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We test the statistical isotropy (SI) of the E-mode polarization of the cosmic microwave background
(CMB) radiation observed by the Planck satellite using two statistics, namely, the a estimator that is derived
from the contour Minkowski tensor (CMT), and the directional statistic (D statistic). The a estimator
provides information about the alignment of structures and can be used to infer statistical properties such as
Gaussianity and SI of random fields. The D statistic is based on detecting preferred directionality shown by
vectors defined by the field. We compute o and D statistic for the low resolution component separated
SMICA E-mode map of CMB polarization, and compare with the values calculated using FFP10 SMICA
simulations. We find good agreement between the Planck data and SMICA simulations for both « estimator

and D statistic.
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I. INTRODUCTION

The ACDM model has been very successful at explain-
ing the cosmological observations to date, and is currently
the most widely accepted model of the Universe [1,2]. In
the ACDM model, primordial density fluctuations are
assumed to be statistically isotropic (SI). As a consequence
the cosmic microwave background (CMB) radiation anisot-
ropies are expected to have the same symmetry property.
Our goal is to test the assumption of SI of CMB polari-
zation using the observations made by the Planck satellite
[2,3]. The CMB polarization field can be split into two
components, the curl-free component called the E-mode,
and the divergence-free component called the B-mode. For
this work, we focus on the SI test of the CMB E-mode
polarization, following up our recent work where we had
tested the SI of CMB temperature anisotropy maps [4].

It is important to test ST using different approaches that are
complementary to each other for obtaining robust con-
straints. In the literature, various methods can be found
for testing the SI of CMB data. Hajian et al. [5—7] formulated
the bipolar spherical harmonics (BiPoSH) technique to test
the SI of CMB maps. They applied the BiPoSH technique
to the WMAP 3-year data, and found no significant violation
of ST in the temperature maps, but ~2¢ deviation from SI [8]
in the E-mode map. Another technique based in harmonic
space is the power tensor method [9], where the eigenvalues
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of the power tensor constructed from the coefficients of the
spherical harmonics contain information about the SI of the
field. Using this method, the authors do not find any
significant deviations from SI in the temperature maps of
the WMAP 3-year data and Planck 2013 data. The authors
also applied the power tensor technique to the Planck 2015
polarization data, and found >2¢ violation of SI in the
multipole range £ = 40—150 [10]. More recently, the method
of multipole vectors was applied to the Planck 2015 and
Planck 2018 temperature data, and the data was found to be in
good agreement with the assumption of SI[11]. Eriksen et al.
[12] performed a Bayesian analysis on WMAP 3-year data to
find >20 evidence for the presence of a hemispherical power
asymmetry in the temperature maps. An alignment of mild
significance was found between the directions of the Planck
2018 CMB temperature and E-mode dipolar modulation
[13], which is again a large scale effect. Considering all these
results, further investigation of the SI of the CMB fields at
large angular scales is well motivated, and so in this work, we
use low resolution Planck 2018 maps.

Minkowski tensors (MTs) [14—18] carry information on
the shapes of the structures. In the context of the CMB, the
word structure here refers to hotspots and cold spots
defined by isofield contours. The a estimator, which is
derived from one of the MTs, the contour MT (CMT) has
been used to test the SI of random fields [4,18-21]. The
CMT is the tensor counterpart of the scalar Minkowski
functional (MF) contour length. The trace of the CMT gives
the contour length of the structures. a is sensitive to the
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kind of SI violation that affects the shapes and relative
alignment of the hot spots and cold spots in the field. This
method was first applied in [19] to the Planck 2015 data
release maps projected stereographically onto a plane. The
authors found no significant violation of SI in the CMB
temperature field, but obtained ~4¢ deviation for CMB
E-mode field. Stereographic projection can introduce
numerical error in the alignment of structures. A new
method for the estimation of the CMT that eliminates
projection errors by using field derivatives directly on the
sphere, was developed in [20], and was used in [4] to test SI
in the temperature data of the Planck 2018 data release. The
polarization part of the Planck 2018 data has been signifi-
cantly improved in terms of removal of systematics, fore-
ground modeling and instrumental noise reduction as
compared to the Planck 2015 data release [2,22,23].
This paper addresses the test of SI of the Planck 2018
polarization data, in particular E-mode, using the method of
calculation on the sphere.

