevant

for this thesis.

• In chapter 4, we investigate the effect of weak lensing on the morphology of

CMB fields using shape and alignment parameters, β and α, respectively.

These shape parameters are obtained from the Contour Minkowski tensor.

• In chapter 5, we test the statistical isotropy of the Planck convergence field or

the lensing potential field, inferred from lensed CMB observations by Planck

mission.

• In chapter 6, we extend the analytic derivation of the CMT from the case

of Gaussian isotropic field to the case of Gaussian anisotropic field. We

discuss the geometrical meaning of statistical isotropy of the excursion sets

of smooth random fields in two dimensions. We demonstrate mapping of

arbitrary shaped simple closed curve to an ellipse and further discuss the

distribution of many such curves and their relative alignment.

• In chapter 7, we discuss our ongoing project on the comparison of the infor-

mation content in the Minkowski Tensors and the scalar Minkowski function-

als. We formulate the problem and present the preliminary results obtained,

and discuss our future work.

• In chapter 8, we summarize our key results focusing on the novel aspects,

and then discuss directions of future studies.
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Gravitational lensing of Cosmic

Microwave Background

Gravitational lensing of the CMB by the intervening matter distribution in the uni-

verse imprints valuable information in the temperature and polarization anisotropies.

CMB lensing has become an essential probe in cosmology and astrophysics. In this

chapter, we briefly describe the CMB lensing phenomenon and its consequences.

2.1 Introduction

CMB photons encounter the intervening cosmic web formed mostly by dark mat-

ter and baryonic matter as they traverse from the last scattering surface to us

today. This structure distorts space and time according to the prediction of Gen-

eral Relativity (GR). In GR for a point mass deflected by mass M at an distance
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of closest approach R, deflection angle is given by 4Ψ(R)
c2

. Here, Ψ is the gravita-

tional potential due to mass M at the distance of closest approach, and c is the

velocity of light. The amount of deflection predicted by GR is twice that of the

Newtonian prediction. The CMB photons geodesic are deflected multiple times by

the interceding structure (Blanchard and Schneider 1987). The root mean square

(RMS) depth of the potential well at last scattering is of order O(10−5) (Lewis and

Challinor 2006). Each such potential then gives a deflection δβ ∼ 10−4 radians.

The scale corresponding to the peak of the matter power spectrum, i.e., ∼ 300

Mpc (comoving), gives the characteristic size of the potential well. The comoving

distance to the last scattering surface is about 14000 Mpc, so the number of po-

tential wells passed through is ∼ 50. If the potentials are uncorrelated, this will

give an r.m.s. total deflection, 501/2× 10−4 ∼ 7× 10−4 radians or two arcminutes.

The deflection of the CMB photons is small, so CMB lensing can be studied well

within the weak-lensing regime.

The gravitational lensing effect can be understood as a remapping of the unlensed

CMB field by a line-of-sight averaged deflection field. Let the deflection caused

by lensing for each sky direction n̂ be captured by deflection angle ~d(n̂), which is

a vector field on the 2-D surface of a sphere. Then the observed CMB field value

in some direction n̂′ can be expressed in terms of the field values in the original

direction n̂ as,

T L(n̂′) = TUL(n̂+ ~d ). (2.1)

CMB lensing is an achromatic effect, i.e., it does not modify the CMB blackbody

frequency spectrum. However, it does alter the two and higher-point statistics (Sel-

jak 1996; Zaldarriaga and Seljak 1998; Zaldarriaga and Seljak 1999) and generates

non-Gaussianity in otherwise Gaussian primordial fluctuations. The deflection

suffered by a CMB photon as it travels towards us from the last scattering sur-

face is about three arcminutes, as discussed above. The deflection angles will be
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correlated over the sky by an angle given by the angular size of a characteristic

potential, ∼ 300/7000 ∼ two degrees, for a potential lying mid-way to the last

scattering. Hence the deflections, although much smaller than the angular scale

corresponding to the primary CMB acoustic peaks, are coherent over comparable

scales. Consequently, lensing causes coherent distortions of the CMB cold and

hot spots and broadens their size distribution. This results in redistribution of

power among the acoustic scales in the CMB and shows up in the angular power

spectrum as smoothing of the acoustic peaks (Seljak 1996; Metcalf and Silk 1997;

Lewis and Challinor 2006). At smaller scales, where a local gradient well approxi-

mates the CMB, deflectors of small angular size produce small-scale distortions in

the CMB, thereby transferring power from large scales in the CMB to the higher

multipoles.

CMB lensing is an integrated effect and hence, sensitive to all the matter along

the line of sight, thus acting as a complementary tracer of the large-scale structure

in the universe. Matter distribution inferred from CMB lensing is described using

integrated potential measure, i.e., lensing potential. The primordial CMB can

be assumed to be a Gaussian random field (Komatsu et al. 2005), and the large-

scale lensing potential field can also be well approximated by a Gaussian random

field. However, the lensed CMB being a reprocessing of one Gaussian random

field by another is not Gaussian. This non-Gaussianity or mode coupling in lensed

fields enables us to extract information about the large scale matter distribution

in the universe. The connected part of the four-point correlation function of CMB

temperature and polarization anisotropy contains the relevant information about

the lensing potential power spectrum. This fact has been the basis of the stan-

dard estimators for extracting gravitational lensing signal from CMB observations.

There exist estimators both in harmonic space known as Quadratic estimators, (Hu

2001; Hu and Okamoto 2002; Okamoto and Hu 2003) and in configuration space

like maximum likelihood estimators, (Hirata and Seljak 2003), to estimate the

lensing potential or the projected density (convergence) of these structures, its
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power spectrum, and cross-correlation with other observables. The CMB lens-

ing potential provides a unique observable, in addition to the CMB temperature

and polarization anisotropies, to study the properties of matter distribution, and

hence another way to test our models of cosmological structure formation. Com-

pared to galaxy surveys, CMB lensing has the advantage of directly tracing matter

distribution, thus avoiding the uncertainties associated with a bias between the

distributions of galaxies and mass (Zaldarriaga and Seljak 1999). Also, it traces

the matter distribution at higher redshifts that cannot be reached by galaxy sur-

veys or weak galaxy lensing and is sensitive to the largest observable scales in the

universe (Zaldarriaga and Seljak 1999; Hu 2001, 2000).

Ultimately, they all observe the same available sky, i.e., the same underlying mat-

ter density field. This fact has lead to various cross-correlation studies between

CMB lensing and the large scale structure field. Also, it has been realized that this

approach is powerful (Peiris and Spergel 2000) because many of the systematics

disappear upon cross-correlating data sets. CMB lensing was first confirmed in the

WMAP data by cross-correlating CMB observations (Hinshaw et al. 2007; Smith

et al. 2007) with the WISE (Condon et al. 1998) galaxy data. With tremendous

efforts and furtherance in our understanding of CMB physics combined with the

advancement in technology has led to high resolution and detailed mapping of

CMB anisotropies by various experiments such as ACT, PLANCK and the South Pole

Telescope (SPT)∗ on the horizon. We have now entered an era where robust detec-

tion and characterization of this effect has become a reality. Also, with upcoming

and proposed large scale structure projects LSST† , SNAP‡, ADEPT§, DESTINY¶, etc,

there will be many more datasets to cross-correlate with the CMB. The Planck re-

sults (Planck Collaboration et al. 2016, 2020a) have provided the most significant

(∼ 40σ) detection of gravitational lensing of CMB so far.

∗http://spt.uchicago.edu
†http://www.lsst.org/lsst_home.shtml
‡http://snap.lbl.gov/
§http://universe.nasa.gov/program/probes/adept.html
¶http://destiny.asu.edu/

http://spt.uchicago.edu
http://www.lsst.org/lsst_home.shtml
http://snap.lbl.gov/
http://universe.nasa.gov/program/probes/adept.html
http://destiny.asu.edu/
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In addition to being a useful cosmological signal, CMB lensing will act as a con-

taminant to detect the primordial B-mode polarization modes. The observed

B-mode polarization signal has two components. The first is the primordial com-

ponent sourced by gravitational waves generated during inflation which dominates

at large angular scales (` ≤ 100). The amplitude of this component depends on

the value of the tensor-to-scalar ratio, r. B-mode polarization in the CMB is a

direct probe of the primordial gravitational wave. Thus detecting B-modes gen-

erated by GW is a ’smoking gun’ evidence for inflation. The best current limits

constrain the tensor-to-scalar ratio to r0.002 < 0.056 (BICEP2 Collaboration et al.

2018; Planck Collaboration et al. 2020e), where r0.002 denotes r at the pivot scale

0.002 Mpc−1. The second component, which is generated due to coupling between

the E and B-mode (Zaldarriaga and Seljak 1998) caused by CMB weak lensing,

dominates at small angular scales (` ∼ 1000). This implies that gravitational

lensing can generate B-mode polarization, even if no primordial tensor fluctua-

tions were present to generate primordial B-mode polarization. Lensed B-modes

have been measured by various ground-based telescopes like SPTPOL (Hanson

et al. 2013), BICEP2/KECK ARRAY V (Ade et al. 2015), POLARBEAR (and

P. A. R. Ade et al. 2017), etc. Figure 2.1 shows current upper limits on B-modes

from various experiments. In practice, cosmic variance, instrumental noise, and

a high level of contamination from polarized foregrounds make the experimental

detection of primordial B-modes extremely challenging. Measuring primordial B-

modes is the major science goal for most of the planned CMB missions, such as

satellite experiments like LiteBIRD (Hazumi et al. 2019; Sugai et al. 2020), as well

as ground-based telescopes, such as the Simons Observatory (SO, Lee et al. (2019)

and CMB-S4 (Abazajian et al. 2019). The estimated lensing potential from the

lensed CMB alone, or the potential estimated from weak lensing surveys (Marian

and Bernstein 2007), can be used to significantly delens the CMB (Knox and Song

2002; Hirata and Seljak 2003). This is important to recover the primordial signal

from the total observed B-mode signal (Manzotti et al. 2017).
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Figure 2.1: Current upper limits on B-modes from CMB experiments. Image
Credit: Kuo Group:CMB Polarization Experiment Team

We will now review basic lensing formalism in the following sections.

2.2 The lensing potential and its power spectrum

We refer to Lewis and Challinor (2006) and Hanson et al. (2010) for a full review

of the CMB lensing effect. It is now well known that gravitational potential bends

the path of light. We will now estimate by how much the gravitational potentials

in the universe deflects the CMB photons, so we start with a simple Newtonian

calculation: for a photon approaching a point mass M, the gravitational potential

encountered by the photon is given by:

Ψ =
GM

r
, (2.2)

where G is Newton’s constant and r is the distance between the photon and point

mass M. The transverse acceleration of the photon due to the mass is,

v̇⊥ = −∇⊥Ψ =
GM

r2
cos θ, (2.3)
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where θ is the angle of the photon from the mass relative to its angle at a distance

of closest approach R. Integration over the photon path for constant speed |v| = c

gives a total (Newtonian) deflection angle:

v̇⊥
|v|

= −∇⊥Ψ =
2GM

c2R
. (2.4)

In GR, we replace the derivative with the covariant derivative giving an accelera-

tion of Dχv̂ = −∇Ψ where Dχ is the covariant derivative along the photon world

line. To get the deflection angle, we must also account for the curvature of space

to give a local deflection angle of

δβ = −2δχ∇⊥Ψ, (2.5)

where δχ is a small distance along the photon path. This GR result has an addi-

tional term due to the effect of space-time curvature. We now want to know how

a deflection in a photon’s path changes its observed angle on the sky. The angular

diameter distance fK(χ) relates comoving distances to angles via,

fK(χ) =


K−1/2 sin(K

1
2χ), forK > 0, closed,

χ, forK = 0, f lat,

|K|−1/2 sinh(|K| 12χ), forK < 0, open.

(2.6)

Under the approximation of weak lensing and in the small angle approximation

fK(χ∗ − χ) δβ = fK(χ∗) δθ. Solving for δθ the deflection due to the source at χ is

δθχ =
fk(χ

∗ − χ) δβ

fK(χ∗)
=
fk(χ

∗ − χ)

fK(χ∗)
2 δχ∇⊥Ψ. (2.7)
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Figure 2.2: Weak lensing geometry for a source (the CMB) at comoving dis-
tance χ∗ lensed by a potential Ψ at distance χ, assuming a flat universe. The
lensing deflection by an angle δβ changes the observed angle of the source by an
angle δθ.

The total deflection angle is the sum over all of the individual deflections due to

gravitational potentials between the surface of last scattering and today:

α = −2

∫ χ∗

0

dχ
fK(χ∗ − χ)

fK(χ∗)
∇⊥Ψ (χn̂, η0 − χ), (2.8)

where η0 − χ is the conformal time at which a photon was at position χn̂. Equa-

tion 2.8 requires the integral to be evaluated along the perturbed light path. How-

ever, since we are working at first order in α (small deflections), we can compute

the integral over the unperturbed path of the photon. From the photons geodesic

equation one has,

χ = η0 − η −
∫ η

η0

dη′Ψ(η′). (2.9)

The Born approximation is equivalent to setting χ = η0 − η, i.e. calculating the

deflection along the unperturbed light path, so that the transverse derivative in

equation 2.8 becomes the covariant derivative over the LOS n̂, ∇⊥ → ∇n̂/fK(χ).

The validity of the Born approximation in the context of CMB lensing has been
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recently investigated by Calabrese et al. (2015) by means of multiple planes ray-

tracing techniques, and they have shown the differences to be small. We can now

define the lensing potential φ in terms of gravitational potential Ψ as:

φ(n̂) ≡ −2

∫ χ∗

0

dχ
fK(χ∗ − χ)

fK(χ∗) fk(χ)
Ψ (χn̂, η0 − χ), (2.10)

which implies α(n̂) = ∇n̂φ(n̂) (from now on ∇ ≡ ∇n̂). For the CMB, we can

approximate recombination as instantaneous so that the CMB is described by a

single source plane at χ = χ∗. Also we shall assume the universe to be flat, i.e.,

fK(χ) = χ. For scales on which the potential Ψ is Gaussian, the lensing potential

will also be Gaussian. On smaller scales, non-linear evolution can introduce non-

Gaussianity even for Gaussian primordial fields; however, on acoustic scales, this

is a small correction and can be neglected for the zeroth-order picture. Therefore,

its two-point function or power spectrum contains all the information needed to

describe the lensed CMB statistics fully.

The lensing potential can be expanded into multipole moment (all-sky) or Fourier

(flat-sky):

φ(n̂) =
∑
`m

φ`mY`m(n̂), (2.11)

φ(n̂) =

∫
d2`

(2π)2 φ(`) exp (i`.n̂), (2.12)

where (`,m) and ` are conjugate to the real space unit vector n̂ in all-sky and flat-

sky, respectively. Now the assumption of linear evolution implies that the lensing

potential is also Gaussian, and all the information about the field is carried by its

power spectrum:

〈φ`m φ`′m′ 〉 = δK
``′
δK
mm′

Cφφ
` , (2.13)

〈φ(`)φ(`
′
)〉 = (2π)2δD(`− `′)Cφφ

` . (2.14)
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The standard model of cosmology predicts the shape and amplitude of the CMB

lensing power spectrum, which depends on geometrical factors and the metric

perturbation evolution (Lewis and Challinor 2006):

Cφφ
` = 16π

∫
d log(k)PR

[ ∫ χ∗

0

dχ TΨ(k; η0 − χ) j`(kχ)
fK(χ∗ − χ)

fK(χ∗)fK(χ)

]2

, (2.15)

where j`(kχ) is the spherical Bessel function and TΨ(k; η) is the linear theory

transfer function. The gravitational potential at later epoch is given in terms of

transfer function as,

Ψ(k; η) = TΨ(k; η)R(k), (2.16)

where R being the the primordial comoving curvature perturbation (set at tyhe

inflationary epoch) with the power spectrum PR(k).

We will now define another physical quantity known as convergence (κ) which is

useful in context of weak lensing. Shear and magnification are the two observable

consequences of weak gravitational lensing. Shear (denoted by γ) determines the

area-preserving distortions of the images of galaxies or the structures (hot spots

and cold spots) in the CMB map. The convergence (κ) field, on the other hand,

captures the magnification or demagnification of CMB hotspots and coldspots

caused by gravitational lensing. Unlike the galaxy lensing scenario, where shear is

the most crucial lensing observable, we can gain information from both shear and

magnifications for the CMB. The κ field can be written in terms of matter density

fluctuation (usually denote as δ) using Poisson’s equation as,

κ =
3

2

H2
0

c2
Ωm0

∫ χ∗

0

dχ
χ(χ∗ − χ)

χ∗
δ(χ)

a
, (2.17)

where H0 is the Hubble constant, which quantifies the present expansion rate of

the universe, and Ωm0 is the dimension-less matter-density parameter.
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Figure 2.3: The power spectrum of the deflection angle (given in terms of
the lensing potential φ by ∇φ ) for a concordance ΛCDM model. The linear
theory spectrum (solid) is compared with the same model including non-linear
corrections (dashed) from HALOFIT (Smith et al. 2003).

The CMB lensing potential power spectrum, can be related to the deflection angle

and to the convergence κ(n̂) = −1
2
∇2φ(n̂) power spectrum through,

Cαα
` = `(`+ 1)Cφφ

` , (2.18)

Cκκ
` =

[`(`+ 1)]2

4
Cφφ
` . (2.19)

begincenter

Figure 2.3 shows the deflection angle power spectrum for the case of the standard

model. It has a peak at ` ∼ 60. The red curve represents non-linear corrections to

the lensing potential or deflection angle. We can note that there is minimal effect

on scales where the power peaks (` ∼ 60), but the non-linear evolution significantly

increases the power on small scales. Hence, for doing precision cosmology, one

should consider the non-linear evolution of the lensing potential at small scales.

As already mentioned, the CMB lensing potential is an integrated measure of
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the matter distribution in the universe, up to the last scattering surface. Hence,

it has contributions out to relatively high redshifts. The CMB lensing potential

has a broad kernel peaking at around z ∼ 2 but slowly varying from z ∼ 1 to

z ∼ 4. This provides us a novel way to study the time evolution and spatial

distribution of the gravitational potential by correlating the weak lensing field

with galaxy redshift distribution. These cross-correlation studies are valuable

for combining information from two independent tracers of LSS while avoiding

instrument-specific systematic errors (Bianchini et al. 2015).

2.3 CMB lensed power spectrum

As described earlier the lensing of CMB photons remaps unlensed temperature

anisotropies Θ(n̂) in sky by the deflection angle α(n̂). By Taylor expanding in

terms of the displacement field we get

Θ̃(n̂) = Θ(n̂+α(n̂))

= Θ(n̂+∇φ(n̂))

= Θ(n̂) +∇aφ(n̂)∇aΘ(n̂) +
1

2
∇aφ(n̂)∇bφ(n̂)∇a∇bΘ(n̂) (2.20)

+O(φ3),

Here the tilde denotes a lensed quantity. The Taylor expansion performed above

simplifies the description of the lensing effect on CMB anisotropies, however it

is not accurate on all scales, especially when looking at scales comparable to the

deflections. In the flat-sky approximation equation 2.20 can be expressed in Fourier
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domain as

Θ̃(`) ≈ Θ(`)−
∫
d2`

′

2π
`
′
(`− `′)φ(`− `′)Θ(`

′
)

−1

2

∫
d2`1
2π

∫
d2`2
2π

`2.[`1 + `2 + `](`1.`2)Θ(`1)φ(`2)φ∗(`1 + `2 − `). (2.21)

From here we see that lensing affects the unlensed multipoles by coupling different

modes (`′s). For a fixed realization of lenses, the effect of mode-coupling is to

introduce off-diagonal components into the covariance matrix of observed temper-

ature. Assuming that both Θ(`) and φ(`) to be isotropic, Gaussian random field

which are uncorrelated, we get

〈Θ̃(`), Θ̃∗(`
′
)〉 = δD (`− `′) (2.22)

C T̃ T̃
` ≈ (1− `2Rφ)CTT

` +

∫
d2`

′

2π
[`

′
.(`− `′)]2Cφφ

|`−`′|C
TT
`′ , (2.23)

where Rφ is half the total deflection angle power defined as

Rφ ≡ 1

2
〈|∇φ|2〉, (2.24)

1

4π

∫
d`

`
`4Cφφ

` ∼ 3× 10−7. (2.25)

The lensed temperature power spectrum at first-order in Cφφ
` differs from the un-

lensed spectra by a term proportional to Rφ and by an integral term which has

the form of a convolution of the unlensed temperature spectrum with the lens-

ing potential power spectrum. This convolution smooths out the main peaks in

the unlensed spectrum, which is the main qualitative effect on the temperature

spectrum on large scales. The effect is shown in left plot of the figure 2.4. The

bottom panel shows the fractional difference between lensed and unlensed CMB

temperature power spectra and is several percent at ` > 1000. On small scales

where there is little power in the unlensed CMB, the convolution transfers power

from large scales to small scales, increasing the small-scale power. Since weak

lensing preserves the brightness but alter the photon’s directions, the total vari-

ance of the temperature field is conserved even though the power is redistributed
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Figure 2.4: Top panel in left: the lensed temperature power spectrum (green)
and the unlensed spectrum (red). Bottom: the fractional change in the power
spectrum due to lensing. Top panel in right plot: lensed E-mode polarization
power spectra overlaid on unlened E-mode spectrum, with bottom panel showing
the residual in this case. Both plots are for a typical concordance ΛCDM model
with Planck 2018 (Planck Collaboration et al. 2020c) cosmological parameters.

among different scales. An exact calculation of the lensed spectra on the curved

sky, which is based on real-space correlation function methods and is commonly

adopted in modern Boltzmann codes, can be found in refs. (Challinor and Chon

2002; Challinor and Lewis 2005).

