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ABSTRACT

A typical galactic disc has a finite thickness. In addition to stars, it also contains a finite amount of interstellar gas. Here, we investigate
the physical impact of the finite thickness of a galactic disc on the disc stability against the non-axisymmetric perturbations and on
the longevity of the spiral density waves, with and without the presence of gas. The longevity is quantified via the group velocity of
density wavepackets. The galactic disc is first modelled as a collisionless stellar disc with finite height and then more realistically as
a gravitationally coupled stars plus gas system (with a different thickness for stars and gas). For each case, we derive the appropriate
dispersion relation in the Wentzel-Kramers-Brillouin approximation and study the dynamical effect of the disc thickness on the life-
time of spiral density waves via a parametric approach. We find the generic trend that the effective reduction in disc self-gravity due
to disc thickness makes it more stable against the non-axisymmetric perturbations and shortens the life-span of the spiral density
waves. Furthermore, interstellar gas and disc thickness are shown to have a mutually opposite dynamical effect on the disc stability as
well as on the longevity of the spiral density waves. While the gas supports the non-axisymmetric features for a longer time, the disc
thickness has an opposite, quenching effect. Consequently, the net change is set by the relative dominance of the opposite effects of

the interstellar gas and the disc thickness.
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1. Introduction

Spiral features are one of the most common non-axisymmetric
structures (apart from a bar) in disc galaxies in the local Universe
(e.g. Elmegreenetal. 2011; Yuetal. 2018; Savchenko et al.
2020). The occurrence of spiral structure in high-redshift
(up to z ~ 1.8) disc galaxies is also known observation-
ally (e.g. Elmegreen & Elmegreen 2014; Willett et al. 2017;
Hodge et al. 2019). The simultaneous occurrence of spiral
structure with an m = 2 bar or an m = 1 lopsided-
ness in disc galaxies is common (e.g., see Rix & Zaritsky
1995; Bournaud et al. 2005; Butaetal. 2010; Zaritsky et al.
2013; Kruk etal. 2018; Ghosh etal. 2021). The Milky Way
is a barred spiral galaxy (Weinberg 1992; Gerhard 2002) as
well. In the past, a plethora of physical mechanisms ranging
from bar-induced spirals (e.g., Salo et al. 2010), tidal encoun-
ters (e.g., Toomre & Toomre 1972; Dobbs et al. 2010), and
swing amplification of noise (Goldreich & Lynden-Bell 1965;
Julian & Toomre 1966; Toomre 1981) due to the disc response
to giant molecular clouds (D’Onghia et al. 2013), due to inter-
actions with other spirals (Masset & Tagger 1997), to recur-
rent groove modes (Sellwood & Lin 1989; Sellwood 2012;
Sellwood & Carlberg 2019), and to manifold-driven spirals
(Athanassoula 2012) have been proposed for exciting spirals in
disc galaxies.

Regardless of the physical mechanism(s) triggering the spi-
ral instability in the disc, it is vital to address the nature and the

longevity of spirals. Previous studies (Goldreich & Lynden-Bell
1965; Julian & Toomre 1966; Toomre 1981) proposed the spiral
arms as transient material arms arising through the joint effects
of the epicyclic motion of stars, and shear from differential rota-
tion, and the disc self-gravity. On the other hand, another set
of studies by Lin & Shu (1964, 1966) envisaged the spirals as
quasi-stationary density waves that rotate with respect to the disc
with a well-defined pattern speed (for a detailed recent review,
see Shu 2016). Implicit to the formalism of swing amplifica-
tion, the material arms do not last for a long time (beyond a
few dynamical timescales or a few x108 yr) and are wound up
by the disc differential rotation, whereas by definition, the spiral
density waves are assumed to be stationary or they last forever.
However, Toomre (1969) showed that due to the radial group
transport, a wavepacket made of such density waves is even-
tually destroyed within a timescale of ~1 Gyr, thereby posing
a challenge to the stationary picture of the density wave the-
ory. Spirals, generated in N-body simulations, are almost always
found to be a transient phenomenon (e.g. see Sellwood 2011;
Grand et al. 2012; Baba et al. 2013, for a review the reader is
referred to Dobbs & Baba 2014). However, the high-resolution
N-body simulation by D’Onghia et al. (2013) showed that the
spirals can be sustained (at least in the statistical sense) for much
longer timescales as a result of the non-linear disc response to
the perturbation caused by giant molecular cloud-like mass con-
centration. Another recent work by Saha & Elmegreen (2016)
showed that bulges play a pivotal role in the sustenance of
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spirals in N-body simulations, and intermediate-sized bulges can
help the spiral density wave to last longer (~5 Gyr) by providing
a high Toomre Q-barrier in the inner region. Interstellar gas also
is shown to play a pivotal role in the longevity of spiral density
waves in disc galaxies. Earlier work by Sellwood & Carlberg
(1984) demonstrated the role of a dissipative component in cool-
ing the stellar disc and facilitating the generation of fresh spiral
waves. Jog (1992) included gas along with stars in the frame-
work of the swing amplification mechanism for a more realistic
treatment, which yielded broad stellar arms as observed. Further-
more, Ghosh & Jog (2015, 2016) showed that the interstellar gas
helps spiral density waves to survive for a longer time (several
billion years).

Most of the past analytical studies of spiral structure
in disc galaxies treated the galactic disc as being infinites-
imally thin for simplicity (but see Goldreich & Lynden-Bell
1965). This assumption is valid when the height of the disc
is small as compared to the wavelength of the perturba-
tion (see discussions in Toomre 1964; Binney & Tremaine
2008). However, in reality, a galactic disc has a finite height.
Lépez-Corredoira & Molgé (2014) showed that the Galactic
disc flares substantially between Galactocentric radii 8 kpc to
25 kpc (also see Li et al. 2019), and the thin-disc component has
a scale-height of ~300pc in the solar neighbourhood (e.g. see
Juri¢ et al. 2008). This flaring of the galactic disc (i.e. incre-
ment of the scale height) is a generic phenomenon (e.g. see
de Grijs & Peletier 1997; Narayan & Jog 2002a; Sarkar & Jog
2019; Garcia de la Cruz et al. 2021). In addition, the existence
of a thick-disc component is now well established observa-
tionally in external galaxies as well as in the Milky Way
(e.g. see Tsikoudi 1979; Burstein 1979; Yoachim & Dalcanton
2006; Comerénetal. 2011a,b, 2018). Spirals play a piv-
otal dynamical role in disc dynamics by transporting angular
momentum (Lynden-Bell & Kalnajs 1972), by causing radial
migration of stars without heating (Sellwood & Binney 2002;
Roskar et al. 2008; Schonrich & Binney 2009), and by exciting
vertical breathing motions (Debattista 2014; Faure et al. 2014;
Ghosh et al. 2022). Thus, a more realistic study of the spiral
structure in disc galaxies should take the finite thickness of the
disc into account.

Previous theoretical studies have shown that the introduc-
tion of a finite thickness of a galactic disc results in a net
reduction in the radial force in the mid-plane (e.g. see Toomre
1964; Jog & Solomon 1984; Jog 2014). This, in turn, enables the
galactic disc to easily become more stable against the axisym-
metric perturbations (Toomre 1964; Jog & Solomon 1984).
Julian & Toomre (1966) demonstrated that the finite thickness
of the stellar disc decreases the amplitude of the density trans-
forms in a local patch of the disc. Furthermore, Ghosh & Jog
(2018) showed the generic trend of a suppressed growth of the
swing-amplified spirals when a finite thickness for the disc is
introduced. However, little is known about the plausible role of
the disc finite thickness on the radial group transport and on the
longevity of spiral density wave.

In this paper, we investigate the physical effect of the finite
thickness of a galactic disc on the persistence of spiral den-
sity wave in absence and in presence of the interstellar gas. To
achieve this, we first derive the appropriate dispersion relation
in the Wentzel-Kramers-Brillouin (WKB) limit for a collision-
less stellar disc with a finite thickness and for a gravitationally
coupled two-component (stars plus gas) system with different
thickness for the stellar and gas discs. Then, we systematically
vary different input parameters, namely, the Toomre Q parame-
ter, the thickness of the disc, and the gas fraction, to determine
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the dependence of the longevity of the spiral density wave, if
any, on the finite thickness of the disc. The rest of the paper is
organised as follows: Sect. 2 provides the derivation of the rele-
vant dispersion relations in the WKB limit, and Sect. 3 presents
the dimensionless form of the corresponding dispersion rela-
tions. Section 4 gives our results, which cover the effect of finite
thickness on the persistence of the spiral density waves, with and
without the interstellar gas. Sections 5 and 6 contain discussion
and the main findings of this work, respectively.