To complement our results from CMTs we use a second
test for SI, the Directionality test or the D statistic [24]. It is
a statistical test which has been devised to measure any
preferred directionality over the sky. The test follows a
simple formalism, making it numerically inexpensive. It
was first applied in [24] to the COBE-DMR temperature
data. Subsequently, the test has also been applied to
WMAP and Planck 2018 polarization data in particular
to the polarization angle maps in [25,26].

This article is organized as follows. All the data pre-
processing steps that we follow before applying the SI tests
have been described in Sec. II. Section III presents the
definition of the CMT and «, and D statistic methods. It
also carries a description of how the CMTs can be
estimated from pixelated maps of random fields on the
sphere. In Sec. IV, we discuss how the addition of a SI
white noise component to a non-SI (nSI) signal map affects
the a and D values of the resultant map, and demonstrate
the sensitivity of our methods to noisy maps. Section V
presents the main results of this paper, comparisons of the a
and D statistic estimated from the Planck spectral matching
independent component analysis (SMICA) E-mode map,
with those from the FFP10 SMICA simulations. Finally, in
Sec. VII, we draw conclusions based on our results.

II. DATA

In this section, we describe the set of observed data and
simulations that we have used for our analysis. We also
define the notations used to denote the various sets of maps
that we work with.

A. Planck data and mask

We use the publicly available Planck 2018 data release
SMICA Q, U maps from the Planck Legacy Archive
(PLA). These maps are provided at a beam resolution

of 5’ full-width at half maximum (FWHM) and projected
on HEALPix pixel resolution of N4, = 2048 [3]. These
maps combine multi-frequency sky observations by the low
frequency instrument (LFI, 30-70 GHz) and the high
frequency instrument (HFI, 100-857 GHz). The HFI has
an angular resolution of ~5'—~10' FWHM, while the LFI has
aresolution of ~#13’'-33' FWHM. As Stokes Q and U maps
are spin-2 quantities for which the morphological proper-
ties are strongly affected by masking [27], we choose to
convert them into £ and B-mode maps, which are invariant
under rotation. We use the “anafast” routine of HEALPix to
transform the full sky Stokes Q and U maps into spherical
harmonic coefficients E,,,s and By,,s. We first deconvolve
the beam response of the original SMICA polarization
maps from the E,,s and then convolve the E,,s with a
Gaussian beam of 1° FWHM in harmonic space. Then we
use “synfast” routine of HEALPix to transform back the E,,,s
into the £ mode map at Ny = 128. The smoothing
process is required for reducing the level of noise in the
data, since the reconstructed SMICA E-mode map is noisy
at the original 5 resolution (see Fig. 16 of [3]). The pixel
resolution of the smoothed E-mode map is chosen in such a
way that the effective beam falls over three pixels. We will
refer to the smoothed SMICA E-mode map as the data
E map.

For the analysis of Planck polarization data, the recom-
mended mask is the common polarization mask, which is
available at a resolution of N4 = 2048 and has an
effective sky fraction of 78% [3]. We downgrade the
Galactic component of the polarization mask to N4, =
128 and we refer to it as the P78 mask. The P78 mask has a
sky fraction of 78%. The binary P78 mask is shown
in Fig. 1.

