ASTRONOMY AND ASTROPHYSICS LIBRARY

Swapan Kumar Saha

Aperture Synthesis

Methods and Applications to Optical Astronomy

ASTRONOMY AND ASTROPHYSICS LIBRARY

Series Editors:

G. Börner, Garching, Germany

A. Burkert, München, Germany

- W. B. Burton, Charlottesville, VA, USA and Leiden, The Netherlands
- M. A. Dopita, Canberra, Australia
- A. Eckart, Köln, Germany
- E. K. Grebel, Heidelberg, Germany
- B. Leibundgut, Garching, Germany
- A. Maeder, Sauverny, Switzerland
- V. Trimble, College Park, MD, and Irvine, CA, USA

S.K. Saha

Aperture Synthesis

Methods and Applications to Optical Astronomy

Swapan Kumar Saha Indian Institute of Astrophysics Sarjapur Road 560034 Bangalore IInd Block, Koramangala India sks@iiap.res.in

ISSN 0941-7834 ISBN 978-1-4419-5709-2 e-ISBN 978-1-4419-5710-8 DOI 10.1007/978-1-4419-5710-8 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010938735

© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my children, Snigdha and Saurabh

Preface

The angular resolution of a single aperture (telescope) is inadequate to measure the brightness distribution across most stellar sources and many other objects of astrophysical importance. A major advance involves the transition from observations with a single telescope to a diluted array of two or more telescopes separated by more than their own sizes, mimicking a wide aperture, having a diameter about the size of the largest separation. Such a technique, called aperture synthesis, provides greater resolution of images than is possible with a single member of the array.

Implementation of interferometry in optical astronomy began more than a century ago with the work of Fizeau (1868). Michelson and Pease (1921) measured successfully the angular diameter of Betelgeuse (α Orionis), using an interferometer based on two flat mirrors, which allowed them to measure the fringe visibility in the interference pattern formed by starlight at the detector plane. Later, Hanbury Brown and Twiss (1954) developed the intensity interferometry (see Sect. 3.3). Unlike Michelson (amplitude) interferometry, this does not rely on actual light interference. Instead, the mutual degree of coherence is obtained from the measurement of the degree of correlation between the intensity fluctuation of the signals recorded with a quadratic detector at two different telescopes. It measures the second-order spatial coherance, where the phase of the signals in separate telescopes was not required to be maintained. However, it ended with the Narrabri intensity interferometer (Hanbury Brown 1974) that was used to measure the diameter of bright stars and the orbit of binaries and was the first to measure the limb-darkening of a star other than the Sun. The survey of stellar diameters by means of this instrument serves as a resource for the effective temperature scale of main-sequence stars. Important results were obtained for the spectroscopic and eclipsing binaries as well.

Obtaining a diffraction-limited image of celestial bodies was one of the major problems faced by the optical astronomers in the past. This is mainly due to the image degradation at optical wavelengths produced by the atmospheric turbulence. Labeyrie (1970) developed speckle interferometry as one way to overcome the degradation due to atmospheric turbulence. Then technological advances overcame many of the problems encountered by Michelson and Pease (1921) allowing further development of phase-preserving optical interferometry, more nearly analogous to radio interferometry. Labeyrie (1975) developed a long baseline interferometer with

two small optical telescopes and resolved several stars. This technique depends on the visibility of fringes produced by the amplitude interferences formed by the light collected by two telescopes allowing the measurement of stars much fainter than was possible with intensity interferometry using the same size telescopes.

Following the publication of the article entitled, 'Modern Optical Astronomy: Technology and Impact of Interferometry - Swapan K Saha, 2002, Reviews of Modern Physics, 74, 551-600,' several astronomers, particularly M. K. Das Gupta, who along with R. C. Jennison and R. Hanbury Brown developed intensity interferometry in radio wavelengths, had requested me to write a monograph, for which I am indebted to. In fact, I had the opportunity to be associated with him during graduate school days and discussed at length on this topic. This monograph, a sequel to my earlier book entitled, 'Diffraction-limited Imaging with Large and Moderate Telescopes', 2007, World-Scientific, is a dossier of knowledge for every graduate student and researcher, who intend to embark on a field dedicated to the long baseline aperture synthesis. I have attempted to make this book self-contained by incorporating more than one hundred and fifty illustrations and tens of footnotes. This monograph addresses the basic principles of interferometric techniques, the current trend, motivation, methods, and path to future promise of true interferometry at optical and infrared wavelengths. Since the basic principle of aperture synthesis imaging in optical astronomy using interferometry is Fourier Optics, this topic along with several fundamental equations is also highlighted in the appendices.

