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Abstract

Magnetic fields are ubiquitous in astrophysical plasmas. They are responsible for

most of the stellar activities and they manifest in numerous ways in the stellar

atmospheres. The Sun being our nearest star is the natural laboratory to un-

derstand the causes and effects of the magnetic fields. The solar magnetic field

couples the solar interior with its atmosphere. It drives the dynamic phenomena

such as coronal mass ejections (CMEs) and solar flares. The magnetic field also

plays a critical role in heating the solar upper chromosphere and corona as well as

in accelerating the solar wind. A variety of techniques are used to infer these mag-

netic fields and subsequently map them into the layers of the solar atmosphere,

from where the concerned observable originates.

Studies of polarization properties of spectral lines formed in solar atmosphere

serve as one of the best methods to determine the nature of solar magnetic fields

(Stenflo 1994). The polarization is the result of breaking of symmetry in the source

region. This symmetry breaking in the line forming regions can be attributed to

the anisotropic illumination of the atoms and presence of magnetic fields. In

the presence of magnetic fields the energy levels of the atoms split into different

magnetic m sub-states. The transition from these split magnetic sub-states results

in circularly or linearly or elliptically polarized light depending on the strength and

orientation of the magnetic field with respect to the chosen line-of-sight (LOS).

This effect discovered by Zeeman in the laboratory in 1896, is popularly known

as Zeeman effect. It was first seen on Sun by Hale (1908) in sunspots. Using

Zeeman effect in spectral lines it became possible to measure both the strength

and orientation of the magnetic field vector (especially the strong fields of few kG).

Zeeman effect cannot be used effectively in the presence of very weak fields
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(due to extremely small splitting) and also, it is not suitable to measure the tur-

bulent fields (due to cancellation of the opposite polarities of the magnetic field

within the finite spectral resolution). Under such conditions the magnetic field in

the solar atmosphere can be determined by the linear polarization measurement

of spectral lines with appropriate sensitivity to Hanle effect. Hanle effect is the

result of quantum interferences between different magnetic m sub-states of a given

atomic level involved in the transition. It is the modification: depolarization or

repolarization and rotation of plane of linear polarization, of resonance scatter-

ing in the presence of weak magnetic fields. Therefore Zeeman and Hanle effects

can be used to diagnose the magnetic field of the Sun in a very different and

complementary parameter regimes.

The aim of this thesis is to develop pure theoretical tools required for the

determination of the solar magnetic fields using polarized spectral line formation

theory. The thesis is divided into two parts. In the first part (Chapters 2 and 3)

we develop the scattering theory for magnetic dipole (M1) transitions and study

the forbidden emission lines formed in solar coronal conditions or any other astro-

physical objects with diffuse media. In the second part (Chapters 4–8) we consider

the problem of polarized line formulation in spherically symmetric moving atmo-

spheres, for the case of optically thick permitted (electric dipole allowed) lines.

Chapter 1 gives a general introduction to the thesis, wherein we describe the basic

physical concepts required in both parts of the thesis. Chapter 9 summarizes the

work carried out in this thesis and also gives the future outlook on the problems

described in both the parts of the thesis.

Part-I: Scattering Theory for Magnetic Dipole (M1) Transitions

In Chapter 2, we derive the Hanle-Zeeman scattering matrix for M1 transitions.

It can be used to study the forbidden emission lines that are formed in any diffuse

astrophysical media such as solar corona. Because the Einstein A coefficient is

small for the forbidden lines, the magnetic splitting is much larger than the natural

line width even for very weak coronal magnetic fields. Thus, we mainly remain

in the regime of saturated Hanle effect in forbidden lines, in the solar corona.

Thus, Hanle effect in forbidden lines provides an important means of diagnosing

the topology of coronal magnetic fields. The earlier formulation of the problem of

scattering on forbidden lines in magnetic fields is limited to the regime of saturated

Hanle effect. Our aim here is to present a new alternative formulation of the

required scattering theory that covers the entire field strength regime.
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In Chapter 3, we apply the theoretical formalism developed in Chapter 2 to

understand the effects of density distributions, magnetic field configurations, and

velocity fields on the emergent Stokes profiles of the [Fe xiii] 10747 Å coronal

forbidden line. We also describe the procedures to perform the integration over

the solid angle of incident cone of radiation and the LOS integration, to conduct

the above mentioned empirical studies.

Part-II: Polarized Radiative Transfer in Spherically Symmetric Moving

Atmospheres

The plane-parallel approximation of the stellar atmospheres can not be applied

to model the formation of several optically thick lines in extended atmospheres.

To a good approximation these atmospheres can be represented by a spherically

symmetric medium. Furthermore the extended stellar atmospheres are known to

be highly dynamic, with low to high speed stellar wind originating in these layers.

Such velocity fields present in the line forming regions produce Doppler shift,

aberration of photons, and also give rise to advection. All these effects can modify

the amplitudes and shapes of the emergent Stokes profiles. Thus our aim here is

to develop numerical techniques to solve the polarized line transfer equation in

spherically symmetric extended atmosphere with velocity fields and also magnetic

fields.

In Chapter 4, we develop modern iterative techniques based on operator per-

turbation to solve the polarized transfer equation in a spherically symmetric static

atmosphere. Apart from the Jacobi based polarized accelerated lambda iteration

(PALI) method, in this chapter we also develop the fast iterative techniques based

on Gauss-Seidel (GS) and successive overrelaxation (SOR). These latter methods

are known to be superior over the traditional Jacobi iterative scheme. We describe

the numerical steps for the Jacobi, GS, and SOR techniques and study their con-

vergence behavior in the presence of both partial frequency redistribution (PFR)

and complete frequency redistribution (CFR) scattering mechanisms.

In Chapter 5, we include the effects of radial velocity fields to the problem of

polarized line formation in spherically symmetric atmospheres. We describe both

observer’s frame and comoving frame (CMF) methods to solve the problem under

consideration. We describe the Jacobi based CMF-PALI method in detail as this

method is computationally much superior than the observer’s frame method. We

also discuss the inclusion of GS and SOR techniques in the CMF-PALI method
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and study their convergence behavior in the presence of velocity fields for both

CFR and PFR.

In Chapters 6 and 7, we discuss in detail the numerical results obtained for the

problem of polarized line formation in spherically symmetric static and expanding

non-magnetic atmospheres. With the help of contribution function and Stokes

source vector, we explain the nature of the polarized line profiles formed in both

static and moving atmospheres in presence of both CFR and PFR (Chapter 6). We

also vary the model parameters both the atmospheric and atomic parameters one

at a time (keeping the other parameters as constants) and study the dependence

of the linearly polarized line profiles on the model parameters for both static and

moving atmospheres (Chapter 7).

In Chapter 8, we extend the Jacobi based CMF-PALI method developed in

Chapter 5 to include the weak magnetic fields. In the presence of weak fields,

Hanle effect comes into play. Unlike the non-magnetic case the physical quanti-

ties involved in the problem now become radiation field azimuth dependent. We

take into account the approximation-III of Bommier (1997b) to represent angle-

averaged PFR in the presence of weak magnetic fields. We also discuss the polar-

ized line profiles formed in the presence of both magnetic and velocity fields for

the case of CFR and PFR.
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Chapter 1

General Introduction

According to the spectral classification of stars, the Sun is a G-type main-sequence

star. It is also the nearest star, whose disk can be resolved, thereby, allowing us

to understand it in a greater detail. Noticing the shape of solar corona during

the solar eclipse, Hale concluded that the Sun must be magnetized and proved

the same by observing the Zeeman splitting of spectral lines in a sunspot for

the first time (Hale 1908). The magnetic fields are frozen-in in the photosphere

(Alfvén 1943) due to high electrical conductivity of the plasma. On the other hand,

the fields are nearly force-free in the upper solar atmosphere since the magnetic

energy density is higher than the kinetic energy density of the plasma. Hence, it

appears that the magnetic field acquires a life of its own in the upper atmosphere,

thereby controlling the dynamics of hot, tenuous plasmas. Therefore, a study

of nature of magnetic fields in the solar atmospheres is the first step towards

understanding the global picture of magnetism in other astrophysical systems. It is

well-known that both the distribution of energy (intensity) in terms of wavelength

and vector properties (polarization) of the electromagnetic radiation emitted from

the astrophysical systems can be measured with highest possible accuracy and

resolution with the use of spectropolarimetry. Therefore, spectropolarimetry is one

of the powerful tools to diagnose the Sun’s magnetic field through remote sensing.

In the following sections, we qualitatively describe the basic terminologies and

the relevant physical phenomena that are useful for understanding the contents

presented in this thesis.
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Chapter 1. General Introduction

1.1 Representation of polarized light

In a seminal paper, G. G. Stokes for the first time established an ideal mathemati-

cal formalism to describe the state of polarization of a photon beam (Stokes 1852).

He also demonstrated important properties of the polarized light and showed that

the state of mixed streams of polarized light can be completely determined by the

values of four constants, which are now popularly known as Stokes parameters I,

Q, U , and V . Here, I is the specific intensity, Q and U are a measure of the degree

and plane of linear polarization, and V is a measure of circular polarization. This

theory was ignored almost for 80 years by the scientific community until Soleillet

(1929) used the Stokes parameters to study the partial polarization of light. Still

the use of Stokes parameters to represent the polarized light was unknown to the

astrophysical community for next 18 years. It was S. Chandrasekhar who demon-

strated the usefulness of the Stokes parameters to formulate the polarized radiative

transfer equation in stellar atmospheres (see the series of papers by Chandrasekhar

1946a,b, 1947, also the monograph on radiative transfer by Chandrasekhar 1950).

Alternatively, R. C. Jones presented a formalism to describe a 100 % polarized

light (Jones 1941). The Jones formalism cannot describe partially polarized light

which arises due to the incoherent superposition of mutually uncorrelated pho-

tons with different polarization states, that is very common in atomic processes.

Mueller (1948) developed a classic approach for dealing with partially polarized

light. He derived a 4 × 4 matrix which contains the effects of the medium and

helps to transform the Stokes parameters when the light travels from one medium

to the other. We also adopt this approach in part-I of this thesis. Stenflo (1994)

has described these different representations of the polarized light along with the

corresponding mathematical expressions. Here we recall few of those equations

which are relevant for this thesis. If e1 and e2 are two orthogonal basis vectors in

a plane perpendicular to the direction of propagation, then the electric vector E

at any point in space is given by

E = Re(E1e1 + E2e2), (1.1)

where Ek = E0ke
−i(ωt−φk) with k = 1, 2, E0k are the complex amplitudes, ω, and

φk are the frequency and phase of the electromagnetic radiation. The Stokes

2



1.1. Representation of polarized light

+

−Q

U

V

I

−

−

Figure 1.1: A pictorial representation of Stokes parameters I, Q, U , and V
(reproduced by the author based on Figure 1 of Landi Degl’Innocenti 2002).

parameters are defined as

I = 〈E2
01 + E2

02〉; Q = 〈E2
01 − E2

02〉,
U = 〈2E01E02 cos(φ1 − φ2)〉; V = 〈2E01E02 sin(φ1 − φ2)〉. (1.2)

Here the angular brackets represent averaging over a statistical ensemble of un-

correlated photons. A pictorial representation of the Stokes parameters is shown

in Figure 1.1. The quantities I, Q, U , and V are not independent but they are

related to each other as, I2 = Q2 + U2 + V 2 for a completely polarized light,

I2 > Q2 + U2 + V 2 for the partially polarized light, and Q = U = V = 0 for an

unpolarized light. For a linearly polarized light V = 0. In this case, the degree of

linear polarization is defined as

P =

√

Q2 + U2

I
, (1.3)
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Chapter 1. General Introduction

and the position angle (which defines the rotation of linear polarization with re-

spect to the reference direction) is defined as

PA =
1

2
tan−1 U

Q
. (1.4)

Having defined the Stokes parameters, we now define the Jones vector J as

J =

(

E1

E2

)

. (1.5)

If we now consider a light beam that enters a medium with Jones vector J ′ and

exits as J , then the relation between these two Jones vectors can be described by

a complex 2× 2 Jones matrix w, which contains the information of interaction of

light with the medium. Mathematically this is represented as

J = wJ ′. (1.6)

Since Jones matrix can only represent a 100 % polarized light, to handle the

general partially polarized light, the coherency matrix formalism of the radiation

field has to be used, which can be derived from Jones vectors as

D = 〈JJ ′〉, (1.7)

and the coherency matrix transforms as

D = wD′w†. (1.8)

The relation between the coherency matrix and the Stokes parameters is given by

D =
1

2

(

I +Q U + iV

U − iV I −Q

)

. (1.9)

If I ′ represents the incident Stokes vector on a medium, then the transformation

of this Stokes vector by the medium can be described by the 4× 4 Mueller matrix

M as

I = MI ′. (1.10)
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1.1. Representation of polarized light

Using Equation (1.9), the Mueller matrix is expressed in terms of the Jones matrix

w as

M = TWT−1, (1.11)

where the physical properties of the medium are contained in

W = w ⊗w∗ =













w11w
∗
11 w11w

∗
12 w12w

∗
11 w12w

∗
12

w11w
∗
21 w11w

∗
22 w12w

∗
21 w12w

∗
22

w21w
∗
11 w21w

∗
12 w22w

∗
11 w22w

∗
12

w21w
∗
21 w21w

∗
22 w22w

∗
21 w22w

∗
22













. (1.12)

The symbols ⊗ and ∗ denote tensor product and complex conjugation respectively.

T and T−1 are purely mathematical transformation matrices without any physical

contents and they are given by

T =













1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0













; T−1 =
1

2













1 1 0 0

0 0 1 i

0 0 1 −i

1 −1 0 0













. (1.13)

Mueller calculus discussed above is an important flexible tool in spectropolarime-

try. Mueller’s approach has been extensively used in radiative transfer calculations

involving Zeeman effect, coherent and incoherent scattering and the Hanle effect

(see Stenflo 1994). The Mueller matrix can also be used to describe each com-

ponent of the telescope system such as the spectrograph, retarders, polarizers,

modulators etc., hence help in calculating the instrumental polarization. For such

an optical system, the total Mueller matrix M is computed through simple ma-

trix multiplication of Mueller matrices (Mi, with i = 1, 2, ...,m, m being the total

number of optical components) of each individual optical component as

M = MmMm−1......M2M1. (1.14)

The matrices defined in Equations (1.11) and (1.12) are for the case of polarized

light arising from electric dipole (E1) transitions. In part-I of this thesis we discuss

the magnetic dipole (M1) transitions for which the above definitions are slightly

modified and are given in detail in Chapter 2.
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Chapter 1. General Introduction

1.2 Origin of polarized radiation

Polarization is an intrinsic property of the transverse electromagnetic radiation.

The nature of variation of electric field or magnetic field components of the ra-

diation with time defines the state of polarization. Depending on the state of

polarization (variation of tip of the field vector of the radiation), the light can be

categorized as linearly, circularly, or elliptically polarized. Breaking of spatial sym-

metry in the physical processes is the reason for production of observed polarized

radiation (Stenflo 2002). Some of the important symmetry breaking processes are

Zeeman and Hanle effects (seen in spectral lines in the presence of magnetic fields),

Stark effect (in the presence of electric fields), anisotropic illumination of atoms or

molecules, collisions with a collimated beam of fast particles (impact polarization),

reflection, refraction (e.g., rainbows, solar and lunar halos), Rayleigh scattering

(e.g., on air molecules leading to blue color of the sky, scattering on bound elec-

trons which can produce 100 % linearly polarized light in a 90◦ scattering), Mie

scattering (when scatterer’s dimension is larger than the wavelength of light), ra-

diating charged particle, Thomson scattering (on free electrons), Bremsstrahlung

(breaking radiation due to a fast moving electron near the Coulomb potential of a

nucleus), cyclotron radiation (non-relativistic electron moving in the presence of a

magnetic field), synchrotron radiation (relativistic electron moving in the presence

of a magnetic field). For a detailed discussion of all the mentioned processes which

generate polarization, see Rybicki and Lightman (1979), Collett (1993), and Landi

Degl’Innocenti (2002). In this thesis we mainly focus on the polarization as ob-

served on Sun which is mainly produced by a magnetic field (Zeeman effect), and

by coherent scattering of an anisotropic radiation (namely, the resonance scatter-

ing in the absence of magnetic field and Hanle scattering in the presence of a weak

magnetic field).

1.2.1 The Zeeman effect

Michael Faraday was interested in understanding the effect of magnetic fields on

the linearly polarized light during the middle of nineteenth century which led to

the discovery of the Faraday effect (namely, rotation of plane of polarization of the

plane polarized light as it propagates through a medium, with non-zero magnetic

6



1.2. Origin of polarized radiation

Figure 1.2: A complex sunspot picture obtained in Fe i 5250.22 Å line, taken
at 15:30 hours UT, indicating a field strength of 4.13 kG in the region of max-
imum splitting in the lines. The vertical black line on the white light image
(left) indicates the location of the slit for the spectrograph recording shown on
the right. The splitting of one spectral line into three components is a clear
demonstration of the Zeeman effect (shown on the right). This picture was
taken at the McMath-Pierce Solar Facility on Kitt Peak. Courtesy: National
Optical Astronomy Observatory (NOAO).

fields). It was not until 1896 that this relationship between light and magnetism

was more concretely demonstrated by Pieter Zeeman through lab experiments,

which were inspired by the collected works of Maxwell and Faraday. Zeeman was

able to obtain the broadening of the sodium D lines in the presence of an elec-

tromagnet (Zeeman 1897) and a classical theory was immediately provided by

Lorentz to explain this experimental result, which led them to share the Nobel

Prize in Physics in 1902. This discovery is now popularly known as Zeeman ef-

fect. It describes splitting of a spectral line by an external magnetic field into

differently polarized components. Prior to the laboratory works, Lockyer (1866)

obtained the spectroscopic observation of the sunspot, but failed to interpret the

results. It was George Ellery Hale who successfully observed the Zeeman effect in

Hα photographs of sunspot and hence triggered the new era of astrophysical mag-

netism via spectropolarimetry. Figure 1.2 illustrates the Zeeman effect observed

in a complex sunspot. For a historical account on solar magnetic fields we refer

the reader to Stenflo (2017).
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Chapter 1. General Introduction

Lorentz introduced the classical oscillator theory for electric dipole (E1) transi-

tions to describe the Zeeman effect. In Chapter 2 we discuss the classical oscillator

theory for the case of M1 transitions. Therefore, here we briefly recall the classical

description of the interaction of a bound electron with the electric field component

E of the electromagnetic radiation, in the presence of an external magnetic field

that can be applied for the electric dipole (E1) transitions. An excellent and de-

tailed classical description of the Zeeman effect is presented in Stenflo (1994) (see

also Collett 1993; Jefferies et al. 1989). For the corresponding quantum picture

see Landi Degl’Innocenti and Landolfi (2004).

Lorentz used a simple model of Sodium atom (which has a single electron in

the outermost orbit) and considered that the electron is bound to the nucleus. The

motion of this bound electron about the nucleus is governed by the Hooke’s law

with a frequency of oscillation ω0. Using Maxwell’s theory, Lorentz predicted that

broadened Zeeman line actually consists of 2 to 3 split lines with different polar-

ization states (linear, circular or elliptical). This theory can successfully explain

only normal Zeeman triplet, namely, it is equivalent to a quantum mechanical

J = 0 → 1 → 0 transition. The oscillator equation which describes the motion of

the bound electron in an atom in the presence of external magnetic field B and

illuminated by the electromagnetic radiation with electric field component Ein is

given by

r̈ + γ ṙ +
e

m
ṙ ×B + ω2

0r = − e

m
Ein, (1.15)

where r is the relative position vector of the bound electron, γ is the damping

constant, e and m being the charge and mass of the electron respectively. The

above coupled equation can be decoupled into component form by introducing the

spherical vectors eq, with q = 0, ±1, where

e0 = ez; e± = ∓(ex ± iey)/
√
2. (1.16)

Here ex,y,z are Cartesian unit vectors with the z-axis along the direction of the

magnetic field. Equation (1.15) in component form can be written as

r̈q − (2 q iωB − γ)ṙq + ω2
0rq = − e

m
E in

q , (1.17)

where ωB = eB/2m is the Larmor frequency. Solution of the above equation gives

8



1.2. Origin of polarized radiation

the trajectory of the bound electron in an external magnetic field. Clearly, we have

three mutually perpendicular oscillators with oscillating frequency ω0 − qωB. For

q = 0, the resonating frequency is ω0 and the oscillation is along the field direction,

thereby representing a linear polarization in this direction and it is referred to as

unshifted π-component. For q = ∓1, the oscillators resonate at frequencies ω0±ωB

and they represent left and right circular polarization and are referred to as σ-

components (σr for q = +1: a redshifted component, σb for q = −1: a blueshifted

component). Classically, these three types of oscillators represent electric dipoles

and emit dipole radiation. The polarization properties of the radiation observed

in a given direction is simply determined by the geometrical projection of the

oscillating dipole vector on a plane perpendicular to the line-of-sight (LOS). Thus,

if the field is directed along the LOS, contribution from the π-component vanishes,

while the σ-components remain, giving rise to right and left circularly polarized

light, namely the longitudinal Zeeman effect. If the field is oriented perpendicular

to the LOS, then the σ and π-components are linearly polarized perpendicular and

parallel to the field direction which is termed as transverse Zeeman effect. For an

arbitrary field orientation, the Zeeman line components are elliptically polarized.

A pictorial representation of longitudinal and transverse Zeeman effect are shown

in Figure 1.3.

We now briefly discuss the quantum picture of Zeeman effect by considering the

transition between atomic levels with total angular momentum quantum numbers

Jl and Ju corresponding to the lower and upper levels respectively. Then the

transition between these energy levels in the presence of an external magnetic

field will give rise to spectral lines whose wavelength shifts can be determined by

the following expression:

λmuml
= λ0 −∆λB(gumu − glml), (1.18)

where gu, gl and mu, ml are the Landé factors and magnetic quantum numbers

of the upper and lower levels, respectively. The Zeeman splitting factor ∆λB is

given by

∆λB = 4.67× 10−10λ20B, (1.19)

where ∆λB is in mÅ, unperturbed wavelength is λ0 in Å, and magnetic field

strength B is in Gauss. Left panel of Figure 1.4 depicts the quantum picture of

9
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x

B

y

z

σr

σb

π

σb

σr

π σrσb

Figure 1.3: A representation of longitudinal and transverse Zeeman effects.
Along the direction of magnetic field we see only σ-components which are right
(σb) and left (σr) circularly polarized and along the LOS perpendicular to the
magnetic field, we see both π and σ-components which are linearly polarized.
This figure is made by the author following Figure 3.1 of Landi Degl’Innocenti
and Landolfi (2004).

J = 0

J = 1
∆νB

σ π σ

I
Q
U
V

m = 0

m = −1

m = +1

ΓR

0

0

0

∆νB ≫ ΓR

I ′

J = 1

J = 0

ΓR
∆νB

∆νB ∼ ΓR

I
Q
U

I ′

0
0

Figure 1.4: Level diagram in the presence of a strong (left panel) and a weak
(right panel) magnetic field for a J = 0 → 1 → 0 transition. ΓR is the radiative
width of the upper level. When Zeeman splitting ∆νB is much larger than ΓR,
we are in the Zeeman regime (left panel). On the other hand, if the splitting is
comparable to ΓR, then the Zeeman sublevels (here m = 0,±1) superimpose or
interfere giving rise to Hanle effect (right panel).

10



1.2. Origin of polarized radiation

          

z

Atmosphere Atmosphere

Atmospheric normal

Line-of-sight

ϑ

Figure 1.5: A 1D atmosphere with z-axis along the atmospheric normal. The
line-of-sight makes an angle ϑ with respect to the z-axis.

Zeeman effect for a J = 0 → 1 → 0 transition. For a J = 0 → 1 → 0 transition,

the upper level splits into three sublevels with m = 0,±1. Only limited number of

Zeeman components arise depending on the selection rule. For an E1 transition,

the selection rule is given by

∆m = mu −ml = 0, ±1. (1.20)

Clearly Equation (1.19) shows that the Zeeman splitting is more complete when

longer wavelengths are considered (as ∆λB ∝ λ20). Therefore Zeeman effect can be

used to determine the vector magnetic field (both field strength and orientation)

in Sun and stars using full Stokes polarimetry (namely, determining I, Q, U, and

V ) particularly when strong fields (about few hundreds to kG) are present in the

observing region. Thus it serves as a diagnostic tool to determine the solar and

stellar magnetic fields.

1.2.2 Scattering polarization

Solar spectrum observed near the limb is linearly polarized even in the absence of

magnetic fields due to coherent scattering processes (Stenflo et al. 1983a,b). This
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non-magnetic scattering polarization is zero at the disk center (µ = cosϑ = 1,

see Figure 1.5) due to the axisymmetry of the radiation field there. The scatter-

ing polarization increases as the LOS is moved towards the limb and reaches the

maximum near the limb (µ = 0). This polarization arises due to an anisotropic

radiative excitation of atoms or molecules in the solar atmosphere immediately

followed by spontaneous emission. In the absence of velocity fields, the main con-

tribution to this anisotropy is from the limb darkening. The degree of anisotropy

in the solar atmosphere being smaller (Stenflo 2005) gives rise to smaller degree

of scattering polarization of a few percent. Such weak signals have been recorded

(Stenflo and Keller 1996, 1997) with the advent of high-precision polarimetric in-

strument such as the Zurich IMaging POLarimeter (ZIMPOL; Povel et al. 1990;

Povel 1995), which has a polarimetric accuracy of 10−5. This linearly polarized

spectrum of Sun which completely differs from the intensity spectrum is called the

“Second Solar Spectrum” (Ivanov 1991; Stenflo and Keller 1997). An atlas of the

Second Solar Spectrum covering the wavelength range from 3160-6995 Å recorded

near the solar limb (at µ = 0.1) is presented in graphical form by Gandorfer (2000,

2002, 2005).

Rayleigh and Raman scatterings are two important types of scattering pro-

cesses. If the quantum numbers n, L, J associated with an atomic transition are

the same for both the initial and final states involved in the scattering process,

then such a scattering phenomenon is termed as the Rayleigh scattering. Any dif-

ference in these quantum numbers between the initial and final atomic states leads

to Raman scattering. Thomson scattering on free electrons and Rayleigh scatter-

ing on hydrogen atom mainly contribute to the polarized continuum spectra of

the Sun. On the other hand, resonance scattering on atoms and molecules, gives

rise to polarized line spectra. It is a special case of Rayleigh scattering, wherein

the incident photon has a frequency equivalent to the energy difference between

the atomic levels, particularly involving the ground state. A similar special case

of Raman scattering is called fluorescent scattering.

The scattering phenomenon can be understood using a classical picture based

on Maxwell’s theory. Here we qualitatively describe the origin of scattering po-

larization by using a classical harmonic oscillator model for an atom. For this

let us consider a simple 90◦ scattering event as shown in panel (a) of Figure 1.6.

An unpolarized beam of radiation is incident on an atom (held at the center of
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x

Unpolarized incident beam

Linear oscillators
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(a) Resonance scattering
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Scattered beam
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zUnpolarized incident beam

Circular oscillators

L
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S

(b) Hanle scattering

Figure 1.6: Classical picture of a 90◦ scattering event: (a) resonance scattering
(in the absence of external magnetic field), and (b) Hanle scattering in the
presence of a weak external magnetic field parallel to z-axis or LOS.

the coordinate system) along the y-axis. In the absence of the magnetic field,

the atom can be represented by three mutually perpendicular independent linear

oscillators vibrating at angular frequency ω0. Since the incident radiation beam

is along y-axis, only the x and z oscillators are excited. These two oscillating

dipoles radiate independently in all directions except along the axis of the dipole,

and they decay spontaneously with a damping constant γ in an extremely short

time. The scattered radiation is linearly polarized and the degree of polarization

depends on the LOS. For a 90◦ scattering geometry (LOS along the z-axis in Fig-

ure 1.6) the degree of polarization is maximum (100 %) and linearly polarized

along the x-axis. For forward scattering (i.e., LOS along the y-axis) the degree

of polarization is minimum (0 %). The same conclusion can also be attained by

considering the x-oscillator as resulting from the coherent superposition of two

counter-rotating circular oscillators that are oscillating in phase with respect to

each other at frequency ω0 in the x-y plane. It is interesting to note that in the

Zeeman effect, only the state of polarization varies depending on the LOS but not

the total degree of polarization.

A two-level atom having a lower level of angular momentum Jl = 0 and an

upper level of angular momentum Ju = 1 can be used as the quantum analogue

of above described classical harmonic oscillator model. The excitation of one of

the classical oscillator is equivalent to excitation of one of the Zeeman sublevels of
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the upper level. In this analogy, the linear oscillator corresponds to the sublevel

mu = 0, while the circular oscillators correspond to the sublevelsmu = ±1, respec-

tively. When the field is zero, magnetic sublevels are degenerate and the atom can

exist in a coherent superposition of these levels. Thus, the photons emitted from

mu = +1 and mu = −1 levels (by two different atoms) are highly coherent (i.e.,

identical in frequency and phase), and oppositely circularly polarized. These pho-

tons interfere to give 100 % linearly polarized light (which explains the resonance

scattering). Clearly the polarization produced is due to the population imbalances

and quantum interferences among the Zeeman sublevels, which is referred to as

‘atomic polarization’ (Trujillo Bueno 2001). The presence of weak magnetic fields

can modify the resonance polarization produced by coherent scattering, which we

discuss in the next section.

1.2.3 The Hanle effect

Hanle effect is the modification of the scattering polarization produced by the res-

onance scattering in the presence of an external magnetic field. The presence of a

magnetic field mainly causes the rotation of plane of polarization (i.e., generation

of Stokes U), and modifies the degree of linear polarization (usually a depolariza-

tion in the line core leading to reduced Stokes Q) of the scattered radiation.

Wood (1908) for the first time observed the polarization of the fluorescent

light of gases and molecules (mainly in the white light fluorescence of sodium and

iodine vapor). Wood (1912) also observed that the light scattered from mercury

vapor was completely polarized under non-resonant conditions, while the 2536.7Å

resonant radiation was not always completely polarized. Rayleigh (1922) observed

in multiple experiments that the resonant line of mercury was differently linearly

polarized. Wood and Ellett (1923a,b) explained that the discrepancies observed

in Rayleigh’s experiments were because of the presence of earth’s magnetic field

(which was not compensated for). Wood and Ellett (1924) realized that the depo-

larization observed in resonant mercury line was not due to the Zeeman effect, be-

cause the field strength measured was B . 1 G (for which expected Zeeman split-

ting is negligible compared to the line width). They conducted experiments with

both mercury and sodium D lines and concluded that the observed phenomenon

was a new magneto-optic effect. A first correct interpretation (also eliminating

14



1.2. Origin of polarized radiation

(c) Zeeman effect      (a) Resonance scattering (b) Hanle effect
B = 0 B 6= 0B 6= 0

ωB ∼ γ (weak field) ωB ≫ γ (strong field)

Figure 1.7: Trajectory of a bound electron obtained using a damped classical
oscillator model. Here the LOS and the direction of magnetic field are parallel to
each other and the motion of electron is in a plane transverse to the direction of
magnetic field. Panels (b) and (c) are taken from Moruzzi and Strumia (1991).

Faraday effect) of the experimental results of Wood and Ellett (1924) was given

by Hanle (1923, 1924, 1925), which formed his PhD thesis work titled “Magnetic

field influence on the polarization of the resonance fluorescence of mercury”. His

interpretation (both classical and quantum) of the observed phenomenon, which

was later called as the ‘Hanle effect’ is briefly discussed below (for greater details

see Mitchell and Zemansky 1934; Moruzzi and Strumia 1991).

For the classical description, we again consider the geometry shown in Figure

1.6 with a quasi-elastically bound electron in a mercury atom. An unpolarized

beam of incoming radiation along the y-axis is incident on the mercury atom. The

scattered resonance light is observed along the z-axis. The polarization of the

scattered radiation is determined in the xy-plane. An external magnetic field is

applied along the z-axis (which is also along the LOS). Now the electron oscillations

in the xy-plane can be decomposed into two counter rotating circular motions each

having slightly different oscillating frequencies (ω0 ± ωB) because of the non-zero

magnetic field. The resulting trajectory of the electron in the xy-plane (obtained

by solving the Eq. (1.15) by setting the RHS to zero) is given by

x(t) = e−γt/2 cos(ωBt) cos(ω0t),

y(t) = e−γt/2 sin(ωBt) cos(ω0t). (1.21)
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The bound electron thus describes in the xy-plane a complicated pattern called

the “rosette” pattern (see Figure 1.7). Based on the ratio ωB/γ, the shape of the

rosette varies, which can be mainly divided into three cases.

(i) ωB ≫ γ (strong field regime): here the bound electron precesses about the mag-

netic field several times before being affected by the damping, thereby describing

a perfect rosette as shown in Figure 1.7c. For the geometry considered (cf. Figure

1.6), the scattering polarization (along the z-axis) is zero. However in this regime,

the longitudinal Zeeman effect produces circular polarization.

(ii) ωB ≪ γ (zero field regime): if the applied field is very weak, the electron per-

forms a highly damped oscillation with hardly any precession and emits linearly

polarized light, which is the case of resonance scattering (see Figure 1.7a).

(iii) ωB ≈ γ (weak field or Hanle effect regime): if the applied field is weak, such

that ωB ≈ γ, then there can be two competing processes, i.e., a) the applied

field forces the electron to precess about the magnetic field and b) the radiation

damping tries to suppress this precessing motion. Thus, the bound electron ex-

hibits a damped rosette motion as shown in Figure 1.7b, thereby giving rise to a

depolarization and a small rotation of plane of polarization with respect to the

corresponding non-magnetic case. This is the regime of the Hanle effect.

To interpret the Hanle effect in terms of quantum mechanics, Hanle noted that

when the magnetic splitting of the excited energy level of a quantum system is on

the order of, or smaller than, h/tlife (here h is Planck’s constant and tlife the lifetime

of the atomic level under consideration), the excited level can exist in a quantum

superposition of magnetic sublevels. From Heisenberg’s uncertainty principle, we

know that, h/tlife is the natural width or radiative width (ΓR, which is equivalent

to damping constant γ of the classical theory) of the excited level. In the absence

of external magnetic field, these magnetic sublevels are fully degenerate leading

to a resonant polarization. On the other hand, in the presence of weak magnetic

fields (field strength within 0 to few hundred Gauss), the magnetic sublevels are not

fully separated (see Figure 1.4b), but they are superimposed giving rise to a mixed

state. Resonant scattering taking place from such superimposed states gives rise

to the Hanle effect. The field for which Hanle effect is sensitive is quantitatively

determined by the Hanle gamma parameter

ΓB ≈ 8.79× 106B gJ tlife, (1.22)
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1.2. Origin of polarized radiation

where tlife is inversely proportional to the damping constant γ and gJ is the Landé

g-factor of the upper or lower level. Clearly, sensitivity regime of Hanle effect

varies depending on the spectral line of interest and it is optimum when ΓB ∼ 1.

For a known field strength, Hanle effect plays an important role in spectroscopy in

determining the lifetimes of the excited states of atoms and molecules (Moruzzi and

Strumia 1991). In astrophysics, Hanle effect is a very useful tool to determine the

weak magnetic fields (see reviews by Leroy 1985; Kazantsev 1983; Stenflo 1991).

Basic theoretical concepts required for applying Hanle effect in astrophysics are

given in greater detail in Stenflo (1994) and Landi Degl’Innocenti and Landolfi

(2004).

The Hanle effect is sensitive to weaker fields in the range of 1 mG to 100 G

which can be found in the solar surface (Trujillo Bueno 2001). Therefore Hanle

effect has been extensively used to determine the weak magnetic field on the Sun,

to name a few: deterministic fields in prominences (see, e.g., Leroy et al. 1977;

Leroy 1977; Sahal-Bréchot et al. 1977; Sahal-Bréchot 1981; Landi Degl’Innocenti

1982; Leroy et al. 1983; Athay et al. 1983; Querfeld et al. 1985; Bommier et al.

1986; Landi Degl’Innocenti et al. 1987), turbulent magnetic fields in the solar

photosphere (wherein circular polarization signals due to Zeeman effect cancels out

within each spatial resolution element containing mixed polarity fields; see, e.g.,

Stenflo 1982; Faurobert-Scholl 1993, 1996; Faurobert et al. 2001; Trujillo Bueno

et al. 2004; Bommier et al. 2005; Faurobert et al. 2009), and in chromosphere,

transition region and corona (see, e.g., Stenflo 1982; Bommier and Sahal-Bréchot

1982; Sahal-Bréchot et al. 1986; Faurobert-Scholl 1992; Bianda et al. 1998a,b;

Derouich et al. 2010; Trujillo Bueno et al. 2011; Anusha et al. 2011a). See Stenflo

(2013) and Trujillo Bueno et al. (2017) for a review on the diagnostic potential of

Hanle and Zeeman effects to determine the nature of solar magnetic fields. Hanle

effect can also be used to study the stellar magnetic fields (see, e.g., Ignace et al.

1997; Ignace 2001; López Ariste et al. 2011; Bommier 2012; Manso Sainz and

Trujillo Bueno 2011; Manso Sainz and Mart́ınez González 2012).

In part-I of this thesis we describe the application of Hanle effect to determine

the coronal magnetic fields using optically thin forbidden emission lines. In part-

II, we discuss the application of Hanle effect to study the optically thick permitted

lines formed in the spherically symmetric moving atmospheres.
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1.3 Coronal magnetic fields

Coronal magnetic field measurement is still a challenging problem in solar physics

because the fields are intrinsically weak (few Gauss) and the corona contains op-

tically thin, high temperature (up to few million Kelvin) tenuous plasma leading

to thermally broadened weak signals. Coronal magnetic field is one of the major

sources affecting the space weather. Therefore, a variety of methods have been

applied to determine the same. We list few methods that are used for measuring

magnetic fields at different heights using different wavelengths: direct magne-

tometer measurements based on induced currents (Mariani and Neubauer 1990),

using Bremsstrahlung and Faraday rotation in radio waves (Bird and Edenhofer

1990; Gelfreikh 1994; Sakurai and Spangler 1994), using gyroresonance emission

(Akhmedov et al. 1982), using longitudinal Zeeman effect (Lin et al. 2000), using

resonance polarization (Arnaud and Newkirk 1987), using Hanle effect (Sahal-

Bréchot 1981; Landi Degl’Innocenti 1982; Raouafi et al. 2016), using magneto

acoustic waves (Jess et al. 2016), using MHD modeling (Mackay and Yeates 2012;

Wiegelmann et al. 2014; Inoue 2016), using vector tomographic inversion technique

(Kramar et al. 2016), and using multi-wavelength studies (Gibson et al. 2016) etc.