Polarization power spectra: The presence of a non-zero photon quadrupole

at the last scattering surface generates a polarization signal in CMB. Linear po-

larization of CMB is described using Stoke’s Q and U parameters or the so-called

E-mode and B-mode. These are patterns in the sky, and they are defined by ba-

sically how they behave when we mirror them. So, E-modes stay the same, while

B-modes changes sign under parity inversion. The lensing effect on the CMB po-

larization is also described as a remapping of the Stokes parameters Q ± iU by

the deflection field. Assuming no primordial B-modes, i.e. CBB
` = 0, the lensed
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power spectra to lowest order in Cφφ
` are given by (Hu 2000),

C T̃ Ẽ` ≈ (1− `2Rφ)CTE` +

∫
d2`

′

2π
[`

′
.(`− `′)]

2
Cφφ|`−`′|C

TE
`′ cos 2(ϕ` − ϕ`′),(2.26)

CẼẼ` ≈ (1− `2Rφ)CEE` +

∫
d2`

′

2π
[`

′
.(`− `′)]

2
Cφφ|`−`′|C

EE
`′ cos22(ϕ` − ϕ`′),(2.27)

CB̃B̃` ≈
∫
d2`

′

2π
[`

′
.(`− `′)]

2
Cφφ|`−`′|C

EE
`′ sin22(ϕ` − ϕ`′), (2.28)

where ϕ` and ϕ`′ are the angles between n̂ and ` and `′ respectively. We can see

from equation 2.28 that the lensing of pure E-modes generates B-mode polariza-

tion, even if the primordial B-mode component is absent. Lensing mixes these two

distinct polarization modes in CMB. Qualitatively, lensing effect on CEE
` and CTE

`

is similar to that on the temperature spectra: the unlensed spectra are convolved

with the lensing potential spectra, resulting in blurring of spectral features and

power transfer towards the damping tail of the power spectra. Since the acoustic

peaks in CEE
` are sharper than the temperature ones, the fractional changes in the

lensed E-modes are O(30%) near the acoustic peaks (Lewis and Challinor 2006).

Lensing must therefore be modelled in order to get accurate results when doing

parameter estimation from polarized power spectra. Lensing causes power leakage

from E to B- mode polarization, which acts as a contaminant in the search for

gravitational induced B-modes on large angular scales. However, CMB lensing sig-

nal provides a unique observational probe of the large scale structure distribution.

The lensing potential power spectrum has been reconstructed using observations

of lensed CMB anisotropies from various CMB experiments. Its power spectrum

contains a wealth of information about the late time structure formation of the

universe, its expansion history, and in cross-correlation with other probes we can

infer variety of astrophysical constraints as well.
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2.4 Lensing reconstruction

As CMB photons travel from the last-scattering surface to us, their paths are de-

flected by the gravitational potential of matter. As explained earlier, these small

coherent deflections are related to the gradient of the gravitational potential. They

can be used to reconstruct the integrated gravitational potential along the line of

sight, i.e., the lensing potential. Lensing correlates previously decoupled CMB

temperature and polarization modes between different angular scales on the sky.

This is a key property in searching for the lensing signal and reconstructing it.

If the statistics of the unlensed CMB is known, it is possible to exploit the in-

formation contained in the four-point function of the lensed CMB to extract the

lensing potential statistically. As we have discussed earlier, the main effects of

lensing include introducing tiny deviations from Gaussianity in the CMB (when

marginalized over realizations of the lenses) or statistical anisotropy (for a fixed

distribution of the lenses). There are two main ways to detect the CMB lensing:

one is to measure the smoothing of the acoustic peaks on small angular scales

induced by lensing at the CMB power spectrum level (Reichardt et al. 2009;

Keisler et al. 2011; Planck Collaboration et al. 2014b), while the second method

involves measuring the mode-coupling induced in the CMB by lensing. Methods

that directly reconstruct the deflection field or the lensing potential either employ

a maximum likelihood approach (Hirata and Seljak 2003) or optimal quadratic

estimators (Okamoto and Hu 2003). So far, all reconstructed lensing maps have

employed the optimal quadratic estimator, which is derived under idealized obser-

vational conditions, i.e., the CMB and the lensing field being nearly perfect Gaus-

sian field, with negligible mode-coupling induced by instrumental or foregrounds

effect. Several papers have investigated the effect of several additional sources

of mode-coupling, such as finite sky-coverage (Perotto, L. et al. 2010; Namikawa

et al. 2013), higher-order mode-coupling induced by lensing itself (Kesden et al.

2003; Hanson et al. 2011), and foreground biases (Fantaye et al. 2012; Osborne

et al. 2014).
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Let us briefly review the optimal quadratic estimator in the flat-sky framework,

which is based on the first order perturbative expansion, similar to Eqn. 2.20, but

truncated at first order. The formally optimal (inverse-variance weighted lensing

potential) estimator at lowest order in φ has the following form

φ̄XYL =

∫
d2`WXY

`, `−L X̄` Ȳ
∗
`−L, (2.29)

where X̄ and Ȳ are the filtered T, E, or B CMB fields and WXY
`, `−L is the weight

function (unique for each XY pair, see Hu and Okamoto (2002) for the exact

expression). This estimation technique amounts to taking a weighted sum of

the covariance between X̄` and Ȳ`′ for all pairs of angular wavenumbers ` and

`′ separated by `− `′ = L . Covariance between ` modes in X̄ and `′ modes in Ȳ

is imprinted by modes in the lensing potential φ with angular wavenumber L .The

input CMB multipoles used here are (Weiner) filtered to suppress modes which

are dominated by noise and also to increase the sensitivity to lensing. In addition,

the unlensed CMB power spectra appearing in the weight function are replaced

with the lensed ones to cancel higher order biases (Hanson et al. 2011). Now, the

lesning potential estimated with Eqn. 2.29 is a biased estimate of the true lensing

potential φXYL :

φ̄XYL = RXY
L φXYL , (2.30)

whereRXY
L is the response function that normalizes the estimator. In practice, the

response function is first calculated analytically, and then corrected perturbatively

with simulations, RXY
L = RXY,Analytic

L RXY,MC
L . In the case of an isotropic filter,

the response function is given by,

RXY,Analytic
L =

∫
d2`WXY

`, `−LW
XY
`, `−LFXL FY`−L, (2.31)

here FX` = (CXX
` +NXX

` )
−1. A fiducial cosmology is assumed to calculate both

F and W functions. Real systematic effects like coupling of modes at various

angular scales due to masking and the inhomogeneous noise introduce spurious
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signals that can mimic the effect of lensing. To circumvent these biases, a mean

field (MF) correction term φ̄XY,MF
L which is estimated by averaging φ̄ reconstructed

from many input lensed CMB simulations, is removed from the estimated φ̄XYL .

Since the simulated lensing signal is uncorrelated from simulation to simulation, it

averages to zero in this calculation; the common signal that remains after averaging

is the MF bias. The final measure of the lensing potential is given by,

φ̂XYL =
1

RXY
L

(
φ̄XYL − φ̄XY,MF

L

)
. (2.32)

Finally, the different lensing estimators XY ∈ TT,EE, TB,EE,EB,ET,BT,BE

are combined into a minimum variance estimate as

φ̂MV
L =

1

RMC
L

∑
XY φ̄

XY
L − φ̄XY,MF

L∑
XY R

XY,Analytic
L

. (2.33)

The equation above is only a diagonal approximation of the minimum variance es-

timator. Maps and power spectra of the lensing potential are calculated from both

the minimum variance and polarization only estimators. C φ̂XY φ̂
MV

L is measured by

forming cross- spectra of φ̂XYL and φ̂MV
L . Although this estimate of Cφφ

` has a

minimal variance, it suffers from additive biases (Kesden et al. 2003) which must

be subtracted to obtain an unbiased optimal estimate of lensing power spectra.

The amplitude of B-mode fluctuations is much smaller because the B-modes can

only be generated by tensor fluctuations. Lensing generates B-modes at small

angular scales, which are highly non-Gaussian. This is a key in searching for the

lensing signal and reconstructing it. Here, in figure 2.5 shown are the power spectra

of lensed CMB temperature and polarization anisotropies measured from various

recent CMB experiments. We can see that the T and E-modes have been measured

quite well. There is some scope for improvement at small scales or higher `-modes

where lensing is the most important and B-modes are starting to be measured

well, and the better we do in measuring lensed B-modes, the more we can hope

to unearth the primordial B-mode signal. The lensing potential power spectrum
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et al. (2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but uncorrected
spectrum in Reichardt et al. (2020). For Polarbear/Simons Array we show EE from Adachi et al. (2020) and BB from pipeline A in
POLARBEAR Collaboration et al. (2017). For BICEP2/Keck we use Ade et al. (2018). All error bars are one sigma and points with no
lower bound in TT and EE have been dropped at high `. There is much more to each data set than is plotted here, for example additional
frequencies. For ACT we also show preliminary EE results that were not used in the analysis: for ` = [103, 150.5, 200.5, 250.5, 300.5],
DEE` = [1.14± 0.32, 1.40± 0.22, 0.70± 0.14, 2.02± 0.20, 9.74± 0.39] (µK)2.

Figure 2.5: Recent measurements of the CMB temperature and polarization
anisotropy power spectra from various CMB experiments. This figure has been
taken from Choi et al. (2020).

has been reconstructed from many experiments. Its power spectrum contains a

wealth of information about the late time structure formation of the universe, its

expansion history, and cross-correlation with other probes; we can infer a variety

of astrophysical constraints as well. How do we infer lensing potential power

spectrum from data? It is all about searching for non-Gaussianity.

2.5 CMB lensing observations

In recent years, CMB lensing has entered the era of precision measurements. The

first detections were made via cross-correlations with large-scale structures probed

by galaxy surveys (Smith et al. 2007; Ho et al. 2008; Feng et al. 2012; Sherwin

et al. 2012). The higher sensitivity and resolution, and low noise of recent CMB
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instruments, such as the Atacama Cosmology Telescope (ACT), the South Pole

Telscope (SPT), and PLANCK, have enabled an internal detection of lensing using

CMB temperature data alone (Das et al. 2011; Keisler et al. 2011; van Engelen

et al. 2012; Planck Collaboration et al. 2014a; Omori et al. 2017), polarization

data only (Ade et al. 2014; BICEP2 Collaboration et al. 2016), and combinations

of temperature and polarization data (Story et al. 2015; Planck Collaboration

et al. 2020a; Wu et al. 2019). The most precise lensing amplitude measurement,

at 40σ, comes from Planck’s minimum-variance (MV) estimator that combines

both temperature and polarization estimators; in that measurement, the tempera-

ture reconstruction contributes most of the signal-to-noise ratio (S/N). Figure 2.6

shows baseline Wiener-filtered minimum-variance lensing deflection estimate from

the Planck temperature and polarization SMICA CMB maps. The characteristic

scale of the lensing modes visible in the reconstruction is L ≈ 60, correspond-

ing to the peak of the deflection power spectrum, where the S/N is of O ∼ 1.

Figure 2.7 presents a summary plot of (Planck Collaboration et al. 2020a) new

minimum variance lensing potential band powers together with a compilation of

other recent measurements, and the previous results from Planck Collaboration

et al. (2016). Lensing amplitude Â measures how well the estimated lensing po-

tential power spectrum (reconstructed from the lensed CMB data) agrees with the

lensing potential obtained from the fiducial cosmological model, with Â = 1 for

Cφφ
` equal to the best fit ΛCDM model to the Planck temperature and polariza-

tion power spectra and the reconstructed lensing power. Over the multipole range

(8 < L < 2048), the measured lensing amplitude Â is, ÂMV
8→2048 = 0.995± 0.026.

Gravitational lensing has now emerged as a powerful observational probe in cos-

mology. CMB lensing probes both the geometry and the growth of large scale

structure of the universe and as such, precise measurements of its power spec-

trum can break the geometrical degeneracy affecting the primary CMB (Stompor

and Efstathiou 1999; Howlett et al. 2012; Planck Collaboration et al. 2020a) and
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Figure 2.6: Mollweide projection in Galactic coordinates of the lensing-deflection re-
construction map from Planck Collaboration et al. (2020a) baseline minimum-variance
(MV) analysis. Map represents the Wiener-filtered displacement-like scalar field with
multipoles α̂MV

LM =
√

(L(L+ 1))φ̂MV
LM , corresponding to the gradient mode (or E-mode)

of the lensing deflection angle. Modes with L < 8 have been filtered out.. This figure
and caption has been taken from Planck Collaboration et al. (2020a).
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Figure 2.7: Planck 2018 lensing power-spectrum band powers (pink boxes) over the
aggressive multipole range. The 2015 analysis band powers (green) were calculated
assuming a slightly different fiducial model and have not been (linearly) corrected to
the 2018 model. Also shown are recent measurements by the ACTPol (Sherwin et al.
2017), SPTpol (Story et al. 2015), and SPT-SZ (Simard et al. 2018) collaborations. The
SPT-SZ measurement is not completely independent, since the SPT-SZ reconstruction
also uses temperature data from Planck, but with subdominant weight over the smaller
sky area used. The black line shows the lensing potential power spectrum for the
ΛCDM best-fit parameters to the Planck 2018 likelihoods (Planck TT,TE,EE+lowE,
which excludes the lensing reconstruction). This figure and caption has been taken
from Planck Collaboration et al. (2020a).
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tighten constraints on the sum of neutrino masses
∑
mν as well as on the am-

plitude of density fluctuations σ8 (Lesgourgues and Pastor 2006; Abazajian et al.

2015). Combination of galaxy and galaxy cluster strong lensing and the shear mea-

surements from weak lensing of galaxies can also provide important constraints on

the geometry of the Universe (Hand et al. 2015; Dark Energy Survey Collaboration

et al. 2016; Hildebrandt et al. 2016; Omori et al. 2019).

Although such cross correlation studies between CMB and other data sets have

been successful in improving constraints in cosmology, intriguingly, there is a mod-

est level of discordance between the primary CMB power spectra from Planck and

other cosmological probes within the ΛCDM model. For example, in the context

of CMB lensing the amplitude of density fluctuations σ8 deduced from galaxy

cluster counts and cosmic shear measurements is slightly lower than the value sug-

gested by primary CMB Planck data (Hildebrandt et al. 2016; Hikage et al. 2019).

Tensions within the Planck dataset are also emerging, for example the amount

of lensing inferred from the smoothing of the acoustic peaks in the Planck CMB

power spectra is larger than the one directly measured through the CMB lensing

potential power spectrum (Planck Collaboration et al. 2020a). Now, the question

is whether these tensions are due to some unaccounted systematics or they hint

towards some new physics. To probe this question we can use measurements from

different experiments which have uncorrelated systematics. Another way could

be, to develop new statistical tools to analyse datasets than the traditionally used

measures like hierarchy of correlations function or angular spectra. In this thesis

we have employed recently introduced geometrical observables, Minkowski tensors

to study the morphology of lensed CMB fields. These are the real space statistical

tools which can be used to study the morphology and topology of cosmological

random fields. In the next chapter, we will briefly review these statistics.



Chapter 3

Geometrical and Topological

Observables for smooth random

fields

3.1 Introduction

It is well known that statistical properties of Gaussian random fields can be stud-

ied entirely using their power spectrum or the two-point function: the latter being

simply the lowest and first of an infinite hierarchy of correlation functions. The ob-

served CMB data agree very well with Gaussian statistics at the precision level of

currently available cosmological datasets. However, it is well established that most

of the secondary anisotropies in CMB sourced by lensing or SZ-effect are not linear

and produce non-Gaussian signatures. Also, it is well understood that a system

evolving under gravitational instability becomes progressively more non-Gaussian,

rendering the matter density field highly non-linear. Therefore, it is crucial to go
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beyond two-point functions to understand the underlying complex physical pro-

cesses fully. Most statistical analyses of CMB anisotropies are carried out using

n-point functions in harmonic space, namely, the angular power spectrum, bis-

pectrum, etc. Therefore, the need for going beyond the two-point function, such

as in searches for non-Gaussian deviations, is served well by the next or next-to-

next higher-order statistics. In some cases, such as when dealing with strongly

non-Gaussian fields, to extract all statistical information, we need to calculate

n-point functions to arbitrary order, which is not realistic for large cosmological

datasets. It can be more profitable to employ real space statistical tools that can,

in principle, encode all orders of n-point functions. In real space, the analysis of

the rich geometrical and topological properties of excursion sets of smooth ran-

dom fields provides a suite of statistical observables that can provide information

that is complementary to Fourier or harmonic analysis. This chapter introduces

such geometrical observables, Minkowski functionals (MFs) and Minkowski Ten-

sors (MTs), to study the morphology and topology of two-dimensional random

fields. In particular, we use these observables to quantify various morphological

features and study physical phenomena like gravitational lensing of CMB fields,

statistical isotropy of matter distribution inferred from CMB lensing. Our analysis

of morphology of lensed CMB using MTs will be presented in later chapters.

3.2 Review of smooth random fields

In the following we give a review of smooth random fields defined on a manifoldM ,

and their symmetry properties, namely, homogeneity and isotropy. The material

covered here can be found in Adler (2010). Let us focus on two dimensional space

M . Let us choose coordinates on M which we denote by x = (x1, x2). Let f(x)

be a random variable at every point x ∈M , and whose probability distribution is

given. The collection of random variables f(x) is called a random field on M .
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Let the quantity C(x,x′) be defined as the covariance between the random vari-

ables at x and x′, given by

C(x,x′) =

〈
(f(x)− µx) (f(x′)− µx′)

〉
, (3.1)

where µx, µx′ are the mean values of f at x and x′. The auto-covariance gives the

variance of f at x,

C(x,x) = σ2
x. (3.2)

Homegeneity: A random field is said to be homogeneous or stationary under a

transformation x→ x + a, if its covariance functions satisfies

C(x,x′) = C(x− x′). (3.3)

If f is homogeneous, then its mean is a constant function on R.

Isotropy: A field f is said to be isotropic if its covariance function is invariant

under rotations, satisfying the condition

C(x,x′) = C(|x− x′|). (3.4)

So the covariance function depends only on the distance between the two points

on M . Isotropic field is a special case of stationary or a homogeneous field.

Derivatives of a random field: If the covariance function is differentiable 2k times,

where k = 1, 2, . . . then the kth derivative of the field exists at each point on M .

If we are given that f is a homogeneous and isotropic field, then it follows that its

derivatives are also homogeneous and isotropic fields.
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Ergodicity: A homogeneous field is said to be ergodic if the ensemble expectation

can be replaced by spatial average over a realization of the field.

∫
df P [f ](..) ⇐⇒

∫
M

(..)∫
M

, (3.5)

where dV is the infinitesimal volume element. This is an important property to

assume in cosmology because we have one universe.

Gaussian field: f(x) is called a Gaussian field if the joint PDF of the random

variables at k spatial locations, denoted by P [f(x1), f(x2), ..., f(xk)], has the form

P [f(x1), f(x2), ..., f(xk)] =
1

N
exp

(
− F T C−1F

)
, (3.6)

where F is the array given by

F ≡ (f(x1), f(x2), ..., f(xk)) (3.7)

Cij = C(xi,xj), (3.8)

N =
√

(2π)kDetC, (3.9)

with i, j = 1, ..., k. If f is Gaussian then its partial derivatives are also Gaussian

fields. The field and its derivatives at each point comprise a set of multivariate

Gaussian random fields.

3.3 Minkowski functionals and Minkowski tensors

for a single structure

We first define what we mean by a structure. Let R be a two-dimensional smooth

manifold. For applications to cosmology fields we will consider the cases where

R is either flat two-dimensional space R2, or the surface of the sphere S2. The
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Figure 3.1: Examples of simply and doubly connected region. This figure
demonstrates that a connected region or hole can be associated with a closed
curve and hence count of structures is equivalent to count of closed curves.

word structure means a subset of R which is either a connected region or a hole.

In figure 3.1 we show examples of connected regions and holes. Panel (a) shows

a simply connected region. It has no hole inside it and has one closed curve as

its boundary. Panel (b) shows a doubly connected region. It can be counted as

one connected region and one hole. The boundary consists of two closed curves -

one that encloses the connected region and the second encloses the hole. We can

generalize further and identify each structure with one unique closed curve.