2. WKB dispersion relation for a galactic disc with
finite thickness

Here, we first derive the dispersion relation for a one-fluid disc,
and then extend it to a collisionless stellar disc with finite height
(Sects. 2.1 and 2.2). Finally, we consider a more realistic gravi-
tationally coupled two-component (stars plus gas) system where
the stellar and the gaseous discs can have different scale heights
(Sect. 2.3), as observed in real galaxies. The underlying disc
is taken to be axisymmetric, and the spiral structure is treated
as only a small perturbation on the steady-state axisymmetric
disc, so that the linear perturbation approach is valid (for details,
see Binney & Tremaine 2008). A cylindrical coordinate system
(R, ¢, z) is used throughout the formulation.

2.1. One-component fluid disc

Following the treatment given in Binney & Tremaine (2008), we
started with an infinitesimally thin fluid disc, and then we mod-
ified the formulation by introducing the effect due to the finite
thickness of the fluid disc. The fluid disc is characterised by
the disc surface density X4 and the sound speed c¢. We assumed
that the pressure acts only in the disc plane. For a system like
this, the Euler equations of motion in the cylindrical coordinates
become

2
C?VR 6vR Vo aVR V¢ 6(<I> + 7‘{)

R R R _ ¢ _ (22770 1
or """oR "R3s R R ) M
and,
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Here, H is the specific enthalpy of a polytropic fluid with an
equation of state p = KZZ where y = (n + 1)/n, n being the
polytropic index, and K being a proportionality constant, and
the form of H is given by (Binney & Tremaine 2008)

H =L ks,
v—1
Assuming the spiral density wave to be a small perturbation, we
Write Vg = Vg,; Vg = Vg, + Vg, , Where vg, and vy, are small pertur-
bations. Further assuming the random motion to be small com-

pared to the rotation, the Euler equation shows that the unper-
turbed motion gives rise to

[ do
Voo = Rd—RO = RQ(R),

where @ is the unperturbed potential and Q(R) is the circular
frequency. The linear perturbed equations of motion become
6(<I)1 + 7‘{1)
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and

dvy,  [d(QR) Iy, 1 (8(D1 +H))

— Q — = —

o +[ R A 26 z 36 N (6)

where H; is the perturbed specific enthalpy.

2.1.1. Introduction of finite thickness of the fluid disc

For simplicity, we assumed that the disc has a constant density
that does not vary with z, and the disc has a total thickness of 2A.
For an infinitesimally thin axisymmetric disc and an axisymmet-
ric perturbation, the solution of the Poisson equation is given by
(Toomre 1964)

©, = —(27G/|kDZy exp(=klz|), @)

where k is the wavenumber of perturbation and @, and X, are the
perturbation (or imposed) potential and the corresponding sur-
face density, respectively. The perturbation surface density was
taken to have the form exp[i(kr — wt)]. For such a disc, the radial
force at the mid-plane (z = 0) due to a vertical layer between z
and z + dz is proportional to exp[—k|z|dz]. Hence, the net radial
force at z = 0 is obtained by integrating over z to be (see Toomre
1964)

(8(1)1

— = —i2nGZ,6, 8
dR Z_O)net s ®
where ¢ is the reduction factor, which denotes the reduction in
the radial force at the mid-plane due to the finite height for a con-
stant density disc. This can also be thought of as a reduction in
the disc surface density, and its form is given as (Toomre 1964)

0 = [1 — exp(=kh)]/kh. C))

In an analogous fashion, by integrating the contribution of force
due to layers at different z, we can show that the azimuthal force
in the mid-plane is also reduced by an identical reduction factor.

We point out that the perturbation potential and the sur-
face density in the framework of the WKB approximation fol-
low the same relation (Eq. (7)) as above (see Egs. (6)—(18) in
Binney & Tremaine 2008). Hence, a similar analysis (as men-
tioned above) will yield a same reduction factor § (Eq. (9)) in the
radial as well as the azimuthal force at mid-plane for the WKB
approximation as well. Therefore, in case of a fluid disc with a
finite thickness, Eqgs. (5) and (6) become

6le

(9\/13I 6@1 67‘{1
TR TR o0Ry, = | Tts+ T 1
o Ty 2B (aR O* R )z:o’ (10)
and,
g, [d(QR) Oy, 1 (00, 0H,
Zh ) Lol vt = ([ Ts 20 (1
ry +[ =T }VR1+ % %\ 29 + 3 ), (11)

We assumed that the trial solutions are of the form
Vg, = Re [VRH (R)ei(mqb*kR’“’)]
Vg, = Re [v% (R)ei(m¢+kR’“”)]
@) = Re [@,(R)" "R ~Kel]
Re[Zy, (R)e ™ k1]

T4, = Re|
H, = Re [Wa(R)ei(m(inR—wt)] ) (12)

Putting these in Egs. (10) and (11), and after some algebraic
simplification, we obtain

i do, dH,\ 2mQ
VR, = % [(w - mQ) (6 R + iR )— T(®a6 + 7'(‘,)} , (13)
and
B _l do, dH, m(w — mQ)
Vo, =% [23(6 iR + R )+ R ((Da6+7-{a)}, (14)

where B is the Oort constant and A = k* — (w—mQ)?, k being the

epicyclic frequency. Moroever, the perturbed equation of state
gives H, = czzzi:, where X is the unperturbed disc surface den-
sity (for details, see Binney & Tremaine 2008).

Similarly, the perturbed continuity equation in cylindrical

coordinates is
024, 024,
—_— + —_—
ot 0p

10

20 8V¢|
- 0%~ 15
R OR ’ (15

(RVR]20)+ R 6¢ =

which, after substituting the trial solution (Eq. (12)), becomes

%y, e = 0. (16)

o 1d . ims.
—iw —mQ) T, + - (Rv, o) + ’";

2.1.2. Dispersion relation

We invoke the WKB approximation to derive an analytical dis-
persion relation. In this limit, Eqs. (13) and (14) reduce to (for
details, see Binney & Tremaine 2008)

ve, = =D @5+ H,) and v, = —%k(@ad +H,).
a7

The continuity equation (Eq. (16)) also reduces to

—(w —mQ)ZLy, + kZgvg, =0, (18)

as in the WKB approximation, the last term in Eq. (16) involv-
ing vy, is smaller than the first two terms and can be dropped
(Binney & Tremaine 2008). By substituting the values for vg,,
H, as obtained above and ®, = —27GX,/|k|, as obtained in the
WKB limit using Egs. (7) and (12), where ®, and X, are the
imposed perturbation potential and the corresponding imposed
perturbation surface density, and after some algebraic manipula-
tion, Eq. (18) reduces to

2nGlk|Zp0

Z = s
b= 2 (w —mQ)? + k2™

19)

where X4, is the disc response density. For a self-sustained den-
sity wave, the quantities X, and X,, should be equal, and hence
the dispersion relation becomes (Binney & Tremaine 2008)

(w - mQ)? = K> = 2nGIk[Zo6 + k>, (20)

where m is a positive integer, denoting the m-fold rotational sym-
metry of the perturbation. We note that in the limit of 2 — 0,
so that 6 — 1, the dispersion relation (Eq. (20)) is reduced to
the corresponding dispersion relation for an infinitesimally thin
fluid disc (see Binney & Tremaine 2008), as expected. In other
words, Eq. (20) is a generalisation of the dispersion relation for
an infinitesimally thin fluid disc. Here, the additional factor ¢
comes from the inclusion of the effect of finite height in the
calculation.
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2.2. One-component stellar disc

A cold stellar disc is dynamically equivalent to a fluid disc
with zero pressure or zero enthalpy, and hence, the pertur-
bation Uk, in the mean radial velocity of the stars can be
obtained from Egs. (5) and (6) (assuming zero pressure) as
(Binney & Tremaine 2008)

- mQ
l_)Ra:—w Am kq)a.

ey

Here, A is as defined earlier. If we assume the disc to have a
finite thickness of 2/ and a constant density p (as in Sect. 2.1.1),
then in an analogous fashion, the radial force in the mid-plane is
reduced by a reduction factor ¢ (defined in Eq. (9)). Then follow-
ing the same procedure as done in Sect. 2.1.1, namely solving the
Euler equation (Eq. (10)) with zero enthalpy, the solution for g,
is obtained in the WKB limit to be

e
op, = —— Am k(®, 5).

(22)

As expected, this can be obtained from Eq. (17) by setting the
enthalpy to be zero.

If the stellar disc is not sufficiently cold, that is, if the typ-
ical epicyclic amplitude is not small enough as compared to
the wavelength (271/k) of the perturbation, then the net response
velocity measured at a given location is due to stars with large
epicyclic amplitudes and hence would have sampled different
values of the spiral potential. This results in a partial cancella-
tion in the mean velocity perturbation response to the imposed
potential (for details, see Binney & Tremaine 2008). Therefore,
the resulting expression for the mean velocity perturbation for a
thin disc is given by

w — mQ
l_)R“ = - A kq)uT,

(23)

where ¥ is the factor by which the response of the disc to a given
spiral perturbation is diminished below the value for a cold disc.
The form of ¥ is discussed in Sect. 3.2.