Among different techniques mentioned above, the spectropolarimetry of coro-

nal forbidden emission lines undergoing M1 transitions can provide one of the best

constraints on both the plane-of-sky (POS) field direction and LOS field strength,

thereby serving as a diagnostic tool to determine the vector magnetic field in the

solar corona.

1.3.1 Coronal forbidden emission lines

During total solar eclipse of 7 August 1869, Young and Harkness independently

observed the 5303 Å coronal emission line for the first time using a spectrograph.

This line was called ‘green line’ and was assumed to be produced by an unknown

element called ‘coronium’. Campbell and Moore (1919) presented the spectrum of

solar corona mentioning them as bright lines. Grotrian (1939) solved this puzzle

of green line and concluded that this line was originated from the highly ionized

state of iron [Fexiv] and also gave the tentative identifications for red coronal lines
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1.3. Coronal magnetic fields

Figure 1.8: Solar corona during the total solar eclipse of 2008 displaying
emission from forbidden Fe lines combined with white light. [Fexi] is shown in
red, [Fexiii] in blue, and [Fexiv] in green, taken from Habbal et al. (2010).

[Fex] 6374 Å and [Fexi] 7892 Å. Lyot (1939) developed a coronagraph and found

unidentified lines such as the famous infrared (IR) [Fexiii] 10747 Å and 10797 Å

forbidden lines, which initiated the new era of coronal magnetometry (Waldmeier

1957). Coronal observations require natural eclipses (see Figure 1.8 displaying the

coronal forbidden emission lines during the total solar eclipse of 2008) or coro-

nagraphs. Some of the ground based coronagraphic measurements are made at

Sacramento Peak (New Mexico), Norikura (Japan), Haleakala (Hawaii), Pic du

Midi (France), Kislovodsk (Russia) and Mauna Loa Solar Observatory (High Al-

titude Observatory, Boulder). The Visible Emission Line Coronagraph (VELC)

payload onboard Aditya-L11, is the first Indian space based solar coronagraph

intended to study the corona of Sun. This payload also includes a spectropolari-

metric channel in IR for 10747 Å line (see the energy level diagram in Figure 1.9).

Aditya-L1 is expected to be launched in 2020-2021.

Coronal forbidden lines arise from M1 transitions. In other words, they are

not electric dipole (E1) allowed transitions. Because of the low density and high

1https://aditya.iiap.res.in/
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[Fe xiii]

3388 Å

Figure 1.9: Energy level diagram of [Fexiii] ion showing IR transition lines
10747 Å and 10798 Å.

temperature of the coronal plasma, they naturally occur in such conditions. They

have small values of Einstein spontaneous emission coefficient A (whose classical

analogue is the damping constant γ) or extremely high lifetime. For most of the

forbidden lines in the corona, A value lies between 10 s−1 to 100 s−1, which is about

106 times smaller compared to the lines undergoing E1 transitions. Because of low

values of A, even for weak magnetic fields of strength 10−4 G, Equation (1.22)

shows that ΓB will be much larger than unity. This means that measurement

of magnetic field strength is impossible from linear polarization measurement of

these lines. However, these lines continue to be sensitive to the orientation of

field vector on POS. This asymptotic regime of Hanle effect, where the scattered

linearly polarized light has become insensitive to the magnetic field strength, but

sensitive to the field orientation is called the ‘strong field regime’ or ‘saturated

Hanle regime’.

Landi Degl’Innocenti (1983a) has given a classification scheme for the forma-

tion of polarization in spectral lines based on four important parameters. They

are: (i) the ratio of anisotropic (Ra) to isotropic (Ri) contributions to the radiative

excitation rate, i.e., Ra/Ri, (ii) the ratio of Larmor frequency to the Doppler width

of the line, i.e., νB/∆νD, (iii) the radio of Larmor frequency to the spontaneous

deexcitation rate, i.e., νB/A, and (iv) the ratio of collisional depolarizing rate (D)

to the radiative isotropic excitation rate, i.e., D/Ri. For the observed visible or IR

M1 lines, νB/∆νD is about 10−3 or less, while E1 lines observed at extreme ultra
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1.4. Polarized line radiative transfer

violet (EUV) wavelengths will show even lesser values in the corona. The critical

particle density for E1 transitions to occur is about 1015 cm−3, whereas for M1

transitions it is close to 108 cm−3 (see Judge et al. 2001). Therefore, anisotropy in

the case of visible and IR wavelengths is substantial for the M1 transitions, which

is also modified by the depolarizing collisions (Ra ∼ D). Thus, forbidden emission

lines undergoing M1 transitions fit well into this classification scheme and are very

useful for the determination of topology of coronal magnetic fields.

In part-I of this thesis, we derive the Hanle-Zeeman scattering matrix for M1

transitions (in Chapter 2) and present its application to the case of [Fe xiii] 10747

Å coronal forbidden emission line (in Chapter 3).

1.4 Polarized line radiative transfer

Part-I of this thesis is dedicated to the optically thin forbidden (M1) lines formed

in the corona. There are several optically thick UV and EUV allowed (E1) lines

which form in the upper chromosphere, transition region and above (e.g., Lyα lines

of H i, He ii etc). For the quantitative analysis of the Stokes profiles of optically

thick lines, it is necessary to solve the polarized radiative transfer equation. Before

describing the transfer equation, we briefly discuss the redistribution mechanism in

scattering which is a fundamental physical phenomena in the line transfer theory.

We remark that, for an optically thin M1 lines considered in part-I of the thesis,

frequency coherent scattering in the laboratory frame suffices to represent the

scattering mechanism. However, for optically thick E1 lines (particularly for strong

resonance lines) it is necessary to account for frequency redistribution in scattering

which is discussed in the following subsections.

1.4.1 Redistribution in line scattering

Scattering process may change the frequency, direction, and polarization of the

scattered photon relative to that of the incident photon. It contributes to the

formation of both line and continuous part of the spectrum. Here we discuss only

the redistribution mechanisms in line scattering. For a discussion on redistribution
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mechanism for scattering on electrons (which contributes to both line and contin-

uum scattering) we refer the reader to Chandrasekhar (1950). A redistribution

function R(ν,n, ν ′,n′) gives the joint probability of a photon with a frequency ν ′

and direction n′ being absorbed by an atom and then being re-emitted (or scat-

tered) with outgoing frequency ν and direction n. If the frequency and direction of

the scattered photon are correlated to the corresponding quantities of the incident

one then the redistribution mechanism is called the partial frequency redistribution

(PFR). On the other hand, absence of such correlation in the scattering mecha-

nism is called the complete frequency redistribution (CFR). CFR mechanism is

usually sufficient to describe the weak resonance lines and subordinate lines and

it is numerically much easier to handle. However, PFR is numerically complex

to handle in radiative transfer problems, but it is very important and necessary

ingredient to model the polarized profiles of strong resonance lines.

Hummer (1962) derived the scalar redistribution function for a 2-level atom,

in the absence of collisions. Further studies on the frequency redistribution in

resonance and subordinate lines including collisions were done by Oxenius (1965);

Heinzel (1981); Heinzel and Hubeny (1982); Hubeny (1982); Heinzel and Hubeny

(1983); Hubeny et al. (1983a,b); Hubeny and Heinzel (1984); Hubeny and Cooper

(1986); and Hubeny and Lites (1995). For a detailed mathematical description

and a historical account on the theory of PFR, we refer the reader to Hubeny and

Mihalas (2014).

The calculation of redistribution function is a two step process. First the

redistribution function is calculated in the rest frame of the atom. Since the

transfer calculations are done in the laboratory (or observer’s) frame, the atomic

redistribution has to be convolved with a velocity distribution corresponding to the

thermal motion of the scattering atoms which give rise to Doppler shifts. When

calculating the laboratory frame redistribution function it is usually assumed that

the atomic velocity is unchanged during the scattering process and also the velocity

distribution is given by a Maxwellian. The scalar redistribution function in the

atomic frame may be written as

R0(ξ,n, ξ
′,n′) = r(ξ, ξ′)p(n,n′), (1.23)

22



1.4. Polarized line radiative transfer

where the subscript “0” identifies the quantities in the atomic rest frame. ξ, ξ′

are the frequencies of the scattered and incident photons in the atomic frame.

The p(n,n′) is the angular phase function which describes the probability that

the photon is scattered from solid angle dn′ in direction n′, into solid angle dn in

direction n. We now briefly discuss the Hummer’s type-II and type-III frequency

redistribution functions which are relevant for a resonance line considered in part-

II of this thesis.

The type-II redistribution mechanism in the atom’s frame involves an atomic

transition between an infinitely sharp lower level and radiatively broadened upper

level. In the atomic frame, the emitted photon has the same frequency as the

incident photon and the corresponding frequency redistribution is given by

rII(ξ, ξ
′) = L(ξ′)δ(ξ − ξ′), (1.24)

where δ is the Dirac distribution and L(ξ′) is the rest frame absorption profile,

which is a Lorentzian. This is called “frequency coherent scattering” in the atomic

frame. rII(ξ, ξ
′) is convolved with a Maxwellian velocity distribution to get the

laboratory frame redistribution function RII(ν,n, ν
′,n′) (wherein ν and ν ′ are the

frequencies of the scattered and incident photons in the laboratory frame).

The type-III redistribution mechanism in the atom’s frame involves an atomic

transition between an infinitely sharp lower level and radiatively as well as col-

lisionally broadened upper level. Here the elastic collisions are assumed to be

more frequent so that all the excited electrons are randomly reshuffled over the

substates of the upper state before the occurrence of emission. Therefore, in the

atomic frame, the emitted photon’s frequency is uncorrelated to that of the inci-

dent photon and the corresponding frequency redistribution is given by

rIII(ξ, ξ
′) = L(ξ′)L(ξ). (1.25)

Since the correlation between the incident and emitted frequencies is lost, this

redistribution is called “frequency incoherent scattering” or “complete frequency

redistribution” (CFR) in the atomic frame. Again, rIII(ξ, ξ
′) is convolved with a

Maxwellian velocity distribution to get the laboratory frame redistribution func-

tion RIII(ν,n, ν
′,n′). The explicit form of both RII and RIII functions can be found
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Figure 1.10: Intensity and linear polarization profiles of Ca i 4227.74 Å res-
onance line (to the left) taken from Stenflo (1994) and Na i D1 5890 Å and D2

5896 Å lines (to the right) taken from Stenflo (1996) showing the PFR effects
in both intensity and polarization.

in Mihalas (1978).

1.4.2 A brief historical overview of PFR theories with po-

larization

The redistribution function becomes a 4× 4 redistribution matrix when polariza-

tion of incident and scattered photons is taken into account. In this case, the PFR

effects are described by a 4× 4 redistribution matrix R(ν,n, ν ′,n′) in the absence

of a magnetic field and R(ν,n, ν ′,n′,B) in the presence of a magnetic field. As

already mentioned PFR plays an important role in the formation of the polarized

line profiles of strong resonance lines. In general PFR produces large damped

wings in the intensity profile and gives rise to a typical triple peak structure in

the linear polarization (see Figure 1.10, also see, for eg., Rees and Saliba 1982).

24



1.4. Polarized line radiative transfer

A classical theory of PFR using a forced damped oscillator model was intro-

duced by Zanstra (1941a,b) to explain the polarized profiles of resonance lines in

a non-magnetic condition. Stenflo (1994, 1996, 1998) and Bommier and Stenflo

(1999) developed a modern approach to the classical theory with the inclusion

of respectively, the coherent scattering and atomic frame PFR in the presence of

arbitrary strength magnetic fields. A first quantum electrodynamic (QED) treat-

ment of this problem was given by Omont et al. (1972) in the absence of magnetic

fields and Omont et al. (1973) including the effects of magnetic fields. Based on

the formulation of Omont et al. (1972), the functional forms of the non-magnetic

redistribution matrix was derived by Domke and Hubeny (1988), which proved

useful for practical applications. Bommier (1996) made a first attempt to derive

the PFR matrix using the density matrix formalism. Later, Bommier (1997a,b)

developed the master equation theory to derive the collisional PFR matrix both

in the absence and presence of arbitrary magnetic fields. For more details see

the reviews by Hubeny (1985); Frisch (1988); Stenflo (1996); Frisch (1996); Frisch

et al. (2001).

Based on the classical theory of Bommier and Stenflo (1999), Sampoorna

et al. (2007a,b) derived the Hanle-Zeeman PFR matrix in the laboratory frame.

They also showed the equivalence between the QED approach (Bommier 1997a,b)

and the classical oscillator approach (Bommier and Stenflo 1999) for the case of

J = 0 → 1 → 0 scattering transition. Sampoorna (2011) extended this work to

the transitions with arbitrary quantum numbers. Based on the Kramer-Heisenberg

scattering approach of Stenflo (1994, 1998), the two-term atom PFR matrix was

derived by Smitha et al. (2011, 2013) considering the interference between the up-

per fine-structure J-states (in the linear Zeeman regime). This work was extended

to the case of arbitrary field strengths (including the Paschen-Back effect regime)

by Sowmya et al. (2014a). The PFR matrix for a two-level atom with hyperfine

structure splitting (HFS) was derived in Smitha et al. (2012) in the linear Hanle-

Zeeman regime and in Sowmya et al. (2014b) including also Paschen-Back effect

regime of field strength. Sowmya et al. (2015) have derived the PFR matrix for a

two-term atom with HFS accounting for combined J− and F−state interferences

in arbitrary fields. For a more complete set of references we refer the reader to the

reviews by Nagendra (2014, 2015, 2019).
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Based on a metalevel approach, Landi Degl’Innocenti et al. (1997) extended the

multi-level and multi-term atom density matrix formalism to include collisionless

PFR. Recently Casini et al. (2014) presented a new quantum mechanical theory

for the frequency redistribution in a two-term atom with arbitrary magnetic fields.

This was also extended to three-term atom by Casini and Manso Sainz (2016a,b).

Bommier (2016a) extended the master equation theory to handle polarized PFR in

multilevel and multiline atom. Using this theory Bommier (2016b) attempted to

model the observed linearly polarized profiles of the Na i D1 and D2 lines. Explicit

expressions of the collisional PFR matrix for a two-term atom are derived in

Bommier (2017). The Kramer-Heisenberg approach has been extended by Stenflo

(2015, 2016) to handle multi-level atomic systems. In this thesis we use the non-

magnetic and weak field Hanle angle-averaged PFR matrix of Bommier (1997a,b,

see also Domke and Hubeny 1988) to study the effects of the velocity fields in the

extended spherical atmospheres.

1.4.3 Polarized radiative transfer in plane-parallel geome-

try

The equation of transfer is a mathematical formulation to express the conservation

of radiation energy when a light ray passes through a medium by incorporating

the effects of emission, absorption, and scattering. The polarized transfer equation

for a ray passing through a 1D plane-parallel atmosphere (Figure 1.11a) is given

by

µ
∂I(z, µ, x)

∂z
= −χ(z, x)[I(z, µ, x)− S(z, µ, x)], (1.26)

where I is the Stokes vector, S is the source vector, χ is the total absorption

coefficient, z is the vertical distance along the atmospheric normal, µ = cosϑ,

with ϑ is inclination of the ray (or LOS) with respect to the atmospheric normal,

and x = (ν − ν0)/∆νD is the non-dimensional frequency measured in Doppler

width (∆νD) units, with ν0 being the line center frequency.

The source vector being the ratio of emission to the absorption coefficient

plays an important role in describing the interaction of the radiation field with the

medium as the light propagates through it. Thus, the source vector S depends on
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Figure 1.11: Represention of a ray (or LOS) passing through a 1D plane-
parallel atmosphere (panel a) and a spherically symmetric atmosphere (panel
b).

the physical processes involved in the medium. If the matter is in thermal equi-

librium with itself (but not with the radiation field), then the matter can be said

to be in local thermodynamic equilibrium (LTE). Under LTE, the source vector

is given by unpolarized Planck function at the line center Bν0(T), which depends

only on the local temperature T of the medium. The regions where collisions

dominate (e.g., in the lower photosphere of Sun), one can use LTE approximation

for S namely, S = Bν0(T)U (where U is the unity vector). However, scattering

(which depends on the incident radiation) is another common physical process

(e.g., in the upper photosphere, chromosphere of Sun), which introduces the non-

local coupling of the atmosphere over distances that are of the order of one photon

mean free path. Thus scattering dominated atmospheres are in non-local thermo-

dynamic equilibrium (NLTE). Under NLTE, the source vector becomes decoupled

from the local temperature and depends on the radiation field itself from non-local

points. Chandrasekhar (1950) was the first to set-up the NLTE polarized radiative

transfer equation for the resonance scattering in the absence of magnetic field.
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1.4.4 Polarized radiative transfer in spherical geometry

The approximation of plane-parallel stratification for the radiative transfer prob-

lems is an excellent choice when dealing with stellar atmospheres having a density

scale-height much smaller than the radius of the star. However, there are several

stars, like Wolf-Rayet stars and supergiants with the atmospheric thickness which

is an appreciable fraction of their radius. Under such situations, their atmosphere

can be represented by a spherically symmetric medium to a good approximation.

The polarized transfer equation for a 1D spherically symmetric atmosphere in

divergence form is given by

µ
∂I(r, µ, x)

∂r
+

(1− µ2)

r

∂I(r, µ, x)

∂µ
= −χ(r, x)[I(r, µ, x)− S(r, µ, x)]. (1.27)

Comparing Equations (1.26) and (1.27), we see that the spherical transfer equa-

tion contains an extra term involving the µ derivative of the Stokes vector. This

derivative with respect to µ comes into play due to sphericity or curvature effects

(clearly depicted in Figure 1.11b). Thus the transfer equation in a spherically sym-

metric atmosphere is a first order ‘partial differential equation’ involving explicitly

two independent variables. Details on numerically solving such an equation are

presented in Chapter 4 of this thesis. Because of the above mentioned differences,

the solution of the spherical transfer equation differs from that of plane-parallel

atmosphere and exhibits three important characteristics. These characteristics

(discussed in detail in Kunasz and Hummer 1974a) are (i) the ‘bias’ in scattering

toward the larger radius: This means a photon which is scattered from a certain

radius will more often end its flight at a larger radius than at the smaller radius

unlike in plane-parallel geometry, where the photon travels with equal probability

to both larger or smaller depths. Kunasz and Hummer (1974a) show that for a

homogeneous sphere (power law opacity index ñ=0), the bias is more important

only in the inner regions, while for ñ ≥ 2, the bias is largest in the outer regions

of the sphere, constituting larger portion of the atmosphere. This is because for

ñ ≥ 2, the opacity decreases in the outward atmospheric direction, thereby in-

creasing the photon mean free path.

(ii) The ‘dilution’ of diffuse radiation field: In the spherical atmosphere, for a fixed

optical thickness T , and for ñ ≥ 2, the opacity decreases as the radius increases,

so that for a sufficiently large outer radius R, a substantial part of the atmosphere
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remains optically thin (i.e., diluted) at all the frequencies. This dilution factor is

given by (see Nagendra 1989)

W =
1

2
[1−

√

(1− 1/R2)]. (1.28)

Clearly for values of R even slightly exceeding unity, there is a rapid decrease in

W and it gradually saturates for larger values of R. This suggests that even a

small departure from plane-parallel limit leads to significant amount of weakening

of the mean radiation field.

(iii) The ‘peaking’ of the radiation in the radial direction for larger spherical ex-

tensions: A ray emitted in any direction at a deeper region of the atmosphere,

and traversing in the outward direction, makes smaller and smaller angles with

respect to the radius vector (as shown in Figure 1.11b). This phenomenon which

is also called ‘curvature’ scattering, leads to numerical difficulties in the problems

requiring highly extended systems (as it demands the use of a large number of

angular grid points).

The above discussed characteristics of the spherical radiative transfer will have

minimum effects as µ→ 1. In other words, solutions obtained from both spherical

and plane-parallel geometries nearly coincide for µ = 1.

In part-II of this thesis, we discuss the polarized line formation in both static

and expanding spherically symmetric atmospheres.

1.5 Methods to solve the polarized radiative trans-

fer problems

The two well established theoretical formulations of the problem of polarized line

transfer are: the ‘density matrix approach’ and the ‘scattering matrix approach’.

In the following sections we briefly discuss both these approaches and present an

overview of the numerical methods developed.

29



Chapter 1. General Introduction

1.5.1 The density matrix approach

Density matrix approach is based on QED formalism. In this approach, the atomic

states are described by the diagonal and non-diagonal elements of the density ma-

trix and the atomic polarization is considered to be due to the population imbal-

ances in the magnetic sublevels (represented by the diagonal elements) and/or due

to the quantum interferences or coherences between the different magnetic sub-

levels (represented by the non-diagonal elements). Here the atomic polarization

is represented by the irreducible spherical statistical tensors and the polarized ra-

diation field is represented by nine irreducible radiation field tensors (see Trujillo

Bueno 2001; Landi Degl’Innocenti and Landolfi 2004 for details). This approach is

based on the Markovian assumption and flat spectrum approximation, namely the

spectrum of the incident radiation should be flat across a frequency range which is

wider than both the radiative width and the Larmor frequency of the upper level.

As a result this approach is limited to CFR in scattering. In this approach, the

key role is played by the statistical equilibrium equations which are coupled to the

radiative transfer equation.

Bommier and Sahal-Bréchot (1978) developed the density matrix approach and

derived the statistical equilibrium equations to determine the linear polarization

in the case of optically thin helium D3 line formed in prominences. This work was

extended to determine the vector magnetic field including circular polarization by

Landi Degl’Innocenti (1982). Landi Degl’Innocenti (1983a,b, 1984, 1985) gave a

more general formalism which can describe the resonance polarization for a multi-

level atom in a magnetized, and multi-dimensional optically thick medium. Landi

Degl’Innocenti (1987) used the perturbation method to solve the resulting coupled

system of equations for the case of Hanle effect. For more details on the density

matrix approach see the monograph by Landi Degl’Innocenti and Landolfi (2004).

Trujillo Bueno and Landi Degl’Innocenti (1997) extended the operator-splitting

method developed in Trujillo Bueno and Landi Degl’Innocenti (1996) for solving

the NLTE Zeeman line transfer equation, to include the lower-level polarization

in the absence of magnetic fields. The Jacobi based approximate lambda itera-

tion (ALI) method of Olson et al. (1986) was generalized to include the scattering

polarization by Trujillo Bueno and Manso Sainz (1999). For solving the scalar
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NLTE problems, fast iterative techniques based on Gauss-Seidel (GS) and succes-

sive overrelaxation (SOR) schemes were developed by Trujillo Bueno and Fabiani

Bendicho (1995). Trujillo Bueno and Manso Sainz (1999) and Manso Sainz and

Trujillo-Bueno (1999) extended these methods respectively to the case of resonance

scattering and Hanle effect in 1D, 2D, and 3D atmospheres for a two-level atom

without lower-level polarization. Trujillo Bueno (1999); Manso Sainz and Tru-

jillo Bueno (2003) and Štěpán and Trujillo Bueno (2013) have further extended

these methods to handle multi-level atoms including both upper and lower-level

polarization.

As already mentioned in Section 1.4.2, QED theory including both density ma-

trix formalism and PFR has been developed recently by several authors. A lambda

iteration method to solve the resulting set of equations have been developed by

Bommier (2016b) for the case of Na i D1 and D2 lines, by del Pino Alemán et al.

(2016) for studying the Mg ii h and k lines, and del Pino Alemán et al. (2020) for

the case of three-term atom (namely, the Mg ii h and k lines and the associated

subordinate UV triplet).

Most of the papers cited above consider 1D planar atmospheres for comput-

ing the emergent polarized radiation field. Asensio Ramos and Trujillo Bueno

(2006) have developed the Jacobi, GS, and SOR based multi-level ALI methods

to solve the NLTE polarized transfer problems based on density matrix formalism

in spherically symmetric atmospheres.

1.5.2 The scattering matrix approach

Computation of the scattering contribution to the source vector in the transfer

equation (1.26) or (1.27) is the central problem in the scattering approach. The

traditional direct solution methods to solve the transfer equation in the unpolarized

case in both planar and spherical geometries are discussed in Hubeny and Mihalas

(2014, see also Peraiah 2002). An NLTE theory for the problem of resonance

line polarization in the non-magnetic case was developed by Stenflo (1976), who

also showed that his theory can be extended to multi-level atom. Furthermore,

he gave explicit formulas for the special case of a two-level atom in spherically

symmetric atmosphere. Assuming a two-level atom model and CFR, this theory
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was used in Stenflo and Stenholm (1976) to explore the UV emission lines formed

in both plane-parallel and spherically symmetric solar atmosphere. They solved

this problem using Rybicki’s core saturation method and by considering the Stokes

Q parameter as a perturbation. The same problem was solved using the integral

equation technique by Rees (1978) for both finite and semi-infinite plane-parallel

atmosphere.

Dumont et al. (1977) considered the effects of type-I angle-dependent PFR

on NLTE non-magnetic resonance line polarization. They used Feautrier method

to solve this problem in a semi-infinite plane-parallel atmosphere accounting for

Doppler frequency redistribution effects in the line core (namely, type-I PFR of

Hummer 1962). The effects of type-II angle-averaged PFR were considered by

Rees and Saliba (1982) who used a Feautrier method with Stokes Q treated as

perturbation. For the same problem, McKenna (1984, 1985) used the moment

integral equation method and also accounted for both type-II and type-III angle-

averaged as well as angle-dependent PFR functions. Faurobert (1987, 1988) used a

non-perturbative Feautrier method and accounted for type-II angle-averaged and

angle-dependent PFR. Nagendra (1988, 1989) used a non-perturbative discrete

space method together with type-II angle-averaged PFR. The non-magnetic col-

lisional redistribution matrix derived by Domke and Hubeny (1988) was used in

the polarized line transfer computations by Nagendra (1994, 1995) again using

the discrete space method for solution. While all the above-cited papers used

plane-parallel atmospheres, Nagendra (1988, 1989, 1994, 1995) used spherically

symmetric atmospheres.

In the NLTE scattering matrix approach, the total source vector can be written

as the weighted average of both line and continuum contributions, namely

S(r, µ, x) =
φ(x)Sl(r, µ, x) + βcSc

φ(x) + βc
, (1.29)

where Sc = Bν0(T)U is the unpolarized continuum source vector, φ(x) is the

profile function, and βc is the continuous absorption parameter. For a two-level

atom with infinitely sharp and unpolarized lower-level, the line source vector in

the absence of magnetic field is given by

Sl(r, µ, x) = ǫBν0U +

∫ +∞

−∞

dx′
1

2

∫ +1

−1

dµ′R(x, µ, x′, µ′)

φ(x)
I(τ, µ′, x′), (1.30)
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where ǫ is the thermalization parameter. Clearly, the second part of the above

equation is the NLTE part of the total source vector and is called the ‘scatter-

ing integral’, which involves the integration over all the incoming angles and fre-

quencies. Using the ‘hybrid approximation’ of Rees and Saliba (1982) in which

the frequency redistribution and polarization parts get completely decoupled, the

angle-dependent redistribution matrix may be written as

R(x,n, x′,n′) = R(x,n, x′,n′)PR(n,n
′), (1.31)

where PR(n,n
′) is the Rayleigh phase matrix (Chandrasekhar 1950). For reso-

nance lines, R(x,n, x′,n′) is usually given by type-II PFR function of Hummer

(1962). To avoid the use of computationally expensive angle-dependent function,

one usually assumes the angle-averaged form for R(x,n, x′,n′). Thus, according

to the hybrid approximation of Rees and Saliba (1982), we can re-write Equation

(1.31) as

R(x,n, x′,n′) = R(x, x′)PR(n,n
′). (1.32)

Here R(x, x′) = φ(x)φ(x′) for CFR and R(x, x′) = RII(x, x
′) for PFR. Further-

more, in a planar or spherically symmetric non-magnetic atmospheres the radia-

tion field is axisymmetric and hence PR(n,n
′) can be replaced by PR(µ, µ

′), so

that Equation (1.32) can be re-written as

R(x, µ, x′, µ′) = R(x, x′)PR(µ, µ
′). (1.33)

We use this approximation in Chapters 4–7.

Stenflo (1978) developed the NLTE theory for weak field Hanle effect applicable

to the case of multi-level atoms, including also the effects of collisions. He derived

the Hanle phase matrix in the magnetic reference frame (magnetic field is along

the z-axis, see Figure 2.3). Landi Degl’Innocenti and Landi Degl’Innocenti (1988)

obtained the analytical expressions for the Hanle phase matrix elements for a more

general geometry (namely, magnetic field inclined to the z-axis, see Figure 2.4).

Based on the fact that the Hanle effect is operative only in the line core, Faurobert-

Scholl (1991) introduced a 1D-domain based Hanle redistribution matrix to solve
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the Hanle PFR transfer problems, namely

R(x,n, x′,n′,B) = RII(x, x
′)×







PH(n,n
′,B) for |x| < xc,

PR(n,n
′) for |x| > xc,

(1.34)

where PH(n,n
′,B) is the Hanle phase matrix (with B denoting the vector mag-

netic field) and xc is the cut-off frequency. Bommier (1997b) derived the correct

form of Hanle redistribution matrix including collisions. She provided a 2D-domain

based PFR matrices, referred to as “Approximation II” (which uses Hummer’s

angle-dependent PFR functions) and “Approximation III” (which uses the cor-

responding angle-averaged redistribution functions). In Chapter 8, we use the

Approximation III of Bommier (1997b) for solving the polarized radiative trans-

fer equation in the presence of weak fields (Hanle effect) in spherically symmetric

expanding media.

The above mentioned numerical methods are computationally expensive re-

quiring considerable CPU time and memory. A novel iterative method based on

the operator perturbation was developed by Cannon (1973) for the scalar transfer

problem. This method is called Accelerated or Approximate Lambda Iteration

(ALI) method (see reviews by Hubeny 1992, 2003; Hubeny and Mihalas 2014). It

was Olson et al. (1986) who demonstrated that the diagonal of the actual Lambda

operator provides an optimum choice for the approximate Lambda operator. This

ALI method was extended to include the polarization by Faurobert-Scholl et al.

(1997) for the case of resonance scattering with CFR in a 1D axisymmetric planar

medium. This method is called PALI (polarized-ALI). The PALI method was ex-

tended to include PFR effects by Paletou and Faurobert-Scholl (1997). Nagendra

et al. (1998) developed the PALI method to handle Hanle effect with CFR, which

was extended to include a 1D-domain based PFR by Nagendra et al. (1999) and

Nagendra et al. (2000). Fluri et al. (2003) included the 2D-domain based PFR

(given by Approximation III of Bommier 1997b) in the PALI method. Sampoorna

et al. (2008) extended the PALI method to handle non-domain based Hanle PFR

matrix (given by Approximation-I of Bommier 1997b). They used the decompo-

sition technique of Frisch (2007). PALI method has been generalized to include

angle-dependent PFR in Sampoorna et al. (2011) and Supriya et al. (2012). PALI

method with angle-averaged PFR matrices corresponding to two-level atom with
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and without HFS, and two-term atom without HFS have been developed in Sam-

poorna and Trujillo Bueno (2010); Smitha et al. (2011, 2012, 2013) and Belluzzi

and Trujillo Bueno (2014). For a complete review on the development of PALI

method see Nagendra (2003, 2019, 2014, see also Nagendra and Sampoorna 2009).

All the papers cited above consider 1D planar atmospheres. For multidimen-

sional media including angle-averaged PFR the relevant PALI method is presented

in Anusha and Nagendra (2011); Anusha et al. (2011b). A Lambda iteration

method to solve the polarized transfer equation in spherical geometry for molecu-

lar lines formed with CFR is presented in Milić and Faurobert (2012). In part-II

of this thesis, we extend the PALI method to solve the polarized transfer equation

in spherically symmetric expanding atmospheres in both absence and presence of

weak magnetic fields, and including angle-averaged PFR.

1.5.3 Observer’s and comoving frame methods: a brief his-

torical background

It is well known that the solar and stellar atmospheres are dynamic due to the pres-

ence of macroscopic velocity fields especially in their outer layers. These velocity

fields strongly affect the polarized line profiles formed in these regions. There-

fore, including the velocity fields in the polarized transfer problem is necessary.

A straight forward method to solve this problem is the observer’s frame method.

However, due to angle and frequency coupling involved in the problem, the ob-

server’s frame method quickly becomes computationally very expensive particu-

larly when large velocity fields need to be accounted for. Alternatively, the effects

of velocity fields can be handled without much computational difficulty when co-

moving frame (CMF) method is used. The advantages of CMF over observer’s

frame is listed for e.g., in Noerdlinger and Rybicki (1974); Mihalas (1978) and

Hubeny and Mihalas (2014) for the unpolarized case.

Sengupta (1993) and Rangarajan (1997) used the discrete space theory (Pera-

iah 1984, see also Peraiah 2002) to study the effects of a velocity field on resonance

line polarization. While the former solved the relevant problem in the CMF, the

latter used the observer’s frame. Carlin et al. (2012, 2013) used the density matrix

approach in the observer’s frame to study the formation of scattering polarization
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of Ca ii IR triplet in hydrodynamical models of the solar chromosphere. Carlin

and Asensio Ramos (2015) presented forward modeling approach to forward scat-

tering Hanle effect in Ca ii IR triplet using a realistic magneto-hydrodynamical

simulations. All these works considered CFR in scattering. Nagendra (1996) de-

veloped the CMF method using the discrete space theory to solve the problem

of resonance line polarization including PFR and velocity fields. Sampoorna and

Nagendra (2015a) considered the same problem, but taking also into account the

effects of a weak magnetic field. They solved this problem in the observer’s frame

using a PALI method. Sampoorna and Nagendra (2015b, 2016) developed a CMF-

PALI method to solve the above mentioned problem, including both monotonic

and non-monotonic velocity fields. In all the above cited papers a plane-parallel

geometry was used for solving this problem.

A wide variety of the astrophysical objects show evidence of outflowing gas

in their extended atmospheres. These extensions can be treated using the spher-

ically symmetric geometry to a first approximation. There are several methods

to treat the radiative transfer in the static spherical atmospheres since the be-

ginning of the 19th century (to name a few: McCrea 1928; Chandrasekhar 1934;

Kosirev 1934; Wilson and Sen 1965; Chapman 1966; Hummer and Rybicki 1971;

Cassinelli and Hummer 1971; Grant and Peraiah 1972; Peraiah and Grant 1973;

Kunasz and Hummer 1974a; Nagendra 1988, 1989, 1994, 1995; Asensio Ramos

and Trujillo Bueno 2006; Cernicharo et al. 2006; Daniel and Cernicharo 2008;

Anusha et al. 2009 etc.). McCrea and Mitra (1936) were the first to correctly

formulate the line transfer problem for optically thick atmospheres with radial ve-

locity fields. The first approximate solutions were then provided by Chandrasekhar

(1945b,a). Noerdlinger and Scargle (1972) gave the analytic solution for transfer

in expanding spherical atmospheres with coherent scattering in the CMF. Kunasz

and Hummer (1974b) developed a direct numerical solution method for the lin-

ear system of equations that are obtained by generalizing the method of Rybicki

(1971, namely, the modified Feautrier’s finite difference method). They solved the

scalar transfer problem in spherically symmetric atmosphere with radial velocity

fields in the observer’s frame. Mihalas et al. (1975) also used a Feautrier’s finite

differencing scheme with Rybicki-type elimination (Rybicki 1971) along with a

frequency-by-frequency elimination method to solve the partial differential equa-

tions representing the unpolarized radiation field in CMF. Baschek et al. (1997)
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presented exact analytical solutions of the transfer equation for differentially mov-

ing plane-parallel and spherical geometries, including the general 3D case of ar-

bitrary velocity fields. Hauschildt (1992); Hauschildt et al. (1994) used the ALI

method in the CMF to solve the spherical transfer equation with fully relativistic

monotonic velocity fields. Hauschildt and Baron (2004) extended this work by

introducing a second order discretization scheme for the wavelength derivative.

Baron and Hauschildt (2004) further extended this CMF-ALI method to include

fully relativistic non-monotonic velocity fields.

Most of the papers cited above (excepting those of Nagendra) considered CFR

in line scattering. The effects of angle-averaged PFR on the solution of unpolar-

ized transfer in spherically symmetric atmospheres with radial velocity flows were

considered by Mihalas et al. (1976b). They solved this problem in the CMF using

a Feautrier’s elimination scheme together with variable Eddington-factor method.

We remark that the review of the literature presented in this section is not com-

plete and we refer the reader to Hubeny and Mihalas (2014) for a detailed review

of the subject. Furthermore, most of the above cited papers considered unpolar-

ized radiation field. In part-II of this thesis, we extend the CMF-ALI method

of Hauschildt and Baron (2004) to include resonance polarization (hence we call

it CMF-PALI) and the effects of angle-averaged PFR in spherically symmetric

geometry with and without weak magnetic fields (Hanle effect).

1.6 Outline of the thesis

In this thesis we aim at developing the theoretical tools required for the determi-

nation of the solar magnetic fields using polarized spectral line formation theory.

For this we divide the thesis into two parts. Chapters 2 and 3 constitute Part-I of

the thesis and deals with developing the scattering theory for M1 transitions and

applying the same to study the forbidden emission lines formed in solar coronal

conditions. Chapters 4–8 constitute Part-II of the thesis which is dedicated to

develop the numerical techniques to solve the problem of polarized line formula-

tion in spherically symmetric moving atmospheres and apply them to study the

polarized line profiles of optically thick permitted (E1) lines in both the absence

and presence of weak magnetic fields.
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Outline on part-I of the thesis

In Chapter 2, we develop a theoretical framework to handle the forbidden lines

arising from M1 transition and formed in any diffuse astrophysical media such

as solar corona, in the presence of magnetic fields. In particular, we derive the

Hanle-Zeeman scattering matrix for M1 transitions. The Einstein A coefficient for

the forbidden lines is nearly 106 times smaller than that for the permitted lines.