3.3.1 Minkowski functionals

Minkowski functionals (MFs) for a structure, or its associated curve C, on R2 are

defined as

V0(ν) =

∫
da, (3.10)

V1(ν) =
1

4

∫
C

ds, (3.11)

V2(ν) =
1

2π

∫
C

κ ds, (3.12)

where da denote the infinitesimal area enclosed by the curve, ds be the infinitesimal

arc length of the curve and κ the geodesic curvature of the curve. V0 is the area

enclosed by the curve, V1 is the perimeter or the contour length and V2 is the

Genus, that is equal to the difference between two Betti numbers, β0 and β1. β0
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is the number of connected regions while β1 is the number of disconnected regions

(holes) within it. For CMB, β0 and β1 corresponds to the total number of hotspots

and coldspots, respectively.

3.3.2 Minkowski tensors

The Minkowski tensors of rank (a,b) for a structure in a flat two-dimensional space

are given by,

W a,0
0 =

∫
~ra da, (3.13)

W a,b
1 =

1

2

∫
C

~ra ⊗ n̂b ds, (3.14)

W a,b
2 =

1

2

∫
C

~ra ⊗ n̂b κ ds, (3.15)

where ~r is the two dimensional position vector and n̂ is the unit normal to the curve.

The tensor product of two vectors is defined to be the symmetric product ( ~A⊗ ~B) =

1
2

(AiBj + AjBi). The rank- zero MTs are standard scalar Minkowski functionals.

The rank-1 MTs or vector counterparts of SMFs are translation covariant. For

a+ b = 2, we get total of seven rank-2 MTs: W 2,0
0 , W 1,1

1 , W 2,0
1 , W 0,2

1 , W 1,1
2 , W 2,0

2 ,

and W 0,2
2 . Out of these seven, we are interested in two of the MTs which are

translationally invariant. They are,

W 1,1
2 =

1

2

∫
C

~r ⊗ n̂ κ ds, (3.16)

W 0,2
2 =

1

2

∫
C

n̂⊗ n̂ κ ds. (3.17)

W 1,1
2 (henceforthW1) andW 0,2

2 (henceforthW2) are linearly independent and con-

tains very useful additional information in comparison to scalar MFs as explained

in the following subsections. These MTs can be generalised to curved manifolds.

The notation in this section follows Chingangbam et al. (2017b). The contour
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Minkowski tensor (henceforth CMT) W1 and W2 are defined for a smooth closed

curve, C, on a general smooth two-dimensional manifold as,

W1 =
1

4

∫
C

T̂ ⊗ T̂ ds, (3.18)

W2 =
1

2π

∫
C

T̂ ⊗ T̂ κ ds, (3.19)

where ds is the infinitesimal arc length, and T̂ is the unit tangent vector at each

point of the curve with the direction chosen to be one of the two possibilities, and

κ denote the local curvature of the curve at particular point. The tensor product

⊗ is defined is above. Both, W1 and W2 are 2 × 2 matrix in two dimensions.

These definitions are general and can be used for any smooth manifold with affine

connection on it. The trace of W1 and W2 gives the scalar Minkowski functional,

V1 and V2 respectively,

Tr (W1) =
1

4

∫
C

ds = V1, (3.20)

Tr (W2) =
1

2π

∫
C

κ ds = V2. (3.21)

where we have used |T̂ |2 = 1.

We can express W1 as

W1 =

 τ + g1 g2

g2 τ − g1

 , (3.22)

where

τ =
1

2

∫
C

ds, (3.23)

g1 =
1

2

∫
C

(
T̂ 2

1 − T̂ 2
2

)
ds, (3.24)

g2 =

∫
C

T̂1 T̂2 ds. (3.25)
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The pair (g1, g2) transforms as a rank-2 tensor under rotations. This can be

expressed as

 g1

g2

→
 g′1

g′2

 =

 cos 2θ sin 2θ

− sin 2θ cos 2θ

 g1

g2

 . (3.26)

In a given coordinate system, g1 gives a measure of the anisotropic difference

between the set of two components of the tangent vectors to the curve, while

g2 gives a measure of how correlated the components of the tangent vectors are.

Using g1 and g2 we can define the scalar g and the angle ϕ as

g ≡
√
g2

1 + g2
2, ϕ ≡ tan−1

(
g1

g2

)
. (3.27)

Here g represents the magnitude of the tensor while ϕ represents the direction

of elongation or anisotropy with respect to the coordinate system. τ and g are

scalars under local rotations. Besides translation invariance W1 is also invariant

under parity transformations since all terms are quadratic. Moreover it transforms

linearly under size scaling. The eigenvalues of W1 are given by

λ1 = τ − g, (3.28)

λ2 = τ + g. (3.29)

SinceW1 is real and symmetric, the eigenvalues are real and positive. Further, we

can show τ ≥ g and hence λ1 < λ2.

3.3.3 Alignment and shape parameters: α and β

The matrixW1 carries information on the shape and alignment of structures. The

eigenvalues λ1 and λ2 are real and positive; also, they are invariant under rotations.
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Single structure: α = β

   α = β = 1

                 α = β < 1

            
                    

Multiple Structures: α ≠ β  (in general)

 α =1  β ≠ 1        α ≠ 1  β ≠ 1

Figure 3.2: α and β values for structures of different shapes and different
spatial arrangement.

The shape anisotropy parameter β is defined to be the ratio of the eigenvalues,

β ≡ λ1

λ2

. (3.30)

β lies between 0 and 1. It gives a measure of the intrinsic anisotropy of the

curve. It is equal to one for a closed curve having m-fold symmetry with m ≥ 3.

Figure 3.2 shows examples of isotropic convex structures like circle, equilateral

triangle, hexagon for which β = 1. Deviation of β from one indicates anisotropy

of the curve like an ellipse, right triangle. Note that β is invariant under scaling

the size of the curve. For distribution of many curves, let us denote W̃1 as the

sum of W1 over all structures, then we can define the alignment parameter,

α ≡ Λ1

Λ2

, (3.31)
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where Λ1 and Λ2 are the eigenvalues of W̃1 such that Λ1 ≤ Λ2. By definition, we

have 0 ≤ α ≤ 1. α gives a measure of the orientation or the deviation from rota-

tional symmetry in the distribution of curves. For randomly oriented structures

with no preferred direction α = 1, else α lies between 0 and 1. For a single curve,

we have α = β. For many curves, α gives the β value for the curve, resulting from

translating and stacking all the curves such that their centroids overlap. While β̄

denotes the average of the β values of many curves.

3.4 Minkowski functionals and Minkowski tensors

for smooth random fields.

Let us consider a smooth random field u defined on a two-dimensional space, for

studying CMB we will consider random field on the surface of the unit sphere S2,

i.e., u = u(θ, φ). Consider all the points with the field value greater than or equal

to some chosen threshold value (ν) of the field. This set is termed as the excursion

set of the field at a particular threshold (ν), denoted by Qν . The excursion set Qν
consists of the connected regions and holes. The boundaries, denoted by ∂Qν , of

these connected regions and holes form closed curves. These are the structures or

the curves defined in section 3.3. Let d denote the infinitesimal area enclosed by

a curve in an excursion set, ds be the infinitesimal arc length of the curve and κ

the geodesic curvature of the curve, then the three scalar Minkowski functionals

for the set Qν ⊆ S2 are defined as follows,

V0(ν) =

∫
Qν

da, (3.32)

V1(ν) =
1

4

∫
∂Qν

ds, (3.33)

V2(ν) =
1

2 π

∫
∂Qν

κ ds. (3.34)
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Figure 3.3: This figures shows the excursion set at three chosen ν values of
CMB temperature field on a 2-D surface of a sphere. Excursion set consist of red
regions in the three panels. Red region in the top panel represents a multiply
connected region with many holes. The threshold value for the three excursion
sets (from left to right) are ν = −1.5, 0, 1.5. Excursion sets vary systematically
as a function of threshold, and their geometrical and topological properties are
captured by MFs and MTs.
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Each of these Minkowski functionals can be physically interpreted as: V0 is the

area of the regions above the threshold, i.e., the total area of the excursion set, V1

is the perimeter of these regions, and V2 is the Genus, defined as the total number

of connected components of the excursion above the threshold minus the total

number of connected components below the threshold. The excursion set of a field

will vary systematically with the field’s threshold value depending on the field’s

statistical properties. The SMFs can capture these systematic variations, and thus

they can be utilized to study properties of the field across different thresholds.

3.4.1 Analytical expressions for MFs of a Gaussian field

The SMFs and other geometrical characteristics of Gaussian random fields have

been extensively studied in the literature. Analytical expressions for the average

scalar Minkowski functionals of a Gaussian random field in arbitrary dimensions

were derived by Tomita (1986). Consider u(θ, φ) to be a Gaussian random field

then the analytic expression for the expectation value of the SMFs per unit area,

in two-dimensional space, as a function of threshold ν is given by,

V0(ν) =
1

2

[
1−Θ

( ν√
2

)]
, (3.35)

V1(ν) =
1

8
√

2

σ1

σ0

exp
(−ν2

2

)
, (3.36)

V2(ν) =
1

4π3/2

(σ1

σ0

)2

ν exp(−ν2), (3.37)

where, Θ is the Gaussian error function given by Θ(x) = 2√
π

∫ x
0
dt exp(−t2), and

σ1 is the variance of the first derivative of the field. σ0 and σ1 can be calculated
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Figure 3.4: The three scalar Minkowski functionals for a Gaussian random
field.

directly from the angular power spectrum, C` as,

σ0 =
∞∑
`=1

(2`+ 1)C`, (3.38)

σ1 =
∞∑
`=1

(2`+ 1)C`
`(`+ 1)

2
. (3.39)

3.4.2 Minkowski tensors of smooth random fields

We give here the definitions of the two Minkowski tensors W1 and W2 which were

used for analysis in this thesis. Again consider a smooth random field u defined

on unit sphere S2, for which Qν denotes the excursion or level set at threshold

value ν. Let us assume the field u to be mean subtracted. Let the components of

its first derivative be denoted by u;i, where i = 1, 2 and ; represents the covariant

derivative. As described in the previous section, the excursion set consists of a set

of connected regions which may have one or more holes in them. The boundary

of Qν , denoted by ∂Qν , consists of closed iso-field contours that enclose connected

regions or holes. Let W̃1 and W̃2 denote the tensor sum over theW1 andW2 of all

the curves for each ν. They are given in terms of field values and its derivatives
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as,

(
W̃1

)
ij

=
1

4

∫
∂Qν

ds
1

|∇u|2
M, (3.40)(

W̃2

)
ij

=
1

2π

∫
∂Qν

ds
κ

|∇u|2
M, (3.41)

where geodesic curvature κ and matrixM are given as

M =

 u2
;2 −u;1u;2

−u;1u;2 u2
;1

 , κ =
2u;1 u;2 u;12 − u2

;1 u;22 − u2
;2 u;11

| 5u |3
. (3.42)

These definitions follow from equations 3.18-3.19. The components of the tangent

vector T̂ are given as, T̂i = εij
u;j
|∇u| , where εij is the antisymmetric tensor with

ε12 = 1.

3.5 Numerical computation of Minkowski function-

als and Minkowski tensors

3.5.1 Minkowski functionals

We now describe a method to numerically compute scalar Minkowski functionals

for smooth random fields defined above. This method was introduced by Schmalz-

ing and Gorski (1998). The zeroth Minkowski functional V0, i.e. the area, can be

evaluated by integration of a Heaviside step function over the whole manifold R

which is sphere (S2) in our case (for CMB),

V0(ν) =

∫
S2

Θ(u− ν) da. (3.43)
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For computing V1 and V2, line integrals in equations 3.33-3.34 can be converted to

area integrals by inserting a delta function and appropriate jacobian as follow,

V1(ν) =
1

4

∫
S2

da δ(u− ν) |∇u|, (3.44)

V2(ν) =
1

2π

∫
S2

da δ(u− ν) |∇u|κ. (3.45)

All the three Minkowski functionals can be expressed as,

Vj(ν) =

∫
S2

da Ij , (3.46)

with integrands Ij depending solely on the threshold ν, field value u, its first and

second order co-variant derivatives. In summary,

I0 = Θ(u− ν) , (3.47)

I1 =
1

4
δ(u− ν)

√
u2

;1 + u2
;2 , (3.48)

I2 =
1

2π
δ(u− ν)

2u;1u;2u;12 − u2
;1u;22 − u2

;2u;11

u2
;1 + u2

;2

. (3.49)

In reality, we deal with a finite number of pixels or sample points in the excursion

set. Hence, the delta function is replaced with a function of finite bin-width ∆ν

as (Schmalzing and Gorski 1998; Chingangbam et al. 2017b),

δ (u− ν) =

 1
∆ν
, if u ∈

(
ν − ∆ν

2
, ν + ∆ν

2

)
0, otherwise,

(3.50)

The bin width ∆ν is decided by the step size between the threshold values. And

the integrals are replaced by summation over all the pixels as

Vj(ν) =
1

N

Npix∑
i=0

wi Ij(xi), (3.51)

where xi is the position vector of ith pixel on the sphere, and Ii are given by
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equations 3.47-3.49. The variable wi is the pixel weight which has value zero at

pixels that are masked, and one otherwise. N is the count of all pixels having

wi = 1.

3.5.2 Discretization error for V1 and V2

To numerically compute scalar Minkowski functionals V1 and V2, one needs to ap-

proximate δ function with a appropriate discrete function of threshold bin width

(∆ν). This introduces numerical error in the calculation of two SMFs. The resid-

ual error can be computed for a Gaussian random field as we know the exact

analytical expression of the SMFs for the same. The numerically estimated SMFs

can be written as Vj(ν) = V an
j (ν) + R∆ν

j (ν), where R∆ν
j is the residual error due

to discretization. Here, superscript ∆ν indicates the threshold bin size and the

dependency of a residual error on it. The residual error R∆ν
j , is given by

R∆ν
j (ν) =

1

∆ν

∫ ν+∆ν/2

ν−∆ν/2

ds V an
j (s)− V an

j (ν). (3.52)

Further exact expression of R∆ν
j (ν) for V1 and V2 are given as

R∆ν
1 (ν) =

1

8

√
π

2

σ1

σ0

1

∆ν

[
erf
(ν + ∆ν/2√

2σ0

)
− erf

(ν −∆ν/2√
2σ0

)]
− V an

1 (ν), (3.53)

R∆ν
2 (ν) =

1

(2π)3/2

(σ1

σ0

)2 1

∆ν

[
exp

(−(ν −∆ν/2)2

√
2σ0

)
− (3.54)

exp
(−(ν −∆ν/2)2

√
2σ0

)]
− V an

2 (ν).
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3.5.3 Methods for W1 and W2 numerical computation

3.5.3.1 Method 1 - using field derivatives

In order to numerically calculate W̃1 and W̃2, the line integral over the boundary of Qν

in equations 3.40-3.41 can be transformed into an area integral by introducing a Jacobian

to give

W̃1 =
1

4

∫
S2

da δ(u− ν)
1

|∇u|
M, (3.55)

W̃2 =
1

2π

∫
S2

da δ(u− ν)
κ

|∇u|
M, (3.56)

where da is the infinitesimal area element on S2 and δ(u−ν) is the Dirac delta function.

The δ−function can be approximated as defined in equation 3.50. Other components of

the two integrals have already been defined in the chapter above.

Equation 3.55 can be diagonalized, and the ratio of the eigenvalues give α, by definition.

Note that we cannot obtain β from this method since it does not isolate individual curves

at each ν.

When we work with finite resolution maps in the space of compact extent, such as the

surface of a sphere, even for a field that is given to be statistically isotropic, we do not

obtain α to be precisely equal to one at each threshold even for a field which is given to be

statistically isotropic. α = 1 is recovered only in the limit of the total perimeter tending

to infinity. At threshold values close to zero, where the perimeter of Qν is the largest, α

is closest to one. For a random distribution of a few curves, the probability that they will

be isotropically distributed is small. As a result, at higher |ν|, the values of α decrease

from unity. Therefore, it is important to consider the threshold dependence of α when

searching for and interpreting results of statistical isotropy on finite resolution fields.

This method has inherent numerical error coming from the discrete approximation of the

delta function (Lim and Simon 2012). This numerical error has an analytic form and is a

function of the threshold bin width and the smoothing scale. As shown in Chingangbam
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et al. (2017b) the numerical error for the diagonal elements are similar in shape and

amplitude for Gaussian isotropic fields (see figure 4 of the above reference). In order to

make a rough estimate of the resulting error on α, we express the diagonal elements of

W1 as

(W1)11(ν) = a(ν) + e(ν)

(W1)22(ν) = b(ν) + e(ν), (3.57)

where a(ν) and b(ν) denote the true functional forms of the elements, and e(ν) denotes

the numerical error coming from the approximate δ function. We have used a and b so

as to keep the discussion general but they are expected to be comparable. The reason

is that if u is a smooth isotropic field, then u;1 and u;2 are statistically identical fields

and hence have the same variance. We have also used the same e(ν) for the two matrix

elements which means that we are ignoring possible statistical fluctuations between them.

Further, we assume the off-diagonal elementW12 to be zero. This is because the ensemble

expectation of the correlation between u;1 and u;2 is expected to be zero since they are

independent random fields. Then α is given by

α(ν) ' (W1)11(ν)

(W1)22(ν)
=
a(ν) + e(ν)

b(ν) + e(ν)
=
a

b

(
1 +

e

a
− e

b
− e2

ab
+O(e3)

)
, (3.58)

where on the right hand side we have used |e/b| � 1. Since a ∼ b the numerical error is

of order O(e2). Thus, this method of computation is well suited for applications where

α is used to extract physical information.

3.5.3.2 Method 2 - using identification of contours in pixel space

An alternative method of numerically reconstructing W1 was adopted in Appleby et al.

(2018a) (see also Ganesan and Chingangbam (2017)). In this section, we briefly review

the approach.

The continuous field u is sampled on a uniformly spaced, two dimensional pixel grid
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to generate a discrete function uij , where i, j denotes the ith, jth pixel in the x1, x2

coordinate space. For a given threshold ν, we decompose the pixels as ‘inside’ the

excursion set if uij > ν and ‘outside’ if uij < ν. We then apply the marching squares

algorithm ( Mantz et al. (2008); Lorensen and Cline (1987)) and linearly interpolate

between any two adjacent ‘in’ and ‘out’ pixels to create a set of vertices at which u = ν.

Finally, these vertices are joined by line segments to create a boundary of constant

threshold u = ν. All topological quantities of interest can be deduced from the vertices

and corresponding line segments that define the excursion set boundary, including the

scalar and tensor Minkowski functionals.

In this discretized setup, W1 for the excursion set boundary ∂Qν is approximated as

(W1)ij =

∫
∂Qν

êiêj =
∑
e

|~e|−1eiej , (3.59)

where
∑

e is the sum over all edges in the discretized boundary reconstruction and

ei, |~e| are the length in the ith direction, and total length, of an edge segment. This

formalism of estimatingW1 for the polygonal structures in the excursion set is described

in Schroder-Turk et al. (2010).

To construct β from a field, we must calculate W1 for each individual connected com-

ponent within the excursion set and also for every hole. To do so, we must not only

assign each pixel uij as ‘in’ or ‘out’ of the excursion set, but also a unique identifier that

informs which distinct connected region or hole the pixel belongs. This latter condition

is achieved by using a simplified ‘friends-of-friends’ algorithm, assigning an initial pixel

to an excursion set, then all adjacent pixels which satisfy ui′j′ > ν. This is repeated until

every ‘in’ pixel is assigned to an excursion set region. The procedure is then repeated

for holes – regions outside the excursion set. Each edge segment to the excursion set

boundary ~e is associated with exactly one connected component, and one hole – W1 is

calculated for each sub-region as the sum over edge segments that define its boundary.

The principal source of error in using this method arises from the assumption that the

field can be linearly interpolated between adjacent pixels. Critical points of a field are
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intrinsically higher order quantities. Hence, the method will fail to accurately represent

structures of size ∼ O(∆2), where ∆ is the resolution of the pixel grid. This issue

is ameliorated by smoothing the field with scale RG, and it was shown in Appleby

et al. (2018a) that smoothing over five pixel lengths RG > 5∆ is sufficient to reduce

the numerical error on the W1 statistic to below 1% for threshold values in the range

−4 < ν < 4.

For calculating β for the CMB fields, we first project each hemisphere of the CMB maps

onto a plane and then implement the above algorithm. We choose stereographic projec-

tion, as done in Ganesan and Chingangbam (2017) because it is a conformal mapping

that preserves angles and shape of structures. However, it is essential to note that the

sizes of structures are not preserved. The distortion is most prominent towards the outer

edge of the hemisphere. Moreover, the distortion decreases as we probe smaller struc-

tures. A discussion of the effects of the stereographic projection on the structures can

be found in Ganesan and Chingangbam (2017).

In the subsequent chapters, we do not attempt to correct the numerical error arising from

this projection. We proceed to use this method of calculating β with the anticipation

that the error will cancel out when we compare β for fields with a fixed realization seed

but with varying physical input.