It is straightforward to show that for a stellar disc with finite
thickness, where we start with ig, as for a finite hight case above
(Eq. (22)), and then take account of the reduction in the colli-
sionless disc response when the disc is not cold, hence these two
effects manifest, and the expression for the mean velocity per-
turbation becomes
5e = -2 @ 5)F

‘ A
The perturbed continuity equation in the WKB limit becomes
(see e.g., Binney & Tremaine 2008)

(24)

—(w — mQ)Zy, + kZolg, = 0. (25)

This is identical to Eq. (18) since the continuity equation has the
same form for fluid and collisionless cases. By substituting vg,
from Eq. (24), the above reduces to

w=—m o,6F| =o.

—(w - mQ)Zda + ko[- A

(26)

Finally, invoking the WKB approximation as before
(Sect. 2.1.1), we substitute &, = -27GX,/lk| (Sect. 2.2), and
obtain

2nGZlk|
d, = —AO oF
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Again, for a self-sustained density wave, the disc response
surface density (Z4,) should be equal to the imposed surface den-
sity (X,). This in turn yields the dispersion relation for the colli-
sionless disc in the WKB limit as

(w = mQ)* = K = 27G|k|Zg6F . (28)

Here also we note that in the limit of 4 — 0, so that § — 1,
the dispersion relation (Eq. (28)) is reduced to the correspond-
ing dispersion relation for an infinitesimally thin collisionless
stellar disc (see Binney & Tremaine 2008), as expected. In other
words, Eq. (28) is a generalisation of the dispersion relation for
an infinitesimally thin stellar disc. Here, the additional factor ¢
comes from the inclusion of the effect of finite height in the cal-
culation.

2.3. Two-component star-gas system with different finite
thickness

Here, we treat a galactic disc as a gravitationally coupled two-
component (stars plus gas) system'. The stellar disc is taken to
be collisionless in nature and is characterised by a surface den-
sity X5, a one-dimensional velocity dispersion, o, and a total
thickness of 2hg, while the gas disc is treated as a fluid and
is characterised by the surface density XZo,, a one-dimensional
velocity dispersion or the sound speed, cg, and a total thickness
of 2hs. Since the stars and the gas are gravitationally coupled,
their motion will be governed by the joint potential (@), which
is set by both the stellar and the gas discs, that is, @y = O+ Dy.
The right-hand side (rhs) of Egs. (1) and (2) will now contain
a derivative of the total potential. Thus, the steady-state unper-
turbed motion will now be given by

q)tot,()

drR

For such a system, the reduction due to the finite height
affects the corresponding radial force of each component sep-
arately, and each component is affected by the net force due
to both components (see e.g. Jog & Solomon 1984). Hence,
the rhs of the perturbed Euler equation (Eq. (10)) becomes
(0Ds1/OR)0s+(0Dy, /| OR)6,+(0H1,/IR) for i = g (gas), while for
the collisionless stellar disc (i = s), only the first two terms above
(without the enthalpy term) are kept, as discussed in Sect. 2.2.
The same correction applies to the azimuthal perturbed equation
of motion as well. By assuming trial solutions similar to those
shown in Eq. (12) and invoking the WKB approximation, the
solutions of the Euler equations give the amplitudes of perturbed
velocity along the radial and the azimuthal directions for the stel-
lar and the gas disc, respectively, as

Vg, = R0 _ porr) (29)

Vg, = —@k(@aﬁf +®,,5,)

Ve, = —%k(%ﬁf + @, 6,), (30)
and

v, = —(w%‘mmk((basés D, 0 +H,)

Voa, = _%k(q)asés + @, 65 + Hyy). (31)

! The main difference between this work and Ghosh & Jog (2015) is
that here we take the finite thickness of the stellar and the gaseous discs
into account.
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Substituting the expression for vg, from Eq. (30) in the per-
turbed continuity equation (analog of Eq. (25)), we obtain
Sa, [ = (@ - mQ)?| = kS, [k(®,6F + D4,5,)] . (32)

By substituting the expression for the perturbation potentials
in terms of the surface densities in the WKB limit, namely @, =
—-2nGZ, /lk| and similarly for @, and setting X, , the imposed
or perturbation stellar surface density equal to %, , the stellar
response surface density for a self-consistent solution, the above
reduces to

Zd 2ﬂGk20S§g
T, (K2 = (0 —mQ)? - 27GIk|Zo,6,F)

ag

(33)

Similarly for the gas disc, the continuity equation (Eq. (18))
combined with the perturbed velocity component in the WKB
limit (Eq. (31)) gives
2

|6 = (@ = mQ)?| = kZo, [k(®4, 6 + @y 6y + Ha)|. (34)

ag
By substituting the expression for the perturbation potentials
in terms of the surface densities in the WKB limit, namely
®,, = -27GZ, /|k| and similarly for @, , and furthermore, for
self-consistency, setting X,, = Zq,,, the above equation reduces
to

(% = (@ = mQ? + K2c2 = 21GIk[Zo, 0,) s
- 272Gk, 64 ' G2

S,

2y

ag

Combining Eqgs. (33) and (35) and setting the condition of
self-consistency (¥, = Xq, and similarly for the gas disc), we
obtain the dispersion relation for this joint star-gas system as

2 .2
2G04 KIS, F (“‘K’”ﬂ : ’i)

27GE 045Kl

K2 = (w — mQ)? + cik? -

K2 — (w — mQ)? (36)

We verified that for an infinitesimally thin disc (where the
reduction factors 6; — 1(i = s,g), see Eq. (9)), the above is
reduced to the dispersion relation for a star-gas case obtained in
Ghosh & Jog (2015), as expected.

We next define

-mQ ko?
P 2nGz()sas|k|¢(‘” ey (zr)
K K
g = K — 2nG 0,0kl + kP c;

—mQ Ko?
IBS=27rGEosés|kI7"(w me ‘27)
K K

B = 270G 0,5, )Kl. (37)

Upon substitution in Eq. (36) and after some algebraic sim-
plification, we obtain
(0= mQ)* — (@, + ap)(w — mQ)* + (a5, — BsBe) =0.  (38)

This is a quadratic equation in (w — mQ)?. Solving it, we obtain

1
(w—mQ)? = 3 [(0/S +ay) + {(as +ay)? - Masay —ﬁsﬁg)}m] .
(39)

The additive root for (w — mQ)> always leads to a positive quan-
tity, hence it always indicates oscillatory perturbations under all
conditions (same as for axisymmetric case; see Jog & Solomon

1984). In order to study the stability of the system and its fur-
ther consequences, we therefore consider only the negative root,
which is

1
(6&) - mQ)2 = E |:(a’s + a'g) - {(a's + a’g)z - 4(a'sa'g _ﬂsﬁg)}l/z] .
(40)

We mention that the underlying formalism we present here
closely follows that presented in Jog & Solomon (1984). This
builds on the treatment for one-component stellar and gas discs
of finite height as in Sects. 2.1 and 2.2. By solving the coupled
equations, the resulting dispersion relation is given by Eq. (36),
which has the solution Eq. (40). Moreover, we caution that
the form for the solution of the dispersion relation (Eq. (40))
and the subsidiary variables as, ag, Bs, and B, (Eq. (37)) (in
terms of which Eq. (40) is written) may appear similar to that
in Jog & Solomon (1984, who treated a two-fluid case), and
Ghosh & Jog (2015, who treated a star-gas case in which the
effect of stellar dispersion was included in terms of the reduction
factor ). These variables were defined to have a similar form
by construction because all three are two-component formula-
tions and have a similar underlying mathematical symmetry, but
with a different treatment for stars and gas, and the current work
includes the effect of finite height.

3. Dimensionless form of the dispersion relations in
the WKB limit

In the literature, the dispersion relations are typically described
in terms of some dimensionless quantities for the sake of con-
venience. Here, we follow the same procedure for the dispersion
relations derived in the previous sections.