Therefore, the magnetic splitting between the excited atomic levels is much larger

than the natural line width of each level, even for very weak magnetic fields. Thus,

the forbidden lines remain in the saturated Hanle regime, even for field strengths of

few mG. Therefore, these lines are not sensitive to the variation of field strengths.

However, the linear polarization produced by the scattering in these lines are very

sensitive to the field orientations. Thus, Hanle effect in forbidden lines can be

effectively used for diagnosing the topology of coronal magnetic fields. The earlier

formulation of the problem of scattering on forbidden lines in magnetic fields is

limited only to the regime of saturated Hanle effect. Therefore, here we aim at

presenting a new alternative formulation of the required scattering theory that

covers the entire field strength regime (namely, the Hanle regime: field strength

of few µG, the saturated Hanle regime: few mG . B ∼ 200 G, the Hanle-Zeeman

regime: 250 G . B < 1 kG, and the pure Zeeman regime: B & 1 kG).

The theoretical formalism developed in Chapter 2, is used in Chapter 3 to study

the effects of density distributions, magnetic field configurations, and velocity fields

on the emergent Stokes profiles of the forbidden line. We use the [Fe xiii] 10747 Å

coronal forbidden line for these studies. Theses ions present in the corona are

illuminated by the flat limb-darkened radiation coming from the photosphere. Also

the Stokes signal received at the Earth is affected by the density variation along

the LOS. Therefore here we describe the procedures to conduct the integration

over the solid angle of incident cone of radiation and also the LOS integration to

obtain the polarized profiles and study their dependence on the above mentioned

physical quantities.

Outline on part-II of the thesis

Mass loss is common in most of the astrophysical objects due to the presence of

velocity fields in the extended regions of their atmospheres. The polarized spectral

lines formed in such regions strongly get affected in both amplitude and shape by
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the presence of velocity fields (which produces Doppler shift, aberration of pho-

tons, and also gives rise to advection) and also by the curvature of the atmosphere.

Therefore, in part-II of this thesis, we consider the problem of polarized line trans-

fer in a spherically symmetric static and expanding atmospheres. Our aim here

is to develop numerical techniques to solve this problem including velocity fields

and also magnetic fields.

In Chapter 4, we develop modern iterative techniques based on operator pertur-

bation to solve the non-magnetic polarized transfer equation in a static spherically

symmetric atmosphere. In the literature the polarized accelerated lambda iteration

(PALI) method is mostly used with Jacobi iterative scheme, which has a slower

convergence rate. However, these are fast iterative techniques based on Gauss-

Seidel (GS) and successive overrelaxation (SOR) that are known to be superior

than the traditional Jacobi iterative scheme. We describe in detail the numerical

implementation of the Jacobi, GS and SOR techniques for the problem at hand

and study their convergence behavior in the presence of both angle-averaged PFR

and CFR scattering mechanisms.

In Chapter 5, we consider the problem of non-magnetic polarized line transfer

in spherically symmetric atmospheres in the presence of radial velocity fields. We

describe both the observer’s frame and comoving frame (CMF) methods to solve

the problem under consideration. We describe in detail the CMF-PALI method

based on Jacobi, GS, and SOR schemes and the formal solution in the CMF. We

study the convergence behavior of all these schemes in the presence of velocity

fields for both CFR and angle-averaged PFR. We also present the convergence

behavior of CMF-PALI method for varying optical thickness (T ) and extension

(R) with PFR.

In Chapter 6 and 7 we discuss the numerical solutions to the problem of polar-

ized line formation in spherically symmetric static and expanding non-magnetic

atmospheres. We interpret the emergent polarized line profiles formed in both

static and moving atmospheres in the presence of both CFR and PFR using con-

tribution functions and Stokes source vector (Chapter 6). In Chapter 6, we also

study the center-to-limb variation (CLV) of the emergent polarized line profiles

relative to the plane-parallel atmosphere. We also discuss the dependence of po-

larized line profiles on the variation of extension R of the spherical atmosphere.
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The atmospheric and atomic model parameters are varied in Chapter 7, one at a

time (keeping the other parameters as constants) to study the dependence of the

linearly polarized line profiles on the model parameters for both static and moving

atmospheres.

The Jacobi based CMF-PALI method developed in Chapter 5 is extended

to include the weak magnetic fields in Chapter 8. Unlike the non-magnetic case

the physical quantities involved in the problem now become radiation field az-

imuth dependent due to Hanle effect. We apply the core-wing method of Fluri

et al. (2003) developed for approximation-III of Bommier (1997b) (representing

the angle-averaged PFR) in the presence of weak magnetic fields. We also discuss

the emergent polarized line profiles formed in the presence of both magnetic and

velocity fields for the cases of CFR and PFR.

Chapter 9 summarizes the thesis and also presents the possible future prospects

of the work presented in this thesis.
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Scattering Theory for Magnetic

Dipole (M1) Transitions





Chapter 2

Hanle Zeeman Scattering Matrix

for M1 Transitions1

An overview

The polarization of the light scattered by the coronal ions is influenced by the

anisotropic illumination from the photosphere and the magnetic field structuring

in the solar corona. The properties of the coronal magnetic fields can be well

studied by understanding the polarization properties of coronal forbidden emission

lines which arise from magnetic dipole (M1) transitions in the highly ionized atoms

present in the corona. We present the classical scattering theory of the forbidden

lines for a more general case of arbitrary-strength magnetic fields. We derive the

scattering matrix for M1 transitions using the classical magnetic dipole model

of Casini and Lin (2002) and applying the scattering matrix approach of Stenflo

(1998). We consider a two-level atom model and neglect collisional effects. The

scattering matrix so derived is useful for studying the Stokes profiles formed in

coronal conditions in those regions where the radiative excitations dominate over

collisional excitations. We discuss the nature of the scattering matrix for M1

transitions and compare it with that for the E1 transitions.

1The contents of this chapter are based on the publication: Megha et al. (2017)
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Chapter 2. Hanle-Zeeman Scattering Matrix for M1 Transitions

2.1 Introduction

The plasma β values being low in the inner corona of the Sun suggests that the

magnetic fields emerging from subphotospheric layers control the dynamics and

heating of the corona. Our ability to determine the properties of the coronal mag-

netic fields remains severely limited because the fields in the quiet-Sun corona are

intrinsically weak. The influence of these fields on the electromagnetic radiation

that is emitted by the coronal plasma is accordingly weak. One of the best ways

to determine the properties of coronal magnetic fields is to study the polarization

properties of coronal forbidden emission lines that are produced as the result of an

anisotropic excitation of the ions that are present in the corona (see Figure 2.1).

The quest for understanding the origin and formation of coronal emission line po-

larization dates back to the early part of the 20th century. The first attempt to

measure the polarization in coronal lines, especially the green forbidden emission

line (5303 Å), was made by Wood (1905). He reported that the polarization is

lower than 1%. Öhman (1929) was the first to mention that the coronal lines

might be polarized, but there was lack of information regarding the origin of the

polarization in these lines. The first theoretical analysis of coronal emission line

polarization was given by Charvin (1965, see also Hyder 1965), who studied the

detailed interaction of anisotropic photospheric light with the radiating ions and

showed how the linear polarization is related to the direction of the magnetic field

projected onto the plane-of-sky (POS). House (1972) represents an important land-

mark in the theoretical calculation of the polarization of coronal forbidden lines.

His treatment was restricted to pure scattering. Sahal-Bréchot (1974, 1977) and

House (1977) included the collisional terms in the statistical equilibrium equation

for the radiating atom. Based on the statistical equilibrium solutions of Sahal-

Bréchot (1977) and House (1977) for the [Fexiii] 10747 Å line, a simple analytic

form of the line-of-sight (LOS) integrated Stokes vector was deduced by Quer-

feld (1982) which shows an explicit dependence of the Stokes vector on coronal

electron density, magnetic field direction, and temperature. However, the circu-

lar polarization was neglected in the above-mentioned theoretical works. Casini

and Judge (1999) provided a consistent theory treating both linear and circular

polarizations of M1 lines. They also gave a generalized magnetograph formula for

determining the longitudinal component of the vector magnetic field. Based on

this theory, Judge and Casini (2001) developed a diagnostic code called Coronal
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Figure 2.1: Geometry describing the anisotropic illumination of ions in the
corona by the photospheric radiation field.

Line Emission (CLE), which is employed by Gibson et al. (2016) in a community

resource toolset, namely FORWARD. It is extensively used for the magnetic field

modeling and other studies of the solar corona.

A classical oscillator model for the magnetic dipoles was proposed by Casini and

Lin (2002). Their model is based on a 3D L–C circuit analogy, which considers

the magnetic field component of the incident radiation that induces the magnetic

dipole (M1) transitions. Based on this model, Lin and Casini (2000) derived the

polarization properties of the coronal forbidden emission lines in the collision-

less regime. They particularly considered the case of the strong-field (or saturated

Hanle) regime wherein the Larmor frequency is much larger than the natural width

of the line. Their classical result coincides with the quantum mechanical result

derived in Casini and Judge (1999) in the restricted case of the J = 0 → 1 → 0

transition. Stenflo (1998, hereafter called S98), presented a general approach to

derive the Hanle-Zeeman scattering matrix for the electric dipole (E1) transitions.

In the present chapter, starting from the solution of the classical damped M1 os-

cillator (Casini and Lin 2002), we derive the Hanle-Zeeman scattering matrix fol-

lowing the approach of S98. We consider coherent scattering in arbitrary-strength

magnetic fields and a two-level atom with the J = 0 → 1 → 0 M1 transition. The

scattering matrix for the coronal forbidden emission lines is retrieved from this

general theory as a limiting case (strong-field limit). The effects of collisions and

multilevel coupling are neglected in our formalism. Therefore the present approach
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Chapter 2. Hanle-Zeeman Scattering Matrix for M1 Transitions

can be applied only to those regions in the corona where radiative excitations of

ions are dominant.

In Sections 2.2 and 2.3 we derive the Jones scattering matrix and Mueller scatter-

ing matrix using the S98 approach. In Section 2.4 the Hanle-Zeeman scattering

matrix for M1 transitions derived using S98 approach is expressed in terms of the

irreducible spherical tensors of Landi Degl’Innocenti (1984) and the generalized

profile functions defined by Landi Degl’Innocenti et al. (1991). In Section 2.5 we

discuss the important similarities and differences between the E1 and M1 tran-

sitions using the polarization diagram. In Section 2.6 we present the concluding

remarks.

2.2 Jones scattering matrix for M1 transitions

Here we derive the scattering amplitudes for the M1 transitions using the Jones

calculus. For this we use a classical model for the damped, magnetic dipole os-

cillator proposed by Casini and Lin (2002). In this model they have considered

a plane, circular L–C circuit with no applied electromotive force (EMF) that is

irradiated by a monochromatic electromagnetic plane wave with its magnetic field

component varying as Bin(t) = B0 exp(−iωt). Here the dipole approximation is

introduced by assuming that the radius of the L–C circuit r is much smaller than

the wavelength of the incident radiation (r ≪ 2πc/ω). Because the net magnetic

flux through the circuit includes flux due to radiation reaction current, the circuit

behaves as an L–R–C circuit (see Figure 2.2). Using the theory of quasi-stationary

currents (see Casini and Lin 2002 for details), the idea of L–R–C circuit is extended

to three dimensions to construct a classical M1 oscillator model to represent an

atomic system. Thus the atomic system is now schematized by considering the

three atomic M1 oscillators describing the forbidden transition, J = 0 → 1 → 0,

as three plane circular L–R–C circuits, oscillating orthogonally (so that the mu-

tual inductance between the circuits can be neglected), and rigidly oriented with

respect to some Cartesian basis ex, ey, ez. A homogeneous stationary external

magnetic field B = Bez is applied to this 3D physical system. As a consequence,

each circuit in the atomic model will generally be subjected to a torque. After some

algebra, the complete oscillator equation for the classical damped M1 oscillator is
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Figure 2.2: A plane circular L–R–C circuit irradiated by a monochromatic
electromagnetic plane wave. This circuit represents a one-dimensional M1 os-
cillator when we consider the interaction of the circuit with the magnetic field
component of the electromagnetic radiation incident from the top. The applied
external magnetic field is perpendicular to the plane of the paper.

obtained as

m̈+ γṁ+ 2ωB ṁ× ez + ω2
0m =

ω2σ2

c2L
Bin, (2.1)

where m is the magnetic dipole associated with the three circuits, L is the induc-

tance, γ = R/L is the damping constant with R being the resistance, σ is the area

of the circuit, ω0 ≈ 1/LC is the characteristic resonance frequency of the L–R–C

circuit, and ωB is the Larmor frequency. This equation is analogous to the cor-

responding damped electric dipole oscillator equation given in Equation (3.33) of

Stenflo (1994, hereafter called S94, see also Equation (1.15)). The only difference

is that the driving force in Equation (2.1) for the magnetic dipole is the magnetic

vector component of the incident electromagnetic radiation, while it is the electric

vector component for the electric dipole oscillator. Equation (2.1) decouples in

the basis of spherical unit vectors, and the resulting solution in component form

is given by

mq(ω) =
ω2σ2

c2L

Bin
q

ω2
0 − ω2 − 2qωωB − iγω

, (2.2)

where q = 0,±1 and Bin
q is the spherical component of the incident radiation.

Hereafter, we refer to the magnetic field of the electromagnetic radiation as the

radiation magnetic field. For a spectral line, ω ≃ ω0 is satisfied and therefore
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| ω0 − ω |≪ ω0. This condition simplifies the resonant term in Equation (2.2) as

1

ω2
0 − ω2 − 2qωωB − iγω

≈ 1/2ω0

[ω0 − ω − qωB − iγ/2]
. (2.3)

Following Bommier and Stenflo (1999), we now define the area normalized profile

function Φq as

Φq =
2/i

ω0 − ω − qωB − iγ/2
. (2.4)

Thus Equation (2.2) can be rewritten as

mq(ω) ∼ ΦqB
in
q . (2.5)

We denote the spherical components of the scattered radiation magnetic field as

Bout
q , which is proportional to the spherical components of the magnetic dipole

vector amplitude mq. Following S94, we can write Bq =
∑

α ε
α
qBα, where α = 1, 2

are the linear polarization basis vectors and εαq are the spherical vector components

of the linear unit vector eα. Thus the scattered radiation magnetic field can now

be written as

Bout
α =

∑

q

εα∗q B
out
q ∼

∑

q

εα∗q ΦqB
in
q . (2.6)

Simplifying further by a substitution for Bin
q =

∑

β ε
β
qB

in
β , we obtain

Bout
α =

∑

β

wB
αβB

in
β , (2.7)

where

wB
αβ =

∑

q

εα∗q ε
β
qΦq , (2.8)

are the components of the 2 × 2 Jones scattering matrix wB, which describes

the interaction of radiation with the medium. The quantity wB
αβ given above has

exactly the same form as that for the electric dipole transitions. However, it is

derived considering the radiation magnetic field. Because the Stokes parameters

are defined on the basis of the electric field components of the radiation, we also

transform Equation (2.7) to the same basis. This can be achieved by using the

relation between the radiation electric and magnetic field vectors, which is given

by E = B × r̂ . Thus the relation between the radiation electric and magnetic
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field vectors (B = −E2e1 + E1e2) can be written in matrix form as

E = αB ; B = α†E, (2.9)

where

α =

(

0 1

−1 0

)

; α† =

(

0 −1

1 0

)

. (2.10)

Using the above relation, Equation (2.7) can be rewritten in matrix form as

Eout = wEEin, (2.11)

where

wE = αwBα†, (2.12)

which is now defined using the radiation electric field vector.

2.3 Scattering matrix for M1 transitions

The Mueller scattering matrix MM1, which describes the transformation from

incident to the scattered Stokes vectors, is given by

MM1 = TWM1T−1 , (2.13)

where

WM1 = wE ⊗wE∗. (2.14)

The matrices T , and T−1 are defined in Equation (1.13). The tensor product

in Equation (2.14) has the same form as given in Equation (10) of S98 (see also

Equation (1.12)), but with w there replaced by wE defined in Equation (2.12). In

terms of the elements of wB, the tensor product in Equation (2.14) can be written

49



Chapter 2. Hanle-Zeeman Scattering Matrix for M1 Transitions

as

WM1 =

















wB
22w

B∗
22 −wB

22w
B∗
21 −wB

21w
B∗
22 wB

21w
B∗
21

−wB
22w

B∗
12 wB

22w
B∗
11 wB

21w
B∗
12 −wB

21w
B∗
11

−wB
12w

B∗
22 wB

12w
B∗
21 wB

11w
B∗
22 −wB

11w
B∗
21

wB
12w

B∗
12 −wB

12w
B∗
11 −wB

11w
B∗
12 wB

11w
B∗
11

















. (2.15)

Comparing Equation (1.12) with Equation (2.15), one can clearly see the role

played by α and α† (namely the change of signs as well as the changed positions of

the elements in the matrixWM1 with respect to the matrixW defined in Equation

1.12). Since wB is identical to w corresponding to E1 transitions (namely that of

S98), following S98 (see his Equation (12)), we define

A =| wB
11 |2; B =| wB

22 |2;

C =| wB
12 |2; D =| wB

21 |2;

a = wB
11w

B∗
22 ; b = wB

11w
B∗
12 ;

c = wB
11w

B∗
21 ; d = wB

12w
B∗
21 ;

e = wB
12w

B∗
22 ; f = wB

21w
B∗
22 . (2.16)

With these quantities the Mueller matrix for the magnetic dipole transitions can

be organized as

MM1 = MM1
Q + ℜ (MM1

U ) + ℑ (MM1
V ) , (2.17)

where

MM1
Q =

1

2















A+B + C +D −(A−B − C +D) 0 0

−(A−B + C −D) A+B − C −D 0 0

0 0 0 0

0 0 0 0















,

MM1
U =















0 0 −(b+ f) 0

0 0 b− f 0

−(c+ e) c− e a+ d 0

0 0 0 a− d















,
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Figure 2.3: Geometry of scattering with magnetic field along the Z-axis: the
magnetic reference frame (MRF). Incident ray n′ with polar angles (θ′, φ′) is
scattered into an outgoing ray n with polar angles (θ, φ). The scattering angle
is denoted by Θ.

MM1
V =















0 0 0 −b− f

0 0 0 −(−b+ f)

0 0 0 −(−a+ d)

c+ e −(c− e) −(a+ d) 0















. (2.18)

Comparing the elements of MM1 given in Equation (2.18) with the corresponding

elements in Equation (14) of S98, we see that the Mueller matrix for magnetic

dipole transitions is exactly the same as that for the electric dipole transitions,

except for the change in the signs of certain elements. These elements that have

undergone sign change are MM1
Q,12, M

M1
Q,21, M

M1
U,13, M

M1
U,31, M

M1
V,24, M

M1
V,42, M

M1
V,34, and

MM1
V,43. The analytical form of the Hanle-Zeeman scattering matrix for J = 0 →

1 → 0 M1 transition in the magnetic reference frame (MRF, see Figure 2.3) can be

derived following Section 4 of S98. Indeed, the expressions turn out to be identical

to those given in Section 4 of S98, with the sign changes already mentioned above.

All the special cases discussed in Section 5 of S98 can also be recovered for the

M1 transitions. In the following subsection we particularly discuss the strong-field

regime of the Hanle effect, which is of relevance to coronal forbidden emission

lines.
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2.3.1 Saturated Hanle regime

For the coronal forbidden lines, the Einstein spontaneous emission coefficient A

is very small (typically, A ∼ 10 s−1). Therefore excited states of these forbidden

lines have extraordinarily long lifetimes, due to which the natural line widths

of these lines are very small compared to the Zeeman splitting even for micro

gauss fields. As the expected field strengths for the quiet-Sun corona are much

stronger (∼ 10G), for these lines ωB ≫ A. Thus we are always in the saturated

Hanle regime (or strong-field regime with respect to the traditional Hanle effect) in

forbidden lines in the solar corona. Under this condition the separated magnetic

substates of the upper level do not interfere and scatter the incident radiation

incoherently (independently). The tensor product defined in Equation (2.14) has

terms of the type wB
αβw

B∗
α′β′ . This involves a coherent summation over q, q′ (see

Equation (2.8)). In the saturated Hanle regime we neglect the interference terms.

In other words, an incoherent summation is performed (q = q′) when forming the

tensor product. Thus the Mueller matrix for the coronal forbidden lines under the

saturated Hanle regime is given by

MM1
corona/H0 = E11 +

3

8







1

3
(1− 3µ2)(1− 3µ′2) −(1− 3µ2)(1− µ′2) 0 0

−(1− µ2)(1− 3µ′2) 3(1− µ2)(1− µ′2) 0 0

0 0 0 0

0 0 0 4µµ′






. (2.19)

In the above equation µ = cos θ, µ′ = cos θ′, where θ and θ′ are the colatitudes

of the scattered and incident radiation (see Figure 2.3). When deriving Equation

(2.19), the reference direction for positive Stokes Q is chosen to be in the merid-

ian plane containing the magnetic field and the propagation direction. Since the

Zeeman splitting for the coronal forbidden lines is much smaller than the Doppler

width, the Voigt functions for q = ±1 are taken as H0 (namely, H± ≈ H0). The

notations used in the above expression are the same as those in S98. From Equa-

tion (2.19) it is clear that the linear polarization of the scattered radiation no

longer depends on the strength of the magnetic field.

For an unpolarized beam of light incident on a point source, the fractional polar-

ization (Q/I) resulting from a single scattering is given by (see Equation (2.19))

Q

I
= − (1− 3µ′2)(1− µ2)

(8/3 + (1− 3µ2)(1− 3µ′2)/3)
. (2.20)
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This equation is the same as Equation (12) of House (1972), where the symbols

θ and θ′ are reversed for the linear polarization angle equal to zero and for the

M1 transition with J = 0 → 1 → 0 (see Table I of House 1972 for details).

Equation (2.20) clearly shows that when µ′2=1/3, i.e., when θ′ = 54.◦7 which is

called the Van Vleck angle, the linear polarization of the scattered ray becomes

zero and undergoes a sign reversal about this angle. When θ′ < 54.◦7, the linear

polarization is normal to the direction of B projected on POS and is parallel to

projected B for θ′ > 54.◦7.

2.4 Spherical tensor representation of the scat-

tering matrix

The spherical tensor representation introduced in Landi Degl’Innocenti (1984) al-

lows us to develop a more compact mathematical formulation of the problem. In

addition, the polarization properties of the emitted radiation are expressed in their

simplest form in that basis. Hence in this section we express the Hanle-Zeeman

scattering matrix derived in Section 2.3 in terms of the irreducible spherical tensors

introduced in Landi Degl’Innocenti (1984) as well as in terms of the generalized

profile function introduced by Landi Degl’Innocenti et al. (1991). The procedure

for achieving this is described in Sampoorna et al. (2007a, hereafter SNS07). We

apply this procedure originally written for E1 transitions, to the case of M1 tran-

sitions. Following Landi Degl’Innocenti and Landolfi (2004, hereafter LL04), we

choose the linear polarization unit vectors as

e−1(n) =
1√
2
[ea(n) + ieb(n)], e+1(n) =

1√
2
[−ea(n) + ieb(n)],

e′
−1(n

′) =
1√
2
[e′

a(n
′) + ie′

b(n
′)], e′

+1(n
′) =

1√
2
[−e′

a(n
′) + ie′

b(n
′)], (2.21)

where [ea(n), eb(n),n] form a right-handed coordinate system about the outgoing

ray and similarly a primed system for the incoming ray. Here ea(n) and eb(n)

represent the linear polarization basis vectors. The relation between radiation

electric and magnetic field vectors depends on the choice of linear polarization basis

vectors. In the classical derivation for M1 transitions presented in Section 2.3, the

linear polarization basis vectors were ea(n) and eb(n) (which are denoted as eα
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with α = 1, 2 in Section 2.3 following S98). In this basis the relation between the

radiation electric and magnetic field vectors is given by Equation (2.9). In the

present section we use the linear polarization basis vectors defined in Equation

(2.21). Therefore to find the relation between the radiation electric and magnetic

field vectors in the basis of e+1(n) and e−1(n), we use the relation E1ea+E2eb =

E+1e+1 + E−1e−1 and E = B × r̂ and find that B = (iE+1)e+1 + (−iE−1)e−1.

Therefore the spherical vector components of the radiation electric and magnetic

fields are related through

Bδ = i δEδ ; Eδ = −i δBδ, δ = ±1. (2.22)

Similar relations also hold good for the primed system. Following Equations (C1)

and (C2) of SNS07, the magnetic field components of the scattered radiation can

be written as

Bout
µ ∼

∑

ρq

Φq[eµ(n)]
∗
q[e

′
ρ(n

′)]qB
in
ρ . (2.23)

Using Equation (2.22), we can rewrite the above equation as

Eout
µ ∼

∑

ρq

µρΦq[eµ(n)]
∗
q[e

′
ρ(n

′)]qE
in
ρ , µ, ρ = ±1. (2.24)

Following S94, we define the coherency matrix ISµν = Eout
µ Eout∗

ν , where the super-

script S stands for S94. From Equation (2.24) we can write ISµν for M1 transitions

as

ISµν =
∑

ρσ

T S,M1
µν,ρσ(ω,n,n

′;B)I ′Sρσ, (2.25)

where

T S,M1
µν,ρσ(ω,n,n

′;B) =
∑

qq′

µνρσ ΦqΦ
∗
q′ [eµ(n)]

∗
q [eν(n)]q′ [e

′
ρ(n

′)]q[e
′
σ(n

′)]∗q′ . (2.26)

Similar to the E1 transitions (see LL04), we now define the reducible spherical

tensor for the M1 transitions as

ES,M1
qq′ (µ, ν,n) = µν[eµ(n)]

∗
q[eν(n)]q′ . (2.27)
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Therefore Equation (2.26) can be rewritten as

T S,M1
µν,ρσ(ω,n,n

′;B) =
3

2

∑

qq′

ΦqΦ
∗
q′ES,M1

qq′ (µ, ν,n)ES,M1
q′q (σ, ρ,n′), (2.28)

where the factor 3/2 is the normalization constant (see S94). We now transform

from coherency matrix basis to the Stokes vector basis (see S94 as well as Appendix

C of SNS07). Thus the scattered Stokes vector Si (with i = 0, 1, 2, 3) can be written

as

Si =
3
∑

j=0

PM1
ij (ω,n,n′;B)S ′

j, (2.29)

with S ′
j being the incident Stokes vector, and the phase matrix PM1

ij for the M1

transitions is given by

PM1
ij (ω,n,n′;B) =

3

4

∑

µνρσqq′

ΦqΦ
∗
q′(σi)νµ(σj)ρσES,M1

qq′ (µ, ν,n)ES,M1
q′q (σ, ρ,n′),(2.30)

where σi are the Pauli spin matrices. Following LL04, we define

T S,M1
qq′ (i,n) =

∑

µν

1

2
(σi)νµES,M1

qq′ (µ, ν,n). (2.31)

Thus Equation (2.30) can be rewritten as

PM1
ij (ω,n,n′;B) = 3

∑

qq′

ΦqΦ
∗
q′T S,M1

qq′ (i,n)T S,M1
q′q (j,n′). (2.32)

For mathematical simplicity we express the product of profile functions as propor-

tional to their sums (see S98), namely

ΦqΦ
∗
q′ =

1

2πa
cosαq−q′e

iαq−q′ (Φq + Φ∗
q′), (2.33)

where αq−q′ is the Hanle angle given by tanαq−q′ = (q − q′)gbωB/γ, with gb being

the Landé g-factor of the upper level, and a = γ/4π∆νD is the damping param-

eter with ∆νD the Doppler width. Following LL04, we introduce the irreducible

spherical tensor written in terms of the reducible spherical tensor:

[

T K,M1
Q (i,n)

]S

=
∑

qq′

(−1)1+q
√

3(2K + 1)

(

1 1 K

q −q′ −Q

)

T S,M1
qq′ (i,n), (2.34)
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with the inverse relation given by

T S,M1
qq′ (i,n) =

∑

KQ

(−1)1+q

√

(2K + 1)

3

(

1 1 K

q −q′ −Q

)

[

T K,M1
Q (i,n)

]S

. (2.35)

Substituting Equations (2.33) and (2.35) in Equation (2.32) we obtain

PM1
ij (ω,n,n′;B) =

∑

KK′Q

cosαQe
iαQ

[

T K,M1
Q (i,n)

]S [

T K′,M1
−Q (j,n′)

]S

×
{

∑

qq′

(−1)q+q′
√

(2K + 1)
√

(2K ′ + 1)

(

1 1 K

q −q′ −Q

)

×
(

1 1 K ′

q′ −q Q

)

1

2
(Φq + Φ∗

q′)

}

. (2.36)

We now express the profile function appearing in Equation (2.36) in terms of the

generalized profile function defined in Landi Degl’Innocenti et al. (1991). For the

sake of clarity, we recall the definition of the generalized profile function for the

J = 0 → 1 → 0 transition:

ΦKK′

Q (0, 1; ω) =
∑

MM ′

(−1)Q−M−M ′
√

(2K + 1)(2K ′ + 1)

(

1 1 K

M ′ −M Q

)

×
(

1 1 K ′

−M M ′ Q

)

1

2
[φ(ω1M ′00 − ω) + φ∗(ω1M00 − ω)].(2.37)

In the above equation the profile function φ(ω1M00 − ω) is given by

φ =
−2/i

ω0 − ω + gbMωB + iγ/2
. (2.38)

For the two-level atomic system considered in this chapter gb = 1. Comparing this

equation with Equation (2.4), we see that Φq = φ∗(ω1−q00−ω). In Equation (2.36)

we replace −q by M , −q′ by M ′ as well as Q by −Q, and using the properties of

3-j symbols, we can identify the resulting term in the flower bracket of Equation

(2.36) to be related to the generalized profile function given in Equation (2.37).

56



2.4. Spherical tensor representation of the scattering matrix

Thus Equation (2.36) can be rewritten as

PM1
ij (ω,n,n′;B) =

∑

KK′Q

cosαQe
−iαQ(−1)Q

[

T K,M1
−Q (i,n)

]S [

T K′,M1
Q (j,n′)

]S

×(−1)KΦKK′

Q (0, 1;ω). (2.39)

We now express
[

T K,M1
Q

]S

in terms of the irreducible spherical tensors for the E1

transitions. The reducible tensor ES,M1
qq′ (µ, ν,n) defined in Equation (2.27) can be

rewritten in terms of the Wigner rotation matrices as

ES,M1
qq′ (µ, ν,n) = µνD1

µq(R)
∗D1

νq′(R), (2.40)

where R ≡ (0,−θ,−φ) is a rotation that brings the system [ea(n), eb(n),n] into

the system, where the magnetic field is along the polar Z-axis. Substituting for

ES,M1
qq′ in Equation (2.31) and the resulting expression for T S,M1

qq′ in Equation (2.34),

we obtain
[

T K,M1
Q (i,n)

]S

= (−1)Q
∑

Q′

[

tK,M1
Q′ (i)

]S

DK
Q′−Q(R), (2.41)

where

[

tK,M1
Q′ (i)

]S

=
∑

µν

1

2
µν(σi)µν

√

3(2K + 1)

(

1 1 K

µ −ν −Q′

)

. (2.42)

Defining the quantity

ζi = (1,−1,−1, 1), i = 0, 1, 2, 3, (2.43)

corresponding to the Stokes parameters, Equation (2.42) can be rewritten as

[

tK,M1
Q′ (i)

]S

= ζi
∑

µν

1

2
(σi)µν

√

3(2K + 1)

(

1 1 K

µ −ν −Q′

)

. (2.44)

Comparing this expression with the Equation (C21) of SNS07 (which is for electric

dipole transitions), we can write

[

tK,M1
Q′ (i)

]S
= ζi

[

tKQ′(i)
]S
. (2.45)
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With the above expression and Equation (C22) of SNS07, Equation (2.41) can be

rewritten as
[

T K,M1
Q (i,n)

]S
= ζi

[

T K∗
Q (i,n)

]L
, (2.46)

where the superscript ‘L’ stands for LL04. From the above equation it is clear

that the irreducible spherical tensor for the M1 transition is related to that for

the E1 transition by the factor ζi (see also Equation (13.25) of LL04). Therefore

in terms of irreducible spherical tensor representation of LL04, Equation (2.39)

therefore becomes

PM1
ij (ω,n,n′;B) = ζiζj

[

∑

KK′Q

cosαQe
−iαQ(−1)Q

T K
Q (i,n)T K′

−Q(j,n
′)(−1)KΦKK′

Q (0, 1;ω)
]

, (2.47)

where we have dropped the superscript L without loss of generality. The above

equation represents the Hanle-Zeeman scattering matrix for the M1 transitions.

The term in the square brackets in Equation (2.47) is identical to the right-hand

side of Equation (52) in Bommier (1997b), when in the latter the collisions are

ignored and only frequency coherent scattering is considered. Therefore the term

in the square brackets represents the Hanle-Zeeman scattering matrix for E1 tran-

sitions. Thus we can write

PM1
ij (ω,n,n′;B) = ζiζj P

E1
ij (ω,n,n′;B). (2.48)

The above relation between the phase matrices for M1 and E1 transitions is quite

general. Indeed, they differ only through signs of certain matrix elements. The

sign differences occur because the driving force for E1 and M1 transitions are the

radiation electric and magnetic fields, respectively, which are independent of the

J quantum numbers of the transition involved. Therefore Equation (2.48) can

be used for an arbitrary Jl → Ju → Jl scattering transition. The corresponding

phase matrix PE1 can be derived using the Kramers-Heisenberg approach of S98

(see also LL04).

For our further discussions we would like to introduce the non-dimensional

frequency in the laboratory frame which, is defined as

x =
ω0 − ω

∆ωD

, (2.49)
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where ∆ωD = 2π∆νD. To account for thermal motion of radiating atoms, the

profile function in the rest frame φ(ω1M00 − ω) is convolved with the Maxwellian

velocity distribution. Thus the laboratory frame profile function is given by

H(a, xM) = H(a, xM) + iF (a, xM ), (2.50)

whereH(a, xM) is the normalized Voigt function describing absorption and F (a, xM)

is the normalized Faraday-Voigt function describing dispersion with xM = x +

gbMνB/∆νD (see Section 2.3 of S98 for details).

2.5 Polarization diagram for E1 and M1 transi-

tions

Equation (2.48) shows that the scattering matrix derived for M1 transition is

related to that of E1 transition in a simple manner. To illustrate this, we consider

a single scattering of an unpolarized beam of radiation incident on the scattering

atom in the vertical direction. The Stokes parameters of the scattered radiation

is then simply given by the first column of the phase matrix. Figure 2.5 shows the

polarization diagram, namely the plot of U/I versus Q/I for x = 0 as a function of

field strength parameter ΓB = gbωB/γ for different choices of magnetic azimuthal

angles ϕB and a fixed field inclination angle ϑB = π/2 (see Figure 2.4). From

Equation (2.48), we see that Q/I and U/I for M1 transitions differ from those

for E1 transitions by a negative sign. This is clearly reflected in Figure 2.5. For

example, note that Q/I values are negative for E1 transitions, while they are

positive for M1 transitions. As for U/I, let us take the example of ϕB = 0◦. It is

negative for all values of ΓB in E1 transitions, while it is positive for M1 transitions.

As expected, the magnitudes remain the same. The symmetry properties of the

polarization diagram with respect to ϕB = ±π/2, ±π/4 and ±3π/4 are identical

for both E1 and M1 transitions. Furthermore, for a given ϑB and ϕB, the U/I

initially increases, reaches a maximum for ΓB = 0.5, and then decreases and

saturates for ΓB ≫ 1.
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ϕ′

ϑB ϑ′

ϕB
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ϑ

I ′
φ
′ − φ

θ′

Figure 2.4: Geometry showing the scattering process in a coordinate system
where the magnetic field makes an angle ϑB with respect to the polar Z-axis,
and has an azimuth of ϕB . We refer to this as the atmospheric reference frame
(ARF). In this frame (ϑ′, ϕ′) refer to the incident ray, and (ϑ, ϕ) to the scattered
ray. (θ ′, φ′) refer to the incident ray, and (θ, φ) to the scattered ray with respect
to the magnetic field (MRF).

ϕB = π

ϕB = ±3π/4

ϕB = ±π/2

ϕB = ±π/4

ϕB = 0

ϕB = ±π/2

ϕB = ±3π/4

ϕB = 0 ϕB = π

ϕB = ±π/4

Figure 2.5: Polarization diagram for E1 (left) and M1 (right) J = 0 → 1 → 0
transitions. Fractional polarizations Q/I and U/I are plotted as a function of
field-strength parameter ΓB, for various values of the magnetic field azimuth
angle ϕB and a fixed inclination angle ϑB = π/2. An unpolarized beam of
radiation is incident on the atom in the vertical direction (ϑ′ = 0◦ and ϕ′ = 0◦).
The scattered Stokes parameters are calculated in the horizontal plane (ϑ = 90◦

and ϕ = 0◦). The symbols along the different curves correspond to different
values of ΓB (increasing from left to right for E1 transitions and from right to
left for the M1 transitions). ΓB = 0 is marked by the filled red symbol. The
blue symbols correspond to ΓB = 0.5.
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2.6 Concluding remarks

In the present chapter we have derived the scattering matrix for the case of

J = 0 → 1 → 0 M1 transitions in arbitrary-strength magnetic fields. For this pur-

pose, we used the classical scattering matrix approach of Stenflo (1994, 1998) to-

gether with the classical damped magnetic dipole oscillator model of Casini and Lin

(2002). This matrix describes various cases like Hanle, saturated Hanle, intermedi-

ate Hanle-Zeeman, and pure Zeeman regimes in a continuous way, hence the name

Hanle-Zeeman scattering matrix. We also expressed the Hanle-Zeeman M1 scat-

tering matrix in terms of the irreducible spherical tensors (Landi Degl’Innocenti

1984) and the generalized profile functions (Landi Degl’Innocenti et al. 1991). We

showed that this matrix is related to the scattering matrix for E1 transitions in a

simple manner, involving only sign changes of some of the matrix elements. This

could then allow for a straightforward generalization of the M1 scattering matrix

to arbitrary Jl → Ju → Jl scattering transition. The differences and similari-

ties between the scattering matrix for E1 and M1 transitions were also illustrated

through polarization diagrams. This theoretical formalism may find application

in modeling the polarization profiles of forbidden lines formed in the several astro-

physical contexts such as: solar corona, interstellar medium (ISM), circumstellar

regions, supernova remnants.
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Chapter 3

Empirical Study of Polarized

Profiles Formed in Solar Coronal

Conditions1

An overview

A classical theory for the forbidden lines is presented in Chapter 2 for the case

of arbitrary-strength magnetic fields. Here we apply this theoretical formalism to

study the effect of density distributions, magnetic field configurations, and velocity

fields on the Stokes profiles formed in solar coronal conditions. To this end, we

take into account the integration over a cone of an unpolarized radiation from

the solar disk incident on the scattering atoms. Furthermore, we also integrate

along the line-of-sight (LOS) to calculate the emergent polarized line profiles. For

our studies we adopt the atomic parameters corresponding to the [Fexiii] 10747 Å

coronal forbidden emission line.

