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Abstract

The connection of the SMBHs to their host galaxies is evidenced by the strong cor-

relation between the mass of SMBH and velocity dispersion, σ, of the stars in rest of

the galaxy. This is somewhat surprising because the velocity dispersion is measured

for the stars which are too far from the SMBH to be a�ected by its gravitational �eld.

Its origin is still a topic of debate. This relation is important since the mass of SMBH

which is very di�cult to measure directly can be calculated with relatively better pre-

cision using a quantity σ (the velocity dispersion of stars far from the SMBH) which

is easier to measure for nearby systems. The cosmological M•− σ relation is given by

the equation

M•(z) = k0(z)σp(z), (1)

We worked on the static as well as the dynamical aspects of this relation. For the static

aspect, we deduce the M• − σ relation for elliptical (spherical) galaxies by calculating

σ from their observed intensity pro�les and for the dynamical aspect, we compute the

evolution of this relation as an application of our model of the evolution of mass and

spin of the black hole.

To investigate the M• − σ relation, we consider realistic elliptical (spherical) galaxy

pro�les that are taken to follow a single power law density pro�le given by ρ(r) =

ρ0(r/r0)−γ or the Nuker intensity pro�le. We calculate the density using Abel's formula

in the latter case by employing the derived stellar potential in both cases, we derive

the distribution function f(E) of the stars in presence of the supermassive black hole

(SMBH) at the center and hence compute the line of sight (LOS) velocity dispersion

as a function of radius. For the typical range of values for masses of SMBH, we obtain

M• ∝ σp for di�erent pro�les. An analytical relation p = (2γ + 6)/(2 + γ) is found

which is in reasonable agreement with observations (for γ = 0.75 - 1.4, p = 3.6 - 5.3).

Assuming that a proportionality relation holds between the black hole mass and bulge



mass, M• = fbMb, and applying this to several galaxies we �nd the individual best �t

values of p as a function of f ; also by minimizing χ2, we �nd the best �t global p and

fb. For Nuker pro�les we �nd that p = 3.81 ± 0.004 and fb = (1.23 ± 0.09) × 10−3

which are consistent with the observed ranges.

We build an evolution model of the central black hole that is mainly dependent on

the processes of gas accretion, the capture of stars, mergers as well as electromag-

netic torque. In the case of gas accretion in the presence of cooling sources, the

�ow is momentum-driven, after which the black hole reaches a saturated mass and

subsequently, it grows only by stellar capture and mergers. We model the evolution

of the black hole mass and spin with the initial seed mass and spin as a function of

redshift in a ΛCDM cosmology. For the stellar capture, we have assumed a power-

law density pro�le for the stellar cusp in a framework of relativistic loss cone theory

that includes the e�ect of the black hole spin, Carter's constant, loss cone angular

momentum, and capture radius. The predicted capture rates of 10−5 − 10−6 yr−1 are

closer to the observed range. We have considered the merger activity to be e�ective

for z . 4, and we self-consistently include the Blandford-Znajek torque for spin evo-

lution. We predict the impact of the evolution on the M• − σ relation and show that

our results are consistent with available observations. We model the speci�c cases

of the quasars ULASJ134208.10+092838.61 (z=7.54), ULASJ112001.48+064124.3

(z=7.08) and DELSJ003836.10-152723.6 (z=7.02) and retrodict their formation pa-

rameters at z = {10, 15, 20} to �nd that heavy seeds of 107M� are required. Our

model is useful for building demographics of the black holes, in constraining formation

scenarios and in providing inputs for future simulations.

We present some preliminary results of the derivation of the M• − σ relation in ax-

isymmetric systems and a formulation of initial seed mass and spin functions of black

holes. We also discuss future work stemming from the ideas in this Thesis.
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Introduction

Image: jpl.nasa.gov

1.1 Introduction to Schwarzschild and Kerr black

holes

A black hole in the Universe is formed when due to the self-gravity a massive

object collapses into a very high-density object, where the escape velocity is of

the order of the speed of light, c. This is thought to be a possible origin of the

supermassive black holes (SMBH) ≥ 106M�, at the centers of galaxies. Using

Newtonian mechanics, the escape velocity, vesc, for an object of mass M with

radius R, is calculated as

vesc =

(
2GM

R

)1/2

. (1.1)

For a very dense object vesc ∼ c, general relativistic treatment is required. Schwarzschild

gave the solution for non-spinning black holes, from Einstein's �eld equations in
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general relativity (Kolb 2010). It is a lucky coincidence that the exact general rel-

ativistic solutions for Schwarzschild black holes match with eqn. (1.1) for vesc = c

(Kolb 2010). This type of black holes form when, object of mass M , collapses into

a radius of Rs given as

Rs =
GM

c2
, (1.2)

which is termed as the Schwarzschild radius. At the boundary of this radius

vesc ∼ c. Inside this region resides another region, which is completely unknown to

the rest of the universe, because no information can come out of it, not even light.

This is termed as the event horizon of the black holes [see Fig. 1.1]. Accretion is

Figure 1.1: Schematic of a Schwarzschild black hole. Image: galileospendu-
lum.org

one of the main sources of black hole growth, which is the in�ow of matter towards

the black hole from its surroundings due to its high gravity. Before the matter falls

into the black hole, it orbits the hole. For the case of Schwarzschild black holes,

there is an innermost stable circular orbit, near to the black hole, after which there

are no stable orbits. The radius of this orbit is 3Rs.

Stars usually acquire angular momentum during their formation and that will exist

during the evolution phase, unless some braking mechanism removes the angular

momentum. Therefore, the black holes formed from the collapse of these rotating

stars will be rotating too. The Kerr solution to the �eld equations of Einstein give
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more general results for rotating black holes than the Schwarzschild solution [see

Fig. 1.2].

Figure 1.2: Schematic of a Kerr black hole. Image: Kolb (2010).

When the space-time is in�nite, both types of black holes will have gravitational

singularities. For the Schwarzschild case, this will be a point, while for the Kerr

black holes, this will be ring lying in a plane that is exactly perpendicular to the

axis of rotation. Outside the outer event horizon of Kerr black holes, there is

another surface called the static limit in the shape of an oblate spheroid which

touches the polar points of the event horizon. The middle region is termed as the

ergosphere, where, the spacetime is dragged in the direction of rotation with speed

≥ c (rest of the Universe is assumed to be at rest). In the static limit, this speed

is c. This implies that matter can not stay at rest inside the ergosphere. There

can be one possibility that the matter even leaves the ergosphere and the energy

required for that is gained from the black hole, which in turn reduces the spin of

the black hole (Kolb 2010). In this process, the Kerr black hole can become a

Schwarzschild black hole, when the spin value reaches zero.
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1.2 Important parameters in the study of black

hole physics

One remarkable thing is that, the properties of a black hole can completely be

described by two parameters, mass, M• and the angular momentum, J . The third

parameter can come into play when the black hole has an electric charge Q. Now,

the existence of a black hole for a given set of these three parameters, {M•, J,Q},

is determined by a inequality given as (Frolov and Novikov 1998)

M2
• − (J/M•)

2 −Q2 ≥ 0, (1.3)

where, G = c = 1. The solutions of the Einstein-Maxwell equations for black holes,

for which the parameters, {M•, J,Q}, obey this relation given by eqn. (1.3), will

be unique solutions.

For neutral black holes, when, the angular momentum is zero, the geometry will

be spherical and for rotating cases, in presence of the angular momentum, the

structure is axially symmetric. Therefore, at distances far from the black hole, it

can be treated as an extended system, and the potential is assumed for a generally

extended body (Frolov and Novikov 1998). Therefore, following simple multi-

pole decomposition, mass (µ`), current (j`), multipole coe�cients (` > 0) can be

de�ned. The lowest order of these parameters are (Frolov and Novikov 1998)

µ0 = M•, j1 = J = jM2
• . (1.4)

Therefore, black holes having the same mass and angular momentum will have

the same gravitational properties. Thus, the mass, M• and the spin parameter, j

of the black hole are two very important parameters for studying the physics of

the black holes and their evolution as a function of redshift. This motivates us

to study the mass and spin evolution of the black holes to throw some light on
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the evolutionary history of the black holes which may have a connection to the

evolution of the galaxy within which they reside.

1.3 Growth of the mass and the spin of black holes

This black hole mass and spin grow via mainly four processes - accretion, stellar

capture, mergers, and electromagnetic torque.

1.3.1 Accretion

Accretion means the in�ow of matter towards the central gravitating object or the

center of mass of an extended system. Accretion onto super-massive or near solar

mass black holes is suggested to be the power source from black holes. All accreting

matter is in the gaseous form. Therefore, the free electrons and ions interact only

by collisions. For gas to accrete some of it must lose angular momentum and move

inward. For the sake of conservation of angular momentum, other gas must gain

angular momentum and move outward. Accretion of gas on the black holes can be

in spherical shape as well as in disc-like shape (Frank et al. 2002). It depends on the

angular momentum of the accreting gas. When the radial motion is signi�cant the

�ow is spherical. In this case, the angular momentum is very small. In spherical

accretion, the gas mostly carries much entropy into the hole without releasing it

by radiation, because the �ow is almost free falling with velocity c
(
r

Rs

) 1
2

. When

the angular momentum of the accreting matter is too large to hit the surface

of the compact star directly, it forms accretion disc [see Fig. 1.3]. While the

accreting matter spirals down towards the gravity center of the compact star,

its gravitational energy is released. One part of this energy increases the kinetic

energy of rotation and the other part turns into thermal energy. A fraction of the
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heat gets converted into radiation which partially escapes taking some amount of

internal energy along with it. Radiation emitted from a black hole, depends on

the state of the in�owing gas, because, it does not have any outer hard surface.

The amount of radiation emitted is more in case of high-temperature �ow than the

low-temperature one because, the higher the temperature, higher the work done

by the gravity resulting in more radiation. The feedback caused by the out�ow,

causes the black hole to reach a saturated mass, after which the accretion process

stops or contributes very little to the �ow [Silk and Rees (1998), King (2003)]. We

discuss these processes in detail later in Chapter 3.

Figure 1.3: An artistic image of accretion onto a black hole (Cygnus X-1),
Image courtesy: sun.org.

1.3.2 Stellar capture

Another process that helps the black holes to grow their mass is stellar capture.

This capture can occur in two ways: tidal disruption and direct capture. Beyond

a certain critical mass (Mc = 3× 108M�), the stars get directly captured instead

of getting tidally disrupted. This critical mass depends also on the black hole

spin (we discuss this in detail in Chapter 5). Though the contribution of stellar

capture in mass growth of black hole is small, it plays an important role after

the saturation time, when the accretion stops. We calculate the tidal radius, rt,

the capture radius, rc and the loss cone radius, r` = Max[rt, rc], in a relativistic
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framework and using steady loss cone theory, to determine the rate of capture

which in turn gives the mass growth rate by stellar capture process (discussed

in Chapter 6). The loss cone is a region in velocity space, where, if a star is

within that region, it is captured by the black hole [see Fig. 1.4]. Alexander and

Figure 1.4: A schematic of the loss cone. Image courtesy: Alexander (2015).

Bar-Or (2017b) have studied the evolution of the mass of the black hole by star

capture as well as accretion with and without merger activity. Non-relativistic

loss cone theory is used for their analysis but the spin evolution of the black

hole has not been considered. The rates of tidal disruption events for a single

black hole in steady-state have been derived by di�erent authors. Syer and Ulmer

(1999) found the rate of capture to be 10−6 − 10−4 yr−1 gal−1 for main-sequence

stars in the galaxies following the Nuker pro�le. Magorrian and Tremaine (1999),

found that the rate is 10−9 − 10−4 yr−1 gal−1, using a two integral model for

non-spherical galaxies (triaxial) assuming that all the stars have centrophobic

loop orbits and where the re�lling of loss cone occurs by the two-body relaxation

process. Rauch and Tremaine (1996) found an enhancement in the rate of tidal

disruption due to resonant relaxation processes for stars bound to the black hole,

but Rauch and Ingalls (1998) �nd that in the presence of relativistic precession

of black hole masses ≥ 108M�, this e�ect is quenched. By assuming a single

mass star distribution and solving the steady-state Fokker - Planck equation for

51 galaxies following the Nuker pro�le, Wang and Merritt (2004), derived the rate

of disruption to be 10−9−10−4 yr−1 with revisedM•−σ relation. Brockamp et al.

(2011), using Aarseth's NBODY 6 code found the rate to be 10−6−10−4 yr−1 gal−1

assuming the Sersic pro�le with n = 4 for initial stellar distribution around black
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hole. Kesden (2012) derived the capture rate in presence of the spin of the back

hole to be ∼ 10−5 − 10−6 yr−1. Mageshwaran and Mangalam (2015) derived the

rate of 104 − 10−5 yr−1 for M8 = 10−2 − 102 in a non-relativistic steady-state loss

cone regime. Komossa (2015), Donley et al. (2002) (ROSAT surveys), and Gezari

et al. (2009) (in UV band) have provided observed values of TDEs for di�erent

wavelength bands to be about 10−5yr−1. We predicted capture rates of 10−5−10−6

yr−1 (discussed in Chapter 6), which are closer to the observed range.

1.3.3 Mergers

The merger of galaxies is a very important phenomenon in the �eld of Astrophysics,

because, it can give implications about the galaxy evolution. During the merger

process, the dark matter halos of two interacting galaxies get a�ected. Due to the

violent relaxation process during mergers, the stars completely change their orbits

losing any trace of the previous orbits (Binney and Tremaine 2008). In the new

galaxy formed, stars are found mainly following random orbits, which is common

in elliptical galaxies. In this course of galaxy mergers, the black holes residing at

the centers of these galaxies also merge forming a single black hole at the center

of the �nal galaxy. This can be an important fuel in the growth of supermassive

black holes. This merger process is studied by simulations [see Fig. 1.5]. For this,

one has to take care of the gravity along with hydrodynamics, dissipation and also

energy and mass released due to supernovae. The galaxy can be formed due to

several mergers causing the dark matter halos of the galaxies to merge together.

This is called the merger tree (Binney and Tremaine 2008) and can be studied

by the N - body simulations [Sheth and Lemson (1999), Somerville and Kolatt

(1999)]. These mergers cause changes in the black hole spin also along with an

increase in the mass of SMBH. Mergers can be classi�ed, depending on the sizes

of the galaxies involved, as major and minor mergers.
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Major mergers

Major mergers are those, where, the merging galaxies are of almost the same size

(Binney and Tremaine 2008). Active galactic nuclei (AGN) can be formed because

of a major merger if the colliding angle and the colliding speed are appropriate.

The �nal galaxy formed are elliptical galaxies. Many quasars are believed to be

driven by this mechanism. This type of merger causes the spin of the black hole

typically to increase.

Minor mergers

Minor mergers are those, where one galaxy is of su�ciently less size than the other

one (Binney and Tremaine 2008). In this process, the larger galaxy does not get

a�ected much, but it eats up the smaller one. In this type of merger, the black

hole typically spins down.

Figure 1.5: A simulated image showing a major merger of two galaxies. Image
courtesy: arstechnica.com.

Stewart et al. (2009) uses high-resolution ΛCDM N -body simulations for pre-

dicting merger rates in dark matter halos and investigate the scaling of common

merger-related observables with luminosity, stellar mass, merger mass ratio, and

redshift z = 4 → 0. They derive the expression for merger rate (infall) valid for

0 ≤ z . 4 considering the peak of merger activity while the dependence on di�er-

ent parameters has been determined using simple �tting functions. The developed

simulations which contained 512 particles of mass 3.16 × 108h−1M� which was
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evolved within a comoving volume of 80h−1 Mpc on a side by the Adaptive Re-

�nement Tree (ART) N - body code developed by Kravtsov et al. (1997, 2004).

Using this, we derive the mass growth rate of SMBH by mergers considering a

connection between the black hole and the dark matter halo mass. The detailed

derivation has been given in Chapter 6. Gammie et al. (2004), Hughes and Bland-

ford (2003) provide theories for the spin evolution of the black holes. Gammie et al.

(2004) show that the major mergers cause the black hole to spin up while the mi-

nor merger causes spin down. We discuss the details of spin evolution by these

authors in Chapter 5 and we use these factors to derive the complete evolution

model of black holes in Chapter 6.

1.3.4 Blandford-Znajek e�ect

The Blandford-Znajek e�ect is the process of energy extraction from a rotating

black hole by a strong magnetic �eld. Blandford and Znajek (1977) derive the

process by which the magnetic �eld drives the powerful jet from the black hole

from its rotational energy [see Fig. 1.6]. When magnetic �eld lines thread a

rotating black hole which is supported by external currents that are �owing in

an equatorial disc, there will be induced electrical potential di�erence. For large

�eld strengths, the vacuum will be unstable to the cascade production of electron-

positron pair creating a force-free magnetosphere leading to an electromagnetic

extraction of energy and angular momentum. Blandford and Znajek (1977) have

derived approximate solutions for the black holes rotating slowly to provide a

model of the central engine of the AGN. The advantage of this model is that the

relativistic electrons can be accelerated e�ciently compared to other models. This

causes the spin-down of the black hole due to the extraction of energy. We discuss

the Blandford-Znajek model (Frank et al. 2002) in detail in Chapter 5.
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Figure 1.6: Blandford Znajek e�ect for producing jets. Image courtesy: Draw-
ing by Matt Zimet based on a sketch by Kip Thorne from the book- Black Holes
& Time Warps: Einstein's Outrageous Legacy.

1.4 Evolution of black holes

Mangalam (2015) used a theoretical model for mass and spin evolution of the

accreting black hole taking into account the spin-down torque caused by the elec-

trodynamical jet. The evolution in the presence and absence of accretion was

studied for di�erent cases such as the thin disk, Bondi accretion, and the MHD

disk. Dubois et al. (2014) has derived the mass evolution through simulations

caused by accretion and mergers and used semi-analytic methods for spin evolu-

tion for the same. Our calculations, for deriving the joint black hole mass and

spin evolution, consider all the possible factors contributing to the growth of black

holes like accretion, stellar capture, mergers, and BZ torque simultaneously; pre-

viously, there were models for determination of the evolution for these di�erent

factors separately. We have built a model for the evolution of measured spin of

black holes and estimated its impact on the M• − σ relation (which we discuss

next) in ΛCDM cosmology that is predicated on the physics of gas accretion and

star capture, electromagnetic torque, and mergers (discussed in Chapter 6). We

have self-consistently solved coupled equations to get a more complete picture of
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the evolution of the spin and mass of the SMBH. Our results seem to agree well

with a preliminary analysis of observational data of di�erent galaxies (discussed

in Chapter 6).

1.5 Galaxy scaling relations

For studying the nuclear activity in galaxies, in the standard models, it is assumed

that, black holes exist at their centers with masses 106− 109 M� and they emit in

radio wavelengths (Frolov and Novikov 1998). For many galaxies, having active

nuclei, there is evidence for the existence of these black holes. The mass of the

black hole is ∼ 10−3 times of that of the galactic bulge [Merritt and Ferrarese

(2001), Marconi and Hunt (2003), Häring and Rix (2004), Bhattacharyya and

Mangalam (2018)], though, for higher masses, the relation is said to be nonlinear

and given by M• ∝M1.12
b (Häring and Rix 2004). Kormendy and Ho (2013) have

also found the following relation:

(
M•

109M�

)
= 0.49+0.06

−0.05

(
Mb

1011M�

)1.17±0.08

. (1.5)

King and Pounds (2015) also derive M• −Mb relation to be a linear one, where

they use momentum driven �ow (discussed in detail in chapter 3), to determine the

bulge mass and the saturated black hole mass and they conclude that the ratio is

∼ 10−3. For simplicity, a proportionality relation is not a very bad approximation.

This relation between the bulge mass and the black hole mass encourages us to

consider the co-evolution of the galaxy and the black hole at its center.

The relation of the SMBHs to the host galaxies can be found by the strong corre-

lation of the mass of SMBH and velocity dispersion, σ, of the stars in the galaxy.

This is quite surprising because the stars are far from the black hole for σ to be
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a�ected by the gravitational �eld of the hole. The origin of this correlation is still

a topic of debate.

The general form of the M• − σ relation is given by

M• = kσp, (1.6)

which was �rst reported by Ferrarese and Merritt (2000) with p = 4.8 ± 0.5,

whereas, Gebhardt et al. (2000) reported the index, p = 3.75 ± 0.3. But this

relation was published some �ve years later after the �rst attempt to derive the

relation between M• and the luminosity, L. The relationship between σ and lu-

minosity of elliptical galaxy, Lell, is given by the Faber - Jackson relation which

states that

Lell ∝ σα,

where, α ≈ 4. Faber - Jackson relation is considered as a projection of the funda-

mental plane of elliptical galaxies. If the elliptical galaxies are plotted in a three

dimensional plane described by the e�ective radius, Re, average surface brightness,

µe and central velocity dispersion σ0, all the galaxies lie in one plane called the

fundamental plane. Any of these three parameters can be determined if one knows

the other two. This plane is described by

log(Re) = a log(σ0) + b log < µ >e + constant.

From literature values of a and b are within 1.17 − 1.61 and (−0.84) − (−0.74).

The fundamental plane of elliptical galaxies is shown in Fig. 1.7. For the disk

galaxies, a connection between luminosity, Ldisk and the rotation curve amplitude,

∆V , is provided by the Tully - Fisher relation, which is

ldisk = (∆v)β,

with β = 4. With these relations and by the dynamically measured M•, one can
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Figure 1.7: The fundamental plane of the elliptical galaxies is shown. Image
courtesy: Saglia et al. (1997), Wegner et al. (1999).

derive the M• − σ relation. But, this was not done prior to 2000, because, the

scatter in the plot of M• − σ was larger compared to the infrared M• − L plot

and almost comparable to the visual M• − L plot. After it was realized that,

the scatter depends largely on the selection of the sample (Ferrarese and Merritt

2000), progress was made in this �eld. When the M• - σ relation was derived

for a restricted sample showing central velocity rise, the scatter found was almost

consistent with the zero intensity scatter (shown in Fig. 1.8) and Ferrarese and

Merritt (2000), deduced p = 4.8 ± 0.5, as mentioned earlier. A list of values of

p determined by di�erent authors is given in Chapter 3 [see Table 3.1]. There

are some theoretical derivations of these relations given by Silk and Rees (1998),

King (2003) and Zhao et al. (2002). In the �rst two arguments this relation

automatically comes from the concept of feedback in accretion process during the

growth of the black hole, while, the last work �nds the M• − σ relation through

stellar capture (shown for an isothermal sphere case). Natarajan and Treister

(2009) found that the upper limit of the mass of black hole can be set by these

arguments provided by King (2003), King (2005), (Silk and Rees 1998), (Haehnelt

et al. 1998), all of which �nally lead to the observed M•−σ naturally. We discuss

these models in detail in Chapter 3.
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Figure 1.8: (a) Plot of M• vs bulge visual luminosity, MB, (b) M• − σ plot,
where, open circles correspond to the masses derived from mostly stellar dynam-
ical measurements and the �lled circles are for the restricted sample with high
central velocity. Image courtesy: Ferrarese and Merritt (2000).

The evolution of the M• − σ relation has received a lot of attention. Shen et al.

(2015) and Salviander and Shields (2013) have analyzed the evolution of this re-

lation from SDSS data for quasars and they report no evolution of the relation up

to z ' 1. Robertson et al. (2006) studied the evolution of this relation till z = 6,

for merging disk galaxies through hydrodynamic simulations and they have taken

into account the e�ects of accretion and supernovae. They also found almost no

change in p(z) and a very small change of the constant, k0(z), similarly to Shankar

et al. (2009a). From their analysis, k0(z) ∝ (1 + z)α, with α = 0.33. Sijacki et al.

(2015) and Taylor and Kobayashi (2016), from the Numerical simulations, of the

large-scale structure of the Universe, found almost up to z ' 4 that, this relation

holds without much variation. We also study the evolution of p(z) and k as an

application of our theoretical model (details are given in Chapter 6). We consider

the Faber - Jackson relation to be the initial condition, which provides that p = 5

at formation redshift and due to saturation of the black hole mass, we see that it

reaches near 4 at z ' 0. But, this value of p remains well within 4 - 5, as found

observationally [details are given in Chapter 6].
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1.6 Black hole archaeology and the black hole ini-

tial seed mass and spin function

The model, we construct to study the evolution of black hole mass and spin, has an

application to black hole archaeology (discussed in Chapter 6). We run our model

backwards in time taking the observed mass and spin value to be the initial con-

dition and retrieve the initial seed mass and spin values at the formation redshift.

We derive the the seed spin and mass of the black holes by retrodicting our model

from the known parameters of the quasars ULASJ134208.10+092838.61 (z=7.54),

ULASJ112001.48+064124.3 (z=7.08) and DELSJ003836.10-152723.6 (z=7.02) (Campi-

tiello et al. 2019) (details are in Chapter 6). Black hole initial seed mass and spin

functions are another unsolved problem in Astrophysics. The probability distri-

bution of the spin parameter of the halo λ can be obtained by cosmological N -

body simulations and Lodato and Natarajan (2007), Warren et al. (1992) use log

normal distributions. Using that probability and the Schechter mass function for

black holes we derive some preliminary results for the initial seed mass and spin

function of black holes which we present in chapter 7.

1.7 Goals of the Thesis

1. Studying the static as well as the dynamical aspect of the M• − σ relation.

2. Building a complete evolution model of black holes and to throw some light

on the black hole-galaxy co-evolution as an application of our model.

3. As a part of the static aspect, to provide a detailed model of determining the

M• − σ relation and M• −Mb relation simultaneously from observed inten-

sity pro�les or the mass density pro�les of the galaxies (assuming spherical

geometry).
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4. To compute the stellar capture rate in the relativistic framework by deriving

the tidal radius, capture radius and the loss cone radius in the relativistic

case and applying them to the capture rate calculation in steady loss cone

theory.

5. To build a complete model of the evolution of the black hole starting from

an initial seed mass and spin, taking into account all the e�ects that can

contribute to the spin and mass evolution of black holes - accretion, stellar

capture, mergers and Blandford-Znajek torque.

6. As an application of our evolution model, we study the evolution of theM•−σ

relation and compare that with observations. This forms the dynamical

study of the M• − σ relation.

7. Black hole archaeology is another application of our evolution model, where

we run our model backward to guess the seed mass and spin of the black hole

at formation redshift considering the present values as the initial conditions.

8. Sketch theM•−σ relation in the axisymmetric system theoretically and also

derive the initial seed mass and spin functions of the black holes.

9. To provide a context for future work.

1.8 The plan of the Thesis

The chapter-wise plan of the thesis is given below and the concept �ow chart is

shown in Fig 1.9.

• In chapter 2, we discuss the basics of stellar dynamics, derive the formulae

that connects the observables to the distribution function in both spherical

and axisymmetric system, which we use later on in Chapter 4 and 7, to
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build our model of deriving the M• − σ relation in spherical systems and

in axisymmetric systems respectively. Then, we also derive the distribution

function for some known potential-density models. Also, we discuss the

Jeans equations in spherical as well as axisymmetric systems which we will

be using in our future work for building some models.

• In chapter 3, we present an introduction to the M• − σ relation followed

by the literature survey of this relation. Then, we discuss some well known

theoretical models to explain this relation and lastly we present a literature

survey of the evolution of the M• − σ relation.

• In chapter 4, we present our model of derivingM•−σ relation and theM•−

Mb relation simultaneously, from the mass density pro�le of the power-law

galaxies and the observed Nuker intensity pro�les of some elliptical galaxies

assuming a spherical structure. This is published in Bhattacharyya and

Mangalam (2018).

• In chapter 5, we sketch the basic physics of the growth of the black hole via

accretion, stellar capture, mergers, electromagnetic torque and we present a

literature study of the mass and spin evolution of the black holes through

these processes.

• In chapter 6, we present our relativistic treatment of the tidal, capture and

loss cone radius, thereby deriving the relativistic stellar capture rate fol-

lowed by our complete model of black hole evolution including all the e�ects

mentioned in Chapter 5. We also discuss two applications of our model:

evolution of the M• − σ relation and the black hole archaeology and its use

in some recently observed quasars. This is under review in ApJ.

• In chapter 7, we discuss two of our ongoing projects: M• − σ relation in

axisymmetric systems and the initial seed mass and spin function. We for-

mulate the problems and present the preliminary results found, and discuss

our future work.
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• In chapter 8, we summarize our work, discuss the the novel aspects, and

its implications for future studies. We also present the caveats and future

theoretical approaches.

1.9 Resource summary

In this chapter, we presented basic introduction to black holes, its evolution, the

M• − σ evolution, their literature survey along with the motivation of the Thesis.

We also presented a schematic of the Thesis and its goals in Fig. 1.9. The main

resources we used for discussion are - Kolb (2010), Binney and Tremaine (2008),

Frolov and Novikov (1998), and Frank et al. (2002).
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Chapter 2

Stellar Dynamics

Image: astro.yale.edu

2.1 Introduction

The fundamental and basic building blocks of our universe are the galaxies and

to understand them, one of the main tools is studying stellar dynamics. A stellar

system is an assembly of point masses or stars which are gravitationally bound

to each other and stellar dynamics is a subject where, their motions are studied

under their self- gravitational �eld. In this chapter, we discuss the relationship

of the observable quantities in stellar dynamics, with the distribution function

(DF) of the stars followed by the discussion of the DF of spherical systems in

isotropic as well as anisotropic cases with examples of some known potential-

density pairs. Then, we discuss the Jeans equations in spherical systems. The next

section provides the DF of the axisymmetric systems along with some special cases

followed by the Jeans equations in axisymmetric systems and their importance.
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2.2 Relationship between the observables and the

DF

The probability of �nding a star irrespective of its velocity, v, at a �xed position

x, per unit volume is given by (Binney and Tremaine 2008)

ν(x) =

∫
d3vf(x,v), (2.1)

where f(x,v) is the phase space DF of the stars. Integration of f(x,v) over the

phase space provides the probability of �nding a particular star in the phase space

volume. The probability distribution of the velocities of stars at x is given by the

ratio of f(x,v) and ν(x) as

Px(v) =
f(x,v)

ν(x)
, (2.2)

which is measurable near the Sun [Binney and Merri�eld (1998), �10.3]. For the

external galaxies, Px can be measured via the line of sight (LOS) velocity distribu-

tion [Binney and Merri�eld (1998), �11.1], for a fraction of stars F (v||)dv||, whose

LOS velocities lie within v||+ dv||. Since, the stars are quite far from us, any point

x in the galaxy can be considered to lie in parallel with unit vector ŝ, connecting

the galaxy center and the observer. Therefore, the components of x and v, in the

parallel and perpendicular direction of the LOS is written as

x|| = x · ŝ, v|| = v · ŝ, x⊥ = x− x||ŝ, v⊥ = v − v||ŝ. (2.3)

F (v||, x⊥) can be expressed as

F (v||,x⊥) =

∫
dx||ν(x)

∫
d2v⊥Px(v⊥ + v||ŝ)∫
dx||ν(x)

=

∫
dx||

∫
d2v⊥f(x,v)∫

dx||
∫

d2vf(x,v)
(2.4)
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The LOS velocity distribution is quanti�ed the mean velocity in the direction of

LOS, v̄||, and the dispersion about this mean value, σ|| given as

v||(x⊥) =

∫
dv||v||F (v||,x⊥)

=

∫
dx||ν(x)ŝ · v̄∫

dx||ν(x)
, (2.5)

where

v̄(x) ≡
∫

d3vvPx(v) =
1

ν(x)

∫
d3vf(x,v), (2.6)

and

σ2
|| ≡

∫
dv||(v|| − v̄||)2F (v||,x⊥)

=

∫
dx||d

3vv2
||f(x, v)∫

dx||d3vf(x, v)
. (2.7)

We use this eqn. (2.7) later on to derive the LOS velocity dispersion of galaxies

and determine the M• − σ relation.

2.3 DF for spherical systems

Spherical models are important to study in astrophysics, because, globular clusters,

some elliptical galaxies, and galaxy clusters are almost in spherical shape and

spherical models are simpler to study and understand. The systems have one

stellar population, thus have a single f , where, the stellar potential is obtained by

the Poisson's equation from mass density (which is proportional to
∫
fd3v) and

the f is obtained via the collisionless Boltzmann equation using the potential, are

called the self - consistent systems. The relative potential, ψ, and energy, ε, of a

star are de�ned as (Binney and Tremaine 2008)

ψ ≡ −Φ + Φ0, ε ≡ −H + Φ0 = ψ − 1

2
v2, (2.8)
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where the Hamiltonian, H = Φ(x) +
1

2
v2, and Φ0 is a constant, chosen such that

the DF is always positive, i.e, f > 0 for ε > 0 and f = 0 for ε ≤ 0. For an isolated

system having its extent upto∞, Φ0 = 0 and the relative energy, in this case, will

be equal to that of gravitational binding energy. Therefore, the Poisson's equation

with new parameters is written as

∇2ψ = −4πGρ, (2.9)

where the boundary condition is that ψ → Φ0 for |x| → ∞.