B. Simulations

We use the full focal plane (FFP10) SMICA Q and U
simulated maps to make a comparison with the results
obtained from the data E map. The SMICA pipeline
processed 1000 CMB-only simulations and 300 noise-only
simulations separately by applying the same frequency
weights as derived from the real Planck data [3]. The noise

FIG. 1. The binary mask used in our analysis at N4, = 128 has
an effective sky fraction of 78%.
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simulations include the instrumental noise and residual
systematics processed through end-to-end simulations. It is
very important to account for the residual systematic effects
to test the SI violation of the data E map at large angular
scales. For our purpose, we use the linear combination of
the first 300 SMICA CMB-only and noise-only simula-
tions. These simulations have the same beam resolution as
the SMICA data Q, U maps. We perform the same post-
processing of the CMB + noise simulations as we do on the
Planck data to produce the smoothed simulated maps at 1°
FWHM beam resolution and N4, = 128. We refer to these
as the SMICA simulations. Then we mask all the maps with
P78 mask before applying our SI estimators.

C. Level of noise in the Planck E map

In this section, we compute the EE power spectrum of the
data and simulations over the masked sky to estimate the
level of noise in the data E map. For the power spectrum
estimation, we apodized the P78 mask to avoid power
leakage due to sharp mask boundaries. The P78 mask is
convolved with 5° FWHM Gaussian beam to produce the
apodized P78 mask. The mask apodization is chosen in such
a way that it smoothly goes to zero toward the mask edges.
The effective sky fraction after applying apodization
becomes 71%. We apply the apodized P78 mask to the
data £ map at Ny, = 128 and compute the pseudo EE
power spectrum. We then use the XpoL package [28] to
estimate the full-sky EE power spectrum, corrected for the
masking, beam and pixel window effects. The same pro-
cedure has been applied to the SMICA simulations to
compute the simulated EE power spectrum for a given
sky realization. For the simulations, we calculate the mean
EE power spectrum by averaging the power spectra
obtained from 300 sky realizations. In the top panel of
Fig. 2, we compare the scaled power spectrum,
£(¢ + 1)CEE )2z, where CEE is the EE power spectrum,
of the Planck data with the mean from SMICA simulations.
In the bottom panel of Fig. 2, we show the residual power
spectrum, which represents the difference in the power
spectrum of the data from the mean of the SMICA
simulations, with 1-¢ error bars from the simulations.
Since maps of the foreground residuals are not available,
and the SMICA simulations and noise simulations are
consistent with the data at the scales we are probing, we
do not consider the effect of foreground residuals in our
analysis. We define the signal to noise ratio (y) of the data E
map as the ratio of the root mean square (rms) of the SMICA
CMB-only and noise-only simulations in the pixel space.
For the data E map, y = 1.04.

III. QUANTIFYING THE SI OF CMB MAPS

In this section, we describe the two statistical estimators
that we use to test the SI of the data £ map, namely, @ and D
statistic. We start with the definitions of the two statistics
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FIG. 2. Top panel: comparison of the full sky EE power spectra
estimated from the data £ map (black points) and mean power
spectrum from 300 SMICA simulations (blue line). All the power
spectra are computed from smoothed downgraded E map (1°
FWHM beam resolution and N4 = 128) with apodized P78
mask applied. Bottom panel: the residual E-mode power spec-
trum after subtracting the mean simulated power spectrum, from
SMICA simulations from the Planck EE power spectrum along
with 1-o error bars.

and then discuss how they capture the SI information of a
given random field.

A. Contour Minkowski tensor

First, we give a brief overview of the CMT, and define
the a estimator, which is our primary tool for testing SI.
This technique for testing the SI of a random field defined
on the surface of a sphere was developed in [18]. Let C be a
closed curve on the unit sphere. The CMT associated with
this curve, denoted by W, is defined as,

wlzl/mfds, (1)
4 /e

where the integral is over C, T denotes the unit tan gent vector
to the curve at each point, ® denotes the symmetric tensor
product of two vectors, and ds denotes the infinitesimal arc
length line element along the curve. The ratio of the two
eigenvalues of W, represent the isotropy of the curve C. If C
is isotropic, then the two eigenvalues are equal.