3.1 Introduction

Coronal forbidden emission lines are formed due to the magnetic dipole (M1) tran-

sitions in highly ionized atoms in the solar corona. Polarization in these lines arises

1The contents of this chapter are based on the publications: Megha et al. (2017, 2018, 2020c)

63



Chapter 3. Empirical Study of Polarized Profiles Formed in Solar
Coronal Conditions

due to the anisotropic excitation of ions in the corona. The polarization measure-

ment of these lines is the most promising method of determining the direction of

magnetic fields in the corona (House 1972, House 1977, Querfeld 1982, Judge 1998,

Penn 2014, Plowman 2014, Dima et al. 2016, Li et al. 2017). Here we apply the

classical theory for the forbidden lines which is presented in Chapter 2 for the case

of arbitrary-strength magnetic fields, to study the polarized line profiles formed in

solar coronal conditions. It is clear that an emitting atom in the corona is illumi-

nated by the limb darkened anisotropic radiation from the photosphere. Following

House (1972), here we describe a procedure for the integration over the solid angle

of the incident cone of radiation to obtain the scattered radiation. Also since the

corona is optically thin, the polarization of emission lines measured at the Earth

contain the integrated contribution along the LOS. Therefore here we describe the

steps to perform the LOS integration. For our studies we use both spherically

symmetric and latitude dependent density distributions. For illustrations we use

the atomic parameters of the [Fe xiii] 10747 Åcoronal forbidden emission line. We

consider both radial and dipole field distributions of the magnetic field.

In Section 3.2, we describe a procedure to perform angular integration over the

unpolarized incident cone of radiation from the solar photosphere. The resulting

Stokes profiles from the scattering point are also presented. In Section 3.3, we

describe the LOS integration technique and present emergent Stokes profiles for

radial and dipole field distributions within the corona. In Section 3.4 we show

the plane-of-sky (POS) polarization maps for different density and magnetic field

configurations. In Section 3.5 we discuss the effect of a radial velocity field on the

Stokes profiles formed in the corona. Conclusions are presented in Section 3.6.

3.2 Integration over the solid angle of the inci-

dent cone of radiation

For mathematical simplicity the phase matrix for M1 transitions was derived in

Chapter 2 in the magnetic reference frame (MRF, with Z-axis along the magnetic

field direction; see Figure 2.3). For practical purposes we need the scattering

matrix in a more general geometry, called the atmospheric reference frame (ARF,

see Figure 2.4). Following LL04 (see also Frisch 2007), Equation (2.47) can now
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be written in ARF as

PM1
ij (x,n,n′;B) = ζiζj

[

∑

KQ

(−1)KT K
Q (i,n)

∑

K′Q′

NKK′

QQ′ (x,B)(−1)Q
′T K′

−Q′(j,n′)
]

.

(3.1)

Here, n and n′ are now defined by their polar angles ϑ, ϕ and ϑ′, ϕ′ in the ARF.

The magnetic kernel NKK′

QQ′ (x,B) may be written as

NKK′

QQ′ (x,B) = ei(Q
′−Q)ϕB

∑

Q′′

dKQQ′′(ϑB)d
K′

Q′′Q′(−ϑB) cosαQ′′e−iαQ′′ΦKK′

Q′′ (0, 1; x),

(3.2)

where ϑB and ϕB are the polar angles of the magnetic field in ARF. Expressions

for the reduced rotation matrices dKQQ′ can be found in LL04 (see their Table 2.1).

The scattering atom in the corona is illuminated by the unpolarized cone of

radiation incident from the photosphere (see Figure 2.1). Thus the scattering

matrix has to be integrated over the solid angle subtended by this cone at the

sight of the atom. The resulting scattered Stokes parameters are given by

IM1
i (x, ϑ, ϕ;B) =

∫ 2π

0

∫ 1

cosΩ

PM1
i0 (x,n,n′;B)I ′

dµ′dϕ′

4π
, (3.3)

where µ′ = cosϑ′. To perform the above integration, we consider a limb-darkening

function to represent the angular distribution of incident radiation I ′ within the

cone. This is given by

I ′ = I0

[

1− u+

√
cos2 ϑ′ − cos2 Ω

sinΩ
u

]

, (3.4)

where u is an empirically determined limb-darkening coefficient, I0 is the contin-

uum intensity at the center of the disk which is taken to be unity in this chapter,

and the solid angle Ω is defined as sinΩ = R⊙/(R⊙ + h), with h being the height

of the scattering atom above the photosphere.

Following Frisch (2007), we write the irreducible spherical tensors

T K
Q (i,n) = T̃ K

Q (i, ϑ)eiQϕ. (3.5)

Introducing Equation (3.5) in Equation (3.1) and the resulting expression in Equa-

tion (3.3), we see that the integration over ϕ′ will be non-zero only for Q′ = 0.
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Now expanding the summation over K ′, Equation (3.3) can be written as

IM1
i (x, ϑ, ϕ;B) =

ζi
2

∑

KQ

(−1)KT K
Q (i,n)

[

NK0
Q0

∫ 1

cosΩ

T̃ 0
0 (0, ϑ

′) I ′ dµ′

+NK2
Q0

∫ 1

cosΩ

T̃ 2
0 (0, ϑ

′) I ′ dµ′

]

. (3.6)

After introducing the values for T̃ 0
0 (0, ϑ

′) and T̃ 2
0 (0, ϑ

′) from LL04 (Table 5.6, with

a particular choice of the reference angle γ = 0), the two integrations appearing

in Equation (3.6) can be performed analytically and the resulting expressions are

given by

∫ 1

cosΩ

T̃ 0
0 (0, ϑ

′) I ′ dµ′ = (1− u)(1− cosΩ) +
u

2

[

1− cotΩ cosΩ ln(secΩ + tanΩ)

]

,

∫ 1

cosΩ

T̃ 2
0 (0, ϑ

′) I ′ dµ′ =
1

2
√
2

{

(1− u) cosΩ sin2 Ω + 3u

[

1

4
− 1

8
cos2 Ω

−1

8
cotΩ cos3 Ω ln(secΩ + tanΩ)

]

− u

2

[

1− cosΩ cotΩ ln(secΩ + tanΩ)

]}

.(3.7)

From here on, for all the illustrations presented in this chapter, we consider scat-

tering on the [Fexiii] ion located at a height h = 0.5R⊙ above the limb. In

particular, we consider the 10747 Å line that results from 3P0 →3P1 →3P0 scat-

tering transition. We chose this line because it is expected to be used for the

spectropolarimetric studies of the solar corona by the Visible Emission Line Coro-

nagraph (VELC) payload on board Aditya-L12, an upcoming Indian space mission

to study the Sun. VELC is designed to image the solar corona over a field-of-view

(FOV) of 1.05 R⊙ to 3 R⊙ and further facilitates spectropolarimetric studies of

the 10747 Å line over a FOV of 1.05 R⊙ to 1.5 R⊙.

We use two-level atom approximation and neglect collisions. The effects of

collisions and multi-level coupling are discussed in detail in House (1977) and

Sahal-Bréchot (1977). These authors show that the two-level atom approximation

is insufficient particularly when electron densities are larger than 107 cm−3. This

2https://www.isro.gov.in/aditya-l1-first-indian-mission-to-study-sun
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is because in such cases the collisional effects can not be neglected. Indeed, the

ground configuration of the [Fexiii] ion consists of five levels, namely, 3P0,
3P1,

3P2,
1D2,

1S0. Sahal-Bréchot (1977) has demonstrated that the collisional transfer

from the 3P2 level (and also other higher levels) plays an important depolarizing

role. In particular, the collisional effects decrease the degree of linear polarization

of the [Fexiii] 10747 Å line by about 10% (see also Figure 4(d) of House 1977).

Therefore, the theoretical formalism presented in Chapter 2 can be applied to only

those regions in the corona where the electron densities are lower than 107 cm−3.

For the electron density model considered by House (1977, see his Table 2 and see

also Equation (3.10) below), such densities are found for h & 0.5R⊙ above the

limb. Thus, we present all the results for h = 0.5R⊙ (which is the upper limit for

spectropolarimetric observations of the Aditya-L1 mission). For h < 0.5R⊙ it is

essential to account for the collisional effects and thereby the multi-level coupling.

Although we use two-level atom approximation and neglect collisions, our the-

oretical formalism is able to handle a wide range of field strengths, unlike previous

formalisms (Sahal-Bréchot 1977, House 1977, Casini and Judge 1999) which only

considered the saturated Hanle regime. For our illustrations we therefore consider

a range of field strengths from µG to 3 kG. However, the coronal magnetic fields

are expected to fall in the range 1-30 G (Lin et al. 2000, Jess et al. 2016), which

corresponds to the saturated Hanle regime for the [Fe xiii] 10747 Å line. In spite

of this, we consider field strengths outside this range to demonstrate the applica-

bility of our approach to arbitrary-strength fields. In the stellar case, the 10747

Å line has been observed by Zirin (1976) in R Aquarii, which is a symbiotic star.

Extremely weak fields on the order of µG are expected to be found in diffuse media

such as the interstellar medium (ISM), circumstellar regions, supernova remnants

etc. (see eg. Yan and Lazarian 2006, Ferrière 2009, Reynolds et al. 2012). In

such diffuse media, several forbidden lines of [O i], [O iii], [Ne ii], [Nev], [Ca ii],

[S ii], [Fe ii], [Fexiv], [Fex] (Kraus et al. 2010, Dopita et al. 2016) are formed.

Indeed, the IR forbidden lines of neon are formed in the winds of Wolf-Rayet stars

(Ignace and Brimeyer 2006), where fields as strong as 1.5 kG are expected (de

la Chevrotière et al. 2014). More recently, the polarization of [O i] 6300 Å line

formed in the solar photosphere has been observed (de Wijn et al. 2017). Our

theoretical formalism can be applied to compute the linear polarization profiles

of any M1 forbidden line (see the text below Equation (2.48)) in the presence
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Figure 3.1: Line integrated Q/I versus height after integration over the in-
cident cone of radiation from the photosphere. The model parameters are
(A, ϑ, ϕ, ϑB, ϕB, ∆λD) = (14.04 s−1, 90◦, 0◦, 90◦, 45◦, 0.87Å). The reference
direction for the positive Stokes Q lies in the meridian plane containing the
Z-axis of the atmospheric reference frame and the propagation direction.

of arbitrary-strength magnetic fields (that are found in the ISM, stellar winds,

and also in solar and stellar atmospheres), provided the collisions and multi-level

couplings are negligible.

Figure 3.1 shows the plot of line integrated Q/I as a function of the height

above the photosphere, after integrating over a cone of radiation incident from

the photosphere (see Equations (3.6) and (3.7)). For the chosen geometry and

the reference direction for the linear polarization measurement U/I=0. This can

be explained by using Equation (3.6) for i = 2, i.e., for Stokes U as follows: For

ϑ = 90◦ and ϕ = 0◦, the only non-zero T K
Q (2,n)’s are T 2

±1(2,n) = −i
√
3/2. For

these values of K = 2 and Q = ±1, N20
±10 = N22

±10 = 0 implying that U = 0.

As the height increases, the solid angle of the incident cone at the scattering

atom decreases. Thus, the anisotropy of the incident radiation increases, thereby

resulting in an increase of line integrated Q/I with height. Indeed, in the limit of

h→ ∞, the cone can be mimicked by a vertically incident ray. Thus we reach the

configuration corresponding to maximum Q/I, which is 100% in the non-magnetic

case and 20% in the magnetic case. We remark that the line integrated Q/I is

nearly the same for all field strengths. For lower heights (h 6 1R⊙) the line

integrated Q/I has some sensitivity to the choice of limb-darkening coefficient u.
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Figure 3.2: Scattered Stokes profiles from a height of 0.5 R⊙ above the limb
after the integration over the incident cone of radiation from the photosphere.
The model parameters are (A, ϑ, ϕ, ϑB, ϕB, ∆λD, u) = (14.04 s−1, 90◦, 90◦,
30◦, 60◦, 0.87 Å, 0.34).

For heights above 1 R⊙ the anisotropy is mainly due to the geometrical effects,

thereby making the line integrated Q/I insensitive to u.

Figure 3.2 shows the scattered Stokes profiles obtained after integrating over

a cone of radiation incident from the photosphere. The limb-darkening coefficient

u = 0.34 is used (see Pierce 2000). The field strength is varied in a wide range

from µG to 3 kG. Because the Einstein A coefficient for the chosen transition

is very small (about 14.04 s−1), the field strength parameter ΓB (see Section 2.5

for a definition of ΓB) is very large, so that the profiles remain in the saturated

Hanle regime for a wide range of field strengths (shown as red curves covering the

range from mG to 250 G). At a coronal temperature of 2 MK, the Doppler width

is large (about 0.87 Å ) therefore the intensity profiles become insensitive to the

field strength variation. As the field strength increases, the Q/I profiles become

depolarized in the line core and reach a saturated value (with no variation with

69



Chapter 3. Empirical Study of Polarized Profiles Formed in Solar
Coronal Conditions

field strength up to 250 G). Similar to Q/I, the U/I first increases (for µG field)

and then decreases (for mG field) and remains in the saturated regime up to 250 G.

For fields larger than 250 G, the Q/I and U/I profiles exhibit typical Zeeman-like

behavior. The V/I profiles exhibit a typical antisymmetric shape with increasing

amplitudes as a function of field strength.

3.3 Line-of-sight (LOS) integration

The polarization of the coronal emission lines measured by an observer at Earth

is influenced by the density variation of the scattering ions along the LOS. As the

corona is optically thin, it is sufficient to integrate the scattering contributions

from atoms along the LOS. The geometry chosen for the LOS integration is shown

in Figure 3.3. In this geometry the primed coordinate system x′y′z′ is fixed to

the Sun with the x′z′ plane describing the POS and y′ axis is chosen along the

LOS. The unprimed coordinate system xyz is oriented at an angle χ with respect

to x′y′z′ system with x′ parallel to x. This xyz system describes the ARF where

the atom is considered to be fixed at its origin at a height h above the limb. The

LOS makes an angle ϑ = 90◦ − χ with respect to the z-axis and has an azimuth

ϕ = 90◦. ψ is the angle between B and LOS. The distance along the LOS as

measured from the mid-plane (χ = 0) in units of R⊙ is given by

l = (1 + ρ0) tanχ, (3.8)

where ρ0 = h0/R⊙. The solid angle subtended by the cone of incident radiation

at the scattering point can now be defined as sinΩ = 1/(1 + ρ), where ρ = h/R⊙.

This can also be written in terms of χ using cosχ = (1 + ρ0)/(1 + ρ), which then

gives sinΩ = cosχ/(1+ ρ0). The integration along the LOS can now be expressed

in the following form:

IM1
i (x, ρ0) =

∫ π/2

−π/2

IM1
i (x, ϑ, ϕ;B)N(ρ, χ)

(1 + ρ0)

cos2 χ
dχ, (3.9)

where N(ρ, χ) is the relative density distributions of the scattering ions along the

LOS.
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Figure 3.3: Geometry used for integration along the LOS (see the text for
details).

The LOS integral in Equation (3.9) is performed numerically using Simpson’s

1/6th integration formula along with equally spaced points in the χ-grid. We find

that 11 points χ-grid is sufficient to accurately evaluate the LOS integral. For the

purpose of comparison, we have used all the five different density variations that

are listed as Cases 1–5 in House (1972). We find that the variation of degree of

linear polarization with height above the limb for all the five cases given in Tables

II and III of House (1972) can be reproduced with an accuracy of 2-8% for the limb-

darkening coefficient value u = 1 and for a J = 0 → 1 → 0 scattering transition.

For illustration, in Figure 3.4 we plot the frequency-integrated degree of linear

polarization as a function of height above the limb for the density distribution in

Case 5 of House (1972) given by N ∝ k4 exp(−β4ρ) with k4 = 1, β4 = 0 and for

a radial field. The small differences between the P computed by House (1972)

and our computations could be due to different methods of LOS and frequency

integration.

For further studies presented in this chapter (excepting Section 3.4) we adopt

the spherically symmetric density (SSD) distribution model used in House (1972),
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Figure 3.4: Degree of linear polarization (P=
√

Q2 + U2/I) as a function of
height above the limb in R⊙ units for density distribution in Case 5 of House
(1972) for u = 1. The blue solid line corresponds to the data given in Table III
of House (1972) and the red dashed line corresponds to P computed by us.

Figure 3.5: The LOS-integrated Stokes profiles at h0 = 0.5R⊙ for the radial
field. The model parameters are (A, ϑB, ϕB, ∆λD, u) = (14.04 s−1, 0◦, 0◦,
0.87 Å, 0.34). The density distribution is given by Equation (3.10).

which is given by

N =
3
∑

i=1

ki (1 + ρ)−βi , (3.10)

where k1 = 7.55, k2 = −1.68, k3 = 1.04×103, β1 = 5.35, β2 = 14.74 and β3 =

−20.45. These values are taken from Newkirk et al. (1970).
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Figure 3.6: The LOS-integrated Stokes profiles (panels a, b, c) and the posi-
tion angle, PA = 1/2 arctan(U/Q) as a function of frequency for the dipole field
with a colatitude of 60◦ (panel d). The LOS is at a height of 0.5R⊙ above the
limb. The model parameters are (A, ϑB, ϕB, ∆λD, u) = (14.04 s−1, 40◦.89, 0◦,
0.87 Å, 0.34). The density distribution is given by Equation (3.10). The dipole
axis is in the POS which makes an angle of 90◦ with respect to the LOS.

3.3.1 Radial and dipole magnetic field configurations

Using the density distribution given in Equation (3.10) we compute the LOS-

integrated Stokes profiles for the radial field (ϑB = 0◦ and ϕB = 0◦, see Figure

3.5) and also for the dipole field (see Figure 3.6) with a fixed colatitude of 60◦ at

all the spatial points along the LOS. For simplicity we consider the case where the

dipole field axis and the stellar rotation axis are aligned and remain vertical in the

POS. The field strength is varied as discussed in Section 3.2. The limb-darkening

coefficient is fixed at 0.34.

For a radial field, the magnetic field is along the radius vector at each spatial

point along the LOS. Thus the azimuthal symmetry of the problem is retained. In

this case, Q/I remains at the non-magnetic (Rayleigh) scattering value throughout
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the line profile for fields of up to 250 G (see Figure 3.5) and the U/I is zero. This

can be understood using Equations (3.2) and (3.6). From Equation (3.2) we see

that for radial field (ϑB = 0◦ and ϕB = 0◦), NKK′

QQ′ is non-zero only for Q =

Q′ = 0 and depends on the magnetic field strength only through the generalized

profile function (and not through the Hanle angles as Q′′ = 0). For fields weaker

than 250G, the profile functions corresponding to different Zeeman components

are nearly the same, namely H(a, x±1) ≈ H(a, x0). Therefore NKK′

00 (x,B) is

nearly equal to the corresponding Rayleigh value. Furthermore, in Equation (3.6),

T K
0 (i,n) alone contributes for the radial field case. For our choice of reference

angle γ = 0, T 2
0 (2,n) is zero (see Table 5.6 of LL04), thereby giving rise to U = 0

for the radial field case. For fields beyond 250 G we enter the Zeeman regime,

resulting in Zeeman-like Q/I profiles. U/I profiles are zero due to the reasons

explained above. The LOS-integrated V/I profile is zero for radial field due to

exact cancellation of the V/I in the forward part of the hemisphere (χ > 0◦)

by the V/I formed at the corresponding spatial points in the backward part of

the hemisphere (χ < 0◦). This is due to the opposite signs of the longitudinal

component of the radial magnetic field in the forward and backward parts of the

hemisphere.

For a dipole field, the azimuthal symmetry is broken, because of which both

Q/I and U/I are non-zero. For very weak fields (µG) typical Hanle-like signatures

are obtained (see black dotted line in Figure 3.6) which then saturate for mG to

250 G fields. Again, Zeeman signatures are observed for fields stronger than 250 G.

Like in the case of radial field, the LOS-integrated V/I is zero because the values

of V/I at the χ-grid points along the LOS are perfectly antisymmetric about the

mid-plane (χ = 0◦, see Figure 3.7). Figure 3.6(d) shows the position angle plotted

as a function of frequency. It can be clearly observed that the position angle

remains constant within the line core at 43◦ in the saturated Hanle regime. In the

line wings the position angle is zero because of the Rayleigh scattering at those

frequencies. To study the variation of profiles along the grid points along the LOS,

we plot the profiles as a function of angle χ (see Figure 3.7). We have plotted this

for the dipole field case. It shows that the (I,Q/I, U/I) are symmetric, while V/I

is antisymmetric about χ = 0◦, i.e., when the direction of the field is in the POS.

Figure 3.8 shows a plot of a frequency-integrated degree of polarization P =
√

Q2 + U2/I as a function of height above the limb. To illustrate the effect of LOS
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Figure 3.7: Variation of I, Q/I, and U/I at line center (x = 0) and V/I at the
frequency corresponding to its peak value at different spatial points (represented
by different values of χ) along the LOS. A dipole field with a colatitude of 60◦

is considered. Note that I, Q/I, and U/I are symmetric about χ = 0◦, while
V/I is antisymmetric. A constant field strength of B = 10G is used.

integration, we plot P computed with (blue lines) and without (red lines) LOS

integration. We consider three different cases, namely, (a) a magnetic field with

ϑB = 30◦ and ϕB = 60◦, (b) a radial field, and (c) a dipole field with a colatitude

of 60◦. When LOS integration is neglected, the P simply represents the emission

from a given point in the corona. The effect of LOS integration starts to show up

for ρ > 0.4. The LOS integration results in a decrease of P because of a mixing

of (Q/I, U/I) contributions from various spatial points along the LOS. In Figure

3.8(d) we plot LOS-integrated log(I) as a function of height for the dipole field

case. We clearly see the sharp decrease of intensity with height. This decrease in

brightness across the disk basically represents the center-to-limb variation in the

corona.
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Radial field

Dipole field

ϑB = 30◦ , ϕB = 60◦

Dipole field

Figure 3.8: Frequency-integrated degree of linear polarization (P
=
√

Q2 + U2/I) (panels a–c) and log(I) (panel d) as a function of height above
the limb. P computed with (blue line) and without (red line) LOS integration
are shown. For all the points a constant field strength of B = 10G is used.

3.3.2 Symmetry properties of M1 scattering matrix

We study the symmetry properties of M1 scattering matrix by considering the

variation of the magnetic field orientation on the POS. Figure 3.9 shows the po-

larization diagram as a function of field azimuth ϕB, which is varied in the full

range 0◦ to 360◦, for different field inclination ϑB. We consider ϑB in the range

[0◦, 90◦] in steps of 10◦. The LOS-integrated U/I and Q/I at x = 0 are plotted.

For ϑB = 0◦, from Equations (3.2) and (3.6) we obtain U/I = 0 and Q/I takes the

Rayleigh scattered value (ϕB independent). Thus this case represents a point (de-

noted by plus symbol) in the polarization diagram. For ϑB 6= 0◦, the breaking of

the azimuthal symmetry results in open solid curves in the polarization diagram.

As ϑB increases, the curvature of these open solid curves increases. The curves

are open because we are in the regime of the saturated Hanle effect. The size of

the curves initially increases with ϑB and then decreases as ϑB approaches the
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Figure 3.9: Polarization diagram for varying ϑB ∈ [0◦, 90◦] and ϕB ∈ [0◦, 360◦]
for a constant field strength of B = 10G. The LOS is at h0 = 0.5R⊙. The case
of ϑB = 0◦ is represented by the plus symbol and the following curves correspond
to different values of ϑB increasing in steps of 10◦. The points corresponding
to ϕB = 0◦ and 360◦ are marked by an asterisk and ϕB = 180◦ are marked by
diamonds. As ϕB increases from 0◦ to 180◦ in steps of 10◦, we move along the
curve from asterisk to diamond. For ϕB between 180◦ and 360◦, the curve is
retraced from diamond to asterisk.

Van Vleck angle (54◦.7). For ϑB larger than the Van Vleck angle, the (Q/I, U/I)

change their sign and the sense of variation with ϕB is reversed (shown by the

green solid lines in Figure 3.9). Furthermore, the size of the polarization diagram

also increases. Finally, for ϑB = 90◦ the polarization diagram becomes a straight

line (U/I = 0) with a periodicity of ϕB = 90◦ with respect to the ϕB variation.

The polarization diagrams overlap for (ϑB, ϕB) and (180◦ − ϑB, −ϕB). This

symmetry property is observed in both the Hanle regime (figure not shown) and

in the saturated Hanle regime. In the latter regime, an additional symmetry is

seen with respect to ϕB, namely, for any ϑB the polarization diagrams overlap

for ϕB and 180◦ − ϕB. These symmetry properties result in the ambiguity in the

pair of Stokes parameters (Q/I, U/I), namely, the same values of (Q/I, U/I)

are obtained for four different choices of the field orientations mentioned above.

These are the traditional 180◦ ambiguities arising due to the symmetry properties

of the scattering matrix. In addition to these ambiguities, there is another source

of ambiguity in the Stokes parameters that formed in the saturated Hanle regime.

This is the so-called Van Vleck ambiguity that was originally noted by House
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LOS DI

SS

0◦

180◦

LOS DI SS

90◦

0◦

180◦

270◦

Figure 3.10: Polarization diagram for (a) B = 1µG and (b) B = 10G with
ϑB = 30◦, ϕB ∈ [0◦, 360◦]. Different curves correspond to: dashed (single
scattering: SS), dot-dashed (disk integrated: DI), and dash-triple-dotted (LOS-
integrated). Black symbols mark both ϕB = 0◦ and 360◦.

(1977, see also Casini and Judge 1999), which occurs in a narrow angular range

of field orientations around the Van Vleck angle (54.◦7). For example, the curves

for ϑB = 40◦ and ϑB = 80◦ in the polarization diagram (Figure 3.9) intersect at

two points that are marked as red dots. This ambiguity adds to the traditional

ambiguity discussed above. Thus there could be six pairs of (ϑB, ϕB) values that

produce the same values of (Q/I, U/I).

Figure 3.10 shows the polarization diagram for a very weak field of 1µG (panel

a) in the Hanle regime and for 10 G (panel b) in the saturated Hanle regime. The

field inclination is fixed at ϑB = 30◦ and ϕB is varied from 0◦ to 360◦. In the

Hanle regime the polarization diagram executes Lissajous figures (namely, closed

loops), in comparison to open curves in saturated Hanle regime. In Figure 3.10 we

present the polarization diagrams computed using (i) pure single scattering (SS)

of an incident vertical beam of radiation in the mid-plane (dashed curves), (ii)

after integrating over a cone of incident photospheric radiation (also called disk

integrated in the literature – DI) at a height of h = 0.5R⊙ (dot-dashed curves),

and (iii) the same as case (ii), but performing an integration along the LOS (dash-

triple-dotted curves). The size of the polarization diagram decreases from case (i)

to case (iii). This is expected as the SS represents a case of the highest degree
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of anisotropic scattering, while the anisotropy decreases successively for the other

two cases.

3.4 Maps of degree of linear polarization and po-

sition angle

In this section, we consider radial and dipole field configurations with an average

coronal field strength of 10 G. In order to study the effects of density distributions

on the degree of linear polarization formed in the coronal conditions, we consider

two types of density distributions namely, (i) spherically symmetric density (SSD)

model of House (1972) shown in Figure 3.11a, and is given in Equation (3.10)

and (ii) the latitude (λ) dependent density (LDD) model of Saito et al. (1970) for

sunspot minimum shown in Figure 3.11b and given by

N(r, λ) = 108 × {3.09(1− 0.5 sinλ)(1 + ρ)−16 + 1.58(1− 0.95 sinλ)(1 + ρ)−6

+0.025(1−
√
sinλ)(1 + ρ)−2.5}, (3.11)

where ρ = h/R⊙. Figure 3.11 clearly depicts the relative intensity (normalized

with respect to the maximum calculated intensity) which is proportional to the

density distribution under consideration. For the model given above, we calculate

the LOS-integrated degree of linear polarization P =
√

Q2 + U2/I and position

angle, PA = 0.5 tan−1(U/Q). Figure 3.12 shows the map of P and PA for SSD and

LDD for the radial field configuration. For the case of SSD, P increases with height

and reaches a maximum of 73.3%. Here PA lies along the radius vector. Unlike the

SSD case, the map of P for LDD is asymmetric and reaches a maximum of 73.29

% in the polar region. However PA continues to be along the radius vector. The

differences in magnitude of degree of linear polarization for SSD and LDD cases

start to occur at heights larger than 2R⊙. Figure 3.13 shows the map of P and

PA for the dipole field configuration with LDD. The Van Vleck effect is observed

when P becomes identically zero (symmetric black regions in map) i.e., when ϑB=

ϑV=54◦.7 (namely, λ = 19◦.5 and ϑV=Van Vleck angle). The PA follows the field

lines for ϑB < ϑV and becomes perpendicular to field lines for ϑB > ϑV (radial).

For a given radius, P is maximum near the poles and uniformly decreases until
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(a) SSD Relative intensity

      0.00      0.20      0.40      0.60      0.80      1.00

(b) LDD Relative intensity

      0.00      0.20      0.40      0.60      0.80      1.00

Figure 3.11: Maps of relative intensity corresponding to SSD (panel a) and
LDD (panel b) with radial field configuration.

(a) P (%) for radial field with SSD

      0.00     14.66     29.32     43.98     58.64     73.30

(b) P (%) for radial field with LDD

      0.00     14.66     29.32     43.98     58.63     73.29

Figure 3.12: Maps of degree of linear polarization. Short bars represent the
position angle (PA). Panels (a) and (b) correspond respectively to SSD and
LDD configurations with radial field.
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P (%) for dipole field with LDD

      0.00     14.66     29.32     43.98     58.63     73.29

Figure 3.13: Maps of degree of linear polarization for the dipole field config-
uration with LDD. Short bars represent the PA.

the Van Vleck region and then increases marginally until the equator, showing a

symmetry about N-S and E-W directions.

3.5 Effect of a constant radial velocity field V (r)

on Stokes profiles

Solar corona is known to be dynamic, with solar wind originating in the corona.

Thus in this section we study the effects of a non-zero velocity field on the Stokes

profiles formed in the solar coronal conditions. Here the velocity field is assumed

to be radial and constant throughout the corona. We parameterize the velocity

field through the non-dimensional parameter V (r) = v(r)/vth, where v(r) is the

radial velocity field and vth is the mean thermal velocity. Figure 3.14 shows the

spatial variation of the Stokes I, Q/I, U/I, and V/I profiles as a function of the

non-dimensional frequency x. This clearly depicts that as the height above the

photosphere increases, intensity decreases, while polarization increases which is

expected. Figure 3.15 shows the LOS-integrated Stokes profiles for different V (r).

These profiles exhibit a broadening that increases with V (r). This is because for

−π/2 6 χ < 0 (see Figure 3.3) the profiles are redshifted and for 0 < χ 6 π/2

the profiles are blueshifted. Q/I and U/I profiles show significant changes in the

81



Chapter 3. Empirical Study of Polarized Profiles Formed in Solar
Coronal Conditions

Figure 3.14: Spatial variation of Stokes profiles as a function of frequency x
for a radial velocity field V (r) = 1 mean thermal units and with SSD.

line core. V/I = 0 in the static case (due to opposite signs of V/I in the forward

and backward lobes with respect to mid-plane χ = 0◦). In the presence of velocity

fields V/I exhibit a non-zero double-peaked shape. These changes are due to the

combined effects of spherical geometry (radius vector making smaller and smaller

angles with respect to the LOS, as we move away from the mid-plane) and the

projected velocity field.

3.6 Concluding remarks

Here we applied the theory developed in Chapter 2 to study the dependence of

polarized forbidden M1 lines on density, magnetic field, and velocity distributions

in coronal conditions. For illustrations we considered scattering on the [Fexiii] ion

placed at a height of h above the solar limb. We approximated the [Fexiii] ion by

a two-level atom model. In particular, we were interested in the [Fexiii] 10747 Å
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Figure 3.15: Plot of Stokes profiles as a function of frequency x for r = 1.5R⊙,
for radial velocity fields V (r) = 0, 1, 2, 3 mean thermal units. The results are
shown for a dipole field with a colatitude of 60◦

.

line. We chose this particular line as it will be used for spectropolarimetric mea-

surements in the solar corona by Aditya-L1 mission. However, as demonstrated

in Sahal-Bréchot (1977) and House (1977), the two-level atom approximation is

insufficient when collisions are important. Indeed, they show that only when elec-

tron densities are lower than 107 cm−3, the two-level atom approximation suffices

to model the polarization profiles of [Fexiii] 10747 Å line. For the electron den-

sity model considered in this chapter (following House 1977), this occurs at heights

larger than 0.5 R⊙ above the limb. However, the heights at which the transition

from collision-dominated excitation to radiative-dominated excitation takes place

depend on the electron density model and also on the spectral line under consid-

eration (see Habbal et al. 2011). For example, electron densities in coronal holes

may drop below 107 cm−3 around 0.2R⊙ above the limb (see Figure 2 of Doschek

et al. 1997). Clearly, our formalism can be applied to those regions in the solar

83



Chapter 3. Empirical Study of Polarized Profiles Formed in Solar
Coronal Conditions

corona where radiative excitations dominate. Near the solar limb, where collisions

cannot be neglected, one should resort to the density matrix formalism developed

by the previous authors (Sahal-Bréchot 1977; House 1977; Casini and Judge 1999)

which is however limited to the saturated Hanle regime. Therefore we showed the

behavior of the Stokes profiles emerging from a height h = 0.5R⊙ above the solar

limb. We considered different cases such as single scattering, integration over a

cone of incident radiation from the photosphere (also called disk integration), and

integration along the LOS for an atom in conditions typical of the solar corona.

We have explored a broad range of field strengths and different field orientations.

As expected, the [Fexiii] 10747 Å line remains in the saturated Hanle regime

for a rather wide range of field strengths. We also presented frequency-integrated

degree of linear polarization for different field distributions (such as radial and

dipole fields). Furthermore, we studied the symmetry properties of the M1 scat-

tering matrix through polarization diagrams.

For our studies we have varied the field strength from µG to kG ranges. How-

ever, only fields on the order of 1–30 G are expected in the solar corona (Lin

et al. 2000). Magnetic fields as low as µG can be found in diffuse media such as

the ISM, circumstellar regions, and supernova remnants (Yan and Lazarian 2006,

Ferrière 2009, Reynolds et al. 2012). In these regions several forbidden lines are

observed that in principle may respond to the µG field through the Hanle effect.

Fields in the range of a few hecto-Gauss to kG are found in stellar atmospheres

(Landstreet 2015). Indeed, the Hanle effect in allowed lines (E1 transitions) can

be used as a tool to diagnose such stellar magnetic fields (see e.g., López Ariste

et al. 2011, Ignace et al. 2011, Bommier 2012, Manso Sainz and Mart́ınez González

2012). As for the forbidden lines, they are also formed in the stellar winds, where

field strengths as large as kG can be found (de la Chevrotière et al. 2014). Our

theoretical formulation may find application in modeling the polarization profiles

of forbidden lines formed in the above-mentioned astrophysical contexts.

The intensity and degree of linear polarization maps showed that, for the chosen

density distribution, the intensity is more sensitive to the density gradient than

degree of polarization P for 1. R < 2R⊙. For R & 2R⊙ the P continues to

be sensitive to density distribution. Thus, polarization measurements provide a

better diagnostic tool to detect density and magnetic field variations in the corona.
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We showed that the Stokes profiles are sensitive to the velocity fields in the corona,

thereby serving as diagnostic tools.
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Chapter 4

Iterative Techniques to Solve

Polarized Line Formation in

Spherically Symmetric Static

Atmospheres 1

An overview

A more precise modeling of polarized spectral lines formed in extended stellar at-

mospheres requires the solution of the radiative transfer equation for the Stokes

vectors in a spherical geometry than in a planar geometry. In this chapter we

present the modern iterative techniques based on operator perturbation, to solve

the spherically symmetric polarized radiative transfer equation. We consider scat-

tering on a two-level atom accounting for partial frequency redistribution (PFR).

It is well-known that the numerical solution to such problems requires higher grid

resolution. Consequently Jacobi-based methods lead to somewhat smaller con-

vergence rate. The convergence rate can be improved by a factor of 2 or more

when highly convergent iterative schemes based on Gauss-Seidel (GS) and succes-

sive overrelaxation (SOR) methods are used over Jacobi-based method. Here we

present the Jacobi, GS, and SOR iterative techniques for solving polarized line

1This chapter is based on the publications : Megha et al. (2019b, 2020a)
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formation in spherically symmetric atmospheres, and discuss their convergence

behavior.

4.1 Introduction

It is well-known that extended stellar atmospheres cannot be represented by plane-

parallel stratification, but by a spherically symmetric medium. Therefore to study

the spectral lines formed in extended atmospheres it is necessary to develop nu-

merical methods to solve the radiative transfer equation in spherically symmetric

medium. Furthermore, to model strong resonance lines it is necessary to account

for partial frequency redistribution (PFR) in scattering. Early attempts for solv-

ing the transfer equation in spherical geometry were by McCrea (1928), Chan-

drasekhar (1934) and Kosirev (1934) who used the Eddington approximation. A

variable Eddington factor method which uses the Feautrier solution along rays of

constant impact parameter in the spherical geometry were developed by Hummer

and Rybicki (1971), Kunasz and Hummer (1974a,b), and Mihalas (1978). For a

more complete list of references on numerical methods to solve spherical scalar

(unpolarized) radiative transfer equation we refer the reader to Peraiah (2002)

and Hubeny and Mihalas (2014, see also Anusha et al. 2009).

