

ASTROPHYSICAL PLASMAS AND FLUIDS

VINOD KRISHAN

ASTROPHYSICAL PLASMAS AND FLUIDS

ASTROPHYSICS AND SPACE SCIENCE LIBRARY

VOLUME 235

Executive Committee

W. B. BURTON, Sterrewacht, Leiden, The Netherlands
J. M. E. KUIJPERS, Faculty of Science, Nijmegen, The Netherlands
E. P. J. VAN DEN HEUVEL, Astronomical Institute, University of Amsterdam,
The Netherlands

H. VAN DER LAAN, Astronomical Institute, University of Utrecht, The Netherlands

Editorial Board

I. APPENZELLER, Landessternwarte Heidelberg-Königstuhl, Germany

J. N. BAHCALL, The Institute for Advanced Study, Princeton, U.S.A. F. BERTOLA, Università di Padova, Italy

W. B. BURTON, Sterrewacht, Leiden, The Netherlands

J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A.

C. J. CESARSKY, Centre d'Etudes de Saclay, Gif-sur-Yvette Cedex, France

O. ENGVOLD, Institute of Theoretical Astrophysics, University of Oslo, Norway

J. M. E. KUIJPERS, Faculty of Science, Nijmegen, The Netherlands R. McCRAY, University of Colorado, JILA, Boulder, U.S.A.

P. G. MURDIN, Royal Greenwich Observatory, Cambridge, U.K.

F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy

V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India K. SATO, School of Science, The University of Tokyo, Japan

F. H. SHU, University of California, Berkeley, U.S.A.

B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV. Space Research Institute. Moscow. Russia

Y. TANAKA, Institute of Space & Astronautical Science, Kanagawa, Japan S. TREMAINE, CITA, Princeton University, U.S.A.

E. P. J. VAN DEN HEUVEL, Astronomical Institute, University of Amsterdam,
The Netherlands

H. VAN DER LAAN, Astronomical Institute, University of Utrecht, The Netherlands

N. O. WEISS, University of Cambridge, U.K.

ASTROPHYSICAL PLASMAS AND FLUIDS

by

VINOD KRISHAN

Indian Institute of Astrophysics, Bangalore, India

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

Library of Congress Cataloging-in-Publication Data

```
Krishan, V. (Vinod)

Astrophysical plasmas and fluids / Vinod Krishan.

p. cm. -- (Astrophysics and space science library; 235)

Includes bibliographical references and index.

ISBN 978-0-7923-5490-1 ISBN 978-94-011-4720-0 (eBook)

DOI 10.1007/978-94-011-4720-0

1. Plasma astrophysics. 2. Fluid dynamics. I. Title.

II. Series: Astrophysics and space science library; v. 235.

QB462.7.K75 1998

523.01--dc21
```

ISBN 978-0-7923-5490-1

Printed on acid-free paper

All Rights Reserved
©1999 Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishers in 1999

Softcover reprint of the hardcover 1st edition

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner

Dedication

To everyone, I have known.

