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A small fraction of thermalized dark radiation that transitions into cold dark matter (CDM) between big
bang nucleosynthesis and matter-radiation equality can account for the entire dark matter relic density.
Because of its transition from dark radiation, “late-forming dark matter” (LFDM) suppresses the growth of
linear matter perturbations and imprints the oscillatory signatures of dark radiation perturbations on small
scales. The cutoff scale in the linear matter power spectrum is set by the redshift zT of the phase transition;
tracers of small-scale structure can therefore be used to infer the LFDM formation epoch. Here, we use a
forward model of the Milky Way (MW) satellite galaxy population to address the question: How late can
dark matter form? For dark radiation with strong self-interactions, which arises in theories of neutrinolike
LFDM, we report zT > 5.5 × 106 at 95% confidence based on the abundance of known MW satellite
galaxies. This limit rigorously accounts for observational incompleteness corrections, marginalizes over
uncertainties in the connection between dwarf galaxies and dark matter halos, and improves upon galaxy
clustering and Lyman-α forest constraints by nearly an order of magnitude. We show that this limit can also
be interpreted as a lower bound on zT for LFDM that free-streams prior to its phase transition, although
dedicated simulations will be needed to analyze this case in detail. Thus, dark matter created by a transition
from dark radiation must form no later than one week after the big bang.

DOI: 10.1103/PhysRevD.103.043517

I. INTRODUCTION

Despite intensive experimental searches in recent dec-
ades, the nature of dark matter (DM) remains a mystery.
Combined with a cosmological constant (Λ), the simple
hypothesis of a cold, collisionless dark matter (CDM)
particle that interacts extremely weakly with Standard
Model (SM) particles is consistent with all cosmological
observations to date, on scales ranging from individual
galaxies [1], to galaxy clusters [2], to the cosmological
horizon as probed by large-scale structure [3] and cosmic
microwave background (CMB) measurements [4,5].
However, particle physics experiments have not detected
canonical weakly interacting-massive-particle (WIMP)
CDM, and several astrophysical anomalies have been
claimed to provide evidence for physics beyond the
collisionless CDM paradigm [6].
In this work, we explore and strongly constrain one such

alternative scenario, known as “late-forming dark matter”
(LFDM), where DM appears much later in cosmic history
than WIMPs and other popular DM candidates [7,8].

Instead of focusing on a specific particle physics con-
struction of LFDM, we consider a general class of models
in which DM is produced from an excess (dark) radiation
component that undergoes a phase transition due to non-
trivial interactions in the dark sector. Measurements from
the Planck mission rule out the existence of a fully
thermalized extra radiation component during the epoch
of the CMB [4]. However, as we will demonstrate, LFDM
can account for the entire DM content of the Universe while
remaining compatible with Planck limits on the number of
excess light degrees of freedom if even a tiny fraction of
dark radiation transitions into CDM between the epoch of
big bang nucleosynthesis (BBN) and the CMB.
LFDM is intriguing because it can be realized as a light,

neutrinolike particle [7,8], reviving the possibility of ∼eV-
mass neutrinolike DM, which is incompatible with struc-
ture formation constraints if produced thermally [9–12].
Intriguingly, there are tentative hints of a fourth sterile
neutrino generation from short-baseline neutrino oscillation
experiments [13–15]. However, this signal does not appear
ubiquitously (e.g., [16]) and its interpretation as a
sterile neutrino is difficult to reconcile with cosmological
observables (e.g., [17]). Moreover, within the “3þ 1”
neutrino oscillation framework, these results are difficult
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to reconcile with the absence of anomalies in νμ disappear-
ance as probed by recent atmospheric [18,19] and short-
baseline [18,20,21] experiments. Thus, if the existence of a
fourth sterile neutrino generation is confirmed by future
analyses, it is likely that new physics beyond sterile-plus-
active oscillation models is necessary to resolve the tension
between neutrino appearance and disappearance data.
Whether LFDM models can be connected to these anoma-
lies is a compelling question for sterile neutrino model
building, and is not the aim of this paper. Instead, we focus
on cosmological signatures of the LFDM phase transition.
The LFDM phase transition affects linear matter pertur-

bations and imprints its effects on various tracers of the DM
density field throughout cosmic history. In particular, the
linear matter power spectrum PðkÞ is suppressed on scales
smaller than the size of the cosmological horizon at the
LFDM transition redshift, zT , because the corresponding
modes entered the horizon while LFDM behaved like
radiation. Thus, later phase transitions suppress power
on larger scales. This phenomenology pertains to any
cosmic fluid that transitions into CDM from a (dark)
radiation component. Moreover, because the absence of
cold, heavy DM particles always dilutes gravitational
potentials, it also pertains to any scenario in which DM
is absent until late times.
In this work, we leverage this power suppression signal