Chapter 4

Morphology of CMB fields-effect of

weak gravitational lensing

4.1 Introduction

CMB photons have been deflected multiple times by gravitational potential wells they

encounter along their path from the last scattering surface to an observer. The rms of

the deflection angle in different sky directions can be estimated to be of the order of a

few arcminutes. Lensing alters the statistical properties of primary CMB anisotropies

in addition to adding power at small scales. It introduces non-Gaussianity, which can

be probed using a four-point function as demonstrated in Bernardeau (1997). However,

it is not necessarily the best indicator in terms of signal-to-noise ratio for an actual

experiment. Weak gravitational lensing also causes shearing and magnification of the

hotspots and coldspots of the CMB fields. By understanding the resulting distortion

patterns, one may then, in principle, infer the integrated effect of the interaction between

the CMB and the intervening matter distribution along each line of sight.
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The morphological information encoded in the Minkowski tensors makes them well suited

to probe the size and shape distortions of the structures of the CMB. Our work is similar

in spirit to Bernardeau (1998) where the author analyzed the distortion induced by weak

lensing on the ellipticity of hotspots and coldspots of CMB temperature. The definition

of the ellipticity parameter used in Bernardeau (1998) was derived from the Hessian

matrix of the field. The lensing effect was quantified by comparing the probability dis-

tribution function (PDF) of the ellipticity parameter of the lensed field and the unlensed

field. It was found that the lensing broadens the ellipticity PDF, which implies that

the structures, especially the peaks (or the extrema) in the field, are elongated due to

the lens effect. We study the morphology of the cosmic microwave background temper-

ature and polarization fields using the shape and alignment parameters, β and α, that

are constructed from the contour Minkowski tensor. The primary goal of this work is

to understand the effect of weak gravitational lensing on the morphology of the CMB

fields. In order to isolate different physical effects that can be potentially confused with

the effect of lensing, we first study the effect of varying the cosmology on α and β and

show that they are relatively insensitive to variation of cosmological parameters. Next,

we analyze the signatures of hemispherical anisotropy and show that such anisotropy in

α gets washed out at small angular scales and becomes pronounced only at large angu-

lar scales. For β, we find characteristic distortions which vary with the field threshold.

We then study the effect of weak gravitational lensing using simulations of lensed tem-

perature and E and B modes. We quantify the distortion induced in the fields across

different angular scales. We find that lensing makes structures of all fields increasingly

more anisotropic as we probe down to smaller scales. We find distinct behavior of mor-

phological distortions as a function of the threshold for the different fields. The effect is

small for temperature and E mode, while it is significantly large for B mode. Further,

we find that lensing does not induce statistical anisotropy, as expected from the isotropic

distribution of large scale structures of matter. We expect that the results obtained in

this work will provide insights into the reconstruction of the lensing potential.

This chapter is organized as follows. In section 4.2.1 we show α and β for Gaussian

isotropic maps of CMB temperature and E- and B- modes. Then in section 4.2.2 we

discuss their sensitivity to variation of cosmological parameters. Further, we investigate

the effect of hemispherical anisotropy on α and β in section 4.2.3. In section 4.3 we
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give a brief overview of the method of simulation of lensed CMB maps using LENSPIX.

Finally, we present our results for unlensed and lensed CMB fields and discuss the effect

of lensing on the morphology of the fields in section 4.3.2. We end with a discussion of

our results in section 4.4.

4.2 α and β for CMB fields

We employ the contour Minkowski tensor (W1) (defined in Chapter 3), which is one of the

translation invariant Minkowski tensors, to capture the distortions in the alignment and

anisotropy induced by lensing on the structures in the CMB temperature and polarization

fields. Shape parameters α and β, obtained from CMT, encapsulates the information

about the statistical isotropy of the field and anisotropy of the structures in the field,

respectively. The threshold dependence of α and β for CMB temperature and E mode

were previously studied in Ganesan and Chingangbam (2017); Joby et al. (2019). Here

we include B mode in our analysis and discuss the broad features of α and β for the three

fields for the standard ΛCDM cosmology with assumed Gaussianity and isotropy. We also

discuss the dependence of their functional forms on the smoothing scale. In subsequent

sections, we will use the symbol T to refer to CMB temperature maps. For the calculation

of α in this section and in section 4.3 we use method 1 described in section 3.5.3.1. For

calculating β we use the method 2 described in section 3.5.3.2. All maps in this section

are generated using HEALPIX (Górski et al. (2005)∗) and CAMB (Lewis et al. (2000)†). All

error bars shown in this paper are the sample variance obtained from the number of

maps of each field used. For α, error bars are calculated using 500 simulations each of

unlensed and lensed fields. The calculation of β is much more computationally intensive.

Hence we use 200 simulations. We consider an ideal case ignoring contamination from

instrumental noise, foreground emissions, and other effects for our study.

∗http://healpix.sourceforge.net/
†https://camb.info/

http://healpix.sourceforge.net/
https://camb.info/
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4.2.1 α and β for Gaussian isotropic fields in ΛCDM cos-

mology

In order to first have a visual and intuitive understanding of the number of structures and

associated contour length for T,E,B fields, for the same values of ΛCDM parameters,

and same smoothing angle FWHM=60’, we show one map of each field in figure 4.1.

We can see that E-mode fluctuates the most on smaller scales, thus exhibiting a higher

number of structures (hotspots and coldspots) than B-mode, which fluctuates the least.

Since the value of α is positively correlated with the total perimeter length, we can

anticipate that α will be highest for E-mode and lowest for B-mode, at all threshold

values.

The plots of α versus threshold, ν, for simulated Gaussian isotropic CMB fields are shown

in the top left panel of figure 4.2, for the same values of ΛCDM parameters, and same

smoothing angle FWHM=20’. The plots are average over 500 realizations. We can see

that α for all three fields are symmetric about ν = 0. E-mode has the largest values

while B-mode is the smallest, in agreement with our expectation from the structure of

the fields. Here, the value of the tensor-to-scalar ratio is r = 0.1. Note that change of r

will not change the result for α due to the fact that it scales only the field values by the

same factor at all pixels, and we use normalized fields u for our calculations. Further,

from the bottom left panel showing α at ν = 0 as a function of the smoothing scale, we

see that α vary monotonically (almost linearly) with smoothing scale, while the slopes

visually appear to be slightly different for the three fields. To quantify it we calculate

the slopes. Their values and 1-σ sample variance errors are obtained to be:

• T : [−1.05± (−0.23)]× 10−4

• E: [−0.92± (−0.12)]× 10−4

• B: [−1.16± (−0.11)]× 10−4
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Figure 4.1: Maps of unlensed T (left), E (middle), and B (right) with tensor-
to-scalar ratio r = 0.1. All maps are smoothed with FWHM=1◦. We have not
put the colour scale since we wish to only draw visual attention to the fact that
E mode has the highest number of structures per unit area, while B mode has
the lowest. As a consequence α is expected to be largest for E mode and lowest
for B mode, at all threshold values. This expectation is corroborated by the top
left panel of figure 4.2.
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Figure 4.2: Top left: α versus ν for unlensed T , E and B fields for the same
smoothing angle FWHM=20’. Bottom left: Variation of α at ν = 0 as a function
of the smoothing angle. Both the plots are average over 500 maps. Top right:
β versus ν for T , E and B fields same smoothing scale as for α. Bottom right:
Variation of β at ν = 0 as a function of the smoothing angle. The plots for β
are average over 200 maps.

B-mode has the steepest slope while E-mode has the shallowest. However, within the

errors, the slopes for the three fields are comparable. The plots of β versus ν for the

same simulated maps and smoothing scale as for α are shown in the top right panel of

figure 4.2. Note that the β values shown here are the average over all the structures

identified at each ν. These plots are average over 200 realizations‡. β for all three fields

are symmetric about ν = 0. The shapes are quite different. E-mode exhibits a relatively

large variation of β across the threshold range, while the structures of B-mode are found

to be the most isotropic across the entire threshold range. Again, by the same argument

as α, β for B-mode will not change with r. The bottom right panel shows β at ν = 0 as

a function of the smoothing scale. We find that β does not show monotonic dependence

‡We use only 200 maps and not 500 as done for α because the calculation of β is much more
computationally expensive.
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on smoothing scale as α. We will further explore the dependence of the shape of β versus

ν on the smoothing scale in section 4.3.2.2.

4.2.2 Sensitivity of α and β to variation of cosmological pa-

rameters

To cleanly isolate the effect of weak gravitational lensing on the morphology of the CMB,

as encoded in α and β, it is important first to understand the effects of various physical

parameters which can be potentially confused with lensing. The effects of instrumental

noise and residual foreground contamination were studied in Joby et al. (2019). For

Gaussian fields, the system’s physical properties, or in the context of cosmology, the

cosmological parameters, enter the scalar/tensorial Minkowski Functionals in the am-

plitudes and are independent of the threshold dependence. The statistics of interest

here, α and β are ratios of eigenvalues which are non-linear functions of the matrix el-

ements of W̃1. For α, it is reasonable to expect that the dependence on cosmology will

‘mostly’ cancel out, leaving behind a weak dependence arising from the non-linear terms

of the eigenvalues. However, for β, it is not clear what to expect since it measures the

anisotropy of individual structures.

We have computed α and β, for unlensed T , E and B, for different sets of cosmolog-

ical parameters. We find that α is relatively insensitive to variation of cosmological

parameters, as anticipated above. β, on the other hand, is found to have characteristic

dependence on ν for varying cosmological parameters.

In order to test the sensitivity of α and β to cosmology, we consider three different sets

of cosmological parameters, in addition to the fiducial ΛCDM model. The value of the

parameters for the models considered is given in Table 4.1. Model 1 has 95% cold dark

matter and 5% baryons, keeping ns the same as the fiducial model. Models 2 and 3

have different values of ns while the matter density fractions are the same as the fiducial

model. We assume a flat universe for all the models under consideration. We have chosen
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Fiducial model Ωcdm = 0.228, Ωb = 0.046, ΩΛ = 0.726, ns = 0.960

Model 1 Ωcdm = 0.950, Ωb = 0.050, ΩΛ = 0.0, ns = 0.960

Model 2 Ωcdm = 0.228, Ωb = 0.046, ΩΛ = 0.726, ns = 0.50

Model 3 Ωcdm = 0.228 Ωb = 0.046, ΩΛ = 0.726, ns = 0.30

Table 4.1: Models with different values of cosmological parameters for which
we compute α. The input for the amplitude of primordial power spectrum
and reionization history is the same in all the models. We assume curvature
parameter, Ωk, is zero for all models. All models other then the fiducial one
have unrealistic parameter values so as to magnify their effect in α and β.

models with unrealistic parameters values far off from the fiducial model to exaggerate

the effect on α and β.

Let us denote the difference of α between each non-standard model (superscript ‘mod’)

and fiducial model (superscript ‘fid’) by

∆αmod ≡ αmod − αfid. (4.1)

Then we normalize this quantity by the value of αfid at ν = 0. The left column of

figure 4.3 shows plots for normalized ∆αmod for T and E and B modes. For T and E

upper panels correspond to variation of matter content while lower panels correspond

to variation of ns. For B, we only vary the matter content and fix the tensor spectral

index to be one. All plots are average over 500 realizations, and the error bars are the

corresponding sample variance. The y-axis scales are the same for all plots.

Effect of varying matter density fractions on α: We find that ∆αmod for T and E are

negligible, in agreement with our expectation. For B, ∆αmod is small but negative. This

can be explained by the fact that the absence of dark energy decreases the luminosity

distance to the last scattering surface, resulting in fewer structures per unit solid angle.

Since the same reasoning applies to T and E, a similar negative value should also be
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Figure 4.3: Deviations of α (left column) and β (right column) for different
cosmological models (listed in Table 4.1) from the ‘fiducial’ ΛCDM model, for
T (top), E (middle) and B mode (bottom) fields. The smoothing scale used
is FWHM=20’. The upper panels in each plot show the effect of varying the
matter density fraction, while the lower panels show the effect of varying ns. For
B-mode there is only one panel since we have fixed the tensor spectral index to
be one. We have assumed a flat universe for all the cases.
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obtained. However, due to the relatively larger number of structures of these two fields,

the effect is not pronounced. We can safely assume that α is insensitive to cosmology

for a realistic range of matter fractions within PLANCK constraints.

Effect of varying ns on α: Lower values of ns leads to reduced power in the primordial

power spectrum for modes k > k0, where k0 is the pivot scale which is chosen by CAMB to

be 0.05 Mpc−1. This implies a fewer number of structures on small-length scales. This

is the reason why we obtain ∆αmod negative, shown in the lower panels of the plots for

T and E mode where smoothing scale FWHM=20’ is sufficiently small scale. Again, as

in the case of variation of matter fractions, for a realistic range of ns within PLANCK

constraints, the variation on α is minimal, and we can safely ignore it.

Next we discuss the effect of cosmology on β. Let us denote

∆βmod ≡ βmod − βfid, (4.2)

where the superscripts have the same meaning as in the case of α.

The right column of figure 4.3 shows plots for ∆βmod for T and E and B modes. For

T and E upper panels correspond to variation of matter content while lower panels cor-

respond to variation of ns. Again, for B, we only vary the matter content and fix the

tensor spectral index to be one. All plots are average over 300 realizations, and the error

bars are the corresponding sample variance. Note that we have used different y-axis

scales for the different models for the three fields. We find that ∆βmod has distinct

shapes as the function of ν for the different fields. For understanding this behavior, it is

useful to remind ourselves that structures at different ν correspond to different scales of

clumpiness or emptiness. The distinct shapes of ∆βmod inform us that the anisotropy at

different ν is affected differently by variations in matter fractions. A comparison of the

deviation amplitude for the three fields shows that E-mode has the highest level of devia-

tions. These findings can be potentially helpful in inferring the properties of the universe.
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4.2.3 Sensitivity of α and β to Hemispherical anisotropy

We next consider the case of an anisotropic CMB temperature field modeled as

T̃ (n̂) = T 0(n̂)
(

1 +A k̂ · n̂
)
, (4.3)

n̂ is the pixel direction, k̂ is the direction of anisotropy, and A is the amplitude of the

anisotropy. T 0 is the isotropic part of the field. This is the so-called dipolar modulation

model of hemispherical anisotropy in the CMB described in Eriksen et al. (2004). Hemi-

spherical power asymmetry implies that power extracted from two different hemispheres

shows significant differences from one another. The significance of anisotropy is found to

be 3σ with the axis of maximum asymmetry having (θ, φ) pointing towards (115◦, 227◦)

in galactic coordinates.

We have computed α and β or different values of A and different smoothing scales. We

find that α is insensitive to it at small smoothing scales, and the input hemispheri-

cal anisotropy becomes noticeable in the threshold dependence of α as we increase the

smoothing scale. β, on the other hand, is found to have characteristic dependence on ν.

To study the effect of hemispherical anisotropy, we calculate the differences ∆αA ≡

αA − αI and ∆βA ≡ βA − βI, where the suffix A stands for the anisotropic case and

I denotes the isotropic case. In the left panel of figure 4.4 we show ∆αA, normalized

by the value of αI at ν = 0, for different smoothing scales, and for two values of the

anisotropy strength, A = 0.1 (upper panel) and A = 0.5 (lower panel). The plots

are average over 500 realizations of CMB maps. As expected, ∆αA is larger for the

greater value of the anisotropy strength parameter, i.e., A. We observe that the effect

of hemispherical anisotropy gets washed out at high resolution (small smoothing scale).

This is because, at high resolution, the number of structures is very high. The effect of

the anisotropy becomes noticeable at lower resolution. It is interesting to note that ∆αA

remains symmetric and that the difference is most pronounced at roughly |ν| ∼ 1.
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Figure 4.4: Left: ∆αA for temperature field with input hemispherical
anisotropy corresponding to A = 0.1 and 0.5, for three different smoothing scales
at FWHM=10’, 60’ and 180’. All plots are average over 500 maps. We can see
that the deviation in α becomes distinguishable as we increase the smoothing
scale. Right: ∆βA for the same fields, values of A, and smoothing scales as for
α. We have not added error bars since they are roughly one order of magnitude
larger than the mean values, and hence they make the mean values difficult to
discern visually.

The right panel of figure 4.4 shows ∆βA for the same smoothing scales and anisotropy

strengths as for α. The plots are average over 300 maps. Again as expected, ∆βA is larger

for larger A value. We observe that ∆βA has roughly the same shape and amplitude

across the threshold range −2.5 < ν < 2.5 for all smoothing scales. The positive values

of ∆βA across this threshold range indicate that the structures are more anisotropic as

a consequence of the anisotropy term in equation 4.3. The level of anisotropy is larger

towards larger |ν| albeit with larger error bars. Moreover, the statistical fluctuation

increases for larger FWHM because the number of structures and corresponding total

perimeter decreases with increasing FWHM. It is again interesting to note that ∆βA is

symmetric. Our findings in this subsection suggest that α and β are complementary,

and together they can be a useful probe of departures from statistical isotropy of the

universe.
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4.3 Effect of weak lensing on the morphology of

CMB fields

It is crucial to understand the properties of lensed CMB fields, especially the B-mode,

so that in the future, it can be easily separated from the unlensed primordial B-mode.

Since the lensed CMB observables are non-Gaussian, in addition to the power spectrum,

we need other statistical measures to study their statistical properties. In the follow-

ing subsections, we study the changes in the morphology of the CMB fields induced

by lensing by using the contour Minkowski Tensor which can capture the information

about shapes and the relative alignment of the structures. Having so far understood

the dependence of α and β on the smoothing scale and cosmological parameters and the

effect of hemispherical anisotropy, we are now in a position to probe the effect of weak

gravitational lensing. We first give a brief introduction to the method of simulations of

lensed CMB maps, followed by a description of the results.

4.3.1 Simulation of lensed CMB maps

Weak lensing of CMB can be modeled very well using linear physics, and one can simulate

full-sky lensed CMB maps in weak lensing approximation using LENSPIX (Lewis (2005)).

Under the weak lensing approximation, this package implements a pixel remapping ap-

proach to mimic lensing effects on the CMB photons. The temperature or polarization

field is shifted by the deflection vector as a function of position on the sphere’s surface.

Lensed temperature and polarization fields in a particular direction having coordinates

(θ, φ) are given by unlensed fields in another direction (θ′, φ′) at the last scattering surface

as,

T̃ (θ, φ) = T (θ′, φ′), (4.4)

P̃ (θ, φ) = exp [−2i(γ − δ)] P (θ′, φ′), (4.5)
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Figure 4.5: Left: We show here the lensing geometry. n̂ denotes the direction
of observed lensed CMB and n̂′ denotes the corresponding unlensed CMB di-
rection. Right: We show the unit vectors eθ, eφ, e′θ, e

′
φ and angle γ the spherical

coordinate system is to be rotated to take into account the different direction of
the coordinate vectors at the two points.

Here, P is the spin-2 polarization field given by the linear combination of Q and U , γ

is the angle (one of the Euler angle) by which the spherical coordinate system is to be

rotated to take into account the different direction of the coordinate vectors at the two

points as shown in figure 4.5, while applying pixel remapping for spin-2 polarization field

in LENSPIX. δ is the angle the deflection vector field makes with coordinate axis êθ.

The angular coordinates corresponding to the original direction of the photon path

(θ′, φ′), are determined by the deflection field ~d(θ, φ),

cos θ′ = cos d cos θ − sin d sin θ cos δ, (4.6)

sin(φ′ − φ) =
sin δ sin(d)

sin θ′
, (4.7)

where the deflection vector field is given by

~d ≡ ~∇Φ = dθ eθ + dφ eφ = d cos δ eθ + d sin δ eφ. (4.8)

We have generated maps of lensed and unlensed T,E,B using LENSPIX. The theoretical

input power spectra for lensing potential and unlensed T , E, and B fields were obtained
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using the CAMB code. The input ΛCDM parameters are: Ωbh
2 = 0.0226, Ωcdmh

2 =

0.1120, H0 = 70 km s−1 Mpc−1, τ = 0.09, where the symbols have their usual meanings.

Unless otherwise mentioned, all B mode maps have input value of tensor-to-scalar ratio

r = 0.1. For calculations done with smoothing scales 5’ and higher we use maps for

which the HEALPIX resolution parameter is Nside = 1024 for both lensed and unlensed

case. For large smoothing angles, we downgrade the maps to appropriate Nside values

before smoothing them. For smoothing scales lower than 5’ we useNside = 2048. Then we

numerically compute the CMT for each smoothed map using the two methods described

in Chapter 3. We rescale the field by the corresponding RMS value, so the typical

threshold value is of order one. We choose the threshold range -4.0 < ν < 4.0 with 33

equally spaced bins for our calculations.