Cannon (1973) developed an iterative technique based on operator splitting or

perturbation for the planar geometry and introduced the concept of approximate

lambda operator. Olson et al. (1986) proposed that an optimum choice for the

approximate lambda operator is the diagonal of the actual lambda operator. This

method which is popularly knows as approximate or accelerated lambda iteration

(ALI) method was also used to solve the transfer problem in spherical geometry

(see reviews by Hubeny 2003; Hamann 2003). The ALI method which was initially

developed to solve unpolarized planar transfer equation for a two-level atom with

complete frequency redistribution (CFR) was extended to include PFR by Paletou

and Auer (1995, see also initial attempts by Vardavas and Cannon 1976, Scharmer

1983). The ALI method discussed above is based on the Jacobi iterative scheme,

which exhibits slower convergence rates as the number of spatial points per decade

is increased. Since there are wide varieties of astrophysical objects with different
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types of environment, understanding and studying them require challenging ra-

diative transfer computations. Therefore it is necessary to develop fast iterative

techniques to solve such radiative transfer problems.

Fast iterative techniques based on GS and SOR methods were developed by

Trujillo Bueno and Fabiani Bendicho (1995) for solving unpolarized, one dimen-

sional, planar transfer problem for a two-level atom model with CFR. These iter-

ative schemes have a convergence rate which is equivalent to that corresponding

to upper or lower triangular approximate lambda operators, however without re-

quiring construction and inversion of such operators. Therefore, the computing

time per iteration is similar to that of the Jacobi scheme, but the number of it-

erations needed to reach convergence is an order of magnitude smaller. A Jacobi

based multilevel ALI (MALI) method to solve unpolarized radiative transfer for

multilevel atoms with CFR was developed by Rybicki and Hummer (1991, 1992).

This MALI method was extended by Uitenbroek (2001) to include PFR in scat-

tering. Auer et al. (1994) generalized the Jacobi based MALI of Rybicki and

Hummer (1991) to multi-dimensions along with grid doubling technique. Fabiani

Bendicho et al. (1997); Fabiani Bendicho and Trujillo Bueno (1999) extended the

MALI to include GS and SOR schemes along with non-linear multi-grid techniques

(Hackbush 1985) and they called it a MUlti-level Gauss-Seidel (MUGA) method.

Paletou and Léger (2007) described step-by-step implementation of GS and SOR

schemes to multi-level atom models in 1D planar geometry and provided practical

description of implementing these schemes in short-characteristics (Olson and Ku-

nasz 1987) formal solver. Léger et al. (2007) aimed at providing all the necessary

elements required for a successful implementation of GS and SOR schemes in a

2D Cartesian geometry to study the solar prominences.

Extension of Jacobi based ALI methods to solve polarized planar transfer

equation including non-magnetic resonance scattering on a two-level atom with

CFR were by Faurobert-Scholl et al. (1997), Trujillo Bueno and Manso Sainz

(1999); and with PFR was by Paletou and Faurobert-Scholl (1997). Extensions of

GS and SOR methods to non-magnetic resonance scattering polarization were done

by Trujillo Bueno and Manso Sainz (1999) for the case of CFR and Sampoorna

and Trujillo Bueno (2010) with the inclusion of all the three angle-averaged (AA)

redistribution functions of Hummer (1962).
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On the other hand the MUGA method was extended to handle scalar spheri-

cal transfer by Asensio Ramos and Trujillo Bueno (2006), Cernicharo et al. (2006)

and with the inclusion of line overlap problem by Daniel and Cernicharo (2008).

Jacobi, GS, and SOR methods along with preconditioned bi-conjugate gradient

method was presented in Anusha et al. (2009) for the case of scalar 1D spherical

geometry with CFR. A discrete space method was developed in Nagendra (1988,

1989, 1994, 1995) to solve the polarized resonance line transfer problem in spheri-

cally symmetric medium including both CFR and PFR. In the present chapter, we

extend the scalar Jacobi, GS, and SOR methods to solve the polarized line transfer

equation in 1D spherical geometry including both CFR and PFR in the absence

of magnetic fields. Following Nagendra et al. (1998), we refer to these ALI based

methods as polarized ALI (PALI) methods. To determine the accuracy of the ex-

tended iterative scheme we determine the true error following Auer et al. (1994).

A study of true error of such iterative techniques has also been presented in: Tru-

jillo Bueno and Fabiani Bendicho (1995); Trujillo Bueno and Manso Sainz (1999);

Chevallier et al. (2003); Asensio Ramos and Trujillo Bueno (2006); Anusha et al.

(2009); Sampoorna and Trujillo Bueno (2010); Sampoorna and Nagendra (2016).

This chapter is organized as follows. In Section 4.2 we set up the basic polarized

transfer equation in spherically symmetric medium and describe the necessary

terms. In Section 4.3 we present in detail the iterative techniques to solve the

problem in hand. In Section 4.5 we present a comparison of the Jacobi, GS, and

SOR iterative techniques by studying the maximum relative change (MRC) and

the surface true error. Conclusions are drawn in Section 4.6.

4.2 Polarized line transfer equation in spherical

atmospheres

We consider an isothermal one-dimensional spherically symmetric atmosphere

along with a two-level atom model having an infinitely sharp and unpolarized

lower level. The polarized PFR transfer equation for a spherically symmetric
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4.2. Polarized line transfer equation in spherical atmospheres

medium in divergence form is given by

µ
∂I(r, µ, x)

∂r
+

(1− µ2)

r

∂I(r, µ, x)

∂µ
= −χ(r, x)[I(r, µ, x)− S(r, µ, x)], (4.1)

where I = (I,Q)T is the polarized intensity vector, S is the total source vector, r is

the radial distance, x = (ν − ν0)/∆νD is the non-dimensional frequency measured

in Doppler width (∆νD) units with ν0 being the line center frequency, and µ = cosϑ

with ϑ being the inclination of the ray with respect to the local radius vector. The

total absorption coefficient is defined as χ(r, x) = χl(r)φ(x) + χc(r) where χl and

χc are, respectively, the line center and continuum absorption coefficients. The

line profile function φ(x) = H(a, x) is the normalized Voigt function, where a is

the damping parameter.

The polarized transfer equation (4.1) is a partial differential equation in r

and µ. The numerical complexity of solving such an equation can be reduced by

using characteristic rays along which the polarized transfer equation becomes an

ordinary differential equation involving a single derivative with respect to the path

length along that ray. Furthermore, to effectively treat the outward peaking of

the radiation field inherent in a spherically symmetric atmosphere, we transform

the transfer equation (4.1) which is given in (r, µ) coordinate system to (p, z)

representation (Hummer and Rybicki 1971). The (p, z) coordinate system is shown

in Figure 4.1. The impact parameter p is the perpendicular distance of a ray from

a parallel ray passing through the center of the star. The impact parameter rays

are taken to be tangent to spherical shells (see Figure 4.1). z is the distance along

a given impact parameter ray, measured from the plane through the center of

the star perpendicular to the central ray. It is zero at the mid-line (see Figure

4.1) and is positive towards the observer and negative away from the observer.

This method of solving the transfer equation along each ray of constant impact

parameter is termed as ray-by-ray approach. The rays which intersect the core are

called core rays and the rest of them are called lobe rays. In the (p, z) coordinate

system we define a central core which is a sphere of radius r = 1 in units of the

core radius Rc. The surface is a sphere of radius r = R in units of Rc. In the

(p, z) representation, the radius r is related to p and z as r(z, p) =
√

z2 + p2 and

therefore z =
√

r2 − p2. Thus along a given characteristic ray (or tangent ray),
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√
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µ = z√
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Figure 4.1: The (p, z) coordinate system used to solve the transfer equation
in the spherically symmetric atmosphere.

the differential operator in z can be written as

∂

∂z
= µ

∂

∂r
+

1− µ2

r

∂

∂µ
. (4.2)

The optical depth scale along the tangent rays is computed using dτz = dτr/µ,

where dτr is the optical depth along the radius vector defined as dτr = −χl(r)dr.

Using Equation (4.2) the transfer equation in the (p, z) coordinate system can be

written as

± ∂I±(z, p, x)

∂τ(z, x)
= I±(z, p, x)− S(z, p, x), (4.3)

for outgoing (+) and incoming (−) rays, respectively. The monochromatic optical

depth along the tangent rays is given by dτ(z, x) = [φ(x) + βc]dτz, with βc =

χc(r)/χl(r). For a given spherical shell of radius r, the direction cosines µ(r, p) =
√

1− (p2/r2) with µ ∈ [0, 1]. The total source vector is defined as

S(z, p, x) =
φ(x)Sl(z, p, x) + βcSc

φ(x) + βc
, (4.4)

where Sc = Bν0U is the unpolarized continuum source vector, with Bν0 the Planck

function at the line center, and U = (1, 0)T. For a two-level atom with an infinitely
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sharp and unpolarized lower-level, the line source vector has the form

Sl(z, p, x) = ǫBν0U +

∫ +∞

−∞

dx′
1

2

∫ +1

−1

dµ′R(x, µ, x′, µ′)

φ(x)
I(τ, µ′, x′), (4.5)

where ǫ is the thermalization parameter. Here the primed symbols x′, µ′ refer to the

incoming photons and the unprimed ones to scattered photons. R(x, µ, x′, µ′) is the

collisional redistribution matrix for the non-magnetic case (Domke and Hubeny

1988, Bommier 1997a). The angle-averaged (AA) version of this redistribution

matrix for the static case can be written as

R(x, µ, x′, µ′) =
∑

K=0,2

WK(Jl, Ju){αRII,AA(x, x
′) + [β(K) − α]RIII,AA(x, x

′)}

×PK
R (µ, µ

′), (4.6)

where the coefficientW0(Jl, Ju) = 1, with Jl and Ju being the total angular momen-

tum quantum numbers of the lower and upper levels, respectively. The coefficient

W2(Jl, Ju) characterizes the maximum linear polarization that can be produced in

the line. RX,AA with X=II, III are the AA redistribution functions of Hummer

(1962). PK
R (µ, µ

′) denote the multipolar components of the Rayleigh phase matrix

(see Landi Degl’Innocenti 1984). The branching ratios α and β(K) are given by

α =
ΓR

ΓR + ΓI + ΓE

, (4.7)

β(K) =
ΓR

ΓR + ΓI +D(K)
, (4.8)

where ΓI is the inelastic collisional deexcitation rate, ΓR is the radiative deexcita-

tion rate, ΓE and D(K) are elastic and depolarizing collisional rates respectively.

From Equation (4.5) it is clear that the line source vector depends on both

frequency x and impact parameter p. To reduce the computational cost, it is ben-

eficial to factorize the Rayleigh phase matrix into a product of two 2×2 matrices

that depend separately on µ and µ′. Such a factorization comes out naturally if we

use the irreducible tensors T K
Q (i,n) (see Landi Degl’Innocenti 1984) to derive the

Rayleigh phase matrix. Here for each K, the value of Q varies from −K to +K

in steps of one, n = (ϑ, ϕ) denote the ray direction with respect to the local ra-

dius vector, and i = 0, 1. Frisch (2007) provided an elegant way to decompose the
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Stokes vector components into the irreducible components in the weak field regime

of Hanle effect. These irreducible components are cylindrically symmetric when

CFR or angle-averaged PFR is chosen as the frequency redistribution mechanism.

The numerical methods developed based on these cylindrically symmetric compo-

nents are superior to those based on the Stokes vector representation. Following

Frisch (2007), the Stokes vector can be decomposed as

I±i (z, p, x) =
∑

K=0,2

T̃ K
0 (i, ϑ)IK,±

0 (z, p, x), (4.9)

where i = 0, 1 denote the Stokes parameters I, Q and T K
Q (i,n)=T̃ K

Q (i, ϑ)eiQϕ.

A decomposition similar to Equation (4.9) can be written relating Ui, Si(z, p, x),

and Sl,i(z, p, x) to UK
0 , SK

0 (z, x), and SK
l,0(z, x), respectively. IK,±

0 (z, p, x) and

SK
0 (z, x) are the irreducible tensor components of the Stokes and the source vectors

respectively. The transfer equation in the irreducible basis can be written as

± ∂I±(z, p, x)

∂τ(z, x)
= I

±(z, p, x)− S(z, x), (4.10)

where I± = [I0,±
0 , I2,±

0 ]T and S = [S0
0 ,S2

0 ]
T. Clearly, S is now independent of

p and has a form similar to Equation (4.4), but with the irreducible line source

vector given by

S l(z, x) = ǫBν0U +J x, (4.11)

where U = [1, 0]T and the frequency-averaged PFR mean intensity vector is given

by

J x =

∫ +∞

−∞

dx′
R(x, x′)

φ(x)
J x′ , (4.12)

where

J x′ =
1

2

∫ +1

−1

dµ′Ψ(µ′)I(τ, µ′, x′). (4.13)

Here Ψ(µ) is the (2×2) Rayleigh phase matrix in the irreducible basis (Frisch

2007) and R(x, x′) is the PFR matrix in the irreducible basis. The latter is given

by

R(x, x′) = W{αERII,AA(x, x
′) + (B − αE)RIII,AA(x, x

′)}, (4.14)
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where E is a (2×2) identity matrix, W = diag[W0,W2] and B = diag[β(0), β(2)]

are (2×2) diagonal matrices. It is useful to re-write Equation (4.13) as

J x′ = J
−
x′ +J

+
x′ , (4.15)

where

J
−
x′ =

1

2

∫ 0

−1

dµ′Ψ(µ′)I−(τ, µ′, x′) and J
+
x′ =

1

2

∫ +1

0

dµ′Ψ(µ′)I+(τ, µ′, x′).

(4.16)

4.3 Iterative methods to solve polarized spheri-

cal radiative transfer equation

An iterative method is initiated by first assuming a given value for the line source

vector S l(z, x), which is either zero or the thermal source vector. Once the total

source vector is known the transfer equation (4.10) can be solved by applying a

short-characteristic formal solution method of Olson and Kunasz (1987). Such

a formal solution gives the irreducible Stokes vector I
± at every z, p, x values,

which can be used to compute new values of J x and consequently S(z, x). This

process is repeated until the irreducible source vector and Stokes vector converges.

Thus an iterative method involves the computation of a series of formal solution

of transfer equation. The convergence of this iterative method is accelerated by

using the Jacobi, GS, and SOR schemes, which will be discussed in this section.

For a more detailed physical and mathematical insights into the iterative methods

based on operator splitting the reader is referred to Hubeny (2003, see also Hubeny

1992).

4.3.1 Formal solution

The formal solution of Equation (4.10) can be written as

I
±(p, x) = Λ±(p, x)[S(x)] + T±(p, x), (4.17)
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Figure 4.2: A schematic representation of the one-dimensional short-
characteristic formal solution on an MOP stencil along both incoming (a) and
outgoing (b) characteristic rays with a given impact parameter p in the spherical
atmosphere.

where for notational brevity we suppress the dependence on z. T±(p, x) is the

directly transmitted two-component Stokes vector due to the incident radiation

given at the boundaries and Λ±(p, x) is a 2N × 2N integral operator whose el-

ements depend on the optical distances between the grid points, with N being

the number of spatial grid points. We implement the short-characteristic integra-

tion technique of Olson and Kunasz (1987) for obtaining the formal solution. We

use parabolic interpolation with coefficients Ψ±
M, Ψ

±
O, and Ψ±

P for S, on a sten-

cil of short-characteristic MOP (with O being a given point, M and P being the

upwind and downwind points, respectively, see Figure 4.2). Using this, the short-

characteristic formal solution for a spherically symmetric atmosphere at a given

point “O” along a given ray of impact parameter p and frequency x can be written

as

I
±
O(p, x) = e−∆τMOI

±
M(p, x) + Ψ±

M(p, x)SM(x) + Ψ±
O(p, x)SO(x) + Ψ±

P(p, x)SP(x),

(4.18)

where ∆τMO is the optical distance on the segment MO. Substituting Equation

(4.13) in (4.17), the mean intensity vector can be written as

J x = Λx[Sx] + Tx, (4.19)

98



4.3. Iterative methods to solve polarized spherical radiative transfer
equation

where for notational brevity “x” appears as subscript and monochromatic Lambda

operator is given by

Λx =
1

2

∫ +1

−1

Ψ(µ)Λ±(p, x)dµ. (4.20)

Also Tx is given by

Tx =
1

2

∫ +1

−1

Ψ(µ)T±(p, x)dµ. (4.21)

Following Sampoorna and Trujillo Bueno (2010) we now write the two-component

mean intensity vector at given depth point index k as

J x,k = Λx,k1S
a
x,1 + ...+Λx,kk−1S

a
x,k−1 +Λx,kkS

b
x,k +Λx,kk+1S

c
x,k+1 + ...

+Λx,kNS
c
x,N + Tx,k. (4.22)

In the above equation a, b, and c are symbols which indicate whether the source

vector values we choose are “old” or “new”.

4.3.2 Jacobi iterative scheme

The Jacobi iterative scheme for the scalar and polarized PFR transfer problems

are respectively discussed in Paletou and Auer (1995) and Paletou and Faurobert-

Scholl (1997). According to this scheme a = c = old and b = new is chosen in

Equation (4.22) (see also Figure 4.2 for clarity) and we obtain

J x,k = J
old

x,k +

∫ +∞

−∞

dx′
R(x, x′)

φ(x)
px′Λx′,kkδS lx′,k, (4.23)

where px = φ(x)/[φ(x)+βc] and the line source vector corrections at a given depth

point k are given by

δS lx,k −
∫ +∞

−∞

R(x, x′)

φ(x)
px′Λx′,kkδS lx′,kdx

′ = rx,k, (4.24)

where the residual vector rx,k is

rx,k = ǫBU +J
old

x,k − S
old
lx,k. (4.25)
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Equation (4.24) can be solved either using a frequency-by-frequency (FBF) method

(Paletou and Auer 1995; Sampoorna et al. 2008) or a core-wing method (Paletou

and Auer 1995; Paletou and Faurobert-Scholl 1997; Nagendra et al. 1999; Fluri

et al. 2003). FBF method involves inversion of a matrix which can become com-

putationally expensive when large frequency bandwidths are used, whereas the

core-wing method approximates Equation (4.23) by a set of algebraic equations

that can be solved faster without requiring much computing power. The core-

wing method for the redistribution matrix given in Equation (4.14) is discussed

in Sampoorna and Trujillo Bueno (2010). We follow this method for the case of

spherical atmosphere.

4.3.3 GS and SOR iterative schemes

Here we first recall the GS and SOR methods presented in Sampoorna and Trujillo

Bueno (2010) for the case of polarized line transfer with PFR in polarized planar

atmospheres and then extend them to the case of spherical atmospheres. For the

GS iterative scheme we set c = old and a = b = new in Equation (4.22) and we

obtain

J x,k = J
old+new

x,k +

∫ +∞

−∞

dx′
R(x, x′)

φ(x)
Λx′,kkδSx′,k, (4.26)

where δSx,k = pxδS lx,k is the total source vector correction. J
old+new

x,k is the PFR

mean intensity vector calculated using the “new” values of the source vector at

grid points 1, 2, . . . , k−1 and the “old” values at points k, k+1, . . . , N . The line

source vector corrections at a given depth point k are given by Equation (4.24)

but now the residual vector has the form

rx,k = ǫBU +J
old+new

x,k − S
old
lx,k. (4.27)

For the case of SOR iterative scheme the line source vector corrections are calcu-

lated from the δSGS
lx,k at the nth iterate as

δSSOR,n
lx,k = ωδSGS,n

lx,k , (4.28)

where ω is given by

ω =
2

1 +
√
1− δ

. (4.29)
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Here δ is the spectral radius of the GS iteration. ω takes an optimum value between

1 and 2. A detailed description of the method to fix the optimum value of ω is

discussed in Section 2.4 of Trujillo Bueno and Fabiani Bendicho (1995). We now

discuss the implementation of GS and SOR algorithms for the case of spherical

geometry (see also Anusha et al. 2009).

1. Incoming part for the incoming rays (µ < 0):

(a) This calculation begins at the radial shell with depth index k = 1, namely at

the outer boundary for all the impact parameter rays (see Figure 4.2a).

(b) The irreducible Stokes vector I
− at the next radial shell is then determined

using the short-characteristic formal solver (Equation (4.18)). For the incoming

rays at any point k, Equation (4.18) uses Sold
x,k+1, S

old
x,k, and S

old
x,k−1 to compute I−

at that point k.

(c) Before moving to the next radial shell, J
−

x,k is computed. Therefore at the end

of the incoming block, the contribution from the incoming rays to the frequency-

averaged PFR mean intensity vector J
−

x,k would have been computed at all the

radial shells until the inner boundary is reached or until the ray becomes tangent

to the radial shell.

2. Outgoing part for the outgoing rays (µ > 0):

(d) Once J
−

x,k is determined in the incoming part, we now start at the depth index

k = N , namely at the inner boundary. Since the irreducible Stokes vector I+ is

known at this point (as it being the boundary condition), the total PFR mean

intensity vector J x,N can be computed, using which δS lx,N and δSx,N are also

determined.

(e) Now the new total source vector Snew
x,N is updated at the inner boundary using

S
new
x,N = S

old
x,N + δSx,N . (4.30)

(f) For the next radial shell k = N − 1, GS uses S
new
x,N , S

old
x,N−1, and S

old
x,N−2 in

Equation (4.18) (see Figure 4.2(b)) to calculate I
+ at k = N − 1 and thereby we

obtain J x,N−1.

(g) It is important to note that for the incoming part, J
−

x,N−1 is calculated using

S
old
x,N , S

old
x,N−1, and S

old
x,N−2, whereas J

+

x,N−1 is calculated using S
new
x,N , S

old
x,N−1, and

S
old
x,N−2. Therefore, for the actual computation of J

old+new

x,N−1 , we need to add the
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following correction:

∆J
−

x,N−1 =

∫ +∞

−∞

dx′
R(x, x′)

φ(x)
∆J

−
x′,N−1, (4.31)

where

∆J
−
x,N−1 =

1

2

∫ 0

−1

∆I
−
x,N−1dµ, (4.32)

with

∆I
−
x,N−1 = Ψ−

N(p, x)δSx,N . (4.33)

Once the actual J
old+new

x,N−1 is computed, δS lx,N−1 is calculated and the new total

source vector S
new
x,N−1 is updated. Since S

new
x,N−1 is now available, before going to

the next radial shell, the I+ at the present shell i.e., at N−1 needs to be updated

by adding the following correction:

∆I
+
x,N−1 = Ψ+

N−1(p, x)δSx,N−1. (4.34)

Once the I
+ is updated at k = N − 1, the above procedure is then repeated for

the subsequent shells. Clearly unlike the Jacobi, GS, and SOR schemes require

particular ordering of the loops to implement the above mentioned steps. The

outermost loop is over iterations, the next loop is over directions (first the incoming

and then the outgoing), following this there is loop over radial shells with index k

(running from k = 1, ..., N for incoming rays and in the reverse order for outgoing

rays), and then the loop over impact parameter rays p. The innermost loop is over

the frequency points.

4.4 Model parameters

We consider an isothermal, spherically symmetric atmosphere with inverse square

law opacity distribution for both line and continuum, i.e., χl,c ∝ r−ñ, with the

power law opacity index ñ=2, outer radius R, and a line integrated total ra-

dial optical thickness of T . We apply reflecting boundary condition, which is

also known as hollow-core or planetary nebula boundary condition, given by

I
+(τ = T, p, x) = I

−(τ = T, p, x) for both core and lobe rays. The outer boundary
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condition is given by I
−(τ = 0, p, x) = 0. The isothermal atmosphere is charac-

terized by the following set of input parameters: T = 106, R = 300, βc = 10−6,

ǫ = 10−4, a = 10−3, Bν0 = 1, and ΓE/ΓR=0. A logarithmically spaced τr-grid

with 20 points per decade, and with the first depth point at τr,1 = 10−4 is used. A

logarithmically spaced r-grid is constructed from the τ(r) grid using the relation

(Kunasz and Hummer 1974a)

τ(r) = T
r−ñ+1 −R−ñ+1

R−ñ+1
c −R−ñ+1

, (4.35)

where Rc=1 is the core radius and ñ = 2 for inverse square law opacity. The

p-grid is constructed as in Hummer et al. (1973). Typically we have seven core

rays, and as many lobe rays as the r-grid points (see Anusha et al. 2009 for more

details). The angle grid is then constructed using µ(r, p) =
√

1− (p2/r2). The

weights corresponding to the angle (µ) grids are constructed using the method

devised by Hummer et al. (1973) in the range [0 < µ 6 1]. Equally spaced points

with a step size of 0.125 Doppler widths in the line core (up to 4 Doppler widths)

and logarithmically spaced points in the wings (up to 1000 Doppler widths) are

used in the frequency grid construction. The maximum frequency xmax is chosen

such that φ(xmax)T ≪ 1 is satisfied. We typically have 153 points in the interval

[−xmax,+xmax].

4.5 Comparison of Jacobi, GS, and SOR itera-

tive schemes

It is always necessary to use high-resolution grids to obtain solutions of higher

accuracy (Chevallier et al. 2003). This is particularly true in the case of spherical

transfer problems which demand finer spatial grid to obtain accurate solutions.

It is well established that the Jacobi-based ALI methods show lower convergence

rates when the spatial grid resolution is increased. Thus, the GS and SOR methods

turn out to be far superior than the Jacobi method for handling the spherical

radiative transfer problems. Therefore here we aim at studying the robustness of

the GS and SOR schemes over the Jacobi scheme by considering the MRC and
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the surface true error which determine the characteristics of any iterative method

in hand.

For a given level of grid resolution g at the nth iterative stage, the MRC of

irreducible components of the source vector is defined as

(cK0 )
n = max

z,x

{

| (SK
0 )(n, g)− (SK

0 )(n− 1, g) |
(SK

0 )(n, g)

}

. (4.36)

and the surface true error on SK
0 at z = zmax is defined as

Te(S
K
0 ) = max

x

{

| (SK
0 )(n, g)− (SK

0 )(∞,∞) |
(SK

0 )(∞,∞)

}

. (4.37)

Here (n, g) = (∞,∞) indicates that the true solution corresponds to the fully

converged solution on a grid of infinite resolution. A fully converged solution on

a grid resolution level g is obtained when max[(c00)
n, (c20)

n] < 10−8.

Figure 4.3 shows a plot of (c00)
n (top panels) and (c20)

n (bottom panels) as a

function of iteration number for the case of CFR (panel (a)) and PFR (panel (b))

for Jacobi (solid lines), GS (dotted lines), and SOR (dashed lines) schemes. For

obtaining the variation of MRC with iteration number, the iterations are continued

until we find the fully converged solution on a grid resolution of g = 20 points

per decade. Clearly, the Jacobi iterative scheme exhibits the lowest convergence

rate. In the case of CFR, the Jacobi scheme takes about 315 iterations for the

convergence of S0
0 (see top panel in Figure 4.3(a)). Whereas GS scheme takes

about 125 iterations, which is about two and half times smaller than the Jacobi

scheme. In the case of the SOR scheme, to achieve the highest convergence rate

we find that the optimum value of the factor ω is 1.22 for both CFR and PFR. For

this choice of ω, the SOR scheme takes only about 70 iterations for the convergence

of S0
0 with CFR. Therefore, SOR scheme is even more robust than the GS. (c20)

n

also exhibits a behavior similar to (c00)
n for all the three iterative schemes. In

the case of PFR, the rate of convergence is somewhat slower than that for CFR.

This is expected because of photon-trapping in the wings in the case of PFR

leading to relatively higher number of iterations for the convergence. However,

the convergence behavior of PFR remains almost similar to that of CFR for all

the three iterative schemes.
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Figure 4.3: Maximum relative change of irreducible source vector components
(c00)

n (top panels) and (c20)
n (bottom panels) as a function of iteration number.

The case of CFR is considered in panel (a) an PFR in panel (b). Model param-
eters are given in Section 4.4.

The numerical accuracy of the solutions obtained from the Jacobi, GS, and

SOR schemes is determined by the true error (Auer et al. 1994). Therefore, in

Figure 4.4 we show a plot of the surface true error on S0
0 (top panels) and S2

0 (bot-

tom panels) as a function of iteration number for the case of CFR (panel (a)) and

PFR (panel (b)) for Jacobi (solid lines), GS (dotted lines), and SOR (dashed lines)

schemes. The true solution required to calculate the surface true error is obtained

by using a grid whose resolution is twice finer (40 points/decade in this case) com-

pared to the one on which we determine the true error (20 points/decade). From

Figure 4.4 we see that the true error for the case of PFR is somewhat larger than

that for CFR as obtained also in Sampoorna and Trujillo Bueno (2010) in the
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Figure 4.4: The surface true error on S0
0 (top panels) and S2

0 (bottom panels)
as a function of iteration number. Panel (a) corresponds to the case of CFR,
while panel (b) to PFR. Model parameters are given in Section 4.4.

planar case. In the case of CFR, the surface true error is on the order of 0.018 %

on S0
0 , and 0.017 % on S2

0 . On the other hand, for PFR it is 0.031 % on S0
0 and

0.19 % on S2
0 . The true error on S0

0 and S2
0 are somewhat of similar magnitudes

in the case of CFR. Whereas in the case of PFR, the true error on S2
0 is larger

than S0
0 by about 10 %. All the three iterative schemes give same values for the

surface true error. This is expected as the true error is determined by the grid

resolution which is assumed to be the same for all the three schemes. However,

lesser number of iterations are taken by the GS and SOR schemes to attain these

true error values, thereby demonstrating their superiority over the Jacobi scheme.
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4.6 Concluding remarks

In this chapter we have generalized the Jacobi, GS, and SOR iterative schemes to

solve the problem of polarized radiative transfer in spherically symmetric static

medium including both CFR and PFR in scattering. As shown in previous works

for planar atmospheres (see e.g., Trujillo Bueno and Fabiani Bendicho 1995, Tru-

jillo Bueno and Manso Sainz 1999, Sampoorna and Trujillo Bueno 2010), even in

the case of spherical atmospheres, we find that the GS and SOR iterative schemes

are more robust and superior than the Jacobi-based ALI method (see also Asensio

Ramos and Trujillo Bueno 2006, Anusha et al. 2009 for the corresponding un-

polarized version). These methods can be used to solve the complicated NLTE

problems rapidly and effectively. They also have excellent smoothing capabili-

ties. The computing time per iteration is nearly the same as the Jacobi scheme.

However, for the GS scheme, the number of iterations required for convergence is

about half that for the Jacobi scheme. The SOR scheme takes even less number

of iterations for convergence when an optimum value for ω factor is used. For the

numerical studies presented in this chapter ω = 1.22 turns out to be an optimum

value. Therefore, GS and SOR methods are very useful techniques for problems

requiring fine grids such as the spherical radiative transfer. In the next chapter we

further generalize the Jacobi, GS, and SOR methods to handle expanding spherical

atmospheres.
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Chapter 5

Iterative Techniques to Solve

Polarized Line Formation in

Spherically Symmetric Moving

Atmospheres1

An overview

It is well-known that the extended stellar atmospheres are in general dynamic,

due to the systematic motions present in their layers. Macroscopic velocity fields

present in the spectral line forming regions produce Doppler shift, aberration of

photons, and also give rise to advection. All of these effects can modify the am-

plitudes and shapes of the emergent Stokes profiles. In the present chapter we

consider the problem of polarized line formation in spherically symmetric media,

in the presence of velocity fields. Solving the radiative transfer problem in the

observer’s frame is a straightforward approach to handle the presence of velocity

fields. This method, however, becomes computationally prohibitive when large

velocity fields are considered, particularly in the case of the line formation with

partial frequency redistribution (PFR). For the solution of the concerned polar-

ized transfer equation we use the comoving frame (CMF) formulation, and ap-

ply the appropriately modified Jacobi, GS, and SOR based polarized accelerated

1This chapter is based on the publications : Megha et al. (2019b, 2020a)
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lambda iteration (PALI) methods. We consider non-relativistic radial velocity

fields, thereby accounting only for Doppler shift effects and neglecting advection

and aberration of photons. We study the convergence behavior of the Jacobi, GS,

and SOR based CMF-PALI methods for both complete frequency redistribution

(CFR) and PFR in line scattering.

5.1 Introduction

The problem of polarized line formation in stellar atmospheres is of high scientific

interest because of the diagnostic potential offered by the polarization of spectral

lines (for example, see the monographs by Stenflo 1994, Landi Degl’Innocenti and

Landolfi 2004). While this problem has been studied in great detail in planar and

multi-dimensional geometries (see, for example, the reviews by Nagendra 2020,

Trujillo Bueno 2020), it still remains relatively unexplored in spherical geometry,

particularly in the presence of velocity fields and partial frequency redistribution

(PFR) in scattering. One of the early works on this problem in static spherically

symmetric atmospheres was by Nagendra (1988, 1989, 1994, 1995) who clearly

demonstrated the effects of extendedness and PFR on the linear polarization pro-

files that are formed by resonance scattering. More recently Milić and Faurobert

(2012) have considered the formation of polarized profiles of molecular lines in

spherical geometry, assuming complete frequency redistribution (CFR) in scatter-

ing. In this chapter we consider polarized line transfer in spherically symmetric

atmospheres in the presence of velocity fields accounting also for PFR in line

scattering.

The extended stellar atmospheres are known to be dynamic, with low to high

speed stellar winds originating in these layers. Examples may be given of the

solar and stellar coronal winds. Effects of velocity fields on intensity and flux pro-

files, formed in extended spherical atmospheres are well studied (see, e.g., Kunasz

and Hummer 1974b; Mihalas et al. 1975, who considered CFR in line scattering;

Mihalas et al. 1976b, who considered angle-averaged PFR; Hubeny and Mihalas

2014 for a historical account of early works). Effects of velocity fields on linearly

polarized line profiles formed due to electron scattering in spherically symmetric

atmospheres are presented in Hillier (1996). In this chapter our aim is to study
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the effects of velocity fields on linearly polarized line profiles including PFR, which

are formed due to resonance scattering on atoms.

For spherical geometry, the numerical methods for solving the unpolarized line

transfer equation in static and moving atmospheres have been developed by several

workers (see, e.g., Peraiah 2002, Hubeny and Mihalas 2014). Modern iterative

methods based on operator perturbation are presented, for example, in Anusha

et al. (2009) and Hauschildt and Baron (2004, and references cited therein), for

static and moving spherical atmospheres respectively. In this chapter we generalize

these approximate lambda iteration (ALI) methods to include polarization with

PFR in the presence of velocity fields. We present the numerical method of solution

both in the observer’s frame and the comoving frame (CMF) of the fluid. It is

well-known that the observer’s frame method becomes computationally expensive,

especially when large velocity fields and PFR are considered. Thus the CMF

method is the method of choice, as it is computationally faster and can handle both

low- and high-velocity fields. We present the results for scattering on a two-level

atom, including the effects of PFR. However, we consider only the non-relativistic

regime of velocity fields, wherein mainly Doppler shift effects are significant. Thus

only Doppler shift terms are considered in the CMF polarized transfer equation,

and aberration and advection terms are ignored. We present the convergence

properties of the CMF iterative technique developed based on Jacobi, GS, and

SOR schemes for the spherically symmetric media in the presence of velocity fields.

In Section 5.2 we present the polarized PFR transfer equation in both ob-

server’s and comoving frames for the spherically symmetric media. The numerical

methods of solution to solve these equations are presented in Section 5.3. The

model parameters and the convergence properties of the CMF method are pre-

sented in Section 5.4. Conclusions are drawn in Section 5.5.

5.2 Polarized line transfer equation in moving

spherical atmospheres

We consider an isothermal one-dimensional spherically symmetric atmosphere with

velocity fields along the radius vector. A two-level atom model with an infinitely
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sharp and unpolarized lower level is considered. In Section 5.2.1, the observer’s

frame polarized transfer equation is discussed and the relevant equation in the

CMF formalism is given in Section 5.2.2.

5.2.1 Observer’s frame

The polarized PFR transfer equation in the observer’s frame for a spherically

symmetric medium in divergence form and in the presence of radial velocity fields

is given by

µ
∂I(r, µ, x)

∂r
+

(1− µ2)

r

∂I(r, µ, x)

∂µ
= −χ(r, µ, x)[I(r, µ, x)− S(r, µ, x)]. (5.1)

The above equation is exactly the same as Equation (4.1) but with χ(r, µ, x) =

χl(r)φ(r, µ, x)+χc(r) and the line profile function φ(r, µ, x) = H(a, x−µV ). Here

x−µV refers to the Doppler shifted frequency in the observer’s frame, with V being

a non-dimensional velocity field representing the velocity of the material relative

to an external observer at rest. It is defined as V = vr/vth, wherein vr is the radial

velocity field and vth the mean thermal velocity (defined as
√

2kT/m in standard

notations). In the observer’s frame both the opacity and emissivity of the material

become angle (µ) dependent due to the relative motion between the source and

the observer in the presence of velocity fields. All the other quantities are exactly

the same as those defined in Section 4.2 of Chapter 4. An important difference is

in the PFR functions, namely, in the presence of velocity fields, the redistribution

matrix R continues to be given by Equation (4.6), but with RX,AA(x, x
′) replaced

by RX,AA(x− µV, x′ − µ′V ), wherein X=II, III.