For a smooth random field, denoted by u, excursion sets
consist of points on the sphere where the field has values
higher than some chosen threshold value (v). The boun-
daries of the excursion sets, indexed by v, form closed
curves. For multiple such curves, VV; can be obtained as the
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sum over all the curves. To compute ¥V, numerically for
excursion set boundaries at each v on the sphere, we can
convert the line integral to an area integral using a suitable
Jacobian [29], and express it in terms of the field and its
first derivative components u.y and u.,, where 6, ¢ are
spherical coordinates on the sphere, as [4,18],

2
1 1 [y —Ugly
Wz—/da&u—u—( ’ >, 2
' l6r g ( )W”| —l gty Uy @)

where S? indicates that the integral is over the unit sphere,
da is the area element on the sphere, ¢ is the Dirac delta
function, and V denotes covariant derivative on the sphere.
Choosing to label the eigenvalues of W; as A; and A,
such that A; < A,, the alignment parameter, which we refer

to as the a estimator, is defined as the ratio of the two
eigenvalues [18],

Ay
a= A, (3)

By construction, the values of a range between 0 and 1.
For all the structures corresponding to a selected threshold
value of the field, the locus curve is defined in [27] using
the mean radial distances of the curves from their centroid,
when the curves are stacked together. a represents the
isotropy of the locus curve formed this way. a gives a
measure of the alignment of the structures in the level sets,
which reflects the SI of the random field. If the field is SI,
then the value of @ will be close to unity. The value of @ will
shift toward zero for non-SI (nSI) field. As we work with
the field rescaled by its standard deviation, v represents the
rescaled threshold. The calculation of a using Eq. (3) is
quite accurate and the numerical error arising from the
discrete v binning approximation of the ¢ function is small
(see the discussion of Eq. (2.9) in [30]).

We demonstrate a values estimated from SI maps in
Fig. 3. The top panel shows the distribution of « from a set
of 10000 SI CMB E-mode simulations (N4 = 128 and
beam resolution = 1°) drawn from the Planck best-fit
ACDM model [31] for the threshold value v = 0. The
probability distribution function of a follows the Beta
distribution. There is a mild dependency of a on the input
power spectrum of the SI signal [30]. The bottom panel of
Fig. 3 shows the median « and error bars representing the
68% limits, calculated from 10000 SI CMB E-mode
simulations over the threshold range between —2 and 2.
The error bars are asymmetric and to estimate them, we first
sort the values of a at each threshold in increasing order.
Next, we multiply the total number of simulations by 0.34
(34%) and get the index of the simulations, above and
below the median, representing the upper and lower limits,
respectively. This is the method we follow to estimate the
error bars on a throughout this paper.
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FIG. 3. Top panel: a histogram of the a values obtained from
10000 SI CMB simulations for threshold value v = 0. Bottom
panel: median of « values and 68% limits, obtained from 10000
SI simulations with the Planck best-fit ACDM power spectrum
(blue points).

B. Directionality test

In this section we will briefly describe the basic concepts
behind the preferred directionality test [24-26]. It is a
statistical test defined in the pixel domain to detect any
preferred directionality present in the observed CMB signal.
To achieve this goal, a vector at each point in the sky is
defined to capture the directional properties of the field. For
ascalar field u the vector can simply be the gradient of u. The
alignment of these gradients toward any particular direction
is quantified by its projection along that direction of the sky.
Mathematically, this can be implemented by defining a
function f for each direction 7 in the sky,

Npix
. LD N2
f@) = w,(AVu,), (4)
p=I
where, p stands for the pixel index of the map and N ;, is the

total number of pixels on the map. w), are the weights for
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each pixel on the map and are used to cancel out any false
directional signal due to masking [24]. Any anomalously
large or small value of f (i) will indicate the presence of a
directionality toward iz or —q2 and if there is no preferred
directionality present in the sky, all the values of f(#) should
be close to each other. This information is captured by the D
statistic which is defined as,

(5)

_ max(/(a)
min[f ()]

D takes real positive values greater than or equal to unity. For
a SI map the values of f(72) for different directions are
expected to be close to each other as no particular direction is
favored and hence D will be close to unity. So, any nSI
feature present in the map will manifestitself as deviations of
D from unity. We compare the D value of the data with the
corresponding values obtained from SI simulations to detect
any violation of SI.