2.3.1 Ergodic DF for spherical systems

For a spherical system with a known potential Φ(r), an ergodic DF can be obtained

which will depend on the HamiltonianH(x,v), thus on the phase space coordinate.

The DF can be expressed as a function of ε while f , depends only on the magnitude

of the velocity vector v and not its direction. Therefore, ν(r), the probability

density is written as (Binney and Tremaine 2008)

ν(r) = 4π

∫
dvv2f(ψ − 1

2
v2) = 4π

∫ ψ

0

dεf(ε)
√

2(ψ − ε). (2.10)

Since, ψ is a monotonic function of r, ν(r) can be written as ν(ψ). Therefore

1√
8π
ν(ψ) = 2

∫ ψ

0

dεf(ε)
√

(ψ − ε). (2.11)

Di�erentiation of both sides with respect to ψ gives

1√
8π

dν

dψ
=

∫ ψ

0

dε
f(ε)√
ψ − ε

. (2.12)
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Using Abel's equation, the form of DF is obtained as

f(ε) =
1√
8π2

d

dε

∫ ε

0

dν

dψ

dψ√
ε− ψ

. (2.13)

This is called Eddington's formula (Binney and Tremaine 2008). We use this eqn.

(2.13) later on in Chapter 5 to �nd the DF of the stars of the galaxy (assuming

a spherical geometry), which in turn gives the velocity dispersion and we use that

to compute the M• − σ relation [the model is shown in Fig. 2.1].

Data of

Nuker

intensity

pro�le

and data

of bulge

mass

(Mb)

Stellar mass

density [ρ(r)]

Stellar po-

tential (ψ∗)

Total potential

(ψ = ψ∗ + ψ•)

DF of stars [f(ε)]

Line of sight ve-

locity dispersion

of stars (σ)

M• − σ relation
Mass of the

SMBH (M•)

Abel inversion Assuming spherical shell structure

+ BH potential

Eddington's formula

Proportionality of Mb and M•

Figure 2.1: The model for derivingM•−σ relation in presence of central black
holes.

2.3.1.1 Ergodic DF for some known models

Double power law density models

Observationally, it has been seen that many elliptical galaxies show double power

law luminosity pro�les that can be �t by a power - law, then, whose index changes
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after some intermediate point, but, the transition is smooth. These type of pro�les

are called double power law pro�les [Binney and Merri�eld (1998), �4.3.1]. It is also

suggested from numerical simulations that, the mass density also follows similar

type of pro�les [Binney and Tremaine (2008), �9.3]. The general mass density for

these models is given by

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α
, (2.14)

where a is the length scale and α and β are the power law indices. From eqn.

(2.14), the total mass within radius r is

M(r) = 4πρ0a
3

∫ r/a

0

ds
s2−α

(1 + s)β−α
. (2.15)

The potential of these models is computed as

Φ = −G
∫ ∞
r

dr
M(r)

r2
. (2.16)

We discuss two such simple models here.

(a) Hernquist model

Substituting α = 1 and β = 4, in the double power law pro�le (Hernquist 1990)

ρ(r) =
ρ0

(r/a)(1 + r/a)3
, (2.17)

M(r) = 4πρ0a
3

∫ r/a

0

ds
s

(1 + s)3
, (2.18)

Φ = −4πGρ0a
2 1

2(1 + r/a)
. (2.19)

If ψ̃ is de�ned as

ψ̃ ≡ ψa

GM
= − Φa

GM
,
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then, from eqn. (2.19)
r

a
=

1

ψ̃
− 1. (2.20)

Using this eqn. (2.20), in eqn. (2.17), ν(ψ) for Hernquist model is obtained as

ν(ψ) =
ρ

M
=

1

2πa3

ψ̃4

1− ψ̃
. (2.21)

By using Eddington's formula [eqn. (2.13)] with the eqns. (2.21, 2.19), the ergodic

DF for the Hernquist model is

fH(ε) =
1√

2(2π)3(GMa)3/2

√
ε̃

(1− ε̃)2
×
[
(1−2ε̃)(8ε̃2−8ε̃−3)+

3 sin−1
√
ε̃√

ε̃(1− ε̃)

]
, (2.22)

where ε̃ ≡ −Ea/GM .

(b) Ja�e model

α = 2 and β = 4, in the double power law pro�le gives the Ja�e model (Ja�e

1983). For this model

ρ(r) =
ρ0

(r/a)2(1 + r/a)2
, (2.23)

M(r) = 4πρ0a
3

∫ r/a

0

ds
1

(1 + s)2
, (2.24)

Φ = −4πGρ0a
2 ln(1 + r/a)

r/a
. (2.25)

For Ja�e model,
r

a
=

1

eψ̃ − 1
, where ψ̃ is the same as de�ned above. Therefore,

the resulting ν in this case is

ν =
1

4πa3
e−2ψ̃(eψ̃ − 1)4. (2.26)

Now, using eqns. (2.26, 2.25) in Eddington's formula [eqn. (2.13)], the ergodic

DF for Ja�e model is given by

fJ(ε) =
1

2π3(GMa)3/2

[
F−(
√

2ε̃)−
√

2F−(
√
ε)−

√
2F+(

√
ε̃) + F+(

√
2ε̃)

]
, (2.27)
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where F± is Dawson's integral.

Isochrone models

Isochrone potential is given as (Binney and Tremaine 2008)

Φ(r) = − GM

b+
√
b2 + r2

, (2.28)

where b is the scale length. Using Poisson's equation, for this potential [eqn.

(2.28)] the corresponding mass density of the isochrone model is given by

ρ(r) =
1

4πG

1

r2

d

dr

(
r2 dΦ

dr

)
= M

[
3(b+ a)a2 − r2(b+ 3a)

4π(b+ a)3a3

]
. (2.29)

Therefore, the central density is obtained as

ρ(0) =
3M

16πb3
. (2.30)

Using eqns. (2.29, 2.28) in Eddington's formula [eqn. (2.13)], the ergodic DF for

isochrone model is given by (Hénon 1960)

fI(ε̃) =
1√

2(2π)3(GMb)3/2

√
ε̃

[2(1− ε̃)]4[
27− 66ε̃+ 320ε̃2 − 240ε̃3 + 64ε̃4 + 3(16ε̃2 + 28ε̃− 9)

sin−1
√
ε̃√

ε̃(1− ε̃)

]
. (2.31)

2.3.2 DF for anisotropic spherical systems

If we take the DF of the form f(E), it is not always possible that f ≥0. But if it

is of the form f(E,L) built by only using circular orbits, then we can always get

non-negative DFs (Binney and Tremaine 2008).
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Reason for getting non-negative DFs

The circular orbits of relative energy ε′ are combined with their angular momen-

tum vectors which are distributed over a sphere uniformly to generate a spherical

shell with the radii of the circular orbits with relative energy ε′. Then, any den-

sity pro�le can be formed by weighing the spherical shells radially. The DF of

the spherical shells is proportional to the product of the two delta functions as

fs(ε, L) = δ(ε − ε′)δ[L − Lc(ε′)]. Here, Lc(ε′) is the angular momentum of a cir-

cular orbit of relative energy ε′. Therefore, the DF generating required density

distribution ν(r) is given by (Binney and Tremaine 2008)

fc(ε, L) ≡
∫ εmax

0

dε′fs(ε
′, L)F (ε′) = F (ε)δ[L− Lc(ε)]. (2.32)

Here, F (ε′) is a suitably chosen non-negative function. If circular orbit DF along

with the non-negative ergodic function exists together, then, the two DFs are

joined by a continuum of DFs as

fα ≡ αfi + (1− α)fc, (0 ≤ α ≤ 1), (2.33)

where fc is for circular orbit (associated with vanishing radial dispersion σr) and

fi is for ergodic DF. Increase of α makes the orbits more eccentric and σr also

increases and tends to σθ. If α > 1, then σr > σθ, but as the eccentricity increases,

the constraints on ν(r) that fα > 0 becomes severe. If ν(r) is such that ergodic

DF is negative somewhere, then also the circular orbit DF is non negative, making

the total contribution to be non - negative.

Anisotropy parameter

The anisotropy parameter is de�ned as (Binney and Tremaine 2008)

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

= 1−
v2
θ + v2

φ

2v2
r ,

(2.34)
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which de�nes the degree of anisotropy of the system. Some special cases are listed

below :

• If all the orbits are circular, σr = 0 and β = −∞.

• For ergodic DFs, β = 0.

• For all radial orbits, σθ = σφ = 0 and β = 1.

• For β < 0, the DFs are called tangentially biased.

• For β > 0, the DFs are called radially biased.

Models with constant anisotropy

Here, the anisotropy parameter β takes some �xed non - zero value at all radii

when the DF can be written in the form (Binney and Tremaine 2008)

f(ε, L) = L−2βf1(ε), (2.35)

where f1 is an arbitrary non - negative function. Here, we will be using polar

coordinates in velocity space as [see Fig. (2.2)]

Figure 2.2: The velocity vector v, LOS direction ŝ and the de�nition of the
angles α, η and ψ′ are sketched.
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vr = v cos η, vθ = v sin η cosψ′, vφ = v sin η sinψ′. (2.36)

The density pro�le can be written as

ν(r) =

∫
d3~vf(ε, L) = 2π

∫ π

0

dη sin η

∫ √2ψ

0

dvv2f(ψ − 1

2
v2, rv sin η) (2.37)

Since, vt =
√
v2
θ + v2

φ = v sin η and L = rvt, f(ε, L) can be expressed as

f(ε, L) = (rvt)
−2βf1(ψ − 1

2
v2) = (rv sin η)−2βf1(ψ(r)− 1

2
v2). (2.38)

Therefore

ν(r) = 2π

∫ π

0

dη sin1−2β η

∫ ∞
0

dvr−2βv2−2βf1(ψ(r)− 1

2
v2)

=
2πIβ
r2β

∫ ∞
0

dvv2−2βf1(ψ(r)− 1

2
v2) (2.39)

where Iβ =

∫ π

0

dη sin1−2β η =
√
π

(−β!

(1
2
− β)!

(β < 1).

Now, ε = ψ − 1
2
v2, which implies dε = −vdv. Therefore, ν can be written as

ν =
2πIβ
r2β

∫ ψ

0

dε(2(ψ − ε))
1−2β

2 f1(ε)

⇒ 2β−
1
2

2πIβ
r2βν =

∫ ψ

0

dε
f1(ε)

(ψ − ε)β− 1
2

(2.40)

This equation resembles the Abel's integral equation as long as 1
2
< β < 3

2
. If

value of β goes below or equal to
1

2
, then, by taking one or more derivatives of

this equation it can be reduced again to Abel's equation, since, the term r2βν is a

function of ψ.

If the LOS direction is considered to be an arbitrary direction, say ŝ, which lies

in the r − θ plane (we have to orient our coordinate system in velocity space like
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that), then

ŝ = cosαr̂ + sinαθ̂. (2.41)

The projected velocity in this plane of LOS will be then

~v.ŝ = v|| = v cos η cosα + v sin η cosψ′ sinα. (2.42)

The direction of LOS is now x|| = r sinα. Therefore, x⊥ = ω = r sinα.

Now, x|| =
√
r2 − r2 sin2 α =

√
r2 − ω2. This implies

dx|| =
1

2

1√
r2 − ω2

d(r2), (2.43)

where r2 can vary from ω2 to ∞. The expression of velocity dispersion along the

LOS is given as

σ2
|| =

∫
dx||d

3~vv2
||f(x, v)∫

dx||d3~vf(x, v)
. (2.44)

The numerator, N , and the denominator, D, are calculated separately, where

D =

∫
dx||d

3~vf(x, v)

=
1

2

∫ ∞
r2=ω2

d(r2)√
r2 − ω2

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v2dv sin ηdηdψ′
1

(rv sin η)2β
f1(ε)

After changing the variable of the �rst integral to x =
r2

ω2
and performing the

integral over ψ′, the expression becomes

π

∫ ∞
1

ω2dx

ω
√
x− 1

1

xβω2β

∫ π

0

sin1−2β ηdη

∫ √2ψ

v=0

v2dvv−2βf1(ε)

By changing the variable of the �rst integral by u =
1

x
, writing the second integral

as Jβ and changing the variable of the third integral to ε, by using the relation:
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v2 = 2(ψ − ε), the �nal expression for the denominator becomes

D = πω1−2βJβ

∫ 1

0

du

u2−β
√

1
u
− 1

∫ ψ

0

dε(2(ψ − ε))
1
2
−βf1(ε). (2.45)

Similarly the numerator is also calculated to be given by

N =

∫
dx||d

3~vv2
||f(x, v)

=
1

2

∫ ∞
r2=ω2

d(r2)√
r2 − ω2

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v2dv sin ηdηdψ′v2

(
cos η

√
r2 − ω2

√
r2

+ sin η cosψ′
√
ω2

r2

)2
1

(rv sin η)2β
f1(ε)

Using the variable x as before, the expression is obtained as

ω1−2β

2

∫ ∞
1

dx

xβ
√
x− 1

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v4−2βdv

[
sin1−2β η cos2 η

x− 1

x

+
2 sin2 η cos η cosψ′

sin2β η

√
x− 1

x
+ sin3−2β η cos2 ψ′

1

x

]
f1(ε)dηdψ′

Again, the variable x is changed to u and variable v to ε is de�ned above and the

�nal expression derived is

N = ω1−2β2
1
2
−β
[
2πJ1β

∫ 1

0

du
√

1
u
− 1

u1−β

∫ ψ

0

dε(ψ − ε)
3
2
−βf1(ε)

+J2βJ3β

∫ 1

0

du

u1−β
√

1
u
− 1

∫ ψ

0

dε(ψ − ε)
3
2
−βf1(ε)

]
, (2.46)

where

J1β =

∫ π

0

sin1−2β η cos2 ηdη, (2.47)
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J2β =

∫ π

0

sin3−2β ηdη, (2.48)

J3β =

∫ 2π

0

cos2 ψ′dψ′. (2.49)

The ratio of these two has been calculated to �nd the LOS velocity dispersion

(σ|| =
N

D
) for three di�erent cases (β = 1

2
, β = −1

2
, β = 0), for the Hernquist

model. f1(ε) for the three cases are obtained separately and plugging that in the

equation for σ||, the LOS velocity dispersion is calculated.

(i) β = 1
2

For this model if β = 1
2
, then, the denominator of RHS of eqn. (2.40) is a constant

and the DF can be found to be

f1(ψ) =
1

2π2

d

dψ
(rν)

=
3ε̃2

4π3GMa
, (2.50)

where ε̃ =
εa

GM
. The plot of σ|| vs

(
r

a

)
is shown in Fig. 2.3.

(ii) β = −1
2

Here, the form of the DF will be

f1(ψ) =
1

2π2

d2(ν/r)

dψ2
. (2.51)

Expressing as a function of ε in case of Hernquist model, this gives,

f1(ε) =
1

4π3(GMa)2

d2

dε̃2

(
ε̃5

(1− ε̃)2

)
. (2.52)

(iii) β = 0

As mentioned earlier, in this case the DF is ergodic. Here, the DF is

f(ε, L) = f1(ε) =
1

√
2(2π)3(GMa)

3
2

√
ε̃

(1− ε̃)2
×
[
(1−2ε̃)(8ε̃2−8ε̃−3)+

3 sin−1
√
ε̃√

ε̃(1− ε̃

]
(2.53)
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Figure 2.3: The LOS velocity dispersion (in units of
√
GM/a), is shown as a

function of the projected radius for di�erent values of the anisotropy parameter,
β. For the isotropic case, β = 0, the dispersion falls of near the center [Binney
and Tremaine (2008), Fig. 4.4].

2.4 Jeans equations in spherical systems

The collisionless Boltzmann equation in spherical polar coordinate system is (Bin-

ney and Tremaine 2008)

∂f

∂t
+ pr

∂f

∂r
+
pφ
r2

∂f

∂θ
+

pφ
r2 sin2 θ

∂f

∂φ
−
(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr

−
(
∂Φ

∂θ
−
p2
φ cos θ

r2 sin3 θ

)
∂f

∂pθ
− ∂Φ

∂φ

∂f

∂pφ
= 0, (2.54)

where pr, pθ and pφ are the canonical momenta in the r, θ and φ directions re-

spectively, and are given as

pr = ṙ = vr; pθ = r2θ̇ = rvθ; pφ = r2 sin2 θφ̇ = r sin θvφ. (2.55)

For a time independent and spherical system,
∂f

∂t
,
∂Φ

∂θ
,
∂Φ

∂φ
, and

∂f

∂φ
will be zero.

∂f

∂θ
may not be zero, because, through the pφ term in eqn. (2.55), any dependence

on vφ may lead to dependence of f on θ. Therefore, for such a system, eqn. (2.54)
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is written as

pr
∂f

∂r
+
pφ
r2

∂f

∂θ
−
(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr
+
p2
φ cos θ

r2 sin3 θ

∂f

∂pθ
= 0. (2.56)

Again ∫
dprdpθdpφf = r2 sin θ

∫
dvrdvφdvφf = r2 sin θν. (2.57)

After multiplying eqn. (2.56) by prdprdpθdpφ, integrating over all momenta, then

using eqn. (2.57) and the divergence theorem for elimination of the derivatives

done with respect to the all the momenta, the �nal version becomes

∂

∂r
(r2 sin θνp2

r) +
∂

∂θ
(sin θνprpθ) + r2 sin θν

(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
= 0. (2.58)

For a spherical static system, the DF is an even function of vr, leading to prpθ =

rvrvθ = 0. Then, after using eqn. (2.57) and dividing by r2 sin θ, eqn. (2.58)

�nally takes the form

d(νv2
r)

dr
+ ν

(
∂Φ

∂r
−

2v2
r − v2

θ − v2
φ

r

)
= 0. (2.59)

Finally, using eqn. (2.34), the eqn. (2.59) can be expressed in terms of β, the

anisotropy parameter as (Binney and Tremaine 2008)

d(νv2
r)

dr
+ 2

β

r
νv2

r = −ν ∂Φ

∂r
. (2.60)

This equation can be used to derive the velocity dispersion of the stars in the

galaxy for known stellar potential or mass density as done by Häring and Rix

(2004). This can be an useful tool to derive the M• − σ relation analytically, for

known black hole masses and stellar density pro�les.
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2.5 DFs for axisymmetric density distributions

Here, the DF is of the form f(ε,Lz). It can be written as a sum of two parts

f+(ε, Lz) and f−(ε, Lz), where the probability density ν(R, z) is independent of f−

and the azimuthal �ux νvφ is independent of f+. The �rst part is even in Lz and

the second part is odd in Lz (Binney and Tremaine 2008).

Coordinates

Here, cylindrical coordinates are used for the velocity space (vm, ψ, vφ). Velocities

in position coordinates can be written as (Binney and Tremaine 2008)

vR = vm cosψ, vz = vm sinψ. (2.61)

Therefore, the volume in velocity coordinates can be written as d3v = vmdvmdψdvφ.

The Jacobian of transformation from (vφ, vm) to (ε, Lz) is

∂(ε, Lz)

∂(vφ, vm)
=

∣∣∣∣∣∣
∂ε
∂vφ

∂Lz
∂vφ

∂ε
∂vm

∂Lz
∂vm

∣∣∣∣∣∣ (2.62)

Now ε and Lz is written as

ε = ψ − 1

2
(v2
R + v2

φ + v2
z), Lz = Rvφ. (2.63)

Therefore,
∂ε

∂vφ
= −vφ,

∂Lz
∂vφ

= R,
∂ε

∂vm
= −vm,

∂Lz
∂vm

= 0, (2.64)

which results in the Jacobian
∂(ε, Lz)

∂(vφ, vm)
= Rvm. The volume element becomes

dεdψdLz = Rvmdψdvφ, and thus

1

R
dεdψdLz = vmdψdvφ. (2.65)
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Therefore, the density van be calculated as

ρ(R, z) =
2π

R

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

−R
√

2(ψ−ε)
dLzf(ε, Lz)

=
4π

R

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf+(ε, Lz) (2.66)

The velocity dispersion tensor is isotropic, which leads to

σ2
R = v̄2

R =
1

ρ

∫
dvRdvφdvzv

2
Rf(ε, Lz)

=
1

ρ

∫
vmdvmdvφdψv2

m cos2 ψf(ε, Lz) (2.67)

=
4π

ρR

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf+(ε, Lz)[ψ − ε−
L2
z

2R2
] (2.68)

Now, the expression of σ2
z becomes

σ2
z =

4π

ρR

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf+(ε, Lz)[ψ − ε−
L2
z

2R2
] (2.69)

Therefore, σ2
z = σ2

R. Again σ
2
φ = v̄2

φ − (v̄φ)2, and vφ is given by

vφ =
1

ρ

∫
dvRdvφdvzvφf(ε, Lz)

=
4π

ρR2

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzLzf−(ε, Lz) (2.70)

This equation is odd in Lz. Now

v2
φ =

4π

ρR3

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzL
2
zf+(ε, Lz), (2.71)

which is even in Lz.
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2.5.1 Evans model

Here, we have used Frickle component of DF, where the DF is written in the form

f = εζL2η
z . For the DF to be positive always the value of Lz can be both positive

or negative and η should take only integer values. But, the quantity ζ can take

any value. The term 2η ensures that the component is even in Lz and has non

vanishing density. Then the expression of density becomes (Binney and Tremaine

2008)

ρ(R, z) =
4π

R

∫ ψ

0

dεεζ
∫ R
√

2(ψ−ε)

0

dLzL
2η
z

=
R2η2η+ 5

2π

2η + 1

∫ ψ

0

dεεζ(ψ − ε)η+ 1
2 (2.72)

For solving this integral let us consider
ε

ψ
= t, which implies dε = ψdt. Therefore,

ρ(R, z) =
R2η2η+ 5

2πψζ+η+ 3
2

2η + 1

∫ 1

0

dttζ(1− t)η+ 1
2

= R2η2η+ 5
2πψζ+η+ 3

2
ζ!(η − 1

2
)!

(ζ + η + 3
2
)!

(2.73)

If ρ = R2ηψζ , then, DF will be of the form L2η
z ε

ζ−η− 3
2 . The full expression of DF

is given by

f =
2−η+ 3

2 ζ!

π(η − 1
2
)!(ζ − η − 3

2
)!
L2η
z ε

ζ−η− 3
2 . (2.74)

For the Evans model, the potential is considered to be a function of m2, where

m2 = R2
c +R2 +

z2

q2
φ

. Poisson's equation in cylindrical coordinates is written as

− 4πGρ =
1

R

∂

∂R

[
R
∂ψ

∂R

]
+
∂2ψ

∂z2
. (2.75)

After performing some algebric operations, we obtain

1

R

∂

∂R
(R

∂ψ

∂R
) = 4ψ′ + 4R2ψ′′,
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∂2ψ

∂z2
=

4(m2 −R2
c −R2)

q2
φ

ψ′′ +
2ψ′

q2
φ

which implies that

− 4πGρ =
4(m2 −R2

c)

q2
φ

ψ′′ + 4(1− 1

q2
φ

)R2ψ′′ + (4 +
2

q2
φ

)ψ′. (2.76)

where all the derivatives are performed with respect tom2. Now, ψ = ψa

[
R2
c

m2

]y
, y >

0, and ψa = const. Therefore, m2 = R2
c(
ψ

ψa
)−

1
y , and

ψ′ = ψaR
2y
c (−y)(m2)−(y+1)

= −ψay
R2
c

(
ψ

ψa
)1+ 1

y (2.77)

and the double derivative is written as

ψ′′ = y(y + 1)
ψa
R4
c

(
ψ

ψa
)1+ 2

y . (2.78)

Thus, the expression for ρ becomes

ρ =
y[2− (2y + 1)q−2

φ ]ψa

2πGR2
c

(
ψ

ψa
)1+ 1

y +
y(y + 1)ψa
πq2

φGR
2
c

(
ψ

ψa
)1+ 2

y

(
1+(1− q2

φ)
R2

R2
c

)
. (2.79)

The DF can be written as a sum of three Frickle components

f(ε, Lz) = Aε
1
y
− 1

2 +B

(
1 +

CL2
z

ε

)
ε

2
y
− 1

2 , (2.80)

where

A =
y[2− (2y + 1)q−2

φ ](1 + 1
y
)!

(2π)
5
2 ( 1

y
− 1

2
)!GR2

cψ
1
y
a

, (2.81)

B =
2y(y + 1)(1 + 2

y
)!

(2π)
5
2 ( 2

y
− 1

2
)!q2

φGR
2
cψ

2
y
a

, (2.82)

C =
(1− q2

φ)

R2
c

(
2

y
− 1

2

)
. (2.83)
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The models of this type are called Evans model (Evans 1993).

2.5.2 Calculating observables for Evans model

Figure 2.4: Geometry of the LOS direction in the axisymmetric system.

Calculation of v||

From Fig. 2.4, we de�ne v||

v|| = vR sin θ + vφ cos θ. (2.84)

and v̄|| is calculated from

v̄|| =

∫
dx||d

3~vv||f(~x,~v)

Σ

=
1

Σ

[ ∫
dx sin θ

∫
d3~vvRf(ε, Lz) +

∫
dx cos θ

∫
d3~vvφf(ε, Lz)

]
=

1

Σ

[ ∫ ∞
−∞

dx sin θρv̄R +

∫ ∞
−∞

dx cos θρv̄φ

]
(2.85)
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Since, v̄R = 0, the �rst term vanishes. Therefore,

v̄|| =
2

Σ

∫ ∞
0

dx cos θρv̄φ

=
2R′

Σ

∫ ∞
R′

ρv̄φ√
R2 −R′2

dR (2.86)

For solving this, it is assumed that
R

Rc

= t, and
R′

Rc

= p; therefore,

v̄|| =
2pRc

Σ

∫ ∞
p

ρv̄φ√
t2 − p2

dt. (2.87)

Next, v̄φ is calculated:

v̄φ =
4πα0

ρR2

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzLzf1(ε, Lz). (2.88)

=
4πα0

ρR2

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzLz[Aε
1
y
− 1

2 +B(1 +
CL2

z

ε
)ε

2
y
− 1

2 ]

=
4πα0

ρ

[ ∫ ψ

0

dεAε
1
y
− 1

2 (ψ − ε) +

∫ ψ

0

dεBε
2
y
− 1

2 (ψ − ε) +

∫ ψ

0

dεBCR2ε
2
y
− 1

2 (ψ − ε)2

]

=
4πα0

ρ

[
Aψ

1
y

+ 3
2(

1
y

+ 1
2

)(
1
y

+ 3
2

) +
Bψ

2
y

+ 3
2(

2
y

+ 1
2

)(
2
y

+ 3
2

) +BCR2ψ
2
y

+ 3
2

(
1

2
y
− 1

2

− 2
2
y

+ 1
2

+
1

2
y

+ 3
2

)]

=
16πα0y

2

ρ
ψ

1
y

+ 3
2

[
A

(2 + y)(2 + 3y)
+
Bψ

1
y (4− y + 4yCR2)

(4 + 3y)(16− y2)

]

Now, inserting the values of A, B and C, it is found that

ρv̄φ =
16πα0y

2ψ
3
2
a

(2π)
5
2GR2

c

[
1

1 + t2

]1+ 3y
2
[
P +Q

(
1

1 + t2

)
(4− y + 4ySt2)

]
, (2.89)
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where P = A(2π)
5
2GR2

cψ
1
y
a

(2+y)(2+3y)
, Q = B(2π)

5
2GR2

cψ
2
y
a

(4+3y)(16−y2)
and S = (1− q2)

(
2
y
− 1

2

)
. Therefore

v̄||(p) =
32Rcπα0y

2ψ
3
2
a

(2π)
5
2GR2

cΣ
p

∫ ∞
p

dt√
t2 − p2

[
1

1 + t2

]1+ 3y
2
[
P+Q

(
1

1 + t2

)
(4−y+4ySt2)

]
.

(2.90)

where the integral is called as I1. Next, Σ is calculated by the expression

Σ(R′) =

∫
dxρ(R) = 2

∫ ∞
R′

RdR√
R2 −R′2

ρ(R). (2.91)

It can be written as a function of p as

Σ(p) = 2RC

∫ ∞
p

tdt√
t2 − p2

ρ(t). (2.92)

From the de�nition of ψ as a function of m2 (putting z = 0 in the expression), ρ

can be simpli�ed to be

ρ(t) =
ψa

2πGR2
C

[
y

(
2−2y + 1

q2

)(
1

1 + t2

)y+1

+
2y(y + 1)

q2

(
1

1 + t2

)y+2

(1+(1−q2)t2)

]
.

(2.93)

Therefore, the expression for Σ is

Σ(p) =
ψa

πGRC

∫ ∞
p

tdt√
t2 − p2

[
y

(
2−2y + 1

q2

)(
1

1 + t2

)y+1

+
2y(y + 1)

q2

(
1

1 + t2

)y+2

(1+(1−q2)t2)

]
,

(2.94)

where, the integral is written as I2. The �nal expression of v̄|| can be written as

v||(p) =
32RCπα0y

2ψ
3
2
aGRCπp

(2π)
5
2GR2

Cψa

I1

I2

=
16πα0y

2
√
ψap

(2π)
3
2

I1

I2

. (2.95)
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Similarly, the average of the square of the LOS velocity can be written as

v̄2
|| =

1

Σ

∫
dx||

∫
d3~vv2

||f

=
1

Σ

[ ∫
dx|| sin

2 θ

∫
d3~vv2

Rf +

∫
dx|| cos2 θ

∫
d3~vv2

φf

]
. (2.96)

The cross term vRvφ vanishes as the dispersion tensor is diagonal in (R, φ, z)

coordinates. The expression �nally becomes

v̄2
|| =

2

Σ

∫ ∞
R′

dR

√
R2 −R′2
R

ρv̄2
R +

2R′2

Σ

∫ ∞
R′

dR
1

R
√
R2 −R′2

ρv̄2
φ. (2.97)

Now v̄2
R and v̄2

φ are calculated:

v̄2
R =

4π

ρR

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf+(ε, Lz)

(
ψ − ε− L2

z

2R2

)
(2.98)

=
4π

ρR

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLz

[
Aε

1
y
− 1

2 +B

(
1 +

CL2
z

ε

)
ε

2
y
− 1

2

](
ψ − ε− L2

z

2R2

)

=
4π

ρ

∫ ψ

0

[
(Aε

1
y
− 1

2 +Bε
2
y
− 1

2 )
√

2(ψ − ε)
3
2 +

BC

3
R22
√

2ε
2
y
− 3

2 (ψ − ε)
5
2−

2
√

2

6
(Aε

1
y
− 1

2 +Bε
2
y
− 1

2 )(ψ − ε)
3
2 − 2

√
2

5
BCR2ε

2
y
− 3

2 (ψ − ε)
5
2

]
dε

Next, the variable of the integral is changed to x, which is de�ned as dx =
ε

ψ
.

The expression becomes

v̄2
R =

4π

ρ

[
A

2
√

2

3
ψ

1
y
− 1

2ψ
3
2ψ

∫ 1

0

(
3

2
− 1

2
)x

1
y
− 1

2 (1− x)
3
2 dx

+B
2
√

2

3
ψ

2
y
− 1

2ψ
3
2ψ

∫ 1

0

(
3

2
− 1

2
)x

2
y
− 1

2 (1− x)
3
2 dx
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+BC
2

3
2

15
ψ

2
y
− 1

2ψ
5
2ψR2

∫ 1

0

(
5− 3

)
x

2
y
− 3

2 (1− x)
5
2 dx

]

The �nal expression is

v̄2
R =

4π

ρ

[
A

2
√

2

3
ψ

1
y

+2

∫ 1

0

x
1
y
− 1

2 (1− x)
3
2 dx+B

2
√

2

3
ψ

2
y

+2

∫ 1

0

x
2
y
− 1

2 (1− x)
3
2 dx

+BC
2

5
2

15
ψ

2
y

+2R2

∫ 1

0

x
2
y
− 3

2 (1− x)
5
2 dx

]
(2.99)

The RHS of the equation is written as
ψ2
a

2πGR2
Cρ
I4. Similarly, v̄2

φ is also calculated:

v̄2
φ =

4π

ρR3

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf+(ε, Lz)L
2
z. (2.100)

=
4π

ρR3

∫ ψ

0

dε

∫ R
√

2(ψ−ε)
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3
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]

Therefore,

v̄2
φ =

4π

ρ

[
A

2
√

2

3
ψ

1
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+2
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0

x
1
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2 (1− x)
3
2dx+B

2
√

2

3
ψ

2
y

+2
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5
2 dx

]
(2.101)
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The RHS of this equation is written in the form
ψ2
a

2πGR2
Cρ
I3. Now, the expression

of v̄2
|| as a function of p is given by

v̄2
|| =

ψ2
a

πGΣ

(∫ ∞
p

√
t2 − p2

t
I4dt+ p2

∫ ∞
p

I3

t
√
t2 − p2

dt

)
. (2.102)

The velocity dispersion along the LOS is calculated as

σ|| =
√
v̄2
|| − (v̄||2). (2.103)

Another observable for the Evans model (Evans 1993), the eccentricity, is de�ned

as, e = 1 − b

a
, where b and a are the intercepts of the isophotes along the minor

and major axes respectively. To calculate this observable, the expression ρ(R, z)

is used and R2 = x2 + y2 is considered. Now, to get the ellipse in the sky plane

for isophotes, this expression is integrated over all x ( x ranges from −∞ to +∞).