The progress in the field of radio interferometry is exemplary. The success is primarily because of the possibility to preserve phase information for widely separated dishes by using very accurate clocks and time markers in the data streams. Though the principles of optical interferometry are essentially identical to those at radio wavelengths, accurate measurements are more difficult to make: (i) the irregularities in the Earth's atmosphere introduce variations in the path length that are large compared to the wavelength; (ii) it is difficult to achieve the required mechanical stability of the telescopes to obtain interference fringes at a wavelength of the order of 500 nm. The calibration of the instrumental phase is a formidable task; and (iii) the division of the photons incident on each telescope in an array of optical telescopes to estimate the mutual coherence function or the complex visibility over the different possible baselines in the array leads to serious signal-to-noise problems. Despite the differences in technology between radio and optical interferometers, a common characterization of source properties, such as source visibility is adequate to provide a qualitative and quantitative description of the response of a long baseline interferometer.

Optical interferometry is generally performed within the standard atmospheric spectral windows. It requires several optical functions such as spatial filtering, which allows determination of the Fourier transform of the brightness distribution at the spatial frequencies, photometric calibration, polarization control etc., but the practical limitations imposed on these measurements are severe. An instrument of this nature needs extreme accuracies to meet the demands of maintaining the optical pathlengths within the interferometer, constant to a fraction of a wavelength of light, which constrained Long Baseline Optical Interferometers (LBOI) to smaller

baselines (~ 100 m); mostly they operate at longer wavelengths (in the near- and mid-IR bands). The practical considerations regarding extraction of the Fourier components became important to look at. The first chapter lays the foundation of the mathematical framework that is required to understand the theoretical basis for Fourier Optics, imaging systems, while the second and third chapters address the fundamentals of optical interferometry and its applications.

Speckle interferometry (see Sect. 4.2), a post-processing technique, has successfully uncovered details in the morphology of a range of astronomical objects, including the Sun, planets, asteroids, cool giants and supergiants. Fueled by the rapid advancement of technology such as computational, fabrication, and characterization, development on real time corrections of the atmospheric turbulence, called 'Adaptive Optics' (AO), has given a new dimension in this field (see Sect. 4.3). Combining with LBOI, it offers the best of both approaches and shows great promise for applications such as the search for exoplanets. At this point, it seems clear that interferometry and AO are complementary, and neither can reach its full potential without the other. The fourth chapter introduces the origin and problem of imaging through atmospheric turbulence, and the limitations imposed by the atmosphere on the performance of speckle imaging. Further, it deals with the AO system including discussions of wavefront compensation devices, wavefront sensors, control system etc.

Interferometric technique bloomed during the last few decades. The new generation interferometry with phased arrays of multiple large sub-apertures would provide large collecting areas and high spatial resolution simultaneously. Over the next decades or so, one may envisage the development of hypertelescope (see Sect. 7.5.2). With forthcoming many-aperture systems, interferometry is indeed expected to approach the snapshot imaging performance of putative giant telescopes, the size of which may in principle reach hundreds of kilometers in space. However, daunting technological hurdles may come in the way for implementing these projects. Chapters 5-7 elucidate the current state-of-the art of such arrays. The various types of interferometric applications, for example, astrometry, nulling (see Sect. 5.1.3), and imaging are also described. These applications entail specific problems concerning the type of telescopes that are to be used, beam transportation and recombination, delay-lines, atmospheric dispersion, polarization, coherencing and cophasing, calibration, and detecting fringes using modern sensors (Chap. 6). Proposed ground and space-based interferometry projects (see Sects. 7.5-7.7) are also discussed.