4.3.2 Morphological changes induced by lensing

Since lensing results in the remapping of the CMB field values at different pixels, we

expect that it will lead to distortions of hotspots and coldspots. However, statistical

isotropy is expected to be preserved, provided the distribution of the lensing potential

remains isotropic. We quantify below the effect of lensing on the statistical isotropy

parameter α and the distortions induced for individual structures quantified by β. We

note that while T is directly remapped by lensing, E and B are obtained from the directly

remapped polarization componentsQ,U via non-local relations as outlined in Zaldarriaga

(2001). This means that E and B at any point cannot be constructed by combining Q

and U at that same point because any such linear combination (if invertible) would not

be scalar under rotations. Hence, we do not expect similar distortion effects for all the

fields.

The left and middle panels of the figure 4.6 show the difference of the lensed and unlensed

angular power spectra, ∆D`, where D` ≡ `(` + 1)C`/2π, for T and E. The right panel
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Figure 4.6: Left: Difference between lensed and unlensed angular power spec-
tra for T used in our simulations. Middle: same for E. Right: D` for primordial
B with r = 0.1 (blue) and r = 0.01 (green), and lensed B corresponding to
r = 0 (red). We have used two different scales on the x-axis, with a dotted line
serving as demarcation, in order to highlight the low ` region.

shows D` for B-mode for unlensed (primordial) case with r = 0.1 (blue) and r = 0.01

(green), and lensed case corresponding to r = 0 (red). These plots serve the purpose

of checking our simulations by comparing with known results, such as from Lewis et al.

(2000). For B- mode, the amplitude of the unlensed power decreases linearly with r.

For r = 0.1, we can see that the power of the lensed component dominates over the

primordial component at scales ` & 150 or larger than degree angular scales. For smaller

values of r, the transition will take place at even larger angular scales. In the following

subsections, we present our findings on the morphological changes of the CMB fields

induced by lensing. We will find it useful to compare with the lensing effects on the

power spectra when we interpret our results on the morphological changes.

4.3.2.1 Effect of lensing on α

We compute α for unlensed and lensed maps for the three fields - temperature, E- and

B- modes. The calculations are carried out for different smoothing scales in order to find

out how the effect of lensing varies with scale. Let us denote the difference of α between

the lensed and unlensed maps by

∆α(ν) = αL(ν)− αUL(ν). (4.9)
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Figure 4.7: Top panels: Deviations ∆α between lensed and unlensed T (left),
E-mode (right). Bottom left panels: ∆α for B-mode. All plots are average
over 500 maps and the error bars are the standard deviation obtained from
these maps. Note that the smoothing angles are different for the different fields.
Bottom right: ∆α at ν = 0 as a function of smoothing angle, for B-mode,
normalized by the magnitude of unlensed α at ν = 0. The range of the x-axis
that is probed is between FWHM=2′ to 270’. This range is subdivided into
three different scales so as to highlight the behaviour at different scales. The
locations of the scale transitions at FWHM=10’ and 180’ are marked by vertical
dotted lines. Note the peak at FWHM∼ 5′.
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Let αUL,max denote the magnitude of the unlensed α at ν = 0 where α has the maximum

value. The top panels of figure 4.7 show ∆α normalized by αUL,max as a function of ν

at various smoothing scales, for temperature and E-mode fields. The plots are averaged

over 500 realizations. We find ∆α for T and E fluctuate about zero with error bars which

show the consistency of ∆α being zero at all ν, for all the smoothing scales considered

here. Therefore, we do not obtain any systematic variation of ∆α with a smoothing

scale.

Next, we consider the effect of lensing on the B-mode field. From the right panel of

figure 4.6 we see that the angular power spectrum of the primordial B-mode peaks at

around ` ∼ 80, which corresponds to roughly 2◦ angular scale. Beyond this scale, the

power dissipates rapidly towards small angular scales. The lensing induced power leakage

from E to B peaks at around ` ∼ 1000. For r = 0.1 the lensing power dominates at

scales smaller than 1◦. This is manifest as structures in the B-mode field at corresponding

angular scales. Consequently, α for lensed B is expected to be larger than that of the

unlensed value at all threshold values at scales dominated by the lensed signal. This is

what we obtain, as seen in the bottom left panel of figure 4.7, where the primordial B

mode maps have input r value 0.1. We find that ∆α is positive for all the smoothing

scales that we have considered here. Further, we find that the effect of lensing becomes

more pronounced as |ν| increases. The error bars also increase as |ν| increases since the

total perimeter of excursion sets drops exponentially with increasing |ν|. However, the

functional form of the variation of ∆α with the smoothing scale is not clear from this

plot.

To get a clear picture of how ∆α varies with the smoothing scale, we show the normalized

∆α at ν = 0 versus smoothing angle in the bottom right panel of figure 4.7. Note that

on the x-axis, we have used three different linear scales with transitions at FWHM=10’

and 180’. In the range between 2’ and 10’ we find that ∆α peaks around FWHM=5’

which corresponds to a smoothing angle θs ∼ 5′/2
√

2 ln 2 ∼ 2.12′ . This corresponds to

the characteristic angular scale set by the typical size of the lensing potential. Notice
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that the size of the error bars is smaller towards smaller angular scales, which indicates

that the total perimeter of the structures increases towards smaller angles. In the range

between 10’ and 180,’ we find that ∆α exhibits a mild increase that peaks at roughly

FWHM=40’. The statistical significance decreases, as seen from the increase of the error

bars resulting decrease in the perimeter. Further, ∆α decreases towards a large angle, as

is expected from the fact that the lensing contribution to B mode becomes subdominant

compared to the primordial part. However, we find a small but non-zero value even at

270’ smoothing, possibly because lensing correlates signals at higher than degree scales.

4.3.2.2 Effect of lensing on β

Next, we quantify the distortion induced by lensing on individual structures. This infor-

mation is captured by the β statistic. Again, the distortion effects are expected to be

different for T and E and B fields because T is directly remapped by lensing, while for

E and B, the effect is indirect via Q,U .

In the left panels of figure 4.8 we show the probability distribution function (PDF) of β

obtained using all structures (hotspots and coldspots) at ν = 0. The PDFs for lensed

maps are shown in red and for unlensed in green. The top panel shows T , middle shows

E and bottom shows B, for smoothing FWHM = 20′. The corresponding right panels

show the difference between lensed and unlensed PDFs for three smoothing scales given

by FWHM = 10′, 20′, 60′. We do not find a noticeable effect on the PDFs for T and

E at the smoothing scales we have considered. B-mode, on the other hand, exhibits

a relative shift of the peaks of the PDFs, indicating that lensed structures are more

anisotropic.

To quantify the deviation in the average β induced by lensing let us denote

∆β(ν) ≡ βL(ν)− βUL(ν). (4.10)

∆β(ν) encapsulates the strength of the shear caused by lensing at different threshold
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Figure 4.8: Left panels: PDFs of β for T (top), E (middle) and B (bottom),
at ν = 0 for FWHM=20’ for unlensed (green) and unlensed (red) cases. Right
panels: The difference between lensed and unlensed PDFs for the three fields
shown in the right panels. All plots are average over 200 maps and error bars
are the standard deviations obtained from them.
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levels. In the left panels of figure 4.9 we show β versus ν for the lensed (red) and unlensed

(green) maps, for T (left), E (middle) and B (right). The smoothing scales are the same

as those in figure 4.8, namely, FWHM= 10′, 20′, 60′. We can see that β is symmetric

about ν = 0 for both lensed and unlensed cases. The shape and amplitude of the curves

vary significantly for all the three fields. Since we are dealing with smooth fields, it is

reasonable to expect that at high values of |ν|, the iso-field curves will follow the curve

shortening flow§, under which the perimeter of the curves decreases and converge to the

circular shape, and finally collapses to a single point of singularity at local maxima and

minima. Therefore, β must tend towards one at sufficiently large ν. The range of ν in

figure 4.9 is chosen to highlight comparison across different smoothing scales. Note that

the RMS of the fields increases with a decrease in the smoothing scale. For FWHM=10’,

β has turning points beyond |ν| ∼ 3 and does tend to one at large |ν|.

The lensing distortions for T and E are not noticeable visually, while for B, the effect is

very strong. The right panels of figure 4.9 show ∆β corresponding to the respective left

panels. We can discern a weak but distinct negative value of ∆β for T that increases

with a decrease of the smoothing scale. This implies that the lensing remapping causes

structures to become statistically more anisotropic at all threshold levels. The effect be-

comes more pronounced as we probe down to smaller scales. For E-mode, the deviations

remain consistent with zero.

∆β for B-mode is large and exhibits wide variation with smoothing scale. The values are

increasingly negative at smaller smoothing scales, where the lensing effect is strongest.

At the relatively larger smoothing of 1◦ where we expect both primordial and lensed

components to contribute to β, we find that ∆β is positive for a symmetric range around

ν = 0, indicating that structures at these threshold ranges are more isotropic.

A comment regarding the impact of numerical errors arising from the stereographic

projection on the interpretation of our results for β is in order at this point. Our results

§The nature of how the curves shorten with increasing |ν| and finding the evolution equation
that governs it is an interesting mathematical question in its own right. For example, for Gaussian
fields, we know the perimeter decreases exponentially with increasing |ν|. We will, however, not
address it here and pursue it elsewhere.
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suggest that the effect of lensing on T and E that is encapsulated in β is negligibly

small at the smoothing scales that we have probed. To accurately calculate the effect,

we stress that we should carry out the calculation directly on the sphere. For B, the

distortion effects are large and increase with a decrease of the smoothing scale. Since

these are structures that arise due to lensing, we conclude that this is a real signature

of lensing-induced distortions. However, the importance of calculating β directly on the

sphere cannot be overstated for precise quantification of lensing distortions.

4.4 Conclusion and discussion

The geometrical and topological properties of cosmological random fields are a vast

source of physical information that has not yet been fully exploited. The applicability

of analysis methods that rely on such pixel space properties depends on the availability

of observational data, which are high resolution, cover a large field of view, and have a

good signal-to-noise ratio. Rapid advances in observational technology and imaging are

making such good quality data increasingly more available across a wide spectrum of

length scales. Therefore, real pixel-based analysis methods can be expected to become

more relevant and useful in the near future. This paper is the latest in a series of

investigations that extend previously used pixel space methods of studying cosmological

fields. Our focus in this work is to understand morphological changes induced in the

fields of the CMB by gravitational lensing due to intervening matter distribution.

For our analysis, we have used shape parameters, α and β, defined from the eigenvalues of

the CMT, to capture the information about the statistical isotropy and the net anisotropy

of distribution of structures of a field. We have used two calculation methods; the first

one computes the CMT and hence, α directly on the sphere. The second method, which

is used to calculate β, is carried out on the flat plane after the stereographic projection of

the fields. Before probing the effect of lensing on CMB fields, we have studied the effect of

varying cosmology and hemispherical anisotropy on α and β. The purpose of this exercise

is to distinguish the effect of lensing from other physical phenomena that can mask its
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Figure 4.9: Left panels: Mean values of β for T (top), E (middle) and B
(bottom) for FWHM=20’ for unlensed (green) and unlensed (red) cases. Right
panels: The difference between lensed and unlensed mean β values for the three
fields shown in the top panels. All plots are average over 200 maps and error
bars are the standard deviations obtained from them.
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effects. We find α to be insensitive to variation of cosmological parameters, but it can

capture the hemispherical anisotropy in the CMB temperature field, especially at large

angular scales. β for T , E, andB fields show very distinct dependence on the cosmological

models as well as hemispherical anisotropy. However, the cosmological parameter values

that we have considered are far from the best fit values obtained from Planck data. It is

not clear whether the distinct signatures in β can be used for constraining cosmology.

Minkowski tensors, particularly the CMT, provide a novel approach to quantify the effect

of lensing on the CMB. We have carried out a detailed investigation of the distortion

effects induced by lensing that is encapsulated in α and β for all the CMB fields. We do

not find signatures of lensing on α in the range of scales studied for temperature and E

mode. The coupling of E-mode and the B-mode, caused by lensing at smaller angular

scales, manifest as positive values of the difference of α between lensed and unlensed

maps. We find that this difference peaks at around FWHM=5’, corresponding to a

smoothing angle of 2.12’. Further, we find that statistical isotropy is preserved for the

lensed fields as is expected from isotropic large scale matter distribution in the Universe.

Next, we have quantified the distortions induced by lensing encapsulated by β. Our

results imply that lensing makes structures more anisotropic across all threshold levels

for CMB temperature. We find that the level of distortion increases towards smaller

angular scales in the range of scales that we have studied. For E mode, we do not obtain

a clear trend for the distortion effects. B mode, on the other hand, exhibits a very strong

effect with increasing anisotropy at smaller scales. Our analysis here for β for all the

fields is limited to relatively large angular scales (≥ 10′) for two reasons: stereographic

projections and limited computing resources. It will be useful to probe down to smaller

scales of around 2’ as done for α.

The work presented in this chapter can be extended in the following directions. First,

our results are based on pure simulations. For applications to observed data, we need

to consider the effects of instrumental noise and residual foregrounds. Secondly, the

computation of β should be done directly on the sphere without projection to the plane

for accurate estimation. We are developing a numerical code for this purpose. Thirdly,
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we should use the full suite of scalar and tensorial Minkowski functionals and Betti

numbers for a comprehensive analysis of the lensing effects. Our approach differs from

the previous use of scalar MFs in that we compute the geometry (namely, area, perimeter,

and counts) of individual structures of the excursion sets and look at their statistics rather

than simply their mean values. However, such calculations must be carried out directly

on the sphere in order to avoid projection effects. We plan to use the results obtained

here to guide a more profound understanding of the lensing deflection field or lensing

potential field.



Chapter 5

Local patch analysis for testing

statistical isotropy of the Planck

convergence map

5.1 Introduction

The small but measurable effect of weak gravitational lensing on the cosmic microwave

background radiation provides information about the large-scale distribution of matter

in the universe. We use the all-sky distribution of matter, as represented by the conver-

gence map that is inferred from CMB lensing measurement by Planck survey, to test the

fundamental assumption of Statistical Isotropy (SI) of the universe. The assumption of

SI of the CMB convergence field should be observationally verified since the detection

of violation of SI could have profound implications for cosmology. Recently, (Marques

et al. 2018) investigated SI of the Planck 2015 lensing convergence field using the local

variance estimator and identified sky directions or outlier regions where the weak lensing
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imprints anomalous signatures to the variance estimator revealed through a χ2 analysis

at a statistically significant level. The goal of this study is to carry out a similar analysis

but using a different methodology. In our analysis, we use the α statistic devised from the

contour Minkowski tensor, a tensorial generalization of the scalar Minkowski functional,

the contour length. In essence, the α statistic captures the ellipticity of iso-field con-

tours at any chosen threshold value of a smooth random field and provides a measure of

anisotropy. The SI of the observed convergence map is tested against the suite of realistic

simulations of the convergence map provided by the Planck collaboration. We first carry

out a global analysis using the complete sky data after applying the galactic and point

sources mask. We find that the observed data is consistent with SI. Further, we carry

out a local search for departure from SI in small patches of the sky using α. This analysis

reveals several sky patches which exhibit deviations from simulations with statistical sig-

nificance higher than 95% confidence level (CL). Our analysis indicates that the source

of the anomalous behaviour of most of the outlier patches is the inaccurate estimation

of noise. We identify two outlier patches that exhibit anomalous behaviour originating

from departure from SI at higher than 95% CL. Most of the anomalous patches are found

to be located roughly along the ecliptic plane or in proximity to the ecliptic poles.

This chapter is organized as follows. In section 5.2, we briefly review the method of

the estimation of the convergence field followed by the Planck collaboration along with

the data and the simulations used in our analysis. In section 5.3, we present our global

and local analysis and the main results obtained. The chapter ends with the concluding

remarks in section 5.4.

5.2 Data and Methodology

This section describes the set of observed data and simulations that we have used for

our analysis, followed by explaining the statistical method used to test for SI of the

convergence field.
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5.2.1 The Planck convergence map: Observed data and Sim-

ulations

The Planck 2018 data release (Planck Collaboration et al. 2020a) provides the most

significant measurement of the lensing potential and its power spectrum over about 70%

of the sky.

Observed data: To reconstruct the lensing potential, the method employed (Carron and

Lewis 2017) by the Planck team are based on quadratic estimators that use the features

induced by the lensing process, such as the diverse correlations of the CMB tempera-

ture (T) and polarization (E and B) modes. The combination of these estimators in

a minimum-variance (MV) estimator is used to reconstruct the CMB lensing potential,

ψMV . The Planck 2015 lensing estimate was based on CMB temperature and polarization

multipoles, i.e., ψTT , ψEE , ψTE , ψTB, ψEB and a combination of all these five multipoles

in the minimum variance quadratic estimator. However, the Planck 2018 estimate of the

lensing potential differs from the previous release because it also includes the contribu-

tion from filtered B-modes, BWF . The CMB data set used as input to the MV lensing

estimator was the foreground cleaned map obtained by passing the raw Planck 2018 full

mission frequency maps through the SMICA pipeline.

The reconstructed lensing potential estimate has a much red power spectrum, with most

of its power on large angular scales. Cutting the maps with a red power spectrum in

small portions can cause leakage issues. For this reason, we use in our analysis the

convergence map, κWF , instead of the lensing potential map. The lensing convergence

and its corresponding reconstruction noise have a much whiter power spectrum, especially

on large angular scales as discussed in Bucher et al. (2012).

Simulations: Next, the simulations we use to perform our analysis are the set of 300 real-

izations of the convergence field, which constitutes the Planck Full Focal Plane (FFP10)

simulations (Planck Collaboration et al. 2020b). These Monte Carlo realizations com-

prise a set of maps that incorporate the dominant instrumental effects (detector beam,
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bandpass, and correlated noise properties), scanning (pointing and flags) and data anal-

ysis (map-making algorithm and implementation) effects.

Both the observed and simulation data sets of the convergence field are provided in the

form of multipole expansion coefficients, κMV
`m , up to `max = 4096 in HEALPix (Górski

et al. 2005) ∗ FITS format. We then generate convergence maps from these mutipole

expansion coefficients using HEALPix. The convergence field multipole coefficients are

related to harmonic coefficients of the lensing potential by,

κMV
`m =

`(`+ 1)

2
ΨMV
`m . (5.1)

The κ field reconstructed from observed data is highly noise-dominated, especially at

small angular scales. The signal-to-noise ratio is S/N ≈ 1 at ` = 60. For this reason,

we will construct convergence maps by choosing map resolutions corresponding to the

Healpix parameter Nside ≤ 512. The largest multipole value is then chosen to be `max =

2Nside. We do not downgrade the higher resolution map to required lower resolution.

We just use `max upto 2Nside for the corresponding Nside. The maps constructed (both

observed data and simulations) are then further processed following the steps given below.

• Bandpass filtering: We filter out ` ≤ 8 modes as done in the Planck 2015 and

2018 lensing analysis. The reason is that the low ` modes have high sensitivity

to the mean-field subtraction. The form of the filter, F`, is given by the following

expression,

F` =
1

2

{
1 + tanh

(
`− `0

∆

)}
, (5.2)

where `0 denotes the center of a chosen band of `, and ∆ denotes the bandwidth.

We choose `0 = 8 and ∆ = 3 to carry out our analysis. The bandpass filtered

multipoles are then generated by multiplying κ`ms of the input map with F`.

• Wiener filtering: To mitigate the effect of noise, we apply Wiener filter to the

spherical harmonic coefficients as employed in Bobin et al. (2013), as given by the

∗http://healpix.sourceforge.net/

http://healpix.sourceforge.net/
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following expression,

κWF
`m =

Cκ,fid`

Cκ,fid` +Nκ
`

κMV
`m . (5.3)

Here Cκ,fid` is the convergence power spectrum in the fiducial cosmological model,

and Nκ
` is the reconstruction noise power spectrum.

• Masking: We further mask the convergence map using the lens reconstruction

analysis mask (lens mask henceforth) provided among the lensing products, which

has fsky = 0.67. This is an improved mask over the 2015 weak lensing mask due

to reduced point source contamination for the same sky fraction. We downgrade

the lens mask to the lower resolution that is compatible with the resolution of the

convergence map.

5.3 Analysis and results

In this section, we present our analysis of SI of the Planck convergence map using the α

statistic obtained from Contour Minkowski tensor (W̃1) discussed in Chapter 3.

In order to keep the terminology clear, we will refer to the convergence map obtained

from Planck data as the observed convergence map. We first rescale the convergence field

by its variance σ0. This makes the rescaled field threshold range to be of order one. Then

we compute W̃1, and from it α, for 33 equally spaced threshold bins, of width ∆ν = 0.25,

ranging from −4.0 ≤ ν ≤ 4.0.

Minimizing numerical error due to mask boundaries: In order to minimize numerical

error near sharp mask boundaries that can arise due to harmonic transforms, we first

mask the field using a downgraded lens mask which is then apodized using the same

smoothing kernel as the convergence maps. As a result, the pixels near the boundary

will now have values between zero and one. Then, we include only those pixels in our

analysis that are sufficiently far away from the boundary for calculating α. This is done

using a parameter sm, whose value lies between zero and one, and only pixels of the field
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for which the corresponding smoothed lens mask has values greater than chosen value of

sm (0.98) are included. Since, as sm increases towards one, the fraction of included pixels

decreases, and hence the statistical significance of the results will decrease. Therefore,

it is best to select an optimum value of sm such that the numerical error is minimized

and the statistical significance is maximized. A rough estimate shows that a smoothed

mask pixel value greater than 0.89 roughly corresponds to > 2θs distance from the mask

boundary, θs being the smoothing scale. Hence we use sm = 0.89 for our calculations.