3.1. One-component fluid disc with finite thickness

Dividing the two sides of Eq. (20) by «?, and after some algebraic
simplification, we obtain
s> =1-x6+ %ngz, (41)
where s = (w — mQ)/k, and x(=|k|/k.i) are the dimensionless
frequency and wavenumber of the perturbation, respectively; and
keit(=K2/2nGZ) is the largest stable wavenumber for a pressure-
less stellar disc. Q(=kc/nGXy) is the usual Toomre Q parameter
for a fluid disc (Toomre 1964). Also, |k|h can be expressed as
|klh = (Jkl/kcrit) X (kerith) = xB. Here, B is defined to be equal to
kerie X h. Therefore, the dispersion relation becomes

1
$=1-x5+ szQz, (42)
where the form of ¢ reduces to
1- _
5= 1 —exp(-xB) (43)
xB

The value of 8 is dependent on the chosen values of k., that
is, for the same thickness of a disc, the values of 8 will be dif-
ferent depending on the values of k.. We note that in the solar
neighbourhood, a circular velocity (v.) of ~220kms~' and £ ~
45 Mypc™? (e.g. see Mera et al. 1998; Narayan & Jog 2002b)
will produce ki ~ 1kpc‘1. However, recent studies have
reported slightly different values for the circular velocity and
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the solar position (e.g., see Gillessen et al. 2009; Schonrich et al.
2010, 2019; Schonrich 2012; McMillan et al. 2018). The galac-
tocentric distance of the Sun is 8.27kpc (Schonrich 2012),
which is in agreement with the other measurements (within their
error bars; Gillessen et al. 2009; McMillan et al. 2018). Further-
more, the circular velocity at the Solar radius is 237.8 km s7!
(Schonrich et al. 2010), which in turn gives a circular fre-
quency at the solar radius of 28.8 km s~ kpc~!. Assuming a flat
rotation curve, the corresponding epicyclic frequency becomes
40.7kms~' kpc~!. We use these latest values of Q and « and
consider the group transport at the solar neighbourhood (R =
8.27kpc) in the subsequent sections, unless stated otherwise.
Using these recent values, we estimate kg ~ 1.3 kpc". There-
fore, for the sake of uniformity, we chose k. = 1.3kpc™! for
all cases considered here, unless stated otherwise. The resulting
behaviour of the reduction factor ¢ is shown in Appendix A.

3.2. One-component stellar disc with finite thickness

Dividing the two sides of Eq. (28) by «?, and after some algebraic
simplification, we obtain

§? =1 - x6F (s,x), (44)

where y = K*0?/k* = 0.286 Q%>x?, and ¢ is already given in
Eq. (43). The form for ¥ for a razor-thin disc whose stellar equi-
librium state is described by the Schwarzschild distribution func-
tion is given by (Binney & Tremaine 2008)

L(x)

1—s2/n%’

00

2
T ) =~ exp0(l =5 ) (45)

n=1

where I, is the modified Bessel function of the first kind.

3.3. Two-component star-gas system with different finite
thickness

Proceeding as before, by dividing the two sides of Eq. (40) by
2, and after some algebraic simplification, we obtain

1 ’ ’ ’ ’ ;7 / ! 12

T (G AT (CETAICarey:73) kol MCT
where
o= 1-(1 - 6T (5,6)

, 1
@y = 1 — exo, + ZQéezxz
Be = (1 = ©x6:F (s,€)
By = €xdg 47

where ¢ = kzo'g/K2 = 0.286 Qf(l — €)*>x2. The three dimen-
sionless parameters Qs, O, and € are the Toomre Q parameters
for stars Q(=k0s/(3.36 GZqs)), and for gas O, = (kcg/(TGZog))
and, € = Zog/(Zos + Zog) the gas mass fraction in the disc, respec-
tively. Furthermore, the forms of §; are given by

_ 1 —exp(—x8)
N XBi

where i = s,g for stars and gas, respectively. We note that
when the height #; — 0, and so 6; — 1, Eq. (46) is reduced
to the dispersion relation for the gravitationally coupled two-
component (stars plus gas) system, which is infinitesimally thin
(see Ghosh & Jog 2015), as expected.

oi (48)
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4. Results

Here, we present the results related to the dynamical effect of
inclusion of a finite thickness of the disc, with or without the
presence of the interstellar gas on the disc stability and the
longevity of a spiral density wave. For a bi-symmetric (m = 2)
spiral density wave, the pattern speed Q, = w/2 and s =
(w = 2Q)/k = 2(Qp — Q)/k. Here, s = 0 corresponds to the
corotation (CR) point and |s| = 1 gives the Lindblad resonances
(Ghosh & Jog 2016).

To quantify the disc stability, we define a quantity |$|cut—of as
the lowest value of the dimensionless frequency (s), correspond-
ing to an appropriate dispersion relation, for which one is able to
obtain a real or stable wave solution at any given R (for details,
see e.g. Binney & Tremaine 2008; Ghosh & Jog 2016). For s
lying in the forbidden region, namely, between the corotation
or s = 0 and Scy—of, the solution is imaginary and the wave is
transient at any given radius R (for details, see the discussions in
Binney & Tremaine 2008; Ghosh & Jog 2016). In other words,
the value of |s|cuy—of denotes the edge of the forbidden region. A
decrease in the value of |s|cy—of Signifies the decrease in the for-
bidden zone; this causes the disc to become more prone to being
unstable against the perturbations. Conversely, an increase in the
value of |s|cu—of denotes an increase in the forbidden zone, and
the disc becomes more stable against the perturbations.

As for the longevity of the spiral density wave, follow-
ing Toomre (1969), we studied the radial group transport of a
wavepacket of such a density wave. To achieve this, we calcu-
lated the radial group velocity from the local dispersion relation,
appropriate for a particular system considered here. It is known
that the information from a disturbance, generated at a certain
radius R, propagates in the disc with its group velocity vg. When
the medium is inhomogeneous, the group velocity, at a given
radius R, is defined as (e.g. see Whitham 1960; Lighthill 1965)

dw(k,R)
ok

ve(R) = (49)
The value of the group velocity (v,) at a given R can be estimated
from the slope of the local dispersion relation (when expressed

in a dimensionless form) by using the following equation (e.g.
see Toomre 1969; Binney & Tremaine 2008):

k \ds
ve(R) = sgn (ks) ( kcm) o (50)

Here, s and x are the dimensionless frequency and the wavenum-
ber of the perturbation, respectively, and sgn (ks) = +1 depend-
ing on whether ks > 0 or ks < 0. Here, the slope is obtained at a
point x at which the observed value of s intersects the dispersion
relation curve. Thus, the location (or the x value) where the slope
is to be calculated is determined by the pattern speed (£2,) value
as well as by the underlying mass distribution (which in turn sets
the values of Q and «). For more details, see Sect. 4.1.

A decrease in the group velocity implies that a wavepacket
consisting of such density waves would take a longer time to
reach the centre of the disc, and it would eventually be absorbed.
In other words, a decrease in the group velocity signifies a
longer persistence of the spiral density waves in the disc (for
further discussions, see, e.g. Toomre 1969; Ghosh & Jog 2015).
Section 4.1 provides the details of the effect of finite thickness on
the disc instability and longevity of spiral density wave for the
one-component stellar disc, and Sect. 4.2 does the same for the
gravitationally coupled two-component (stars plus gas) disc. We
mention that the method of investigating the disc stability against
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Fig. 1. Dispersion relation for a one-component stellar disc (Eq. (44))
shown for Q = 1.1 and for § = 0.1-0.3. For comparison, the
corresponding dispersion relation for the zero-thickness (or infinites-
imally thin) stellar disc is also shown (dashed black line). The hor-
izontal dashed line (in black) denotes the [s|os Value (calculated
at R = 8.27kpc) corresponding to an assumed pattern speed of
12.5kms " kpc'.
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the m = 2 spiral density wave is similar to that in Ghosh & Jog
(2016), whereas the treatment for calculating the group veloc-
ity is similar to that in Ghosh & Jog (2015), but here we use
the appropriate dispersion relations for a one-component stellar
disc, and a two-component disc with finite height, as derived in
the previous section.

4.1. Effect of finite thickness on a one-component stellar disc

To study the dynamical effect of the disc finite thickness, first we
calculated the dispersion relation (Eq. (44)) for Toomre Q = 1.1
while varying the disc thickness, or equivalently, 8 from 0.1 to
0.3. Figure 1 shows the corresponding dispersion relations. For
comparison, we also show the corresponding dispersion relation
for an infinitesimally thin stellar disc with Q@ = 1.1. Toomre
(1969) assumed an Q = 1, which denotes the neutral stability of
the stellar disc. Here, we instead assumed a slightly higher value
of O = 1.1 such that the stellar disc is stable against axisymmet-
ric perturbation, but its self-gravity is still important (for details,
see Toomre 1964; Jog & Solomon 1984).

4.1.1. Disc stability against spiral density waves

A visual inspection of Fig. 1 reveals that with increasing thick-
ness of the disc, the |s|cu—off Values increase steadily. This implies
that the stellar disc becomes increasingly more stable against
the non-axisymmetric perturbations. In order to study this more
quantitatively, we calculated the |s|cy—of Values from the disper-
sion relation while systematically varying the Toomre Q values
from 1.1 to 2, and 8 = 0.1, 0.3, and 0.5. The resulting varia-
tion in the |s|.y—of values for different 8 and Toomre Q parame-
ter values are shown in Fig. 2. For reference, we also show the
corresponding |s|cu—off Values for a one-component stellar disc
with zero thickness (i.e. 8 = 0). As Fig. 2 clearly shows, for a
fixed Toomre Q parameter, the |s|.y—of Value increases mono-
tonically with increasing 8 values. Although this trend remains
true for the whole range of Toomre Q values considered here, the
effect of the increase in the |s|.u—of Value due to disc thickness is

0.8
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Fig. 2. One-component stellar disc: variation in the |s|.,—of Values as a
function of the Toomre Q parameter are shown for different disc thick-
ness (B). The dashed black line shows the corresponding |s|cy—ofr Values
for a one-component stellar disc that is infinitesimally-thin. For a fixed
Toomre Q, the |s|cu—of Values increase monotonically with 3.

more prominent for the lower Toomre Q values considered here.
For example, for Q@ = 1.1, the |s|cy—off Values increase almost
by a factor of 2 when S is changed from 0 (zero thickness) to
0.5 (~385 pc), but the corresponding change is much smaller, by
~T%, for Q = 2. This trend is not surprising because for lower
values of Q, the disc self-gravity is more relevant, and conse-
quently, the reduction in self-gravity (due to the finite thickness)
will be more pronounced than for the case with a higher Toomre
Q value. The physical implications of the increasing [s|cu—oft
value with thickness is discussed below.