Image-processing is an art and an important subject as well. A power spectrum (second-order moment) analysis provides only the modulus of the Fourier transform of the object, whereas a bispectrum (third-order moment) analysis (see Sect. 8.2.2) yields the phase reconstruction. The latter method is useful for simulations involving a diluted aperture interferometry. Indeed, it is difficult to incorporate adaptive optics system in a hypertelescope. Observations may be carried out by speckle interferometry, using either a redundant or non-redundant many-element aperture. Deconvolution method can also be applied to imaging covering the methods spanning from simple linear deconvolution algorithms to complex non-linear algorithms.

Chapter 8 discusses the methodology of recovering visibility functions of stellar diameter, ratio of brightness of binary components etc., from the raw data obtained by means of interferometry. Various image restoration techniques are also presented with emphasis on the deconvolution methods used in aperture-synthesis mapping.

Many astrophysical problems, such as measuring the diameters and asymmetries of single stars, observing stars as extended and irregular objects with magnetic or thermal spots, flattened or distorted by rapid rotation, determining the orbits of multiple stars, and monitoring mass ejections in various spectral features as they flow towards their binary companions, resolving star-formation regions, distant galaxies, AGNs, need high angular resolution information. Although a relatively new field, the steady progress of interferometry has enabled scientists to obtain results from the area of stellar angular diameters with implications for emergent fluxes, effective temperatures, luminosities and structure of the stellar atmosphere, dust and gas envelopes, binary star orbits with impact on cluster distances and stellar masses, relative sizes of emission-line stars and emission region, stellar rotation, limbdarkening, and astrometry. With the recent interferometers, Very Large Telescope Interferometer (VLTI) in particular, disks around several Young Stellar Objects (YSO), a few debris disks, core of a Luminous Blue Variable (LBV) object and a nova, several Active Galactic Nuclei (AGN) have been resolved. Some of these results obtained by means of optical/IR interferometry are enumerated in chapter nine. Also, it contains discussions on the ability of these instruments to obtain information about the accretion disks, winds and jets, and luminosities of components in binary systems.

I am grateful to A. Labeyrie and V. Trimble for their encouragement and indebted to G. Weigelt, O. Absil, D. Mourard, R. Millan-Gabet, Luc Damé, J. D. Monnier, A. Domiciano de Souza, F. Malbet, P. Lawson, P. M. Hinz, J. P. Lancelot, P. Nisenson, V. Chinnappan, V. Coudé du Foresto, T. R. Bedding, O. Lardière, P. Stee, Ishwara Chandra, P. Hoeflich, D. Soltau, S. LeBohec, A. Subramaniam, S. Golden, D. Braun, D. Bonneau, K. E. Rangarajan, and J. Buckley for providing the images, plots, figures etc., and granting permission for their reproduction. Special thanks are due to R. Ramesh, S. Morel, F. Sutaria, V. Valsan, T. Berkefeld, K. R. Subramaniam, T. P. Prabhu, C. S. Stalin, G. C. Anupama, A. Satya Narayanan, S. P. Bagare, and P. R. Vishwanath for going through selected chapters. I express gratitude for the services rendered by B. A. Varghese, S. Arun, V. K. Subramaniam, R. K. Chaudhuri, and D. Takir as well.

Swapan K. Saha

Principal Symbols

$a(\mathbf{r})$	Complex amplitude of the wave
A _e	Effective area of an antenna
В	Baseline vector
$B(\mathbf{u})$	Atmosphere transfer function
$B_{\nu}(T)$	Spectral radiancy
$\mathcal{B}_n(\mathbf{r})$	Covariance function
C_n^2	Refractive index structure constant
C_T^2	Temperature structure constant
\mathcal{C}_v^2	Velocity structure constant
D	Diameter of the aperture
$\mathcal{D}_n(\mathbf{r})$	Refractive index structure function
$\mathcal{D}_T(\mathbf{r})$	Temperature structure function
$\mathcal{D}_v(\mathbf{r})$	Velocity structure function
$G(heta, \phi)$	Antenna gain
H_0	Hubble constant
Ι	Intensity of light
$\widehat{I}(\mathbf{u})$	Image spectrum
I_{ν}	Specific intensity
j	= 1, 2, 3
$J(\mathbf{r}_1,\mathbf{r}_2)$	Mutual intensity function
\mathcal{J}_{12}	Interference term
l	Characteristic size of viscous fluid
l _c	Coherence length
lo	Inner scale length
\mathcal{L}_{\star}	Stellar luminosity
m_v	Apparent visual magnitude
M_v	Absolute visual magnitude