We again solve the transfer equation (5.1) in the (p, z) coordinate system like

in Chapter 4. Also from here onwards we represent all the vectors and matrices

in the irreducible basis. In a moving atmosphere, SK
l,0(z, p, x) for the case of CFR

is independent of ϑ (and thereby p) as in the static case. However, in the case of

PFR, because of the dependence of redistribution functions on µ and µ′ through

the Doppler shifted frequencies x−µV and x′−µ′V , SK
l,0(z, p, x) retains the ϑ (or p)

dependence. The observer’s frame polarized transfer equation for the irreducible
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quantities can be written in the (p, z) coordinate system as

± ∂I±(z, p, x)

∂τ(z, p, x)
= I

±(z, p, x)− S(z, p, x). (5.2)

The monochromatic optical depth along the tangent rays in the observer’s frame is

given by dτ(z, p, x) = [φ(z, p, x)+βc]dτz, where βc and τz are the same as defined in

Chapter 4. S now has the form similar to Equation (4.4), but with the irreducible

line source vector given by

S l(z, p, x) = ǫBν0U +

∫ +∞

−∞

dx′
1

2

∫ +1

−1

dµ′R(x− µV, x′ − µ′V )

φ(z, p, x)
Ψ(µ′)I(τ, µ′, x′). (5.3)

The PFR matrix in the irreducible basis has the form

R(x− µV, x′ − µ′V ) = W{αERII,AA(x− µV, x′ − µ′V )

+(B − αE)RIII,AA(x− µV, x′ − µ′V )}. (5.4)

5.2.2 Comoving frame

Following Mihalas (1978), the observer’s frame transfer equation for the irreducible

components of the Stokes vector (cf. Equation (5.2)) can be transformed to the co-

moving frame. We consider the non-relativistic regime of the velocity field wherein

mainly Doppler shift terms are significant and neglect the aberration and advection

terms. For brevity, we use the same notations in both observer’s and comoving

frames. The non-relativistic CMF transfer equation in a spherically symmetric

medium, for the irreducible intensity vector I± can be written as

±∂I
±(z, p, x)

∂τ(z, x)
= I

±(z, p, x)− S(z, x) +
a(r, p)

χl(r)φ(x) + χc(r)

∂I±(z, p, x)

∂x
, (5.5)

where

a(r, p) = (1− µ2)
V

r
+ µ2dV

dr
. (5.6)

The monochromatic optical depth in the comoving frame is now given by dτ =

[φ(x) + βc]dτz, with the absorption profile function φ(x) = H(a, x) which is now

angle-independent. Unlike in the observer’s frame, the PFR matrix R in CMF
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depends only on (x, x′). Therefore S and S l depend only on frequency like their

static counterparts discussed in Chapter 4.

5.3 Numerical methods

In this section we first briefly discuss the observer’s frame method and then present

the comoving frame method in detail.

5.3.1 Observer’s frame method

In the observer’s frame method, the relative velocities are treated through the

Doppler shift formula, which involves changing the frequencies x and x′ to their

corresponding Doppler shifted frequencies, and computing the solution on the

original frequency grid. The PALI techniques to solve the polarized line transfer

equation in planar medium have been developed for a variety of problems (see,

e.g., the reviews by Nagendra 2003, Nagendra 2014, Nagendra 2020). This PALI

method can be generalized to handle spherical geometry as discussed in Chapter

4 for a static medium. In particular, we have generalized the Jacobi based scalar

ALI method presented in Anusha et al. (2009) for spherical geometry to include

polarization, PFR, and the effects of the velocity fields. The relevant PALI steps

are identical to those presented in Section 3.1 of Sampoorna and Nagendra (2015b)

for the case of planar moving atmosphere, but with the magnetic field being now

set to zero. As discussed in the above cited paper, in the presence of velocity

fields the computation of the line source vector corrections by a frequency-angle-

by-frequency-angle method becomes computationally expensive. For the spherical

geometry, due to the coupling of p-grid (and thereby the µ-grid) with r-grid, this

method quickly becomes prohibitive, demanding huge main memory and CPU

times. Thus the observer’s frame method is used only for the purpose of bench-

marking the comoving frame method by considering optically thin spherical shells

(with the total optical thickness of T ∼ 1).
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5.3.2 Comoving frame method

In this method the transfer equation is first solved in a frame fixed to the fluid,

which is also called as the Lagrangian frame and then the solution is transformed to

the observer’s frame. Hence solving the transfer equation in the comoving frame is

a two step process. In the first step, the comoving frame transfer equation is solved

iteratively using a PALI method to obtain the converged comoving frame source

and Stokes vectors in the irreducible basis. In the second step, the comoving

frame solution obtained on the comoving frame frequency grid is transformed

to the observer’s frame frequency grid. This is done by interpolating the CMF

irreducible source vector S(z, x) onto the observer’s frame frequency grid x−µV ,

where x is the comoving frame frequency grid. The resulting observer’s frame

irreducible vector S(z, p, x) is then used in a formal solver to obtain the observer’s

frame irreducible Stokes vector. For this purpose we need to perform a formal

integration of the transfer equation in the observer’s frame (see Equation (5.2)),

which is done using the short-characteristic method (Olson and Kunasz 1987).

Finally we transform the irreducible emergent Stokes vector, which is now in the

observer’s frame to the Stokes representation using the transformation formula

given in Frisch (2007), namely

I±(z, p, x) = I0,±
0 (z, p, x) +

1

2
√
2
[3µ2(r, p)− 1]I2,±

0 (z, p, x), (5.7)

Q±(z, p, x) = − 3

2
√
2
[1− µ2(r, p)]I2,±

0 (z, p, x), (5.8)

with similar expressions relating SI and SQ with S0
0 and S2

0 .

Comparing Equation (5.5) with Equation (4.10), it is clear that the comoving

frame transfer equation differs from that of static case by an extra term called

the CMF term. Hence the basic PALI steps in CMF remain the same as in the

corresponding static case that are discussed in Chapter 4. The essential difference

occurs in the expression for the formal solution of Equation (5.5). Consequently

certain correction terms discussed in Equations (4.31)–(4.34) for the GS and SOR

schemes also get modified. In the following subsections we discuss these differences

in detail.
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Figure 5.1: Schematic representation of the one-dimensional short-
characteristic formal solution on an MOP stencil along a given characteristic
ray with impact parameter p in the spherical atmosphere (see also Figures 4.1
and 4.2). The superscript “old” stands for the previous iterate values and
“new” for the values of S̃ that are calculated using the intensity for the pre-
vious frequency point (see Equations (5.14)-(5.16)) that has been computed in
the current iterate formal solution. A similar formal solution method is also
applied to the incoming ray, wherein Sold

M is used for GS and SOR schemes as
well.

5.3.2.1 Formal solution

Following Hauschildt and Baron (2004), the CMF term in Equation (5.5) can be

defined as

S̃(z, p, x) = − a(r, p)

χ(r, x)

∂I±(z, p, x)

∂x
, (5.9)

where χ(r, x) = χl(r)φ(x) + χc(r). Thus we rewrite Equation (5.5) as

± ∂I±(z, p, x)

∂τ(z, p, x)
= I

±(z, p, x)− S(z, x)− S̃(z, p, x). (5.10)

Following the short-characteristic integration technique of Olson and Kunasz (1987),

the expression for the formal solution of the spherically symmetric transfer equa-

tion (5.10) at a given point “O” on a stencil of short-characteristic (MOP with M

and P being the upwind and the downwind points, respectively, see Figure 5.1)

along a given ray of impact parameter p and frequency point xm can be written

116



5.3. Numerical methods

as

I
±
O(p, xm) = e−∆τMOI

±
M(p, xm) + δI±

O(p, xm) + δĨ
±

O(p, xm). (5.11)

As in Hauschildt and Baron (2004), along an MOP stencil, we use parabolic and

linear interpolation for the irreducible source vectors S and S̃ respectively. With

these choices for interpolation, the last two terms on the right-hand side of Equa-

tion (5.11) take the form

δI±
O(p, xm) = Ψ±

M(p, xm)SM(xm) + Ψ±
O(p, xm)SO(xm) + Ψ±

P(p, xm)SP(xm), (5.12)

and

δĨ
±

O(p, xm) = Ψ′,±
M (p, xm)S̃M(p, xm) + Ψ′,±

O (p, xm)S̃O(p, xm), (5.13)

where Ψ±
M, Ψ

±
O, and Ψ±

P are the parabolic interpolation coefficients and Ψ′,±
M , Ψ′,±

O

are the linear interpolation coefficients. SM, SO, and SP are the previous iterate

irreducible source vectors at points M, O, and P, respectively for both incoming

and outgoing rays in the case of Jacobi scheme and for only incoming ray in the

case of GS and SOR schemes. As explained in Chapter 4, for the outgoing ray SM

takes the current iterate value in the case of GS and SOR schemes. S̃M and S̃O

which contain the effects of the velocity field on the formal solution, are given by

S̃M(p, xm) = −
[

a(r, p)

χ(r, xm)

]

M

[

∂I±

∂x

]

M,xm

, (5.14)

S̃O(p, xm) = −
[

a(r, p)

χ(r, xm)

]

O

[

∂I±

∂x

]

O,xm

. (5.15)

We remark that, while the irreducible source vector S is available from the previous

iterate, the CMF term S̃ is calculated within the formal solver using Equations

(5.14)-(5.16). Clearly the choice of parabolic interpolation for S̃ would require

the intensity at the downwind point P which is not available beforehand. Thus

integration of S̃ is performed using linear interpolation, which then allows for a

recursive formal solution (see Equation (5.17) below). Following Hauschildt and
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Baron (2004), at any point O, the frequency derivative can be discretized as

[

∂I±

∂x

]

O,xm

=
I

±
O(p, xm)− I

±
O(p, xm∓1)

xm − xm∓1

, (5.16)

where xm−1 applies when [a(r, p)]O > 0 and xm+1 applies when [a(r, p)]O < 0.

Substituting Equations (5.12)–(5.16) in Equation (5.11), we obtain the short-

characteristic formal solution in the comoving frame as

{

1 + Ψ′,±
O (p, xm)

[

a(r, p)

χ(r, xm)

]

O

1

(xm − xm∓1)

}

I
±
O(p, xm) = e−∆τMOI

±
M(p, xm)

+δI±
O(p, xm) + Ψ′,±

M (p, xm)S̃M(p, xm) +Ψ
′,±
O (p, xm)

[

a(r, p)

χ(r, xm)

]

O

I
±
O(p, xm∓1)

(xm − xm∓1)
.(5.17)

It can be noted that when a(r, p) = 0, i.e., for static atmospheres, Equation (5.17)

reduces to the usual static case short-characteristic formal solution expression

given in Equation (4.18).

For monotonically decreasing or increasing velocity fields, Equation (5.5) rep-

resents an initio-boundary value problem. In the case of spherical geometry, the

initial condition in frequency is determined by the sign of the coefficient a(r, p) (see

Mihalas et al. 1975). Following Mihalas et al. (1975), we set the initial condition

to be ∂I±

∂x
=0 either at x = −xmax or at x = +xmax depending on the sign of a(r, p).

When a(r, p) > 0 the initial condition is given at x = −xmax and for a(r, p) < 0 it

is given at x = +xmax. Clearly, x runs from −xmax to +xmax when a(r, p) ≥ 0 and

vice-versa for a(r, p) < 0.

The Jacobi, GS, and SOR iterative schemes discussed in Section 4.3 for the

static case continue to remain valid in the CMF, but now the formal solution

is given by Equation (5.17). Consequently some of the corrections discussed in

Section 4.3.3 for the static GS and SOR schemes need to be modified in the case

of CMF. They are discussed in the following subsection.

5.3.2.2 Modified corrections for the GS and SOR schemes in the CMF

The algorithm for the implementation of GS and SOR schemes for a static spherical

atmosphere is presented in detail in Section 4.3.3. We recall that because old values
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of irreducible source vector components are used in the incoming part, while new

values for the upwind point are used in the outgoing part, PFR mean intensity

vector and the intensity of the outgoing ray had to be corrected to get their

actual values. These corrections for a static atmosphere are given by Equations

(4.31)–(4.34). In the CMF, since the expression for the formal solution (Equation

(5.17)) is different from that for static case, these corrections get modified. To

calculate these modified corrections in the CMF, we consider Equation (5.17).

Since at x = −xmax (for a(r, p) ≥ 0) or at x = +xmax (for a(r, p) < 0), initial

conditions are applied, the Equation (5.17) reduces to Equation (4.18). Thus, the

corrections ∆J
−

x,N−1 and ∆I
+
x,N−1 are calculated as in Equations (4.31) and (4.34)

respectively. When x 6= ±xmax Equation (4.33) needs to be modified as follows:

∆I
−
xm,N−1 =

{

Ψ−
N(p, xm)δSxm,N

+Ψ′,−
N−1(p, xm)

[

a(r, p)

χ(r, xm)

]

N−1

∆I
−
xm∓1,N−1

(xm − xm∓1)

}/

{

1 + Ψ′,−
N−1(p, xm)

[

a(r, p)

χ(r, xm)

]

N−1

1

(xm − xm∓1)

}

. (5.18)

Also, when x 6= ±xmax, Equation (4.34) is modified as follows:

∆I
+
xm,N−1 = Ψ+

N−1(p, xm)δSxm,N−1 +Ψ′,+
N−1(p, xm)

×
[

a(r, p)

χ(r, xm)

]

N−1

∆I
+
xm∓1,N−1

(xm − xm∓1)
. (5.19)

5.4 Convergence properties of CMF-PALI meth-

ods

Here we present the convergence behavior of CMF-PALI methods based on Jacobi,

GS, and SOR schemes using maximum relative change (MRC) and surface true

error (as in Section 4.5 for the static case). The model parameters are the same as

those discussed in Section 4.4. The problem at hand requires high spatial resolution

particularly when transforming the CMF solution to the observer’s frame. This

involves performing a formal solution of the observer’s frame transfer equation (see
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steep rise

nearly constant

slow  rise

Figure 5.2: Non-dimensional radial velocity field V (r) as a function of radial
optical depth τr. The solid line corresponds to the static case, the dotted line
to V (r)=3 mean thermal units, and the dashed line to MKH law with V0=3,
a = 2(R− 1), and b = −(R+ 1)/(R− 1).

Section 5.3.2), wherein the Doppler shift effects on ∆τ(z, p, x) computation need to

be accurately determined (see, e.g., Mihalas 1978). Thus we use a logarithmically

spaced τr-grid with 20 points per decade.

5.4.1 Empirical velocity laws

The empirical velocity laws used for our studies are shown in Figure 5.2. The static

atmosphere with V (r)=0 is shown for reference. We consider two types of velocity

laws: (1) a spherical atmosphere moving with constant radial velocity toward the

observer; and (2) a tangent velocity law given in Mihalas et al. (1975), hereafter

referred to as MKH law. This velocity law simulates a real stellar wind, with a

slow rise at the bottom of the atmosphere, followed by a steep rise in velocity,

finally reaching a nearly constant velocity in the outer layers. This velocity law is

given by

V (r) = V0[tan
−1(ar + b)− tan−1(a+ b)], (5.20)
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Figure 5.3: Maximum relative change of CMF irreducible source vector com-
ponents (c00)

n (top panels) and (c20)
n (bottom panels) as a function of iteration

number (black lines) calculated using Jacobi scheme. Blue lines show the surface
true error on S0

0 (top panels) and S2
0 (bottom panels). Panel (a) corresponds to

the case of CFR and panel (b) to the case of PFR. Model parameters are given
in Section 4.4.

where V0 is the maximum expansion velocity. Parameters a and b are chosen such

that the maximum velocity gradient dV/dr occurs at the specified radius denoted

by rv(= −b/a); and we have one characteristic width of the velocity function

(namely, c = a(rv − 1)=1) between r = rv and r = 1. Following Mihalas et al.

(1975), we have chosen rv = (R + 1)/2.

121



Chapter 5. Iterative Techniques to Solve Polarized Line Formation in
Spherically Symmetric Moving Atmospheres

Figure 5.4: Maximum relative change of CMF irreducible source vector com-
ponents (c00)

n and (c20)
n as a function of iteration number for the case of PFR

and for a constant velocity field of V (r) = 3 calculated using Jacobi scheme.
Model parameters are given in Section 4.4. Panel (a) shows the effect of varying
T with fixed outer radius R=300 and panel (b) shows the effect of varying R
with fixed T = 106, values of which are given in the inset box.

5.4.2 Convergence behavior of the CMF Jacobi scheme

In this section we study the convergence properties of the CMF-PALI method,

based on Jacobi scheme, by following the MRC of the CMF irreducible source vec-

tor components with iteration. The MRC of the CMF source vector components

at the nth iterate is defined in Equation (4.36) of Section 4.5 of Chapter 4. The

iterations are stopped when max[(c00)
n, (c20)

n] < 10−8. Figure 5.3 shows a plot of

(c00)
n and (c20)

n versus iteration number for the case of CFR (panel (a)) and PFR
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(panel (b)) both in the presence and absence of velocity fields. As expected the

convergence is somewhat slower in the case of PFR than in the case of CFR (due

to photon-trapping in the wings). Also the rate of convergence is slightly larger

in the presence of a velocity field than in the static case (compare black solid and

dotted or dashed lines). This is because the photons escape more easily from a

moving atmosphere than the static one (see Kunasz and Hummer 1974b). Thus

the CMF term (see Equation (5.9)) appears to smoothen the transfer problem.

For both the velocity laws chosen by us, the rate of convergence is nearly identical

(dotted black and dashed lines nearly coincide).

To illustrate the numerical accuracy of the converged numerical solution ob-

tained from CMF-PALI method, based on Jacobi scheme, we also plot in Figure

5.3 the surface true error (see Equation (4.37) for definition) of CMF irreducible

source vector components S0
0 and S2

0 (shown as blue lines). The true solution

required to calculate the relative surface true error, is obtained on a spatial grid of

40 points per decade. As expected the true error is slightly larger for the case of

PFR than for CFR. Also the true error is larger in the presence of velocity fields

than the corresponding static case. This may be due to the use of local upwind

scheme for the frequency derivative in the CMF term and also due to the use of

linear interpolation for the CMF source term. In the case of CFR, surface true

error on S0
0 and S2

0 are of the nearly similar magnitude (see also Trujillo Bueno

1999). Whereas in the case of PFR, true error on S2
0 is slightly larger than that

on S0
0 (see also Sampoorna and Nagendra 2016).

In Figure 5.4, (c00)
n and (c20)

n are plotted as a function of iteration number for

varying T (panel (a)) and varying R (panel (b)) for the case of PFR and for a

constantly moving spherical atmosphere. As T increases the rate of convergence

decreases. In other words, larger the optical thickness of the sphere, slower is the

convergence. This is because as T increases number of scatterings also increases.

From panel (b) we see that the rate of convergence increases with an increase in

R. This is because the mean number of scatterings decrease as R increases (see

Table VII of Kunasz and Hummer 1974a). For the same reason the convergence is

faster in the case of spherical geometry than in planar case (R = 1). From Figures

5.3 and 5.4, it is clear that the iterations can be stopped when the MRC is less

than 10−4, as we are already in the asymptotic region of the MRC curve. We have

also computed the surface true error for all the cases shown in Figure 5.4. For
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varying optical thickness T (Figure 5.4(a)), the surface true error is on the order

of 0.23 ×10−5 to 0.03% on S0
0 and 0.19% on S2

0 . For varying R (Figure 5.4(b)), it

is on the order of 0.029% to 0.045% on S0
0 and 0.03% to 0.19% on S2

0 .

We remark that the rates of convergence of S0
0 and S2

0 shown in Figures 5.3

and 5.4 are somewhat slow. This is because we have chosen a depth grid with

20 points per decade. It is well-known that the ALI (or PALI) methods based on

Jacobi iterative scheme exhibit slower convergence rate as the number of points

per decade is increased (see, e.g., Figure 2 of Anusha et al. 2009). The rate of

convergence can be accelerated using either Ng acceleration or by using iterative

techniques based on GS and SOR schemes which we discuss in the next section.

We also note that rate of convergence mainly depends on number of depth points

per decade and is not much affected by refining the frequency grid. Although the

rate of convergence as shown in Figures 5.3 and 5.4 is somewhat slow, we have

verified that the converged numerical solution that we obtained is stable (with

respect to depth, angle, and frequency grids). Indeed, we have reproduced the

scalar solution with and without velocity fields presented in Kunasz and Hummer

(1974b), Mihalas et al. (1975, 1976b).

5.4.3 Convergence behavior of the CMF GS and SOR sche-

mes

Figure 5.5 shows a plot of (c00)
n (top panels) and (c20)

n (bottom panels) as a function

of iteration number for the case of CFR (panel (a)) and PFR (panel (b)) both in

static (black lines) and constantly moving atmosphere with V (r) = 3 (blue lines)

for Jacobi (solid lines), GS (dotted lines), and SOR (dashed lines) schemes. For

a static spherical atmosphere the convergence behavior of all the three iterative

schemes is identical to that discussed in Section 4.5. This continues to remain

valid also in the presence of velocity fields demonstrating the correctness of our

generalization of these schemes in the CMF.

Figure 5.6 shows a plot of the surface true error on S0
0 (top panels) and S2

0

(bottom panels) as a function of iteration number for the case of CFR (panel (a))

and PFR (panel (b)) both in static (black lines) and constantly moving atmosphere

with V (r) = 3 (blue lines) for Jacobi (solid lines), GS (dotted lines), and SOR
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Figure 5.5: Maximum relative change of CMF irreducible source vector com-
ponents (c00)

n (top panels) and (c20)
n (bottom panels) as a function of iteration

number for the static (black lines) and constantly moving atmosphere with
V (r) = 3 (blue lines). Panel (a) corresponds to the case of CFR and panel (b)
to the case of PFR. Model parameters are given in Section 4.4. Different line
types are for the Jacobi (solid lines), GS (dotted lines) and SOR (dashed lines)
schemes as given in the inset box. The SOR parameter ω = 1.22.

(dashed lines) schemes. The true solution required to calculate the surface true

error is obtained by using a grid whose resolution is twice finer (40 points/decade)

than the one on which we determine the true error (20 points/decade). Clearly,

the surface true error for the case of PFR is larger than that for CFR. The surface

true error is also larger in the presence of velocity fields (see Section 5.4.2). For

the case of CFR, the surface true error on S0
0 is 0.018 % and 0.098 % for the static

and velocity cases respectively, while on S2
0 it is 0.017 % and 0.108 % for the static

and velocity cases respectively. On the other hand for PFR, corresponding surface
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Figure 5.6: The surface true error on S0
0 (top panels) and S2

0 (bottom panels)
as a function of iteration number for the static (black lines) and constantly
moving atmosphere with V (r) = 3 (blue lines). Panel (a) corresponds to the
case of CFR and panel (b) to the case of PFR. Model parameters are given
in Section 4.4. Different line types are for the Jacobi (solid lines), GS (dotted
lines) and SOR (dashed lines) schemes as given in the inset box. The SOR
parameter ω = 1.22.

true error are 0.031 % and 0.20% on S0
0 and 0.19 % and 2.31% on S2

0 . The surface

true errors on S0
0 and S2

0 are somewhat of similar magnitudes in the case of CFR.

Whereas in the case of PFR, the surface true error on S2
0 is larger than that on S0

0

by about 10 % as already noted in Section 4.5. Like the MRC plots, the surface

true error plots also clearly demonstrate that the GS and SOR schemes converge

much faster than the Jacobi scheme not only in static case but also in the presence

of velocity fields.
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5.5 Concluding remarks

It is well-known that when photon mean free path is a non-vanishing fraction of

the radius of curvature of the atmosphere, then the plane-parallel approximation

breaks down. This is particularly true for extended stellar atmospheres, like in the

solar corona, giant and super giant stars, Wolf–Rayet stars etc. In this chapter we

have considered the problem of polarized line formation in spherically symmetric

extended atmospheres with velocity fields. We have developed both observer’s

frame and comoving frame methods to solve this problem. In particular, we applied

the polarized accelerated lambda iteration method (see reviews by Nagendra 2003

and Nagendra and Sampoorna 2009), with appropriate modifications to handle

the velocity fields. We used the second frequency discritization of Hauschildt

and Baron (2004) to handle the comoving frame term. We also discussed the

necessary modifications to be considered for applying the GS and SOR schemes

to the problem of radiative transfer in expanding spherical atmospheres.

Unlike the planar atmospheres, in the extended spherical atmospheres, the ob-

server’s frame method quickly becomes computationally prohibitive. This clearly

demonstrates the need for the comoving frame method. For our numerical studies,

we considered isothermal atmospheres with inverse square law opacity and radial

velocity fields. Also, resonance scattering on a two level atom with unpolarized

ground level is considered with both CFR and angle-averaged PFR mechanisms.

We have studied the convergence behavior and the surface true error of the newly

developed CMF-PALI method based on the Jacobi, GS, and SOR schemes for

both CFR and PFR cases. We have also studied the convergence behavior for

varying optical thickness T and the extendedness R for the spherically symmetric

constantly moving atmosphere with PFR.
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Chapter 6

Polarized Line Formation in

Spherically Symmetric Moving

Atmospheres: Numerical

Studies1

An overview

Iterative techniques based on the Jacobi, Gauss-Seidel (GS), and successive overre-

laxation (SOR) schemes to solve the problem of resonance line polarization formed

in spherically symmetric static and expanding atmospheres are developed in Chap-

ters 4 and 5 respectively. For the latter a comoving frame (CMF) formulation has

been developed. In this chapter we present and discuss the numerical solutions

obtained in spherically symmetric static and moving atmospheres. For our stud-

ies, we consider scattering on a two-level atom, including the effects of partial

frequency redistribution (PFR). We study the effects of velocity fields, extended-

ness, and frequency redistribution on the polarized line profiles formed in highly

extended atmospheres. We also present the center-to-limb variation (CLV) of the

polarized profiles including both complete frequency redistribution (CFR) and

PFR.

1This chapter is based on the publication: Megha et al. (2019b)
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6.1 Introduction

Solar and Stellar atmospheres are known to be dynamic in nature. These system-

atic velocity fields in spectral line forming regions strongly affect the shapes and

amplitudes of the polarized spectral lines. For example, P-Cygni profiles with a

blue absorption and a red emission are known to be formed in an extended and ex-

panding stellar atmosphere. Effects of macroscopic velocity fields on the intensity

and flux profiles have been studied in great details (Hubeny and Mihalas 2014).

However, similar studies in the case of polarized spectral lines are sparse, partic-

ularly in extended spherically symmetric atmospheres with PFR as the scattering

mechanism.

Effects of velocity fields on linearly polarized line profiles formed in a planar

atmosphere are presented in Sengupta (1993), Rangarajan (1997), Carlin et al.

(2012, 2013), for CFR in scattering, and in Nagendra (1996), Sampoorna and Na-

gendra (2015a,b, 2016) for PFR in scattering. In the case of spherically symmetric

atmospheres such studies are presented in Hillier (1996) for electron scattering. In

this chapter we present effects of velocity fields on linearly polarized line profiles

formed in spherically symmetric expanding atmospheres for PFR in scattering.

The fundamental properties of the spherically symmetric atmosphere when

compared to the plane-parallel case are: bias in scattering to the larger radii, dilu-

tion of the diffuse radiation field, and peaking of radiation in the radial direction.

These peculiarities of the spherical radiative transfer are discussed in detail in

Kunasz and Hummer (1974a,b). These properties of the spherical atmosphere, in

particular the outward peaking of the radiation, induces a high degree of polar-

ization as we move from center-to-limb (Cassinelli and Hummer 1971; Chapman

1966, see also Section 6.3).

In Chapters 4 and 5, we respectively developed the iterative techniques to solve

the polarized line transfer equation in spherically symmetric static and expanding

atmospheres. In particular, we extended the CMF-ALI method of Hauschildt and

Baron (2004) to include polarization and PFR. For our studies we considered the

CMF transfer equation in the non-relativistic limit. The atmospheric and atomic

parameters used for the solutions presented in this chapter are the same as those

detailed in Section 4.4, while the empirical velocity laws used are the same as those
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given in Section 5.4.1. Here we use the CMF-PALI method presented in Chapter

5 and discuss the effects of velocity fields on the polarized line profiles making

use of contribution functions (cf. Section 6.2). We also discuss the center-to-limb

variation (CLV) of the polarized line profiles (cf. Section 6.3), and interesting

effects of extendedness on the linearly polarized profiles formed under both CFR

and PFR (cf. Section 6.4). Finally Section 6.5 gives the concluding remarks.

6.2 Effect of velocity field in spherical atmosphe-

res

Figure 6.1 shows the emergent polarization profiles, computed with different ra-

dial velocity laws discussed in Section 5.4.1, for the case of CFR (panel (a)) as

well as PFR (panel (b)). The intensity exhibits a self-reversed emission profile.

The central absorption is due to the contribution from the optically thick stellar

core, while the two emission peaks are due to the optically thin emission lobes.

In particular the red emission peak comes from the far side of the hemisphere,

while the blue emission peak gets its contribution from the near side of the hemi-

sphere (Hubeny and Mihalas 2014). In the absence of the velocity field both the

hemispheres are symmetric, thereby giving rise to symmetric emission peaks. The

emission peaks in the case of PFR have higher amplitude than in the CFR case,

due to increased transfer effects in the wings for the case of PFR. In the presence

of velocity field the far side of the hemisphere moves away from the observer, while

the near side approaches the observer. Furthermore, the opacity toward the blue

side increases while that on the red side decreases (van Blerkom and Hummer

1968). As a result the red emission peak formed in the far side escapes easily from

the near side, while the blue emission peak encounters increased absorption and

scattering in the near side before escaping the atmosphere. This difference gives

rise to asymmetric emission peaks with the blue emission peak smaller in height

than the red emission peak. Also the line center and the blue emission peak are

slightly blueshifted due to the velocity field.

The static Q/I profile, with a central peak followed by a core minima and

wing peaks, exhibits a typical triple peak structure due to PFR (see the solid line

in the Q/I panel of Figure 6.1(b)). However, the wing PFR peaks are enhanced
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Figure 6.1: Emergent (I,Q/I) profiles from spherically symmetric atmosphe-
res with different velocity laws. Panel (a) corresponds to the case of CFR and
panel (b) to the case of PFR. The model parameters are given in Sections 4.4
and 5.4.1. The line-of-sight is at µ=0.11. Different line types represent different
velocity laws as shown in Figure 5.2. Vertical lines mark the frequency positions
of line core peak and wing PFR peaks corresponding to the dotted line in the
Q/I panels.

in magnitude compared to the line center peak. This is due to the scattering

contribution from the optically thin emission lobes at large distances from the

stellar core having a larger degree of anisotropy due to outward peaking of the

radiation field. The corresponding CFR Q/I profile is confined to the line core

(see the solid line in the Q/I panel of Figure 6.1(a)). In the presence of velocity

fields, line center CFR as well as PFR peaks and the wing PFR peaks are slightly

blueshifted. Also the blue wing PFR peak is broadened. On the other hand, the

red wing PFR peak is considerably diminished in magnitude. These interesting
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effects of velocity fields on the wing PFR peaks in Q/I can be understood using the

depth dependence of the contribution function and the source vector along a given

impact parameter ray (see Section 6.2.1.) The (I, Q/I) profiles computed with a

constant velocity field and MKH velocity law do not differ greatly (compare dotted

and dashed lines in Figure 6.1). This is due to the fact that the MKH velocity

law is nearly constant over large regions of the atmosphere (see Figure 5.2). It is

useful to note that the frequency positions of the wing PFR peaks in Q/I profiles

do not correspond to the frequency positions of emission peaks in I profiles (see

the vertical line in Figure 6.1(b)). This is because the wing PFR peaks in Q/I

arise due to the scattering mechanism of RII,AA function, whereas emission peaks

in I arise due to the radiative transfer effects in a spherical atmosphere.

6.2.1 Contribution functions and source vectors

Following Magain (1986), the contribution functions for I and Q along a given im-

pact parameter ray in a spherically symmetric moving atmosphere may be defined

as

Ci(z, p, x)=ln(10)
χl(r)φ(r, µ, x) + χc(r)

χl(r)φ(r, µ, x=0) + χc(r)
τ(z, p, x = 0)e−τ(z,p,x)Si(z, p, x), (6.1)

where i =0, 1 for I and Q. It is well-known that CI and CQ for a given x and

p give the relative contribution of different spherical shells along the considered

impact parameter ray to that frequency in the emergent (I,Q/I) profiles.

Figures 6.2(a) and 6.2(b), show a plot of CI and CQ versus the line integrated

tangential optical depth τz for a ray of impact parameter p=298 (which emerges at

µ=0.11) for x=0.375 corresponding to a Q/I line core peak for V (r)=3 (see solid

vertical line in Figure 6.1(b)) and for x corresponding to wing PFR peaks in Q/I

profile for V (r)=3 (see red dotted and blue dashed vertical lines in Figure 6.1(b)),

respectively. Although the total optical thickness is 106, for the chosen lobe ray,

the maximum line integrated tangential optical depth reached is 3.88× 102. This

is because of the inverse square law variation of the opacity along the radius.

Thus the total optical thickness of 106 is attained only for core rays, which then

progressively decreases for lobe rays. From Figure 6.2(a), we see that the peak

contribution to the line core peak in Q/I comes from τz ≈ 2.5, with the velocity
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Figure 6.2: Panels (a) and (b) show a plot of CI and CQ, versus line integrated
tangential optical depth τz for a ray with impact parameter p=298, and for
different values of frequency x (indicated in the inset box). All the frequency
points are chosen keeping the Q/I profile of a constantly moving atmosphere
with V (r)=3 as the reference (see the vertical lines in Figure 6.1). Thin lines
correspond to the case of a constantly moving spherical atmosphere with V (r) =
3, while thick lines to the case of static spherical atmosphere. Excepting the
dotted-dashed lines all the other line types correspond to the case of PFR. Model
parameters are given in Sections 4.4 and 5.4.1. Although log τz varies from -6
to 2.58, a shorter y-axis range has been chosen in panels (a) and (b) in order
to show the variation of CI and CQ more clearly (as outside this range CI and
CQ tend to zero).
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Figure 6.3: Plot of SI and SQ/SI versus line integrated tangential optical
depth τz for a ray with impact parameter p=298, and for different values of
frequency x (indicated in the inset box). All the other descriptions are as
indicated in caption of Figure 6.2. The thin dotted-dashed line in the SQ/SI

panel is right below the thick dotted-dashed line and it is indistinguishable in
the adopted scale.

field case formed slightly higher in the atmosphere than the corresponding static

case for both CFR (compare thick and thin dotted-dashed lines in Figure 6.2(a))

and PFR (compare thick and thin solid lines in Figure 6.2(a)). This is because the

maxima of the line opacity now shifts toward the blue side of the line profile in the

presence of velocity field. For the same reason the peak values of CI and CQ also

drop to a smaller value. In the case of wing PFR peaks, CI and CQ do not exhibit a

closed curve as seen in Figure 6.2(a). Instead CI and CQ show an open curve, with

the peak contribution coming from the mid-line of the spherical atmosphere. This

is because the monochromatic total optical thickness at the wing PFR peaks ofQ/I

is much smaller than that at line core peak by about 4 orders of magnitude. For

the blue wing PFR peak larger portions of the atmosphere contribute to the line

formation in moving media compared to the corresponding static case (compare

thick and thin blue dashed lines in Figure 6.2(b)). An inverse of this behavior is

seen for the red wing PFR peak (compare thick and thin red dotted lines in Figure

6.2(b)). For a given LOS the projected velocity varies over a larger range (from

0 to µmaxV as µ varies from 0 to µmax, with µmax =
√

1− (p/R)2) along the ray.

Since the blue wing gets contribution from a larger portion of the atmosphere, the

blue wing PFR component is broadened more than the red wing component. This
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can be seen not only in Q/I profile but also in I profile for 3.5≤ x ≤10 (see Figure

6.1(b)).

To understand the modification in the amplitudes of the line core peak, red

and blue wing PFR peaks brought about by the velocity field compared to the

corresponding static case, we show in Figure 6.3 a plot of SI (which is proportional

to mean intensity of the radiation field) and the ratio SQ/SI (which is a measure

of radiation anisotropy) versus the line integrated tangential optical depth τz for

a ray of impact parameter p=298 (which emerges at µ=0.11). From Equation

(5.3) it is clear that S0
l,0 is directly proportional to J̄ 0

0 (the mean intensity that is

given by scattering integral in Equation (5.3)) and S2
l,0 to J̄ 2

0 . Unlike the planar

atmosphere in a spherical atmosphere, for a given LOS the µ varies from 0 at

the mid line to µmax =
√

1− (p/R)2. Thus SI and SQ along a given p exhibit

a more stronger µ dependence than S0
0 and S2

0 themselves (see Equations (5.7)

and (5.8) with SI and SQ in place of I and Q; and S0
0 and S2

0 in place of I0
0

and I2
0 ). Therefore, in a spherical atmosphere, SI and SQ/SI provide a better

representation of the mean intensity and local radiation anisotropy than the J̄ 0
0

and J̄ 2
0 /J̄ 0

0 . For this reason we have plotted SI and SQ/SI in Figure 6.3.

Apart from producing a Doppler shift of photons, the velocity field modifies the

scattering integral and thereby the source vector. This modification leads to the

so-called Doppler brightening or dimming effect depending on whether the spec-

tral line is in absorption or emission (see Section 12.4 of Landi Degl’Innocenti and

Landolfi 2004, also Carlin et al. 2012). We note that Doppler brightening or dim-

ming referred to here is largely based on increase or decrease of the mean intensity

with respect to the corresponding static case more than the specific intensity itself.

The atoms in the higher layers that are moving with larger velocity intercept more

effectively the radiation from the blue wing photons emerging from the deeper lay-

ers. If the underlying spectral line is in absorption, then the wings have higher

intensity than the core thereby leading to an increase in mean intensity. On the

other hand if the spectral line is in emission, then the wings have smaller intensity

than the core, leading to a decrease in mean intensity. The Doppler brightening or

dimming is relatively more pronounced for µ = 1, because the corresponding pro-

jected velocity (µV ) is larger. This introduces an additional limb darkening and

thereby causing an increase or decrease in anisotropy of the radiation, depending
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on whether Doppler brightening or dimming is involved. From the above discus-

sion, it is clear that Doppler brightening or dimming comes into play only when

velocity gradients are present along an LOS. In a planar atmosphere a constant

velocity field would therefore produce only Doppler shift of (I,Q/I) profiles (see,

e.g., Carlin et al. 2012, Sampoorna and Nagendra 2015b). However, in a spherical

atmosphere with constant radial velocity, Doppler brightening and dimming are

at play, because the projected velocity µV varies all along a given LOS, due to

the variation of µ. Another important difference with respect to the planar case

is the following. An absorption or emission line formed in an isothermal planar

atmosphere continues to be in absorption or emission when the LOS changes from

center to limb (see Figures 6.4(a) and (b)). However, in a spherical atmosphere

the spectral line can change from being in absorption for core rays to nearly an

emission line for extreme lobe rays with self-reversed emission line for intermediate

positions (see, e.g., Figures 6.5(a) and 6.6(a)). As a result Doppler brightening

and dimming are simultaneously present.