to address the question: “What is the latest epoch after
which dark matter must behave exactly like CDM?” We
show that the answer depends on whether the LFDM fluid
has strong self-interactions prior to its transition into CDM
(we refer to this case as self-interacting, or SI), or whether it
free-streams prior to the phase transition (we refer to this
case as free-streaming, or FS). In the SI LFDM case, the
linear matter power spectrum contains the oscillatory
signatures of dark radiation perturbations, the amplitude
of which depends on the strength of the LFDM self-
interactions prior to the phase transition [7,22]. These self-
interactions are expected in neutrinolike LFDM models,
including in theories of neutrino dark energy [7] and in a
model of sterile fermion DM that has been proposed to have
some observable effects on CMB [8]. Meanwhile, the limit
in which LFDM transitions to CDM from a free-streaming
dark radiation component without self-interactions yields a
sharper cutoff in the matter power spectrum.
Analyses of the Lyman-α forest, galaxy clustering, and

the high-redshift galaxy luminosity function have set a
lower limit on the SI LFDM transition redshift of zT;SI ≳
9 × 105 based on the lack of observed power spectrum
suppression relative to CDM on quasilinear scales corre-
sponding to wave numbers k ∼ 1h Mpc−1 [23,24].
Following the reasoning above, tracers of matter fluctua-
tions on even smaller scales contain information about
earlier LFDM transition redshifts. Indeed, LFDM initially
gained popularity because of its ability to address several
“small-scale crises” historically attributed to CDM,

including the “missing satellites” [25,26] and “too big to
fail” [27,28] problems for Milky Way (MW) satellite
galaxies, which occupy DM halos that arise from fluctua-
tions on nonlinear scales of k≳ 10h Mpc−1.
State-of-the-art empirical models [29–33] and hydro-

dynamic simulations [34–36] combined with rigorous
estimates for the incompleteness of current MW satellite
searches provide strong evidence that the observed MW
satellite population is consistent with CDM predictions.
Recently, [12] used the MW satellite model in [32,33]—
which accurately describes the observed MW satellite
population over nearly three-fourths of the sky, including
satellites associated with the Large Magellanic Cloud—to
derive constraints on a variety of non-CDM models that
suppress the linear matter power spectrum on small scales.
In particular, [12] reported that the observed MW satellite
population is consistent with CDM predictions down to a
halo mass scale of ∼3 × 108 M⊙, corresponding to char-
acteristic wave numbers k ∼ 40h Mpc−1, and ruled out
thermal relic warm dark matter (WDM) lighter than
6.5 keV at 95% confidence. Importantly, this constraint
is marginalized over uncertainties in the connection
between faint galaxies and low-mass halos and the proper-
ties of the MW system. Independent studies of other small-
scale structure probes, including the Lyman-α forest, strong
gravitational lenses, and stellar streams, have derived
consistent WDM constraints [37–41].
Here, we extend the analysis of [12] to place limits on the

LFDM formation epoch. We show that SI LFDM imprints a
cutoff in the linear matter power spectrum that is very
similar to thermal relic WDM, and we exploit this corre-
spondence to constrain the model. Based on the abundance
of MW satellite galaxies, our analysis yields a lower bound
of zT;SI > 5.5 × 106 on the SI LFDM transition redshift at
95% confidence, which improves upon previous results
[23,24] by a factor of ∼6. This implies that SI LFDM must
form no later than one week after the big bang. In addition,
we show that our constraint on zT;SI can be interpreted as a
lower limit on the FS LFDM transition redshift, and we
estimate the improvement that future simulation-based
analyses can provide for this model.
Throughout, we assume that LFDM constitutes the entire

DM relic density, and we hold cosmological parameters
fixed at the ΛCDM best-fit values from [42].

II. LATE-FORMING DARK MATTER MODELS

We begin with a brief overview of LFDM physics. We
consider LFDM models in which an excess radiation
component ΔNeff undergoes a phase transition to a
CDM state at redshift zT . In this scenario, the initial
number of relativistic degrees of freedomNeff is generically
larger than in a standard ΛCDM cosmology. However, we
will see that even a tiny fractional increase in Neff suffices
to produce the observed CDM relic density, provided that
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the LFDM phase transition occurs a few e-foldings before
matter-radiation equality (MRE).
Since the epoch of its phase transition to the present,