M_{\star}	Stellar mass
$n(\mathbf{r},t)$	Refractive index of the atmosphere
$\widehat{N}(\mathbf{u})$	Noise spectrum
$O(\mathbf{x})$	Object illumination
$\widehat{O}(\mathbf{u})$	Object spectrum
Р	Pressure
$P(\theta, \phi)$	Antenna power pattern
$P(\mathbf{x})$	Pupil transmission function
$\widehat{P}(\mathbf{u})$	Pupil transfer function
\mathcal{R}	Resolving power of an optical system
$\mathbf{r}(=x, y, z)$	Position vector of a point in space
R _e	Reynolds number
भ and उ	Real and imaginary parts of the quantities in brackets
<i>r</i> ₀	Fried's parameter
R _*	Stellar radius
ŝ	Unit vector
$S(\mathbf{x})$	Point Spread Function
$\langle \widehat{S}(\mathbf{u}) \rangle$	Transfer function for long-exposure image
S_r	Strehl ratio
$\widehat{S}(\mathbf{u})$	Optical Transfer Function
t	Time
Т	Period
$T_a(\theta,\phi)$	Antenna temperature
$T_b(\theta,\phi)$	Brightness temperature
u	Spatial frequency vector
$U(\mathbf{r},t)$	Complex representation of the analytical signal
$V(\mathbf{r},t)$	Monochromatic optical wave
v_a	Average velocity of a viscous fluid
\mathcal{V}	Visibility
$\mathbf{x} = (x, y)$	Two-dimensional space vector
$\gamma(\mathbf{r}_1, \mathbf{r}_2, \tau)$	Complex degree of (mutual) coherence
$\Gamma(\mathbf{r}_1, \mathbf{r}_2, \tau)$	Mutual coherence
$\Gamma(\mathbf{r},\tau)$	Self coherence
δ	Phase difference
ε	Energy dissipation
$(heta, \phi)$	Polar coordinates
κ	Wave number
λ	Wavelength
λο	Wavelength in vacuum

$\mu(\mathbf{r}_1, \mathbf{r}_2)$	Complex coherence factor
ν	Frequency
$\Delta \nu$	Spectral width
$\langle \sigma \rangle$	Standard deviation
$\langle \sigma \rangle^2$	Variance
$ au_0$	Atmospheric coherence time
$ au_c$	Coherence time
$\Phi_n(\mathbf{k})$	Power spectral density
$\Delta arphi$	Optical path difference
Ψ	Time-dependent wave-function
ω	Angular frequency
*	Complex operator
*	Convolution operator
\otimes	Correlation
()	Ensemble average
^	Fourier transform operator
∇	Linear vector differential operator
∇^2	Laplacian operator

Some Numerical values of Physical and Astronomical Constants

c	Speed of light	$3 \times 10^8 \mathrm{m/s}$
G	Gravitational constant	$6.674 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$
h	Planck's constant	6.626196×10^{-34} J.s
k _B	Boltzmann's constant	$1.380662 \times 10^{-23} \text{ J/K}$
\mathcal{L}_{\odot}	Solar luminosity	$3.839 \times 10^{26} \text{ W}$
M_{\odot}	Solar mass	$1.9889 \times 10^{30} \text{ kg}$
R_{\odot}	Solar radius	$6.96 \times 10^8 \text{ m}$
T_{\odot}	Solar effective temperature	5780° K
ϵ_0	Permittivity constant	$8.8541 \times 10^{-12} \mathrm{F/m}$
μ_{0}	Permeability constant	$1.26 imes 10^{-6} \mathrm{H/m}$
σ	Stefan–Boltzmann's constant	$5.67 \times 10^{-8} \mathrm{W} \mathrm{m}^{-2} \mathrm{K}^{-4}$