4.1.2. Effect of finite thickness on the allowed range of
pattern speed values

As the |S|cu—off Value increases with increasing thickness, this
implies that the forbidden region (i.e., the region between the
CR and |s|cyi—oft) increases as well. In other words, introducing
a finite thickness of the disc helps to stabilise it against the non-
axisymmetric perturbations. The increase in the |s|cy—of value
with increasing thickness has far-reaching impact on the pat-
tern speed (£2,) value of a stable, spiral density wave. In a colli-
sionless stellar disc, a spiral density wave exists only in regions
where

Q-«k/2<Q, <Q+k/2 ShH

is satisfied, and the equality holds only at the Lindblad resonance
points (for details, see, e.g. Binney & Tremaine 2008). More-
over, at a certain radius R and for a given pattern speed (£2;,), the
density wave will be stable if the corresponding |s|(=m|€2,—Ql/«)
is greater than the |s|.u—of Vvalue, for instance «, of the corre-
sponding dispersion relation at that radius R (for a detailed dis-
cussion, see Binney & Tremaine 2008; Ghosh & Jog 2016). In
other words, to obtain a stable spiral density wave with a pattern
speed Q,, the following condition needs to be satisfied

Q> Q+ax/2 or, Q,<Q-ak/2 (52)

at radius R, depending on whether the radius R falls outside
the CR or inside the CR. Therefore, by combining Eqs. (51)
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and (52), the allowed range of pattern speed (€2,) values for a
stable spiral density wave is

Q€ [Q-«/2,Q—ak/2] or, Q,€[Q+ak/2,Q+k/2], (53)

depending on whether the radius R is inside the corotation or
outside the corotation. As the value of @ (or |s|cu_off) increases
with thickness, the allowed range of pattern speed values for a
stable spiral density wave become progressively narrower. This
is another finding of this work. We note that including gas allows
a wider range of allowed pattern speed values (Ghosh & Jog
2016). Thus, the effects of the gas and the disc thickness have
an opposite effect on the range of the pattern speed values, cor-
responding to a stationary (non-evanescent) spiral density wave.
This is further discussed in Sect. 4.2.

4.1.3. Radial group transport and effect on the longevity of
spiral density waves

Next, we studied whether the radial group transport, and hence
the longevity of a spiral density wave, is altered when the finite
thickness of the collisionless stellar disc is included. In classical
density wave theory, the pattern speed (€2p) of the spiral arms is a
free parameter (e.g. see Lin & Shu 1964, 1966). Observationally,
the pattern speed of spiral density waves has been measured only
for a few external galaxies (e.g. Fathi et al. 2007, 2009) in addi-
tion to the Milky Way. Therefore, driven by purely theoretical
interest, we treated the pattern speed (£2,) as a free parameter. To
investigate the effect of disc thickness on the group velocity, we
first assumed the pattern speed to be €, = 12.5km s7!, the same
value as used in Toomre (1969). We also chose Q = 1.1 here, and
varied 8 from O to 0.3. Using the definition of the dimensional
quantity s as given earlier in this section (i.e. |s| = 2(]€2, — Q)/«)
and using Q and « values for a particular galaxy at a given radius,
and a given value of Q, gives [s|obs, the observed value of |s|. This
is shown by the horizontal line in Fig. 1. Then, we computed the
group velocity (vg) at R = 8.27 kpc from the slopes of the corre-
sponding dispersion relations (as shown in Fig. 1) with varying
B values. The slope is obtained where the line |s|,s intersects
the dispersion relation. The resulting values of the group veloc-
ity (v¢) and the time that one such wavepacket (of density wave)
would take to travel a distance of 10kpc are listed in Table 1.
Before we proceed to interpret the dynamical effect of the thick-
ness on the group velocity, the location at which the slopes are
calculated merits a discussion. For an assumed €, value and the
values of Q and « (set by the underlying mass distribution), the
corresponding |s|ops Would intersect the dispersion relations at
two points: one at the long-wavelength branch (lower x value),
and another at a short-wavelength branch (higher x value). For
a given €, value, we always calculated the group velocity in
the short-wavelength branch regime because the WKB approx-
imation works better there (for details, see Binney & Tremaine
2008).

Table 1 clearly shows that for Q, = 12.5kms™ kpc™' and
QO = 1.1, the value of the group velocity increases steadily with
increasing disk thickness (). As the 8 value changes from 0 to
0.3, the group velocity (v,) increases by ~35%. This implies
that a wavepacket would take less time to reach the centre
of the disc (and eventually become absorbed) for a disc with
finite thickness when compared to that of an infinitesimally
thin disc. In other words, a spiral density wave would survive
for a shorter time for a stellar disc with finite thickness when
compared to an infinitesimally thin stellar disc. Next, we chose
Q, = 10km s 'kpc™! and 15kms~! kpc™! and recalculated the
variation in the group velocity with changing disc thickness.
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Table 1. Group velocity for a one-component stellar disc (with Q = 1.1)
for various thickness values, calculated at R = 8.27 kpc.

Q |S]obs B ds/dx Vg Time to travel
(kms~' kpc™") (kms™")  10kpc (Gyr)
10 0.92 0 0.032 1.3 7.5

0.1 0.04 1.62 6.03

0.2 0.045 1.83 53

0.25 0.047 1.91 5.1

0.3 0.05 2.03 4.8
12.5 0.8 0 0.107 4.34 2.25

0.1 0.123 5 1.95

0.2 0.137 5.56 1.75

0.25 0.142 5.77 1.69

0.3 0.143 5.81 1.68
15 0.68 0 0.181 7.35 1.32

0.1 0.199 8.1 1.2

0.2 0.203 8.25 1.18

0.25 0.204 8.29 1.17

0.3 0.205 8.3 1.16

Here also we chose Q = 1.1. The corresponding results are also
given in Table 1. We find that for these pattern speed values, the
group velocity increases with the disc thickness, similar to the
case of Q, = 12.5kms™' kpc™!. However, the amount by which
the group velocity changes varies with the assumed pattern speed
values. To elaborate, the group velocity increases by ~56% for
Q, = 10km s'kpc™!, whereas the group velocity increases
by ~13% for Q, = 15kms™" kpc™! when the thickness () is
increased from O to 0.3. We also considered a higher Toomre Q
value, namely, Q = 1.5, and studied the variation in the group
velocity with disc thickness. For the sake of brevity, the detailed
variations in the group velocity values are not shown here. How-
ever, we find that for Q = 1.5 and Q, = 12.5km s7! kpc‘l,
the corresponding group velocity (v,) increases by ~16% for an
increase in thickness from 8 = 0 to 8 = 0.3, as compared to
~35% for Q = 1.1 obtained earlier.

We note that the measured group velocity critically depend
on the location at which the slope is being measured along
the dispersion relation. Nevertheless, an increment in the group
velocity value with increasing disc thickness is seen to be a
generic phenomenon, as shown here. Lastly, we point out that
for the one-component stellar disc case, we could not explore
a higher Toomre Q value and/or a higher pattern speed value
because for these cases, the measured |s|,ns value is found to be
lower that the |s|.y—oft Value. Consequently, the |s|ops does not
intersect the corresponding dispersion relation. In other words,
for higher Toomre Q values and a higher pattern speed value, for
example, Q, = 18km s~ kpc™! does not admit a real solution in
k (or equivalently, x), and so we could not calculate the group
velocity using Eq. (49). We explore this parameter regime in the
next section where the interstellar gas is taken into account.

4.1.4. Radial variation of the group transport

So far, we have calculated the group velocity of a typical
wavepacket, consisting of a density waves, at a certain radius,
R, to study the effect of the finite thickness of a stellar disc on
the longevity of the spiral density wave. We have so far con-
sidered the group transport in the solar neighbourhood R =
8.27 kpc. However, in reality, any spiral arm in a disc galaxy has
a finite radial extent. Here, we study how the group velocity of a
wavepacket changes at different radii for different thickness, and



S. Ghosh and C. J. Jog: Effect of disc thickness on the longevity of spiral density waves

Table 2. Radial variation in group velocity for a one-component stellar
disc (with Q = 1.1,Q, = 12.5kms™' kpc™"), calculated at three radial
locations.