LFDM redshifts identically to CDM, implying that

ρLFDMðzÞ ¼ ρLFDMðzTÞ
ð1þ zÞ3
ð1þ zTÞ3

; ð1Þ

where ρLFDMðzÞ is the LFDM density evaluated at redshift
z. Assuming that a fraction of excess radiation is converted
into the entire CDM density at redshift zT , this yields the
following decrement in the effective number of neutrino
degrees of freedom:

ΔNeffρνðzTÞ ¼ ρLFDMð0Þð1þ zTÞ3; ð2Þ

where ρνðzTÞ is the energy density of one neutrinolike
radiation species at the formation epoch. Thus, we have

ΔNeff ¼
ρCDMð0Þ
ρνð0Þ

≈ 0.2

�
ΩCDMh2

0.1199

��
105

1þ zT

�
: ð3Þ

Note that ΔNeff is inversely proportional to the redshift of
the LFDM phase transition. Because the effective number
of neutrino degrees of freedom changes dynamically in this
model, observational constraints on Neff must be inter-
preted with caution.
For most LFDM phase transition epochs between BBN

and the CMB, the resulting value of ΔNeff is smaller than
the precision of current observational constraints on this
quantity; for instance, Eq. (3) implies that zT ¼ 105

corresponds to ΔNeff ¼ 0.2, assuming the best-fit Planck
value of ΩCDMh2 ¼ 0.1199 [4]. Recent constraints on Neff
from Planck andWMAP prefer the existence of a fractional
dark radiation component, with ΔNeff ¼ 0.15 at 95% con-
fidence [11]. This bound is relaxed in the presence of
nontrivial dark radiation self-interactions, which modify
standard cosmological behavior during the radiation-domi-
nated epoch [43]. Thus, LFDM is in complete agreement
with ΔNeff constraints if the phase transition occurs before
z ∼ 105, in which case ΔNeff ≪ 0.2 is sufficient to account
for the entire DM relic density. Such a small fractional
change in ΔNeff from an ∼eV neutrinolike particle also
affects CMB density perturbations; in particular, modes
with l > 200 that enter the horizon between BBN and the
CMB respond to the presence of this tiny dark radiation
excess. Constraints from this effect are compatible with the
typical values of ΔNeff required for LFDM to constitute the
entirety of DM [44].
Importantly, unlike WIMPs (which couple to the SM

through the weak interaction) or QCD axions (which
primarily couple to the SM through electromagnetic inter-
actions), LFDM need not have any interactions with the
visible sector. Direct detection signatures are therefore not
guaranteed for LFDM, although they are possible for

specific constructions of the model. On the other hand,
the suppression of the linear matter power spectrum, which
manifests as a suppression of the power inferred from
various tracers throughout cosmic history (e.g., [23,24]), is
inevitable in LFDM. In addition, dark acoustic oscillations
(DAOs) imprinted prior to the phase transition can leave
distinct signatures; for example, the 21-cm brightness
power spectrum may be enhanced in LFDM models
relative to CDM [45].

A. Self-interacting LFDM

SI LFDM is a natural model in which the phase transition
fromadark radiation component to aCDMstate can easily be
achieved. Recently, it has been shown that ∼eV sterile
neutrinolike dark fermions, which have strong self-inter-
actionsmediated by a sub-eV scalar field, can be trapped into
DM “nuggets” in the radiation-dominated era, a few
e-foldings before the CMB [8]. The phase transition occurs
when the attractive scalar fifth force overcomes free-stream-
ing, which traps all of the ∼eV fermions within a Compton
volume into degenerate DM nuggets. Collectively, these
nuggets behave exactly like CDM and are produced with
negligible thermal velocities due to their ∼TeVmass, unlike
other LFDM models with non-negligible peculiar velocities
that evolve ballistically after the phase transition [46]. The
stability of the nuggets is achieved by fermion degeneracy
pressure, which balances the scalar fifth force, and the
duration of the phase transition is negligible compared to
the Hubble time for any transition redshift prior to the epoch
of the CMB. Because of the heavy, composite nature of the
nuggets resulting from their nonlinear formation process, the
initial distribution function of the thermal dark fermions is
not conserved. Thus, the nuggets avoid the Tremaine-Gunn
phase-space bound derived from the internal dynamics of
dwarf galaxies that applies to other light fermionic dark
matter and WDM candidates [47–49]. This model therefore
provides a concrete construction of a phase transition in
which a fluid that initially behaves like dark radiation
changes its equation of state almost instantaneously at a
transition redshift zT;SI.
Bosonic SI LFDM appears in theories of neutrino dark