List of Acronyms

ACT	Atmospheric Cerenkov Telescope
AGB	Asymptotic Giant Branch
AGN	Active Galactic Nuclei
AMBER	Astronomical Multiple BEam Recombiner
BID	Blind Iterative Deconvolution
BLR	Broad-Line Region
CHARA	Center for High Angular Resolution Astronomy
CMBR	Cosmic Microwave Background Radiation
COAST	Cambridge Optical Aperture Synthesis Telescope
ESA	European Space Agency
ESO	European Southern Observatory
FLUOR	Fiber-Linked Unit for Optical Recombination
FINITO	Fringe-tracking Instrument of Nice and Torino
FSU	Fringe Sensor Unit
GI2T	Grand Interféromètre à deux Télescopes
GMRT	Giant Meterwave Radio Telescope
HR	Hertzsprung–Russell
HST	Hubble Space Telescope
IAU	International Astronomical Union
IMF	Initial Mass Function
ΙΟ	Integrated Optics
IOTA	Infrared Optical Telescope Array
IRAS	InfraRed Astronomical Satellite
ISI	Infrared Spatial Interferometer
ISM	InterStellar Medium
I2T	Interféromètre à deux Télescopes
IUE	International Ultraviolet Explorer
KT	Knox–Thomson
laser	Light Amplification by Stimulated Emission of Radiation
LBOI	Long Baseline Optical Interferometry

Large Binocular Telescope
International Ultraviolet Explorer
Knox–Thomson
Light Amplification by Stimulated Emission of Radiation
Long Baseline Optical Interferometry
Large Binocular Telescope
Luminous Blue Variable
Limb-Darkened
Laser Interferometer Gravitational-Wave Observatory
Laser Interferometer Space Antenna
Long-Period Variables
milliarcseconds
Multi-Conjugate Adaptive Optics
Maximum Entropy Method
MID-Infrared Interferometric Instrument
Multi Mirror Telescope
Magdalene Ridge Observatory Interferometer
Modulation Transfer Function
National Aeronautics and Space Administration
Narrow-Line Region
Navy Prototype Optical Interferometer
National Radio Astronomy Observatory
Optical Path Difference
Optical Transfer Function
Optical Very Large Array
Parsec
Pre-Main Sequence
Planetary Nebula
Phase-Referenced Imaging & Microarcsecond Astrometry
Point Spread Function
Palomar Testbed Interferometer
Pupil Transmission Function
QUASi-stellAR radio source
Real time Active Fringe Tracking
REcombineur pour GrAnd INterféromètre
Special Astrophysical Observatory
Space Interferometry Mission
Square Kilometer Array
Super Massive Black Holes
Supernova
Solar and Heliospheric Observatory

List of Acronyms

Synthèse d'Ouverture en Infra Rouge avec DEux TElescopes
Sydney University Stellar Interferometer
Triple-Correlation
Terrestrial Planet Finder
Uniform Disk
Vainu Bappu Observatory
Visible spEctroGraph and polArimeter
VLT INterferometer Commissioning Instrument
Very Large Array
Very Long Baseline Interferometry
Very Large Telescope Interferometer
VLTI Spectro-Imager
Wolf-Rayet
Young Stellar Object

Contents

1	Intro	duction	to Wave Optics	1
	1.1	Preamb	- ple	1
	1.2	Comple	ex Representation of Harmonic Waves	3
	1.3	Polariz	ed Waves	6
		1.3.1	Stokes Parameters	9
		1.3.2	Transformation of Stokes Parameters	12
	1.4	Diffrac	tion Fundamentals	14
		1.4.1	Derivation of the Diffracted Field	14
		1.4.2	Near and Far-Field Diffractions	16
		1.4.3	Diffraction by a Circular Aperture	19
	1.5	Image	Formation	21
		1.5.1	Optical Transfer Function	23
		1.5.2	Influence of Aberrations	26
		1.5.3	Resolving Power of a Telescope	27
2	Prin	ciples of	f Interference	31
	2.1	Cohere	ence of Optical Waves	31
		2.1.1	Interference of Partially Coherent Beams	32
		2.1.2	Source and Visibility	36
		2.1.3	Power-spectral Density of the Light Beam	40
		2.1.4	Mutual Intensity	43
		2.1.5	Propagation of Mutual Coherence	44
	2.2	Van Ci	ttert-Zernike Theorem	46
3	App	lications	of Interferometry	51
	3.1	Early S	Stellar Interferometry	51
		3.1.1	Fizeau–Stéphan Interferometer	52
		3.1.2	Michelson Stellar Interferometer	54
	3.2	Radio 1	Interferometry	57
		3.2.1	The Radio Telescope	58
		3.2.2	The Radio Interferometer	70
		3.2.3	Very Long Baseline Interferometry	81