Compared to the static case, the SI at x = 0.375 for the constantly moving

case has reduced in magnitude for both CFR (compare thick and thin dotted-

dashed lines in Figure 6.3) and PFR (compare thick and thin solid lines in Figure

6.3). This continues to be the case for the red wing PFR peak (compare thick

and thin red dotted lines in Figure 6.3). Correspondingly the SQ/SI has also

decreased for the case of moving media compared to the static case, the decrease

being significantly larger for the red wing PFR peak than the line center peak.

This is due to Doppler dimming (see Landi Degl’Innocenti and Landolfi 2004).

Doppler dimming effects can be clearly seen in both (I,Q/I) profiles for -6≤ x ≤3

(compare, e.g., solid and dotted lines in Figure 6.1(b)). The blue wing PFR peak

on the other hand exhibits Doppler brightening in SI (compare thick and thin blue

dashed lines in Figure 6.3), namely larger values of SI for nonzero velocity fields

than the static case. The corresponding SQ/SI is larger for the case of moving

media than the static case. Doppler brightening effects can be clearly seen in both

(I,Q/I) profiles for 3 < x ≤ 10 (compare, e.g., solid and dotted lines in Figure

6.1(b)). These differences in SQ/SI between different frequency points discussed

above are clearly reflected in the Q/I profile.

From Figures 6.2(a) and 6.2(b) we can see that line core peak and the wing

PFR peaks get their peak contribution from a spherical shell with τz ≈2.5 and
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from the mid line respectively. It is easy to verify that SQ/SI values around

τz ≈2.5 (see black solid and dotted-dashed lines in Figure 6.3) and the mid line

(see, e.g., red dotted and blue dashed lines in Figure 6.3) nearly match with

the corresponding emergent Q/I values (see Figure 6.1). Thus in the same way

as the Eddington–Barbier relation for polarization (Faurobert 1988, Frisch et al.

2009), which relates SQ/SI and emergent Q/I values at τxµ = 1, the contribution

function, which provides the value of τz corresponding to the peak contribution

to a given frequency, seems to represent a similar relation between the emergent

Q/I and SQ/SI at that τz. However, unlike the Eddington–Barbier relation which

applies only to semi-infinite atmosphere, the relation provided by contribution

function, appears to be valid for any T . These statements regarding usefulness of

the contribution function however, need to be further substantiated using detailed

parametric studies, which is beyond the scope of the present Chapter.

6.3 Center-to-limb variation (CLV) of linearly

polarized profiles

In Figure 6.4, we present CLV of intensity and linear polarization Q/I profiles for

planar static atmosphere (CFR in panel (a) and PFR in panel (b)). Figures 6.5 and

6.6 show similar variation in spherical static atmosphere (panel (a)) and spherical

constantly moving atmosphere (panel (b)) with CFR and PFR respectively. The

planar static profiles are shown for comparison. They are computed with the same

model parameters as given in Section 5.4.1, but with R=1.

We first discuss the CLV of (I,Q/I) profiles computed using CFR. In the case

of planar static atmosphere, we obtain an absorption line in intensity that exhibits

limb darkening, while the corresponding Q/I profiles, which are confined to the

line core, exhibit limb brightening as expected (see Figure 6.4(a)). In the case of

spherical static atmosphere, disk center intensity again exhibits an absorption pro-

file because the main contribution comes from the central stellar core (see the black

solid line in Figure 6.5(a)). As soon as we move away from the disk center the opti-

cally thin extended lobe starts to contribute, giving rise to a self-reversed emission

line. The contribution of central stellar core to absorption progressively decreases

as we move toward the limb, finally resulting in an emission line for µ=0.02 (see
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Figure 6.4: Center-to-limb variation of the emergent intensity andQ/I profiles
for the case of planar atmosphere. The model parameters are given in Sections
4.4 and 5.4.1. Panel (a) corresponds to the case of CFR and panel (b) to the
case of PFR. Different values of chosen µ are given in inset box.

the pink dotted-dashed line in Figure 6.5(a)). The corresponding Q/I profiles

exhibit limb brightening as in the planar case. However, due to outward peaking

of the radiation, Q/I profiles for smaller µ are somewhat broader with slightly

larger amplitudes than the corresponding planar case. In the presence of a con-

stant velocity field, I and Q/I profiles both exhibit a blueshift that progressively

decreases as we move from disk center to limb as expected (see Figure 6.5(b)). In

the intensity profiles, the emission peaks on the blue side are reduced, while those

on the red side more or less retain this amplitude as in the corresponding static

case for the same reason discussed in Section 6.2. However, the emission peak on
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Figure 6.5: Center-to-limb variation of the emergent intensity andQ/I profiles
for the case of spherical atmosphere with CFR. The model parameters are given
in Sections 4.4 and 5.4.1. Panel (a) corresponds to the static atmosphere and
panel (b) to the case of constantly moving atmosphere with V (r) = 3.

the red side is slightly redshifted, as the contribution to this peak comes from the

far side of the hemisphere, which is moving away from the observer.

When angle-averaged PFR is taken into account the CLV of I and Q/I profiles

is essentially similar to the CFR case discussed above. However, the PFR I profiles

for the planar case exhibit a self-reversed absorption line with broad damping

wings, which is typical of PFR (see Figure 6.4(b)). The effect of PFR can be

clearly seen in the corresponding Q/I profiles, which show a central peak and

PFR wing peaks, with Q/I reaching zero far in the wings unlike the corresponding

CFR case. In the case of spherical static atmosphere the disk center I profile
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Figure 6.6: Same as Figure 6.5, but for the case of PFR.

essentially has a similar shape as the corresponding planar case (compare black

solid lines in I panels of Figures 6.4(b) and 6.6(a)). However, as we move towards

the limb, the differences between CFR I profiles and the corresponding PFR I

profiles decreases relatively as the contribution from optically thin extended lobe

dominates (compare I panels in Figures 6.5(a) and 6.6(a)). On the other hand the

PFR Q/I profiles for the spherical static case, exhibit completely different shape

than the corresponding planar case (compare Q/I panels in Figures 6.4(b) and

6.6(a)). Essentially we see a triple peak structure for 0.196 µ 60.88, while a double

peak is seen for µ = 0.02. The effect of outward peaking of the radiation field is

more pronounced in the case of PFR due to increased trapping of photons in the

line wings. For example, the wing PFR peaks show larger amplitude (∼ 20%) as
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we go toward the limb (see pink dotted-dashed lines in Figure 6.6(a)). We believe

that the peculiarities of spherical geometry and the nature of PFR functions couple

in an intricate way to produce the Q/I profiles presented in Figure 6.6(a).

The effect of a constant velocity field on the PFR I and Q/I profiles (see Figure

6.6(b)) is similar to the corresponding CFR profiles (see Figure 6.5(b)). However,

the PFR Q/I profiles show a notable decrease in amplitude in the wings when com-

pared to the corresponding spherical static case (compare Q/I panels in Figures

6.6(a) and 6.6(b)). Also the blue wing PFR peak is higher than the red wing PFR

peak (see Q/I panel in Figure 6.6(b)), the differences being larger for µ → 1. As

already discussed in Section 6.2.1, this can be understood as follows. The velocity

fields are known to produce a Doppler brightening in the case of absorption lines

and Doppler dimming in the case of emission lines (see Landi Degl’Innocenti and

Landolfi 2004). Consequently, anisotropy increases or decreases respectively. The

I profiles in a spherical medium change from an absorption line to self-reversed

emission line as we go from center to limb. Thus both Doppler brightening and

dimming are simultaneously at play in the presence of velocity fields. This is then

reflected in the corresponding Q/I profile as noted in Section 6.2.1.

6.4 Effect of extendedness (R) of spherical at-

mosphere

In Figures 6.7, 6.9, and 6.10 we show the effect of extendedness R of the spherical

atmosphere on the I and Q/I profiles both for the static (panel (a)) and constantly

moving (panel (b)) atmospheres. The outer radius R of the spherically symmetric

atmosphere is varied from 1.5 to 1000. The profiles computed with CFR are

shown in Figure 6.7, while those computed with angle-averaged PFR are shown

in Figures 6.9 and 6.10. The corresponding planar solution (R=1) is shown for

reference. When R=1.5, the contribution from the central stellar core dominates

over the emission lobes, resulting in an absorption line even for µ=0.11 (see dotted

lines in I panels of Figures 6.7 and 6.9). As R increases the contribution from the

emission lobes increases resulting in a self-reversed emission profile for both static

and moving atmospheres and also for both CFR and PFR cases (see I panels of

Figures 6.7, 6.9, and 6.10).
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Figure 6.7: Emergent intensity and Q/I profiles for varying outer radius R of
the spherical atmosphere in the case of CFR. The line-of-sight is at µ = 0.11.
Other model parameters are given in Sections 4.4 and 5.4.1. Panel (a) shows
the profiles for a static atmosphere, while panel (b) for a constantly moving
atmosphere with V (r) = 3.

The Q/I profiles computed with CFR are confined to the line core and are

somewhat less sensitive to the extendedness R (see Q/I panels in Figure 6.7). The

sensitivity is smaller in the presence of velocity fields than in the static case. This

can also be seen in the depth dependence of SQ/SI for different R (see Figure

6.8). This may be due to the reason that line core polarization gets dominant

contribution from the central stellar core. In order to understand the effect of

extendedness R on the line profiles in greater detail we plot in Figure 6.8, SI and

SQ/SI as a function of line integrated tangential optical depth τz for the case
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Figure 6.8: Intensity source function (SI , top panels) and polarized source
function (SQ/SI , bottom panels) versus line integrated optical depth τz for a
tangent ray that emerges with µ = 0.11, for CFR at x = 0.375, and for different
values of R (indicated in the inset box). Panel (a) corresponds to the static
atmosphere and panel (b) to the constantly moving atmosphere with V (r)=3.
Other model parameters are given in Sections 4.4 and 5.4.1.

of CFR. For a static spherical atmosphere, SI decreases with an increase in R,

which is due to the dilution of the radiation field. However, due to the outward

peaking of the radiation field, the corresponding SQ/SI (which is a measure of

radiation anisotropy) increases with increasing R particularly in the outer layers.

In the presence of velocity fields, Doppler dimming (i.e, decrease in SI compared

to the corresponding static case), which is larger for larger R, causes a decrease

in SQ/SI compared to the corresponding static case (see Figure 6.8(b)). This

results in reduced sensitivity of CFR Q/I profiles to extendedness R, for moving
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Figure 6.9: Same as Figure 6.7, but for the case of angle-averaged PFR and
for 1 ≤ R ≤ 30.

spherical atmospheres. Also from the contribution function (not shown here) the

peak contribution to x = 0.375 comes from the spherical shell with τz ≈ 2.5

irrespective of the outer radius R. Again it is easy to verify that SQ/SI values at

τz ≈ 2.5 and x = 0.375 nearly map the corresponding emergent Q/I values shown

in Figure 6.7.

Now we discuss the effect of extendedness R on Q/I profiles computed with

PFR (see Figures 6.9 and 6.10). As already discussed in Section 6.3, Q/I pro-

files that formed in a spherical atmosphere differ from those formed in a planar

atmosphere, particularly in the wings due to the contribution from optically thin

extended lobes. This is clearly visible for R = 1.5 itself (compare solid and dotted
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Figure 6.10: Same as Figure 6.7, but for the case of angle-averaged PFR and
for 100 ≤ R ≤ 1000.

lines in Q/I panels of Figure 6.9). In particular, the Q/I profile computed in a

static spherical atmosphere with PFR and for R = 1.5 exhibits a central peak,

core minima around |x| = 3, and wing PFR peaks around |x| = 10 (see the dotted

line in Figure 6.9(a)). The line core of the PFR Q/I profiles nearly coincide for

1 6 R 6 100. This can also be clearly seen from Figure 6.11(a), wherein the SQ/SI

at line center nearly coincides for 1.5 6 R 6 100, which in tern nearly coincides

with R = 1. We remark that for clarity of presentation, in Figures 6.8 and 6.11 we

have shown the SI and SQ/SI only for selected values of R. For R > 100, we see

slight increase in Q/I and SQ/SI at line center (see Figures 6.10(a) and 6.11(a)).

In the presence of velocity fields, the SQ/SI at the line core peak nearly coincide

for 1.5 6 R 6 1000 (see Figure 6.11(c)), however, it slightly decreases for R >
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Figure 6.11: Polarized source function SQ/SI versus line integrated optical
depth τz for a tangent ray that emerges with µ = 0.11, and for different values
of R (indicated in the inset box) with PFR. Other model parameters are given
in Sections 4.4 and 5.4.1. Left panels correspond to the static case, while the
right panels to a constantly moving atmosphere with V (r) = 3. Panels (a) and
(c) show the source function at the line center frequency. Panel (b) shows the
source function at the blue wing PFR peak frequencies. For the static case blue
and red wing PFR peaks are symmetric and hence the SQ/SI corresponding to
red wing PFR peak is not shown. Panel (d) shows the SQ/SI at the red wing
(thin lines) and blue wing (thick lines) PFR peaks.
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300 in the outermost layers due to Doppler dimming. Correspondingly, the Q/I

line center peak exhibits only a marginal dependence on R. This is because the

line core peak gets its peak contribution from τz ≈ 2.5 layer wherein SQ/SI for

different R nearly coincide (see Figures 6.11(a) and 6.11(c)).

On the other hand the wing PFR peaks are highly sensitive to extendedness

R, due to the enhanced contribution from emission lobes. As R increases the

Q/I at wing PFR peaks increase in magnitude and saturate to around 16% in

the static case for R >100. This is expected because as R increases, the outward

peaking of the radiation also increases. As a result SQ/SI at wing PFR peaks also

increases with an increase in R (see Figure 6.11(b)). Indeed, the SQ/SI values

at the mid line (from where the maximum contribution comes to the wing PFR

peaks according to the contribution function) nearly correspond to the Q/I wing

PFR peak values. Apart from an increase in amplitude, the position of the wing

PFR peak also shifts progressively toward the line center thereby making the Q/I

profile narrower for larger R. The core minima in Q/I also shifts toward line center

with increasing R, slowly reducing the existence of the central peak. This may be

attributed to the increased contribution from the emission lobes that increases as

R increases. In the presence of a constant velocity field a similar effect can be seen.

However, for 3≤ R < 30, the red wing PFR peak is slightly higher in amplitude

than the blue wing PFR peak, and for 30 ≤ R ≤ 1000 the blue wing PFR peak

has higher amplitude than the red wing PFR peak. This can also be seen clearly

in the corresponding SQ/SI plot (compare thin and thick lines in Figure 6.11(d)).

Also unlike the static case, the SQ/SI at the red wing PFR peak increases with

R up to R = 30 and then starts to decrease (see thin lines in Figure 6.11(d)).

In the case of the blue wing PFR peak, the SQ/SI increases until R = 100, and

then decreases with further increase in R (see thick lines in Figure 6.11(d)). These

are clearly reflected in the Q/I profiles (see Figures 6.9 and 6.10). The reason

for such a behavior is the following. From Figure 6.9, we see that although the

I profile for 3≤ R < 30 is a self-reversed emission profile, the wings have higher

amplitudes than the line core. Indeed, for R = 3 this continues to be the case for

0.008 ≤ µ ≤ 0.99 and it reverses for µ < 0.008. Thus Doppler brightening tends

to dominate over Doppler dimming. This can be seen in the Q/I red wing PFR

peak, which is slightly higher than the corresponding static case (compare dashed

lines in Q/I panels of Figures 6.9(a) and 6.9(b)). However, the blue wing PFR
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peak has slightly diminished compared to the corresponding static case. This may

be the effect of multiple scattering, which is relatively larger toward the blue side.

For R = 10, Iwing > Icore occurs for 0.04 ≤ µ ≤ 0.99 and it reverses for µ < 0.04.

As a result Doppler dimming slowly tends to equalize the Doppler brightening

effect, giving rise to an overall decrease of Q/I both at the red and blue wing PFR

peaks, the decrease being slightly more at the blue wing than at the red wing (for

the same reason noted for R = 3). For R ≥ 30, Iwing < Icore is satisfied for larger

ranges of µ (see, e.g., I panels in Figures 6.6(a) and 6.6(b) for R = 300) thereby

allowing Doppler dimming to dominate. However, because the blue side suffers

a larger number of scatterings, it has a larger probability of getting affected by

outward peaking of the radiation field (which increases with increasing R). This

leads to higher blue wing PFR peak than the red wing PFR peak. On the other

hand red wing photons easily escape due to decreased opacity on the red side, not

lending themselves to be affected by the outward peaking of the radiation field.

6.5 Concluding remarks

Here we have used the CMF-PALI method developed in Chapter 5 for the case

of polarized spherically symmetric moving atmospheres, to study the effects of

(1) frequency redistribution, (2) velocity fields, and (3) extendedness of the atmo-

sphere. We also presented the center-to-limb variation of the polarized profiles,

which clearly showed the effect of outward peaking of the radiation field. We

showed that the Q/I profiles computed with CFR are somewhat less sensitive to

the extendedness R of the atmosphere, while those computed with PFR are highly

sensitive, particularly in the wings. Indeed, the positions of the wing PFR peaks

shift toward the line center and also their amplitudes initially increase, and then

saturate as R increases.

We showed that the velocity fields modify both the amplitude and shape of

the Q/I profiles. The contribution from the emission lobes of the static extended

atmosphere significantly enhances the wing PFR peaks in Q/I profiles. The pres-

ence of velocity fields further produces highly asymmetric wing PFR peaks. Thus,

together with intensity, the linear polarization provides a sensitive diagnostic of

velocity fields in extended atmospheres.
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Chapter 7

Resonance Line Polarization in

Spherically Symmetric Moving

Media: a Parametric Study 1

An overview

Here we apply the CMF-PALI method developed in Chapter 5 to make a detailed

parametric study of the resonance line polarization formed in spherically symmet-

ric moving atmosphere. We discuss the dependence of linearly polarized profiles

on different atmospheric and atomic parameters, considering the effects of partial

frequency redistribution (PFR). We present the polarized line profiles for both

static and constantly moving atmospheres by varying the model parameters one

at a time.

7.1 Introduction

The spectroscopic observations of different classes of astrophysical objects like

supergiants, Wolf-Rayet stars, novae, and supernovae indicate the existence of

high-velocity outward gas flows. The spectral line profiles of these objects are of

P Cygni type (Beals 1931) with redshifted emission and blueshifted absorption

1This chapter is based on the publications: Megha et al. (2019b,a)
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indicating the rapid outflow of matter in the outer layers of their atmospheres.

These outward gas flows lead to extended atmospheres. Even small extensions

present in solar type stars are highly structured which give rise to significant

observable effects. Therefore, a precise treatment of such problems require going

beyond the plane-parallel model.

Nagendra (1988, 1989) discuss the comparison between plane-parallel and

spherically symmetric atmospheres in presence of resonance line polarization. In

these papers, the author also presents the linear polarization profiles for complete

frequency redistribution (CFR), PFR, and coherent scattering mechanisms and

their dependence on physical parameters such as extendedness R, thermalization

parameter ǫ, optical thickness T for the case of a two-level atom model. Nagendra

(1994) used the Domke-Hubeny (DH) redistribution matrix (Domke and Hubeny

1988) to understand the effects of elastic and inelastic collisions on scattering in

spherical atmosphere. Nagendra (1995) present a study of the linear polarization

of both resonance and subordinate lines that are formed in spherical atmospheres.

In particular, he presents a detailed study on ǫ, T , R, damping parameter a, power

law index ñ considering the DH redistribution matrix. In all the above-mentioned

papers, the author considers only the static atmosphere. In this chapter, we

present a similar parametric study for the case of spherically symmetric moving

atmospheres. For this purpose, we apply the CMF-PALI method presented in

Chapter 5 to understand the quantitative behavior of the linear polarization when

the basic model parameters are varied systematically one at a time keeping the

other parameters as constants.

7.2 Model parameterization

For our studies we consider the following set of ‘standard model parameters’. An

isothermal, spherically symmetric atmosphere with inverse square law opacity dis-

tribution (i.e., χl,c ∝ r−ñ, here the power law opacity index ñ=2), a frequency av-

eraged total radial line optical thickness of T , and an outer radius R is considered.

We use reflecting boundary condition, namely I
+(τ = T, p, x) = I

−(τ = T, p, x)

at the lower boundary and I
−(τ = 0, p, x) = 0 at the outer boundary. For dis-

cretization of radius r, the impact parameter p, angle µ, frequency x, and depth
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grid τr we have followed Anusha et al. (2009, see also Section 4.4). The ‘standard

model parameters’ are: T = 106, R = 30, βc = 10−6, ǫ = 10−4, a = 10−3, Bν0 = 1,

and no elastic collisions. For our studies we consider both static (V (r)=0) and

a constantly moving atmosphere with V (r)=3 mean thermal units (in Sections

7.3–7.8). We show all the results for a fixed line-of-sight (LOS) of µ=0.11. The

effect of extendedness R on the linearly polarized line profiles formed in static and

moving media is presented in Chapter 6. Following Nagendra (1988, 1994, 1995)

here we present the dependence of linearly polarized profiles on ǫ (cf. Section 7.3),

βc (cf. Section 7.4), T (cf. Section 7.5), a (cf. Section 7.6), the power law opacity

index ñ (cf. Section 7.7), the elastic collision rate ΓE/ΓR (cf. Section 7.8), and

V (r) (cf. Section 7.9), when they are varied one at a time around the standard

model parameters, while keeping the other parameters as constants.

7.3 Dependence on thermalization parameter ǫ

Figure 7.1 shows the emergent PFR (I,Q/I) profiles from a spherically symmetric

static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))

for varying values of thermalization parameter ǫ in the range [10−8, 1]. ǫ gives the

probability that a photon is destroyed during scattering process due to collisional

de-excitation. Here ǫ=1 refers to the pure LTE case and other values refer to the

NLTE case. As the value of ǫ increases from 10−8 to 1, the thermal coupling of

photons with the continuum also increases due to increase in the number of colli-

sions in the medium. For ǫ = 10−8, the intensity shows a self-absorbed symmetric

emission profile for the static case (see Figure 7.1a). As the ǫ value increases from

10−8 to 1, the intensity around the line core region increases. Also self-absorbed

part of the profile becomes shallower and finally disappears for ǫ = 1. Furthermore,

for ǫ = 1, the symmetric emission peaks around x = ±2.25 disappear as there is

no scattering contribution from the extended lobes. The linear polarization Q/I

profile (Figure 7.1a, lower panel) for ǫ = 10−8 shows a triple peak structure due

to PFR. As ǫ value increases, the magnitude of linear polarization in the line core

region decreases due to a decrease in the number of scatterings and the profile

becomes completely flat with zero polarization for ǫ = 1. However at the PFR

wing peaks, we see that Q/I is nearly the same for ǫ between 10−8 and 10−6, then

increases for 10−5 ≤ ǫ ≤ 10−4, and then decreases for ǫ ≥ 10−3. To understand
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Figure 7.1: Emergent PFR (I,Q/I) profiles from a spherically symmetric
static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))
for varying values of thermalization parameter ǫ (which are given in the inset
box). Other model parameters are given in Section 7.2. The line-of-sight is at
µ = 0.11.

this we recall that in a spherical atmosphere with Bν0 = 1, photons are created

substantially closer to the surface (see Kunasz and Hummer 1974a), from where

they escape much more readily. With increase in ǫ the photon creation rate in-

creases, while mean number of scatterings decrease. For ǫ ≤ 10−6, mean number

of scatterings are nearly the same (see Table IV of Kunasz and Hummer 1974a

which corresponds to the case of ñ = 0) so that I and Q/I are nearly the same

for ǫ between 10−8 and 10−6. For 10−5 ≤ ǫ ≤ 10−4, although the mean number

of scatterings decrease relatively, since the photons are created near the surface
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a moderate number of scatterings would result in larger values of Q/I. This is

particularly the case for highly extended atmosphere (R = 30) considered in this

Chapter. For ǫ > 10−4 mean number of scatterings decrease considerably resulting

in decreasing values of Q/I as in planar atmospheres. Our numerical studies show

that, such a dependence of Q/I on ǫ is seen for R > 10, while for R ≤ 10 the Q/I

monotonically decreases with increasing ǫ not only in the line core but also in the

PFR wings.

In the presence of velocity fields the line profiles are asymmetric about the line

center (see Figure 7.1b). In particular the red and blue wing PFR peaks in Q/I

get highly affected in the presence of velocity gradients. We recall that although

we have considered a constant velocity field, the Doppler shift µ(r, p)V (r) along a

given impact parameter ray changes (as µ varies due to sphericity effects) thereby

producing a velocity gradient in the z-direction. The dependence of I and Q/I

profiles on ǫ for non-zero velocity field is similar to the corresponding static case.

Apart from producing Doppler shift, the velocity fields modify the source function

gradient thereby either enhancing or reducing the anisotropy of the radiation field.

In a spherical atmosphere this modification is different for red and blue wing PFR

peaks of the Q/I profile (due to sphericity effects and as the intensity is a self-

absorbed emission profile), which results in the high asymmetry noted above. A

more detailed discussion can be found in Chapter 6.

7.4 Dependence on continuous absorption param-

eter βc

Figure 7.2 shows the emergent PFR (I,Q/I) profiles from a spherically symmetric

static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b)) for

varying values of continuous absorption parameter βc in the range [0, 1]. βc is the

ratio of continuum opacity to frequency averaged line opacity both of which are

taken to follow the inverse square law. Hence βc remains constant throughout the

spherical atmosphere. Here the continuum optical depth which is βcT is different

for different models. βc = 0 corresponds to a pure line case. Here the intensity

shows self-absorbed emission profile, with the wings falling sharply towards zero

due to the absence of continuous absorption. With the increase of βc from 0 to 10−6
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Figure 7.2: Emergent PFR (I,Q/I) profiles from a spherically symmetric
static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))
for varying values of continuous absorption parameter βc (which are given in the
inset box). Other model parameters are given in Section 7.2. The line-of-sight
is at µ = 0.11.

the intensity does not change much in the line core region but the increase in the

value of βc contributes to the continuum leading to larger values of intensity in the

wings. Consequently, the emission peaks slowly decrease in their height relative

to the continuum and finally cease to exist for βc = 10−4, for which the intensity

now exhibits an absorption profile. For βc = 0, the linear polarization shows triple

peaks due to PFR with highly enhanced wing peaks (see the solid line in Q/I

panel of Figure 7.2(a)). The Q/I at the wing PFR peaks is on the order of 50 %.

This is because of the strong outward peaking of the radiation field in a spherically

156



7.5. Dependence on line averaged radial optical thickness T

symmetric atmosphere, which makes the radiation field highly anisotropic. With

the increase in the value of βc, the magnitude of linear polarization reduces as the

contribution from the unpolarized continuum photons dilute the polarized radia-

tion field. Especially the wing PFR peaks sharply fall down and they disappear

for βc = 10−4 and with a sign reversal for βc = 10−2. This is because the unpo-

larized continuum source function becomes equal to or larger than the line source

function at progressively smaller frequencies (Faurobert 1988, see also Nagendra

1995). For βc = 1, the linear polarization nearly becomes zero with weak negative

polarization in the line core. In the presence of velocity field, the intensity for

βc < 10−4 is strongly affected in the blue region. The effect of velocity field exists

only in the line core region of intensity profile with further increase in βc as the

continuum absorption dominates over that of line. The presence of velocity field

has similar effects on the linear polarization profiles with strong enhancement in

the magnitude of blue wing PFR peak for βc < 10−4.

7.5 Dependence on line averaged radial optical

thickness T

Figure 7.3 shows the emergent PFR (I,Q/I) profiles from a spherically symmetric

static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))

for varying values of optical thickness T from 1 to 107. Such a wide variation in T

allows us to sample effectively thin (ǫT = 10−4) to thick (ǫT = 103) atmospheres.

The intensity is in emission up to T = 103 with increasing magnitude and line

width. This is clearly an NLTE effect, as number of scatterings increase as T

increases. For T > 104, the medium starts to become effectively thick particularly

in the stellar core, thereby giving rise to self absorption in the line core. Thus, for

T in the range 104 to 107, the intensity shows self-absorbed emission profile with

increased broadening. The linear polarization Q/I profiles show a clear sensitivity

to variations in T . For T from 1 to 10, the polarization is confined to the line core.

This is because the medium is effectively thin (ǫT ≪ 1). With further increase

in T from 102 to 105, PFR wing peaks start to appear with wing peaks shifting

towards higher frequency points. Furthermore, for T > 103 the wing PFR peaks

exhibit a progressive decrease in magnitude. This outward shift and decrease in
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Figure 7.3: Emergent PFR (I,Q/I) profiles from a spherically symmetric
static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))
for varying values of line averaged radial optical thickness T (which are given
in the inset box). Other model parameters are given in Section 7.2. The line-
of-sight is at µ = 0.11.

magnitude are due to the larger optical depths in the outer layers as the medium

becomes more and more effectively thick with increasing T . For the same reason

for T ≥ 105, the central peak is also formed in Q/I. The velocity fields give

rise to a Doppler blue shift and also an asymmetry about the line center in the

(I,Q/I) profiles. The dependence of I profiles on T for non-zero velocity field

is similar to the corresponding static case. For T ≤ 104, the Q/I profiles with

velocity fields exhibit a strong Doppler dimming throughout the profile. This is

because the corresponding intensity profiles are in emission except for T = 104.

158



7.6. Dependence on damping parameter a

For the same reason the (I,Q/I) profiles are weakly asymmetric about the line

center. For T = 104 a shallow self-absorption in the line core region is seen in

I profile. Consequently a slight asymmetry between the red and blue wing PFR

peaks in Q/I is seen accompanied with slightly broadened blue wing PFR peak.

This asymmetry and broadening of blue wing PFR peak in Q/I are enhanced for

T > 104, as for these cases intensity exhibits a more stronger self-absorption in

the line core.

7.6 Dependence on damping parameter a

Figure 7.4 shows the emergent PFR (I,Q/I) profiles from a spherically symmetric

static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))

for varying values of damping parameter a in the range 10−9 to 10−1. Since

we neglect the effects of elastic collisions, the damping parameter is given by

a = ΓR/4π∆νD. Thus, the variation of a is equivalent to the variation in radiative

damping width ΓR. As the value of a increases intensity profiles become more

broader leading to a strong damping wings. The linear polarization profiles also

exhibit a broadening with increasing a. In particular the wing PFR peaks are much

broader and also shift to larger frequency away from the line center. Moreover,

amplitude of wing PFR peaks initially increases with increasing values of a and

then decreases for a = 0.1 which is perhaps due to excessive line broadening. We

recall that with increasing values of a the PFR becomes more and more important

resulting in (I,Q/I) profiles shown in Figure 7.4. This dependence of (I,Q/I)

profiles on damping parameter a is similar to the planar case (see, e.g., Figure 8

of Sampoorna et al. 2010). In the presence of velocity field the asymmetries are

present in (I,Q/I) profiles, while the dependence on variation of a is similar to

the corresponding static case.

7.7 Dependence on power law opacity index ñ

Figure 7.5 shows the emergent PFR (I,Q/I) profiles from a spherically symmetric

static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))
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Figure 7.4: Emergent PFR (I,Q/I) profiles from a spherically symmetric
static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel
(b)) for varying values of damping parameter a (which are given in the inset
box). Other model parameters are given in Section 7.2. The line-of-sight is at
µ = 0.11.

for varying values of power law opacity index ñ. The density distribution in a

spherical atmosphere generally obeys a power law type of opacity distribution

namely χl,c(r) ∝ r−ñ. Here we vary ñ in the range 0 to 4. For ñ = 0, we have a

homogeneous sphere. It is well-known that sphericity effects do not develop fully

in a homogeneous sphere and are seen only for ñ > 1 (see Kunasz and Hummer

1974a). Consequently the emission contributions from the extended lobes are

uniformly large for ñ = 0 giving rise to an absorption profile in intensity. As ñ

increases the scattering contribution from the extended lobes increases significantly
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Figure 7.5: Emergent PFR (I,Q/I) profiles from a spherically symmetric
static (panel (a)) and a constantly moving atmosphere with V (r)=3 (panel (b))
for varying values of power law opacity index ñ (which for brevity of notations
is referred to as n in the figure legend and its values are in the inset box). Other
model parameters are given in Section 7.2. The line-of-sight is at µ = 0.11.

giving rise to self-absorbed emission profile for ñ = 2, 3 and an emission profile

with extremely shallow line core absorption for ñ = 4. Since with increasing ñ,

the total opacity rapidly decreases as we move outward, the intensity also drops

as ñ increases. For ñ = 0, 2, and 3 the Q/I profile exhibits a typical triple peak

structure. As ñ increases, the wing PFR peaks become more narrower and shift

towards the line core region due to the decrease in optical thickness of extended

lobes. Due to the dominant contributions from photons that are scattered small

number of times, the amplitude of wing PFR peaks also increases with ñ. For
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ñ ≥ 3 the line core peak disappears as the medium becomes optically thin also at

the stellar core. In the presence of velocity field intensity exhibits an asymmetric

profile about the line center for ñ = 2, 3, and 4, while the intensity for ñ = 0

exhibits only a blue shift. Even the linear polarization profiles show asymmetry

for ñ = 2, 3, and 4. For ñ = 4 the Q/I exhibits a strong Doppler dimming

throughout the profile as the corresponding I profile is nearly in emission.

7.8 Dependence on elastic collisions ΓE

Figure 7.6 shows the effect of elastic (ΓE) and depolarizing (D(2)) collisions on

the emergent PFR (I,Q/I) profiles formed in a spherical static (panel (a)) and a

constantly moving (panel (b)) atmosphere. The depolarizing elastic collision rate

D(2) = 0.5ΓE (see, e.g., Stenflo 1994). The ratio ΓE/ΓR is varied from 0.1 to 100 in

steps of 10. Now the redistribution matrix contains the contributions from both

RII,AA and RIII,AA type scattering. Like in the planar atmosphere the intensity

profiles become slightly broader when the elastic collision rate is increased. As for

the Q/I, elastic collisions have a depolarizing effect, with D(2) operating in the

line core, and ΓE in the line wings. These effects are common to both static and

constantly moving atmospheres.

7.9 Dependence on V (r)

Figure 7.7 shows the effect of the non-dimensional radial velocity field V (r) on the

emergent (I,Q/I) profiles formed in a spherical atmosphere with CFR (panel (a))

and PFR (panel (b)). The intensity exhibits a self-reversed symmetric emission

profile for both CFR and PFR when V (r) = 0. As the value of V (r) increases

from 0 to 9 mean thermal units, the line core and emission peaks, for both CFR

and PFR, show increased blueshift along with increased asymmetry in the red and

blue emission peaks compared to the corresponding static values. The static PFR

Q/I profile exhibits a typical triple peak structure, whereas the corresponding

CFR Q/I profile is confined to the line core. As the value of V (r) increases, the

Q/I line core for both CFR and PFR cases and the blue wing PFR peak, are
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Figure 7.6: Emergent PFR (I,Q/I) profiles from a spherically symmetric
static (panel (a)) and constantly moving atmosphere with V (r)=3 (panel (b))
for varying values of ΓE/ΓR (which are given in the inset box). Other model
parameters are given in Section 7.2. The line-of-sight is at µ = 0.11.

progressively blueshifted. As already noted in Section 6.2, wing PFR peaks are

asymmetric in the presence of velocity fields. The magnitude of the Q/I red wing

PFR peak decreases with increasing V (r) due to Doppler dimming. However, the

blue wing PFR peak exhibits Doppler brightening for V (r) = 1. With further

increase in V (r), it however exhibits Doppler dimming. Indeed Doppler dimming

is seen in I profiles for −8 < x < 4, and in Q/I profiles for −8 < x < x1, wherein

the value of x1 depends on the value of V (r). For example x1 = 4 for V (r) = 1,

while it is 7 for V (r) = 9. For 4 < x < 17 and x1 < x < 20, the I and Q/I profiles

respectively exhibit Doppler brightening. Also, we note that the blue wing PFR
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Figure 7.7: Emergent (I,Q/I) profiles from a spherically symmetric atmo-
sphere with CFR (panel (a)) and PFR (panel (b)) for varying values of V (r)
(which are given in the inset box). Other model parameters are given in Section
7.2. The line-of-sight is at µ = 0.11.

peak becomes progressively broader with the increasing values of V (r). As in

Section 6.2, this dependence of I and Q/I profiles on V (r) can be understood

using the contribution functions and source vector plots.

7.10 Concluding remarks

The comoving frame method to solve the problem of polarized PFR line formation

in spherically symmetric atmospheres with velocity fields is developed in Chapter
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5. Here we use this method to study the effects of different model parameters

on the linearly polarized line profiles formed in spherically symmetric static and

moving atmospheres. We have varied the model parameters in a wide range,

one at a time, to study their effects on the line profile. We showed that the

line profiles exhibit a strong dependence on each of the parameters selected for

our study and thus help in understanding the polarized lines formed in extended

and expanding atmospheres. We showed that the velocity fields modify both the

amplitude and shape of the Q/I profiles. Such a modification is significant when

the corresponding intensity profiles exhibit a self-absorbed emission profile. This

is because, in this case both Doppler brightening and dimming are simultaneously

at play (as discussed in Chapter 6). In those cases where the intensity profiles

are in emission, the corresponding Q/I profiles exhibit a strong Doppler dimming

apart from a Doppler blue shift, when non-zero velocity fields are present in the

line forming regions. It is important to note that strong asymmetry between the

blue and red wing PFR peaks do not exist if the intensity profiles are only in

emission or in pure absorption.
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Chapter 8

Polarized Line Formation in

Spherically Symmetric Expanding

Atmospheres with Weak Field

Hanle Effect1

An overview

Magnetic fields are all pervading in the astrophysical plasmas. They play an

important role in the formation and evolution of stars. Magnetic fields leave their

fingerprints in the polarized line profiles. Thus, studying the polarized line profiles

helps us to understand the underlying fields, their evolution, and in predicting the

physical phenomena that are at play in the stellar atmospheres. In Chapters 5,

6, and 7 we have studied the problem of polarized line formation in spherically

symmetric moving atmospheres without magnetic fields. In the current chapter,

we study the mentioned problem in the presence of weak magnetic fields using the

Hanle effect. We generalize the Jacobi based CMF-PALI method developed in the

Chapter 5, to include the weak field Hanle effect with angle-averaged (AA) partial

frequency redistribution (PFR) given by approximation-III of Bommier (1997b).