R [$]obs B ds/dx Vg Time to travel
(kpc) (kms ™) 10 kpc (Gyr)
6.27 094 0 0.021 1.14 8.5

0.1  0.027 1.46 6.7

0.2 0.032 1.71 5.7

0.25 0.034 1.82 5.35

0.3 0.035 1.9 5.1
727 087 0 0.06 2.8 3.5

0.1 0.074 342 2.85

0.2 0.083 3.8 2.56

0.25 0.086 39 2.45

0.3 0.09 4.2 2.32
9.27 0.72 0 0.156 5.6 1.73

0.1 0.178 6.4 1.51

0.2 0.184 6.7 1.45

0.25 0.188 6.8 1.43

0.3 0.192 6.9 1.41

consequently, how this affects the longevity of the spiral density
wave.

We mention that for an assumed flat rotation curve in the
outer disc region, as done here, the values of x and Q change
at different radial locations. Therefore, for an assumed value of
Q, that remains constant with respect to radius, the correspond-
ing |s|ops Value would change at different radial locations, and
so would the x values where the |s|ops cuts the local dispersion
relation. To evaluate this, we first took Q, = 12.5kms™" kpc™!
and Q = 1.1 (same as Table 1, which was calculated for
R = 8.27kpc), and repeated the group velocity calculation at
R = 6.27kpc, R = 7.27kpc, and R = 9.27kpc. The results
are given in Table 2. This table clearly shows that at the three
different radial locations we considered here, the variation in
the finite thickness from 8 = 0 to 8 = 0.3 leads to a mono-
tonic increase in the group velocity of the density wavepacket.
To express this more quantitatively, at R = 6.27 kpc, the group
velocity increases by ~66.2% when £ is varied from 0 to 0.3,
whereas at R = 7.27kpc and R = 9.27kpc, the correspond-
ing group velocity increases by ~49.8 and ~23.1%, respectively
(for the same S variation). This trend agrees with that seen at
R = 8.27kpc (see Table 1). In other words, the finite thickness
has a similar (qualitative) effect on the group velocity and on the
longevity of spiral density waves. We checked this trend for the
other considered pattern values, namely, Q, = 15kms™' kpc™!
and Q, = 10kms™" kpc™! as well. We found a qualitative trend
in the results similar to what is seen for Q, = 12.5kms™" kpc™!,
as long as the dispersion relation admits a real solution in x in
the short-wavelength branch for the corresponding |s|ops value
(for details, see the previous section). For brevity they are not
shown here. To conclude, the finite thickness of the stellar disc
has a similar quenching effect on the longevity of spiral density
waves at different radial locations (covering the radial extent of
spirals).

4.2. Effect of finite height on the two-component star-gas
system

We showed above that including a finite thickness of the stel-
lar disc makes it more stable against the non-axisymmetric per-
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Fig. 3. Dispersion relations for the two-component stars plus gas sys-
tem with finite thickness (Eq. (46)) are shown for Qs = 1.5, O, = 1.3,
and for different gas fractions: € = 0.15 (top panel) and € = 0.2 (bottom
panel). The thickness of the stellar disc (8;) is varied from 0.1 to 0.3,
whereas the thickness of the gas disc (B,) is kept fixed at 0.1 through-
out all cases shown here. For comparison, the corresponding disper-
sion relation for the zero-thickness stars plus gas system is also shown
(dashed black line).

turbations and increases the group velocity of a wavepacket,
thereby decreasing the longevity of the spiral density wave. Fur-
thermore, Ghosh & Jog (2015) showed that for a gravitationally
coupled star-gas system in which the stellar and the gas discs
are both infinitesimally thin, including the gas helps the spiral
density waves to last for a longer time. Therefore, it is natural
to investigate how the longevity of the spiral density wave is
affected in a stars plus gas system with finite disc thickness.

To achieve this, first we calculated the dispersion relation
(Eq. (46)) for the gravitationally coupled star-gas system for
different thickness values of the stellar disc (8s) while assum-
ing Qs = 1.5, O, = 1.3, and taking two values of €, namely,
0.15 and 0.2. We mention that the thickness of the gas disc (8,)
was kept fixed at 0.1 throughout this paper, unless stated oth-
erwise. The resulting dispersion relations are shown in Fig. 3.
A visual inspection reveals two broad trends, namely, for a
fixed set of three values (Qs, Q,, and €), the value of |s|cy—oft
increases monotonically with increasing thickness of the stel-
lar disc. This trend is consistent with the findings for the one-
component stellar disc. However, we note that with increasing
gas fraction (€), the increment in the |s|y—of Value with thick-
ness is smaller (compare the top and bottom panels of Fig. 3).
Secondly, the dispersion relation in the short-wavelength branch
becomes increasingly flat with increasing disc thickness when
compared with the same for the infinitesimally thin star-gas sys-
tem. This holds true for the two gas-fraction values considered
here.
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Fig. 4. Two-component stars plus gas system: variation in the |s|cu—og Values as a function of Toomre Q parameter for the stellar disc (Q,) shown
for different stellar disc thickness () and for various Toomre Q parameter for the gas disc (Q,) and gas-fraction (¢). The thickness of the gas disc

(B,) is kept fixed at 0.1 throughout all the cases shown here.

4.2.1. Disc stability against spiral waves, and allowed pattern
speed values

In order to probe the joint effect of the disc thickness and the
inclusion of gas on the variation of |s|.y—of Values, we systemati-
cally calculated the relevant dispersion relations (using Eq. (46))
for a wide range of Qs, Qg, Bs, and €. Then we computed the
corresponding |§|cu—off Values. The resulting variation in |s|cue—off
values is shown in Fig. 4. Figure 4 clearly demonstrates the
generic trend that for a fixed value of (Qs, Q. €), the [s|cyt—off
increases monotonically, while the disc thickness (3;) is varied
from O to 0.5. However, the variation in the |s|cy—og Values is
stronger for a lower Q value (e.g. 1.2) when compared with
a higher Q; value (e.g. ~2). These findings are in compliance
with the earlier finding for the one-component stellar disc. Next,
we study how the variation in the |s|cy—of Values with thickness
is affected when interstellar gas is included. We find that for a
fixed value of (Qy, B), the |slcu—ofr value for a higher gas fraction
(e) is always lower when compared with the same for a lower
gas fraction (compare the top and bottom panels of Fig. 4). This
trend holds true for the whole range of O, and Q, values consid-
ered here, although the trend is more prominent for lower values
of Qs. The physical reason behind this trend is that when more
gas is present in the system (a lower Q, value and a higher €
value), the destabilising effect of the interstellar gas dominates
the stabilising effect of the finite thickness. This is particularly
true when the O, and Q, values are lower (e.g. close to 1) as the
self-gravity of the stars-gas system would be important to deter-
mine the dynamical state of the system. Thus, the net stability of
the gravitationally coupled stars plus gas system is determined
by the joint (mutually opposite) effects of the interstellar gas and
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the finite disc thickness. Nevertheless, the destabilising effect of
the interstellar gas is reduced (at least partially) by the stabilising
effect of the finite disc thickness in all cases shown here. Thus,
the net range of allowed pattern speed values is wider for a two-
component, finite-height disc than for a stars-alone, thin disk;
but is is smaller than the range allowed for a two-component
thin disc.

4.2.2. Radial group transport and effect on the longevity of
spiral waves

Finally, we probed the joint effects of the disc finite thickness
and the interstellar gas on the group velocity of the spiral den-
sity wave in a gravitationally coupled stars-gas system. For the
sake of theoretical interest, we chose a lower value of Qy, for
instance, 1.3. For the moment, we also treat Qs and € as free
parameters, and Q, is set by these two values via the relation
0. = (0.306 Q,)(1 — €)/e (for details, see Ghosh & Jog 2015).
We relax this constraint later and treat all three parameters,
namely, Qs, Q,, and €, as free parameters while studying the
group velocity.

To study how the group velocity changes, we first assumed
Q, 12.5kms™ " kpc™!, which in turn gives |slss = 0.8 at
R = 8.27kpc. Then we computed the group velocity from the
slopes of the dispersion relations (Eq. (46)) for Qs = 1.3 and
Bg = 0.1 while varying the gas fraction (¢) from 0.1 to 0.25 and
the disc thickness (3;) from O to 0.3. The resulting variations in
the slopes and the group velocity values are listed in Table 3. As
evident from Table 3, the value of the group velocity increases
with increasing disc thickness, and this trend holds true for all
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Table 3. Group velocity for a two-component star-gas system (with
Qs = 1.3) for various thickness values, calculated at R = 8.27 kpc.