IV. SENSITIVITY OF a ESTIMATOR
AND D STATISTIC

The a estimator and D statistic are designed for testing
the SI of signal dominated maps. The SI property of noisy
maps can be significantly affected by the properties of the
noise. For example, suppose the CMB E mode signal is
nSI, but a dominant SI noise could make the resultant map
SI, and vice versa. Since the data £ map is known to be
noisy at the scales we are interested in, we first check the
sensitivity of a and D to pick up the nSI property of the
signal in presence of SI noise. For this purpose, we make a
toy model of nSI map using the foreground model £ mode
map at 353 GHz. In the 353 GHz band, thermal dust is the
dominating component and so we use the thermal dust map
for our toy model. We start with the FFP10 thermal dust
template Stokes Q and U maps at 353 GHz, which are
publicly available on PLA. We first convert the full sky O
and U maps to spherical harmonic coefficients E,, and
B,,,. We then deconvolve the input map pixel window and
beam functions from the E,,,s and apply a bandpass filter

f¢ given by,

0 if £ <35
fo=1 o (3 959) ift3s<e<d0. (o)
1 if £ > 40.

Next, we use the HEALPix routine “smoothing” to apply a
Gaussian smoothing of 1° FWHM in harmonic space, and
reproject the £ mode map at Ny, = 128. To this dust £
map (d), we add varying levels of SI white noise (n), to
produce the noisy nSI maps. We choose to work with 1°
FWHM Gaussian smoothed nSI maps as they mimic the
smoothing present in the data £ map.

The rms amplitude of the dust map is dominated by
regions close to the Galactic plane having high standard
deviation values. For the calculations in this section, we use
a mask which excludes the regions having standard
deviation (computed over lower N4, = 16) higher than
a selected threshold value of 6 uK. We will refer to this
mask as the dust mask, which has a sky fraction of 60%. We
add different levels of noise to the input nSI map by varying
the ratio of rms amplitude of the d map and » map in the
pixel space defined as,

(7)

For our analysis, we choose nSI maps having y values,
y = 2,1 and 0.5, in addition to the case where no noise is
added. Figure 4 displays the noisy nSI maps alongside an
SI realization with the same underlying EE power spec-
trum, for the dust-only case, and with the three other
selected y values. We note that the addition of noise leads to
an increased number of small scale grainy structures, while
leaving the large scale patterns intact. We then mask these
maps with 5° FWHM Gaussian apodized dust mask, and
use the XPOL package [28] to estimate the full-sky EE

nSl signal + noise

Sl signal + noise

FIG. 4. Visualization of the noisy dust maps (left panels) and
corresponding SI simulations (right panels). From top to bottom,
the panels display the maps with only dust, and those with added
noise having y ratios of 2, 1 and 0.5, respectively.
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FIG.5. Beam deconvolved EE power spectra for the noisy dust

maps (points), mean of 1000 SI simulations (solid lines), and
added SI white noise (dashed lines). The maps having only the
dust component and those with added noise having y ratios of
2, 1 and 0.5, are shown in purple, red, blue, and black colors,
respectively.

power spectra. With these power spectra as the inputs in
HEALPix, we generate SI simulations for each of the selected
levels of y. Figure 5 displays the power spectra of the noisy
nSI dust maps (points), mean from 1000 corresponding SI
simulations (solid lines), and added noise (dashed lines) for
the three different y ratios. The power spectra extracted
from the SI maps, and from noisy nSI dust maps, overlap.
As expected, we can see that with increasing levels of
added noise, the power spectra become dominated by noise
at small scales.

In the following subsections we compare the results for
the a estimator and D statistic using the noisy nSI maps
with the corresponding SI simulations, which have the
same EE power spectrum. In each case, the noisy nSI maps,
and the SI simulations, are masked with the dust mask
before applying the a estimator and D statistic techniques.
The goal of this exercise is to demonstrate the sensitivity of
the a estimator and the D statistic.