CONTENTS

Chapte	r 1: Plasma – The Universal state of Matter	1
1.1	How Should We Describe a Plasma?	1
1.2	Collective And Quasi-Neutral	3
1.3	Electrostatic Potential in a Plasma – Debye Screening	5
1.4	Coulomb Collisions Among Plasma Particles	8
1.5	Diffusion in a Plasma	12
1.6	Electrical Resistivity of a Plasma	14
1.7	Plasma as a Dielectric Material	16
1.8	Plasma as a Magnetic Material	18
1.9	Plasma as a Refracting Medium	19
1.10	Plasma as a Source of Coherent Radiation	20
1.11	Strongly Coupled Plasmas	20
1.12	Dusty Plasmas	23
1.13	Study of Plasmas: Towards what Purpose?	32
1.14	Techniques of Studying Plasmas	34
1.15	Waves in Plasmas	35
1.16	Instabilities in Plasmas	35
1.17	Plasmas in Curved Space – Time	37
1.18	Nonconducting Fluids	38
	References	39
Chapte	r 2: Statistical Description of a Many-Body System	41
2.1	Tracking Them Down!	41
2.2	The Phase Space	41
2.3	The Gibb's Ensemble and the Liouville Equation	42
2.4	Distribution Functions	45
2.5	One Particle Distribution Function	47
2.6	The Krook Collision Model	50
2.7	The Boltzmann Collision Model	50
2.8	The Fokker - Planck Collision Model	52
2.9	The Kinetic Description	54
2.10	Stellar Systems	54
2.11	Collisionless Plasmas	55
2.12	The Fluid Description	57
2.13	Heat Diffusion Equation	65
2.14	Adiabatic Energy Equation	66
2.15	Correlation Functions	67
2.16	Determining f_c	70

2.17	The Single Fluid Description	71
2.18	Summary	74
	References	76
	Appendix	77
Chapte	r 3: Particle and Fluid Motions in Gravitational	
and Ele	ectromagnetic Fields	79
3.1	Back to Single Particle Motion	79
3.2	Purpose of Studying Single Particle Motion	79
3.3	Equation of Motion of a Single Particle	80
3.4	Motion of a Charged Particle in a Uniform Magnetic	
	Field	81
3.5	Motion of a Charged Particle in Uniform Magnetic	
	and Electric Fields	83
3.6	Motion of a Charged Particle in Uniform Magnetic	
	and Gravitational Fields	85
3.7	Motion of a Charged Particle in an Inhomogeneous	
	Magnetic Field	86
3.8	Motion of a Charged Particle in a $\vec{\nabla} B \parallel \vec{B}$ Field	90
3.9	Van Allen Planetary Radiation Belts	91
3.10	Adiabatic Invariants of Motion of a Charged Particle in	
	Slowly Varying Magnetic Fields	92
3.11	Magnetic Mirror Revisited	94
3.12	The Longitudinal Adiabatic Invariant	96
3.13	Charged Particle in a Nonuniform Electric Field	98
3.14	Charged Particle in a Spatially Periodic Electric Field	
	and Uniform Magnetic Field	101
3.15	Motion in Time Varying \vec{E} and \vec{B} Fields	102
3.16	Motion in a Time Varying \vec{B} Field	103
3.17	Motion in an Electromagnetic Wave – The Ponderomotive	
0.10	Force	103
3.18	Chaotic Motion	105
3.19	Microwave Ionization of Hydrogen	106
3.20	Motion of a Star in a Galaxy	108
3.21	Fluid Drifts	111
3.22	Some Important Formulae	113
	References	115
_	r 4: Magnetohydrodynamics of Conducting Fluids	117
4.1	Electrically Conducting Fluids	117
4.2	Validity of Magnetohydrodynamics	118
4.3	Equations of Magnetohydrodynamics	119
4.4	Ideal Conducting Fluids	121