We present the preliminary results showing the effect of a weak magnetic field on

1This chapter is based on the publication: Megha et al. (2020b)
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the polarized line profiles formed in spherically symmetric moving atmospheres

with both complete frequency redistribution (CFR) and PFR.

8.1 Introduction

Magnetic field is the major driver of most of the physical phenomena occurring

in the solar atmosphere. In spite of its key role in controlling the dynamics of

the upper solar atmosphere, magnetic field still remains as a quantity not well de-

termined. Though there are many techniques for determining the magnetic field

in the corona using the mechanisms like bremsstrahlung and radio gyroresonance,

they provide field strengths in different regions of the outer atmosphere (transition

region and above) without altitude information (e.g., Gibson et al. 2016). Also

these techniques are effective mainly in active regions. Coronal magnetic fields

can also be approximated through MHD modeling by extrapolating photospheric

measurements (e.g., Wiegelmann et al. 2014). However, these approaches have

limitations since they are based on certain assumptions. In principle, determina-

tion of magnetic field in the solar atmosphere is possible via linear polarization

measurement of spectral lines with suitable sensitivity to Hanle effect (Stenflo

1994). Several UV/EUV lines like H i Ly α and β are the most intense lines in

the off-limb coronal spectrum which are sensitive to Hanle effect (Raouafi et al.

2016).

Hanle effect is the result of quantum interferences between different magnetic

sub-levels of a given atomic level involved in the transition. Hanle effect is the

modification (depolarization or repolarization and rotation of plane of linear po-

larization) of resonance scattering in the presence of weak magnetic fields (see

Stenflo 1994, Trujillo Bueno 2001, and Landi Degl’Innocenti and Landolfi 2004 for

details). It occurs when the magnetic (or Zeeman) splitting (gJωB) and the ra-

diative width (ΓR) of the upper or lower level of the transition fulfill the following

condition:

ΓB =
gJωB

ΓR

∼ 1, (8.1)

where gJ is the Landé g-factor of the upper or lower level, ωB is the Larmor

frequency, and ΓR is the radiative width of the upper or lower atomic level. Hanle

effect in selected spectral lines yields a powerful diagnostic tool for measuring
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magnetic fields typically ranging from a few milli-Gauss to several hundred Gauss.

Unlike the Zeeman effect, the Hanle effect in spectral lines by turbulent magnetic

fields can be detected in the weak field regime allowing the determination of the

strength of the field in mixed-polarity regions. In recent years the Hanle effect

is also used as a diagnostic tool in stellar astrophysics (see, e.g., Ignace 2001,

Bommier 2012).

The polarized line transfer equation including the Hanle effect and angle-

averaged (AA) PFR in a plane-parallel atmosphere was first solved by Faurobert-

Scholl (1991) using a Feautrier method. A PALI method based on operator split-

ting was developed in Nagendra et al. (1998, 1999, 2000) to solve the same problem

for both CFR and AA-PFR. The PALI method is efficient and much faster than

the Feautrier method. The above cited papers used a Hanle redistribution ma-

trix, which was basically a product of AA-PFR function (see Hummer 1962) and

a Hanle phase matrix (Stenflo 1994). Furthermore, a 1D frequency cut-off (cf.

Equation (1.34)) was used to account for the fact that Hanle effect operates only

in the line core. Bommier (1997b) derived self-consistent polarized redistribution

matrices for the Hanle effect in a two-level atom including the effect of collisions.

Fluri et al. (2003) developed a generalized PALI method to solve the polarized

line transfer equation in planar atmospheres, including the angle-averaged Hanle

PFR matrix of Bommier (1997b), given by the so-called approximation-III.

Here we consider the problem of polarized line formation in the spherically sym-

metric atmospheres, including the effect of weak oriented magnetic fields through

the Hanle effect. We include the angle-averaged Hanle PFR matrix following

approximation-III of Bommier (1997b). We also take into account the effects of a

non-relativistic radial velocity field. We develop the numerical method of solution

for the concerned radiative transfer problem using a decomposition of the Stokes

parameters into a set of six irreducible components (Frisch 2007). In particular, we

generalize the Jacobi based CMF-PALI method presented in Chapter 5 to include

the weak field Hanle effect.

This chapter is organized as follows. In Section 8.2 we present the spherically

symmetric polarized transfer equation in the observer’s frame, including the Hanle

effect. In Section 8.3 we present the corresponding equation in the comoving frame

and in the irreducible spherical tensor basis. The numerical method of solution is
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discussed in Section 8.4. Results and discussions are presented in Section 8.5, and

concluding remarks in Section 8.6.

8.2 Polarized radiative transfer with the Hanle

effect

Here we assume that the magnetic fields are weak (the Hanle regime) and work

with angle-averaged frequency redistribution functions. The corresponding Hanle

PFR matrix is given by approximation-III of Bommier (1997b). We consider an

isothermal one-dimensional spherically symmetric atmosphere with velocity fields

along the radius vector and permeated by weak magnetic fields. The observer’s

frame polarized PFR transfer equation for a spherically symmetric medium in

divergence form, and in the presence of weak magnetic field B is given by

µ
∂I(r,n, x)

∂r
+

(1− µ2)

r

∂I(r,n, x)

∂µ
= −χ(r, µ, x)[I(r,n, x)− S(r,n, x)], (8.2)

where I = (I,Q, U)T is the polarized intensity vector, S is the total source vector,

which are now three-component vectors in the presence of a weak magnetic field.

We recall that in a weak magnetic field, the circular polarization represented by

Stokes V gets decoupled from the other three Stokes parameters. Also, since

we are in the Hanle regime, the absorption coefficient continues to be a scalar

(see, e.g., Stenflo 1994; Landi Degl’Innocenti and Landolfi 2004). In the above

equation, n = (ϑ, ϕ) defines the ray direction with ϑ and ϕ being the inclination

and azimuth of the ray about the local radius vector and µ = cosϑ. The above

equation is exactly in the same form as in Equation (5.1) but now I and S depend

on ϕ due to the breaking of the axi-symmetry of the problem by the presence of

weak magnetic field. All the other quantities are the same as those defined in

Sections 4.2 and 5.2.1 of Chapters 4 and 5, respectively.

We solve Equation (8.2) in the (p, z) coordinate system as in Chapters 4 and

5. The polarized transfer equation in the (p, z) coordinate system is written as

± ∂I±(z, p, ϕ, x)

∂τ(z, p, x)
= I±(z, p, ϕ, x)− S(z, p, ϕ, x), (8.3)
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for outgoing (+) and incoming (−) rays, respectively. The total source vector is

given by

S(z, p, ϕ, x) =
φ(z, p, x)Sl(z, p, ϕ, x) + βcSc

φ(z, p, x) + βc
, (8.4)

where Sc = Bν0U is the unpolarized continuum source vector, with Bν0 the Planck

function at the line center, and U = (1, 0, 0)T. For a two-level atom with infinitely

sharp and unpolarized lower-level, the line source vector has the form

Sl(z, p, ϕ, x) = ǫBν0U+

∫ +∞

−∞

dx′
1

2

∮

dn′

4π

R(x− µV,n, x′ − µ′V,n′,B)

φ(z, p, x)
I(τ,n′, x′).

(8.5)

Here the primed symbols x′,n′ refer to the incoming photons and the unprimed

ones to scattered photons. R is the Hanle redistribution matrix (Bommier 1997b)

and B is the magnetic field vector. In the presence of velocity fields, the R matrix

continues to be given by approximation-III of Bommier (1997b), but with x and

x′ replaced by x − µV and x′ − µ′V . As we have already discussed about the

limitations of observer’s frame in Chapter 5, we consider the CMF for further

discussions.

8.3 Irreducible spherical tensor decomposition

in the CMF

Source vector S and the Stokes vector I± in Equation (8.3) depend on impact

parameter p (thereby ϑ) and azimuth ϕ of the radiation field. Following Frisch

(2007), the vectors S and I± can be decomposed into six cylindrically symmetric

components, SK
Q and IK,±

Q , with K =0, 2 and Q ∈ [−K,+K], if one represents

the former in terms of the spherical irreducible tensors for polarimetry defined

in Landi Degl’Innocenti and Landolfi (2004). With these components one can

construct an irreducible source vector S and an irreducible Stokes vector I
±.

This decomposition is useful because S becomes independent of both p and ϕ

and I
± becomes independent of the azimuthal angle ϕ for the static and moving

atmospheres in the CMF frame (see, e.g., Sampoorna and Nagendra 2015b, also

Chapter 5). The CMF transfer equation in the irreducible basis for the weak field

Hanle effect and for the non-relativistic velocity fields has the form as in Equation
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(5.10). However, unlike the non-magnetic case, the irreducible vector I± is now a

six-component vector of the form I±= [I0,±
0 , I2,±

0 , I2x,±
1 , I2y,±

1 , I2x,±
2 , I2y,±

2 ]T. The

six-component irreducible source vector S now has a form similar to Equation

(8.4), but with φ(z, p, x) replaced by φ(x) in the CMF and the irreducible line

source vector is given by

S l(z, x) = ǫBν0U +

∫ +∞

−∞

dx′
R(x, x′,B)

φ(x)
J x′ , (8.6)

where U = [1, 0, 0, 0, 0, 0]T and φ(x) = H(a, x) is the line profile function in the

CMF. The mean intensity vector J x′ is given by

J x′ =
1

2

∫ +1

−1

Ψ(µ′)I(τ, µ′, x′)dµ′, (8.7)

where Ψ(µ) is the 6 × 6 matrix whose explicit form is given in Frisch (2007).

R(x, x′,B) is the angle-averaged Hanle redistribution matrix in the irreducible

basis. We recall that it is given by the approximation-III of Bommier (1997b).

Following Anusha et al. (2011a), we write this matrix in the irreducible basis as

R(x, x′,B) = M
(i)
II (B)RII,AA(x, x

′) +M
(i)
III(B)RIII,AA(x, x

′). (8.8)

RII,AA(x, x
′) and RIII,AA(x, x

′) are the type-II and type-III angle-averaged redis-

tribution functions of Hummer (1962). Here i=1, 2, 3, 4, 5 label the different

frequency domains as in Bommier (1997b). Indices 1–3 refer to the domains cor-

responding to RIII,AA, and indices 4 and 5 to the domains corresponding to RII,AA.

The 6 × 6 matrices M
(i)
II, III(B) are given below. Let M(B,ΓB) denote the

Hanle phase matrix as defined in Landi Degl’Innocenti and Landolfi (2004), where

ΓB is defined in Equation (8.1). This matrix depends on field strength parameter

ΓB, field inclination ϑB, and azimuth ϕB defined about the local radius vector.

As in Anusha et al. (2011a), we define 6× 6 diagonal matrices, namely W, α, β,

and F. The diagonal elements of these matrices are given by

W11 = W0; Wjj = W2; for j = 2, ..., 6, (8.9)
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where W0 = 1 and W2 is the polarizability factor;

αjj = α; for j = 1, ..., 6, (8.10)

and

β11 = β(0); βjj = β(2) for j = 2, ..., 6, (8.11)

F11 = 1− α

β(0)
; Fjj = 1− α

β(2)
, for j = 2, ..., 6. (8.12)

In the above equations α and β(K) denote the branching ratios and are defined

respectively, in Equations (4.7) and (4.8). As in Bommier (1997b), we define the

coefficients

Γ′
K = β(K)ΓB; Γ′′ = αΓB. (8.13)

M
(i)
II,III(B) for different frequency domains can be obtained using the following

algorithmic form, which involves a cut-off frequency vc(a) defined in Bommier

(1997b) and a constant z = 2
√
2 + 2. This algorithmic form is as follows:

If

{

[zvc(a) | x′ | −(x2 + x′2)] < [(z − 1)v2c (a)] and [zvc(a) | x | −(x2 + x′2)]

< [(z − 1)v2c (a)] and | x′ |<
√
2vc(a) and | x |<

√
2vc(a)

}

, (8.14)

then domain 1:

M
(1)
III (B) = W{βM(B,Γ′

2)−αM(B,Γ′′)}, (8.15)

elseif

{| x′ |< vc(a) or | x |< vc(a)}, (8.16)

then domain 2:

M
(2)
III (B) = W{[β −α]M(B,Γ′

2)}, (8.17)

else domain 3:

M
(3)
III (B) = WF{[β −α]M(B,Γ′

2) +α}, (8.18)

endif.
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If

{[x(x+ x′)] < 2v2c (a) and [x′(x+ x′)] < 2v2c (a)}, (8.19)

then domain 4:

M
(4)
II (B) = αWM(B,Γ′′), (8.20)

else domain 5:

M
(5)
II (B) = αW, (8.21)

endif.

8.4 The numerical method of solution

Here we discuss the basic equations of the Jacobi based CMF-PALI method used

in solving the radiative transfer equation with Hanle effect. It is based on the

core-wing method of Fluri et al. (2003). The formal solution of the Hanle transfer

equation may be stated in terms of the Lambda operator as

J x = Λx[Sx] + Tx, (8.22)

where Λx and Tx are given by Equations (4.20) and (4.21) respectively. Unlike the

non-magnetic case, here J x, Sx, and Tx are 6-component vectors, while Λx and

Ψ(µ) are 6 × 6 matrices. Now we define the local, monochromatic approximate

Lambda operator Λ∗
x as

Λx = Λ∗
x + δΛx = Λ∗

x + (Λx −Λ∗
x). (8.23)

With this we set up a Jacobi iterative scheme to compute the source vectors as

S
(n+1)
x = S

(n)
x + δS(n)

x ; S
(n+1)
l,x = S

(n)
l,x + δS

(n)
l,x , (8.24)

where the superscript n refers to the nth iteration. From the CMF equivalent of

Equation (8.4) in the irreducible basis it follows that

δS(n)
x = pxδS

(n)
l,x ; with px =

φx

φx + βc
. (8.25)
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Using this we can write

J
(n+1)
x ≈ J

(n)
x + pxΛ

∗
x[δS

(n)
l,x ]. (8.26)

With this the line source vector corrections can be written as

δS
(n)
l,x − 1

φx

∫ +∞

−∞

dx′px′R(x, x′,B)Λ∗
x′ [δS

(n)
l,x′ ] = r(n)

x , (8.27)

where

r(n)
x = S

(n)
FS,l,x − S

(n)
l,x , (8.28)

with the formal line source vector S
(n)
FS,l,x given by

S
(n)
FS,l,x = ǫBν0U +

1

φx

∫ +∞

−∞

dx′R(x, x′,B)J
(n)
x′ , (8.29)

where the mean intensity J
(n)
x is computed using the short characteristic formal

solver in the CMF (see Section 5.3.2.1).

8.4.1 Estimation of source vector corrections using ap-

proximated domains

Following Fluri et al. (2003), the core-wing separation scheme is applied to com-

pute δS
(n)
l,x by redefining the frequency domains (see Figure 2 of Fluri et al. 2003).

These approximated domains are used only for the computation of the source vec-

tor corrections in the CMF-PALI iterations. In the core-wing scheme, the type-III

redistribution function RIII is approximated by complete frequency redistribution

(CFR) in the line core (defined by |x| ≤ vc(a)) and it is neglected in the line wings

(as φx is sufficiently small in the wings). The type-II redistribution function RII

is treated as CFR in the line core and coherent scattering (CS) in the line wings.

By doing this the line core and the line wings decouple from each other.

Thus, RIII part in the integral of Equation (8.27) now simplifies to the following

1

φx

∫ +∞

−∞

dx′px′M
(i)
IIIR

xx′

III Λ
∗
x′ [δS

(n)
l,x′ ] ≈







M
(1)
III∆T

(n)
core, for | x |≤ vc(a)

M
(2)
III∆T

(n)
core, for | x |> vc(a)

. (8.30)
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The matrix corresponding to domain 3, namely M
(3)
III is not used because the line

wing part is neglected.

Following Nagendra et al. (1999), the RII part in the integral of Equation

(8.27) with core-wing scheme now simplifies to the following

1

φx

∫ +∞

−∞

dx′px′M
(i)
II R

xx′

II Λ∗
x′ [δS

(n)
l,x′ ] ≈







M
(4)
II ∆T

(n)
core, for | x |≤ vc(a)

(1− αx)M
(5)
II ∆T

(n)
core + αxM

(5)
II pxΛ

∗
x[δS

(n)
l,x ], for | x |> vc(a)

(8.31)

where the core-wing separation coefficient is given by

αx =







0, for | x |≤ vc(a)

RII(x,x
′)

φx
, for | x |> vc(a)

. (8.32)

Using Equations (8.30) and (8.31), the source vector correction in the line core

(| x |≤ vc(a)) can be obtained as

δS
(n)
l,x = [M

(1)
III +M

(4)
II ]∆T

(n)
core + r(n)

x . (8.33)

By applying the following integral operator from the left of the Equation (8.33)

∫ +vc(a)

−vc(a)

φxpxΛ
∗
x[ ]dx, (8.34)

expression for ∆T
(n)
core which is now frequency independent can be obtained as

∆T (n)
core =

{

E−
∫ +vc(a)

−vc(a)

φxpxΛ
∗
xdx[M

(1)
III +M

(4)
II ]

}−1

r̄(n)
core, (8.35)

where

r̄(n)
core =

∫ +vc(a)

−vc(a)

φxpxΛ
∗
x[r

(n)
x ]dx. (8.36)
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Again using Equations (8.30) and (8.31), the source vector correction in the line

wing (| x |> vc(a)) can be obtained as

δS
(n)
l,x =

[

E− αxpxM
(5)
II Λ

∗
x

]−1

{

[

M
(2)
III + (1− αx)M

(5)
II

]

∆T (n)
core + r(n)

x

}

. (8.37)

Further details on the formal solution of the comoving frame polarized transfer

equation are discussed in Chapter 5 for the non-magnetic case. These steps remain

the same in the presence of magnetic fields, except that number of irreducible

components change from two for the non-magnetic case to six in the weak field

Hanle case.

8.5 Results and discussions

We study the convergence properties of the Jacobi based CMF-PALI method de-

veloped for weak field Hanle effect in Section 8.4, by plotting the maximum rela-

tive change (MRC) of the irreducible source vector components (cKQ )
n, which are

defined similar to Equation (4.36) but with SK
Q . Thus, clearly (cKQ )

n is now a

six-component vector in the presence of magnetic field. In Figure 8.1, we plot

(cKQ )
n for both CFR (panels (a), (b), (c)) and PFR (panels (d), (e), (f)) for the

different velocity laws shown in Figure 5.2. Other model parameters are the same

as in Sections 4.4 and 5.4.1 except that here we chose the extension as R = 3. We

see that the rate of convergence for (c00)
n is similar to that of the corresponding

non-magnetic case for both CFR and PFR. The other components (c2Q)
n converge

relatively slower as expected in the presence of magnetic field. In the case of CFR

the convergence behavior is similar for all the velocity laws that we have consid-

ered. This is perhaps due to the choice of smaller extension. However, for PFR the

convergence of irreducible components (c2x1 )n, (c2y1 )n, (c2x2 )n, (c2y2 )n is slightly mod-

ified for different velocity law cases (compare Figures 8.1(d), 8.1(e), and 8.1(f)).

In particular, several sharp peaks persist as far as 150 iterations (see, e.g., dotted-

dashed line in Figure 8.1(f)). This is due to the presence of CMF term in the

transfer equation. Also the number of iterations required for the convergence in

the case of PFR is greater than the CFR case for the same reasons described in

Chapter 5.
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Figure 8.1: Maximum relative change of comoving frame irreducible source
vector components (cKQ )n (a six component vector) as a function of iteration
number for R = 3 for both CFR (panels (a), (b), (c)) and PFR (panels (d),
(e), (f)) with different velocity laws shown in Figure 5.2. The magnetic field
parameters used are (ΓB,ϑB,ϕB)= (1, 40◦, 0◦). Other model parameters are
the same as in Sections 4.4 and 5.4.1.
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Figure 8.2: Emergent polarized (I,Q/I, U/I) profiles from a spherically sym-
metric atmosphere with R = 3 and for different velocity laws shown in Figure
5.2 in the presence of a weak magnetic field. The static non-magnetic solution
is shown as dotted-dashed line for reference. Other line types are indicated in
the figure legend. The line-of-sight is at µ=0.11 and ϕ = 0◦. The magnetic
field parameters are (ΓB,ϑB,ϕB)= (1, 40◦, 0◦). Other model parameters are
the same as in Sections 4.4 and 5.4.1. Solid and dotted-dashed lines, and dotted
and dashed lines coincide in the I panels.
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Figure 8.2 shows the emergent (I,Q/I, U/I) profiles for different velocity laws

and for a non-zero magnetic field. The model parameters are the same as those

listed in Sections 4.4 and 5.4.1 except that here we chose the extension as R = 3.

The static non-magnetic polarized profile is shown for reference (see, dotted-dashed

line). From Figure 8.2 we clearly see that Stokes I profiles are nearly insensitive

to the weak field (compare dotted-dashed and solid lines in Figure 8.2). The

shapes of the Q/I profiles for both magnetic and non-magnetic cases are nearly

the same, except for the Hanle depolarization in the line core (compare solid and

dotted-dashed lines). The Stokes U/I profiles are generated due to Hanle rotation.

We see that the dependence of magnetic Q/I profiles on the velocity fields in the

case of both constantly moving atmosphere and with MKH law is similar to those

shown by the corresponding non-magnetic Q/I profiles (see, e.g., dashed lines in

Figures 6.7 and 6.9 for CFR and PFR respectively). In a moving atmosphere, the

Hanle effect continues to operate in the Doppler shifted line core. Further, in the

presence of velocity fields, due to Doppler shifts of the line profiles, entire U/I

profiles shift toward the blue side.

8.6 Concluding remarks

Here we extended the problem of polarized line formation with weak field Hanle

effect and PFR to the spherically symmetric expanding atmospheres. We used

approximation-III of Bommier (1997b) to handle the Hanle effect with PFR. We

apply the appropriately modified Jacobi based CMF-PALI method developed in

Chapter 5 to include the effects of a weak magnetic field and radial velocity fields.

We studied the MRC of all the six irreducible source vector components obtained

using the Jacobi scheme. We presented preliminary results for the problem at

hand. We showed the polarized line profiles for a fixed magnetic field orientation

and in the presence of radial velocity fields. We observed that, in the presence

of velocity fields Hanle effect operates in the Doppler shifted line core. Thus,

the linear polarization computed with weak field Hanle effect and PFR provides

a sensitive diagnostic of velocity fields and magnetic fields in extended spherical

atmospheres.
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We remark that the assumption of a fixed orientation for the magnetic field

throughout the spherical atmosphere is only of academic interest and is not phys-

ical. For this reason, in this chapter we do not attempt to make a very detailed

study of the polarized line profiles as in Chapters 6 and 7 for the non-magnetic

case. A physically more realistic magnetic field configuration would be either a

radial field or a dipolar field (as considered in Chapters 2 and 3). In the weak

field regime considered in this chapter, the radial field does not produce any Hanle

effect as the axial symmetry of the problem is not broken. As shown in Chapters

2 and 3, the dipolar field does produce the Hanle effect not only in the disk re-

solved case, but also when integrated over the visible stellar disk (see, e.g., López

Ariste et al. 2011; Bommier 2012; Manso Sainz and Mart́ınez González 2012). In

the above-cited works only single scattering or last scattering approximation were

considered to study the dependence of linear polarization due to the Hanle effect

on dipolar field strength, and on the inclination of dipole axis with the stellar rota-

tion axis. The extension of these works to include multiple scattering in spherically

symmetric static and expanding atmospheres is under progress and hence beyond

the scope of this thesis.
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Chapter 9

Summary and Future Prospects

9.1 Summary

Understanding the nature of solar magnetic fields is the first step towards per-

ceiving the global magnetic fields in the astrophysical plasmas. Studying the

polarized line profiles formed in such media is one of the best ways to achieve

this goal. Therefore in this thesis we aim at developing the necessary theoreti-

cal tools to determine the solar and stellar magnetic fields. For this, we harness

the sensitivity of both forbidden (magnetic dipole, M1 allowed) and permitted

(electric dipole, E1 allowed) lines which form under different physical conditions,

to the magnetic field. In the first part of this thesis, we develop the necessary

scattering theory for M1 transitions. Since the forbidden lines are optically thin,

it is not necessary to solve the transfer equation. However, due to variations in

the density of scattering atoms, it is required to account for integration along the

line-of-sight (LOS). On the other hand, the permitted lines are generally optically

thick, requiring the inclusion of the transfer effects when modeling them. Also the

extended solar or stellar atmospheres are known to be dynamic with macroscopic

velocity fields being present in the line forming regions. Thus the second part

of this thesis is devoted to develop the numerical technique to solve the polarized

line radiative transfer equation in a spherically symmetric expanding atmospheres.

We also account for the effects of weak magnetic fields via the Hanle effect in the

permitted lines.
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In Chapter 2 we derived the Hanle-Zeeman scattering matrix for M1 transitions

using the scattering theory of Stenflo (1998) and classical M1 damped oscillator

model of Casini and Lin (2002). Unlike the previous works, who considered the

forbidden line formation theory in only saturated Hanle regime for applications in

the solar corona, we developed a more general scattering theory that is applica-

ble to any forbidden lines undergoing J = 0 → 1 → 0 M1 transitions in arbitrary

strength magnetic fields covering Hanle, saturated Hanle, Hanle-Zeeman, and Zee-

man regimes in a continuous way. In Chapter 3 we applied this theory to study

the polarized profile of [Fe xiii] 10747 Å coronal forbidden emission line. Mea-

surement of full Stokes vector of the forbidden lines can constrain both LOS field

strength through longitudinal Zeeman effect (Stokes V ) and orientation of pro-

jected magnetic field on the plane-of-sky (POS) through saturated Hanle effect

(Stokes Q and U). We also studied the effect of different types of density distribu-

tions, magnetic field configurations, and radial velocity fields on the polarized line

profile, thereby demonstrating the importance of spectropolarimetry in forbidden

emission lines as a sensitive diagnostic tool in the solar corona.

Considering the fact that the plane-parallel approximation breaks down when

the photon mean free path is a non-vanishing fraction of the radius of curvature of

the stellar atmosphere, in part-II of this thesis, we developed the numerical tech-

niques to solve the polarized line formation in spherically symmetric atmospheres.

Also, the highly structured extended atmospheres are known to be dynamic, with

low to high speed stellar winds originating in these layers. Solving the polarized

transfer equation in the extended and expanding atmospheres in the observer’s

or lab frame is numerically very expensive due to the intricate coupling between

the frequency, angle, and spatial variables, requiring relatively large memory and

CPU time. Therefore, we developed computationally superior method called the

comoving frame (CMF) method to solve the polarized transfer equation in the fluid

frame in which the frequency, angle, and spatial couplings can be treated in the

same way as in static atmospheres. For our studies we considered non-relativistic

radial velocity fields, thereby accounting only for Doppler shift effects and neglect-

ing advection and aberration of photons. For numerical simplicity, we solved the

polarized transfer equation in the irreducible basis and in the (p, z) coordinate

system, which involves solving the transfer equation along each characteristic ray
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with impact parameter p and distance along the ray as z. The CMF transfer equa-

tion takes a similar form as that of the static case, except containing an extra term

called the CMF-term that contains the effects of radial velocity fields. We used

polarized accelerated lambda iteration (PALI) technique to solve the polarized

transfer equation in the CMF. We presented the highly convergent fast iterative

techniques like Gauss-Seidel (GS) and successive overrelaxation (SOR) beside the

Jacobi iterative scheme in both static and expanding spherical atmospheres. We

showed the superior convergence behavior of GS and SOR schemes over that of

Jacobi scheme using the maximum relative change (MRC) and surface true error

calculations.

Using the CMF-PALI method developed in Chapters 4 and 5, we studied the

numerical solutions by plotting the linearly polarized line profiles in the presence

of both complete frequency redistribution (CFR) and partial frequency redistribu-

tion (PFR) in scattering and interpreted the results with the help of contribution

functions and Stokes source vector (Chapter 6). We showed that the velocity

fields modify both the amplitude and shape of the Q/I profiles. We observed that

such a modification is significant when the corresponding intensity profiles exhibit

a self-absorbed emission profile in which both Doppler brightening and dimming

effects are simultaneously at play. We also studied the center-to-limb variation

(CLV) of the Stokes profiles and the nature of linearly polarized profiles with the

variation of the extension R of the atmosphere. We demonstrated that the linear

polarization in the wings produced due to PFR is highly sensitive to variations in

the extension R. In Chapter 7 we studied the behavior of the linearly polarized

profiles when the model parameters are varied one at a time and by keeping the

other values as constants, for both static and moving atmospheres.

In Chapter 8 we described the inclusion of weak magnetic fields in the problem

discussed in Chapter 5. To numerically solve this problem, we used the Jacobi-

based CMF-PALI method with appropriate modifications. For the Hanle redistri-

bution matrix, we considered approximation-III of Bommier (1997b) which rep-

resents the angle-averaged PFR in the presence of a weak magnetic field. We

presented the polarized line profiles computed for a weak magnetic field of fixed

orientation, with and without velocity fields, and for the case of CFR and PFR.

Our studies show that in the presence of velocity fields the Hanle effect is operative

in the Doppler shifted line core. Finally, we conclude that the linear polarization
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computed with weak field Hanle effect and PFR is expected to provide a sensi-

tive diagnostic of velocity fields, magnetic fields, and extension of the spherical

atmospheres.

9.2 Future prospects

In this section, we briefly discuss the future prospects of the work carried out in

the present thesis.

In Chapter 3, we presented the linear polarization maps that one would obtain

if the coronal magnetic field is approximated by either radial or dipolar field con-

figurations. However, in reality the coronal magnetic fields are more complex than

these simpler field configurations. A better representation of the coronal magnetic

fields are those obtained by potential or nonlinear force-free field extrapolation

of the photospheric input magnetic fields generated through MHD simulations or

through direct measurements using coronal emission lines (Lin et al. 2000, 2004;

Liu and Lin 2008; Inoue 2016). As a natural next step, we propose to include such

coronal magnetic fields to produce linear polarization maps that may be more

closer to the observations (which may become available in the future). The theory

developed in Chapter 2, can also be applied to other forbidden lines, in order to

explore their diagnostic potential.

Part-II of this thesis dealt with solving the polarized radiative transfer problem

in a spherically symmetric atmosphere with non-relativistic velocity fields, thereby

neglected the advection and aberration effects. Mihalas et al. (1976a) solved the

fully relativistic transfer equation in the CMF using modified Feautrier method

(involves matrix inversion). In the presence of relativistic velocity fields the char-

acteristic rays are no longer straight lines but are curved. Mihalas et al. (1976a)

found the trajectories of these characteristic rays by numerically solving the cor-

responding ray equations and then integrating the transfer equation on the so

obtained characteristics. Hauschildt and Wehrse (1991) also provided the solution

to the special relativistic transfer equation using discrete ordinate matrix exponen-

tial (DOME) method which involves matrix diagonalization. These two methods

require considerably large CPU time. To overcome this, Hauschildt and Baron

(2004); Baron and Hauschildt (2004) solved the fully relativistic transfer equation
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respectively for both monotonic and non-monotonic velocity fields using CMF-ALI

method (see also Hauschildt 1992). It is important to include special relativistic

effects in the transfer equation to study the high velocity flows which can occur in

the expanding shells of novae, supernovae, galactic winds etc. (Hauschildt et al.

1991). The above cited papers considered transfer of unpolarized radiation with

CFR in line scattering. In the near future we plan to extend these works to include

the scattering polarization together with PFR effects.

In part-II of this thesis we adopted only the angle-averaged version of the

PFR matrix for studying the linearly polarized line profiles formed in expanding

spherical atmosphere. In an extended spherical atmosphere, the radiation field

strongly peaks in the radial direction, which is especially more enhanced in the

outer layers. Furthermore, in expanding atmospheres, the photons escape even

more readily (Kunasz and Hummer 1974b). Therefore, we may expect that the use

of angle-averaged PFR may not be sufficient to accurately compute the (I,Q/I)

profiles unlike the planar case. We recall that in a planar atmosphere angle-

averaged PFR suffices to compute the non-magnetic (I,Q/I) profiles for both

with and without velocity fields (see, e.g., Faurobert 1988; Sampoorna et al. 2011;

Sampoorna and Nagendra 2015b). In other words, there is a need to evaluate

the importance of including angle-dependent PFR effects for the case of extended

and expanding spherical atmospheres. Peraiah (1978) included angle-dependent

PFR effects in the solution of unpolarized line transfer in an expanding spherical

atmosphere but in the observer’s frame, thereby limited to low velocity fields.

Mihalas (1980) considered the same problem but in the CMF and hence suitable to

handle both low and high-velocity fields. Clearly, our next step would be to include

the angle-dependent PFR effects in the polarized transfer problem in expanding

spherical atmospheres. Such studies are useful to understand the formation of

optical and IR lines in stellar winds, nebulae, protostellar envelopes etc. wherein

velocity gradients are present.

For the results presented in Chapters 6 and 7, we have used isothermal model

atmospheres. Since the real stellar atmosphere is not isothermal, we would like

to extend this work to include realistic model atmospheres and study the effects

of extendedness on the emergent polarized line profiles. In Chapter 8, we have

assumed a fixed orientation for the magnetic field throughout the spherical atmo-

sphere. Such an assumption is however not physical. As shown in López Ariste
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et al. (2011); Bommier (2012); Manso Sainz and Mart́ınez González (2012), the

Hanle effect can be used for magnetic field determination even in the case of stars.

However, these works consider only single scattering or last scattering approxima-

tion to study the dependence of linear polarization due to Hanle effect on dipolar

field strength, and orientation with respect to the stellar rotation axis. We plan

to extend these works to include multiple scattering, which requires solving the

polarized radiative transfer equation. In other words, we propose to extend the

work presented in Chapter 8, to include a dipolar magnetic field in the future.

It was shown in earlier works that if a cylindrical structure is approximated

by a plane-parallel slab, the emergent intensities can have errors up to 30 % (e.g.,

Gouttebroze et al. 1986). Radiative transfer in cylindrical media is important for

studying the line formation in solar prominences, coronal loops, etc. which exhibit

cylindrical thread-like structure. Gouttebroze (1990) generalized the discrete ordi-

nate method (DOM), as a semi-analytical method to solve the unpolarized transfer

equation in a 1D cylindrical geometry. He showed that this method can also han-

dle PFR in scattering. This work was generalized to solve the cylindrical transfer

with multilevel atom using ALI method by Gouttebroze (2004). This work was

further extended to 2D by Gouttebroze (2005) and to 3D by Hauschildt and Baron

(2009). Independently, van Noort et al. (2002) have developed an ALI method to

solve the 2D unpolarized radiative transfer problem in Cartesian, cylindrical, and

spherical coordinates. Milić (2013) extended the 2D cylindrical radiative transfer

method of van Noort et al. (2002) to include scattering polarization with CFR. In

this thesis we have focused our attention on 1D spherical geometry. As a next step

it would be interesting to extend our 1D spherical polarized PFR code to solve

the polarized transfer equation with PFR in cylindrical geometry. Such an effort

will be useful to study the polarized lines formed in cylindrical structures in the

solar atmosphere, such as spicules, prominences, and coronal loops.
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Gelfreikh, G. B., 1994, “Radio Measurements of Coronal Magnetic Fields”, in IAU

Colloq. 144: Solar Coronal Structures , (Eds.) Rusin, V., Heinzel, P., Vial, J.-C.,

21-28, VEDA Publishing Company, Bratislava, Slovakia. [URL]

Gibson, S., Kucera, T., White, S., Dove, J., Fan, Y., Forland, B., Rachmeler, L.,

Downs, C. and Reeves, K., 2016, “FORWARD: A toolset for multiwavelength

coronal magnetometry”, Frontiers in Astronomy and Space Sciences , 3, 8-29.

[DOI], [URL]

Gouttebroze, P., 1990, “Radiative transfer in cylindrical objects by the discrete

ordinate method”, Astron. Astrophys., 228, 295–298. [URL]

Gouttebroze, P., 2004, “Radiative transfer in cylindrical threads with incident

radiation”, Astron. Astrophys., 413, 733–743. [DOI], [URL]

197

http://dx.doi.org/10.1051/0004-6361:20077980
https://ui.adsabs.harvard.edu/abs/2007A&A...476..665F
https://ui.adsabs.harvard.edu/abs/2001ASPC..236..197F
http://dx.doi.org/10.1051/0004-6361/200911696
https://ui.adsabs.harvard.edu/abs/2009A&A...501..335F
https://ui.adsabs.harvard.edu/abs/2002sss..book.....G
https://ui.adsabs.harvard.edu/abs/1994scs..conf...21G
http://dx.doi.org/10.3389/fspas.2016.00008
https://ui.adsabs.harvard.edu/abs/2016FrASS...3....8G
https://ui.adsabs.harvard.edu/abs/1990A&A...228..295G
http://dx.doi.org/10.1051/0004-6361:20031570
https://ui.adsabs.harvard.edu/abs/2004A&A...413..733G


Bibliography

Gouttebroze, P., 2005, “Radiative transfer in cylindrical threads with incident

radiation. II. 2D azimuth-dependent case”, Astron. Astrophys., 434, 1165–1171.

[DOI], [URL]

Gouttebroze, P., Vial, J. C. and Tsiropoula, G., 1986, “Emission of Lyman alpha

radiation by solar coronal loops. I - General synopsis”, Astron. Astrophys., 154,

154–170. [URL]

Grant, L. P. and Peraiah, A., 1972, “Spectral line formation in extended stellar

atmospheres”, Mon. Not. Roy. Astron. Soc., 160, 239–247. [DOI], [URL]

Grotrian, W., 1939, “Zur Frage der Deutung der Linien im Spektrum der Son-

nenkorona”, Naturwissenschaften, 27, 214–214. [DOI], [URL]

Habbal, S. R., Druckmüller, M., Morgan, H., Daw, A., Johnson, J., Ding, A.,
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