A. a estimator

Figure 6 presents the results for the a estimator applied
on the noisy nSI dust maps with three different y ratios of 2,
1 and 0.5 along with the no noise case. In each panel, the
black points represent a values for the noisy nSI dust map,
while the blue crosses with error bars represent the median
and 68% limits from 1000 SI simulations generated from
the same underlying EE power spectrum as the noisy nSI
dust map computed over the apodized dust mask. The
addition of noise increases the a values of the resultant map
and makes it effectively SI, even though the original signal
of our interest is nSI. The value of o at any threshold
depends on the number of structures present in the field at
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FIG. 6. Comparison of a from noisy dust maps (black points),
median o and error bars representing 68% limits (blue crosses)
from 1000 SI simulations having the same EE power spectra, for
the no noise map (top left), and added noise with y ratios of 2 (top
right), 1 (bottom left), and 0.5 (bottom right) panels respectively.

that threshold. Due to this, and combined with the fact that
we have a single realization of the observed CMB sky, the
values of « for individual thresholds fluctuate about their
expectation values. Thus, combining the information in «
values over a threshold range rather than looking at
individual thresholds provides a much better statistic for
inferring the property of SI. The spread of a about the
corresponding median value is relatively low (high stat-
istical significance) for thresholds close to 0, and it
increases as we move away from O on either side. This
is because at large |v|, most of the structures are isolated
local maxima or minima, and get easily washed out due to
downgrading [4]. For our analysis, we choose the threshold
range v = —2 to +2. We compute the correlation between
different threshold values from —2 to +2 using SI simu-
lations and SMICA simulations, and find that the « values
are uncorrelated between two nearby threshold values in
both cases.

To quantify the consistency between the data and the
simulations, we use the p-value statistic, which requires no
assumptions regarding the shape of the probability density
distribution of a. For a, the p-value at each threshold is
defined as the probability of obtaining a values lower than
the data at that threshold, based on the simulations. Here,
the simulations refer to the 1000 SI simulations with the
same EE power spectra as the noisy dust maps. We use the
“combine_pvalues” routine from the Scipy package [32],
with the Fisher method [33], to obtain a single combined p-
value for the noisy nSI dust map, in the threshold range —2
to +2. The Fisher method, constructs a test statistic using
the logarithms of each of the p-values. When the individual
p-values are independent of each other, the test statistic has
a y? distribution and a single p-value for the distribution
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can be estimated. In our case, the nearby thresholds are not
correlated and hence the Fisher method is suitable for
providing a combined estimate of the p-value. For no noise
case and y = 2, the noisy dust maps strongly disagree with
the corresponding SI simulations. For y = 1, the combined
p-value for the noisy dust map based on the SI simulations
is 0.0002, which means that the corresponding noisy dust
maps are not consistent with SI. Although the black points
are consistent with the blue error bars for a lot of the
thresholds, it is important to note that the black points are
consistently lower than the blue crosses for almost all
thresholds. This leads to small p-values at all the thresholds
resulting in a very small combined p-value and incon-
sistency between the noisy dust map and SI simulations,
where a simple comparison with the error bars would
suggest that the noisy dust map is consistent with the SI
simulations. The combined p-value captures the informa-
tion regarding the data points being systematically lower
than the simulations, which would otherwise be missed by
a simple comparison of error bars. As we increase the level
of noise in the map (or decrease the y ratio) to y = 0.5,
the combined p-value increases to 0.41, indicating that
the noisy nSI dust map becomes consistent with the SI
simulations.

B. D statistic

We analyze the sensitivity of D statistic on the noisy dust
nSI E maps by comparing the D value obtained from noisy
dust maps with the corresponding values obtained from
1000 SI simulations having the same EE power spectrum.
For a statistically significant detection of SI violation, we
compute the p-value from the noisy dust maps. For D
statistic, the p-value is defined as the probability of
obtaining D values higher than the data, based on the
simulations. In this case, the simulations are the corre-
sponding 1000 SI simulations. Figure 7 presents the results
from D statistic for y = 0.5, 1 and 2. The dust maps with no
added noise and those with added noise having y = 2 and 1,
strongly disagree with the SI simulations. At y = 0.5, the
p-value is 0.009, and the noisy dust map is statistically
consistent with SI, within the 99.7% limits. The small
p-value for D at y = 0.5 suggests that D is more sensitive
than a at detecting the type of nSI signal present in our toy
model map.