Q, |Slobs € B ds/dx Vg Time to travel
(kms™! (kms™1) 10kpc (Gyr)
kpc™1)
12.5 0.8 0.1 0 0.081 33 2.95
0.1 0.1 4.1 2.37
0.2 0.104 42 2.32
0.3 0.11 4.5 2.16
0.15 0 0.067 2.72 3.58
0.1 0.082 3.35 2.9
0.2  0.083 34 2.86
0.3  0.084 341 2.85
0.2 0 0.074 3 3.24
0.1 0.083 3.37 2.89
0.2 0.0832 3.38 2.88
0.3 0.0833 3.39 2.87
0.25 0 - - -
0.1 0.093 34 2.86
0.2  0.095 342 2.84
0.3 0.095 342 2.84

Notes. The Toomre Q for the gas disc (Q,) is set by the values of O
and e; for details, see text. The thickness of the gas disc ; is fixed at
0.1 for all cases.

values of the gas fraction considered here. However, there is a
subtle change with increasing gas fraction. To elaborate, when
the gas fraction is assumed to be 0.1, the group velocity increases
by ~35% for a variation of 0—0.3 in the 8 values. However, for
a higher gas fraction value (e.g. € = 0.2), the group velocity
increases by only ~12% for the same variation of 8 values from
0 to 0.3. Furthermore, when we chose an even higher value of
the gas-fraction (e.g. € = 0.25), we find a negligible increase in
the group velocity (~2%) when we vary 8 from O to 0.3. The
physical reason is that as we chose progressively lower values
of O, and higher values of e, the overwhelming effect of the
interstellar gas in decreasing the group velocity dominates the
opposite effect of disc thickness on the group velocity values.
In other words, when the self-gravity and the low dispersion of
the interstellar gas dominates the reduction in the self-gravity
due to the finite thickness, the group velocity of a wavepacket,
which consists of spiral density waves, is predominantly set by
the effect of the interstellar gas. Next, we chose a higher pat-
tern speed value, namely, Q, = 15km s~'kpc™!, which in turn
produced |s|obs = 0.68 R = 8.27 kpc. Then, we studied how the
group velocity changes when the gas fraction and the disc finite
thickness were varied simultaneously. We find that when € = 0.1,
the group velocity increases by ~20% when the disc thickness
is increased from O to 0.3. However, when the gas fraction is
changed to a higher value (e.g. € = 0.2), the group velocity
increases only by ~14% when g is varied from 0 to 0.3. This
trend is similar to what we found for the Q, = 12.5kms™" kpc™'.
Thus, the change in group velocity in presence of the disc thick-
ness and the interstellar gas is a complex process, as these two
physical factors have opposite effects on the group velocity. The
net change in the group velocity is set by the relative dominance
of the effects of the interstellar gas and the disc thickness.

To further study the net effect of the interstellar gas and the
disc thickness where the parameters Qs, O, and € are treated
as free parameters (unlike the previous case), we chose a case
where Qs = 1.3 and Q, = 1.3. For these assumed parameters

and for € = 0.2 and Q, = 15kms™" kpc™', the group velocity

increases by ~25% when g is varied from O to 0.3. However,
for a higher € = 0.25, the change in the group velocity is negligi-
ble when S; is varied from 0 to 0.3. This trend further demon-
strates the mutual interplay of the (opposite) effects induced
by the interstellar gas and the disc finite thickness. Lastly, we
assumed an even higher value of the pattern speed, namely,
Q, = 18kms™' kpc™!, which in turn yielded |slops = 0.53. For
the currently assumed parameter space (Qs, Qs, €, B5), it is pos-
sible to obtain a real solution in k (or alternatively, in x) for
the Q, = 18kms™' kpc™'. This allows us to probe the mutual
effect of the gas and the thickness for a realistic value (or close
to observationally reported values) of €,. Here also, we find
the same trend in the change of the group velocity value as we
increase the value of 8. More quantitatively, when € = 0.2, the
group velocity increases by ~11% as we vary S from 0 to 0.3.
However, the change in the group velocity is found to be negli-
gible when € is set to 0.25 while S; is varied by the same amount
as in the previous case. This further accentuates the complex
mutual interplay of the opposite effects of the disc thickness and
the interstellar gas on the resulting group velocity values.

Lastly, we explored the mutual effect of the disc thickness
and the interstellar gas for some higher values of Qg while vary-
ing the thickness of the stellar disc up to ~400 pc (equivalently,
Bs ~ 0.5). This is close to the observed values of the disc thick-
ness in the external galaxies (e.g. see de Grijs & Peletier 1997).
To do this, we first chose Oy = 1.6, O, = 1.5, and € = 0.2,
and then varied the disc thickness (B;) from 0 to 0.5. We find
that for this chosen set of values for (Qs, Q,, and €), and for
an assumed Q, of 15kms™! kpc™!, the group velocity increases
monotonically with increasing disc thickness. We estimate that
for a variation in the disc thickness from 0 to 0.5, the group
velocity increases by ~37%. Furthermore, we chose another set
of values for (O, Qg, and €), namely, Qs = 2, O, = 2, and
€ = 0.2. This set of chosen values is typical for the outer regions
of the discs of Magellanic-type irregular galaxies where the gas
fractions are high (e.g. see Gallagher & Hunter 1984; Jog 1992).
We then chose Q, = 12.5km s~'kpc! and varied the disc thick-
ness from O to 0.5. We find that for this case, the group veloc-
ity increases by ~13% as the disc thickness is varied from 0
to 0.5. For this case, we could not use a higher pattern speed
value, for example, Q, = 15km s~ kpc™! or higher, as the group
velocity approach cannot be applied here. The reason is that the
|slobs Values corresponding to these higher pattern speed values
are almost always lower than the |s|c,—of values obtained from
the dispersion relations corresponding to Qg = 2, O, = 2, and
€ =0.2,and B = 0.2-0.5.

4.2.3. Coverage of the parameter space

Thus, to conclude, we studied the joint effect of the disc thick-
ness and the interstellar gas on the stability of the disc against
non-axisymmetric perturbations as well as on the longevity of
the m = 2 spiral density waves. By exploring a range of param-
eter space, we demonstrate the complex nature of the mutually
opposite effect of the disc thickness and the interstellar gas. We
mention that, while we studied this mutually opposite effect on
the longevity of the spiral density wave, we could not carry out
a systematic search in the parameter space, unlike in the case
of disc stability (or equivalently, the variation in |§|cy—of). The
reasons are that first, the group velocity was obtained using the
slope of the local dispersion relation graphically (as in Toomre
1969). Although this approach allowed us to calculate the group
velocity conveniently, this procedure is not robust (for details, see
Toomre 1969; Ghosh & Jog 2015). The slope depends critically
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on the exact location of x where the |s|ops (corresponding to a
Q, value) intersects the dispersion relation. In other words, it is
a local value. Secondly, for a two-component system, the
dispersion relation is a fourth-order polynomial (e.g.
Jog & Solomon 1984). This means that for a certain choice
of parameters, if the |s|ops intersects the dispersion relation in the
region of high x that falls in the region of second minimum, the
slope would tend to flatten, regardless of whether the solution in
x, corresponding to this |s|ops Value, is real or imaginary. Hence,
while normally, a higher g or thickness leads to a steeper slope,
the flattening effect due to the k* behaviour may dominate in
these cases, and hence a smaller slope may be obtained for higher
[, which in turn leads to a lower value of the group velocity. This
is opposite to the typical dependence on disc thickness shown
above, where a higher 8 was shown to result in a higher group
velocity. In these cases, the effect of disc thickness would not
be opposite, but would show a similar trend to the effect of gas.
This complex, mixed behaviour is more likely to be seen at high
gas fraction (see Jog & Solomon 1984) or high [s|obs. This could
contribute to a diverse and complex dynamical behaviour. The
results obtained from varying the § parameter for a fixed set of
(Qs, Qy, €) values therefore have to be interpreted with caution.

Moreover, we kept the thickness of the gas disc, 8; = 0.1 so
far while calculating the dispersion relations for a two-component
stars-plus-gas system. Using the k., value mentioned in Sect. 3.1,
this corresponds to g ~ 70 pc, which is the typical scale height
for molecular hydrogen gas (e.g. Scoville & Sanders 1987). On
the other hand, neutral hydrogen (H 1) shows a typical value for
the scale height of ~150pc (e.g. Lockman 1984), which cor-
responds to S, = 0.2. Here, we briefly state what happens to
the findings mentioned above when we set 8, = 0.2 instead of
Bg = 0.1. We chose Qs = 1.3, O, = 1.3, and € = 0.2, which
we explored before in Sect. 4.2. We then set 8, = 0.2 and var-
ied Bs from O to 0.3, as before, to determine the change in the
radial group velocity corresponding to £, = 15km s~'kpc~! and
Q, = 18kms~'kpc™!. For fixed B, and Q, values, the group
velocity increased by ~13-55% for B, = 0.2 when compared
with that for 8, = 0.1. This shows that the finite thickness of the
gas disc also increases the group velocity for the joint disc (and
consequently, decreases the longevity) in a similar fashion as the
thickness of the stellar disc. We also considered a few other sets
of (Qs, Oy, and €) values to test this. We find a general trend of
an increasing group velocity with increasing thickness of the gas
disc. For brevity, we do not show these cases here.