Thus, the isophotes in Y -Z plane are obtained. Next, the intercepts along the

two axes are calculated and here, the projected distance is along the Y - axis. All

calculated observables are shown in a single �gure [Fig. 2.5] with the projected

distance along the LOS in units of RC .

2.6 Jeans equations in axisymmetric systems

The collisionless Boltzmann equation in cylindrical coordinates is

∂f

∂t
+ pR

∂f

∂R
+
pφ
R2

∂f

∂φ
+ pz

∂f

∂z
−
(
∂Φ

∂R
−
p2
φ

R3

)
∂f

∂pR

−∂Φ

∂φ

∂f

∂pφ
− ∂Φ

∂z

∂f

∂pz
= 0, (2.104)

where pR, pφ, pz are the momentum in the direction of r, φ and z. For steady

state axisymmetric systems, all the derivatives of t and φ vanish. Under these
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Figure 2.5: All the projected quantities are plotted against the major axis (red
shows v|| (in units of

√
ψa), purple represents σ|| (in units of

√
ψa), blue is for

v||

σ||
and green represents e), seen edge - on. The parameters used are α = 0.813,

y = 0.09 and qφ = 0.85 [Binney and Tremaine (2008), Fig. 4.12].

conditions, eqn. (2.104), takes the form

pR
∂f

∂R
+ pz

∂f

∂z
−
(
∂Φ

∂R
−
p2
φ

R3

)
∂f

∂pR
− ∂Φ

∂z

∂f

∂pz
= 0. (2.105)

After multiplying eqn. (2.105) by pR, and integrating it over all momenta and

�nally replacing the momenta with their form in terms of velocities, the eqn.

(2.105) takes the following form

∂(νv2
R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v2
R − v2

φ

R

)
+
∂Φ

∂R
= 0. (2.106)

The other Jeans equations are obtained by multiplying eqn. (2.105) by pφ and pz,

and integrating over all momenta:

1

R2

∂(R2νvRvφ)

∂R
+
∂(νvRvφ)

∂z
= 0, (2.107)

1

R

∂(RνvRvφ)

∂R
+
∂(νv2

z)

∂z
+ ν

∂Φ

∂z
= 0. (2.108)
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For known ν and Φ, the three Jeans equations [eqns. (2.106,2.107,2.108)] generate

three constraints on six equations which are second order in velocity moments.

But, unlike the spherical case, these equations are not closed in these systems.

Higher order Jeans equations (nth order) can be related to nth order moments

of ν(R, z) or νvφ(R, z) respectively for even and odd values of n (Magorrian and

Binney 1994) and these moments are similar to what can be derived from the

Hunter - Qian algorithm (Hunter and Qian 1993), for calculation of the DF in

axisymmetric systems, f(E,Lz).

2.7 Resource summary

1. In this chapter, we discussed the basics of the stellar dynamics [Binney and

Tremaine (2008), Binney and Merri�eld (1998)], which we use later on to

build our model to derive the M• − σ relation in spherical as well as in

axisymmetric systems (Chapters 4 & 7).

2. We show derivations of the DFs followed by the LOS velocity dispersion,

which is an observable quantity, for the spherical systems for both the

isotropic and anisotropic cases (Binney and Tremaine 2008), with their ap-

plication to some known potential-density models [Hernquist (1990), Ja�e

(1983), Hénon (1960)].

3. We also derived the DF and the LOS velocity dispersion in axisymmetric

systems for the Evans model (Evans 1993). We use the same geometry later,

to derive the σ in an axisymmetric system (Chapter 7), for a particular type

of mass density, ρ(m2), given in [Qian et al. (1995), Hunter and Qian (1993)].

4. Jeans equations in both spherical and axisymmetric systems are derived

(Binney and Tremaine 2008). These equations are very useful to derive σ,

for known potential-density pairs. We plan to use Jeans equation in spherical

and axisymmetric systems (Häring and Rix 2004), with the total potential
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(including that of the black hole), and a known mass density model, to

derive σ; this can be used to give a better model for the M• − σ relation

from theoretical considerations.





Chapter 3

M• − σ relation Image: ned.ipac.caltech.edu

3.1 Introduction

It is now widely accepted that all massive galaxies have supermassive black holes

at their centers. At distances close to the centers of these galaxies, stellar or gas

motions are completely dominated by the gravity of the SMBH than that of the

nearby stars. The relation of the SMBHs to their host galaxies can be seen by the

strong correlation between the mass of SMBH and the velocity dispersion, σ, of

the stars in the galaxy. This is somewhat surprising because the stars are too far

from the SMBH for the velocity dispersion to be a�ected by its gravitational �eld.

Its origin is still a topic of debate. But this relation is important since the mass of

SMBH which is very di�cult to measure directly can be calculated with relatively

better precision using a quantity σ (evaluated far from the SMBH) which is easier

to measure.
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The M• − σ relation is given by the equation

M• = kσp, (3.1)

where, p = 4 − 5. M• - σ relation was �rst reported by Ferrarese and Merritt

(2000) with the index p = 4.8± 0.5, whereas, Gebhardt et al. (2000) reported p =

3.75 ± 0.3. Later on, many more studies came up with some other values which

we list in Table 3.1.

3.2 Signi�cance of the M• - σ relation

• Even after setting up a perfect correlation between SMBH mass and spheroid

mass in the early universe also, it is di�cult to see how it could survive galaxy

mergers that convert disks into bulges and can also channel the gas into the

nucleus which produce uncorrelated changes in M• and Mb. In order to

maintain a correlation between these two quantities, some sort of �negative

feedback" processes may be going on which helps the SMBH regulate its

growth.

• The M• - σ relation has provided the motivation to study the correlation of

the SMBH with the components of its host galaxies.

• These relations suggest that the formation of the SMBH is tightly correlated

with its host spheroid (galaxy or the bulge).

• Study of these relations can provide clues to the formation and growth of

the SMBHs.
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3.3 Literature survey of the M• - σ relation

Ferrarese and Merritt (2000) used symmetric linear regression method for their

analysis and in this process, both the variables M• and σ had a unique error

in measurements, as well as intrinsic scatter, while Gebhardt et al. (2000) used

non-symmetrical least square regression, where it was assumed that σ had no

uncertainty in measurement and M• had same uncertainty for all. This relation is

observed in ellipticals and evolved bulges. Debattista et al. (2013) claim that their

latest measurements indicate that there is no evidence of o�set for this relation

between ellipticals and classical bulges. Table 3.1 shows the values of the indices

determined by di�erent authors using di�erent techniques.

# References p Comments

1 Ferrarese and Merritt (2000) 4.8 ± 0.5 12 elliptical galaxies with known σ

2 Gebhardt et al. (2000) 3.75 ± 0.3 26 galaxies with measured M• and σ

3 Merritt and Ferrarese (2001) 4.72 ± 0.36 27 galaxies with measured M• and σ

4 Ferrarese (2002) 4.58 ± 0.52 16 spirals and 20 elliptical galaxies

5 Tremaine et al. (2002) 4.02 ± 0.32 31 galaxies with measured M• and σ

6 Ferrarese and Ford (2005) 4.86 ± 0.43 SMBHs which have resolved rh

7 Gültekin et al. (2009) 4.24 ± 0.41 Combination of spiral and elliptical galaxies

8 ibid 3.96 ± 0.42 25 Elliptical galaxies

9 Kormendy and Ho (2013) 4.38 ± 0.29 Classical bulges and ellipticals

10 McConnell and Ma (2013) 5.64 ± 0.32 19 late type and 53 early - type galaxies

11 Graham and Scott (2013) 5.53 ± 0.34 51 non - barred galaxies

12 Debattista et al. (2013) 4.39 ± 0.42 Sample of Gültekin et al. (2009) with newly measured M• and σ

13 Batiste et al. (2017) 4.76 ± 0.60 32 quiescent galaxies

14 ibid 3.90 ± 0.93 16 AGN host galaxies

15 Bhattacharyya and Mangalam (2018) 3.81 ± 0.004 12 elliptical galaxies following Nuker intensity pro�le

Table 3.1: A survey of theM•−σ relation giving the historical determinations
of the slopes.
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3.4 Theoretical models of deriving the M• - σ re-

lation

3.4.1 Energy driven �ow

Soltan (1982) suggested that SMBHs grow mostly by the accretion of gas. The

source of the feedback process is probably the out�ow driven by the accretion.

Due to this feedback, after a certain time, the SMBH would reach a mass that

would cause prevention of further accretion because the out�ow would drive away

the ambient gas required for the accretion to continue (Merritt 2013b).

If η is the accretion e�ciency, then the energy released in accretion due to growth

of a SMBH of mass M• is

L = ηṀc2, (3.2)

where, Ṁ is the rate of mass accretion and L is the accretion - driven luminosity.

The accretion e�ciency can be calculated from the comparison of the energy of

the accreting material at in�nity and the energy at the last stable orbit around the

black hole. Taking η = 0.1, in this case, is a very common assumption. Therefore,

the ratio of energy released via accretion and the gravitational binding energy of

the bulge is

ηM•c
2

GM2
b

Rb

≈ η
M•
Mb

c2

σ2

≈ 225

(
η

0.1

)( M•
Mb

10−3

)
(σ200)−2 >> 1, (3.3)

where,Mb is the mass andRb is the radius of the galactic bulge, σ200 =

(
σ

200km s−1

)
.

Therefore, the energy released in the formation of SMBH is enough to unbind the
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total mass of a galactic bulge. This energy is coupled to the gas by Thomson scat-

tering process (scattering of the electromagnetic radiation by charged particles).

The Eddington luminosity is de�ned by eqn. (5.4). When L > LE, the net force

will be outwards and accretion stops. So from eqns. (5.4, 3.2), we obtain the

Eddington accretion rate as

ṀE =
4πGM•mp

ησec
≈ 2.6

(
η

0.1

)−1(
M•

108M�

)
M�yr−1. (3.4)

The SMBHs accrete almost at the Eddington rate during their most luminous

phase (quasar); any accretion rate, which is lower than that would not allow black

holes to grow to the mass observed in the available time. We show this in case of

some quasars in Chapter 6. To calculate the M•, that radiates at Eddington limit

and generates energy to unbind the whole mass of galaxy bulge in one crossing

time, tcross, we used

LE · tcross ≈ LE ·
Rb

σ
≈ GM2

b

Rb

. (3.5)

From virial theorem, GMb ≈ σ2Rb. Therefore,

M• ≈
σeσ

5

4πG2mpc
≈ 3× 105(σ200)5M�, (3.6)

which gives p = 5. Throughout this treatment, it was assumed that, all the energy

produced by the black hole is available to unbind the mass of the bulge, and hence,

it is called "energy driven �ow" (Silk and Rees 1998). The main condition for this

to operate is the assumption that there are no cooling processes involved here.

Haehnelt et al. (1998) also derived p = 5 in their theoretical model. Here, the

relation between the rotational velocity of the self-gravitating disc, vrot, and the

virial velocity of the halo, vhalo is

vrot = j−1
r

(
λ

0.05

)−1
mr

0.1
vhalo, (3.7)

where, λ = JE−0.5G−1M−2.5 is the angular momentum parameter, mr is the ratio

of disc and halo mass while jr is the ratio of the speci�c angular momentum
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of the disc and the virialized halo. They have assumed that vrot does not vary

with radius and that the accretion rate,
βv2

rot

G
, is generated by the gravitational

instabilities which is independent of the radius. β is de�ned as the ratio of the

accretion time scale and the dynamical time scale. If vrot ≥ vhalo, then β ∼ 0.001

will be enough for the accretion to occur (Haehnelt et al. 1998). For vrot >

200(β/0.001)−1/3km s−1, the mass of black hole ∼ 106M� will be accumulated

in ≤ 106 years and after that collapse occurs due to post-Newtonian gravity. In

the initial phase, the accretion will be in Eddington limit and later on the the

growth depends on the feedback process. When, the emitted luminosity exceeds

the energy required for the process of unbinding the mass of the disc, the accretion

stops leading the black hole to a saturated value

M• ∼ 108M�(fkin/0/001)j−5
r

(
λ

0.05

)−5(
mr

0.1

)5
vhalo

400km s−1
, (3.8)

where, fkin is the same as considered by Silk and Rees (1998), which is the lumi-

nosity fraction that has gone to the accretion as kinetic energy. This also follows

the M• − σ relation with p = 5.

3.4.2 Momentum driven �ow

�Momentum - driven �ow� is the one where the part of the energy released by the

black hole is lost to radiation and the remaining part of it a�ects the bulge gas and

unbinds it. In fact, the �ow driven by the accreting black holes are mainly of this

type (King 2003), because there are sources of cooling present in the medium. The

radiation �eld generated from the centre can cool the shocked gas out to a distance

of kiloparsec by the process of inverse Compton cooling (Ciotti and Ostriker 1997).

In this type of �ow, if the optical depth is of the order of unity, the momentum of
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the out�ow is of the order of the photon momentum

Ṁv ≈ LE
c
. (3.9)

If the accretion is at Eddington rate, then,

ṀEv ≈
ηṀEc

2

c

⇒ v ≈ ηc ≈ 0.1c, (3.10)

where, v is the velocity of the gas.

Let us consider a shell of gas with radius R(t), mass fgM(R) (fg is the gas fraction,

M(R) is the total mass including the stars and gas within the radius R) which

has been swept up due to the �ow. Its equation of motion can be written as (King

2003)
d

dt

[
fgM(R)Ṙ

]
+
GfgM(R)[M• +M(R)]

R2
=
LE
c
. (3.11)

Considering the isothermal sphere model for the galactic bulge we take M(R) =
2σ2R

G
so that eqn. (3.11) reduces to the form

d

dt
(RṘ) +

GM•
R

= −2σ2
(
1− M•

Mσ

)
, (3.12)

where,

Mσ ≡
fgσe
πG2mp

σ4 ≈ 2× 108

(
fg
0.1

)
(σ200)4M�. (3.13)

• In eqn. (3.11), if M• < Mσ [given by eqn. (3.13)], then the RHS becomes

negative. For large R, the third term on the LHS can be neglected. There-

fore, we �nally have
d

dt
(RṘ) < 0, which in turn implies that force on the

shell is not enough to lift it beyond a particular distance. Therefore, there

is no solution under this condition (Merritt 2013b).

• If M• > Mσ, then the RHS becomes positive implying that Ṙ2 + RR̈ =

σ2 · const. When the gas stops accelerating, Ṙ becomes constant leading to
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the second term to zero and Ṙ2 → σ2. Thus, the shell can get completely

expelled. The value for the "cosmic baryon function" (ratio of ordinary

matter to the total matter) is approximately 0.16 (Merritt 2013b). Putting

fg = 0.16 in the equation a relation close to the observed M• - σ can be

obtained:

M• = 3.2× 108(σ200)4M�. (3.14)

Therefore, in both the cases, we can see that the M• - σ relation form comes out

naturally. In the second case, the critical mass is larger by a factor of ∼ c

σ
. This

is because in the �rst case, the assumption was that, the energy produced by the

black hole was totally available for driving the gas, but in the �momentum driven

�ow" there are su�cient cooling processes which causes a large fraction of that

energy to be lost in radiation. These arguments put an upper limit to the SMBH

mass. For the active galaxies, which are still undergoing accretion, this implies

that M• < Mσ. The observations are still unable to rule out that some galaxies

may contain underweight SMBHs.

Later on, King (2005) rederived the momentum driven �ow while studying the

AGN-outburst connection, thus the M•−σ relation including the e�ect of gravity

in the slow down process of the shell moving outwards and �nally stalling. The gas

that remains in the bubble can form stars and can be again used for the accretion

and out�ows and in this process the metallicity is enhanced. The expansion of

this bubble occurs on dynamical time scale in the beginning that later on happens

on the Salpeter timescale which depends on the central black hole mass. After

a certain time, when further cooling becomes impossible, the energy driven �ow

starts, which causes faster removal of gas, saturating the black hole mass. The

M• − σ relation was established again, with the constant in front to be twice of

the constant given in King (2003). Natarajan and Treister (2009) showed that the

upper limit of the mass of black hole can be set by the arguments of [King (2003);

King (2005); Silk and Rees (1998); Haehnelt et al. (1998)].
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Murray et al. (2005) used momentum driven formulation using radiation that is

generated by continuum absorption and e�ect of supernovae. They argue that

elliptical galaxies reach the Eddington luminosity at z & 1 and they claim that

this is a possible origin of the Faber-Jackson relation. From their analysis, when

the luminosity reaches the maximum limit, accretion stops saturating the black

hole mass resulting in M• ∝ σ4.

3.4.3 Consumption of stars

The SMBHs can also grow by the consumption of stars. This consumption can be

in two ways:

• The stars those pass within the event horizon or a relatively capture radius

(see Chapter 6) can be directly captured.

• The indirect capture occurs when consumption is done by accreting the gas

from tidally disrupted stars.

In some cases, capture occurs at a "full - loss - cone" rate where the assumption

is the orbits are somehow repopulated at a rate which is equal to or higher to the

rate at which depletion occurs due to capture by the black hole.

Zhao et al. (2002) studied the case of a singular isothermal sphere for the calcula-

tion of the mass growth rate by stellar capture. From the polytropic equation we

can write P = KρΓ. For the isothermal case, the value of Γ is 1.

In the case of hydrostatic equilibrium, we can write

dP

dr
=
kBT

m

dρ

dr
= −ρdΦ

dr
= −ρGM(r)

r2
, (3.15)
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where, P is the pressure, T is the temperature, ρ is the density of the hydro-

static system where the adiabatic constant is Γ and kB is the Boltzmann constant.

Multiplying both sides by
r2m

ρkBT
, we �nd

r2

ρ

dρ

dr
= −GMm

kBT
, (3.16)

and
d

dr

(
r2 d ln ρ

dr

)
= −4πr2ρGm

kBT
. (3.17)

Let, the distribution function be

f(ε) =
ρ1 exp(ε/σ2)

(2πσ2)
3
2

, (3.18)

where, ε = ψ − 1

2
v2. Now, integration over all velocities gives

ρ =

∫
f(ε)d3v = ρ1 exp(ε/σ2). (3.19)

Therefore, the Poisson's equation in this case of isothermal sphere yields

d

dr

(
r2 dlnρ

dr

)
= −4πGr2ρ

σ2
. (3.20)

Taking ρ = Cr−b in the Poisson's equation and solving we get

− b =
4πGC

σ2
r2−b, (3.21)

which implies, b = 2 and C =
σ2

2πG
. Finally, the density takes the form

ρ =
σ2

2πGr2
. (3.22)
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The total mass of the system can be calculated to be

M(r) =

∫
ρ(r)4πr2dr =

2σ2r

G
. (3.23)

Therefore, the stellar potential is given by

Φ(r) = G

∫ r

rh

M(r)

r2
dr (3.24)

=
2Gσ2

G

∫ r

rh

1

r
dr = 2σ2ln

(
r

rh

)
, (3.25)

where, rh is the sphere of in�uence radius of the black hole. Therefore, the expres-

sion for stellar potential becomes

ψ∗(r) = −2σ2ln

(
r

rh

)
. (3.26)

For the case of singular isothermal sphere, the rate of mass the stars �owing into

a sphere of radius r, when they move along their orbits can be written as

∼ 4πr2σρ ≈ 4πr2 σ2

2πGR2
σ ≈ 2σ3

G
. (3.27)

The fraction,
r`
r
, of stars will go within r` of the SMBH, where r` is the loss cone

radius of the SMBH. Putting r = rh, the radius of in�uence and considering r` to

be a multiple of gravitational radius of SMBH, rg =
GM•
c2

, where, rg ≤ r` ≤ 10rg,

the capture rate can be written as

Ṁ• =
2σ3

G

r`
rh
≈ 10

σ5

Gc2
. (3.28)

Therefore, after 10 Gyr, the total mass that is accumulated will be (Zhao et al.

2002)

M• = 1× 108

(
σ

200km s−1

)5

M�, (3.29)
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which is in agreement with the observed relation of M• - σ.

3.5 Evolution of the M• − σ relation

The mass evolution equation for black holes (ignoring mergers) can be approxi-

mated by

M•(t) = f(t)M = k0σ
p 'Ms +

∫
dt(Ṁ∗ + Ṁg) ' k0(t)σp(t) (3.30)

where Ṁ∗ =< m∗ > Ṅ = k2σ
p1 , where p1 = 4.3 for non-relativistic loss cone

theory (eg. Mageshwaran & Mangalam 2015), Ṁg = k1σ
p2 where p2 ' 4 is the

gas accretion rate from the momentum-driven �ow. The seed black hole mass is

derived from BH formation models and is roughly given byMs ∝M orMs = k3σ
p3

(Faber-Jackson law by a �ducial argument here gives p3 ' 5) although p3 is quickly

irrelevant as M• >> Ms during the evolution. The similarity of p1 ' p2 ' p3 is

why we think that the form of the M• − σ relation approximately holds at all

epochs. Shen et al. (2015) and Salviander and Shields (2013) have analyzed the

evolution of theM•−σ relation from SDSS data for quasars and report no evolution

of the relation up to z ' 1. From the numerical simulations, of the large-scale

structure of the universe, done by Sijacki et al. (2015) and Taylor and Kobayashi

(2016) it is seen that almost up to z ' 4 this relation holds. Robertson et al.

(2006) studied the evolution of this relation till z = 6, for merging disk galaxies

through hydrodynamic simulations and they have taken into account the e�ects of

accretion and supernovae. They found almost no change in p(z) and a very small

change of the constant, k0(z), similarly as suggested by Shankar et al. (2009a).

From their analysis, k0(z) ∝ (1 + z)α, with α = 0.33. We study the evolution of

p(z) and k, from the formation redshift till today via our evolution model of black

holes in Chapter 6. We consider the Faber - Jackson relation to be the initial
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condition, which provides p = 5 at formation redshift and we see that it reaches

near 4 at z ' 0, due to saturation of the black hole mass. But, throughout the

entire redshift range considered, this value of p remains well within 4 - 5, as found

observationally whose details are in Chapter 6.

3.6 Resource summary

1. In this chapter, we introduced theM•−σ relation and provided the literature

study of this relation [Ferrarese and Merritt (2000), Gebhardt et al. (2000)].

2. We discuss the signi�cance of this relation.

3. We presented three theoretical models deriving theM•−σ relation provided

by Silk and Rees (1998), King (2003), Zhao et al. (2002).

4. We also proposed a basic paradigm of the evolution of theM•−σ relation and

presented a literature survey of the evolution of this relation with redshift

[Shen et al. (2015), Salviander and Shields (2013), Sijacki et al. (2015), Taylor

and Kobayashi (2016), Robertson et al. (2006), Shankar et al. (2009a)].





Chapter 4

M•− σ relation in spherical systems∗

Image: earthsky.org

4.1 Introduction

There are many theoretical models proposed for explaining the M• − σ relation

[discussed in Chapter 4, Silk and Rees (1998), King (2003), Zhao et al. (2002)]. The

origin of this relation is still a mystery but various models give a range p = 4− 5,

which is in rough agreement with observations (see Table 3.1).

From observations, it is seen that bulge mass,M• ' fMb, where, f = 1.259 ×10−3

(Merritt and Ferrarese 2001). Later Marconi and Hunt (2003) and Häring and

Rix (2004) found f = 2× 10−3 and f = (1.4± 0.4)× 10−3 respectively. For higher

masses, the relation is said to be nonlinear and given by M• ∝M1.12
b (Häring and

Rix 2004) where the Jeans equation has been applied with zero anisotropy in the

∗This chapter is published in Bhattacharyya and Mangalam (2018)
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system to determine the velocity dispersion of 30 elliptical galaxies whose bulge

masses are sourced from Magorrian et al. (1998). Kormendy and Ho (2013) have

also found the following relation:

(
M•

109M�

)
= 0.49+0.06

−0.05

(
Mb

1011M�

)1.17±0.08

. (4.1)

Byun et al. (1996) introduced and calculated Nuker pro�les for 57 early type galax-

ies from HST data. This pro�le is described by two power laws and matches with

the observational pro�les very well. Instead of conventional structural parameters

such as core radius and central surface brightness, new parameters like the break

radius rb, and surface brightness, µb, at that radius were used. Another parameter

α describes the sharpness of the break and they have calculated these parameters

by applying χ2 minimization technique to the mean surface brightness pro�les of

the early type galaxies. Faber et al. (1997) have analyzed 61 elliptical galaxies and

spiral bulges from HST data and derived the parameters like rb, the intensity at

that radius, Ib, σ and L. Wang and Merritt (2004) and Stone and Metzger (2016)

used these results in their spherical galaxy model for deriving the distribution

function (DF) while we use it to derive the empirical M − σ relation.

In this chapter, we describe a theoretical model for calculating line of sight velocity

dispersion for spherical systems and thereby derive the M•− σ relation. In �2, we

discuss the nexus between theM•−σ relation and the power law mass density index

analytically motivating the theoretical models of power law galaxies. In the �3, we

have extended the model to the case of Nuker intensity pro�le, which is much more

generalized than the special case of a single power law pro�le. Using parameters

derived from the observational pro�les for 12 galaxies we have determined the

M• − σ relation and the Mb - M• relation for the proportionality case from χ2

analysis. We discuss our results in �5 and present our conclusions in �6.
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4.2 Connection of M• − σ relation with power law

mass density of galaxies

If M• is proportional to Mb, then eq. (3.1) can be written as

fbMb = kσp. (4.2)

The total mass scales as ρr3, where, ρ is the mass density of the galaxy and r is

the distance from the center of the galaxy; similarly σ scales as
√
ρr2. Therefore,

from the eq. (4.2), it can be seen that

ρr3 ∝ ρ
p
2 rp

⇒ ρ ∝ r
2p−6
2−p . (4.3)

From the above relation it can be in�rmed that the density follows a single power

law so that

γ =
2p− 6

2− p
; or equivalently p =

2γ + 6

2 + γ
, (4.4)

where γ is the power law index. Taking typical observational values for p, we �nd

γ = 0.75− 1.4 giving p = 3.6 - 5.3. For a single power law pro�le given by

ρ(r) = ρ0

(
r

r0

)−γ
, (4.5)

we use Poisson's equation to calculate the stellar potential of the system

∇2Φ = 4πGρ, (4.6)

to �nd a stellar potential of the form

ψ?(r) =
4πGρ0r

γ
0r

2−γ
h

(2− γ)(3− γ)

[
1−

(
r

rh

)2−γ]
. (4.7)
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The total mass of stars contained within rh is given by

M?(r < rh) =

∫ rh

0

ρ(r)4πr2dr

= 4πρ0r
γ
0

∫ rh

0

r2−γdr = 4πρ0r
γ
0

r3−γ
h

3− γ
= 2M•, (4.8)

where, ρ0r
γ
0 = (3−γ)

2π
M•r

γ−3
h , so that the stellar potential takes the form

ψ?(r) =
2

2− γ
GM•
rh

[
1−

(
r

rh

)2−γ]
, (4.9)

and the total potential is given by

ψ(r) = ψ?(r) +
GM•
r

+ ψc, (4.10)

where, ψc is a constant which ensures that ψ(r) asymptotes to zero. We normalize

the total potential in units of GM•/rh so that

ψ =
1

r?
+

2

2− γ
(1− (r?)

2−γ) + ψ0 = x+
2

2− γ
(1− (x)γ−2) + ψ0, (4.11)

where,

r? =
r

rh
, x =

1

r?
, ψ0 =

ψc
GM•
rh

. (4.12)

Next, we calculate the DF from Eddington's formula as

f(ε) =
1√

8π2m?

d

dε

∫ ε

0

dρ

dψ

dψ√
ψ − ε

, (4.13)

where, m? is the stellar mass which results in

f(ε) =
γ(3− γ)

4
√

2π3

1

m?

1

G3M2
•
g(ε),
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where,

g(ε) =
d

dε

∫ x2

x1

xγ−1√
ε− x− 2

2−γ (1− xγ−2)
dx, (4.14)

and x1 and x2 are the roots of the equations ψ(x) = 0 and ψ(x) = ε respectively.

The LOS velocity dispersion is given by (Binney and Tremaine 2008)

σ2
|| =

∫
dx||d

3vv2
||f(x, v)∫

dx||d3vf(x, v)
. (4.15)

We use σ in place of σ|| for the rest of the paper, consider the system to be

spherical, and use polar coordinates in velocity space as (see Fig. 2.2),

vr = v cos η, vθ = v sin η cosψ′, vφ = v sin η sinψ′. (4.16)

We take the LOS direction to be an arbitrary direction, ŝ, which lies in the r − θ

plane making an angle α with r̂ axis so that

ŝ = cosαr̂ + sinαθ̂. (4.17)

The projected velocity in this plane of LOS is given by

v.ŝ = v|| = v cos η cosα + v sin η cosψ′ sinα. (4.18)

The distance along the LOS is now x|| = r cosα where the perpendicular distance

is x⊥ = ω = r sinα, and

x|| =
√
r2 − r2 sin2 α =

√
r2 − ω2, (4.19)
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where, r2 varies from ω2 to ∞. We �nd the denominator D and the numerator N

of the LOS velocity dispersion (eq. (4.15)) separately as

D1 =

∫
dx||d

3vf(x, v)

=
1

2

∫ ∞
r2=ω2

d(r2)√
r2 − ω2

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v2dv sin ηdηdψ′f(ε), (4.20)

which after substituting u = ω2/r2 and v2 = 2(ψ − ε) reduces to

D1 = πωJ0

∫ 1

0

du

u2

√
1
u
− 1

∫ ψ

0

dε(2(ψ − ε))
1
2f(ε), (4.21)

where, J0 =
∫ π

0
sin ηdη = 2. Now,

N1 =

∫
dx||d

3vv2
||f(x, v)

=
1

2

∫ ∞
r2=ω2

d(r2)√
r2 − ω2

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v2dv sin ηdηdψ′v2

(
cos η

√
r2 − ω2

√
r2

+ sin η cosψ′
√
ω2

r2

)2

f(ε).(4.22)

Similarly, with the same substitutions, N1 reduces to

N1 = ω2
1
2

[
2πJ1

∫ 1

0

du
√

1
u
− 1

u

∫ ψ

0

dε(ψ − ε)
3
2f(ε) + J2J3

∫ 1

0

du

u
√

1
u
− 1

∫ ψ

0

dε(ψ − ε)
3
2f(ε)

]
,(4.23)
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Figure 4.1: The dimensionless σ is plotted against projected r/rh for various
power law indices γ.

where,

J1

∫ π

0

sin η cos2 ηdη =
2

3
, J2 =

∫ π

0

sin3 ηdη =
4

3
, J3

∫ 2π

0

cos2 ψ′dψ′ = π.

The dimensionless LOS velocity dispersion given by σ =
√

N1

D1
for power law

galaxies is shown in Fig. 4.1, where we can see that the velocity dispersion is

�attening out as we move outwards from the center of the galaxy. Near the center

of the galaxy where the SMBH potential dominates σ ∝ 1/
√
r. Later it �attens

out because of the dominance of the stellar potential. By �nding σ at any radius

one can verify the M• − σ relation if M• is known.

From the de�nition, eq. (4.8), rh for a single power law galaxy can be written as

rh =

(
ρ0r

γ
0

2π

3− γ
1

M•

) 1
γ−3

. (4.24)

The total mass out to the bulge can be calculated to be

∫ rs

0

ρ0

(
r0

r

)γ
4πr2dr = Ms, (4.25)
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, where, rs is the radius of the central bulge. Therefore, ρ0r
γ
0 can be written as,

ρ0r
γ
0 =

Ms∫ rs
0

4πr2−γdr
=
Ms(3− γ)

4πr3−γ
s

. (4.26)

For a range of black hole mass (M• = 106 to 109 M�) our calculated σ(Ms, γ),

log k(Ms, γ) and p(γ) (which is observationally within 4 - 5) are shown in Fig. 4.2,

where, Ms varies from 1010 to 1012 M�, rs varies from 1 - 10 kpc and γ varies from

0.75 to 1.5. We can see that for a �xed value of γ, p is independent of the value of

Ms. The range of p we �nd is 3.6 - 5.3, which agrees well with the observations.