From these results, we demonstrate two salient features
of D statistic. First, D is quite robust in detecting low
signal-to-noise nSI signal even in the presence of SI white
noise. However, D statistic sensitivity toward detecting the
SI violation fails for very low y value (y < 0.5). Second, as
the level of the SI noise is increased in the original dust nSI
map, the noisy maps become consistent with SI. We expect
the D value closer to unity for SI signal and much higher
values for nSI signal. For SI simulations, we find that the
distribution of D is almost identical for different y values.
However, for the noisy nSI dust maps, the D value,
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FIG. 7. Comparison of D from noisy dust £ maps and the
corresponding 1000 SI simulations for three values of y: 2
(magenta), 1 (black) and 0.5 (blue).

decreases with the decrease in y. In no noise case, the D
value from the nSI dust map is 1.64, making it difficult to
plot alongside the D values from the other maps.

Both our techniques, o estimator and D statistic are
sensitive enough to pick up the nSI of the signal from noisy
maps up to y = 1. For the data E map, the value of y is
marginally greater than 1 over the masked region. Based on
the toy model, we expect to detect the SI violation (if any)
present in the CMB E-mode polarization using « and D.

V. RESULTS

We carry out our stated goal of testing SI using data E
map in this section. We compare the values of a and D
statistics obtained from the Planck data with the SMICA
simulations.

First, we check the consistency of a values computed
from the data £ map with those obtained from the 300
SMICA simulations, which also include instrumental
systematics effects already added to the noise component,
as mentioned in section IIB. We compute a from the
smoothed maps at N4, = 128 after applying P78 mask.
The results of our analysis of the SI of the £-mode maps are
presented in Fig. 8. The «a values computed from the data E
map are represented by black points. The blue crosses with
error bars represent the median @ and 68% limits from 300
SMICA simulations. We find that the combined p-value for
the data £ map based on the 300 SMICA simulations is
p = 0.54, indicating that the data E map is statistically
consistent with the SMICA simulations.

Next, we present the SI results obtained using the D
statistic. In order to check whether the CMB E-mode is SI
or not, we have compared the D statistic results from the
data E map and SMICA simulations. The specifications of
the data £ map and SMICA simulations are described in
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FIG. 8. «a values from the data E map (black points) and median
of a from 300 FFP10 simulations (blue crosses).

Sec. II. We apply P78 mask to the Planck data and the
simulations and the results of the D statistic over the
masked sky are presented in Fig. 9. The p-value measured
from the data £ map based on the 300 SMICA simulations
is p = 0.23. Our D statistic results do not detect any SI
violation in the data E map. This result concurs with earlier
work done in [26], where the authors have implemented D
statistic on the CMB polarization angle map.

Our analysis using the a estimator and D statistic show
that the data E map is statistically consistent with the
SMICA simulations. As the input CMB E-mode signal in
the SMICA simulations are SI, we conclude that the CMB
E-mode is statistically consistent with the SI approxima-
tion. This conclusion is supported by our demonstration in
Sec. IV that the a estimator and D statistic are sensitive
enough to pick up nSI signal in the presence of SI noise for

50 T T
=== data

=1 sims

w =
=] =]
T T

[
(=]
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10
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FIG.9. The D value obtained from data E map (dashed vertical
line) and the histogram of 300 SMICA simulations (blue color)
computed over the masked sky.

y up to 1. For the data £ map, the effective y is slightly
greater than 1. Hence, if there is a violation of SI in the
CMB E-mode, similar to the one present in the filtered dust
E-mode map used in Sec. IV, we expect to detect it using
the a estimator and D statistic. It is important to note that
the SMICA simulations used in this work to test the SI
of the CMB E-mode contain only the CMB signal and the
noise contributions propagated through the SMICA pipe-
line, with no residual foreground contamination. Hence, the
nondetection of SI violation in the data £ map may be
interpreted as evidence against significant levels of residual
foreground contamination.