energy, in which neutrinos interact with multiple scalar
fields and behave like a single thermalized fluid [7]. In
these theories, the scalars generally have hybrid potentials
reminiscent of hybrid inflationary potentials. As the neu-
trino temperature dilutes near the epoch of MRE, one of the
scalar fields that was stuck in a metastable minimum
becomes tachyonic and begins to oscillate around a new
minimum. The coherently oscillating field then behaves
exactly like CDM, similar to the transition axion dark
matter undergoes when the Hubble rate drops below its
oscillation frequency.
From a theoretical perspective, the epoch of the LFDM

phase transition in neutrino dark energy theories is
expected to be very late, and is therefore subject to
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constraints arising from linear perturbation theory. In
particular, the relevant range of LFDM formation epochs
can be estimated by assuming that the coupling of the
particle model is of Oð1Þ, which yields 1 eV≲ TðzT;SIÞ ≲
103 eV for the temperature of the Universe at the phase
transition [7]. The wave numbers corresponding to
horizon entry for this range of transition epochs are
2 × 10−2h Mpc−1 ≲ kT;SI ≲ 20h Mpc−1. We reiterate that
this is an order-of-magnitude estimate that only assumes
natural values of the coupling constants.

B. Free-streaming LFDM

In the FS LFDM model, a noninteracting dark radiation
component that free-streams until the DM phase transition
starts to oscillate coherently and behave like CDM at
redshift zT;FS. It is shown in [7] that a thermal field theory
correction can in principle make this phase transition
possible. In particular, consider a scalar field ϕ with mass
m and a zero-temperature potential

VðϕÞ ¼ V0 −
m2ϕ2

2
− ϵϕ3 þ λϕ4

4
; ð4Þ

where V0 is the zero-point energy and ϵ, λ are coupling
constants. This potential can pick up a correction due to the
presence of other fermionic fields at finite temperature,
resulting in fluctuations

δV ¼ DT2ϕ2; ð5Þ

where D depends on the spin, coupling, and number of
degrees of freedom of the other fields.
Here we have assumed that ϕ is not in thermal equilib-

rium with other fields, which implies that ϕ is noninteract-
ing in a cosmological sense. With such a potential, the field
is trapped in a minimum at ϕ ¼ 0 for T ≥ m=

ffiffiffiffiffiffiffi
2D

p
[7].

After the Universe cools below this temperature, the field
becomes tachyonic about the origin and settles into the true
minimum, after which it coherently oscillates and behaves
like CDM. This model is therefore a concrete example of
FS LFDM.

III. LINEAR PERTURBATIONS

A. Free-streaming LFDM

Despite the variety of particle models described above,
the initial conditions for LFDM matter perturbations after
its phase transition are identical to that of a dark radiation
component at the transition epoch. If the dark radiation
component has no self-interactions, then matter perturba-
tions can be treated exactly as in the case of neutrinos, and
the evolution of FS LFDM density perturbations is obtained
by solving a series of coupled differential equations [50]:

_δ ¼ −
4

3
θ −

2

3
_h;

_θ ¼ k2
�
δ

4
− σ

�
;

2_σ ¼ 8

15
θ −

3

15
kF3 þ

4

15
_hþ 8

5
_η; and

_Fl ¼ k
2lþ 1

ðlFl−1 − ðlþ 1ÞFlþ1Þ; ð6Þ

where δ is the LFDM overdensity field, θ is its velocity
divergence, h and η are metric perturbations in synchronous
gauge, σ is the shear stress, Fl is the lth Legendre
component of the momentum-averaged LFDM distribution
function, k is the cosmological wave number, and overdots
denote derivatives with respect to conformal time [50]. The
solution for δ is an exponentially damped oscillator at
subhorizon scales; physically, this represents the free-
streaming of highly relativistic neutrinos.
To compute the growth of linear matter perturbations for

the FS LFDM model, we modify the Boltzmann solver
CAMB to evolve matter fluctuations up to a redshift zT;FS
without CDM, and we extract the transfer function for
neutrino perturbations at this redshift according to Eq. (6).
We then use these neutrino (dark radiation) perturbations as
initial conditions for LFDM density fluctuations at the
epoch of its formation, and we evolve LFDM perturbations
identically to CDM thereafter to obtain the linear matter
power spectrum at later times. Thus, oscillations at small
scales in the linear matter power spectrum arise because
LFDM obtained its initial density fluctuations from neu-
trinolike perturbations at zT;FS, which were damped and
oscillatory at scales smaller than the size of the horizon at
that time.