	3.3	Intensi	ty Interferometry	87
		3.3.1	Derivation of the Separation of Two Points on a Star	90
		3.3.2	Intensity Interferometer at Radio Wavelengths	93
		3.3.3	Optical Intensity Interferometry	96
		3.3.4	Intensity Correlations in Partially Coherent Fields	103
		3.3.5	Correlation Between the Signals of the Photo-detectors	107
	3.4	Interfe	rometer for Cosmic Probe	109
4	Sino	le-dish l	Diffraction-limited Imaging	115
•	4.1	Turbul	ence	115
		4.1.1	Spectral Description of Turbulence	115
		4.1.2	Structure Function for Deriving Kolmogorov Turbulence	
		4.1.3	Refractive Index Power-spectral Density	
		4.1.4	Turbulence and Boundary Layer	
		4.1.5	Statistics of the Amplitude and Phase Perturbations	
		416	Imaging Through Atmospheric Turbulence	130
	42	Speckl	e Interferometry	137
	1.2	4 2 1	Deciphering Information from Specklegrams	138
		4 2 2	Benefit of Short-exposure Images	141
	43	Adapti	ve Ontics	142
	1.0	4 3 1	Atmospheric Compensation	143
	44	Requir	red Components for an AO System	147
		4 4 1	Wavefront Correcting Systems	148
		442	Wavefront Sensors	152
		4.4.3	Wavefront Reconstruction	152
		4.4.4	Wavefront Controller	158
		т.т.т 4 4 5	Laser Guide Star	160
		4.4.6	Multi-conjugate Adaptive Optics	162
5	D:]	tod one	ntura Stallar Intarfarametry	165
5	5 1	Matha	delegy of Interferometry	103
	5.1	5 1 1	Baselving Dower of an Interferometer	105
		5.1.1	A strange start	107
		5.1.2	Astronneu y	170
	5.2	J.1.J Decelie	Numing Interformetry	1/1
	3.2	5 2 1	Calastial Coordinate System	1/0
		5.2.1	Celestial Coordinate System	1/0
		5.2.2	Coordinates for Stellar Interferometry	181
	5.2	5.2.3	(u, v)-plane Iracks	186
	5.3	Imagin	Interferometry	188
		5.3.1	Phase-closure Imaging	190
		5.3.2	Aperture-Synthesis Interferometry	192
6	Basi	c Tools a	and Technical Challenges	205
	6.1	Requir	ements for the LBOI	205
		6.1.1	Delay-line	206
		6.1.2	Spatial Filtering	208