4.5	Pragmatic Conducting Fluids	123
4.6	Conducting Fluid in Equilibrium	125
4.7	<u>-</u>	125
4.8	•	128
4.9	-	131
4.10	Magnetohydrodynamic Waves	133
	Dispersion Relation of Ideal MHD Waves	134
4.12	Gravitohydrodynamic Waves	142
4.13	More on Hydrostatic Equilibrium	142
4.14	Adiabatic Gravito-acoustic Waves	144
4.15	Magnetohydrodynamic Instabilities	150
4.16	The Rayleigh-Taylor Instabilities	151
4.17	The Rayleigh-Taylor Instability in a Magnetized Fluid	152
4.18	The Kelvin-Helmholtz Instability	159
4.19	Current Driven Instabilities	163
4.20	Growth Rates of Current Driven Instabilities	171
4.21	Resistive Instabilities	178
4.22	MHD in Curved Space-Time	185
4.23	Virial Theorem	190
4.24	Magnetohydrodynamic Turbulence	194
	References	195
Chapte	er 5: Two-Fluid Description of Plasmas	197
5.1	Electron and Proton Plasmas	197
5.2	Static Equilibria of Electron and Proton Fluids	198
5.3	Equilibrium of Accreting and Radiating Fluids	199
5.4	Equilibria of Flowing Fluids	200
5.5	Wave Motions of Electron and Proton Fluids	201
	1. Electron – Plasma Oscillations	201
	2. Ion – Plasma Oscillation	204
	3. Electron – Plasma Waves in Magnetized Fluids	207
	4. Ion – Plasma Waves in Magnetized Fluids	208
	5. Electromagnetic Waves in Electron – Proton Fluids	210
	6. Electromagnetic Waves in Magnetized Fluids	215
5.6	Instabilities of Electron and Proton Fluids	223
	1. Instabilities in Unmagnetized Fluids	223
	2. Instabilities in Magnetized Fluids	229
5.7	Ambipolar Diffusion	232
	References	234
Chapte	er 6: Kinetic Description of Plasmas	235
$\overline{6.1}$	Back to the Vlasov-Maxwell Way	235
6.2	Kinetic-Equilibrium of an Electron-Proton Plasma	23!

6.3	Kinetic Description of Electron-Plasma Waves	
	and Instabilities	237
6.4	Kinetic Description of Ion-Acoustic Waves and	
	Instabilities	251
6.5	Electromagnetic Waves and Instabilities in a	
	Magnetized Plasma	253
	References	265
	Appendix	265
	A. Plasma Dispersion Function	265
	B. Bessel Functions	266
Chapte	r 7: Nonconducting Astrophysical Fluids	269
7.1	Whence Such Fluids?	269
7.2	Equilibrium of Fluids	270
7.3	Waves in Fluids	278
	Instabilities in Fluids	287
	Turbulence in Fluids	300
7.6	General Characteristics of Turbulent Flows	301
7.7	Quantification of Turbulence	302
7.8	Invariants of a Nonlinear Flow	310
7.9	Spectral Representation of the Fluid Equations	313
	The Kolmogorov–Oboukhov Way	317
7.11	Two-Dimensional Turbulent Flows	320
7.12	U	321
7.13	v	326
7.14		329
	References	336
8. Physical Constants		337
9. Astrophysical Quantities		339
9.1	Magnitudes	339
9.2	Planets	340
	The Sun	340
	The Milky Way	340
	The Hubble Constant	340
	Planck's Radiation Law	340
9.7	Electron Density and Temperature of	
	some of the Astrophysical Plasmas	342
10. Dif	ferential Operators	343
11. Ch	aracteristic Numbers for Fluids	345

		xi
12.	Acknowledgment for Figures	347
	Index	349

Preface

Life was simple when the dynamic, the spectral and the resolving powers of our instruments were small. One observed whole objects – planets, stars, sunspots, galaxies, often in rainbow colours. Then the revolution occurred: we acquired the centimetric eyes, the millimetric eyes, the infrared eyes, the ultraviolet eyes, the X-ray eyes and the γ -ray eyes. With these we see mottles on the surface of stars, streams in sunspots, and spirals in nuclei of galaxies. We see regions of multiple mass densities and temperatures in a precarious balance, losing it occasionally, exhaling flares. The universe is timed, cosmic phenomena are clocked; eternity is lost and variability is bought. Microarcsecond resolutions revealed stirring and sizzling interiors underneath serene surfaces. Short durations and small scales demanded employing a discipline with similar attributes – the discipline of Plasmas and Fluids – known more for its complexity than for its felicity. Some would like to wish it away.

We shall learn about plasmas for it is too little familiarity that breeds fear. Complexity can be systemized, to a large extent, by looking for a common denominator among apparently disparate phenomena.