5.3.1 Understanding the effects of bandpass filter and mask-

ing on α using ideal simulations

Before analyzing the observed data set and looking for subtle signatures of departure

from SI in the universe, it is important to clearly understand the effects of masking and

bandpass filtering on α using ideal Gaussian isotropic maps of the convergence field. This

step is important to isolate any physical phenomenon from the systematic effects. For

this purpose, we simulate 300 Gaussian isotropic realizations of κ and then compute α

using the field derivative method outlined in chapter 3. The input lensing potential or

convergence power spectrum is obtained from CAMB Lewis et al. (2000)†. The values of the

input ΛCDM parameters are: Ωbh
2 = 0.02216, Ωcdmh

2 = 0.1203,H0 = 67 km s−1 Mpc−1,

τ = 0.06, ns = 0.964, As = 2.119× 10−9, where the symbols have their usual meanings.

These are the same fiducial cosmological parameters that are used as input for the Planck

convergence simulations.

We compare α as a function of the threshold for the full sky case with the corresponding

α obtained after (a) applying lens mask with sm = 0.98, (b) no masking but band bass

filtering, and (c) bandpass filtering and masking. In figure 5.1 we have shown α for these

three different cases. The four panels correspond to four different resolutions given by

Nside = 64, 128, 256 and 512. The blue curves correspond to the full sky case, while the

orange curves represent the masked case, red curves are for the bandpass filtered case

†https://camb.info/

https://camb.info/
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Figure 5.1: Mean values of α and standard deviation obtained from isotropic
Gaussian simulations of the convergence map for different resolutions Nside =
64, 128, 256 and 512. Different colors here represent α calculated for full sky
(blue), masked (orange), bandpass filtered (red), and masked plus band pass
filtered (green).

with cut-off scale `0 = 8, and the green curves represent the alpha for bandpass filtered

and masked maps. We expect α to be close to one at all thresholds considered here for

the ideal case. We find that the ideal convergence field is isotropic as α is close to one,

which is as expected from the standard model of cosmology. Applying lens mask to the

ideal κ field reduces the number of structures in the field, which leads to a drop in the

value of α at large thresholds. This effect is more prominent at lower resolutions, i.e.,

Nside = 64, 128, where already the ideal field has few structures. We also note that the

bandpass filtering does not affect the value of α.
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5.3.2 Quantifying the statistical significance of α and error

bars

The α statistic follows the Beta distribution given by the following expression,

P (α) =
Γ(a+ b)

Γ(a)Γ(b)
αa−1(1− α)b−1,

where a > 0, b > 0 are parameters that depend on the cosmological model (see Chin-

gangbam et al.). Hence the standard deviation of α, which we denote by σα, will not be

equivalent to the usual 68% confidence interval. So, we first reconstruct the probability

density function (PDF) of α using the 300 FFP10 realizations and, using it, determine

the confidence intervals as described below. Let α̃ sim(ν) denote the median value of

α at each threshold obtained from the simulations. Let the ranges of α be given by

αa =
(
α̃ sim − δ(j)

−

)
to αb =

(
α̃ sim + δ

(j)
+

)
, which denotes the confidence intervals such

that j = 1, 2, 3, . . . correspond to 68%, 95% and 99%, and so on, respectively. Then we

determine δ(j)
− and δ(j)

+ from the condition

∫ α̃ sim

α̃ sim−δ(j)−
dαP (α) =

∫ α̃ sim+δ
(j)
+

α̃ sim

dαP (α) = p/2, (5.4)

where p = 0.68, 0.95, 0.99 for j = 1, 2, 3. We find that the difference between the mean

and median values of α is actually quite small in all cases. They differ at most by 1% at

|ν| ∼ 3 and this difference gets smaller towards |ν| ∼ 0.

To demonstrate, the left panel of figure 5.2 shows the reconstructed P (α) for some se-

lected ν values, for Nside = 512. We observe that the maxima of the PDF for ν = 0 occurs

at a smaller value of α compared to ν = 2. Moreover, there is no symmetry between

positive and negative ν. These are due to the presence of instrumental noise, foreground

residuals, and other systematic effects. The panel on the right shows comparison of 2σα

with δ(2)
− and δ(2)

+ , calculated using p = 0.95. The values of the three quantities do not

differ much. There is mild mismatch at higher |ν| values where 2σα slightly underes-

timates δ(2)
− and overestimates δ(2)

+ . We find similar behaviour for different values of

Nside.
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Figure 5.2: Left: P (α) for some selected values of ν for Nside = 512. Right:
2σα (red triangle), δ(2)

− (green square) and δ(2)
+ (blue circle), for the same Nside

as the left panel.

Let αobs denote the value of α for the observed data, and let α̃sim mean/median α value

from 300 FFP10 simulations, then their difference ∆α is given by,

∆α ≡ αobs − α̃sim. (5.5)

Then in order to quantify the statistical significance of ∆α at each threshold we define

the variable χ̃(j) as follows‡:

χ̃(j) =

 ∆α/δ
(j)
− , if ∆α < 0,

∆α/δ
(j)
+ , if ∆α > 0.

(5.6)

If |χ̃(j)| > 1 then it implies that αobs is outside the confidence interval corresponding to j.

Since there can be unknown systematic or physical effects at different threshold levels, we

choose to interpret χ̃(j) as a function of threshold, rather than condense the information

of the threshold variation into a single value. It can be shown that the values of α at

neighboring thresholds are uncorrelated if the threshold bin size is sufficiently large. Our

choice of ∆ν = 0.25 is sufficiently large and hence δ(j)
− and δ

(j)
+ in the denominator of

χ̃(j) captures the full covariance information.

‡|χ̃(1)| reduces to the square root of the standard chi-squared statistic for Gaussian distribu-
tion.



Chapter 5: statistical isotropy of the Planck convergence map 108

An important point to keep in mind when we interpret our results is the following.

Since a lower value of α means a higher degree of alignment of structures, a significantly

negative value of ∆α, and consequently of χ̃(j), implies that the observed data has a

higher level of anisotropy in comparison to the expectation from the median value of

α̃sim. On the other hand, as seen in section 5.3.1, α value for a generic field depends

on the number of structures and is larger for a field with a higher number of structures.

Therefore, a significantly large positive value of ∆α indicates anomalous behaviour but

does not indicate a higher level of anisotropy.

Equipped with the understanding of the effects of masking and bandpass filtering on

the ideal convergence field and the statistics of α, we now focus on our stated goal of

testing SI of the observed convergence map and the corresponding FFP10 simulations. In

the following, we perform our analysis using two complementary approaches: (1) global

analysis, where we calculate α for the masked full-sky convergence maps, and (2) local

analysis, where we calculate α for non-overlapping small patches of the sky.

5.3.3 Global analysis

For the global analysis, we first construct the maps of the observed and FFP10 simulated

convergence field following the steps outlined in section 5.2.1. For the masking, we use the

conservative value of sm = 0.98. The sky fraction for the full resolution (Nside = 2048)

mask is fsky = 0.67. After apodizing the lens mask and then applying the sm condition

the sky fractions become fsky = 0.48, 0.49, 0.53 and 0.60 for Nside = 64, 128, 256 and

512, respectively. Then α is calculated from each of the maps constructed as above. We

will discuss the results for the cases with and without Wiener filtering.

We first discuss the results for the case without Wiener filtering. The α and corresponding

χ̃(2) values as functions of the field threshold are presented in the top row of figure. 5.3.

The four panels correspond to Nside = 64, 128, 256 and 512, which are the same as in

figure 5.1 with the same smoothing FWHM values. The α values computed from the
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Figure 5.3: Top row: Upper panels show α while lower panels show χ̃(2) for
the Planck convergence map (blue stars) and FFP10 simulations (red triangles),
without Wiener filtering, for different values of Nside. Bottom row: Same as first
row but for Wiener filtered maps.

observed κ map are represented by blue stars, while the median value and error bars are

given by δ(2)
− (lower) and δ(2)

+ (upper) are shown in red. The black curves in the lower

panels show χ̃(2). We observe the following points:

• We find that α values differ strongly in terms of amplitude as well as the shape

of the threshold dependence between the FFP10 simulations and the ideal cases

shown in figure 5.1. We observe a dip in the α curve at around ν = 0. Also, we note

that α is asymmetric about ν = 0, unlike the case of ideal simulations. We find

that the curve slopes down towards negative threshold values for Nside = 64, while
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for higher resolution cases, the downward slope is towards positive thresholds. This

difference can be attributed to the complex noise (arising from both instrument

and lensing reconstruction) properties contributing to the observed data and the

corresponding simulations.

• From the values of χ̃(2) we infer that there is good agreement between the observed

data and FFP10 simulations for all the four cases except for some threshold values,

particularly for Nside = 64.

Next, we discuss the results of the case with Wiener filtering. In the bottom row panels

of figure 5.3, we show α for the same observed data (blue stars) and simulations (red

triangles) as in the top row. The superscript ‘WF’ refers to Wiener filter. Wiener filtering

optimally weighs for the noise and is expected to suppress the modes with large noise

contributions. We observe some changes in the results after applying the Wiener filter.

For Nside = 64, we observe that the α curve is now tilted toward the positive threshold

values in contrast to the without Wiener filtering case. While for Nside = 256, 512, we

find that α becomes relatively more symmetric about ν = 0, as the (large ` values) modes

with high noise contribution have been suppressed by the Wiener filter. Even though

the shape of the α curve obtained here also does not mimic the α curve in the case of

ideal Gaussian isotropic κ simulation, the observed κ is consistent with Planck isotropic

simulations within 2σ. Agreement between the corresponding values computed from

observations and simulations implies that the observed maps are statistically isotropic.

We also observe that χ̃(2) has positive values at most of the thresholds for almost all the

Nside values considered here, in both with and without Wiener filtering case. The positive

values of χ̃(2) indicate the presence of higher number of structures in the observed κ field

than the corresponding simulated field.

We are guided by two factors to complement the global analysis by further analysis after

restricting to smaller sky patches. The first is that any anomaly in localized sky regions

can get washed out when α is computed over larger regions. Secondly, we see some hints

of an anomaly in the global analysis, which can be sharpened when analyzed over smaller
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regions. Therefore, we expect the statistical significance of the positive values of χ̃(2) to

get enhanced.

5.3.4 Local patch analysis

We now focus on analysis of small patches of the sky. We first pixellize the sky using

a low value of the Healpix resolution parameter which we denote by N local
side . Each pixel

determined by N local
side is referred to as a patch. We will work with N local

side = 2 and 4. For

N local
side = 2 we get 48 patches, each patch having angular size (29.3◦)2. ForN local

side = 4 there

are 192 patches and each patch has angular size (14.7◦)2. We identify each patch by its

pixel number in the ‘ring’ pixel numbering format in Healpix. Next, we pixellize the sky

using a higher Nside value which we denote with a superscript ‘global’, by Nglobal
side . The

number of pixels in each patch defined above is then given by Np
pix = (Nglobal

side /N local
side )2.

We work with Nglobal
side = 128 and 256. In each case we use the maximum multipole

value of κ given by `max ∼ 2Nglobal
side . Therefore, the physical information encoded in the

maps constructed with Nglobal
side = 128 is contained in maps having Nglobal

side = 256, but

the converse is not true. The values of N local
side and Nglobal

side have been chosen keeping in

mind that the SNR of the observed convergence map becomes increasingly smaller at

high multipoles and that the patches should have good enough resolution for statistical

analysis using morphological properties. Table 5.1 summarizes the values of N local
side and

Nglobal
side considered in our analysis, along with the relevant numbers of patches and pixels,

and the angular sizes of patches.

The estimator of W̃1, which for the global analysis is given by equation 3.55 in chapter

3, is modified for each patch indexed by p, to the following form,

W1,p =
1

Np

Npix∑
i=0

wp,i
∆ν
Ii, (5.7)

where the weight wp,i has one if the pixel belongs to the pth patch and if the apodized

lens mask at that pixel has value > sm, else it has value zero. The normalization Np



Chapter 5: statistical isotropy of the Planck convergence map 112

N local
side Total no

of patches

Angular size

of a patch

Nglobal
side No of pixels in

each patch

2 48 (29.3◦)2
128 4096

256 16384

4 192 (14.7◦)2
128 1024

256 4096

Table 5.1: Table showing the numbers of patches and their angular size. and
number of pixels in each patch, for the values of Nglobal

side and N local
side considered

in our local analysis.

Figure 5.4: Left: An example of a patch of the κ map. Right: Map showing
values of α for sky patches at ν = −0.5, with each patch being one of the 192
pixels given by N local

side = 4. The value of Nglobal
side is 256 and the valid pixel fraction

is pfrac = 0.6.

is now the count of pixels in each patch having wp,i = 1. We also exclude patches that

have a high percentage of masked regions. This is done by calculating the ratio, pfrac, of

the number of pixels that are not masked (valid pixels,) to the total number of pixels in

each patch. We choose pfrac = 0.6. Figure 5.4 visually demonstrates the local analysis.

The left panel shows the κ field in one patch. The right panel shows a map of α values

for each patch computed from the observed convergence map, at threshold ν = −0.5 for

the case of N local
side = 4 and Nglobal

side = 256.

Identification of outlier patches: We calculate ∆α for each patch at each threshold.

Then we compute χ̃(j)(ν), j = 1, 2, 3, .... At high thresholds, the excursion sets for a
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typical patch consist of few structures, and hence the analysis of statistical significance

can become unreliable. Therefore, we restrict the threshold range for identifying outlier

patches to the conservative range −2 ≤ ν ≤ 2. If |χ̃(2)(ν)| > 1 (equivalent to higher

than 2σ) we consider the patch to be anomalous at that threshold. A patch can exhibit

an anomaly at one or more threshold values. To identify a patch as an outlier for each

value of N local
side we demand that it satisfies either of the following two conditions:

1. It must show anomaly for both Nglobal
side = 128 and 256. This condition ensures that

anomalous behaviour for Nglobal
side = 128 is also manifested in the higher resolution

case and that the anomaly is robust against variation of resolution.

2. For patches that are not common as above, they must be anomalous at three

or more threshold values. This condition ensures that the anomaly is not just a

statistical fluctuation.

The outlier patches that have been identified are listed in table 5.2. Patches shown in

magenta have positive value of χ̃(2)(ν), while those in blue have negative value of χ̃(2)(ν)

at all anomalous thresholds. The patches that are not common between Nglobal
side =128 and

256 are highlighted by the black boxes.

Degree of anomaly: We define a new statistic, χ̃(ν), to measure the degree of statistical

significance of ∆α for every outlier patch. It is defined to have value between 2 and

3 if χ̃(2) > 1 and χ̃(3) < 1, between 3 and 4 if χ̃(3) > 1 and χ̃(4) < 1, and so on.

Figure 5.5 shows plots of χ̃(ν) for all the anomalous patches on the two dimensional

space spanned by ν and the patch identification numbers. The four panels correspond to

the four combinations of N local
side and Nglobal

side . Blue circles represent negative, while pink

ones represent positive values of χ̃. Larger sized circles denote larger values of |χ̃|. There

are no points having values 3 < |χ̃| < 4 for any of the patches. There are no points

in the central regions of the panels because these pixels lie in the masked region of the

Galactic plane.
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N local
side Nglobal

side No of valid

patches

No of

outlier

patches

Patch ids of outlier patches

2
128 28 8 11, 17, 36, 37, 41, 42, 43, 45

256 29 11 11, 17, 36, 37, 38 , 40 , 41, 42, 43,

45, 46

4

128 123 22
0, 3, 29, 30, 31, 44, 45, 53, 55, 65,

67 , 134 , 140 , 142, 156, 161, 162,

163, 165, 172, 179 , 184

256 121 23
0, 3, 29, 30, 31, 44, 45, 53, 55, 65,

125 , 140, 142, 152 156, 158 , 160 ,

161, 162, 163, 165, 172, 184

Table 5.2: Table showing the numbers of anomalous patches, and their iden-
tification numbers. Patches shown in pink have positive value of χ̃(2)(ν), while
those in blue have negative values of χ̃(2)(ν) at all anomalous thresholds. The
patches that are not common between Nglobal

side =128 and 256 are highlighted by
the black boxes.

We first discuss our findings for the case of N local
side = 2. From table 5.2 and the top panels

of figure 5.5 we observe the following points:

• The number of outlier patches for Nglobal
side = 128 are 8. All of them have χ̃ value

between 2 to 3 at one threshold values each, except patch id 42 which is anomalous

at two threshold values.

• For Nglobal
side = 256 there are 11 outlier patches. All the 8 patches identified in the

case ofNglobal
side = 128 form a subset of these. All the common patches have a χ̃ value

between 2 to 3. Moreover, most of them are found to be anomalous at multiple
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Figure 5.5: χ̃ values for outlier patches versus threshold.

threshold values (mostly on the negative side), as can be seen from a comparison

of the top panels of figure 5.5. This confirms that the anomalous behaviour of

the patches is not erased by variation of the resolution and that the anomaly is

more evident in the case of the higher resolution. Note that the same value of

the threshold will not correspond to the same actual field values for Nglobal
side = 128

and 256, due to the field rescaling by the respective standard deviations. A patch

exhibiting anomalous behaviour at some threshold will show similar behaviour at
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a threshold value that is shifted with respect to the former. We can see this,

for example, for patch id 11 which is anomalous at only one threshold, namely,

ν = 0.75, for Nglobal
side = 128, while for Nglobal

side = 256 it is anomalous at ν = −1.75.

Moreover, the threshold shift need not be the same for all anomalous patches

since the fields at the two different resolutions are different due to the inclusion of

additional multipoles for the higher resolution.

• The 3 additional outlier patches found in the higher resolution case indicate new

information regarding disagreement of the values of κ for multipoles higher than

256 between observed data and FFP10 simulations. Patch ids 40 and 46 have χ̃

values between 2 to 3, while patch id 38 is strongly anomalous with χ̃ > 4.

Next, we discuss N local
side = 4. In this case what we are effectively doing is dividing each

patch of N local
side = 2 into four equal parts and treating each part as a new patch. There

is no new information compared to N local
side = 2 in terms of multipoles of κ. However,

the information of anomalous nature of smaller sized regions can get washed out as

components of larger regions since in that case, α will capture the mean alignment of

a larger number of structures. The analysis for N local
side = 4 can isolate such smaller

anomalous regions. From table 5.2 and the bottom panels of figure 5.5 we observe the

following points:

• The number of outlier patches for Nglobal
side = 128 are 22, of which 5 have negative

χ̃. All the outliers have χ̃ values between 2 and 3, while 55 is strongly anomalous

with χ̃ > 4.

• For Nglobal
side = 256 we get 23 outliers, out of which 2 have negative χ̃ values. All

the outliers have χ̃ values between 2 and 3, while 45, 152 and 158 are strongly

anomalous with χ̃ > 4.

• There are 19 common patches. Out of these, we find that patch ids 0, 142 and

161 are anomalous at one threshold each, and the sign of χ̃ is different for different

Nglobal
side . For this reason, we exclude them from the set of outlier patches.
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Sky locations of outlier patches: Having identified the outlier patches for each value of

N local
side , we next examine these patches in further detail by visualising their location in the

sky. The top row of figure 5.6 shows maps of outlier patches, with the different colours

indicating the values of χ̃, for N local
side = 2 for Nglobal

side = 128 (left) and Nglobal
side = 256

(right). The bottom row shows the same for N local
side = 4. Dark blue corresponds to

−3 < χ̃ < −2, yellow corresponds to 2 < χ̃ < 3 and maroon to χ̃ > 4. Patches ids in

Healpix ring format is also indicated. All maps are shown using Molleweide projection

in Galactic coordinates.

As seen in figure 5.6 all the outlier patches for N local
side = 2 and most of them for N local

side = 4

have positive χ̃. As discussed in section 5.3.2, positive χ̃ is not an indication of a higher

level of alignment between the structures. Rather, it indicates that the observed κ field

in these patches has a higher number of structures than the simulations. Further, we

observe a general trend of increase of statistical significance of anomaly for the higher

resolution case for both N local
side = 2 and 4. For N local

side = 2, the higher resolution case has

three additional outlier patches, of which one (patch id 38) is very highly anomalous.

For N local
side = 4, the higher resolution case has two additional outlier patches (patch

id 152 and 158), which are highly anomalous, while patch id 45 shows an increase of

statistical significance of anomaly. It is useful to mention here that the addition of

spatially uncorrelated noise to a given physical random field having some coherence

length, in general, increases the number of small-scale structures of the combined field.

Hence, positive values of χ̃ and the general trend for it to be higher for higher resolution

correlate with the fact that the SNR of the observed convergence map decreases with

increasing multipole. Therefore, while we cannot conclusively rule out other possibilities,

our results strongly suggest that the anomalous behaviour of the outlier patches having

positive χ̃ are caused by inadequate estimation of the instrumental noise.