Fig. 4.2(b) shows a plot of log k(Ms, γ); a change in Ms for a �xed value of γ

a�ects the intercept though the slope is unchanged. To explain the nature of these

plots we write eq. (3.1) as

M• =

(
Ms

2

) 1
γ−2

r
γ−3
γ−2
s (σ2

hG)−
γ−3
γ−2σ

2(γ−3)
γ−2 , (4.27)

where, σh is the value of dimensionless σ at 3rh. From the eq. (4.27) we see that

the constant k depends on γ, rs and Ms, but the index, p of the M• − σ relation

depends only on γ which clearly explains the nature of the plots in Fig 4.2(a) and

4.2(b).

The contour plot of σ200 (see Fig. 4.2) at 3rh for di�erent power laws by varying

Ms and M• for a �xed rs = 104 pc is shown in Fig. 4.2. By selecting a physical

and observed range for σ, one can obtain the allowed M• −Ms combinations for

those systems.



Chapter 4: M• − σ relation in spherical systems 73

0.8 0.9 1.0 1.1 1.2 1.3 1.4

4.0

4.5

5.0

γ

p

(a)

0.8 0.9 1.0 1.1 1.2 1.3 1.4

8

9

10

11

12

γ

lo
g
k 1011M⊙, 10

3pc

1010M⊙, 10
3pc

1012M⊙, 10
4pc

1011M⊙, 10
4pc

1010M⊙, 10
4pc

Ms, rs

(b)

10.0 10.5 11.0 11.5 12.0
6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Log(Ms/M⊙)

L
o
g
(M


/M

⊙
)

2

1

0.75

0.5

σ200

(c)

10.0 10.5 11.0 11.5 12.0
6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Log(Ms/M⊙)

L
o
g
(M


/M

⊙
)

2

1

0.75

0.5

σ200

(d)

Figure 4.2: Plot of p(γ) (left) and plot of log k(Ms) (right) for di�erent values
of γ for di�erent Ms − rs combinations (up). Contour plot of σ200 at 3rh for
di�erent power laws (γ = 1.2 (left) and γ = 0.75 (right)) by varying Ms for
di�erent values of M• for a �xed rs = 104 pc (down).

4.3 Spherical galaxies following Nuker pro�le of in-

tensity

The Nuker pro�le used to �t the observational luminosity data is given by,

I(ξ) = Ib2
(β−Γ)
α ξ−Γ(1 + ξα)−

(β−Γ)
α , (4.28)

where, ξ = R
rb
, rb is the break radius and Ib is the intensity at the break radius, Γ is

the inner slope and the outer slope is β. The visual mass - to - light ratio is denoted

by Υv (assuming H0 = 80 km s−1 Mpc−1) and µb is the surface brightness in visual
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magnitudes arcsec−2 at rb. The quantity µ represents the apparent magnitude

of the equivalent total light observed in a square arcsec at di�erent points in the

distribution and it can be related to the physical surface brightness pro�le through

(Binney and Merri�eld 1998) :

µ = −2.5 log I + C, (4.29)

where C is a constant. If the intensity is measured in units of L�pc−2, then the

constant can be calculated from the distance modulus formula and it is given as

C = −5 log10(δθ) +Mabs
� − 5, (4.30)

where δθ is 1" = 1
206265

radians and solar absolute magnitude, Mabs
� is 4.83 so that

Ib(µb) can be calculated. The stellar mass density pro�le was computed via Abel's

inversion equation as

ρ(r) = Υvj(r) = −Υv

π

∫ ∞
r

dI

dR

dR√
R2 − r2

, (4.31)

where, j(r) is the luminosity density. The stellar potential ψ∗ is calculated from

the stellar mass density calculated above as shown in Fig. 4.3(a)

ψ∗(r) =
4πG

r

∫ r

0

ρ(r′)r′2dr′ + 4πG

∫ ∞
r

ρ(r′)r′dr′. (4.32)

As before the gravitational potential ψ(r) = −Φ(r) is the total potential given by

(see Fig. 4.3(b))

ψ(r) = ψ∗(r) +
GM•
r

. (4.33)

The density follows the same pro�le (double power law) as intensity as shown in
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Fig. 4.3(a), where we see the total potential (see Fig. 4.3(b)) is dominated by

SMBH potential at the inner radii and is dominated by the stellar potential as we

move outwards from the center. Again we use the Eddington's formula, eq.(4.13)

to calculate f(ε) shown in Fig. 4.3(c). The denominator of the LOS velocity

dispersion can be written as

D2(α, β,Γ,Υ, rb, µb, L, f) =

∫
dx||d

3vf(x, v)

=

∫ ∞
r=ω

rdr√
r2 − ω2

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v2dv sin ηdηdψ′f(ε). (4.34)

By replacing the variable r by 1/u the denominator can �nally be written as

D2(α, β,Γ,Υ, rb, µb, L, f) = 2
3
2 2πJ0

∫ 1/ω

u=0

du

u2
√

1− ω2u2

∫ ψ

ε=0

(ψ(u)− ε)
1
2f(ε)dε.(4.35)

The numerator N2 of the LOS velocity dispersion is

N2(α, β,Γ,Υ, rb, µb, L, f) =

∫
dx||d

3vv2
||f(x, v)

=
1

2

∫ ∞
r2=ω2

d(r2)√
r2 − ω2

∫ √2ψ

v=0

∫ π

η=0

∫ 2π

ψ′=0

v2dv sin ηdηdψ′v2

(
cos η

√
r2 − ω2

√
r2

+ sin η cosψ′
√
ω2

r2

)2

f(ε). (4.36)

This �nally takes the form

N2(α, β,Γ,Υ, rb, µb, L, f) = 2
5
2

[
2πJ1

∫ 1/ω

0

√
1− ω2u2

u2

∫ ψ

0

dε(ψ − ε)
3
2f(ε)

+J2J3

∫ 1/ω

0

ω2

√
1− ω2u2

∫ ψ

0

dε(ψ − ε)
3
2f(ε)

]
. (4.37)



Chapter 4: M• − σ relation in spherical systems 76

-4 -2 0 2 4 6 8
-20
-15
-10
-5
0

5

10

log(r/rb)

lo
g
ρ

(a)

-4 -2 0 2 4 6 8
-3
-2
-1
0

1

2

3

log(r/rb)

lo
g
ψ

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-2
-1
0

1

2

3

4

log ϵ

lo
g
(f
(ϵ
))

(c)

0.001 0.010 0.100 1 10

0.6

0.8

1.0

1.2

1.4
1.6

log(r/rb)

σ

(d)

Figure 4.3: The density, total potential plots, DF and velocity dispersion plots
from left to right for f = 0.0012 for NGC 3115.

Using the same procedure as was done in the case of power law galaxies, we com-

pute the LOS velocity dispersion for these galaxies shown in Fig. 4.3(d). The DF

(see Fig. 4.3(c)) increases towards the higher side of the energy value implying

presence of more high energy stars. Here also the velocity dispersion plot �attens

out as we move outwards from the center of the galaxy where the motion of the

stars are dominated by the stellar potential.

To simplify our calculation we use the following scales:

ρs = −Υv

π

Ib
rb
, ψs = 4πGr2

bρs, fs =
ρs

√
8π2m∗ψ

3
2
s

, (4.38)

so that σ is in units of
√
ψs. In Table 4.1 we tabulate the values of σ(

√
Q) at

radius re/8, where, re is the e�ective radius (Ferrarese and Merritt 2000), where,
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Q(α, β,Γ, rb, µb) = N2/D2. The value of re is obtained from

∫ re

0

I(R)2πRdR =
1

2
LT . (4.39)

# Galaxy log( rb
pc

) µb α β Γ Υv (
M�
L�

) log(LV
L�

) Mb

1010M�
log( re

pc
) σ (km/sec)

1 NGC 3379 1.92 16.10 1.59 1.43 0.18 6.87 10.15 0.90 3.17 230

2 NGC 3377 0.64 12.85 1.92 1.33 0.29 2.88 9.81 1.86 3.15 217

3 NGC 4486 2.75 17.86 2.82 1.39 0.25 17.70 10.88 134.30 3.76 433

4 NGC 4551 2.46 18.83 2.94 1.23 0.80 7.25 9.57 2.69 3.03 218

5 NGC 4472 2.25 16.66 2.08 1.17 0.04 9.20 10.96 83.90 3.75 542

6 NGC 3115 2.07 16.17 1.47 1.43 0.78 7.14 10.23 12.12 3.15 230

7 NGC 4467 2.38 19.98 7.52 2.13 0.98 6.27 8.75 0.35 2.81 108

8 NGC 4365 2.25 16.77 2.06 1.27 0.15 8.40 10.76 48.34 3.68 524

9 NGC 4636 2.38 17.72 1.64 1.33 0.13 10.40 10.60 41.40 3.77 354

10 NGC 4889 2.88 18.01 2.61 1.35 0.05 11.20 11.28 213.4 4.10 469

11 NGC 4464 1.95 17.35 1.64 1.68 0.88 4.82 9.22 0.80 2.70 157

12 NGC 4697 2.12 16.93 24.9 1.04 0.74 6.78 10.34 14.83 3.36 215

Table 4.1: The �rst 10 columns the data used for our calculation are shown (rb
is the break radius, µb is the surface brightness, inner slope is Γ and the outer
slope is β, sharpness of break is given by α, Υ is the mass - to -light ratio, L is
the total luminosity, the bulge mass Mb = ΥvL) and in the last two columns,
the output values of re and the LOS velocity dispersion are shown (Wang and
Merritt 2004).

4.4 M• − σ relation

By using the data given in Wang and Merritt (2004) for elliptical galaxies as

shown in Table 4.1, we calculate the bulge mass of those galaxies by multiplying

total luminosity by the mass to light ratio as prescribed in Magorrian et al. (1998).

Using eq. (4.15) we calculate the LOS velocity dispersion to get theM• - σ relation

by �tting a straight line for 12 galaxies as shown in Fig. 4.4(a) for di�erent fb

values. The p and log k values for di�erent values of fb are shown in the scatter
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plot (see Fig. 4.4(b)). From χ2 minimization we have determined p and f ; the

procedure used is shown in a �owchart given in Fig. 6.15.
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Figure 4.4: The plot of log σ vs logM• for 12 galaxies for fb = 0.0012, σ is in
units of 200 km/sec (left) and (right) the scatter plot of p and log k, for di�erent
values of f , showing a tight range of k and p.

Data of Nuker

intensity pro�le

and data of

bulge mass (Mb)

Stellar mass

density (ρ(r))

Stellar po-

tential ((ψ∗)

Total potential

(ψ = ψ∗ + ψBH)
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Figure 4.5: The �owchart shows the procedure for calculating the M• − σ
relation from observational data. For the Nuker pro�le the stellar mass density
is found using Abel inversion and from spherical shell structure the stellar po-
tential is calculated. The SMBH potential is added to get the total potential,
Eddington's formula is used to derive DF f(ε). The SMBH mass is calculated
from the proportionality relation of Mb and M•. The path marked by the blue
lines only is followed for deriving the M•−σ relation in case of single power law
galaxies.

The formula we used for determining χ2 is (Sivia and Skilling 2006)

χ2 =
∑
k

[
(Dk − Fk)2

Fk

]
, (4.40)

where a uniform prior is used. The observed values, Dk are obtained for M• and

σ from our calculation using the observational data and the expected value, Fk

is obtained by the best �t straight line to these points as shown in Fig. 4.4(a).
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The range of fb and p has been taken from previous determinations as well as

observational values (fb = 0.001 - 0.002, p = 3 - 5). The quantity S(fb, p) ≡(
1− χ2−χ2

min

χ2
max−χ2

min

)
is in the range 0 - 1. The maximum value of S(fb, p) corresponds

to the minimum χ2 value. In the plot we have shown S(fb, p) contours where

S(fb, p) ≥ 0.97 is considered as the allowed range (the red region) for the two

parameters and from the plot we determine the value of p = 3.81 ± 0.004 and fb

= (1.23± 0.09)× 10−3.
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Figure 4.6: The S(fb, p) plot for determination of p and fb is shown where, the
maxima (minima of χ2) occurs at p = 3.81±0.004 and fb = (1.23±0.09)×10−3.

4.5 Summary of results and discussion

We summarize and discuss our key results below.

1. Assuming the M• − σ relation, M• = fbMb and a single power law pro�le

for the stellar mass density we have analytically shown that p(γ) = (2γ +

6)/(2 + γ) (eq. (4.3)). For a typical a range of γ = 0.75 - 1.4, we �nd p =

3.6 - 5.3, which is within the observed range.
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2. The second analysis shown is for the Nuker pro�le which is a double power

law with two slopes β and Γ. As an approximate analysis, we take an average

value of the mean slope to be (β + Γ)/2 for the set of 12 galaxies (tabulated

in Table 4.1) resulting p = 3.86 from eq. (4.4), where the value of p obtained

from χ2 analysis is 3.81, which is very close. Therefore, our analysis of

observational data agrees well with the theoretical expected value.

3. We have described a procedure for determining the M•−σ relation (see Fig.

6.15). Previous models (as discussed in the �4.2) determined the M• − σ

relation and also the Mb −M• relation independently. We have determined

those two relations self - consistently in our model from our χ2 analysis (see

eq. (4.40)).

4. For power law galaxies, we started directly from mass density pro�le, which

in the case of Nuker pro�le was obtained by inverting the intensity pro�les.

The σ for di�erent power law indices are shown in Fig. 4.1. The variation

of p and log k with di�erent values of γ, rs and Ms are shown in Fig. 4.2(a)

and Fig. 4.2(b). The variation of σ with di�erent M• and Ms is shown in

Fig. 4.2(c) and Fig. 4.2(d). For a �xed value of γ, log k and σ depend on

the value of Ms and rs. These various diagnostics enable us to interpret

the relation by using the observables such as γ and Ms and to predict k

and p. From observational Nuker intensity pro�les, we have determined the

LOS velocity dispersion of the stars in the galaxy through their DF (see Fig.

4.3(c), 4.3(d)). By using a proportionality relation between Mb and M• we

have derived values of p and log k for di�erent values of fb by a linear �t

(see Fig. 4.4(b) for scatter plot and Fig. 4.4(a) for the linear �t for a �xed

fb) and through χ2 minimization (see Fig. 4.6) for the Nuker case. From

the scatter plot (see Fig. 4.4(b)) it is seen even for a small set of galaxies

that the p and log k values within a speci�c range of fb are very close to the

observed range; these are consistent with observations. The obtained values

are p = 3.81± 0.004 and fb = (1.23± 0.09)× 10−3.
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4.6 Conclusions

We have discussed a procedure of deriving the M• − σ relation along with a pro-

portionality relation of Mb and M• starting from observational data by deriving

the DF f(ε). Using our novel approach we can also determine the index of the

nonlinear relation between Mb and M• (as mentioned earlier) as well as p self

consistently. The M• − σ relation is complicated to explain by existing models.

The self consistent determination of f , k and p is key for improving the models.

The resolution of the problem can come from a DF f(ε, Lz) built for a central BH

and constraining a self - consistent dynamical model from which an explanation

of fMb = kσp can �nally emerge. That needs much more sophisticated analytical

and numerical methods applied to both the bulge mass scaling as well as M• − σ

determination.





Chapter 5

Physics of the growth of black holes

Image: nasa.gov

5.1 Introduction

In this chapter, we introduce the basic physics of the growth of the black holes.

The black holes mainly grow their mass and spin by four processes - accretion,

stellar capture, mergers, and electromagnetic torque. We will introduce all these

processes one by one and discuss how these processes a�ect the mass and spin

growth of the black holes during their evolution from seed masses and spins. Ac-

cretion and mergers a�ect both the mass and the spin of the black hole, while the

stellar capture a�ects the mass and the electromagnetic torque (Blandford-Znajek

torque) a�ects only the spin of the black hole. Our aim in this chapter is to build

a foundation for studying the evolution of the black hole (which we discuss in

Chapter 6) when all these e�ects come into play together and contribute to the

black hole evolution, which in turn, may be related to the evolution of the galaxy.
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5.2 Accretion physics

To investigate the power supply process in many quasars and active galactic nu-

clei (AGN) and also for some close binary systems, it is now known that the main

source of the power of these is the extraction of gravitational potential from ma-

terial accreting on to a gravitating body. This process is called accretion. Due to

the exploitation of the full range of the electromagnetic spectrum, this accretion

process has caused an impact in the �eld of observational astrophysics. For com-

pact objects including black hole, the accretion process is a very powerful source

for the production of high - energy radiation.

The potential energy released, mainly in form of electromagnetic radiation, by a

gravitating body of radius R with mass M for accretion of mass m on it is

∆Eacc = GMm/R. (5.1)

The amount of energy depends on the ratio M/R, the compactness of the body.

The energy released by the process of nuclear fusion is

∆Enuc = 0.007mc2, (5.2)

where the main source of this energy is the burning of Hydrogen and its conversion

to Helium. For, black hole and neutron stars, the energy released by accretion is

more than nuclear fusion, while in the case of white dwarfs it is opposite. But, there

too the accretion is of importance because the timescale of nuclear fusion is quite

small compared to the accretion process. For �xed compactness of the object,

the luminosity varies as a function of the accretion rate. In the case of high

luminosity, some momentum transfer occurs to the accreting material from the

outward radiation which in turn can control the accretion rate. As a special case,

a maximum luminosity can occur which is termed as the Eddington luminosity.
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5.2.1 Eddington limit

In case of spherically symmetric accretion of fully ionized hydrogen the rate of

absorption of momentum is given by
σTS

c
, where σT is the Thompson scattering

cross section (since electrons and ions are considered to be non-relativistic we

can consider Thompson scattering as the scattering process), S is the �ux of the

radiation energy and c is the speed of light. All these values are in CGS units with

σT = 6.5× 10−25cm2. The radiation pushes out the electrons and protons against

their gravitational forces which is given by
GM(mp +me)

r2
' GMmp

r2
(since mass

of electron is very small compared to the proton mass). The luminosity L is given

by S =
L

4πr2
. Therefore the net force towards the center is

(
GMmp −

LσT
4πc

)
1

r2

For a particular value of the luminosity this expression vanishes which is given by

Frank et al. (2002)

LE =
4πcGMmp

σT
(5.3)

= 1.3× 1038 M

M�
erg.s−1, (5.4)

is called the Eddington Luminosity.

5.2.2 Gas dynamics

Since all accreting matter is in gaseous form we use gas dynamics for explaining

their nature, though this is valid for length scales much greater than the mean

free path of the gas. We are considering the gas to be a continuous �uid having

velocity v, temperature T and density ρ de�ned at each point. Therefore, they are
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de�ned as functions of position r and temperature T . We use three conservation

laws- mass conservation, momentum conservation, energy conservation.

• For mass conservation we use the continuity equation:

∂ρ

∂t
+∇.(ρv) = 0. (5.5)

The relation among pressure, temperature, density is determined by the

perfect gas law

P =
ρkT

µmH

. (5.6)

Here µ is the mean molecular weight measured in units of mH , the mass of

the Hydrogen atom.

• For momentum conservation, the Euler's equation is used:

ρ
∂v

∂t
+ ρv.∇v = −∇P + f . (5.7)

The term ρv.∇v represents the convection of momentum by velocity gradi-

ents, f is force acting on the gas per unit volume. f can be the contributions

due to gravity, external magnetic �eld or viscosity.

• The third conservation is the energy conservation:

∂

∂t

(
1

2
ρv2 + ρεi

)
+∇.

[(
1

2
ρv2 + ρεi + P

)
v

]
= f .v −∇.Frad −∇.q, (5.8)

where 1
2
ρv2 is the kinetic energy of the gas per unit volume, and εi is the

temperature dependent internal energy per unit mass,

εi =
3kT

2µmH

. (5.9)

The factor of 3 comes for monoatomic gas from the number of degrees of

freedom. Thus, ρεi is the internal energy per unit volume. The term (1
2
ρv2 +
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ρεi + P ) is the pressure work term. ∇.Frad represents the rate of loss of

radiation energy per unit volume by emission or gain by absorption. For

Bremsstrahlung process, this is approximately given by ρ2T
1
2 . The last term,

represents the amount of energy produced due to random motion of electrons

and this smooths out the temperature di�erences.

For steady �ow with no thermal conduction and no radiation loss,

Pρ−Γ = K. (5.10)

where K is a constant and Γ is the adiabatic constant.

5.2.3 Steady, spherically symmetric accretion

Here, a simple case is studied, where, a star with mass M , is accreting spheri-

cally and symmetrically from a gas cloud. In this case, the angular momentum,

magnetic �eld and the motion of the gas in comparison to the star are neglected.

Though, for binary systems and active galactic nuclei, this is not a very good ap-

proximation, but it gives some insight into some more complicated scenarios. This

was worked out by [Hoyle and Lyttleton (1939); Bondi and Hoyle (1944)]. The

case of spherical accretion we will be discussing next is based on Bondi (1952).

In these models, one can derive the steady accretion rate for a given density, ρ,

and temperature, T . Also, the radius up to which the gas is a�ected due to the

presence of the star can be predicted. A relation between the local sound speed

and the gas velocity can be obtained which will be useful in more complicated

scenarios.

We consider spherical symmetry where the gas velocity will only have a radial

component. For in�ow of gas to the star, the direction of vr will be along −r
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direction. The continuity equation [eqn. (5.5)] leads to

1

r2

d

dr
(r2ρv) = 0. (5.11)

We obtain the constant mass accretion rate as

4πr2ρ(−v) = Ṁ (5.12)

For the conservation of momentum, the external force per unit volume can be

written as

f =
GMρ

r2
. (5.13)

Euler's equation [eqn. (5.7)], takes the form

v
dv

dr
+

1

ρ

dP

dr
+
GM

r2
= 0. (5.14)

Using the continuity equation, we �nally arrive at

1

ρ

dρ

dr
= − 1

vr2

d

dr
(vr2). (5.15)

Using the de�nition of the sound speed, cs =

√
dP

dρ
in the Euler equation [eqn.

(5.7)], we obtain

v
dv

dr
+

1

ρ

dP

dρ

dρ

dr
+
GM

r2
= v

dv

dr
− c2

s

vr2

d

dr
(vr2) +

GM

r2
= 0,

After rearranging, it takes the form

1

2
(1− c2

s

v2
)

d

dr
(v2) = −GM

r2

[
1− 2c2

sr

GM

]
. (5.16)

The temperature can be obtained from T =
µmHP

ρk
, where, k is the Boltzmann

constant, P is obtained from the polytropic relation [eqn. (5.10)], Γ = 1 for

isothermal case and
5

3
for the adiabatic case. For a smooth �ow the gas goes
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through a sonic point. The energy conservation equation [eqn. (5.8)], is replaced by

the polytropic equation [eqn. (5.10)]. Therefore, these are the basic conservation

equations for the spherical accretion. Next, we discuss the disc accretion, which

is a much more general case.

5.2.4 Disc accretion

Figure 5.1: Geometry of the accretion disc, Image courtesy: Kolb (2010).

Similar to Kolb (2010), the assumption for the study of the accretion disc is that

the disc is �at and thus the radial and the vertical structures are possible to

be studied separately by decoupling them, the accretion is steady-state, i.e, the

accretion �ow is explicitly time-independent and also there is no magnetic �eld

to interact with the accretion �ow. Fig. 5.1 shows the geometry of the accretion

disc. This is basically in cylindrical polar coordinates (R, φ, z) and the z = 0

plane is the midplane of the disc. The rotation axis is the z - axis and the z

coordinates represent the disc height while φ coordinates represent the azimuthal

angle. The accretion �ow, as a �rst-order approximation, can be considered as

a two - dimensional �ow if the �ow is very closely con�ned to the orbital plane.

This is called the thin disc approximation and this approximation is popular and

based on this many elaborate models can be made.

Thin disc structure
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The surface density of the disc is de�ned by

Σ(R) =

∫ +∞

−∞
ρ(R, z)dz, (5.17)

where, ρ is the density of the disc. Due to the assumption of an axisymmetric

system, the term φ does not appear here. If ρ is independent of z, then the scale

height H of the disc can be related to Σ as

Σ = Hρ. (5.18)

In the case of accretion, particularly for disc accretion, the infalling matter must

shed some excess amount of angular momentum to spiral in and fall on the accret-

ing body. The gas particles undergo collisions (it can be distant or close) and thus

exchange momentum and energy. Even if the interaction scale is quite small with

respect to the radial and vertical extent of the disc, it leads to the transportation

of angular or linear momentum by viscosity, as well as energy.

Radial structure

An annulus in the disc lying between R and R+∆R, will have a mass of 2πR∆RΣ

and an angular momentum of 2πR∆RΣR2Ω, where Ω is the angular velocity and it

typically has the Keplerian value,
(
GM

R3

)1/2

. The mass evolution of this annulus

is given by

∂

∂t
(2πR∆RΣ) = vR(R, t)2πRΣ(R, t)− vR(R + ∆R, t)2π(R + ∆R)Σ(R + ∆R, t)

' −2π∆R
∂

∂R
(RΣvR). (5.19)
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The mass conservation in the limit ∆R→ 0 is given by

R
∂Σ

∂t
+

∂

∂R
(rΣvR) = 0, (5.20)

where vR is the radial drift velocity in addition to vφ. In the angular momentum

conservation equation, the contribution of the viscous torques, Gvis, is included

(Frank et al. 2002) leading to

∂

∂t
(2πR∆RΣR2Ω) = vR(R, t)2πRΣ(R, t)R2Ω(R)− vR(R + ∆R, t)2π(R + ∆R)

Σ(R + ∆R, t)(R + ∆R)2Ω(R + ∆R) +
∂Gvis

∂R
∆R

' −2π∆R
∂

∂R
(RΣvRR

2Ω) +
∂Gvis

∂R
∆R. (5.21)

In the limit ∆R→ 0, this conservation equation yields

R
∂

∂t
(ΣR2Ω) +

∂

∂R
(RΣvRR

2Ω) =
1

2π

∂Gvis

∂R
. (5.22)

Calculation of the viscous torque

The viscous force exerted between two adjacent annular rings in the accretion disc

is given by

Fvis = 2πRHσs, (5.23)

where, 2πRH is the contact area and σs is the shear stress (Kolb 2010). This

stress is found to be

σs = −νvisρR
∂Ω

∂R
, (5.24)

so that

Gvis = −FvisR = 2πRνvisΣR
2 ∂Ω

∂R
. (5.25)
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Using this expression of Gvis for the Keplerian case, the surface density conserva-

tion equation takes the form

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(νvisΣR

1/2)

]
. (5.26)

Because of the turbulent motion of the gas particles, a kinematic viscosity is

generated. If the characteristic speed of the particle is vc and the characteristic

length is λc, then the kinematic viscosity, νvis is given by,

νvis ' vcλc. (5.27)

Now, the maximum value of λc can be the vertical scale height, H and the local

sound speed, cs is taken to be the maximum value of vc. Therefore, νvis < Hcs.

So, νvis can be written as a fraction, α, of the maximum value as

νvis = αHcs. (5.28)

This is called the α - viscosity prescription (Shakura and Sunyaev 1973).

The radial momentum conservation equation is written as

∂(ΣvR)

∂t
+

1

r

∂(Σrv2
R)

∂r
+
∂(Σc2

s)

∂r
− Σ

v2
φ

r
= −Σ

GM

r2
. (5.29)

and the angular or tangential momentum conservation equation is given by

r
∂

∂t
(Σr2Ω) +

∂

∂r
(rΣvRr

2Ω) =
∂

∂r
(Σνr3 dΩ

dr
). (5.30)

Since vr � cs � vφ, in the LHS of eqn. (5.29), we can neglect �rst three terms

with respect to the 4th term and thererby

v2
φ =

GM

r
(5.31)



Chapter 5: Physics of the growth of black holes 93

and therefore, vφ = ΩKr for a Keplerian disc.

If in tangential momentum conservation [eqn. (5.30)], we use the mass conservation

equation [eqn. (5.29)], we get the radial drift velocity expression as,

vR = − 3

Σr
1
2

∂

∂r
(νΣr

1
2 ). (5.32)

Vertical Structure

Now, we consider the vertical equilibrium structure. The vertical structure is

provided by the equation

1

ρ

∂

∂z
P +

∂

∂z
Φ(R, z) = 0. (5.33)

For Φ(r, z) = −GM•/
√
R2 + z2 in hydrostatic equilibrium, at z = 0, we can write

1

ρ

∂P

∂z
= −GM sin θ

R2
. (5.34)

For the thin disc, the approximations are

• ∂P

∂z
=
P

H
,

• sin θ =
z

r
' H

r

Therefore,

1

ρ

P

H
=
GMH

R3
or

c2
s

H
=
GMH

R3

Finally, we get the height of the disc as

H =

(
c2
sR

3

GM

) 1
2

. (5.35)
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5.2.5 Growth of black hole mass and spin by accretion

The black hole mainly grows by accretion �ow of the gas. In case of an energy-

driven �ow (Silk and Rees 1998) it is assumed that all the energy from the accretion

is used for unbinding the mass of the bulge and the maximum possible mass the

SMBH can attain from this accretion process is

M• ' 8× 108

(
σ

300km sec−1

)5

M�. (5.36)

King (2003) has proposed that black hole growth occurs by gas �ow until it reaches

a saturated mass M•t, which is a di�erent approach than that of Silk and Rees

(1998) who propose an energy-driven �ow by assuming that the energy from ac-

cretion is completely used in unbinding the mass of the galactic bulge, while there

is no loss of energy due to radiation. King (2003) considers Compton cooling for

which some energy is lost to radiation and the remaining energy is available for

unbinding the mass of the bulge. In the analysis of King (2003), after saturation,

the out�ow velocity exceeds the escape velocity of the medium and the gas is

driven away causing the accretion process to stop. The saturated mass is given as

M•t = 9.375 × 106σ4
100M� derived for a spherical geometry for the ambient gas.

However, the infalling matter must possess some amount of angular momentum

so that an accretion disc forms and thus there is a small solid angle where only

in�ow occurs. If most of the gas lies in the plane of the galaxy, the momentum-

driven out�ow would not halt the in�ow; this also implies that accretion from this

point adds little mass to the hole. In our model in chapter 6, we ignore accretion

after saturation and consider only stellar capture and mergers contribute to the

growth of the black hole, at this point the value of p is 4. We take sub - Eddington

accretion throughout so that

Ṁ•g = k1M•, (5.37)
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where, k1 =
4πGmpη

σec
and the factor η = Ṁ•/ṀE, where ṀE is the Eddington

accretion rate. We de�ne µ• =
M•
Ms

, where Ms is the seed mass, τ =
t

t0
, where t0

= 1 Gyr, so that the gas accretion rate is

µ̇g =
Ṁ•gt0
Ms

. (5.38)

5.2.6 Equations of black hole evolution due to accretion

Mangalam (2015) used a theoretical model for mass and spin evolution of the black

hole taking into account the angular momentum torque caused by an electrody-

namical jet, where the spin evolution was calculated with the accretion rate taken

to be a given fraction of the Eddington rate for di�erent cases such as the thin

disc, Bondi accretion and also MHD disc. The mass evolution equation is given

by
dM•
dt

= εI(j)Ṁ•g, (5.39)

where εI(j) [see eqn. (2) of Mangalam (2015)] is the e�ciency of energy conversion

with the innermost radius of the disc to be taken typically at ISCO, and Ṁ•g is

the rate of accretion. The spin evolution equation is given by

dj

dt
=
Ṁ•g
M•

(
lI(j)− 2εI(j)j

)
, (5.40)

where lI(j) [see eqn. (5) of Mangalam (2015)] is the angular momentum per unit

mass at ISCO. The �rst term is due to the accretion of angular momentum at

ISCO, while the second represents the spin-down due to an increase in the black

hole inertia; these arguments give

J• =
GM2

• j

c
,
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j̇ =
c

G

d

dt

[
J•
M2
•

]
=
Ṁ•g
M•

(
lI(j)− 2εI(j)j

)
. (5.41)

5.3 Stellar capture

Calculation of the stellar capture rate

The loss cone is a region in velocity space, where, if a star is within that region,

it is captured by the black hole. The capture of stars into the loss cone can occur

Figure 5.2: A schematic of the loss cone. Image courtesy: Merritt (2013a).

in two ways: full loss cone and the steady loss cone. We use the expression of

the capture rate for full loss cone theory, Ṅf , given by Merritt (2013b) and also

derive the steady loss cone theory rate, Ṅs. We discuss conditions for which form

is more appropriate. To see this, we examine the stellar capture in two situations,

one where the loss cone gets �lled quickly and another when it is dominated by

di�usion. The stars captured populate a loss cone whose angular size is given by

(Frank and Rees 1976)

θ2
` (r) =

rc
r2

GM•
σ2

, (5.42)
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where θ` is the half angle of the loss cone. The angle scattered in a dynamical

time td = r/σ is approximated by

θd =

√
td
tR

(5.43)

td =


√

r3

GM•
for r ≤ rh

r
σ

for r ≥ rh
(5.44)

tR =
σ3

3 ln ΛG2m∗nc
; (5.45)

where Λ is the Coulomb logarithm which is obtained from the logarithm of the

ratio of maximum and minimum values of the impact parameter and nc is the

cluster mass density with m∗ being the stellar mass (Syer and Ulmer 1999). In

the di�usive regime, θd < θ`, the loss cone is empty as the star is removed from

the loss cone within a dynamical time scale. At other extreme, θd > θ`, the

loss cone is always full. Both the regimes are shown in Fig. 5.3 for m∗ = M�

and nc = 104M�pc−3, as used by Syer and Ulmer (1999) and for the mass range

M• = 104−108M�, where we have used theM•−σ relation with p = 4 to replace σ

in terms ofM•. From Fig. 5.3, we see that as the mass of the black hole increases,
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Figure 5.3: The variation of the angular size of loss cone, θ` and angle scattered
in dynamical time, θd with r/rh for m∗ = M� and nc = 104M�pc−3, for the
rangeM• = 104−108M� (a) and (b) the variation of the crossing point, rcr(M•)
de�ned by θlc(rcr) = θd(rcr), for m∗ = M� and nc = 104M�pc−3 as used by
Syer and Ulmer (1999).

the crossing point (rcr/rh) of the two curves shifts towards the right which implies
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that the di�usive region expands with increase in mass. For typical black hole

mass under consideration (as
M•
M�

evolves from 104 → 108), the di�usive regime

operates and hence it is more appropriate to use the steady loss cone theory.