B. Self-interacting LFDM

Equation (6) provides the initial conditions for a neu-
trinolike particle that transitions to CDM. For SI LFDM,
the situation is simplified because a strongly self-interact-
ing neutrinolike fluid can be treated in the tight-coupling
approximation, in which the anisotropic stress and higher-
order terms are neglected (analogous to the treatment of the
photon-baryon fluid). The following equations then
describe linear perturbations for the SI LFDM model:

_δ ¼ −
4

3
θ −

2

3
_h;

_θ ¼ k2
�
δ

4
− σ

�
: ð7Þ

We note that the above perturbation equations for a tightly
coupled dark matter-radiation fluid are only valid until then
epoch of the phase transition, and that—once LFDM forms
—it behaves identically to cold, collisionless CDM. In our
modified CAMB implementation, we therefore evolve
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matter perturbations until the redshift of the phase tran-
sition, zT;SI, according to Eq. (7). We then use the solution
as the initial condition for subsequent evolution, which is
identical to CDM.

IV. TRANSFER FUNCTIONS

To compare linear matter power spectra in our LFDM
models to CDM, we compute the transfer function

T2ðkÞ≡ PLFDMðkÞ
PCDMðkÞ

; ð8Þ

where PLFDMðkÞ [PCDMðkÞ] is the LFDM (CDM) linear
matter power spectrum evaluated at z ¼ 0. The half-
mode scale khm is defined as the wave number at which
T2ðkÞ ¼ 0.25.
Linear matter power spectra and transfer functions for

our SI and FS LFDM models with zT ¼ 1.5 × 106

(kT ¼ 7h Mpc−1) are shown in Fig. 1. We note that the
transition redshift shown in Fig. 1 is marginally consistent
with Lyman-α forest and galaxy clustering data [23];
however, as we demonstrate below, it is robustly ruled
out for both LFDMmodels by our MW satellite population
analysis.
The right panel of Fig. 1 illustrates three main features of

LFDM transfer functions that are common to both of our
model variants:
(1) There is a cutoff in power relative to CDM at the

comoving wave number kT, which corresponds to
the size of the horizon at the epoch of the LFDM
phase transition. In particular, power is significantly

suppressed on scales smaller than those correspond-
ing to

kT ¼ aHT

c
≈
H0

ffiffiffiffiffiffiffiffiffi
Ωrad

p
zT

c
; ð9Þ

where HT is the Hubble rate at the LFDM transition,
H0 ¼ 100h km s−1Mpc−1 is the present-day Hubble
rate, and Ωrad ≈ 10−4 is the energy density in
radiation.1

(2) There are damped DAOs at scales smaller than those
corresponding to kT , resulting from dark radiation
perturbations prior to the LFDM phase transition.

(3) Cutoffs in the transfer functions for both model
variants exhibit k-translation invariance. Specifi-
cally, given two SI or FS LFDM models with
transition redshifts zT;1 and zT;2 and transfer func-
tions T2

1ðkÞ and T2
2ðkÞ, we have

T2
2ðkÞ ¼ T2

1

�
zT;2
zT;1

k

�
ð10Þ

along the initial cutoff. This symmetry follows from
the linear relation between kT and zT in Eq. (9) and
from the scale invariance of Hubble expansion in the
radiation-dominated epoch. We emphasize that
Eq. (10) only holds along the initial power spectrum

FIG. 1. Linear matter power spectra (left) and transfer functions (right) for self-interacting (magenta) and free-streaming (cyan) late-
forming dark matter models, compared to cold dark matter (dashed black) and thermal relic warm dark matter (dashed red). Both LFDM
models are shown with a transition redshift of zT ¼ 1.5 × 106, corresponding to a comoving wave number of kT ¼ 7h Mpc−1. LFDM
power spectra are suppressed relative to CDM at wave numbers greater than kT , and they exhibit dark acoustic oscillations on even
smaller scales, beginning at ∼6kT (∼2kT) for SI (FS) LFDM. The cutoff in the SI LFDM power spectrum is very similar to that in WDM,
until the onset of DAOs.

1As discussed above, CMB constraints on ΔNeff set a limit of
zT ≳ 4 × 105. Later transitions also result in severe suppression of
the matter power spectrum on quasilinear scales according to
Eq. (9).
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cutoff; this is sufficient for our purposes because
DAOs occur at extremely small scales for the typical
transition redshift values we consider. Equation (10)
is useful because it allows us to analytically compute
LFDM transfer functions as a continuous function of
zT using the power spectra that were computed with
CAMB for discrete transition redshifts.