We find two patches that have negative χ̃ (patch ids 29 and 179 in the bottom left panel

of figure 5.6). These are patches where the structures in the observed κ map exhibit

relative alignment that is significantly higher (lower value of α) than is expected from

the simulations. Therefore we conclude that these two patches show a departure from

SI at a higher than 95% confidence level. Of these, patch id 29 lies close to the ecliptic
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Figure 5.6: Top: Maps of showing outlier patches for N local
side = 2 for Nglobal

side =

128 (left) andNglobal
side = 256 (right). The colors indicate the corresponding values

of χ̃. Dark blue corresponds to −3 < χ̃ < −2, yellow corresponds to 2 < χ̃ < 3
and maroon to χ̃ > 4. Patches are numbered in Healpix ring format. Bottom:
Same as the top row but for N local

side = 4. All maps are shown using Mollweide
projection in Galactic coordinates.

north pole, while 179 is located close to the ecliptic plane.

We can visually see that several of the outlier patches obtained for N local
side = 4 are

contained within the outlier patches of N local
side = 2. Thus, as expected, by subdividing the

patches of N local
side = 2 into smaller parts, we can further isolate or localize the anomalous

regions. The regions corresponding to patch ids 29, 30, 31, 44 and 25 for N local
side = 4 are

conspicuously absent for N local
side = 2. This indicates that the alignment information has

gotten washed out when α is calculated over larger patch size.

Lastly, it is interesting to note that most outlier patches are located close to either the

ecliptic north or south poles or the ecliptic plane. Patch ids 11 and 17 for N local
side = 2,

and correspondingly 53, 55 and 65 for N local
side = 4, lie close to the masked regions (11 and

55 are close to the north Galactic spur) and are possibly contaminated by the residual

foreground. It is also interesting to note that patch id 184 lies in the region of the WMAP

cold spot.
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5.4 Conclusion

In this work, we have carried out a statistical isotropy test using the observed Planck

convergence map by comparing it with the FFP10 simulations provided by the Planck

team. We use the α statistic for the test, which measures the anisotropy of excursion

sets of smooth random fields. We carry out the test using the global (masked) sky and

for small sky patches. In order to focus on multipoles where the SNR of the observed

convergence map is not too small, we restrict our analysis to Nside = 512 in the global

analysis and 256 in the local analysis. The local analysis is complementary to, but more

effective than, the global one for detecting anisotropy or any anomalous behaviour of

the field in localized sky regions. This is because the anomalous information can get

washed out in carrying out the average over a larger set of structures. From the global

analysis, we find that the observed data and simulations show good agreement but hint at

the presence of some anomaly. Then using the local patch analysis, we identify several

anomalous patches where the observed and simulated data show disagreement of the

values of α at statistical significance higher than 95% CL.

From the positive sign of the statistic χ̃, we infer that the source of the anomalous be-

haviour of most of the outlier patches is an inaccurate estimation of noise. The locations

of a majority of the anomalous patches that we have identified are close to either the

ecliptic plane or the ecliptic poles. Further, we identify two outlier patches, which exhibit

anomalous behaviour originating from departure from SI at higher than 95% CL. One of

these is located near the north ecliptic pole, and the other is located close to the ecliptic

plane. Though beyond the scope of this analysis, it will be interesting to examine these

patches further and cross-correlate them with large-scale structure surveys.

Our local patch analysis is similar in spirit to the analysis carried out in Marques et al.

(2018), though we use a different methodology. Their method uses the variance, and

hence direct field values, computed from sky patches, while α is constructed using the

first derivative of the field and can be directly interpreted as the anisotropy of a curve.

Therefore, the anomalous patches identified by our analysis need not be the same as those
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identified using the variance. Comparison of figure 5.6 with figures 9 and 10 of Marques

et al. (2018) shows that there are some patches in common, and both our analysis and

theirs indicate that anomalous regions are more likely to occur near the ecliptic poles

and ecliptic plane.

Our results broadly confirm that the universe is statistically isotropic on large scales by

using a different method from the ones that have previously been used in the literature.

We have argued that most of the anomalous regions we have identified can are well

explained by inaccurate noise estimation. Hence our method and results will be useful

for improved understanding of noise. Each of the anomalous regions, and in particular

the two regions that exhibit statistically significant deviation from SI, are interesting for

further probes and cross-correlation with large-scale structure surveys.



Chapter 6

Contour Minkowski tensor for

Gaussian anisotropic fields∗

6.1 Introduction

The ΛCDM model which is currently the most widely accepted cosmological model rests

on the assumption that the universe is statistically isotropic on large scales. It is then

required to test this fundamental assumption using different observed data. This assump-

tion of the universe has been directly tested employing different kinds of statistics and

cosmological data, for instance, using CMB fields, x-ray background and radio sources,

clustering properties of galaxies in large scale structure surveys such as Wiggle-Z and

SDSS.

The alignment parameter α obtained from the Contour Minkowski tensor W1 can be

used to test SI in cosmological fields. We have tested the Statistical Isotropy (SI) of

∗The work presented in this chapter is a part of a paper that will be submitted for publication
soon.
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the CMB lensing convergence field using the α statistic as described in Chapter 5. The

basic idea how it works is simple. Exact statistical isotropy implies that α must be

unity, which physically means that iso-field boundaries of excursion sets do not exhibit

relative alignment. Any alignment will lead to α < 1 and the higher the deviation of

value of α from unity, higher is the degree of alignment. In practice, cosmological data

is available on spatial regions of finite extent, such as a subset of flat space, or compact

unbounded space such as the surface of the sphere. The finiteness of space combined

with the resolution of sampling results in relative alignment of the iso-contours that is

intrinsic to the sampling. Any real alignment due to a true departure from statistical

isotropy will be in addition to this sampling effect.

We extend the results of Chingangbam et al. (2017b) focusing on the contour Minkowski

tensor. We give an explicit construction for mapping any arbitrary shaped simple closed

curve to an ellipse that is unique upto translations of its centroid. We also carry out a

comparison of the shape parameters defined using the contour Minkowski tensor with

the filamentarity parameter defined using two scalar Minkowski functionals - area and

contour length, and demonstrate that they contain complementary shape information.

We present the derivation of analytic expression for the contour Minkowski tensor for

Gaussian anisotropic random fields. This work is a part of the full analysis done to

understand the meaning of satistical isotropy of smooth random fields from geometrical

perspective.

6.2 Mapping of a single arbitrary curve to an el-

lipse, uniqueness and shape anisotropy param-

eter

In this section we give an explicit construction for mapping any arbitrary shaped simple

closed curve C to an ellipse that is unique upto translation of its centroid.
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Consider a curve in 2-D manifold for which we compute CMT (W1) using the method

described in chapter 3. The eigenvalues of W1 for an arbitrary curve are given by

λ1 = τ − g, λ2 = τ + g. (6.1)

These equations are same as defined in chapter 3 (equations 3.28 and 3.29). Since W1 is

real and symmetric, the eigenvalues are real and positive. Then we get τ = (λ1 + λ2)/2

and g = (λ2 − λ1)/2. Since g is positive we have λ1 < λ2.

For an ellipse whose principal axes are denoted by p and q, with p < q and are aligned

along the coordinate axes, its W1 is diagonal with the eigenvalues given by

λ1 = (pq)2

∫ 2π

0

cos2 t(
p2 sin2 t+ q2 cos2 t

)3/2 dt, (6.2)

λ2 = (pq)2

∫ 2π

0

cos2 t(
p2 cos2 t+ q2 sin2 t

)3/2 dt. (6.3)

Hence, given p, q we can determine λ1, λ2.

Now, the question that we are asking is - given λ1, λ2 computed for an arbitrary closed

curve, can we invert equations 6.2 and 6.3 to determine p, q of an ellipse corresponding

to a curve, such that their perimeters are same. The perimeter of the ellipse is given

by P = 4 q E(π/2, e), where e =
√

1− p2/q2 is the ellipticity, and E is the complete

Elliptic integral of the second kind. We must also have P = (λ1 + λ2)/2. We know

that E is a monotonous function of e which implies that there is a one-to-one invertible

mapping between e, P and p, q. There must exist a one-to-one mapping from λ1, λ2 to p, q.

Therefore, for any arbitrary simple closed curve there is an unique ellipse corresponding

to it. The ellipse is unique upto rotations and translations. If we include the orientation

information about the curve contained in ϕ, the orientation of the ellipse also gets fixed.

Mapping of a curve to an unique ellipse can easily be generalized from flat 2-D to the

surface of the sphere. An ellipse on the surface of the sphere, is defined as the locus of

points which have the sum of the geodesic distances from the two loci constant.



Chapter 6: CMT for anisotropic fields 124

Further, we know that β as defined in chapter 3, to be the ratio of the eigenvalues

β ≡ λ1

λ2
. (6.4)

quantify the anisotropy of a given arbitrary curve. We can expand β using equation 6.1

in terms of g/τ as

β =
τ − g
τ + g

= 1− 2
g

τ
+ 2

g2

τ2
−O

(
g3

τ3

)
. (6.5)

The value of g lies between 0 and ∞, while β lies between zero and one. We get β equal

to one for a closed curve having m-fold symmetry, with m ≥ 3. Deviation of β from one,

or g from zero indicates anisotropy of the curve as discussed in Chapter 3. Note that

g, or g/τ , or β are complementary measures of intrinsic anisotropy of the curve. Which

among three is best suited for statistical analysis will be determined by the size of the

standard deviation when applied to random fields. We have checked that for random

fields, the statistical fluctuations of β are considerably smaller than that of g. This is

due to cancellation of the fluctuations when taking ratio of the eigenvalues. Hence β is

better suited as an anisotropy parameter. We are not showing here the relevant plots

supporting this argument, but they will be part of the paper to be submitted soon.

6.2.1 Distribution of many curves and their relative align-

ment

We will now carry forward the idea of mapping of an arbitrary closed curve to an ellipse

to describe the distribution of many such arbitrary shaped smooth simple curves.

For simplicity let us first consider two closed curves C ′ and C ′′. Let their CMTs be W ′1
and W ′′1 . The tensor sum W̃1 ≡ W

′
1 +W ′′1 is

W̃1 =


(τ ′ + g′1) + (τ ′′ + g′′1) g′2 + g′′2

g′2 + g′′2 (τ ′ − g′1) + (τ ′′ − g′′1)

 , (6.6)
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a

Figure 6.1: Schematic diagram for mapping from a distribution of curves (left
panel) to a distribution of ellipses (a) in the middle panel to a single unique
ellipse in the right panel.

Let us now define,

τ ≡
(
τ ′ + τ ′′

)
, g1 ≡

(
g′1 + g′′1

)
, g2 ≡

(
g′2 + g′′2

)
, (6.7)

ϕ ≡ tan−1

(
g1

g2

)
. (6.8)

Using the mapping between eigenvalues and principle axes of an ellipse described ear-

lier we can construct the ellipse that corresponds to W̃1. It is now straightforward to

generalize the mapping for a distribution of many curves. Figure 6.1 shows a schematic

diagram showing mapping of many curves to a final single ellipse. The middle panel

in the figure shows a distribution of ellipses, each one corresponding to each arbitrary

closed curve shown in the left panel. Mapping distribution of curves in left panel first

to the distribution of ellipses in the middle panel and then finally to a single ellipse in

the right panel, is equivalent to directly mapping distribution of arbitrary closed curves

shown in left panel to a single ellipse.

Alignment parameter: Given a spatial distribution of many curves the relative alignment

between the curves is encoded in the parameter,

α ≡ Λ1

Λ2
, (6.9)

where Λ1 and Λ2 are the eigenvalues of W̃1 such that Λ1 ≤ Λ2. By definition we

have 0 ≤ α ≤ 1. α gives a measure of the deviation from rotational symmetry in the

distribution of structures. For randomly oriented structures with no preferred direction
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α = 1. For α < 1, its values gives the degree of anisotropy, while the direction information

is contained in ϕ obtained from W̃1. For a single curve we have α = β. All this has

already been described in Chapter 3, just for the completeness and aid the understanding

of concepts presented in this chapter we are describing them here again.

Just as done for β we can expand α in terms of g/τ as

α =
τ − g
τ + g

= 1− 2
g

τ
+ 2

g2

τ2
−O

(
g3

τ3

)
. (6.10)

This expression for α shows that there can be degeneracy between the number of struc-

tures and the total perimeter, in the way α captures the information of alignment. Any

disproportionate change of τ and g will make α change, with the shift either towards one

or towards zero determined by increase or decrease of their ratio.

6.3 Comparison with shape finders

Shapefinders comprise a set of geometric parameters derived from scalar Minkowski func-

tionals to describe the geometry and topology of structures or individual objects (Sahni

et al. 1998). MFs are themselves morphological descriptors; shapefinders can provide

information about the characteristic dimensions of an object, for example, the filamen-

tarity of a filament which is a part of the cosmic web. In this section, we compare the

information contained in α and β about the morphology of structures with that obtained

from the shapefinders.

Using scalar MFs V0 (area enclosed by the curve) and V1 (contour length) one can define

the filamentarity parameter (Sahni et al. 1998; Shandarin 2004; Bharadwaj et al. 2000):

F (ν) =
V 2

1 − V0

V 2
1 + V0

. (6.11)
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F gives a measure of the elongation or the filamentarity of a structure. Its value lies

between 0 and 1. F value close to one implies highly elongated structure.

Now, we want to compare the information content encoded in three shape parameters

F , α and β, i.e., how anisotropy of structures show up in each of these parameters.

To do so we have taken two simple examples of sums of Gaussian functions/fields given

by

f(x, y) =
n∑
i=1

exp

{
−(x− xi)2 + (y − yi)2

22
i

}
, (6.12)

such that the Gaussian peak locations xi, yi, σi are chosen depending on how we want

to arrange the iso-contours. We have computed shape parameters α, β and F for the

two Gaussian fields using the method 2 (using identification of contours in pixel space)

described in chapter 3.

The top panels of figure 6.2 show two examples of f where xi, yi are arranged linearly

(left) and curvilinearly (right). The figure shows systematic variation of the iso-contours

shape, size and their number as a function of threshold value of the field. The bottom

panels show α, β and F for the functions in the corresponding panel above. The thresh-

olds at which the iso-contours percolate are marked by the dotted lines. We find that for

both the cases F decreases only mildly as the contours shrink, till each fragmentation

occurs where it exhibits discontinuity. This is as expected because the perimeter and

area enclosed within it decrease proportionately. In particular F detects elongation of

the structures but is not sensitive to whether a structure is linear or curved. Note that

we do not show F for individual structures after fragmentation. α, on the other hand,

is strongly sensitive to the variation in the iso-contours with threshold. Therefore, it

contains more information about the morphology (shape and distribution) of the curves

compared to F . However, the caveat is that it will not sensitively distinguish a structure

which is, say, mildly elliptical from one which is elongated but curved, such as the exam-

ple on the right panel of figure 6.2. Therefore, for practical applications it will be best

to use a combination of both F and α to get complete morphological information about

a structure. However, the knowledge of direction/orientation of the curve, encoded in ϕ
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Figure 6.2: Top: Iso-contours for two functions given by eq. 6.12 with peak
locations arranged linearly (left) and non-linearly (right). Bottom: F , α and
β for individual structures after fragmentation versus threshold, for the corre-
sponding function in the panel above. The percolation thresholds are indicated
by the black dashed lines.

(equation 3.27) obtained from CMT is not contained in the scalar MFs.

It is also interesting to observe the behaviour of β for individual structures. As we can

see in the bottom panels of figure 6.2, till the first fragmentation there is only structure

and so α = β. After each fragmentation threshold the blue curve for β bifurcates into

two curves for each individual structure. We can track the evolution of morphology of

each structure as a function of threshold.
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6.4 Ensemble expectation value of W̃1 for Gaussian

anisotropic fields

Current observations indicate that cosmological fields are Gaussian and isotropic on large

scales. However, on small scales, we see a deviation from both Gaussianity and isotropy.

For example, the non-linear gravitational evolution of matter density field introduces

non-Gaussianity on small scales. In order to employ MTs for probing anisotropy and

non-Gaussianity of cosmological fields, it is desirable to derive analytic expressions, if

possible, so that we can infer physical effects correctly when we compute them from

observed data. As a first step, we have derived an analytic expression for the CMT for

Gaussian anisotropic fields in two dimensions. Our results hold for fields in both flat and

curved spaces.

Let us consider the random 3 × 1 matrix X ≡ (u, u;1, u;2). Each element is given to be

Gaussian random variable. So the joint PDF of u, u;1, u;2 is given by the Gaussian form

Pν(X) =
1√

2π DetΣ
exp

(
−1

2
XTΣ−1X

)
, (6.13)

where Σ is the covariance matrix.

Given that the field u is homogeneous and anisotropic we model the covariance matrix

as

Σ =



σ2
0 0 0

0 σ2
u1 0

0 0 σ2
u2


, (6.14)

where

〈uu;i〉 = 0, 〈u2
;i〉 ≡ σ2

u;i ≡ σ
2
ui , 〈u;1u;2〉 = 0, (6.15)
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i = 1, 2. The cross correlations 〈uu;i〉 and 〈u;1u;2〉 are zero even for anisotropic fields since

the fields u, u;1, u;2 are independent of each other, regardless of the nature or symmetry

properties of the field.

In general σ2
u;1 and σ2

u;2 are function of the threshold. Such dependence can be due

to the sampling effect. Hence, we consider threshold dependence of sigmas of the first

derivatives of the field. However, we also assume that the sampling effect does not induce

inhomogeneity and departure from Gaussian nature of the field. Then, Pν(X) becomes

Pν(X) =
1√

2πσ2
0σ

2
u1σ

2
u2

exp

{
−1

2

(
u2

σ2
0

+
u2

;1

σ2
u1

+
u2

;2

σ2
u2

)}
, (6.16)

where the index ν on P is to remind us that it can be dependent on ν via Σ. On the

RHS ν is not explicitly written.

In the following we will use this PDF to discuss ensemble expectations of W̃1.

6.4.1 Ensemble expectation of W̃1

The ensemble expectation value of the (i, j) element of W̃1 at threshold ν is obtained to

be

〈W̃1〉ij =

∫ ∞
−∞

du

∫ ∞
−∞

du1

∫ ∞
−∞

du2 Pν(X)
(
W̃1

)
ij

(6.17)

=
1

N

∫
du δ(u− ν) e

− u2

2σ20 Fij (6.18)

=
1

N
e
− ν2

2σ20 Fij . (6.19)
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where Fij is given by

Fij =

∫ ∞
−∞

du1

∫ ∞
−∞

du2 exp

(
−
u2

;1

2σ2
1

−
u2

;2

2σ2
2

)(
W̃1

)
ij

(6.20)

The normalization factor 1
N is

1

N
=

1√
2π detΣ

=
1√

2π σ2
0σ

2
1σ

2
2

. (6.21)

For 22 element we have :

F22 =

∫ ∞
−∞

du1 u
2
1 e
−u21/2σ2

1

∫ ∞
−∞

du2 e
−u22/2σ2

2
1√

u2
1 + u2

2

, (6.22)

Carry out u2 integration first using the following integral (page 367 Gradsteyn & Ryzik)

∫ ∞
−∞

dx e−px
2 1√

a2 + x2
= ea

2p/2K0

(
a2p

2

)
, (6.23)

where

K0(x) =

∫ ∞
0

cosxt√
1 + t2

dt (6.24)

Using this we get,

F22 =

∫ ∞
−∞

du1 u
2
1 exp

[
− u2

1

2σ2
1

(
1− σ2

1

2σ2
2

)]
K0

(
u2

1

4σ2
2

)
(6.25)

=

∫ ∞
0

dt
1√

1 + t2

∫ ∞
−∞

du1 u
2
1 exp

[
− u2

1

2σ2
1

(
1− σ2

1

2σ2
2

)]
cos

(
u2

1t

4σ2
2

)
(6.26)

For carrying out u1 integral, we can use (page 507 Gradsteyn & Ryzik)

∫ ∞
−∞

dxx2 cos(Ax2)e−Bx
2

=

√
π

2B3/2[(A/B)2 + 1]3/4
cos

(
3

2
tan−1 A

B

)
(6.27)

Here

A =
t

4σ2
2

= at, B =
1

2σ2
1

(
1− σ2

1

2σ2
2

)
. (6.28)

Let

D =
σ2

2

2σ2
2 − σ2

1

(
σ1

σ2

)2

, (6.29)
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then,
A

B
=

a

B
t = Dt. (6.30)

So,

F22 =

√
π

2B3/2

∫ ∞
0

dt
1√

1 + t2
1

(1 +D2t2)3/4
cos

(
3

2
tan−1Dt

)
(6.31)

Let

tan−1Dt = y, ⇒ t =
1

D
tan y (6.32)

dy =
1

1 +D2t2
Ddt. (6.33)

This gives,

F22 =

√
π

2B3/2D

∫ π/2

0
dy

1√
1 + tan2 y/D2

(
1 + tan2 y

)1/4
cos

(
3

2
y

)
(6.34)

=

√
π

2B3/2

∫ π/2

0
dy

1√
D2 + tan2 y

1
√

cos y
cos

(
3

2
y

)
︸ ︷︷ ︸. (6.35)

We can obtain other elements of Fij by carrying out similar steps. Combining everything

we finally obtain the expression for the ensemble expectation of W̃1 as,

〈W̃1〉 =
2
√

2

σ0


A1f1 0

0 A2f2

 e
− ν2

2σ20 , (6.36)

where

A1 =
σ2
u1σ

2
u2(

2σ2
u2 − σ2

u1

)3/2 , A2 =
σ2
u1σ

2
u2(

2σ2
u1 − σ2

u2

)3/2 . (6.37)

The factor fi, for i = 1, 2, is given by

fi =

∫ π/2

0
dy

1√
D2
i + tan2 y

1
√

cos y
cos

(
3

2
y

)
, (6.38)

with

D1 =
σ2
u1

2σ2
u2 − σ2

u1

, D2 =
σ2
u2

2σ2
u1 − σ2

u2

. (6.39)
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From equation 6.36 we get g2 = 0. Also, we can express 〈τ〉 and 〈g1〉 as

〈τ(ν)〉 =

√
2

σ0

(
A1f1 +A2f2

)
e
− ν2

2σ20 (6.40)

〈g1(ν)〉 =

√
2

σ0

(
A2f2 −A1f1

)
e
− ν2

2σ20 . (6.41)

Equation 6.40 generalizes the well known expression for the second scalar MF, the contour

length, for Gaussian isotropic fields to Gaussian but anisotropic fields.