5.3.1 Full loss cone theory

Here, we consider the case of the full loss cone (θd >> θ`) where the mass density

in the galaxy cusp follows a single power law pro�le and the stars are able to

quickly �ll the loss cone on dynamical time scales. Therefore

ρ = ρ0r
−γ, (5.46)

where γ is the power law index. The distribution function of stars in a such a

galaxy is given by (Merritt 2013a)

fs(E) =
3− γ

8

√
2

π5

Γ(γ + 1)

Γ(γ − 1
2
)

M•
m?

φ
3
2
0

(GM•)3

(
|E|
φ0

)γ− 3
2

, (5.47)

where φ0 =
GM•
rm

, E is the energy, rm is the gravitational in�uence radius of the

black hole de�ned as GM•/σ2 and m∗ is the stellar mass. The rate of capture of

stars within the loss cone is

Ff (E) = 4π2L2
`(E)fs(E), (5.48)

where L`(E) is the angular momentum of the star. An integration of this over all

energies gives the total rate of capture in the loss cone,

Ṅf =

∫ φ0

−∞
Ff (E)dE, (5.49)
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so that

Ṁ•∗f = m?Ṅf =
3− γ

8

√
1

2π

Γ(γ + 1)

Γ(γ − 1
2
)

l2`
GM•

1

rm

(
GM•
r3
m

) 1
2

M•

=
3− γ

8

√
1

2π

Γ(γ + 1)

Γ(γ − 1
2
)

l2` (M•)

Gc2
σ5, (5.50)

where L` ≡ (GM•/c) l`. For the non - relativistic case, L` is given by eqn. (6.22).

After simpli�cation, it is seen that this expression for Ṁ•∗ ∝ σ5 for the non-

relativistic case does not depend onM•. But, for the relativistic case, Ṁ•∗ depends

both on σ and M• through the capture radius. In the full loss cone regime, the

depleted orbits are repopulated within orbital periods by the relaxation process;

this is a reasonable assumption for M• << 105M�.

5.3.2 Steady loss cone theory

The more practical case is the steady-state theory of Cohn and Kulsrud (1978).

By using direct numerical integration of the Fokker - Planck equation in angular

momentum and energy space, they derived the stellar distribution in the presence

of a black hole in a steady state. The distribution of orbital energies near the black

hole can never reach a steady state because no black hole is old enough (Merritt

2013b). This is also expected for the distribution of orbital angular momenta also

near l` because τM,∗/tr << 1. Therefore a hybrid approach should be used for

the calculation of event rates based on the observed distribution of energies where

the angular momentum distribution at each energy has reached an approximate

steady state under the in�uence of gravitational encounters. Mageshwaran and

Mangalam (2015) have constructed a detailed model of the tidal disruption events

using stellar dynamical and gas dynamical inputs like black hole mass, speci�c

orbital energy and also angular momentum, the mass of a single star, its radius

and the pericenter of the star orbit. Using the Cohn - Kulsrud boundary layer
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theory they calculated the di�erential rate of number of stars falling in the steady

loss cone to be (MM15)

d2Ṅs

dēdl2dm
= 4π2s−1

t σ2ξ(m)f∗(ē,M•,m)L2
`(ē)F (χ = 1, l), (5.51)

where, st = rt(M•, j)/rh, ē = E/(GM•/rt), E is the energy, f∗ is the probability

that a star of mass m is tidally captured as a main sequence and ξ(m) is the stellar

mass function where m = m∗/M�, F = X(ylc)ζ(qs), and

X(ylc) =
fs(E)

1 + q−1
s ζ(qs) log(1/Rlc)

, (5.52)

with qs =
< D(E) >

Rlc

and Rlc =
L2
`

J2
c

. MM15 have used the M•−σ relation (taking

p = 4.86) to get the expression for Ṅs. By applying steady-state Fokker - Planck

equation while using a power-law stellar density pro�le (having power-law index

γ) they obtained the rate of capture of stars Ṅ ∝ Mβ
• , where β = −0.3 ± 0.01

for M6 > 10 and the value of Ṅs is ∼ 6.8 × 10−5 Yr−1 for γ = 0.7 [see Fig. 5.4].

We also use the same model as provided by MM15, but, we do not apply the
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Figure 5.4: The capture rate as calculated in MM15. Image: Mageshwaran
and Mangalam (2015).

M• − σ relation apriori and also we use relativistic corrections to the tidal radius

and loss sone radius, and hence to the loss cone angular momentum, to derive

the capture rate in the relativistic framework using the steady loss cone theory

(detailed calculation has been shown in Chapter 6).
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5.4 Mergers

5.4.1 E�ect on mass due to the mergers

When two galaxies collide, the black holes at their centers also merge and this is

thought to be one of the major sources of the supermassive black hole growth.

Therefore, to calculate the mass growth of SMBH by mergers, one has to take

care of the rate of galaxy mergers and thus, in turn, will provide the required

mass growth rate, since the black hole mass is related to the dark matter halo

mass. We calculate the mass growth rate of mergers in Chapter 6. The rate of

mergers assumed is based on the simulations of Stewart et al. (2009) where a brief

overview is provided of the methods for the construction of merger trees. Stewart

et al. (2009) give analytic forms for the growth rate that are extremely useful [see

also Allgood et al. (2006), Wechsler et al. (2006), Stewart et al. (2008)]. Stewart

et al. (2008) report high-resolution ΛCDM N -body simulations to investigate

the merger histories of ∼ 17,000 galaxy dark matter halos with masses 1011 −

1013h−1M� at z = 0. They have tracked mergers with masses to the tune of

1010h−1M�, and their goal was to present necessary conditions for the survival of a

thin disk. Allgood et al. (2006) give six high-resolution dissipationless simulations

with a varying box size in a �at ΛCDM universe; we study the mass and redshift

dependence of dark matter halo shapes for virial masses 9×1011−2×1014h−1M�,

over the redshift range 0 - 3,and for two values of σ8 = 0.75 and 0.9. They also

derive the formation scale factor as de�ned by Wechsler et al. (2006) and �nd that

it can be related to the halo shape at z = 0 and its evolution over time. We discuss

this in detail in Chapter 6.
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5.4.2 E�ect on spin due to mergers

Gammie et al. (2004) considers the collapse of stars, accretion, and major and mi-

nor mergers that contribute to the spin of the astrophysical black holes. The major

mergers contribute to spinning up the hole whereas minor mergers contribute to

spinning it down.

Spin up by the major mergers

The spin of the black hole gets a�ected because of major merger which is the

merging of two black holes of comparable mass. After the binary black holes

start to inspiral towards each other due to the gravitational radiation, once they

reach the ISCO, they merge together on an orbital timescale. The inspiraling

starts initially from circular orbits, because, the gravitational radiation causes a

decrease in the eccentricity of the orbit on a timescale shorter than the timescale of

the orbital evolution. The exact location of the ISCO is known to a high precession

only for the black holes having test particle companion. Fig. 5.5 shows a table

listing the available values given in Gammie et al. (2004), which they adapted from

Baumgarte and Shapiro (2003). To calculate the parameters listed in the table,

they consider M• = Mirr, where, Mirr is the irreducible mass given as

M• = Mirr =

(
A

16π

)1/2

, (5.53)

where, A is the area of the event horizon of the black hole (Christodoulou 1970).

The binding energy is written as

Eb = M − 2M•, (5.54)

where,M is the total mass measured far from the black hole. The non-dimensional

quantities at ISCO are given as

Ēb = Eb/µ, Ω̄ = mΩa, J̄ = J/(µm), (5.55)
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Figure 5.5: Spin values for binary black holes [Courtesy: Gammie et al.

(2004)], adapted from Baumgarte and Shapiro (2003).

where, Ēb is the non-dimensional binding energy, Ω̄ is the non-dimensional angular

velocity and J̄ is the non-dimensional angular momentum with angular velocity,

Ωa, reduced mass, µ = M•/2 and m = 2M•. Assuming that the �nal black hole

will have the mass and angular momentum of the binary system at ISCO, Gammie

et al. (2004) provide the value of the �nal spin parameter as

J

M2
=

J̄

4[1 + Eb
4

]2
. (5.56)

They also provide, in the last column of the table, the maximum limit of the spin

parameter, computed from the area theorem using the equation (Pfei�er et al.

2002) (
J

M2

)
max

=
2

xmax

(
1− 1

x2
max

)1/2

, (5.57)

where,

x2
max = 1 +

J̄2

4[1 +
√

1− (J/M•)2
. (5.58)

To derive this equation, it was also assumed that, the �nal angular momentum

will always be less than that of the total system at the ISCO. Gammie et al. (2004)
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�nd that eqn. (5.56) gives a better result because, numerical simulations suggest

quite less radiation [Smarr (1979), Anninos et al. (1993)] than allowed by the area

theorem. Therefore, the �nal conclusion given by Gammie et al. (2004) is that,

due to the major mergers, the �nal spin of the black hole will be & 0.8.

Since the accretion process is the dominant one for the spinning up of the black

hole, we will be considering only the contribution of minor mergers and neglect the

major mergers for the spin evolution of the hole in our evolution model (discussed

in Chapter 6).

Spin down by the minor mergers

Di�erent models suggest that black holes produced by the collapse of a super-

massive star are likely to have j ∼ 0.7. Though the result of major mergers is

not yet known properly, Gammie et al. (2004) provide some current estimates and

analytic bounds on j for these processes. They apply the formalism of Hughes and

Blandford (2003) to minor mergers assuming an isotropic distribution of orbital

angular momentum and �nd that the spin-down occurs with j ∼ M7/3. They

evaluate a power law for spin decay fo the limit of the small value of j, where they

expanded the radius and speci�c energy of ISCO as a function of j. Their simu-

lations for accretion process from fully relativistic magnetohydrodynamic (MHD)

�ow indicates a spin equilibrium at j ∼ 0.9, much less than the canonical value

0.998 of Thorne (1974) that was derived excluding the MHD e�ects. This suggests

the possibility that the black holes which grow mainly by the accretion process are

not maximally rotating. We use the spin-down term by minor mergers given by

Gammie et al. (2004) in our evolution model (discussed in Chapter 6) to be valid

in the range z = 4→ 0 (Stewart et al. 2009). We see a signi�cant decrease in the

�nal spin value after adding this merger term. Gammie et al. (2004) by taking the

e�ect of minor mergers in spin evolution of the black hole �nd

d log j

d logM•
= −7

3
+

9q√
2j2

, (5.59)
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which can be written as

dj

dτ
= µ̇m ·

j

µ•

(
− 7

3
+

9q√
2j2

)
. (5.60)

5.5 Blandford - Znajek e�ect

Blandford and Znajek (1977) shows how the magnetic �eld drives powerful jets

from the black hole from its rotational energy. The magnetic �eld is frozen to the

Figure 5.6: Magnetic �eld and the �ow of current near the black hole. Image
courtesy: MacDonald and Thorne (1982).

disc material approximately because exact freezing will not lead to the presence

of toque by the magnetic �eld and hence, there will be no energy extracted from

the hole. According to Ferraro's law, the angular velocity has to be constant on

the poloidal �eld line. Since there is spherical symmetry, the angular velocity will

always be independent of the azimuthal angle, φ, and therefore, it will be constant

along the plane about the symmetry axis R = 0. Frank et al. (2002) de�ne

those surfaces as magnetic surfaces. The �ux of the magnetic �eld, FB(R, z), at

a particular point, is obtained by integrating the magnetic �eld over a circular

surface having the symmetry axis at the center. The obtained �ux is constant at
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the magnetic surfaces. For the generation of a non-zero magnetic �eld, BT , in the

magnetic surfaces (with radius R), in a force-free �eld, a constant current �ow, I,

has to be present [see Fig. 5.6]. Applying Ampere's law, we �nd,

BT =

[
cµ0

4π

]
2I

cR
. (5.61)

Consider two adjacent surfaces, with radii R and R + ∆R, with interior current

�ows I and I + ∆I. For avoiding the accumulation of charge, radial current

should be present between these two surfaces. In this case, it is not necessary for

the current to �ow along the magnetic surfaces, because this is not a force-free

�eld. Therefore, in the acceleration region, there will be a dissipation of energy.

This region in the accretion disc a�ects the transmission e�ciency, but, because

of its radial direction, it has no e�ect on the overall e�ciency. In the intermediate

force-free region, there will be no dissipation. The power that �ows from the disc

(force-free region) to the acceleration region is (Frank et al. 2002)

S =

[
4π

µ0c

]
c

4π
E×B =

[
4π

µ0c

]
c

4π
EP ×BT, (5.62)

where, EP − ET and BP −BT are the poloidal-toroidal electric and magnetic

�elds. Now, ET = 0 and EP = ([c]/c)(R × Ω) × BP. For black holes, Ω will be

equal to the angular velocity of the local �eldlines. Therefore, S is obtained to be

S ∼ [4π/µ0]RΩBPBT/4π. (5.63)

BP and BT have to be determined from the condition of non force-free regions. If

it is assumed, near the region of acceleration that the particles move up �eld lines,

which are in the parallel direction to BP + BT, the velocity almost approaches c

and the circular velocity is RΩ, which is parallel to BT. From the relative velocity
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diagram (Frank et al. 2002)

BP/BT ∼ (c2 −R2Ω2)1/2/rΩ ∼ c/RΩ. (5.64)

The innermost orbits, contribute maximum power and using Ω calculated at the

innermost stable orbit, ≤ 3Rs, the �nal expression of the luminosity of the disc is

found to be

LD ∼ 1045(B/104G)2(M•/108M�)2erg s−1. (5.65)

This value is quite large to be observationally signi�cant.

In this process, the power extraction from the black hole rotational energy is

possible. The magnetic pressure by the magnetic �eldlines is convected to the disc

material and the magnetic �eldlines are attached to the hole. The currents are

already set up in the disc, though these are �ctitious currents acting just as a sink

for current �ows in the magnetic surfaces for the sake of completion of the circuit

[see Fig. 5.6]. Therefore, a net torque acts on the hole due to the di�erence in the

angular velocities of the hole and that of the magnetic �eld (Frank et al. 2002).

This is the Blandford-Znajek e�ect which causes the black hole to spin down. The

e�ciency of this process is determined from the ratio of the power extraction and

the maximum possible power that can be extracted when matter falls onto the

black hole.

Mangalam et al. (2009) studied the case of rapid loss of cold gas due to AGN

feedback which may cause expansion in the e�ective radii of massive elliptical

galaxies from z ' 2→ 0, they quantify the extent of the expansion in terms of the

star formation parameters and time of the expulsion of the cold gas and show that

cosmological changes are expected to have a major in�uence on the gas accretion

mode, which at high redshifts can be dominantly cold thin disc accretion and at low

redshifts could be dominantly hot Bondi fed ADAF accretion. They calculate the
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spin down to be τj ∼M2
9 0.2 Gyr, which explains the cosmological evolution of the

luminosity function from powerful to weak radio galaxies. We use the expression

of spin evolution caused by BZ torque as implemented in Mangalam et al. (2009)

in our model. The spin evolution equation by the BZ e�ect for di�erent initial

and �nal spin values is given by (Mangalam et al. 2009)

dj

dt
= x3

H(j)
G0

J0

, (5.66)

where, xH(j) = 1 +
√

1− j2 and the BZ torque, G0, is given by

G0 =
m3

8
B2
⊥fBZ = 4× 1046fBZB4M

3
8 (erg), (5.67)

and the angular momentum budget, J0 is given by

J0 = cM•mj = 9× 1064M2
8 (g cm2 s−1), (5.68)

and where B4 = B/104Gauss, fBZ is a geometric factor that comes from the

averaging of angle over the horizon of magnetic �ux and the spin of the magnetic

�eld (Mangalam et al. 2009). Therefore in dimensionless form

dj

dτ
=

4

9
× 10−5fBZB4µ•Ms5x

3
H(j)j, (5.69)
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Figure 5.7: The spin down, j(t), due to BZ torque for B4 = 5, M• = 106M�
is shown with an initial spin, ji = 0.3 (a) and (b) the factor of spin down time,
κ(j), is shown for a �xed jf = 0.001
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Mangalam et al. (2009) give an analytic solution of spin down time τj,BZ(j)

τj,BZ =
J0

G0

∫ ji

jf

dj

r3(j)j
= 7.0× 108yr

(κ(ji, jf )/0.1)

B2
4M9fBZ

, (5.70)

where M9 = M•/(109M�) and

κ(ji, jf ) =

[(
1

16

)
log

(
2− w
w

)
+

(
3w2 + 3w − 4

24w3

)]wi
wf

, (5.71)

with wi = xH(ji), wf = xH(jf ). Fig 5.7(a) shows the spin down due to BZ e�ect

for a certain set of parameters. This is equivalent to the study of the spin down

for Bondi case with zero accretion in Mangalam (2015).

5.6 Resource summary

1. In this chapter, we discussed all the processes that are responsible for the

growth of the black hole and its evolution.

2. In �5.1, we discussed the physics of the accretion process, a simple case of

spherical accretion, the thin disc model and the contribution of this process in

the evolution of the black holes [Frank et al. (2002); Kolb (2010); Mangalam

(2015)].

3. �5.2 is dedicated to the growth of the black hole by stellar capture, where,

we calculate capture rate in steady (Mageshwaran and Mangalam 2015) and

full loss cone theory (Merritt 2013a) to estimate the mass growth rate of the

black hole by the stellar capture process and build the platform to present

our model (discussed in Chapter 6) where we include relativistic corrections

to the tidal, capture and the loss cone radius to derive the relativistic capture

rate.
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4. In �5.3, we discuss the role of major and minor mergers [Gammie et al.

(2004); Hughes and Blandford (2003); Stewart et al. (2009)], on the mass

and spin evolution of the black holes.

5. �5.4 provides the recipe of the electromagnetic spin-down of the black hole,

due to the e�ect of the Blandford - Znajek torque [Blandford and Znajek

(1977); Frank et al. (2002)] and the process of extraction of energy from

rotating black holes for the spin down to occur (Mangalam et al. 2009).



Chapter 6

Evolution of the black holes in

ΛCDM cosmology∗

Image: brtannica.com

6.1 Introduction

From the analysis of Bardeen et al. (1972), without thermodynamic e�ects, the

non-rotating black holes can attain maximum spin of ≈ 1 by the accretion of gas

from the ISCO. The black hole spin is limited by an upper limit of the spin of

0.998 based on radiation torque due to a di�erence in cross-section for counter and

co-rotating photons near this limit which is responsible for the saturation (Thorne

1974). From Seyfert 1.2 galaxy MCG - 06 - 20 - 15, XXM - Newton observa-

tions have analyzed the upper limit to be 0.989+0.009
−0.002 with 90 percent con�dence

(Brenneman and Reynolds 2006). Later on, Gammie et al. (2004) have shown the
∗This chapter has been published in ApJ (Bhattacharyya and Mangalam 2020) and part of

this has been published in Bhattacharyya and Mangalam (2018b)
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maximum value to be around 0.9, less than 0.998 for relativistic MHD disks. This

may not be applicable for thin disc cases; this suggests that the black holes which

have grown through MHD accretion are not maximally rotating. For the thick disk

cases, the saturated value of spin was found to be 0.93. The thin disk analysis

by Gammie et al. (2004) indicates that only through sub - Eddington accretion,

the spin can be very close to the maximal rotation. Volonteri et al. (2005) and

Volonteri and Rees (2005) have argued that the e�ect of accretion torque always

results in spinning up the black hole. In the former paper, the spin-up process

of black holes is assumed to be caused by the accretion and binary coalescence,

where the SMBH spins up even if the direction of the spin axis varies with time

and accretion dominates over coalescences. But if the accretion disks become self-

gravitating their angular momentum per unit mass will be less than that of the

black hole. Therefore in such cases, a black hole having su�cient spin will be spun

down (King et al. 2008). If the black hole is growing by the merger process, the

upper limits can be di�erent. After extrapolation of data, Marronetti et al. (2008)

have suggested that, for merging two similar mass black holes with maximum ini-

tial spin and aligned with their orbital angular momentum, the upper value can

be 0.951 ± 0.004. Volonteri & Rees (2005) have calculated the growth of black

holes as a function of redshift for z ∼ 10− 20 of the formation using an accretion

rate given by the Bondi - Hoyle formula which is ∝M2
• .

Our aim in this chapter to consider all these processes: gas accretion, stellar cap-

ture, mergers, and black hole electrodynamical spin down to build a self-consistent

model of spin and mass evolution. The main motivation of this study is to con-

struct a detailed evolution model of the black hole, that can be a useful tool to

study the co-evolution of the black hole and the galaxy. We take a comprehensive

approach by including all the growth channels semi-analytically, with an aim to

isolate the important e�ects. The relativistic treatment is important as all the

channels depend on spin and hence would modulate the black hole growth. This
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self-consistent evolution model would be handy in comparing results with simula-

tions and in retrodictions of the formation parameters, thus constraining models

of black hole formation. In future, detailed demographic studies can be carried

out to evolve black hole mass and spin distributions. The three applications that

we consider are capture rates of stars applying relativistic corrections to the tidal

radius and the capture radius (Rana and Mangalam 2019a) to the loss cone model

given by Mageshwaran and Mangalam (2015). Secondly, using the model we pre-

dict the evolution of the M• − σ relation. The third application considered is

to retrodict the seed mass and spin of the black hole and the formation redshift

under various assumptions, given the recent observations at the epoch near z ' 7

(Campitiello et al. 2019).

6.2 Overview of the physics of the growth of the

black hole

6.2.1 Growth of black hole mass and spin by accretion

We use the same argument as provided in chapter 5 for spin and mass evolution of

black holes in presence of accretion. We list the equations here again, to provide the

platform of our evolution model. We take sub - Eddington accretion throughout

so that

Ṁ•g = k1M•, (6.1)

where, k1 =
4πGmpη

σec
and the factor η = Ṁ•/ṀE, where ṀE is the Eddington

accretion rate.
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Therefore in units of µ• =
M•
Ms

, where Ms is the seed mass, τ =
t

t0
, where t0 = 1

Gyr

µ̇g =
Ṁ•gt0
Ms

. (6.2)

The mass evolution equation is given by Mangalam (2015), where a theoretical

model was used for mass and spin evolution of the black hole taking into account

the angular momentum torque caused by the electrodynamical jet (given in chapter

5)
dM•
dt

= εI(j)Ṁ•g, (6.3)

where εI(j) [see eqn. (2)] is the e�ciency of energy conversion with the innermost

radius of the disc to be taken typically at ISCO, and Ṁ•g is the rate of accretion.

The spin evolution equation is given by

dj

dt
=
Ṁ•g
M•

(
lI(j)− 2εI(j)j

)
, (6.4)

where lI(j) [see eqn. (5)] is the angular momentum per unit mass at ISCO.

6.2.2 Growth of black holes by stellar consumption

The SMBHs can also grow by the capture of stars in two ways. Those stars that

pass within the event horizon can be directly captured and the indirect capture

occurs when capture occurs by accreting the gas from tidally disrupted stars.

For SMBHs more massive than 108M�, the direct capture of solar type stars are

possible if the angular momentum of the star is smaller than some critical value

(Frank and Rees 1976) for the non - relativistic case. We proceed to calculate the

limiting value for the relativistic case. For a Kerr black hole, the standard e�ective

potential is written as [Misner et al. (1973); Carter (1968); Frolov and Novikov
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(1998); Rana and Mangalam (2019a); Rana and Mangalam (2019b); (RM19)]

Veff (x, l, j, Q) = −1

x
+
l2 +Q

2x2
− [(l − j)2 +Q]

x3
+
j2Q

2x4
, (6.5)

where L is the angular momentum, l ≡ L/(GM/c), x = r/rg, where rg = GM•/c
2,

j is the spin parameter and Q is the Carter's constant. The solution of Veff (xp) =

0 and V ′eff (xp) = 0 gives the equation of separatrix orbit where xp is the pericenter,

as shown in Fig 2(b) of RM19. The condition, Veff (xp) = 0, implies

− x3
p +

(l2 +Q)x2
p

2
− (l − j)2xp +

j2Q

2
−Qxp = 0, (6.6)

and V ′eff (xp) = 0 gives

x3
p − x2

p(l
2 +Q) + 3xp[(l − j)2 +Q]− 2j2Q = 0. (6.7)

From these two conditions, we �nd the equation for the separatrix xp(Q, l`, j) to

be given by

x3
p − [(l − j)2 +Q]xp + j2Q = 0, (6.8)

which represents a turning point condition for an orbit that is just bound or

just unbound. This also represents a marginally bound spherical orbit (MBSO).

The innermost stable spherical orbit (ISSO) and MBSO are the end points of the

separatrix curve fro (e = 0, ISSO) to (e = 1, MBSO). The star is captured at

MBSO (as r → ∞ in Fig. 2(b) of RM19 and rs is the pericenter. This capture

radius (MBSO) xc(Q, l, j) in units of rg, is found from eqn. (6.8) to be (see

Appendix D of RM19 for details)

x8
c − 8x7

c − 2j2x6
c + 16x6

c + 2j2Qx5
c − 8j2x5

c − 6j2Qx4
c + j4x4

c − 2j4Qx3
c +

8j2Qx3
c + j4Q2x2

c − 2j4Qx2
c − 2j4Q2xc + j4Q2 = 0. (6.9)

Solving eqn. (6.9) for real roots (numerically for Q 6= 0) which are higher than

the light radius (?) we �nd the solution of the capture radius for both prograde
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and retrograde cases. If Q = 0, the eqn. (6.9) reduces to

x4
c(x

2
c − 2jxc + j2 − 4xc)(x

2
c − 4xc + j2 + 2jxc) = 0, (6.10)

which leads to the known result (Zhao et al. 2002)

xc(j) =

 −j + 2(1 +
√

1− j) for prograde

j + 2(1 +
√

1 + j) for retrograde
(6.11)

The angular momentum at xc is given as from eqn. (6.8) is found to be

lc(M8, j, Q) = j + k

√
x2
c −Q+

j2Q

xc
. (6.12)

The value of lc will be positive for prograde case (k = 1) and negative for retrograde

case (k = −1) due to the direction of spin of the black hole. The capture of a star

by the black hole can occur in two ways, either by tidal disruption of the stars

or by direct capture of the black hole. For direct capture, we determine xc using

eqn. (6.9) for Q 6= 0 or by using eqn. (6.11) for Q = 0. Below a certain critical

mass, the stars are tidally disrupted (Merritt 2013a) and above which the stars

are swallowed whole. Therefore, rt is de�ned as the radius below which the star

gets disrupted by the black hole. We calculate the tidal radius in presence of black

hole spin applying Poisson's equation

∂2Veff
∂r2

∣∣∣∣
r=rt

= −4πGρ, (6.13)

where, ρ is the stellar mass density. Using the generalized form of the e�ective

Kerr potential in natural units [eqn. (6.5)], the tidal radius equation [eqn. (6.13)],

�nally leads to

[
− 2

x3
+

3(l2 +Q)

x4
− 12

[(j − l)2 +Q]

x5
− 10j3Q

x6

]
x=xt

= −4πρ̃, (6.14)
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where

ρ̃ =
ρ

M•
· r3
g ' 0.3M2

8

(
ρ∗
ρ�

)
, (6.15)

x = r/rg,

l = L/
GM•
c

.

where ρ∗ is the density of the star. We solve eqn. (6.14) numerically for xt(j,M8, Q)

by considering l = lc, the angular momentum of capture taking the above approx-

imation for ρ̃ as 0.3 M2
8 (assuming the star to be of solar type). An analytic ap-

proximation to rt has been calculated here. Taking y = 1/xt and ỹ = y/yt0 = 1+δ,

we �nd the �rst order approximation to y de�ning yt0 as the inverse of the dimen-

sionless tidal radius to be

yt0 =
1

xt0
= M

− 1
3

8

(
ρ∗
ρ�

)− 1
3

105 · rg pc−1. (6.16)

The sixth order equation for δ is

2(1+δ)3−3(l2 +Q)yt0(1+δ)4 +12(1+δ)5[(j−l)2 +Q]y2
t0 +10j3Qy3

t0(1+δ)6−1 = 0.

(6.17)

Solving eqn. (6.17) numerically we obtain δ(j,Q) which is shown in Fig. 6.1.

The loss cone radius x`,≡ Max[xt, xc] is given by

x`(M8, j, Q) = r`/rg = Max[rt(M8, j, Q), rc(j,Q)]/rg. (6.18)

The angular momentum at x` is found by putting Veff (x, l, j, Q) = 0 [see eqn.

(6.5)] and it is given by

l`(M8, j, Q) = 2j + k

√
2x`j2

(x` − 2)2
− Qj2

x`(x` − 2)
+

2x2
`

(x` − 2)
−Q. (6.19)
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Figure 6.1: A contour plot of δ(j,Q) de�ned by y ≡ yt0(1 + δ) for l = lc and
k = −1 is shown , which lies in the range of 0.32 ± 0.05 for Q ∈ [0, 4] and
j ∈ [0, 1].

The value of l` will be positive for prograde case (k = 1) and negative for retrograde

case (k = −1) due to the direction of spin of the black hole. We show both the

cases in Fig. 6.7. For Q = 0 and j = 0 eqn. (6.19) reduces to

l`(M8) = k

√
2x2

`

(x` − 2)
. (6.20)

For high values of x` (in the non - relativistic limit) we can write

l2` = 2x`, (6.21)

which implies

L2
` =

(
GM•
c

)2

l2` = 2GM•r`, (6.22)

which is the well known non - relativistic result.

We explore the dependence of rt(M8, j, Q) and r`(M8, j, Q) in Figs. 6.2, 6.3, 6.5

and Fig. 6.6. We observe the following.

• xt(M8, j, Q = 0) is shown in Fig. 6.2, where we see that at a �xed j, xt
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Figure 6.2: The tidal radius (xt(M8, j, Q) = rt(M8, j, Q)/rg) given by eqn.
(6.14) is shown as a function of M8 (top) and j (bottom) for Q = 0.

decreases with increase of M•. In the high mass regime, the variation of xt

is small with spin but it shows more variation in the low mass regime; this

has an impact on the calculation of the stellar capture rate presented later

in �6.2.2.

• Fig 6.3 shows the dependence of xt(M8, j, Q) on Q. We �nd that for a

�xed value of j, xt has a small dependence on Q as a function of M8. But,

xt(M8, j, Q) decreases as a function of Q for retrograde case for a �xed value

of M•. But for the prograde case, xt(M8, j, Q) initially decreases for higher

Q, but subsequently, it shows an increase with increasing Q.

• Fig. 6.4 shows the ratio of rt(M8, j, Q)/rc(M8, j, Q) as a function of both j

andM• for Q = 0. Mc(j,Q) = M•(rt/rc = 1) is the critical mass which has a

dependence on j and matches with the previous simulation results of Kesden

(2012) who shows that the mass of the heaviest black hole which is able to



Chapter 6: Evolution of the black holes in ΛCDM cosmology 120

-2 -1 0 1 2

1

2

3

4

Log10[M8]

x
t Q = 4

Q = 3

Q = 2

Q = 0

(a) Prograde

-2 -1 0 1 2

1

2

3

4

5

Log10[M8]

x
t Q = 4

Q = 3

Q = 2

Q = 0

(b) Retrograde

0.0 0.2 0.4 0.6 0.8

3.0

3.5

4.0

4.5

j

x
t

Q = 4

Q = 3

Q = 2

Q = 0

(c) Prograde

0.0 0.2 0.4 0.6 0.8

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

j

x
t

Q = 4

Q = 3

Q = 2

Q = 0

(d) Retrograde

Figure 6.3: The tidal radius (xt(M8, j, Q) = rt(M8, j, Q)/rg) given by eqn.
(6.14) is shown as a function of M8 for j = 0.2 (top) and j for M8 = 0.1
(bottom).

disrupt a star, changes as a function of j, in the relativistic limit. For black

holes more massive than 107M�, the tidal disruption occurs very close to the

horizon and Newtonian treatment of the tidal interactions cannot be applied.