A. Self-interacting LFDM

The SI LFDM transfer function exhibits a smooth cutoff
that is remarkably similar to that in thermal relic WDM
until the onset of DAOs. The tight correspondence between
the cutoff in these transfer functions is reminiscent of the
mapping between thermal relic WDM and velocity-inde-
pendent DM-proton scattering found in [51], and (to a
lesser extent) a similar mapping identified for models with
DM-radiation interactions [52,53]. Despite different dark
matter microphysics, the transfer function for our SI LFDM
model is also similar to that for self-interacting dark matter
models in which massive dark photon mediators decay to
dark fermions [54]. More generally, [55,56] have shown
that interacting DM models often impact the linear matter
power spectrum such that they are effectively “warm.” The
existence of the mapping between SI LFDM and thermal
relic WDM is therefore not surprising given its strong self-
interactions prior to the phase transition.
To make this correspondence quantitative, we construct a

relation between the SI LFDM and thermal relic WDM
models following a half-mode scale matching procedure
similar to [51,53]. In particular, we derive the following
relation from our CAMB output:

khm;SI ≈ 2.8kT;SI ≈ 1.3

�
zT;SI
105

�
h Mpc−1: ð11Þ

Meanwhile, the half-mode scale in WDM is given by [57]

khm;WDM

¼ 2π

λhm;WDM

¼9.2

�
mWDM

1keV

�
1.11

�
Ωm

0.25

�
−0.11

�
h
0.7

�
−1.22

hMpc−1; ð12Þ

where mWDM is the thermal relic WDM mass. Solving for
the transition redshift that causes the half-mode scales of
the WDM and SI LFDM transfer functions to match yields
the relation,

zT;SI≈7×105
�
mWDM

1 keV

�
1.11

�
Ωm

0.25

�
−0.11

�
h
0.7

�
−1.22

: ð13Þ

We find that LFDM and WDM transfer functions matched
in this way agree to better than ∼5% along the initial cutoff
over the entire SI LFDM parameter space of interest.
Examples of SI LFDM transfer functions along with

matched WDM transfer functions are shown in the left
panel of Fig. 2. On this plot, we indicate the comoving
wave number corresponding to the minimum halo mass,
i.e., the lowest-mass halo inferred to host MW satellite
galaxies. In particular, from an analysis of the MW satellite
population using DES and PS1 data over nearly three-
fourths of the sky, [33] found that the lowest peak virial

FIG. 2. Transfer functions for self-interacting (left) and free-streaming (right) late-forming dark matter models, compared to cold dark
matter (dashed black) and thermal relic warm dark matter (dashed red). SI LFDM models are shown for a range of transition redshifts,
with the highest transition redshift corresponding to the SI LFDM model that is ruled out by the abundance of Milky Way satellites at
95% confidence: zT;SI > 5.5 × 106. The light-blue FS LFDMmodel corresponds to the transition redshift that is conservatively ruled out
by our analysis: zT;FS > 2.1 × 106. Vertical dashed lines show the comoving scale that approximately corresponds to the mass of the
smallest halo inferred to host observed MW satellite galaxies, 3.2 × 108 M⊙ [33]. In the left panel, WDM transfer functions are slightly
shifted horizontally for visual clarity.
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halo mass corresponding to observed MW satellite galaxies
is less than Mmin ¼ 3.2 × 108 M⊙ at 95% confidence,
corresponding to a comoving wave number of
kcrit ≈ 36h Mpc−1. We also indicate the WDM transfer
function ruled out by these observations of the MW satellite
population at 95% confidence, corresponding to a 6.5 keV
thermal relic [12].

B. Free-streaming LFDM

The power spectrum cutoff in FS LFDM is significantly
sharper than in SI LFDM, as expected due to its free-
streaming behavior prior to the phase transition. Thus, it is
difficult to directly map FS LFDM to WDM, which forces
us to take a more conservative approach in order to derive
constraints.
Nonetheless, we can still construct a relation between the

half-mode scale and the transition redshift for FS LFDM
based on our CAMB output. This yields

khm;FS ≈ 1.4kT;FS ≈ 0.65

�
zT;FS
105

�
h Mpc−1: ð14Þ

For a fixed transition redshift, khm;FS < khm;SI, which makes
sense given the sharper power spectrum cutoff in FS LFDM
relative to SI LFDM. FS LFDM transfer functions are
shown in the right panel of Fig. 2.

V. CONSTRAINTS FROM MILKY WAY
SATELLITES

We use the relations derived above to translate thermal
relic WDM limits from the MW satellite population into
LFDM constraints. Given that halos with masses lower than
3.2 × 108 M⊙ are required to host currently observed MW
satellite galaxies [33], there must be enough power to form
bound DM halos on the corresponding comoving scales—
i.e., down to a critical wave number of

kcrit ¼
2π

λmin
¼ π

�
4πρm
3Mmin

�
1=3

≈ 36h Mpc−1; ð15Þ

where ρm is the LFDM density today, Mmin is the
minimum halo mass, and λmin is the corresponding length
scale in linear theory. Halos at this mass scale need not
merely exist, but must be formed in enough abundance to
match the observed MW satellite population. Thus, we will
obtain a lower limit on the transition redshift in both LFDM
models based on the lower limit on the thermal relic
WDM mass.