		6.1.3	Beam Recombination in Reality	211
		6.1.4	Phase and Group Delay Tracking	224
		6.1.5	Coherence Envelope	227
		6.1.6	Fringe Acquisition and Tracking	229
		6.1.7	Effect of Polarization	235
		6.1.8	Dispersion Effect	237
		6.1.9	Calibration	238
		6.1.10	Role of Adaptive Optics Systems	241
	6.2	Limita	tions and Constraints	243
		6.2.1	Instrumental Constraints	244
		6.2.2	Field-of-view	246
		6.2.3	Sensitivity	247
		6.2.4	Bandwidth Limitations	249
		6.2.5	Limitations due to Atmospheric Turbulence	250
		6.2.6	Atmospheric Phase Errors	251
7	Disc	roto-Flo	mont Interforomators	253
'	7 1	Direct.	Detection Interferometers	253
	/.1	711	Interféromètre à deux Télescope	253
		7.1.1	Grand Interféromètre à deux Télescope (GI2T)	255
		7.1.2	Mark III Interferometer	257
		7.1.3 7 1 4	Sydney University Stellar Interferometer	258
	72	7.1. 4 Spatial	Interferometry in the Infrared (IR) Region	260
	1.2	7 2 1	Heterodyne Detection	200
		7.2.1	Plateau de Calern IR Interferometer	200
		7.2.2	Infrared Spatial Interferometer	203
	73	Arrays	with Multiple Telescopes	265
	1.5	731	Cambridge Ontical Aperture Synthesis Telescope	266
		732	Infrared Optical Telescope Array (IOTA)	267
		733	Navy Prototype Ontical Interferometer	268
		734	Palomar Test-bed Interferometer	269
		735	Keck Interferometer	270
		736	Very Large Telescope Interferometer (VI TI)	270
		7.3.0	Center for High Angular Resolution Astronomy Array	270
	74	Interfe	rometers Under Development	275
	/.1	741	Large Binocular Telescones	275
		742	Mitaka Ontical and Infrared Array	276
		743	Magdalena Ridge Observatory Interferometer	277
	75	Interfe	rometry with Large Arrays	278
	1.5	7 5 1	Ontical Very Large Array (OVLA)	278
		752	Hypertelescope Imaging	279
		753	Carlina Array	282
		754	High Resolution Coronagraphy	285
	7.6	Space-	borne Interferometry	
	1.0	7.6.1	Space Interferometry Mission	
		7.6.2	Terrestrial Planet Finder	

		7.6.3	Darwin Mission	
		7.6.4	Long-term Perspective	
	7.7	Revivir	ng Intensity Interferometry	
8	Ima	age Recovery		
	8.1	Data Pr	rocessing	
		8.1.1	Recovery of Visibility Functions	
	8.2	Recons	struction of Objects from Speckles	
		8.2.1	Knox–Thomson Method	
		8.2.2	Triple Correlation Technique	
		8.2.3	Blind Iterative Deconvolution (BID) Technique	
	8.3	Apertu	re Synthesis Mapping	
		8.3.1	CLEAN	
		8.3.2	Bayesian Statistical Inference	
		8.3.3	Maximum Entropy Method (MEM)	
		8.3.4	Self-calibration Method	
9	Astr	onomy v	vith Diluted Aperture Interferometry	
	9.1	Astrono	omical Measurements	
		9.1.1	Limiting Magnitude	
		9.1.2	Stellar Luminosity	
		9.1.3	Hertzsprung–Russell (HR) Diagram	
		9.1.4	Derivation of Effective Temperatures	
		9.1.5	Stellar Spectra	
	9.2	Stellar	Parameters	
		9.2.1	Determining Stellar Distance	
		9.2.2	Evolution of Stars	
		9.2.3	Resolving Young Stellar Objects (YSO)	
		9.2.4	Diameter across Stellar Evolution	
		9.2.5	Stellar Rotation	
		9.2.6	Be Stars	
		9.2.7	Stellar Surface Structure	
		9.2.8	Stellar Atmospheres	
		9.2.9	Circumstellar Shells	
		9.2.10	Binary Systems	
		9.2.11	Multiple Systems	
	9.3	Explod	ing Stars	
		9.3.1	Novae	
		9.3.2	Supernovae	
	9.4	Extraga	alactic Sources	
		9.4.1	Active Galactic Nuclei	
		9.4.2	Star-Formation in Galaxies	
	9.5	Infrared	d Astronomy	
		9.5.1	Astronomy with IR Interferometry	
		9.5.2	Astrobiology	

Α	Trar	sfer Fu	nction of an Optical System	
	A.1	Linear	System	411
	A.2	Measu	res of Coherence	413
B	Four	ier Opti	ics	415
	B .1	Fourier	r Transform	
		B.1.1	Convolution and Cross-Correlation	
		B.1.2	Hankel Transform	
С	Spat	ial Freq	uency Response	
	C.1	Transfe	er Function	
D	Zerr	ike Rep	resentation of Atmospheric Turbulence	433
Е	Cele	stial Coo	ordinate System	437
Re	eferen	ces		439
In	dex			459