Kesden (2012) calculate generically oriented stellar orbits considering the

Kerr metric to evaluate the relativistic tidal tensor at the pericenter for the

stars which are not directly captured by the black hole and also combine

their relativistic treatment with previous calculations of the population of

these orbits in order to determine tidal-disruption rates for spinning black

holes. They found a strong dependence of tidal-disruption rates on black-

hole spin for M8 > 1. Our calculation of rt shows an increase at high mass

end (M8 > 1) as suggested by Kesden (2012). The plots of Fig. 6.4 in the

lower panel shows Mc(j,Q) is nearly �at in Q.

• Fig. 6.5 shows x`(M8, j, Q) for Q = 0. When the value of xc(j,Q) exceeds
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Figure 6.4: The ratio of tidal radius to the capture radius
(rt(M8, j, Q)/rc(M8, j, Q) = xt(M8, j, Q)/xc(j,Q)) is shown as a function
of M8 for Q = 0 (top) and the locus of the critical mass, Mc(j,Q) for di�erent
j as a function of Q (bottom). The critical mass of the black hole is determined
from the plots when xt/xH = 1; this critical mass is represented by the black
line in the plots in the upper panel.

xt(M8, j, Q) the stars will be directly captured instead of getting tidally

disrupted; hence x`(M8, j, Q) �attens out after M• > Mc.

• x`(M8, j, Q) for di�erent Q values are shown in Fig 6.6 for both prograde and

retrograde cases. For �xed j, in the retrograde case, we see that x`(M•, j, Q)

increases with Q and decreases with Q for the prograde case. x`(M8, j, Q)

for �xed M• is nearly the same for di�erent Q. This is true, because as Q

increases, L− Lz decreases causing the pericenter to shrink in the prograde

case and the opposite holds in the retrograde case.

• The dimensionless angular momentum at r`(M8, j, Q) de�ned as l`(M8, j, k,Q)

[eqn. (6.19)] is the loss cone angular momentum in the relativistic regime.

Fig 6.7 shows l`(M8, j, k,Q) for di�erent Q values, where it increases with
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Figure 6.5: The loss cone radius (x`(M8, j, Q) ≡ r`(M8, j, Q)/rg) =
Max[xt(M8, j, Q), xc(j,Q)] is shown as a function of M8 (top) and j (bottom)
for Q = 0 is shown.

M8 for both prograde and retrograde cases for Q = 0. For a �xed M8,

l`(M8, j, k,Q) decreases with increase in Q for the prograde case while it

increases for the retrograde case. This can be understood from the fact that

Q is a measure of L− Lz; so that Lz increases when Q decreases for Lz > 0

(prograde) and |Lz| decreases when Q decreases for Lz < 0 (retrograde).

Steady loss cone theory

Mageshwaran and Mangalam (2015) have constructed a detailed model of the tidal

disruption events using stellar dynamical and gas dynamical inputs like black hole

mass, speci�c orbital energy and also angular momentum, the mass of a single star,

its radius and the pericenter of the star orbit. Using the Cohn - Kulsrud boundary

layer theory they calculated the di�erential rate of number of stars falling in the
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Figure 6.6: The loss cone radius (x`(M8, j, Q) = r`(M8, j, Q)/rg =
Max[rt(M8, j, Q), rc(M8, j, Q)]/rg) is shown as a function of M8 for j = 0.2
(top) and j for M8 = 1 (bottom) for di�erent Q values.

steady loss cone to be (MM15)

d2Ṅs

dēdl2dm
= 4π2s−1

t σ2ξ(m)f∗(ē,M•,m)L2
`(ē)F (χ = 1, l), (6.23)

where, st = rt(M•, j)/rh, ē = E/(GM•/rt), E is the energy, f∗ is the probability

that a star of mass m is tidally captured as a main sequence and ξ(m) is the stellar

mass function where m = m∗/M�, F = X(ylc)ζ(qs), and

X(ylc) =
fs(E)

1 + q−1
s ζ(qs) log(1/Rlc)

, (6.24)

with qs =
< D(E) >

Rlc

and Rlc =
L2
`

J2
c

. MM15 have used the M•−σ relation (taking

p = 4.86) to get the expression for Ṅs. By applying steady-state Fokker - Planck

equation while using a power-law stellar density pro�le (having power-law index

γ) they obtained the rate of capture of stars Ṅ ∝ Mβ
• , where β = −0.3 ± 0.01
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Figure 6.7: The loss cone angular momentum l`(M8, j, k,Q) is shown as a
function of j for Q = 0 (up) and (bottom) di�erent Q values is shown with M8

=1 for retrograde and prograde cases.

for M6 > 10 and the value of Ṅs is ∼ 6.8 × 10−5 Yr−1 for γ = 0.7. We use the

same technique to calculate Ṅs, but including the relativistic forms of rt and rc,

but do not assume the M• − σ relation apriori and consider σ as an independent

parameter in our model. We start from the basic equation for Ns given by

Ns = 4π2

∫
P (E)dE

∫
fs(E, J)dJ2, (6.25)

using the same parameters used by MM15 and with the following assumptions

∫
ξ(m)dm = 1, and taking f∗ = 1, (6.26)
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and where

< D(εs) >=
32
√

2

3

π2G2 < m2
f > log Λ

J2
c

M•
< m∗ >

1

σ2
[2h1(εs) + 3h2(εs)− h3(εs)],

(6.27)

where εs = E/σ2, h1, h2 and h3 are de�ned in MM15. Now,

J2
c = σ2r2

h[sc(εs) + 2s4−γ
c (εs)], (6.28)

where sc is the ratio of radius of circular orbit and horizon radius, εs dependent

part is called as β(εs), and

L`(M•, j, k,Q) =
GM•
c

l`(M•, j, k,Q). (6.29)

Therefore,

R`(M•, j, k,Q, εs) =
L2
`

J2
c

=
L2
`(M•, j, k,Q)

σ2r2
hβ(εs)

, (6.30)

where, β(ε) = [sc(εs) + 2s4−γ
c (εs)]. From the de�nition, qs(εs) is written as

qs(εs) =
< D(εs) >

R`

, (6.31)

which can be simpli�ed to

qs(M•, j, k,Q, εs) =
16
√

2

3

π2 < m2
f >

M• < m∗ >

r2
h

r2
c (M•, j, k,Q)

2h1(εs) + 3h2(εs)− h3(εs)

rh/rc(M•, j, k,Q)− εs
.

(6.32)

where the expression for ζ(qs), as given by MM15 is

ζ(qs) =

 1 for qs ≥ 4

qs/(0.86q0.5
s + 0.384qs − 0379q1.5

s + 0.427q2
s − 0.095q2.5

s ) otherwise.
(6.33)
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By integrating eqn. (6.23) assuming f∗ =1, we �nally arrive at

dNs

dεs
(M•, j, k,Q, εs, σ) =

√
2π3L2

`(M•, j, k,Q)σ2ε
− 3

2
s

G2M• < m∗ >
g(εs)

ζ(qs)

1 + q−1
s ζ(qs) log(1/R`)

.

(6.34)

Then dividing eqn. (6.34) by the orbital period P (εs) we �nd an expression of
dṄs

dεs
as

dṄs

dεs
(M•, j, k,Q, εs, σ) =

4π3L2
`(M•, j, k,Q)σ5

G3M2
• < m∗ >

g(εs)
ζ(qs)

1 + q−1
s ζ(qs) log(1/R`)

.,

(6.35)

where we have used relativistic approximation to r`(M•, j, k,Q) to obtain Ṅ(M•, j, k,Q, εs, σ)

in the relativistic limit as a function of the black hole spin. Since the di�usion

occurs at very large radius, only the �rst term of the e�ective potential domi-

nates. Integrating this expression numerically, we �nally �nd the rate of capture

of stars for the case of the steady loss cone and Fig. 6.8 shows the variation of

Ṅs(M•, j, k,Q, εs, σ) with theM•. This can be explained by the decrease of l` with

M8 that e�ectively causes this nature of Ṅs. From Fig. 6.8 we see that the trend

of Ṅs(j) follows from the dependence of rc(M•, j, k) on j (see Fig. 6.2).

From Fig. 6.9, we see that the capture rate, Ṅs(M•, j, k,Q, εs, σ) follows the trend

of rc(M•, j, Q) (see Fig. 6.5) where we used the M• − σ relation with p = 4.86.

This shows a similar trend as seen in Kesden (2012) (see Figs. 3, 4 in Kesden

(2012)), where Ṅs(j) (taking the universal M• − σ relation) has higher Ṅs value

for higher j.

In Fig. 6.10, we show Ṅs(γ); for higher γ, Ṅs increases for both prograde and

retrograde cases, which is similar to the result of in MM15.

From Fig. 6.11, we see that the rate of the number of stars falling into the loss

cone is higher in case of full loss cone theory than in the case of steady loss cone

by an order of magnitude. Also, the slope is positive at the lower mass end and
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Figure 6.8: The capture rate, Ṅs(M•, j, k,Q, εs, σ), is shown which reduces
monotonically withM8 and increases slightly with j when k = 1 (left), -1 (right)
for Q = 0 (top) and (bottom) the same plots for Q = 4 where the lower limit of
the εs integration is taken to be εm = -10, γ = 1.1 and σ = 200 km/sec.

it becomes negative as it reaches the higher mass. Ṅf is almost constant and

mainly dependent on the σ term, throughout the whole range of masses, because

its dependence on mass through l2` is small while the mass dependence of Ṅs is

strong. We determine the slope of the curves in case of a steady loss cone for both

the curves with and without using the M• − σ relation. In Fig 6.11(a), the slope

is -0.3 and in Fig 6.11(b) the slope is -0.6, for the decreasing part. Therefore,

we conclude that if we calculate Ṅs using the M• − σ relation, the value drops

faster than the case of constant σ. We derive the mass evolution only in the

presence of stellar capture and the result obtained is in rough agreement with that

of Alexander and Bar-Or (2017b). Fig. 6.12 is similar to the result of Alexander

and Bar-Or (2017b) [see Fig. 2] under the same conditions.



Chapter 6: Evolution of the black holes in ΛCDM cosmology 128

-2.0 -1.5 -1.0 -0.5 0.0
-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

Log(M8)

L
o
g
(N

s
)(

y
r-

1
)

j = 0.6

j = 0.4

j = 0.2

j = 0.1

(a) Prograde

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

Log(M8)

L
o
g
(N

s
)(

y
r-

1
)

j = 0.6

j = 0.4

j = 0.2

j = 0.1

(b) Retrograde

Figure 6.9: The capture rate, Ṅs(M•, j, k,Q, εs), is shown for di�erent values
of j using the M• − σ relation (p = 4.86) where k = 1 (left) for the prograde
case, -1 (right) for retrograde case with the lower limit of εs taken to be εm =
-10, γ = 1.1.
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Figure 6.10: Plots of Ṅs(M•, j, k,Q, εs, σ) are shown for di�erent values of γ
where k = 1 (left) for the prograde case, -1 (right) for the retrograde case with
the lower limit of εs taken to be εm = -10, j = 0.2 and σ = 200 km/sec.

6.2.3 Growth of the black hole by mergers

Mass evolution by mergers

The black holes can grow its mass also by the merger process, though the rate is

generally much smaller compared to accretion while minor mergers are more prob-

able than the major mergers. When the accretion process stops due to saturation,

the dominant contribution to mass growth of the black hole comes from the e�ect
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Figure 6.11: Ṅf and Ṅs(M•, j, k,Q, εs, σ) are shown for both the steady and
the full loss cone theory with j = 0, Q = 0, k = −1, γ = 1.1, εm = -10 and σ =
200 km/sec (Left) and (right) using the M•− σ relation with p = 4.86, γ = 1.1,
k = −1.
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Figure 6.12: The mass evolution only in the presence of stellar capture is
shown for seed mass of 104M�, γ = 1.1 (red is for zf = 0.1, blue is for zf = 1,
green is for zf = 10).

of mergers. We compute the mass growth rate by merger activity by integrating

the merger rate over the mass of the smaller black hole. Stewart et al. (2009) uses

high-resolution ΛCDM N -body simulations for predicting merger rates in dark

matter halos and investigate the scaling of common merger-related observables

with luminosity, stellar mass, merger mass ratio, and redshift z = 4 ← 0. They

derive the expression for merger rate (infall) valid for 0 ≤ z . 4 considering the

peak of merger activity; the dependence on di�erent parameters has been deter-

mined using simple �tting functions. The developed simulations which contained

512 particles of mass 3.16× 108h−1M� which was evolved within a comoving vol-

ume of 80h−1 Mpc on a side by the Adaptive Re�nement Tree (ART) N - body
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code developed by Kravtsov et al. (1997, 2004). We use the rate of mergers given

in Stewart et al. (2009) and integrate it over the mass of the smaller black hole to

�nd Ṁ•m. Following their assumptions, we also consider the merger activity to be

valid in the range z = 4→ 0. In Stewart et al. (2009) the empirical expression for

merger rate (infall) is

dNm

dt
(m/M ∈ (0.1, 0.7)) = At(z,M)F (m/M), (6.36)

where m andM are the masses of the smaller and larger merging galaxies and Nm

is the number of mergers,

At(z,M) = 0.02Gyr−1(1 + z)2.2M b
12, (6.37)

with b = 0.15 andM12 =M / 1012h−1M� with h = 0.7 that is valid for 0 ≤ z . 4;

Adopting this, the rate of mass growth due to mergers is given as

dM

dt
= AtM

∫ 1

q

F (q)dq = AtMn(q), (6.38)

where q = m/M , and F (q) is given as

F (q) = q−c(1− q)d, (6.39)

where c = 0.5 and d = 1.3 and n(q) can be written as a combination of complete

and incomplete Beta functions, where the complete and incomplete Beta functions

are de�ned respectively as

B(x, y) ≡
∫ 1

0

tx−1(1− t)y−1dt, (6.40)

and

Bz(x, y) =

∫ z

0

tx−1(1− t)y−1dt =
zx

x
2F1(x, 1− y;x+ 1; z) (6.41)



Chapter 6: Evolution of the black holes in ΛCDM cosmology 131

As a result, we can express

n(q) = B(1− c, 1 + d)−Bq(1− c, 1 + d), (6.42)

so that the merger mass rate becomes

Ṁ•m = 8.058× 10−3(1 + z)2.2

[
M5

fb

]1.15

n(q)M5 105M�/Gyr; (6.43)

In units where µ• =
M•
Ms

, where, Ms is the seed mass, τ =
t

t0
, where t0 = 1 Gyr,

this can further be expressed as

µ̇m(q,Ms, z, zf ) =
Ṁ•mt0
Ms

=

8.058× 10−3(1 + z)2.2

[
M5

fh

]1.15

n(q)M5

Ms5

, (6.44)

where fh = M•/M andM5 is mass of the SMBH in units of 105M� which simpli�es

to

M•5(q,Ms, z, zf ) =

[
M0.15

s5 − 1.21× 10−3

∫ z

zf

(1 + z)2.2n(q)
dt

dz
(z)

]− 20
3

, (6.45)

where we have used fh = 3 ×10−5,
dt

dz
is given by eqn. (6.75) and zf is the

formation redshift. For simplicity, we assume a proportionality relation, M• =

fhM , whereas Ferrarese (2002) and Jahnke and Macciò (2011) have assumed the

relation to be slightly non-linear, where the index of the relation depends on the

choice of the dark matter pro�le. Furthermore, fh increases to 2 × 10−4 for halo

masses of ∼ 1014M� and decreases to 10−5 for halo masses ∼ 1012M� (Ferrarese

2002). Therefore, as a reasonable approximation, we assume a mean value of fh

in our model. The frequency of major mergers is much less than the frequency of

minor ones (Stewart et al. 2009).

Fig. 6.13 shows the mass evolution of the black hole in the presence of only

merger activities for di�erent zf . This term dominates after the accretion stops
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Figure 6.13: The evolution of black hole mass due to mergers is shown for
di�erent formation redshifts for q = 0.1 and fh = 3 ×10−5.

which happens after the black hole reaches saturation. We have used for q = 0.1

and q > 0.1 implies major mergers. But the frequency of major mergers is much

less than the minor ones and the growth rate by major mergers is almost of the

same order for di�erent q values. We see that the mass growth due to mergers

is signi�cantly smaller in this case compared to the gas accretion and hence we

consider only the minor mergers, as they are more frequent.

Spin evolution by mergers

Gammie et al. (2004) considers the collapse of stars, accretion, and major and

minor mergers that contribute to the spin of the astrophysical black holes. Ac-

cording to Gammie et al. (2004), major mergers contribute to spinning up the hole

whereas minor mergers contribute to spinning it down (discussed in chapter 5).

Since the accretion process is the dominant one for the spinning up of the black

hole, we will be considering only the contribution of minor mergers and neglect

the major mergers for the spin evolution of the hole in our evolution model. We

use the spin-down term by minor mergers given by Gammie et al. (2004) in our

evolution model to be valid in the range z = 4→ 0 (Stewart et al. 2009). We see a

signi�cant decrease in the �nal spin value after adding this merger term. Gammie

et al. (2004) by taking the e�ect of minor mergers in spin evolution of the black
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hole �nd
d log j

d logM•
= −7

3
+

9q√
2j2

, (6.46)

which can be written as

dj

dτ
= µ̇m ·

j

µ•

(
− 7

3
+

9q√
2j2

)
. (6.47)

6.2.4 E�ect of the Blandford - Znajek torque on the black

hole spin

Blandford and Znajek (1977) shows how the magnetic �eld drives the powerful

jet from the black hole from its rotational energy. We use the expression of spin

evolution caused by BZ torque as implemented in Mangalam et al. (2009) in our

model. We compute the spin evolution equation by the BZ e�ect for di�erent

initial and �nal spin values (Mangalam et al. 2009) (as discussed in chapter 5).

dj

dt
= x3

H(j)
G0

J0

, (6.48)

where, xH(j) = 1 +
√

1− j2 and the BZ torque, G0, is given by

G0 =
m3

8
B2
⊥fBZ = 4× 1046fBZB4M

3
8 (erg), (6.49)

and the angular momentum budget, J0 is

J0 = cM•mj = 9× 1064M2
8 (g cm2 s−1), (6.50)

and where B4 = B/104Gauss, fBZ is a geometric factor that comes from the

averaging of angle over the horizon of magnetic �ux and the spin of the magnetic
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�eld (Mangalam et al. 2009). Therefore in dimensionless form

dj

dτ
=

4

9
× 10−5fBZB4µ•Ms5x

3
H(j)j, (6.51)

Mangalam et al. (2009) give an analytic solution of spin down time τj,BZ(j)

τj,BZ =
J0

G0

∫ ji

jf

dj

r3(j)j
= 7.0× 108yr

(κ(ji, jf )/0.1)

B2
4M9fBZ

, (6.52)

where M9 = M•/(109M�) and

κ(ji, jf ) =

[(
1

16

)
log

(
2− w
w

)
+

(
3w2 + 3w − 4

24w3

)]wi
wf

, (6.53)

with wi = xH(ji), wf = xH(jf ).

6.3 BH evolution model in ΛCDM cosmology

Growth of Black Hole

Stellar captureAccretion BZ Torque Mergers

E�ects Region τj τM

Gas accretion xI − rd 1 Gyr 1 Gyr

Stellar capture rt − rh - 10 Gyr

Mergers rM 10 Gyr ∼ 10 Gyr

BZ Torque rH − rISCO 1 Gyr -

Table 6.1: The domain and timescales for di�erent physical e�ects (shown in
Fig. 6.14) contributing to the growth of the black hole.
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Now we indicate operative time scales in di�erent physical regimes of gas accre-

tion, stellar capture, mergers and electromagnetic torque in Table 6.1, where the

evolution timescales for mass τM and spin τj are calculated as follows.

• Gas accretion: From eqn. (6.70) we see that

τM,g =
M•

Ṁ•g
=

1

k1

' 1 Gyr, (6.54)

and from eqn. (6.76)

τj,g =
M•

Ṁ•g

(
lI(j)− 2ε(j)j

)
' 1 Gyr (6.55)

• Stellar Capture: We estimate from eqn. (6.70) that

τM,∗ =
M•

Ṁ•∗
=
M•
M�

105.5 yr ' 10 Gyr for M• = 105M� (6.56)
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• Merger: Also from eqn. (6.44) we �nd

τM,m =
M•

Ṁ•m
=

M•
M1.15

5 · 8.058 · 10−3 · (1 + z)2.2105M�
Gyr ' 10 Gyr forM• = 105M�, z ' 3,

(6.57)

and from eqn. (6.47)

τj,m =
M•

Ṁ•m

(
− 7

3
+

9q√
2j2

)
' 10 Gyr (6.58)

• BZ Torque: We see from eqn. (6.51)

τj,BZ =
J0

G0

∫ ji

jf

dj

r3(j)j
= 7.0× 108yr

(κ(ji, jf )/0.1)

B2
4M9fBZ

' 1 Gyr, (6.59)

where M9 is M• in units of 109M� and

κ(ji, jf ) =

[(
1

16

)
log

(
2− w
w

)
+

(
3w2 + 3w − 4

24w3

)]wi
wf

, (6.60)

with wi = xH(ji), wf = xH(jf ).

It is clear that the evolution timescales of both mass and spin are of order 1-

10 Gyr. This motivates us to use t0 = 1 Gyr as the unit of time in our model.

Next we examine the details of the loss cone theory that is an important input to

determine M∗.

The black hole growth can occur by both gas �ow as well as by capture of stars

and mergers till it reaches a saturated mass M•t at a time t = ts when the gas

�ow stops and it grows only by the capture of stars and mergers. This happens

because the out�ow velocity exceeds the escape velocity of the medium and the

gas is driven away causing the accretion process to stop. The saturated mass is

given by King (2003) as

M•t = 9.375× 106σ4
100M�. (6.61)
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For the rate of growth of mass by mergers, we use eqn. (6.38), which is valid

from z = 4 to present time; given that the merger activity peaks at z = 5 − 0.5

(Wetzel et al. 2009). We perform �ve experiments which we discuss in this section.

For the mass evolution, we consider the contribution from both major mergers as

well as the minor ones and for the spin evolution, we consider the contribution

from the minor mergers in spinning down the black hole (Gammie et al. 2004) as

the contribution of accretion process in spinning up the black hole is much higher

than the contributions from major mergers. But due to a smaller frequency of

the major mergers, the �nal mass attained by the merger process does not vary

signi�cantly with the value of q. For merger case, we have dealt with two scenarios:

(i) for zf . 4 the contribution of the merger will be present throughout and (ii) for

zf & 4, initially, there will be only accretion and stellar capture and mergers will

come into play after z = 4; from then on until ts all of three terms will contribute

after which the accretion stops.

To summarize, our model is based on some assumptions and conditions:

1. Black hole seeds are formed at a lookback time which of the order of the

Hubble time.

2. At the saturation time when the mass reaches M•t = 9.375 × 106σ4
100M�,

p→ 4.

3. The merger activity exists only for z . 4 (Stewart et al. 2009).

As before, we have normalized mass by µ• =
M•
Ms

, where, Ms is the seed mass, and

time by τ =
t

t0
, where t0 = 1 Gyr. The mass evolution equation is given by

dM•
dt

= εI(j)Ṁ•g + ε(j)Ṁ•∗ + Ṁ•m, (6.62)
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where ε(j) is the mass accretion e�ciency given by

ε(j) =

 εI(j) for M• < Mc

1 for M• ≥Mc,
(6.63)

where (Bardeen et al. 1972)

εI(j) =
z2
m(j)− 2zm(j) + j

√
zm(j)

zm(j)(z2
m(j)− 3zm(j) + 2j

√
zm(j))1/2

, (6.64)

and

zm(j) =
rms
M•

= 3 + Z2 −
√

(3− Z1)(3 + Z1 + 2Z2), (6.65)

with Z1 = 1 + (1− j2)1/3((1 + j)1/3 + (1− j)1/3) and Z2 = (3j2 +Z2
1)1/2 (Bardeen

et al. 1972). The dimensionless equation becomes

dµ•
dτ

= εI(j)µ̇g + ε(j)µ̇∗ + µ̇m. (6.66)

The �rst term in the RHS of eqn. (6.66) represents the gas accretion and comes

from eqn. (6.3), the second term due to the stellar capture is calculated from eqn.

(6.35) and represented below by eqn. (6.70), and the third term comes from the

contribution of mergers provided by eqn. (6.44). In eqn. (6.63), we see that ε(j)

is given by e�ciency at ISCO for M• < Mc and 1 for M• > Mc. This is because,

beyond the critical mass, the stars are directly captured leading to the e�ciency

of 1, while for lesser masses, the gas has to come through ISCO (by accretion of

tidally disrupted stars). The disc accretion always comes through ISCO, but, the

stars can come through ISCO as well as direct capture.
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The spin evolution equation of black hole taking into account gas accretion, stellar

capture, mergers and BZ torque is given by (see �6.2 for the various terms)

dj

dt
=
Ṁ•g
M•

(
lI(j)−2εI(j)j

)
+
Ṁ•∗
M•

(
l∗(j)−2ε(j)j

)
+Ṁ•m ·

j

M•

(
−7

3
+

9q√
2j2

)
+x3

H(j)
G0

J0

.

(6.67)

The dimensionless version of eqn. (6.67) is

dj

dτ
=
µ̇g
µ•

(
lI(j)−2εI(j)j

)
+
µ̇∗
µ•

(
l∗(j)−2ε(j)j

)
+µ̇m ·

j

µ•

(
−7

3
+

9q√
2j2

)
+

4

9
×10−5fBZB4µ•Ms5x

3
H(j)j.

(6.68)

where

µ̇g =


Ṁ•gt0
Ms

=
k1M•t0
Ms

for M• ≤M•t

0 for M• > M•t,

, (6.69)

µ̇∗ =
Ṁ•∗t0
Ms

=

 m?Ṅf t0/Ms for full loss cone

m?Ṅst0/Ms for steady loss cone
, (6.70)

where Ṅf and Ṅs are the stellar capture rates derived for full or steady loss cone

theories.

µ̇m =


Ṁ•mt0
Ms

for z ≤ 4

0 for z > 4

, (6.71)

where Ms5 is the mas of seed black hole in units of 105M�; for our calculations

we have used fBZ = 1. The �rst term in the RHS of eqn. (6.68) for gas accretion

stems from eqn. (6.4) [which shuts o� after saturation, as implemented in eqn.

(6.69)], the second term represents the stellar capture which can happen in two

ways; by tidal disruption (for M• < Mc) when the gas has to pass through ISCO

with an angular momentum and e�ciency at ISCO, or by a direct capture (for

M• > Mc), then it will retain its original angular momentum and e�ciency, ε(j) =

1 as given by eqns. (6.63, 6.72). The third term represents mergers and stems from

eqn. (6.47) [e�ective during z = 4→ 0, see (4) in our assumptions as implemented

in eqn. (6.71)] and the last term represents the contribution of BZ torque [see eqn.
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(6.51)]. The angular momentum of the stellar component is given by

l∗ =


lI(j) =

z2
m(j)− 2j

√
zm(j) + j2

z
1/2
m (j)[z2

m(j) + 2j
√
zm(j)− 3zm(j)]1/2

for M• < Mc(j)

l`(M•, j, k,Q) = 2j + k

√
2x`j2

(x` − 2)2
− Qj2

x`(x` − 2)
+

2x2
`

(x` − 2)
−Q for M• ≥Mc(j),

(6.72)

where, lI(j) is given by eqn. (6.80) (Bardeen et al. 1972) and l`(M•, j, k,Q) is

given by eqn. (6.19). Also, L` = l`
GM•
c

is given by

L`(M•, j, k,Q) =



√
2GM•rlc non - relativistic case

GM•
c

(
2j + k

√
2x`j2

(x` − 2)2
− Qj2

x`(x` − 2)
+

2x2
`

(x` − 2)
−Q

)
k = 1 (prograde), k = -1 (retrograde)

(6.73)

where j is the spin parameter of the black hole, rlc is the loss cone radius for non

- relativistic case and x` is the loss cone radius in units of rg which is taken as

Max[xt, xc]. If we take j = 0, Q = 0 we obtain the non - relativistic result from

the expression of L`(M•, j, k,Q) as shown in eqn. (6.22). For ΛCDM cosmology,

taking [Ωr ' 10−5, taken to be 0, Ωm = 0.3, ΩΛ = 0.7] the time as a function of

redshift can be written as,

t(z) =
1

H0

∫ 1/(1+z)

1/(1+zf )

da
1√

Ωma−1 + ΩΛa2
= tz(z)− tz(zf ), (6.74)

where, zf is the formation redshift and H0 is the present day Hubble constant (H0

= 70 km s−1 Mpc−1) and where we �nd by integration that

tz(z) =
1

H0

2

3

1√
1− Ωm

log

[√
1− Ωm

√
Ωm +

1− Ωm

(1 + z)3
+ (1− Ωm)

(
1

1 + z

) 3
2
]
.

(6.75)
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which matches with the result of Mo et al. (2010) for zf = ∞. The boundary

conditions are

• At t = 0, M• = Ms, z = zf and j = j0.

• At t = ts, M• = M•t, z = zs.

Growth of Black Hole

Stellar captureAccretion BZ Torque Mergers

Case 1 : zs < 4

z : zf → 4 :

 Ṁ• → Ṁ•g, Ṁ•∗

j̇ → j̇g, j̇BZ.

z : 4→ zs :

 Ṁ• → Ṁ•g, Ṁ•∗, Ṁ•m

j̇ → j̇g, j̇BZ, j̇m.

z : zs → 0 :

 Ṁ• → Ṁ•∗, Ṁ•m

j̇ → j̇BZ, j̇m.

Case 2 : zs > 4

z : zf → zs :

 Ṁ• → Ṁ•g, Ṁ•∗

j̇ → j̇g, j̇BZ.

z : zs → 4 :

 Ṁ• → Ṁ•∗

j̇ → j̇BZ.

z : 4→ 0 :

 Ṁ• → Ṁ•∗, Ṁ•m

j̇ → j̇BZ, j̇m.

Evolution equations

Ṁ•g → eqn.(6.2)

Ṁ•∗ → eqn.(6.70)

Ṁ•m → eqn.(6.44)

j̇g → eqn.(6.4)

j̇BZ → eqn.(6.51)

j̇m → eqn.(6.47)

ΛCDM Model of Cosmology

t(z) =
1

H0

∫ 1/(1+z)

1/(1+zf )

da
1√

Ωma−1 + ΩΛa2
,= tz(z)− tz(zf),

tz(z) =
1

H0

2

3

1√
1− Ωm

log

[√
1− Ωm

√
Ωm −

Ωm − 1

(1 + z)3
− (Ωm − 1)

(
1

1 + z

)3
2
]

Figure 6.15: A schematic for our model of evolution of the mass and the spin
of black hole in ΛCDM cosmology.
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We perform the following experiments which we tabulate in Table 6.2. Next, we

discuss the parameter range.

Models Accretion BZ Torque Stellar capture Mergers Parameter sets

Expt 1
√

Ms, η, j0, zf

Expt 2
√

(FLC)
√

Ms, η, j0, zf , σ100

Expt 3
√ √

Ms, η, j0, zf , B4

Expt 4
√ √

(SLC)
√

Ms, η, j0, zf , σ100

Complete model
√ √

(SLC)
√ √

Ms, η, j0, zf , σ100, q

Table 6.2: The �ve di�erent experiments performed

Justi�cation of the chosen parameter ranges: We have used a certain set of pa-

rameters to perform the experiments mentioned above. Here we provide the jus-

ti�cation for choosing those parameter sets based on literature and observational

values. The minimum σ measured till date is around 30 - 40 km sec−1 (Xiao

et al. 2011). For this low σ, the saturated mass is of the order of around 105M�.

Therefore the seed masses considered should be . 105M�. The ranges we con-

sider for seed mass, formation redshift are consistent with the values considered

in Alexander and Bar-Or (2017a). The values of zf is taken to be in the range zf

= 5 - 8. Average observed values of σ are within the range of 100 - 200 km sec−1.

Values of γ ' 1.1 - 1.5 are consistent with the observed values (Merritt 2013a).

The B4 values are taken to be in the typical range 1 -10 (Blandford et al. 1990),

for the black hole of mass 108 − 1010M�, Blandford and Znajek (1977) show that

the �eld strength should be more than 105 Gauss for supplying electromagnetic

power equal to or more than Eddington power. The η typically are taken to be

sub - Eddington accretion (η & 0.07) and below that it will not be possible to

attain the high mass of the present-day black holes. We have used η in the range

[0.07, 0.09] as given in Shankar et al. (2009b) considering the e�ect of duty cycles.

We have also illustrated the case of η = 0.01 which clearly indicates a very slow
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mass growth.