It is not immediately obvious what the contents and the style of a graduate level course on plasmas and fluids aimed at understanding astrophysical phenomena should be. Plasmas and fluids are huge subjects by themselves. The cosmic phenomena where plasmas and fluids play a definite role are equally diverse and numerous. It is not possible to achieve proficiency of comparable levels both in the physics of plasmas and fluids as well as in astrophysical phenomena in a one-semester course. Since a graduate student of astronomy has opportunities to learn about astrophysical phenomena in other astronomy courses, we have chosen to emphasize the physics of plasmas and fluids in this text, illustrating it with examples from the observed astrophysical phenomena. There is no dearth of good text books on plasma physics and fluid dynamics; however, to the best of my knowledge and assessment, no treatment designed to teach a graduate student the essentials of plasmas and fluids in the context of astrophysical phenomena in a span of one semester, exists under

one cover. The choice of topics and the pedagogical treatment, I hope, will prove to be one of the attractive features of the present book.

I have strongly felt that the physics of plasmas and fluids could be presented in a more logical sequence than has usually been done. In looking at some books, it appears to me that some authors, not being sure of the competence of the readers, tend to go back and forth in dealing with presumably complex topics. For example, the fluid and the magnetohydrodynamic descriptions of plasmas are presented in earlier parts of a book whereas their equations are derived in later parts, after describing the kinetic treatment. One wonders, if it is not more desirable to systematically establish the mathematical frame work in a fairly complete manner and then study the various topics as special cases.

With this view, I begin with the Liouville equation from which originates all our knowledge of a large system. In this approach, there is absolutely no confusion whether the single particle picture is a special case of a fluid picture or vice-versa. All descriptions emerge from the Liouville equation, depending upon the assumptions and simplifications thrown in from the physics of a system. This style also helps us to remain aware of the inter-relationships of the single-fluid, the two-fluid, and kinetic treatments. The rest of the contents of the book, essentially, highlight the two major astrophysical issues — the configurational concerns and the radiative requirements — which often influence each other. Another way in which this book differs from a standard text book on plasma physics is by containing a lengthy chapter on nonconducting fluids. Since a zeroth order comprehension of many astrophysical phenomena is attempted by studying fluids in gravitational fields, a familiarity with the basics of fluid dynamics, including the all pervading turbulence, is a must. I have also aspired to make chapter one as informative as possible. Some of the topics, such as strongly coupled plasmas and dusty plasmas have been dealt with in chapter one, since these topics are still in an exploratory stage, and perhaps it is premature to include them with the core course. The reader may find that some concepts appear more than once at different places in the book; this. I believe, cannot hurt. Having said what this book is, I must say

what it isn't. Throughout the writing of this book, I had to often remind myself that it is neither a book exclusively on astrophysics, nor on plasma physics and fluids, so the temptation to specialize was curbed. After taking a course based on this text, I expect that those who are interested will be able to easily venture into the world of rigour, while those not so inclined to do so will get much more out of seminars on plasma instabilities and magnetohydrodynamics.

It is now time to express my heartfelt gratitude to my friends and critics, who over the last twenty years that I have been in the field, have always demanded more from me than I delivered. This constant phase lag has kept me on my toes without toppling. I am most grateful to Professor Paul J. Wiita, an astrophysicist at the Georgia State University, USA, for reading every word in this book and suggesting changes in its substance and style. I also thank Professor Som Krishan, a plasma physicist at the Indian Institute of Science, Bangalore, who has also read every word in this book, for exacting standards of conceptual clarity in my presentation. I have tried. All lapses, however, are mine.

I am extremely grateful to Dr. Baba Anthony Varghese of the Indian Institute of Astrophysics, Bangalore, without whose help, my thoughts could not have become printed words. I also thank Ms Pramila N.K. for her help in typing and correcting the manuscript. And lastly, as I have enjoyed writing this book, I hope you will enjoy reading it.

Vinod Krishan