VI. DISCUSSION

We have applied the o estimator and the D statistic
methods to the low resolution component separated
SMICA E-mode map from the Planck 2018 data release,
to test for any deviations from SI. We find that the data is
consistent with the assumption of SI. Previously, the
authors of [19], found a 4-o deviation from SI in the
Planck 2015 E-mode data. They compared the Planck 2015
component separated E-mode maps with the 44 GHz and
70 GHz simulations. While it is not ideal to compare the
component separated maps with individual frequency
simulations, the authors at the time were limited by the
availability of FFP simulations processed through the same
component separation pipeline. The stereographic projec-
tion can introduce errors in the computation of @ and this
error was estimated and was shown to go as high as 24% in
Table 2 of [19]. Our analysis is an improvement over the
results in [19], in two ways. First, we use the method of
computing « directly on the sphere, avoiding the errors
arising due to the stereographic projection. Second, we use
the SMICA simulations, which are better suited for
comparison with the component separated data maps, than
the individual frequency simulations. The SMICA simu-
lations which we use in our analysis, also have reduced
noise levels and better modeling of systematics as com-
pared to the corresponding simulations in the 2015 release.

VII. CONCLUSIONS

The a estimator and D statistic provide independent tests
of the SI of random fields in real space. For a given random
field, @ quantifies the level of alignment of structures in the
level sets of the field. How far a lies away from unity
toward zero, quantifies the level of alignment of the
structures in the field, and hence is a measure of the
deviation from SI in the field. Similarly, for D statistic
the preferred directionality in the field is measured in terms
of the alignment of the gradient vectors defined for the
field. For an SI map the D value should be close to unity.
Deviation from unity signifies the presence of statistical
anisotropy. For a pixelated map, a is never equal to one
even for an SI map. For this reason, we compare the o
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values computed numerically from observed maps with
those computed from SMICA simulations which are SI. In
this work, we have applied the CMT and D statistic
techniques to the data £ map. We compare the @ and D
statistic values computed from the data £ map with those
computed from SMICA simulations. The main results of
the data analysis are as follows:

(i) We find that the data E map is statistically consistent
with SMICA simulations based on the results
obtained using the two estimators—a and D sta-
tistic. Since the input CMB E-mode signal in
SMICA simulations are SI, we can conclude that
the CMB E-mode polarization is statistically con-
sistent with SI approximation.

(i) We test the sensitivity of the o estimator and D
statistic for low signal-to-noise case. We add differ-
ent levels of SI white noise to a nSI dust signal map
and check the level of noise at which our two
estimators are sensitive enough to pick up the input
nSI dust signal. We find that with the addition of SI
white noise to the original nSI signal, the resultant
map becomes SI for very low noise levels (y < 1).
For data E map, the signal-to-noise ratio in the map
space is marginally greater than 1. Our SI estimators
are sensitive enough for the level of noise present in
the data E map.
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APPENDIX: D STATISTIC ANALYSIS
OF SMICA NOISE SIMULATIONS

Here we present the D statistic analysis of the SMICA
noise-only simulations. Since the SMICA noise-only sim-
ulations include the residual systematics which may have a
preferred direction, we expect the D statistic to pick this up.
We apply the same post-processing to the noise-only
simulations as we applied to the data in Sec. IT A, to
produce noise-only simulations at Ngg. = 128 with
Gaussian beam smoothing of 1° FWHM. Next, we apply
the binary P78 mask to these simulations and then run the
D statistic analysis on them.

The median of D values from the 300 noise-only
simulations is 1.281 £ 0.014. We compare this value with
those obtained from the SI simulations shown in Fig. 7, and
find that there is no overlap between the two. We conclude
that the SMICA noise-only simulations have directionality,
based on the D statistic.
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