Parameter sets used

Parameters Ranges References

M•s 103 − 105 M� Alexander and Bar-Or (2017a)

j0 0.001 - 0.4 Mangalam (2015)

zf 5 - 8 Alexander and Bar-Or (2017a)

η 0.07 - 0.09 Shankar et al. (2009b)

σ100 1 - 2.5 (Xiao et al. 2011), Bhattacharyya and Mangalam (2018)

γ 1.1 - 1.5 (Merritt 2013a)

B4 1 - 10 Blandford et al. (1990)

Table 6.3: Ranges of the parameters used.

Table of the parameter sets for runs

6.3.1 Experiment 1: Only gas accretion is present

In presence of only accretion the spin and mass evolution equations (eqns. 6.68,

6.66) take the form
dj

dτ
=
µ̇g
µ•

(
lI(j)− 2εI(j)j

)
, (6.76)

dµ•
dτ

= εI(j)µ̇g. (6.77)

where, eI =

(
1 − 2

3x

) 1
2

, lI =
2

3
√

3
rg(1 + 2(3xH − 2)

1
2 ) (Bardeen 1970). The

solution of j as a function of black hole mass when there is only accretion present
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Run # Ms(105M�) B4 σ100 zf η j0 Varying parameter Comments

1.1 1 5 4 0.09 0.001 j0 = 0 Expt 1

1.2 1 10 4 0.09 0.2

2.1. 0.1 1 10 0.09 Ms Expt 2

2.2 0.5 1 10 0.09

2.3 1 1 10 0.09

3.1.1 1 1 4 0.09 0.2 B4 Expt 3.1

3.1.2 1 5 4 0.09 0.2

3.1.3 1 10 4 0.09 0.2

3.2.1 1 5 4 0.01 0.2 Lower limit of η Expt 3.2

3.2.2 1 5 4 0.05 0.2

4.1.1 0.5 5 1 6 0.07 0.2 Ms Expt 4.1

4.1.2 0.6 5 1 6 0.07 0.2 /Expt 5.1*

4.1.3 0.7 5 1 6 0.07 0.2

4.1.4 1 5 1 6 0.07 0.2

4.2.1 1 5 1 6 0.07 0.2 B4 Expt 4.2

4.2.2 1 6 1 6 0.07 0.2 /Expt 5.2*

4.2.3 1 8 1 6 0.07 0.2

4.2.4 1 10 1 6 0.07 0.2

4.3.1 1 5 1 6 0.07 0.2 σ100 Expt 4.3

4.3.2 1 5 1.5 6 0.07 0.2 /Expt 5.3*

4.3.3 1 5 2 6 0.07 0.2

4.3.4 1 5 2.5 6 0.07 0.2

4.4.1 1 5 1 5 0.07 0.2 zf Expt 4.4

4.4.2 1 5 1 6 0.07 0.2 /Expt 5.4*

4.4.3 1 5 1 7 0.07 0.2

4.4.4 1 5 1 8 0.07 0.2

4.5.1 1 5 1 6 0.07 0.2 η Expt 4.5

4.5.2 1 5 1 6 0.075 0.2 /Expt 5.5*

4.5.3 1 5 1 6 0.08 0.2

4.5.4 1 5 1 6 0.09 0.2

4.6.1 1 5 1 6 0.07 0.0 j0 Expt 4.6

4.6.2 1 5 1 6 0.07 0.2 /Expt 5.6*

4.6.3 1 5 1 6 0.07 0.3

4.6.4 1 5 1 6 0.07 0.4

Table 6.4: Sets of the parameters used for the runs with k = 0, γ = 1.1 used
for the experiments we perform. For each experiment we specify the parameter
sets used. * indicates that along with the same parameters used for Expt 4
we have one more parameter q = 0.1 for Expt 5 which prescribes the complete
model.
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was derived by Bardeen (1970) using the solution of the geodesic equation for the

Kerr metric found by Felice (1968) and Carter (1968) to be

j =
1

3
x

1
2
H(4− (3xH − 2)

1
2 ), (6.78)

where, xI = xI/rg, xH = rH/rg, where rH is the horizon, eI is the energy per

unit mass and lI is the angular momentum per unit mass for the innermost stable

circular orbit. The value of x varies from 6 to 1 for j varying from 0 to 1. The

derivation of these equations are as follows (Bardeen et al. 1972)

lI − jeI = ± 1√
3
xI , (6.79)

Using the expressions of lI and eI , i.e,

lI =

√
xI(x

2
I + j2 − 2j

√
xI)

xI(x2
I − 3xI + 2j

√
xI)1/2

, eI =
(x2

I − 2xI + j
√
xI)

xI(x2
I − 3xI + 2j

√
xI)

, (6.80)

and after squaring both the sides we �nally arrive at a quadratic equation of j

given as,

3j2 + 6xI − 8j
√
xI − x2

I = 0. (6.81)

The solution to this equation is

j =
xI
3

(4±
√

3xI − 2). (6.82)

Since j < 1, the negative sign is the correct choice, so that

j(xH) =
1

3
x

1
2
H(4− (3xH − 2)

1
2 ). (6.83)

Now,

lI = je± xI√
3
. (6.84)
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The �nal expression for lI becomes (Bardeen et al. 1972),

lI =
2

3
√

3
[2(3xI − 2)1/2 + 1] +

xI√
3

(−1± 1). (6.85)

Here positive sign is the correct choice since for a = 1, lI = 0. Therefore, �nal

expression of lI is

lI(xI ,md) =
2

3
√

3
md(1 + 2(3xI − 2)

1
2 ), (6.86)

where, md is the mass of the disk consumed by the hole. The analytic relation

between xH and rg (Bardeen 1970) is

(
xH
x1

)
=

(
rg1
rg

)2

, (6.87)

where x1 and rg1 are the initial values when j = 0. Using this solution it is found

that (Bardeen 1970),

rg
rg1

=

(
3x1

2
− 1

) 1
2

sin

[(
2

3x1

) 1
2 ∆m0

rg1

]
+ cos

[(
2

3x1

) 1
2 ∆m0

rg1

]
, (6.88)

where, ∆m0 is the accreted rest mass when the change in mass is from rg to rg1.

Fig. 6.16 shows j(µ•) for Bardeen (1970) solution using eqns. (6.68, 6.66) where

1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

μ•

j

Figure 6.16: The Bardeen (1970) solution, j(µ•) of the spin is shown when
there is only accretion (run #1.1).
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there is only accretion. After the black hole spin saturates, only the mass increases

leaving the spin parameter unchanged at the saturated value of 1.
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Figure 6.17: (a) The spin evolution, j(t), and (b) the mass evolution, µ•(t),
for B4 = 5, zf = 4, η = 0.09, Ms = 105M� are shown when only accretion is
present (run # 1.2).

Fig. 6.17 shows j(t) and µ•(t) when there is only accretion. The mass continues to

grow and the spin reaches a saturated value and afterwards it remains the same.
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6.3.2 Experiment 2: Non - relativistic accretion with feed-

back and full loss cone theory

Full loss cone theory: Here we consider the case of the full loss cone (θd >> θ`)

where the mass density in the galaxy cusp follows a single power law pro�le and

the stars are able to quickly �ll the loss cone on dynamical time scales. Therefore

ρ = ρ0r
−γ, (6.89)

where γ is the power law index. The distribution function of stars in a such a

galaxy is given by (Merritt 2013a)

fs(E) =
3− γ

8

√
2

π5

Γ(γ + 1)

Γ(γ − 1
2
)

M•
m?

φ
3
2
0

(GM•)3

(
|E|
φ0

)γ− 3
2

, (6.90)

where φ0 =
GM•
rm

, E is the energy, rm is the gravitational in�uence radius of the

black hole de�ned as GM•/σ2 and m∗ is the stellar mass. The rate of capture of

stars within the loss cone is

Ff (E) = 4π2L2
`(E)fs(E), (6.91)

where L`(E) is the angular momentum of the star. An integration of this over all

energies gives the total rate of capture in the loss cone,

Ṅf =

∫ φ0

−∞
Ff (E)dE, (6.92)

so that

Ṁ•∗f = m?Ṅf =
3− γ

8

√
1

2π

Γ(γ + 1)

Γ(γ − 1
2
)

l2`
GM•

1

rm

(
GM•
r3
m

) 1
2

M• =
3− γ

8

√
1

2π

Γ(γ + 1)

Γ(γ − 1
2
)

l2` (M•)

Gc2
σ5,

(6.93)

where L` ≡ (GM•/c) l`. For the non - relativistic case, L` is given by eqn. (6.22).
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After simpli�cation, it is seen that this expression for Ṁ•∗ ∝ σ5 for the non -

relativistic case does not depend onM•. But, for the relativistic case, Ṁ•∗ depends

both on σ and M• through the capture radius. In the full loss cone regime, the

depleted orbits are repopulated within orbital periods by the relaxation process;

this is a reasonable assumption for M• << 105M�.

Here, we study the non-relativistic case with no spin and full loss cone theory

applied to stellar capture for which a fully analytic solution can be obtained. We

solve the mass evolution equation [eqn. (6.62] to �nd that

t(M•) =


∫M•
Ms

dM•
Ṁg+Ṁ∗

for t > ts

ts +
∫M•
M•t

dM•
Ṁ∗

. for t ≤ ts,

(6.94)

where ts is time at which feedback has stopped accretion. Solving eqn. (6.94)

using eqn. (6.3) for Ṁg and eqn. (6.93) for Ṁ∗ for t ≤ ts, we �nd τs = k1ts where

τs = log

[
k1M•t + k2σ

5

k1Ms + k2σ5

]
= k1tz(zs)− k1tz(zf ), (6.95)

where, M∗ = k2σ
5 for the non relativistic full loss cone theory and k1 is de�ned by

eqn. (6.1). Using eqn. (6.74) it can be written as

(
τs + k1tz(zf )− k1

2

3

1√
1− Ωm

log
√

1− Ωm

)
3
√

1− Ωm

2k1

= log(α1 +
√

Ωm + α2
1),

(6.96)

where

α2
1 =

1− Ωm

(1 + zs)3
.

Writing LHS of eqn. (6.96) as log β1, we derive

zs =

[
2β1

√
1− Ωm

β2
1 − Ωm

] 2
3

− 1. (6.97)
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After solving eqn. (6.94) for t > ts, the �nal equation for M• as a function of

redshift is given by

M•(τ,Ms, σ100) =

 µM(τ)Ms +Ms = Ms + (eτ + Cσ5
100(eτ − 1))Ms for z < zs

M•t + [µs + (τ − τs)Cσ5
100]Ms. for z ≥ zs,

(6.98)

where, C = k2(100 km sec−1)5/(k1Ms) and

µM =
M• −Ms

Ms

= µ• − 1, (6.99)

where Ms = fbMbσ
5.
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Figure 6.18: The mass evolution, µ•(z), is shown for di�erent fb for σ100 = 1
(run #2.1, #2.2, #2.3) with j0 = 0, B4 = 0.

In Fig. 6.18, the late part represents the black hole mass growth only by capture

of stars and the growth rate of black hole mass by accretion of gas dominates much

earlier.

• In the later experiments, we have scaled eqn. (6.68) by eqn. (6.66) to obtain

an equation for
dj

dM•
which is solved to �nd j(M•) and fed into eqn. (6.66)

to obtain M•(t).

• We derive j(t) similarly, using the solution of j(M•) in eqn. (6.68).

• All the solutions are dependent on the value of σ which we have considered

to be constant throughout for a particular galaxy.
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Taking into account the saturation, we will now present the results for the more

realistic evolution experiments (3 and 4) in Table 6.2 where we include the e�ects

one at a time.

6.3.3 Experiment 3: Gas accretion and BZ torque are present

Here, the spin and mass evolution equations (eqns. 6.68, 6.66) take the form

dj

dτ
=
µ̇g
µ•

(
lI(j)− 2εI(j)j

)
+

4

9
× 10−5fBZB4µ•Ms5x

3
H(j)j. (6.100)

dµ•
dτ

= εI(j)µ̇g. (6.101)

First we study a canonical case (run # 2.1) of this experiment (see Fig. 6.19(a)),

and then we change the parameters one by one keeping others constant.
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Figure 6.19: The spin evolution, j(t), (Fig. 6.19(a)) and the mass evolution
µ•(t), (Fig. 6.19(b)) are shown for B4 = 5, zf = 4, η = 0.09,Ms = 105M� when
there is only accretion and BZ torque present and accretion continues to occur
(canonical case, run # 3.1.1).

We now present the results for di�erent runs listed in Table 6.4.
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Figure 6.20: The spin evolution, j(t), (Fig. 6.20(a)) and the mass evolution,
µ•(t), (Fig. 6.20(b)) are shown for run# 3.1.1 and run # 3.1.2 when there is
only accretion and BZ torque present.

• From Figs. 6.19(b) and 6.19(a), we see that the saturates without feedback

and the mass continues to grow while the spin saturates.

• It can be seen from Figs. 6.19(a) and 6.20(a) that the BZ torque causes the

spin down of black hole reducing it from the highest saturated spin value. As

the B4 value is increased, the spin down is more e�ective while the accretion

is enhanced.

• From the plots (see Figs. 6.21) it can be seen that mass growth by accretion

with an e�ciency of (η = 0.01 or 0.05) is very small which can not generate
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Figure 6.21: The spin evolution, j(t), and the mass evolution, µ•(t), are shown
for run # 3.2.1 and # 3.2.2 when there is only accretion and BZ torque present.

high mass black holes in the universe. Therefore η ≥ 0.05.
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6.3.4 Experiment 4: Gas accretion, stellar capture and BZ

torque are present

In this experiment, the spin and mass evolution equations (eqns. 6.68, 6.66) take

the form

dj

dτ
=
µ̇g
µ•

(
lI(j)− 2εI(j)j

)
+
µ̇∗
µ•

(
l∗(j)− 2ε(j)j

)
+

4

9
× 10−5fBZB4µ•Ms5x

3
H(j)j.

(6.102)
dµ•
dτ

= εI(j)µ̇g + ε(j)µ̇∗. (6.103)

where accretion, BZ torque and the stellar capture with steady loss cone theory

are taken into account (Fig. 6.22).
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Figure 6.22: (a) Plots of j(t) and (b) µ•(t) for B4 = 5, zf = 6, η = 0.07, γ =
1.1,Ms = 105M� when there is accretion, stellar capture and BZ torque present
for the canonical case (run # 4.5.4).

• By studying canonical case (run # 2.1), we �nd that the mass evolution

does not show any signi�cant variation with changes in parameters (k, γ, j0)

and the spin evolution does not show variation for changes in (k, γ). This is

because the accretion is a dominant process in the evolution not compared to
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the stellar capture. Therefore, the factors which control the stellar capture

do not make a signi�cant impact for the range of parameters considered.

We present the results and discuss the runs (# 4.1 to # 4.6) given in Table 6.4.
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Figure 6.23: Plots of µ•(t) for k = -1 for run # 4.1 to run # 4.5 [(a) - (e)],
for the case when there is accretion, stellar capture and BZ torque present.
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• Figs [Fig. 6.23(a)) - (Fig. 6.23(e)] show the evolution of black hole mass for

run # 4.1 to run # 4.5 given in Table 6.4. We see that the evolution has

a small dependence on the parameters {k, γ, j0} by studying its deviation

from the canonical set; so we do not show those cases here.

• If the σ is same then the �nal mass will be almost the same, irrespective of

their initial masses [see Fig. 6.23(a)].

• Changes in B4 and zf (run # 4.2 and # 4.4 respectively) make little impact

on the evolution and does not a�ect the �nal mass much [see Figs. 6.23(b),

6.23(d)].

• Variation of σ (run # 4.3) shifts the saturation point because of the depen-

dence of the saturation mass on σ [see eqn. (6.61)]. Higher the σ, higher

the saturation mass and larger the time taken to reach the saturation point

[Fig. 6.23(c)].

• Increase of η (run # 4.5) increases the accretion rate which is the main source

of mass growth. Hence for higher η, the system reaches the saturation point

earlier [see Fig. 6.23(e)].

• The spin parameter j has a small dependence on the parameters {Ms, zf , η,

j0} (run # 4.1, # 4.4, # 4.5, # 4.6 respectively) [See Figs. (a), (d), (e), (f)]

which show variation at the starting points because of di�erent initial values

of the mentioned parameters., but the �nal values attained are nearly the

same. This result is di�erent from that of experiment 4, where only accretion

is present, this is because, we incorporate the concept of saturated mass here

which causes the accretion to stop, thereby reducing the �nal mass attained.

• Since the decrease in j occurs at the high mass end because of the BZ e�ect,

the decrease is small compared to the run # 3.1.1 [see Fig 6.24(b)].
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Figure 6.24: Plots of j(t) for k = -1 for run # 4.1 to run # 4.6 [Fig. 6.24(a))
- (Fig. 6.24(f)], for the cases when there is accretion, stellar capture and BZ
torque present.

• Fig. 6.24(b) shows that an increase in B4 value (run # 4.2), decreases the

�nal spin, as expected.

• A higher σ (run # 4.3) implies a higher �nal mass of the black hole; hence,

the �nal spin value decreases with increase in σ, (Fig. 6.24(c)) keeping Ms
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constant.

6.3.5 Complete model: Accretion, stellar capture, merger

and BZ torque are present

Here we add the contribution of mergers to the spin and mass evolution and retain

all the terms in eqn. (6.68) and eqn. (6.66) for our calculations (see Fig. 6.25).
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Figure 6.25: Evolution of µ•(t) (a) and (b) j(t) of the black hole are shown
without and without the e�ect of mergers for the canonical case (run # 4.5.4).

Our results are the following.

• From Fig. 6.25 (run # 4.5.4) we observe the di�erence in evolution plots in

the presence and absence of mergers. It is clearly seen from mass evolution

that in presence of the mergers, the black hole reaches the saturation mass

earlier due to the higher mass growth rate and that the �nal mass attained

is higher because of the contribution of mergers.

• As we consider the merger activity to be e�ective from z . 4, we see that

the two curves start deviating from each other after z & 4.

• We observe from the spin evolution [see Fig. 6.25, right], that the saturated

or the �nal spins are di�erent for the two cases. This is due to the minor
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mergers which cause the spin down of the black holes; again the evolution

changes after z ' 4.

Now, we discuss the evolution in presence of all the e�ects and its dependence on

the parameters used. Fig. 6.25 represents the evolution for the canonical case (run

# 5.1.4). For the runs (run # 5.1 to # 5.6 in Table 6.4), we discuss our results

obtained in Figs. [6.26(a) - 6.26(e)] for the mass evolution and Figs. [6.27(a) -

6.27(f)] for the spin evolution.

• We found that the evolution has small dependence on the parameters {k, γ,

j0} in the input range.

• The di�erence between the complete model with (Expt 4) is that the mass

evolution is faster after saturation because of the presence of the merger term

as this also contributes along with the stellar capture when the gas accretion

stops.

• Again, we observe from (run # 5.1 to # 5.5) [see Fig. 6.27(a)) - (Fig.

6.27(f)], that there is little variation of j for changes in parameters {k, γ ,

M0}.

• The di�erence of the complete model with the experiments (Expts 3, 4) is

due to the presence of the mergers; the highest value of spin acquired is lesser

since the minor merger contributes in spinning down the hole.

By calculatingM•(σ, z), we obtain the evolution of theM•−σ relation. We present

a schematic of our evolution model in a �owchart (Fig. 6.15). The motivation is

to isolate the contribution of di�erent e�ects to the evolution of the black hole

individually, and also together from z = zf → 0. This, in turn, can give us
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Figure 6.26: The mass evolution, µ•(t), for k = -1 for run # 5.1 to run #
5.5 [(a) - (e)] are shown, when there is accretion, stellar capture, merger and
BZ torque present for deviation of various parameters from their values in the
canonical set.

information about for the co-evolution of the black hole and the galaxy.

Next, we discuss some applications of our model.
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Figure 6.27: The spin evolution, j(t), for k = -1 for run # 5.1 to run # 5.6 [(a)
- (f)] are shown, when there is accretion, stellar capture, merger and BZ torque
present for deviation of various parameters from their values in the canonical
set.



Chapter 6: Evolution of the black holes in ΛCDM cosmology 162

6.4 Applications of our model

6.4.1 Impact on the M• − σ relation

All the solutions of M(z) are dependent on the value of σ, which �xes the value of

ts and zs for di�erent galaxies given the same Ms. We have assumed the value σ

is constant from formation redshift till present time since its variation is relatively

small and reduces over Hubble time by a factor ∼ 15% (Shankar et al. (2009a),

Fig. 8). We have discussed this in �6. In the future, we can include the time

variation of σ using an empirical form motivated by (Shankar et al. 2009a) which

assumes a small variation σ(z) = σ0(1 + z)−γ, where σ0 is the present-day value

of σ. But for now, the focus is to isolate all the other e�ects �rst. We have

calculated M•(σ, z) and derived p(z), the index of the M• − σ relation [see Fig

6.28]. In deriving p(z), we have considered the observed range of σ(z), to derive

the corresponding range of M•(z) using our evolution model. To start with, we

assumed that at the formation redshift, the index p = 5, which is provided by the

Faber - Jackson relation. It is a reasonable assumption, given that BH formation

models produce masses proportional to the bulge mass (Mangalam 2001). Even if

this were not true for the small initial seed mass, the power-law index p(z) would

eventually be dominated by the gas and star accretion that in�ates the �nal mass

by a factor M• ' (103 − 104)Ms. This is just an initial condition to derive the

evolution which clearly does not change the long term or near term value of p; it

is an initial �ducial value. At the saturation time, the value of p = 4, as predicted

by the King (2003) model. Thereafter, the black holes grow by stellar capture and

mergers alone. Since the growth rate reduces, the slope almost remains near 4

after the saturation.

Now, we discuss the dependence of p(z) on the parameters {B4, zf , j0}. First �gure

in the upper panel of Fig. 6.28 shows p(z) for the canonical case and the other
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Figure 6.28: The evolution of p(z) for γ = 1.1, Ms = 104M� is presented
above [the top left �gure shows the canonical case, the variation with B4 is seen
in the top right �gure for {zf =7, j0 = 0.2}, the variation with zf in the bottom
left for {B4 = 5, j0 = 0.2}, and the variation with j0 in the bottom right with
{zf = 7, B4 = 5}].

plots of Fig. 6.28 shows its deviation in the parameter space of {(B4, zf , j0)}

in Figs. 6.28. We see a change of slope to p = 4 near the saturation point as

expected, following the dependence for momentum driven �ow [see eqn. (6.61)].

Before zs, the the p value is almost constant which agrees with the previous work

that �nd little evolution of the M•−σ relation. A more accurate evolution can be

carried out by considering the mass and redshift distribution function of the black

holes to carry out a population synthesis to derive p(z) (Sijacki et al. 2015). In the

Fig. 6.28, we observe for all the cases that there is little variation with changes

in {B4, zf , j0} in the considered range. Thus, we conclude that this relation is

expected to be within the observed range of 4 - 5 as zf → 0. Next, we compare

our results with data obtained in Bhattacharyya and Mangalam (2018) from the

observed intensity pro�les of these galaxies listed in Wang and Merritt (2004).

These galaxies are within redshift range 0.004 - 0.002 (see Table 6.5).
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# Galaxy M• (in 107M�) σ (km/sec) z

1 NGC 3379 13.6 230 0.00304 ± 0.00001

2 NGC 3377 2.60 217 0.00222 ± 0.00001

3 NGC 4486 188 433 0.00428 ± 0.00002

4 NGC 4551 3.77 218 0.00392 ± 0.00002

5 NGC 4472 117 542 0.00327 ± 0.00002

6 NGC 3115 17.0 230 0.00221 ± 0.00001

7 NGC 4467 0.493 77 0.00475 ± 0.00004

8 NGC 4365 67.7 453 0.00415 ± 0.00002

9 NGC 4636 58.0 251 0.00313 ± 0.00001

10 NGC 4889 299 467 0.02167 ± 0.00004

11 NGC 4464 1.12 112 0.00415 ± 0.00001

12 NGC 4697 20.76 215 0.00414 ± 0.00001

Table 6.5: Data from BM18 (based on Wang and Merritt (2004) for 12 galaxies
used for matching our results with observations are given above.

In Fig. 6.29, the red curve corresponds to z = 0.003 and the green curve corre-

sponds to z = 0.23. We see that the red curve gives the better �t to the data

presented in Table 6.5, which is similar to observed values as the range of redshifts

of these galaxies are in the range 0.001 - 0.004.
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Figure 6.29: A plot of log(M•7) vs log(σ100) for two di�erent redshifts [z =
0.003, (red) and z = 0.23, (green)] is shown, calculated from our evolution
model and compared with the data obtained from our model in BM18 for the
12 elliptical galaxies (whose) redshift lies in the range 0.004 - 0.002).

Shankar et al. (2009a), analyzed the data of over 40000 early-type galaxies from

Sloan Digital Sky Survey (SDSS) and they determined k0(z) ∝ (1 + z)0.33 [see
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eqn. (3.1)]. According to their analysis, this relation almost holds throughout the

age of the Universe. Our model also predicts an almost a constant p throughout

the entire redshift range as expected from eqn. (3.30). We have also shown k0(z)

starting from an approximate value (considering the Faber Jackson relation with

the seed mass within the considered range and σ). Since we have considered a

constant σ, k0(z) is predicted to decrease.

According to Shankar et al. (2009a), the M• − σ relation is given by

log[M•/M�] = 8.21 + 3.83 log[σ200] + α log[1 + z]. (6.104)

If we consider the de�nition above using α = 0.33 and assume the empirical relation

σ(z) = σ0(1 + z)−0.25, where σ0 is the present day velocity dispersion to calculate

M•(t) we �nd that the �nal M• is similar to the prediction from our evolution

model; see Fig. 6.30(b) which compares M•5(t) from eqn. (6.104) with our model

prediction for (Ms = 105M�, σ100 = 1). We see that if the σ stays constant, the

�nal mass attained is also nearly same which was also concluded by Alexander

and Bar-Or (2017b).
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Figure 6.30: The evolution of the index k0(z) for γ = 1.1, Ms = 104M�
is shown for the canonical case (left) and (right) M•5(t) from prescription of
Shankar et al. (2009a) and our model for Ms = 105M�.
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6.4.2 Black hole archaeology

If we use the �nal mass and spin as boundary conditions of the mass evolution,

we can evolve our model backward in time, a process which we coin as black hole

archaeology. Campitiello et al. (2019) studied the Optical-UV emission of dis-

tant quasars ULASJ134208.10+092838.61 (z=7.54), ULASJ112001.48+064124.3

(z=7.08) and DELSJ003836.10-152723.6 (z=7.02) to study their properties and

found the presence of an accretion disk. They used relativistic disk models KER-

RBB and SLIMBH to model the emission with approximations to describe the

emission as a function of M•, η, j and the viewing angle, θν . They found that the

accretion rate for all sources is sub - Eddington. They �nd out if the seed black

holes with masses in the range 102 − 104M�, grow during zf = 20 − 10 in these

sources, at Eddington accretion rate, it will reach the present-day mass within 0.7

Gyr.

Input parameters Combinations of{M•s (in 109M�), j0}

# η jf z = 10 z = 15 z = 20

1 1 0.7 {0.12, 0.76} {0.06, 0.8} {0.02, 0.5}

2 0.1 0.7 {0.75, 0.65} {0.63, 0.55} {0.6, 0.27}

3 1 0.45 {0.1, 0.7} {0.05, 0.75} {0.02, 0.5}

4 0.1 0.45 {0.75, 0.45} {0.63, 0.38} {0.6, 0.25}

Table 6.6: Combinations of seed mass and spin, {M•s, j0}, at zf = {10, 15, 20}
for quasars with mass ' 109M� at z ' 7 for di�erent sets of input parameters,
{η, jf}, where, jf is the �nal spin at z = 7.

We observe from the mass and spin values for the quasars listed in Table 1 of

Campitiello et al. (2019), (as determined through KERRBB and SLIMBHmodels),

that the following input sets of {η, jf} = {{1, 0.7}, {0.1, 0.7}, {1, 0.45}, {0.1, 0.45}}

are suggested. They have also calculated M• for jf = {0, 1}, the extreme ends of

the spin values. We have taken the �nal mass to be M• ' 109M� at z ' 7 (as

suggested by their models) and evolved our model backwards the for di�erent sets
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Figure 6.31: M•(t) and j(t) evolution for di�erent combinations of η and �nal
spin at z ' 7, jf for zf = 20 are shown for �nal mass at z ' 7, Mf ' 109M�.

of {η, jf} given above to �nd the initial seed masses at zf = 20. We see that when

η = 1, the seed mass is also quite lower as compared with the case of η = 0.1

(see Table 6.6); this is expected due to the di�erence in accretion rate [see Fig.

6.31(a)]. The jf values does not make much di�erence to M•(t) when η is �xed.

For the case of spin evolution, when η = 1, the j increases and then decreases, but

for η = 0.1, it continues to decrease [see Fig. 6.31(b)] as we see from Table 6.6.

The reason is that for high accretion rate, the spin reaches maximum value rapidly

and then it reduces due to the presence of BZ torque and minor mergers to jf ;

but, when η = 0.1, the mass growth is slower, so it does not reach the maximum

spin within the short time of less than a Gyr, as both BZ and merger terms are

mass dependent and hence not as e�ective. It seems that a heavy seed of nearly
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Ms = 107M� is required at z = 20 even if η = 1 (see Table 6.6). This poses

di�culties for black hole formation models (eg. Pandey and Mangalam (2018)) or

for the mass suggested by Campitiello et al. (2019).
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Figure 6.32: (a) M•(t) and (b) j(t) evolution for the complete model, are
shown, starting from �nal mass µ•5 = 94.3 with other parameters the same as
that of run # 5.1.4.

For comparison, we also evolve the �nal con�guration, {M• = 107M�, jf =

0.8, zf = 0}, that is shown in Fig. 6.32. We see from Fig 6.32(a) that the mass

reaches a seed value of 3.5 × 104M�, which is typical and Fig. 6.32(b), indicates

a seed spin of js = 0.58. With these illustrations, it is clear that our model is a

useful tool for black hole archaeology.

We summarize our results in the next section.

6.5 Summary of the results and caveats

The key novel aspects of the paper are the relativistic inputs of the capture ra-

dius and tidal radius to the loss cone formalism, determining the applicable range

of steady loss cone theory, and including all known contributions of gas, stellar,

electromagnetic torque and mergers through detailed formulae as recipes for cal-

culating the joint spin and mass evolution relativistically while taking into account
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the e�ects of saturation, merger regimes, and the mode of stellar ingestion. We

have applied this elaborate model to make predictions for the capture rate of stars,

Ṅs, for the evolution of the M• − σ relation and in retrodicting the initial black

hole con�gurations from their more recent inferred ones. The detailed �ndings are

summarized as follows.

1. We calculate rt using the e�ective Kerr potential to include the e�ect of the

spin parameter and �nd xt(M8, j, Q) (see Figs. 6.2, 6.3 for both prograde

and retrograde case). We see from Fig. 6.2, that a higher j reduces xt due

to the relativistic potential. From Fig. 6.3, we see that xt(Q) is important

in deriving rt and l`(Q), which has an impact on Ṅ . Even a small change in

xt(Q) has an impact on l`.

2. We calculate the loss cone radius x` =Max[xt, xc] (Fig. 6.5). For higher mass

black holes, the prograde capture radius, xc goes down dramatically, so it re-

duces the capture rate. x` (see Fig. 6.6) has an impact on Ṅs(M•, j, k,Q, εs, σ)

which reduces with mass but increases with spin for both the prograde and

the retrograde cases. This can be further explored with axisymmetric dis-

tributions f(E,Lz) as as it is known that the Carter's constant represents

L2 −L2
z. A critical mass value of Mc(j,Q) ' 3× 108M� is found; for higher

masses r` is set by rc instead of the tidal radius (Fig. 6.4); Mc(j,Q) changes

signi�cantly with spin and this has implications for cosmic evolution and its

impact on Ṅ and black hole growth that needs to be explored (see Fig. 6.4).

3. We also calculate an relativistic correction to the tidal radius shown in eqn.

(6.14).

4. We calculate the e�ects of stellar capture for both full and steady loss cone

theory. For practical purposes, we �nd that the steady loss cone model is

more appropriate. We have calculated the Ṅs using the prescription given by

MM15 (but by not assuming anM•−σ relation) while adding the relativistic
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corrections to r`, as shown in Fig. 6.8 to obtain Ṅs(M•, j, k,Q, εs, σ). This

is smaller typically by a factor of 10 than the non - relativistic model of

MM15. Our predicted capture rates (see Fig. 6.8) of 10−5 � 10−6 yr−1 can

explain the observed (Komossa 2015; Donley et al. 2002; Gezari et al. 2009)

of around 10−5 yr−1 (dominated by black holes of M8 . 0.01) and is a key

result.