Nevertheless, we stress that in general, the inclusion of thick-
ness of the stellar disc and the interstellar gas has opposing effects
on the disc stability against non-axisymmetric perturbations and
the radial group transport, as illustrated in terms of the typical
examples in this section (also see Table 3). In general, for the
observed disc thickness and gas fraction values, as we have dis-
cussed in this section, the quenching effect of the height does not
(completely) overcome the supporting role played by the gas, and
hence a disc would still be expected to host non-axisymmetric fea-
tures whose longevity will be supported by the gas.

4.2.4. Radial variation of the group transport for a
two-component disc

As before, we study here the radial variation of the effect of a
finite thickness on the group velocity of a wavepacket, consist-
ing of density waves, for a gravitationally coupled stars-gas sys-
tem. As before, we chose three radial locations at R = 6.27 kpc,
R = 7.27kpc, and R = 9.27kpc. Then we assumed Q, =

12.5kms~" kpc™! and recalculated the group velocities for dif-
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ferent disc thickness and the gas fraction values while choosing
Qs and Q, values identical to those in Table 3. Here also, we
find a similar qualitative trend of mutually opposing effects of
the finite thickness and the interstellar gas on the group velocity
as well as the longevity of the spiral density waves. To elaborate,
at R = 6.27kpc, and for € = 0.1 and Q, = 12.5 kms™! kpc‘l,
the group velocity increases by ~63.6% when S is varied from
0 to 0.3. As the gas fraction (€) increases, the increment in the
group velocity due to a variation of 8 from O to 0.3 starts to
diminish monotonically. For € = 0.2, the corresponding incre-
ment in the group velocity becomes ~37.8%, and for € = 0.25,
the increment in the group velocity becomes ~33.7% (for the
same variation in 8 from 0 to 0.3). In other words, when the gas
fraction increases, the dynamical effect of the interstellar gas in
supporting the spiral density wave starts to dominate the quench-
ing effect of the finite thickness. This trend is similar to what
was shown for R = 8.27 kpc (see Table 3). We further checked
for other €, values as well as for another two radial locations
considered here. We found that as long as the dispersion relation
admits a real solution for x in the long-wavelength branch for the
corresponding |s|,ps value, and as long as the k* behaviour does
not interfere in the locations where the group velocity is being
calculated (for details, see the discussion in previous section),
we obtain a similar qualitative effect of the finite thickness on the
group velocity and on the longevity of the spiral density wave.
For brevity, they are not shown here. This shows that the finite
thickness of the stellar disc has a similar quenching effect on
the longevity of spiral density waves at different radial locations
(covering the radial extent of spirals) for the gravitationally cou-
pled two-component disc as well.

5. Discussion

Here, we discuss several relevant points.

At high values of the scale height, its effect begins to
dominate the effect of gas. The net effect therefore is an
increase in the group velocity, which would lead to a shorter
lifetime of the density wave. A typical galaxy is known
to show a flaring stellar disc, as was shown observation-
ally by de Grijs & Peletier (1997). This feature occurs natu-
rally, as was shown by the theoretical modelling of a multi-
component galactic disc (Narayan & Jog 2002a). The Milky
Way stellar disc also shows flaring, as seen observationally
from several surveys, for instance, 2MASS (Momany et al.
2006), SEGUE (Loépez-Corredoira & Molgé 2014), LAMOST
(Wang et al. 2018), and LAMOST plus Gaia (Yu et al. 2021).
This flaring was explained by theoretical modelling of a multi-
component disc (Narayan & Jog 2002b), especially for the outer
Galaxy by Sarkar & Jog (2018). This could explain in a generic
way why spiral features are rare in outer regions, even though
these regions tend to be gas rich.

The formulation presented here employs the linear pertur-
bation theory. However, the growth of the spirals in a real
galaxy can enter the non-linear regime as well. The study
by D’Onghiaetal. (2013) demonstrated that the non-linear
response of the disc to the non-axisymmetric perturbations can
alter the lifetime of spiral instability in a disc galaxy. While the
study presented here clearly demonstrated the mutually opposite
effect of the interstellar gas and the disc thickness on the disc
stability and persistence of spiral density wave, it will be worth
pursuing this effect in numerical simulations of disc galaxies.
We also mention that we modelled the spiral structure as a two-
dimensional structure for simplicity, as is typically done. How-
ever, some recent self-consistent simulations of the growth of
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spirals in disc galaxies (e.g. see Debattista 2014; Ghosh et al.
2022) showed that spirals can well be vertically extended.

6. Conclusion

In summary, we investigated the dynamical impact of the disc
thickness on the disc stability and on the longevity of the spiral
density wave. To do this, we derived the dispersion relations in
the WKB approximation for a collisionless stellar disc with finite
thickness as well as for a gravitationally coupled stars-plus-gas
system with different thickness for the stars and the gas discs.
The main findings are listed below.

— The inclusion of finite thickness effectively reduces the self-
gravity of the disc, which in turn makes the disc more sta-
ble against the non-axisymmetric perturbations. This result
for a one-component stellar disc holds true for the whole
range of Toomre-Q parameters (1.2—2) and the disc thick-
ness (~50-400pc) considered in this work. This stabilis-
ing effect is more prominent for lower values of Toomre-Q,
where the self-gravity of the disc is stronger.

— The stabilising effect of the finite disc thickness has conse-
quences in setting up the allowed range of pattern speed values
for which the system allows a non-evanescent spiral density
wave. With increasing disc thickness, this allowed range of
pattern speed values becomes progressively narrower, espe-
cially for lower values of Toomre-Q parameter. For a joint
stars-plus-gas system, the effect of gas is to increase the range
of pattern speed values, while the thickness has an opposite
effect. Typically, the net range of allowed pattern speed val-
ues is wider for a two-component, finite-height disc than for
a stars-alone, infinitesimally thin disc.

— For a one-component stellar disc, the group velocity of a
wavepacket increases monotonically with the increment of
disc thickness, thereby implying a progressively shorter life-
time for the spiral density wave. For the same change in disc
thickness by ~250 pc, the reduction in lifetime can vary from
~10-60% when compared to the case of an infinitesimally
thin stellar disc. This reduction depends on the assumed
pattern speed values and on the Toomre-Q parameter. In a
two-component system, as the gas fraction is increased, the
increase in group velocity caused by the effect of finite height
is reduced. Hence the inclusion of gas opposes the reduction
in lifetime caused by the finite thickness.

— Even in the presence of the interstellar gas, the disc thick-
ness tends to stabilise the two-component (stars-gas) system
against the non-axisymmetric perturbation. This holds true
for the whole parameter space (Qs = 1.2-2, Q, = 1.2-2, and
€ ~ 0.10-0.25) considered here. However, when the dynami-
cal effect of gas is important (e.g. lower values of Qg, and/or
higher € values), the stabilising effect of the disc thickness
becomes minimum.

— The disc thickness tends to diminish the lifetime of the spiral
density waves, even when the gas is present. For the same
change in disc thickness by ~400 pc, the amount of reduction
in the lifetime can vary from ~5-40% when compared to an
infinitesimally thin stars-plus-gas system, depending on the
assumed pattern speed and the Qs, O, and gas fraction (€)
values. However, for gas-rich systems (e > 0.25), the effect
of a finite disc thickness is shown to be negligible.

Thus, to conclude, we demonstrated that the interstellar gas and
the disc thickness have an opposite dynamical effect on the
disc instability and on the persistence of spiral density waves.
While the gas makes a galactic disc more susceptible to non-
axisymmetric perturbations and helps the spiral density wave to

survive for a longer time, the disc thickness affects the system in
the opposite way. Consequently, the net dynamical effect is set
by the relative dominance of these two physical factors. For the
broad range of parameter space we considered, the quenching
effect of the height does not completely suppress the supporting
role of the gas, and hence a disc would still be expected to host
non-axisymmetric features whose longevity will be supported by
the gas.
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Appendix A: Behaviour of the reduction factor 1.0

Fig. A.1 shows the variation in reduction factor, 6 (Eq. 43) with
dimensionless wavenumber x for various disc thicknesses (or 8
values). The reduction due to the disc thickness becomes severe 0.8
for higher values of the disc thickness, as expected. The reduc-
tion factor is also seen to become progressively more important
in the short-wavelength (large x) branch, as expected from the 0.6

form of Eq. 43. v

0.4

0.2

LI e N

o
S

(= |k|/Keit)

Fig. A.1. Variation in reduction factor (6) as a function of dimensionless
wavenumber (x) shown for different disc thicknesses (8 values). The
values of 8 are colour-coded here.
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