A. Self-interacting LFDM

The LFDM–WDM mapping constructed above allows
us to translate thermal relic WDM limits derived from the
MW satellite population into LFDM constraints. High-
resolution cosmological simulations have been performed

in order to predict theWDM subhalo mass function in MW-
mass halos [58–61], and these have been used in con-
junction with the observedMW satellite population to place
stringent constraints on thermal relic WDM. [12] report
mWDM > 6.5 keV at 95% confidence, which we directly
translate into a constraint on SI LFDM via Eq. (13),
yielding zT;SI > 5.5 × 106, also at 95% confidence. This
limit implies that the dark radiation which transitions to
LFDM causes ΔNeff ≲ 4 × 10−3, assuming that LFDM
constitutes the entire DM relic density [Eq. (3)].
Exploring the generality of this indirect constraint on
ΔNeff from small-scale structure measurements is a com-
pelling avenue for future work.
Figure 3 compares this limit to constraints on zT;SI

derived from the CMB (resulting from Neff constraints),
low-redshift galaxy clustering from the Sloan Digital Sky
Survey [23], the high-redshift galaxy luminosity function
[24], and the Lyman-α forest [23]. Our limit improves upon
the Lyman-α forest result by a factor of ∼6, which can be
understood in terms of the comoving scales probed by the
MW satellite population. Specifically, the lowest-mass halo
inferred to host an observed satellite is ∼3 × 108 M⊙ [33],
which roughly corresponds to a wave number of
k ∼ 40h Mpc−1, while the Lyman-α forest data used in

FIG. 3. Constraints on the transition redshift for self-interacting
late-forming dark matter, versus the corresponding thermal relic
warm dark matter mass based on the half-mode mass relation in
Eq. (13). Our Milky Way satellite constraint on zT;SI and the
lower limit on the thermal relic WDM mass of 6.5 keV from
which we derive this limit [12] are shown by the shaded purple
region. Limits on the SI LFDM transition redshift from the
cosmic microwave background (green), Sloan Digital Sky Survey
galaxy clustering (dashed blue [23]), the high-redshift galaxy
luminosity function (dot-dashed blue [24]) and the Lyman-α
forest (dotted blue [23]) are shown as vertical lines. Vertical lines
indicate constraints derived specifically for LFDM, and do not
indicate other recent WDM constraints from small-scale structure
probes. LFDM must transition to CDM between matter-radiation
equality (z ≈ 3 × 103) and big bang nucleosynthesis (z ≈ 1010),
which are schematically indicated by arrows.
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[23] reaches k ∼ 5h Mpc−1. We expect zT;SI to scale
linearly with the wave number corresponding to the
smallest scale probed in an observational analysis, and
the improvement we observe relative to this Lyman-α
constraint is consistent with this expectation.2 Other
small-scale probes that achieve comparable sensitivity to
thermal relic WDM, including strong gravitational lensing
[39,40] and stellar streams [41], will yield similar LFDM
constraints.
Our SI LFDM limit relies on an analytic mapping to

thermal relic WDM and is therefore not directly validated
using LFDM simulations. We note that [24] ran simulations
of these models with similar half-mode scales and found
that the high-redshift (z > 4) LFDM halo mass function is
comparable to that in WDM. Those findings are further
consistent with the suite of LFDM simulations from [64],
which show that oscillatory features in the linear matter
power spectrum are erased in the z ¼ 0 halo mass function.
Meanwhile, [65]—working in the Effective Theory of
Structure Formation (ETHOS) framework [66]—found
the peak heights of interest for our SI LFDM constraints
lead to negligible differences in the high-redshift halo mass
function relative to thermal relic WDM. Finally, [54]
showed that the halo mass function for self-interacting
dark matter models with similar transfer functions to our SI
LFDM model are nearly indistinguishable from matched
WDM models, and used this correspondence along with a
conservative treatment of the subhalo population inferred
from MW satellites to place constraints similar in spirit to
ours. All of these results lend confidence to the robustness
of our result when framed as a conservative limit.

B. Free-streaming LFDM

The right panel of Fig. 2 demonstrates the reason that it
would be dangerous to set a constraint on FS LFDM based
on matching its half-mode scale to WDM. In particular,
because the FS LFDM power spectrum cutoff is much
steeper than in thermal relic WDM, the half mode-matched
model is significantly less suppressed than the correspond-
ing WDM model along the initial power spectrum cutoff.
Thus, we bracket the range of allowed FS LFDM transition
redshifts as follows:
(1) We place a fiducial lower limit on zT;FS by finding the

FS LFDM transfer function that yields strictly greater
power suppression than the ruled-out thermal relic
WDM model for all wave numbers k > 10h Mpc−1,
roughly corresponding to halo masses below
1010 M⊙.