5. We calculate the impact of the evolution on the spin, mass of the SMBH [Fig.

6.27, 6.26] andM•−σ relation (Fig. 6.28) as a function of redshift in a ΛCDM

cosmology. We performed �ve experiments by adding the contributions of

gas accretion, stellar capture, BZ e�ect, and mergers one by one and showed

how it impacts the evolution and are useful illustrations of the individual

e�ects.

6. In �6.3.2, we derive the mass evolution in non - relativistic case assuming

full loss cone theory by analytical expressions considering only accretion and

stellar capture. We present the evolution of M•(z) for di�erent cases in Fig.

6.18. We have also considered the BZ torque which contributes to spinning

down the black hole with a strong poloidal magnetic �eld that extracts the

spin energy, causing a spin down of the black hole. Next, we studied the

evolution of the spin and mass including all the e�ects one at a time. Fig.

6.20 shows the evolution in the presence of only accretion and BZ torque.

while Figs. 6.24 and 6.23 show the evolution in presence of accretion, stellar

capture and BZ torque. All the e�ects of accretion, stellar capture, mergers,

and BZ torque have been included for di�erent parameter sets in Figs. 6.26

and 6.27. The merger activity drops o� after z & 4.

7. We compare our results of p(z) with available observations (Fig. 6.29) given

in Bhattacharyya and Mangalam (2018), where σ was calculated from ob-

served intensity pro�les for a set of galaxies given in Wang and Merritt

(2004).
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8. Our model for p(z) in the range z = zf → 0 is with a constant σ, assuming

that minor mergers do not change it substantially. This is seemingly con-

sistent with observed p in the nearby redshift range. But our predictions

need to be tested by simulations and data available from future missions like

Thirty Meter Telescope (TMT), Very Large Telescope (VLT) and Extremely

Large Telescope (ELT).

9. We have assumed that the seed mass, Ms ∝ σ5, as suggested by the Faber

Jackson relation for deriving the evolution of theM•−σ relation, as an appli-

cation of our evolution model. Subsequently, the black hole grows impacting

p(z).

10. We conclude that p(z) changes gradually with redshift. Therefore we expect

that the late-type galaxies will have a higher p compared to the early types

as suggested by McConnell and Ma (2013).

11. Our model is useful for carrying out black hole archaeology. Fig. 6.32 shows

the evolution obtained when we run our model backward using the present

day {M•, j} as the initial conditions and we found the seed mass to be

' 3.5× 104M�, which is within the range of seed masses considered.

We discuss these results in the next section.

6.6 Discussion

Stellar capture rate of black holes: The rates of tidal disruption events for a sin-

gle black hole in steady-state have been derived by di�erent authors as already

mentioned in chapter 1, with various physical e�ects included such as the Nuker

pro�les (Syer and Ulmer 1999), non-spherical galaxies, (Magorrian and Tremaine
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1999), resonant relaxation (Rauch and Tremaine 1996) and its quenching by rel-

ativistic precession (Rauch and Ingalls 1998), and black hole spin (Kesden 2012).

The theoretical estimates range from 10−6 − 10−4 yr−1 for the most part, while

the observational results of Komossa (2015); Donley et al. (2002) (ROSAT sur-

veys), Gezari et al. (2009) (in UV band) have provided rates of TDEs for di�erent

wavelength bands to be about . 10−5yr−1. MM15 model the non-relativistic

steady-state loss cone regime, taking into account the angular momentum de-

pendence. We have expanded the theory to include relativistic e�ects in a Kerr

potential to calculate the tidal and capture radius which in turn, is an input to

the loss cone theory that determines the rate of stellar capture. MM15 considered

non-relativistic theory and used L`(σ, rt) =
√

2r2
tφ(rt)− E. But in our relativistic

model, L`(j, k, x`, Q) is given by eqn. (6.19) where the loss cone radius, x` is used

instead of xt as was done in MM15; this causes a decrease in the value of Ṅs by a

factor of a few, due to the decrease of the loss cone radius, bring it more in line

with observed estimates.

Alexander and Bar-Or (2017b) determined the minimal mass of the present-day

black holes by including the stellar capture process. They conclude irrespective of

the seed masses that, if σ of the galaxies are nearly equal, then all the black holes

reach almost the same mass, assuming that the M•−σ relation holds throughout.

All the black holes grow over the age of the Universe to the present-day mass

scale of M6 & 0.2 (5% lower con�dence level), independent of their initial seed

mass and the formation process. They conclude that the present-day M• is nearly

independent of the uncertainties in the black hole formation time, and provide a

universal minimal mass estimate for the black holes that grow by gas accretion

or mergers. This can explain the reason for not �nding any intermediate-mass

BHs with M6 . 0.2, and which in turn implies that present-day galaxies which

have σ . 35 km s−1 (5% lower con�dence level) do not contain a central BH. We

derive the evolution without any apriori assumption ofM•−σ relation throughout

and also take into account all known e�ects causing the growth of the black hole
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and with relativistic e�ects in case of stellar capture including the spin evolution

which is not included by Alexander and Bar-Or (2017b). Our result agrees with

their �nding that the �nal mass attained by the hole is nearly independent of the

formation time. Fig. 6.12 shows the mass evolution in the presence of only stellar

capture which matches the result of Alexander and Bar-Or (2017b) [see Fig. 6.12].

The black holes with higher seed masses will reach the saturation point earlier as

they will grow their masses lesser by accretion and more by mergers and stellar

capture as compared to the smaller mass seed black holes.

Mass and spin evolution of the black hole: The spin and the mass evolution of

a supermassive black hole (SMBH) is mainly dependent on three processes, gas

accretion, the capture of stars and mergers. We built a formation for relativistic

loss cone theory and included it in the mass and spin evolution of black holes. For

accretion, we have used a constant sub - Eddington accretion e�ciency throughout

the process, taking into account duty cycles. In the case of gas accretion with

cooling sources, the �ow is momentum-driven (King 2003). The stellar capture

rate has been carried out in both full and steady loss cone theory framework. We

have incorporated the prescription of saturated mass by King (2003), which causes

a halt in accretion leaving the stellar capture and mergers only to contribute to

the growth of the black hole. For the mass growth of SMBH by mergers, we have

considered both the contributions of major and minor mergers (Stewart et al.

2009). The rate of minor mergers is more frequent compared to the major ones.

Major mergers contribute to spinning up the black hole while minor mergers spin

it down (Gammie et al. 2004). We neglect the contribution of the major merger in

spinning up the hole and consider only the e�ect of the minor merger in spinning

down the hole. We have considered the mergers to be e�ective from z . 4.

We now compare our results with previous studies. Mangalam (2015) used a

theoretical model for mass and spin evolution of the accreting black hole taking into

account the spin-down torque caused by the electrodynamical jet. The evolution
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in the presence and absence of accretion was studied for di�erent cases such as

the thin disk, Bondi accretion, and the MHD disk. When accretion stops, the jet

power shows an increase before a gradual decrease if the initial spin, j >
√

3/2,

because of the increase in the size of the black hole. The results indicate that the

black hole achieves the maximum spin value in the absence of a jet. We use the

evolution equations given there and add to it terms representing stellar capture and

mergers. Dubois et al. (2014) has derived the mass evolution through simulations

caused by accretion and mergers and used semi-analytic methods for spin evolution

for the same. Our results agree with their result that the low mass black holes

grow their mass mainly by the accretion process whereas high mass black holes

(> 108M�) grow their mass mostly by mergers. This is because accretion halts

due to saturation beyond M• > M•t and the low mass grows slowly by stellar

capture. We have considered a constant rate of Eddington accretion while they

have considered to be reducing over time due to gas rarefaction in galaxies. The

justi�cation for considering our parameter ranges is given in �6.3. From the mass

evolution plot (Fig. 6.25) we see a change in the slope near the saturation time.

This is expected that the accretion of gas stops and stellar capture and merger

activity take over for subsequent growth. The rate of growth for mass accretion is

much greater than the other two; so the halt of accretion causes the slope change.

Zhang and Lu (2019) have studied the spin evolution via two-phase accretion and

have found that higher mass black holes have intermediate spin (∼ 0.5), while the

low mass black holes have higher spin (& 0.8). In our paper, we have studied

accretion only in the the thin disc mode. The low value of spin for higher masses

can be explained: as and when the BZ e�ect dominates, it causes the spin-down

of the black hole. It is possible that the low mass black holes are a result of gas

accretion alone and without mergers; hence the spins are higher. Zhang and Lu

(2019) have also assumed a power-law dependence of the radiative e�ciency with

the black hole mass where it decreases with an increase in mass, though they have

found the dependence to be weak. This is in contradiction with the model of

Davis and Laor (2011), who claims an increase with mass with power-law index
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0.5. Here, we aim to capture a complete picture of black hole growth using all the

factors contributing to it. For simplicity, we consider the radiative e�ciency to be

constant with a goal to study and compare all the other contributing factors. We

intend to include the mass variation of radiative e�ciency in the future. Since the

dependence is weak, it is not likely to make a signi�cant di�erence in our results.

From Fig. 6.25, we see that the spin of the black hole initially increases because

of accretion, after which there is a spin down due to the BZ torque. Since we have

considered a thin disc accretion, the spin value very quickly reaches the maximum

spin as mentioned by Li (2012). Gammie et al. (2004) showed how accretion,

major and minor mergers contribute to the spin evolution of the black hole. Using

the prescription given by Gammie et al. (2004) for minor mergers, we see that the

value of the maximum spin attained is much less than those where the contribution

of mergers is considered. We have included minor mergers only to the spin-down

of the hole as the spin-up process is already dominated by the accretion process.

Our model is useful for retrodicting the initial black hole con�guration when we

run our model backward from the observed {M•, j} as the initial conditions as

shown in �6.4.2. More observations and models that provide the �nal spin state

will provide useful clues for such exercises in black hole demographics.

Evolution of the M• − σ relation: We have combined all the known e�ects con-

tributing to the mass and spin evolution of the black hole and thus derived the

evolution of the M• = k0(z)σp(z) relation by semi-analytic methods; some prelim-

inary results were shown in Bhattacharyya and Mangalam (2018b). Shen et al.

(2015) and Salviander and Shields (2013) have studied the evolution of the relation

from SDSS data for quasars and have found no evolution of theM•−σ relation up

to z ' 1. Numerical simulations of the large-scale structure of the universe as done

by Sijacki et al. (2015) and Taylor and Kobayashi (2016) show that this relation

holds almost up to z ' 4. Robertson et al. (2006) have studied the evolution of
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this relation till z = 6 for merging disk galaxies through hydrodynamic simula-

tions taking into account the e�ects of accretion and supernovae. They have found

almost no change in p(z) and a very small change of k0(z) similarly as suggested

by Shankar et al. (2009a). From their analysis, k0(z) ∝ (1 + z)α, with α = 0.33.

In our analysis, since we consider σ to be a constant throughout so that the value

of k0 is expected to decrease at higher redshift as we show in Fig 6.30(a). At the

saturation point, the value of p is ' 4 from our model as per the prescription by

King (2003). We have considered a range of values of σ100 = {1 � 2}, which is the

average observed range of σ for di�erent galaxies and assumedM•(z = zf ) ∝ σ5 as

set by the Faber Jackson relation. From Fig. 6.28, we see that p(z) remains in the

range 4 � 5 throughout the entire time, which roughly agrees with the empirical

result of Shankar et al. (2009a). Fig. 6.28 shows higher value of p(z) at higher

redshifts. Therefore, we conclude that p(z) will be higher for late-type galaxies as

suggested by McConnell and Ma (2013). One possibility is that the σ varies with

redshift due to major mergers, but this is outside the scope of this paper. For

minor mergers, σ = constant is a reasonable assumption that is based on the work

of several authors [Oser et al. (2012), Hopkins et al. (2009), Bezanson et al. (2009),

and the dissipative model described by Shankar et al. (2009a)], where they have

stated that σ changes little with redshift [σ reduces over Hubble time by a factor

∼ 15%, Shankar et al. (2009a)]. The elliptical galaxies which obey the M• − σ

relation is within this speci�ed redshift. We conclude from our simulations that

although p(z) varies with {j0, B4, zf}, it stays within the predicted range of 4 �

5.

6.7 Conclusions

Our model of deriving the joint evolution of black hole mass, spin as well as

the M• − σ relation throws light on the co-evolution of the black hole and its
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environment from the time of formation. We have incorporated all the factors

contributing to the growth of the black hole to build a comprehensive evolution

model of the black hole.

1. We have included relativistic e�ects in the process of tidal and direct capture.

A key consequence is that the capture rate reduces to the range 105 − 106

yr−1, which is more in line with observations.

2. We have built a semi-analytic self-consistent evolution model of the black

hole.

3. We have explored the role and phases of importance of each of the growth

channels. We �nd that accretion is dominant before saturation.

4. We illustrated the e�ect of saturation on the evolution of the M•(z) =

k(z)σp(z) relation.

5. By running the models backward in time, we retrodict the formation param-

eters of seed black holes. This will enable us to discriminate among models

of black hole formation.

6. We expect our transparent and detailed formulation in a fully relativistic

framework to be useful for future simulational studies.

This model can be improved by incorporating a model for time variation of η which

is an uncertain input. The data from future surveys at high redshift, for example

from TMT, VLT and ELT along with measurements of σ from SKA, can be used

to probe the M• − σ evolution to test our model. We also plan to work on the

demographics of the black hole, based on a model for the prior of seed mass and

spin distribution functions..





Chapter 7

Unful�lled agenda: M• − σ relation

in axisymmetric systems and the

initial seed mass and spin function∗

Image: scitechdaily.com

In this chapter, we will discuss two ongoing projects: M• − σ relation in axisym-

metric systems and derivation of initial seed mass and spin functions. We will also

present some preliminary results for these two problems and discuss the future

plans of these two projects.

∗This chapter contains material from papers in preparation
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7.1 M• − σ relation in axisymmetric systems

We extend the formulation for spherical systems (Bhattacharyya and Mangalam

2018) for prescribing theM•−σ relation and theM•−Mb relation simultaneously

to axisymmetric systems. Unlike the spherical case, �nding the axisymmetric

distribution function is much more challenging and it involves complex analysis

(Hunter and Qian 1993). But, in their analysis, they used only the stellar potential

for deriving the distribution function (DF) while we need to include the black hole

potential to obtain the distribution function in presence of the black hole. This

is to be used for determining the LOS velocity dispersion, σ, which in turn gives

the M• − σ relation. Later on, Qian et al. (1995) added the black hole potential

and derived the distribution function separately for large and small radii using the

Hunter and Qian (1993) algorithm. Here, we also use the same DFs derived by

Qian et al. (1995) and using the continuity of the DF to be a boundary condition,

to obtain a joint DF to derive σ. The geometry of the system used here is the

same, as the one discussed in Chapter 2 [see Fig. 2.4].

7.1.1 The model of Qian et al. (1995)

A density of the form ρ(m2) is assumed, which is a well known form of the density

previously used by Perek (1962), de Zeeuw and Pfenniger (1988). Qian et al.

(1995) uses the mass density given by

ρ(m2) = ρ0

(
m

b

)α(
1 +

m2

b2

)β
, (7.1)

where, m2 = R2 + z2/q̄2, q̄ is the axis ratio axis ratio, ρ0 is a reference density, b

is the reference length , −3 < α ≤ 0, and β ≤ 0. For, α = 0, the central density is

ρ0, which is �nite and for α < 0, the central density shows a cusp pro�le. Far from

the center, the density varies as rα+2β. The surface density of these spheroidal
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models can be written as

Σ(m′2) =
q̄

q̄′

∫ ∞
m′2

ρ(m2)dm2

√
m2 −m′2

, (7.2)

where, q′2 = x′2 +
y′2

q′2
, and q̄′ is the axial ratio observed, which is given by

q̄′2 = cos2 i+ q̄2 sin2 i, (7.3)

where, i is the inclination. For ellipsoidal bodies, the gravitational potential can

be written as

ψ∗(R
2, z2) = πGq̄

∫ ∞
0

du

∆u

∫ ∞
U

ρ(m2)dm2, (7.4a)

= ψ0
∗ − πGq̄

∫ ∞
0

du

∆u

∫ U

0

ρ(m2)dm2, (7.4b)

where, ∆u and U are given as

∆u = (1 + u)
√
q̄2 + u,

U =
R2

1 + u
+

z2

q̄2 + u
, (7.5)

and the central potential, ψ0
∗, can be written as

ψ0
∗ =

2πGq̄ sin−1 e

e

∫ ∞
0

ρ(m2)dm2. (7.6)

For α > −2 and α+ 2β < −2, the potential is given by eqn. (7.4) with the central

value

ψ0
∗ =

2πGq̄ρ0b
2 sin−1 e

e
B

(
α

2
+ 1,−α

2
− β − 1

)
, (7.7)

where, B is the beta function. For the region, α ≤ −2, the potential is provided

by eqn. (7.4a) and for the other region, α + 2β ≥ 2, it is represented by eqn.

(7.4b). In the region, bounded by the lines α = −3 and α + 2β = −3, the total
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Figure 7.1: A region plot of (α, β), showing di�erent regions mentioned. Image
courtesy: Qian et al. (1995).

mass is �nite and is given by

M = 2πq̄ρ0b
3B

(
α

2
+

3

2
,−α

2
− β − 3

2

)
. (7.8)

The DF obtained by this two integral model, with a central black hole, is positive,

therefore, physical, only when α ≤ −1

2
. The regions mentioned are shown in Fig.

7.1.

Small radii

At the small radii, eqn. (7.1) takes the form

ρ(m2) = ρ0

(
m

b

)α
. (7.9)

In the absence of the black hole at the center, the stellar potential will be provided

by the potential of scale free spheroids [discussed in �3.2 of Qian et al. (1995)]. In

presence of the central black hole, for the region of �nite mass, the potential can
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be written as

ψ(R2, z2) =
GM•√
R2 + z2

+ ψ∗0. (7.10)

The �rst term, representing the black hole potential dominates near the center

for the small radii; but, adding the stellar potential, gives a more accurate result.

After solving for z2 from eqn. (7.10) and plugging it into the density pro�le [eqn.

(7.9), it can be seen that

ρ̃(ψ, R̄2) =
ρ0

q̄α

(
ψ − ψ∗0
B

)−α[
1− e2R̄2

(
ψ − ψ∗0
B

)2]
, (7.11)

where, the reference potential, B =
GM•
b

and e2 = 1 − q̄2. This is a modi�ed

expression of the component given by Dejonghe (1986). The DF in this case, for

the density given by eqn. (7.11), is derived using the Hunter and Qian (1993)

algorithm and given by

f(E,Lz) =
ρ0q
−α

B
3/2
S

(
E − ψ∗0
BS

)−α−3/2

fα(e2η2), (7.12)

where,

fα(e2η2) =
1

(2π)3/2

Γ(1− α)

Γ(−α− 1
2
)
3F2(

1− α
2

, 1− α

2
,−α

2
;−α− 1

2
,−1

2
; e2η2), (7.13)

given by Dejonghe (1986), with e2η2 = e2 L2
z

L2
c(E)

and L2
c(E) =

(GM•)
2

2(E − ψ∗0)
.

Large radii

At large radii, eqn. (7.1) can be written as

ρ(m2) = ρ0

(
m

b

)α+2β

. (7.14)
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Here, the DF is given by eqn. (7.12) where α is replaced by α+2β, in the de�nition

of B; the stellar mass M is added to M• and ψ∗0 is zero. In this case, the DF is

found to be

f(E,Lz) =
ρ0q
−α−2β

B
3/2
L

(
E

BL

)−α−2β−3/2

fα+2β(e2η2), (7.15)

and the total potential can be written as

ψ(R2, z2) =
G(M• +M∗)√

R2 + z2
. (7.16)

Solution to the joint DF

The equations from Chapter 2, used for deriving the LOS σ are

σ|| =
√
v̄2
|| − (v̄||2) (7.17)

where,

v|| = vR sin θ + vφ cos θ. (7.18)

Therefore, v̄|| can be written as

v̄|| =

∫
dx||d

3vv||f(x,v)

Σ
=

2pb

Σ

∫ ∞
p

ρv̄φ√
t2 − p2

dt, (7.19)

with
R

b
= t,

R′

b
= p. Now, vφ is given by

v̄φ =
4π

ρR2

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzLzf(ε, Lz). (7.20)

The surface density is given by the expression as

Σ(p) = 2b

∫ ∞
p

tdt√
t2 − p2

ρ(t). (7.21)
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and v̄2
|| is expressed as

v̄2
|| =

2

Σ

∫ ∞
R′

dR

√
R2 −R′2
R

ρv̄2
R +

2R′2

Σ

∫ ∞
R′

dR
1

R
√
R2 −R′2

ρv̄2
φ, (7.22)

where,

v̄2
R =

4π

ρR

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf(ε, Lz)

(
ψ − ε− L2

z

2R2

)
, (7.23)

and

v̄2
φ =

4π

ρR3

∫ ψ

0

dε

∫ R
√

2(ψ−ε)

0

dLzf(ε, Lz)L
2
z. (7.24)

Using eqns. (7.19, 7.22), we derive σ, numerically, which we plot in Fig. 7.2

along with the complete distribution function (obtained numerically by joining

two distribution functions using the continuity of the distribution function). We

are attempting to build a complete DF directly without using the limiting cases.
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Figure 7.2: The general distribution function, f(ε) in arbitrary units (a) and
(b) square of the velocity dispersion, σ2

||, normalized with respect to the maxi-
mum value are plotted.



Chapter 7: Ongoing problems 186

7.2 Initial seed mass and spin distributions

Schechter initial mass function of halos is given by

φ(M) = φ∗

(
M
M∗s

)β
e−(M/M∗)4/5

, (7.25)

whereM is the mass of the halo, φ∗, M∗s and β are the Schechter parameters.

The probability distribution of the spin parameter of the halo λ (which in turn

gives the angular momentum of the halo) can be obtained by cosmological N -

body simulations and is given by log normal distribution as [Lodato and Natarajan

(2007), Warren et al. (1992)]

p(λ)dλ =
1√

2πσλ

1

λ
exp

[
− ln2 (λ/λ̄)

2σλ

]
dλ, (7.26)

where, λ̄ = 0.05 and σλ = 0.5.

From Mangalam (2001)

λ =
L|E| 12
GM

5
2

,
λd
λv

=

(
Ed
E

) 1
2
(
M
Md

) 1
2

, (7.27)

where Md andM are the masses of the disk and the halo respectively, Ed and E

are the energies of the disc and the halo, and λd and λv are the spin parameters

of the disc and the virialized halo respectively.

Again, Mangalam (2001) has shown

Ed
E

= C1
M2

d

M2

rv
rd
, (7.28)

where rd and rv are the extents of the disk and the virialized halo, C1 ' 2
3
. This

factor of
2

3
comes for a constant density halo, where, k1 = 0.3 and k2 can be
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calculated as
πθ√
k1

' 0.2 for θ = 1/8 and C1 =
k2

k1

. The binding energies of the

disc and the halo are given as Ed = −k2
GM2

d

rd
and E = −k1

GM2

rv
respectively.

Again
rv
rd

=
C2

λv
, (7.29)

where λv is the spin parameter of the virialized halo (which we write as λ), C2 ' 1

(for an exponential disc). It is calculated as s
√
k1, where s = 2 for an exponential

disc. Using these two relations we �nally arrive at

λ = C3j
2M•
M

, (7.30)

where, C3 ' 1.37 (calculated using the values of C1 and C2) and we have replaced

Md by black hole mass and spin parameter of the disk, λd by black hole spin

parameter j. To derive the seed spin and mass distribution, we need to integrate

over λ in the range 0.01 - 0.1. Now,

J

M
=

Jd
Md

, j =
c

G

Jd
M2

d

=
cM3λv
Md

, (7.31)

where, we used J = GM 5
2λv.

The joint seed mass and spin function of the black hole is then given by

Fs(M•s, j) =

∫ λ=0.1

λ=0.01

p(λ)
dλ

dM•s
φ[M(λ,M•s, j)]dM (7.32)

To obtain the seed mass and spin functions separately we integrate Fs(M•s, j) over

the spin and the mass ranges respectively; they are shown in Fig. 7.3.

We plan to combine the seed functions in our evolution model (chapter 6). To

derive black hole demographics we can use the continuity equation of the black hole

population as a function of spin and mass [Small and Blandford (1992), Shankar
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Figure 7.3: (a) The initial seed mass function of seed black hole for a �xed zf
= 6. (b) The initial spin function of seed black hole for M•s = 106M�.

(2013)].

7.3 Summary

1. We have discussed the two integral model to �nd the DF in axisymmetric

galaxies given by Hunter and Qian (1993) and its application provided by

Qian et al. (1995). We discuss our extension of this model of Qian et al.

(1995), by using the continuity condition of the distribution function and

to derive σ for the axisymmetric systems. We plan to derive the M• − σ

relation and the M• −Mb relation from this model in the near future.

2. We discussed our preliminary result of deriving the initial seed mass and

spin function of the black holes. We took inputs from Lodato and Natarajan

(2007), Warren et al. (1992), and Mangalam (2001) and derived a joint

distribution function of seed black hole mass and spin. We plan to study

this in detail and use this distribution in our evolution model (discussed in

Chapter 6), to get better estimates for the evolution of the M• − σ relation

and to build black hole demographics using population synthesis.



Chapter 8

Summary, conclusions, and caveats

So Einstein was wrong when he said, �God does not play

dice". Consideration of black holes suggests, not only that

God does play dice, but that he sometimes confuses us by

throwing them where they can't be seen.

Stephen Hawking

This thesis is devoted to a study of the evolution of black holes and the M• − σ

relation. We proposed a model for deriving theM•−σ relation in spherical systems,

and a model for black hole mass and spin evolution with all the contributing

factors whose applications include the evolution of the M• − σ relation and black

hole archaeology. Then, we also discuss two ongoing projects: M• − σ relation in

axisymmetric systems and derivation of the initial seed and mass function of black

holes. In this chapter, we summarize the thesis, discuss the novel aspects and its

impact. We will then discuss the implications for future theoretical work.
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8.1 Highlights

Below, we summarize the highlights of each chapter in sequence:

• Chapter 1: We discuss the basic physics of black holes and the motivation

of our work. We present the importance of studying the mass and spin

evolution of the black holes and present a brief introduction of all the factors

that contribute to the growth and evolution of them. Then, we introduce

the M• − σ relation and discuss its possible origin and its evolution story.

We provide a resource summary.

• Chapter 2: Chapter 2 gives an introduction to the stellar dynamics where, we

derive the basic equations connecting the distribution function (DF) of the

stars and the observable quantities in spherical and axisymmetric systems,

which we use later in our models. We also derive the DF for some known

potential-density pairs: Hernquist, Ja�e, and isochrone models. Jeans equa-

tions in spherical and axisymmetric systems are also discussed, which can

be used to derive the M• − σ relation.

• Chapter 3: We present the introduction of the M• − σ relation followed by

a literature survey of this relation. Then, we discuss some well known the-

oretical models to derive the M• − σ relation and after that, we present a

literature study of the evolution of the M• − σ relation. Finally, we provide

a resource summary.

• Chapter 4: This chapter presents our model of deriving the M• − σ relation

andM•−Mb relation simultaneously for spherical systems. For single power

law systems, we derive σ from the mass density pro�les and the M• − σ

relation. For 12 elliptical galaxies, following Nuker intensity pro�le, we derive

the DF and σ. Assuming the M• − σ relation, M• = fMb and a single

power law pro�le for the stellar mass density we have analytically shown
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that p(γ) = (2γ+ 6)/(2 + γ). For a typical a range of γ = 0.75 - 1.4, we �nd

p = 3.6 - 5.3, which is within the observed range. For the 12 Nuker pro�le

cases, we derive the M• − σ relation and M• −Mb relation simultaneously

by using a χ2 analysis. The obtained values are p = 3.81 ± 0.004 and fb =

(1.23± 0.09)× 10−3.

• Chapter 5: In this chapter, we discuss the basic physics of all the factors

that contribute to the growth of black hole mass and spin - accretion, stellar

capture, mergers, and the Blandford-Znajek e�ect. We present di�erent well-

cited models from literature and discuss its modi�cations in our formalism

for deriving the evolution of black hole mass and spin.

• Chapter 6: This chapter presents the relativistic treatment of tidal, cap-

ture and loss cone radius and using that we calculate the stellar capture

rate. The predicted capture rates of 10−5 − 10−6 yr−1 are closer to the

observed range. Then, we present our model for studying the black hole

evolution in ΛCDM cosmology including all the e�ects - accretion, stel-

lar capture, mergers, and Blandford-Znajek torque. In the case of gas ac-

cretion in the presence of cooling sources, the �ow is momentum-driven

and after a certain time, the black hole reaches a saturated mass. Sub-

sequently, it grows only by stellar capture and mergers. We have consid-

ered the merger activity to be e�ective for z . 4. We studied the spin

and mass evolution with all the e�ects individually, by switching on the

e�ects one by one and in the �nal case, the complete model. Then, we

discuss two applications of our model - the evolution of the M• − σ re-

lation and black hole archaeology. We model some speci�c cases of the

quasars ULASJ134208.10+092838.61 (z=7.54), ULASJ112001.48+064124.3

(z=7.08) and DELSJ003836.10-152723.6 (z=7.02) and run our model back-

ward to �nd their formation parameters at z = {10, 15, 20} and show that

heavy seeds of 107M� are required.
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• Chapter 7: In this chapter, we present two ongoing projects with some pre-

liminary results. Firstly, we discuss the derivation of the M• − σ relation in

axisymmetric systems, where we use the DF derived using the Hunter-Qian

algorithm for large and small radii; then we obtain the σ, in presence of the

black hole, by using the condition of continuity of the distribution function.

We have obtained the behaviour of the complete distribution function and

the velocity dispersion. Secondly, we formulate the joint initial seed spin and

mass function of black holes and present the distributions. At the end, we

discuss future directions to be explored in these projects.

8.2 The novel aspects and their impact

1. We presented a model of deriving the M•− σ relation and M•−Mb relation

simultaneously. Previously, there were models of deriving these two relations

independently, but by our model, we self-consistently determined both of

them using the χ2 analysis.

2. We incorporated the relativistic e�ects in the calculation of tidal, capture and

loss cone radius and we employed these results to calculate the relativistic

stellar capture rate.

3. We constructed a complete semi-analytic and self-consistent evolution model,

with all the contributing factors to the evolution of black hole mass and spin.

4. We illustrated the e�ect of saturation on the evolution of the M•(z) =

k(z)σp(z) relation.

5. We deduce the evolution of the M• − σ relation and black hole archaeology

as two applications of our evolution model. The �rst application has impor-

tant implications for the galaxy-black hole co-evolution paradigm while the
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second application, we retrodict the initial mass and spin of seed black holes

at earlier redshifts.

6. We show preliminary results on deriving the M• − σ relation and M• −Mb

relation in axisymmetric systems jointly in presence of the black hole at the

center of the galaxy.

7. We show some preliminary results of the seed mass and spin function of the

black hole, which is still an unsolved topic.

We have demonstrated the basic physics of the evolution of the black hole and the

M• − σ relation. This relation is a an important tool to probe the co-evolution

of the galaxy and the black hole from future observations from TMT. Also, black

hole archaeology can determine the possible seed mass and spin of black holes

given their present values, which can be helpful in testing the formation scenarios.

8.3 Caveats

We list some of the caveats below:

1. For deriving the self-consistent model of the M• − σ relation and M• −Mb

relation, we assumed a linear proportionality relation, between M• and Mb.

But, in practice the relation could be slightly non linear. We can incorporate

that in future.

2. While considering the accretion process for the growth of the black hole, we

assumed a constant sub-Eddington accretion rate and a constant radiative

e�ciency. But, the accretion rate and the radiative e�ciency can vary as a

function of redshift and time. Incorporation of these variations will expand
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our model, though the results are not supposed to change much, as the

average over cosmic time is likely to be the same.

3. In case of deriving the mass growth rate by mergers, we assumed a propor-

tionality relation between the halo mass and the black hole mass. Inclusion

of non-linearity can broaden our models.

4. While deriving the evolution of the M• − σ relation, we assumed σ to be a

constant throughout, though it has a slight variation with redshift. In the

future, we plan to include this variation to improve our model.

8.4 Future directions

1. We plan to extend our model of deriving the M• − σ relation and M• −

Mb relation in more general axisymmetric systems with observed non-linear

relationship of M• −Mb.

2. We plan to include the time variation of σ for the derivation of the evolution

of the M• − σ relation.

3. We are working on the initial seed mass and spin function, which can be

built into the evolution to improve the model and also for better estimation

of the evolution of the M• − σ relation.

4. The data from future surveys at high redshift, for example from TMT, VLT

and ELT along with measurements of σ from SKA, can be used to test the

predictions of M• − σ evolution from our model.

5. We also plan to work on the demographics of the black hole by population

synthesis, based on a model for seed mass and spin distribution functions.
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Our model in the new relativistic framework can be used for future simulational

studies and can be probed through observations at high redshift.

THE END!
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