If σ2
u1 = σ2

u2 , then equation 6.36 gives

〈W̃1〉 =
1

8rc
e−ν

2
t /2 × I×A, (6.42)

where I is the identity matrix, and rc is the correlation length of the field given by

rc = σ0/σu1 . This is the expression obtained in Chingangbam et al. (2017b). Hence, we

recover the result for a Gaussian isotropic field.

6.5 Conclusion

In this work we have addressed the question of statistical isotropy of smooth random fields

in two dimensions from a geometrical perspective, building on our earlier work Chingang-

bam et al. (2017b). We use the CMT to construct a mapping of an arbitrary closed curve

to an ellipse that is unique upto translations of the centroid. We show that the shape

parameters that are defined using the CMT, and the filamentarity that is defined us-

ing the scalar MFs (area and the perimeter), carry complementary shape information.

Therefore, using a combination of both will maximize extraction of shape information

in practical applications. Next we focus on CMT for Gaussian anisotropic fields. We

obtained a analytical expression for the ensemble expectation value of W̃1. This will be

useful to probe various physical processes that generate anistropy in cosmological fields
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like CMB. We plan to extend the analysis to address the question of geometrical meaning

of statistical isotropy in three dimensional space.



Chapter 7

Constraining primordial

non-Gaussianity using Minkowski

tensors and Betti numbers∗

Morphological descriptors scalar MFs have been widely used to constrain primordial non-

Gaussianity in CMB and large-scale structure datasets. The topological observables MTs

and Betti numbers contain additional information in comparison to SMFs. Hence, we

speculate that we can obtain significant improvement in constraints on fNL parameter

using MTs and Betti numbers. In this chapter, we discuss some investigations that

are ongoing in this direction. We first briefly review the primordial non-Gaussianity

sources and parametrization of a particular type of non-Gaussianity in section 7.1. This

is followed by a brief outline of the simulations of non-Gaussian CMB maps in section 7.2.

Further, we will present some preliminary results for this problem in the section 7.3 and

discuss the further plans of this project in section 7.4.

∗This chapter contains material from paper in preparation
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7.1 Review of primordial non-Gaussianity

Observations of cosmological fluctuations from CMB and large-scale structure strongly

support the standard inflationary paradigm, predicting primordial fluctuations to be

nearly scale-invariant, adiabatic, and Gaussian. However, all inflationary models that

generate primordial perturbations predict a certain degree of primordial non-Gaussianity

(PNG). The predicted degree of PNG is model-dependent. The amplitude of PNG is

usually described in terms of a dimensionless nonlinearity parameter fNL. Different

models of inflation predict different amount of fNL, starting from O(1) to fNL ∼ 100.

Non-Gaussianity from the simplest inflation models that are based on a slowly rolling

scalar field is very small; however, a substantial class of more general models with, for

example, multiple scalar fields, features in inflaton potential, nonadiabatic fluctuations,

noncanonical kinetic terms, deviations from Bunch-Davies vacuum, among others gener-

ates substantially higher amounts of PNG. Two broad classes of PNG arsing from various

inflation models are: PNG of equilateral type (Alishahiha et al. 2004; Chen 2005; Lan-

glois et al. 2008) and PNG of local type (Verde et al. 2000; Komatsu and Spergel 2001).

Here, we focus on PNG of the local type, which has a simple form,

Φ (r) = ΦL(r) + fNLΦNL(r), (7.1)

where ΦNL is defined as

ΦNL(r) = Φ2
L(r)− 〈Φ2

L(r)〉. (7.2)

Here Φ is the non-Gaussian primordial gravitational potential which is the sum of two

terms: linear part (ΦL) and a non-linear (ΦNL) part. Φ sets the initial conditions for

the theoretical calculation of CMB temperature and polarization anisotropies. Hence

the signatures about PNG will be imprinted in the CMB fluctuations.

To capture non-Gaussianity in cosmological observations, we have to go beyond the two-

point statistics, i.e., beyond two-point correlation function and its counterpart in Fourier
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space, power spectrum. Small non-Gaussianity in the CMB motivates perturbative meth-

ods to characterize it, i.e. third, fourth moment (bispectrum, trispectrum, etc) are well

motivated. The measurement of the bispectrum or the three-point correlation function

of the CMB anisotropies is one of the most promising and clean ways of constraining

primordial fNL. Large-scale structure observations contain not only the PNG but also

the late-time non-Gaussianity from gravitational instability and galaxy biasing, which

potentially obscure the primordial signatures.

The tightest constraints on local type PNG are fNL = −0.9±5.1 at 68% CL from Planck

2018 measurements of the three-point correlation function of the CMB temperature and

polarization anisotropies (Planck Collaboration et al. 2020d), and −51 < fNL < 21 at

95% CL from eBOSS DR14 data (Castorina et al. 2019). Foreground contamination,

instrumental noise, and many secondary effects like weak lensing of CMB, late time

integrated Sach wolfe (ISW) effect, also generate non-Gaussian features in cosmological

fields. Cosmic variance also introduces some NG due to the uniqueness of the observed

CMB sky. PNG signal is mixed with all these other sources of NG. Hence the search for

primordial non-Gaussianity is a challenging task.

To detect signatures of PNG in cosmological fields, we must use different statistical ob-

servables in real space and the Fourier domain. This approach is helpful since different

statistical observables are sensitive to different aspects of non-Gaussianity, and hence

they help disentangle PNG and non-Gaussianity from other sources. Commonly used

observables in Fourier space to study NG signatures in CMB are bispectrum, trispec-

trum (Komatsu and Spergel 2001), the spherical Mexican hat wavelet, etc. Waveletes are

kind of in between the Fourier domain and real space statistical tools which are used to

investigate non-Gaussianity in cosmology. Real space statistics like skewness, kurtosis,

Betti numbers, Minkowski functionals, and Minkowski tensors can provide complemen-

tary information on non-Gaussianity in cosmological fields. Minkowski functionals have

been extensively studied and employed to investigate non-Gaussianity in CMB (Gott

et al. 1990; Schmalzing and Gorski 1998; Novikov et al. 2000; Hikage et al. 2006; Chin-

gangbam and Park 2009; Ducout et al. 2013; Chingangbam et al. 2017a; Buchert et al.
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2017; Planck Collaboration et al. 2020d). Minkowski tensors (MTs) which are the ten-

sor generalization of SMFs, carry extra degrees of freedom,.ie., additional information

related to intrinsic anisotropy and alignment of structures as discussed in Chapter 3 of

this thesis. It may be possible that MTs can constrain specific cosmological parameters

better than possible with SMFs. Therefore, we plan to compare the constraints on PNG

parameter fNL obtained from MFs and MTs. We study imprints of PNG of local-type

in CMB temperature and E-mode polarization fields.

7.2 Simulation of non-Gaussian CMB maps

In order to investigate non-Gaussianity in CMB using different statistical observables,

one needs to first simulate high-resolution CMB maps containing non-Gaussianity. Here,

we briefly describe the method first proposed by Liguori et al. (2003, 2007) and developed

further in Elsner and Wandelt (2009) to generate CMB simulation with PNG. Below we

outline the steps for simulating non-Gaussian CMB maps:

• Generate the multipole moments of a purely Gaussian gravitational potential

ΦL,`m(r) as a function of the conformal distance in two steps,

– Computation of radial correlation function or the covariance matrix of the

gravitational potential given as

PΦ`(r1, r2) ≡ 〈ΦL,`1m1(r1) Φ∗L,`2m2
(r2)〉

= 4π δ`1`2 δm1m2

∫
dk
k2P(k)

2π2
j`1(kr1) j`2(kr2), (7.3)

where P(k) is the primordial power spectrum predicted by inflation.

– Then a random realization of the linear gravitational potential at distances

r = (r1, r2, r3, ...rn) is given by

ΦL,`m(r) = PΦ`
1/2.g, (7.4)
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where g is a vector of independent complex Gaussian random variables with

zero mean and unit variance.

• Compute the inverse spherical harmonic transform to derive the corresponding

expression in pixel space, ΦL(r).

• Square the linear term ΦL and subtract the variance according to Eqn 7.2 to get

the non-Gaussian potential ΦNL(r).

• Transform to spherical harmonic space to obtain ΦNL,`m(r).

• Solve the following integral

aXL,`m =
(−i)`

2π2

∫
dkk2ΦL,`m(k)∆X

` , (7.5)

where ∆X
` is the radiation transfer function. Non-linear spherical harmonic coef-

ficients (aXNL,`m) are obtained by replacing the linear term, ΦL,`m, with the non-

linear term ΦNL,`m.

• The spherical harmonic coefficients of a map with local-type primordial non-

Gaussianity, fNL, can be calculated as

aX`m = aXL,`m + fNL . a
X
NL,`m. (7.6)

We use publicly available simulations by Elsner and Wandelt which were generated fol-

lowing the steps described above. The maximum resolution of these maps is fixed by

the maximum multipole `max = 1024 and Nside = 512. These maps were simulated

with the cosmological parameters obtained from WMAP + BAO + SN data: ΩΛ = 0.721,

Ωch
2 = 0.1143, Ωbh

2 = 0.02256, ns = 0.96, As = 2.457× 10−9.
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7.3 Prospects of using Minkowski tensors and Betti

numbers to constrain primordial non-Gaussianity

Topological observables like the genus and the betti numbers have been employed to study

primordial non-Gaussianity in CMB and large scale structure data. Chingangbam et al.

(2012) demonstrated that Betti numbers β0 and β1, which are the count of hot spots and

cold spots in the context of CMB, are sensitive to non-Gaussianity in CMB. They found

the characteristic non-Gaussian deviation shapes of β0 and β1 for each distinct model

of non-Gaussianity considered in their work. They also showed that the Betti numbers

contain additional information compared to the genus and hence, are valuable statistical

observables to probe non-Gaussianity. We will not show any results using Betti numbers.

Nevertheless, we mention them as they complete the full set of morphological statistics.

This work compares MFs and MTs to check if MTs can provide more information on PNG

than MFs. Since MTs contain more degrees of freedom, we expect they can constrain

PNG better than scalar MFs. We discuss our analysis below and present some preliminary

results.

We have considered local-type PNG, which is parameterized by the fNL parameter.

We used Elsner’s simulation to generate 1000 realizations of non-Gaussian CMB maps

having local type PNG. We then compute MTs W1 and W2, and their respective trace,

which are the corresponding scalar MFs V1 and V2. MTs and scalar MFs are computed

for 33 equally spaced threshold bins from −4 ≤ ν ≤ 4 using the field derivative method

outlined in Chapter 3. The resolution of the map we used is given by HEALPix resolution

parameter, Nside = 512. We smoothed the maps with a Gaussian smoothing kernel

having FWHM=30’. We have taken fNL = 10.
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We then compute ∆W and ∆Tr which is the difference between MTs of non-Gaussian

field and corresponding Gaussian field and are defined as,

(∆W1)ii = (WNG
1 )ii − (WG

1 )ii, (7.7)

(∆W2)ii = (WNG
2 )ii − (WG

2 )ii, (7.8)

∆Tr(Wi) = Tr(WNG
i )− Tr(WG

i ), (7.9)

where i = 1, 2.

We now quantify the gain in information by comparing the signal to noise (S/N), which

is defined as the ratio of the mean and standard deviation of the quantities defined in

equations 7.7-7.9. The standard deviation is given by sample variance of 1000 realizations

used here. Our results are shown in figure 7.1. The top two panels show a comparison of

S/N for individual elements of ∆Wi, where i = 1, 2, their trace and S/N of the diagonal

elements of W1 and W2 combined in quadrature for the temperature field. We find that

although S/N of the individual elements are no better than the S/N for the trace, the

quadrature combination of the two diagonal elements gives S/N higher than that of the

trace. So, using MTs, S/N increases by about 18%. However, we note that the gain is not

uniform across the full threshold range. The bottom panels show the comparison of S/N

for the E-mode polarization field. The results are similar to that for the temperature

field. These are the preliminary results driving us to further pursue this analysis.

7.4 Summary and future work

MTs are a tensorial generalization of the scalar Minkowski functionals that have previ-

ously been used to probe non-Gaussianity in CMB and large-scale structure fields. MTs

contain more independent degrees of freedom in comparison to MFs. Hence we specu-

late that they will provide tighter constraints on PNG parameter fNL. We have used

non-Gaussian simulations of CMB fields to compute non-Gaussian deviations of MFs

and MTs and compare their statistical significance. We find ∼ 18% gain in S/N when
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Figure 7.1: Comparison of S/N between MTs and SMFs (trace of MTs) for
the temperature and E-mode polarization field.

the diagonal elements of W1 and W2 are combined in quadrature in comparison to their

respective traces. This can be useful for improving constraints on the fNL parameter.

The road map for future work is as follows:

• In our analysis, we have taken only one value of fNL parameter. We will now

repeat our analysis for different fNL values that are consistent with the current

constraints on fNL, and see how the results will vary. This will inform us of any
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potential dependence of S/N on fNL.

• We will also consider different kinds of non-Gaussianity and check the sensitivity

of our results to different types of NG.

• We have till now considered the ideal simulations with no real systematic effects

like masking, noise, residual foreground contamination. We will now include these

effects in our simulations and repeat the analysis to see if our method can be

applied to real data to obtain a significant improvement of constraints on fNL.

We also plan to perform a Fisher matrix analysis to obtain constraints on fNL

using MTs and SMFs.

• Lastly, we will apply the method to Planck data to obtain constraints on fNL.



Chapter 8

Summary, conclusions, and caveats

8.1 Key results and conclusions

• We have investigated the changes induced in the morphology of CMB fields, namely

temperature fluctuations and E and B modes of polarization, which are sourced

by gravitational lensing of CMB photons by large scale structures in the Universe.

We use the recently introduced contour Minkowski Tensor W1 and the shape pa-

rameters α and β, to quantify the distortion induced by lensing in the shapes of

the connected regions and the holes, and their relative alignment, which gives a

measure of departure from statistical isotropy. The calculation of the alignment

parameter α was done by computing derivatives of the field which can be done

directly on the sphere. We have verified that this method is very accurate and

numerical error are well below sub-percent level. While for computing distortion

parameter β, we carry out stereographic projection of the CMB fields on flat 2-D

space and then compute β using the method described in Chapter.3. We use α and

β to quantify the morphological changes induced by lensing on the CMB fields.

We find distinct behavior of morphological distortion as a function of threshold
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for both temperature and polarization, namely E and B modes, of the CMB. We

analyze the dependence on smoothing scale of the distortion and their complemen-

tary nature to the angular power spectrum. We find that lensing does not induce

statistical anisotropy, which is as expected. We also found that lensing distorts

the morphology of the structures in CMB, rendering them highly anisotropic.

• We have tested the cosmological principle by employing Contour Minkowski Tensor

and hence computing α parameter for the large scale matter distribution recon-

structed using observations of lensed CMB fields by Planck mission. We have

analysed the estimated Planck convergence map and the corresponding simula-

tions from Planck 2018 data release. We compute α for the convergence (κ) map

over full sky, we refer to this as the Global analysis. We find the convergence field

to be statistically isotropic over the full sky. We also perform local analysis, where

we compute α for the convergence map by defining small patches/regions in the

sky. From this analyses, we identified some anomalous regions/patches where data

and simulations seem to disagree with more 95 % CL. This anomalous behavior

of some regions in the can be attributed to to an inaccurate accounting for the

estimated noise in the data. Hence, the local patch analysis suggests a powerful

method for better understanding of noise.

• We use the CMT to construct a mapping of an arbitrary closed curve to an ellipse

that is unique upto translations of the centroid. Using this idea we further study

the distribution of many arbitrary shape curves each of which can be mapped to

an unique ellipse. We also show that we can map this distribution of many ellipses

to an unique one single ellipse, which is equivalent to the α for the distribution of

curves we started with. Next, we show that the shape parameters that are defined

using the CMT, and the filamentarity that is defined using the scalar MFs (area

and the perimeter), carry complementary shape information. Therefore, using a

combination of both will maximize extraction of shape information in practical

applications. Next we focus on CMT for Gaussian anisotropic fields. We obtained

a analytical expression for the ensemble expectation value of W̃1. This will be

useful to probe various physical processes that generate anisotropy in cosmological

fields like CMB.
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• The last part of the thesis has focused on analyzing the prospects of constraining

primordial non-Gaussianity in CMB fields using MTs and Betti numbers. MTs

are a tensorial generalization of the scalar Minkowski functionals (MFs) which

have previously been used to probe local-type primordial non-Gaussianity. MTs

being the tensorial observables, contain more independent degrees of freedom.

Hence, we expect that they will provide tighter constraints on primordial non-

Gaussianity parameter fNL in comparison to SMFs. In this analysis, we have

used non-Gaussian simulations of CMB fields by Elsner Wandelt to compute

non-Gaussian deviations of both MFs and MTs (W1 and W2) and compare their

statistical significance. We find ∼ 20% gain in S/N in the case of MTs over MFs.

We, therefore, demonstrate the gain in the signal to noise which can help improve

the constraints on fNL.

8.2 Future work

Below we give a list of future direction of investigation.

• We have studied the effect of weak gravitational lensing on morphology CMB

temperature and polarization fields by generating their ideal lensed and unlensed

simulations using LENSPIX. We did not add realistic instrumental effects such as

masking, noise, and residual foregrounds to our simulated fields. Hence we plan

to incorporate these effects and check their effects on our results. This analysis

will be helpful to assess if we can employ real space observables like MTs on actual

CMB data to detect CMB lensing. We have computed shape parameter β by

projecting CMB fields on a flat 2-D plane in this work. We plan to develop a code

to compute β directly on the surface of the sphere to avoid the errors introduced

due to stereographic projection. Once we have the code which computes β directly

on the sphere, we would like to obtain β distribution for the lensed CMB fields

and study its cross-correlation with the lensing potential or the convergence map



inferred from lensed CMB observations. This analysis will be the first step towards

inferring the lensing potential using morphological distortions of the CMB fields.

• We have identified some anomalous regions/patches in the sky by performing the

local patch analysis of the Planck 2018 convergence field. Each of the anomalous

regions, particularly the two regions that exhibit statistically significant devia-

tion from statistical isotropy, is interesting for further probes and cross-correlation

with large-scale structure surveys. This kind of investigation is beneficial in the

wake of many upcoming large-scale structure surveys like EUCLID, Vera Rubin

Observatory.

• We have outlined our method to constraint primordial non-Gaussianity (PNG)

parameter fNL in CMB fields using Minkowski tensorsW1 andW2. In the prelim-

inary analysis, we find that MTs can provide statistically significant information

on fNL. We plan to extend our analysis by including instrumental systematics and

check sensitivity of our results. Also, we will study other types of non-Gaussianity

other than the local type PNG using MTs. Finally we will apply our method-

ology on Planck data and obtain constrain on fNL. On the analytic front, we

plan to derive analytic expression for the expectation value of MTs for a weakly

non-Gaussian filed.

• We have tried to understand some aspects of the meaning of homogeneity and

isotropy of smooth random fields in 2-dimensional manifold from their geometrical

properties. We have also derived analytic expression of the expectation value

of CMT for a Gaussian anisotropic field. Although the cosmological fields are

expected to be homogeneous, isotropic and Gaussian on large scales, on small

scales we see deviation from both Gaussianity and isotropy. Thus, to employ MTs

for probing anisotropy it is desirable to derive analytic expressions. We plan to

extend this analysis to 3-D space.
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