3 Below thiswave number, small differences

between the FS LFDM and WDM transfer functions
are negligible for the FS LFDM models of interest.
This yields a conservative limit of zT;FS > 2.1 × 106

and is shown by the light-blue transfer function
in Fig. 2.

(2) We forecast an optimistic limit on zT;FS by matching
it to the half-mode scale of the thermal relic WDM
model that is ruled out at 95% confidence by the
MW satellite population. This yields zT;FS > 1.1 ×
107 and is shown by the dark-blue transfer function
in Fig. 2. This constraint is optimistic because the
abundance of subhalos that host MW satellites are
sensitive to a convolution of power on (nonlinear)
scales, rather than a single mode at which the power
spectrum is suppressed by a characteristic amount
(e.g., khm); thus, transfer functions with different
cutoff shapes cannot be matched in detail.

Because the FS LFDM model has not previously been
considered in the context of small-scale structure measure-
ments, we do not have a direct point of comparison for our
constraints on its transition redshift. However, our fiducial
FS LFDM is extremely conservative. It is therefore clear
that zT;FS must be of the same order-of-magnitude zT;SI,
which is physically reasonable.
Like our SI LFDM constraint, our forecasted optimistic

limit on zT;FS is analytic and therefore must be confirmed
with measurements of the subhalo mass function in
dedicated LFDM simulations of MW-like systems. This
situation is reminiscent of that for fuzzy dark matter
(FDM), which also features steeper power suppression
(for a fixed half-mode scale) than thermal relic WDM.
Half-mode matching predicts a stringent limit on the FDM
mass (e.g., [51]); however, constraints based directly on the
FDM subhalo mass function are less strict [12,69]. We are
therefore confident that the correct limit on zT;FS lies
between our fiducial and optimistic constraints.

VI. CONCLUSION

In this study, we set novel constraints on the dark matter
formation epoch using state-of-the-art limits on the sup-
pression of the small-scale matter power spectrum from the
Milky Way satellite population. Specifically, we focused on
the theoretically motivated paradigm of late-forming dark
matter, which transitions to collisionless, cold dark matter
from a dark radiation state. We showed that the epoch of the
LFDM transition determines the cutoff scale in the linear
matter power spectrum, which is processed into a suppres-
sion of power throughout cosmic history. By exploiting the
correspondence between the power spectrum cutoff in a
LFDM model with strong self-interactions prior to the
phase transition versus that in thermal relic warm dark
matter, we used the latest WDM constraint from the MW
satellite population to place a stringent lower limit on the
LFDM transition redshift. This constraint improves upon

2More recent Lyman-α forest analyses (e.g., [62,63])
probe smaller scales and a wider range of redshifts, and will
therefore improve upon the LFDM constraints in [23].

3This procedure is similar to that used to constrain resonantly
produced sterile neutrinos in [12,67] and developed by [68] to
constrain velocity-dependent DM-proton interactions.
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previous results by nearly an order of magnitude. We also
estimated lower limits on the transition redshift for free-
streaming LFDM.
Crucially, several independent tracers of small-scale

structure corroborate the darkmatter constraints set by recent
MW satellite studies; thus, our constraints are not highly
dependent on the particular probe used to set theWDM limit
we exploited in this paper. In particular, analyses of the
Lyman-α forest flux power spectrum [37,38], strongly lensed
quasar flux ratio anomalies and magnifications [39,40], and
perturbations in Galactic stellar streams [41] have achieved
similar sensitivity to thermal relic WDM relative to the MW
satellite population, even though the observational and
theoretical systematics of these probes differ. Thus, these
other small-scale structure probes can also be used to
constrain the dark matter transition redshift. This is particu-
larly important because the dark acoustic oscillations
imprinted prior to the LFDMphase transition can potentially
have distinct consequences for different tracers of the matter
power spectrum at various epochs (e.g., [45]).
Extending the sensitivity of dark matter formation epoch

measurements to even earlier times requires probing the

linear matter power spectrum on extremely small scales.
For example, ruling out the possibility that LFDM forms
after BBN requires sensitivity to linear modes with
k ∼ 105h Mpc−1, or halos with masses of ∼10−2 M⊙.
These tiny, baryon-free halos are only detectable through
their gravitational effects, which next-generation pulsar
timing arrays [70] and gravitational wave lensing mea-
surements [71] can potentially discover.
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