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Preface

Waves and oscillations are found everywhere in nature. They are present
at large scales (galactic), as well as at microscopic scales (neutrino). The
dynamics and behavior of these oscillations depend a lot on the nature of the
medium through which they propagate. For example, we have hydrodynamic
waves (water waves), shock waves in a medium which is compressible. We also
come across MHD (magneto hydrodynamic) waves, present in a magnetized
medium. When the matter is ionized, one encounters plasma waves and so on.

The aim of this book is to present, at an introductory level, the different
types of waves and oscillations that one observes and studies, from macro-
scopic to microscopic scales. The first chapter deals with an introduction to
electromagnetism, the different types of electromagnetic spectra, wave and its
characteristics such as phase velocity, group velocity and dispersion relation,
applicable to all types of waves. Emphasis on application to astrophysics is
introduced at this stage for setting up the theory with possible applications
in astrophysics. The notion of interference, diffraction, and their importance
in observational astronomy is mentioned briefly. The second chapter is a dis-
cussion on Maxwell’s equations, used to study electromagnetic waves.

An introduction to waves in a uniform medium is presented in Chapter
3. Topics such as simple harmonic motion, simple pendulum, forced and free
oscillations, along with resonance are developed from first principles. Damped
and coupled oscillators are discussed briefly. The mathematical description of
these waves is introduced and the corresponding solutions are derived briefly.
The notions of normal mode eigenvalue problem and dispersion of waves are
discussed in subsequent sections. A brief discussion on solitons is introduced at
the end of the chapter. The concept of waves and oscillations in hydrodynamics
is introduced in Chapter 4. The basic equations in rotating and nonrotating
fluids are discussed. The effect of gravity, stratification, Coriolis force, and
long wavelength approximation are studied for small and finite amplitude
waves. Nonlinear aspects, which lead to the KdV equation (solitary waves),
are discussed in brief.

Waves in a magnetized medium, for both homogeneous and non-
homogeneous media, are discussed in Chapters 5 and 6. The linearized equa-
tions of MHD waves are derived from Maxwell’s equations and the dispersion
relation for the Alfven, fast and slow magnetoacoustic waves, is derived from
first principles. Effects of uniform flow, gravity, and density stratification are
dealt with briefly. Application to solar physics and nonlinear aspects including
finite amplitude effects are discussed briefly. The notion of resonant absorp-
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tion and phase mixing as possible mechanisms for coronal heating are also
introduced.

Different types of shock waves, such as normal and oblique shocks, are
studied in Chapter 7. The concept of blast wave and the solution from Taylor
and Sedov is introduced in this chapter. Weakly nonlinear aspects of shock
waves are also discussed briefly. An application of shock waves in the sun is
presented here. Shocks in MHD and collisionless plasmas are also dealt with
briefly. Nonlinear studies, which include an introduction of Burger’s equa-
tion, stationary, and single-hump solutions, are also presented. The notion of
the Planar N-wave and the Backlund transformation is found at the end of
the chapter. Chapter 8 deals with waves in optics. The notion of classical and
modern optics is presented briefly. Nonmonochromatic fields and their proper-
ties are discussed at length. One of the important concepts of waves in optics
is the notion of polarization. A discussion on Stokes parameters and their
measurements is presented. Topics which deal with polarization from experi-
mental and observational points of view are presented in detail. For example,
the notions of polarizer, retarder, and rotator are discussed briefly.

Chapter 9 deals with waves and oscillations in plasmas (the fourth state
of matter). It starts with the basic definition of a plasma, the different plasma
parameters such as Debye shielding, plasma frequency, gyro frequency, and
collision frequency, etc. A discussion on electrostatic waves in a cold as well
as in a normal plasma is presented from first principles. The effect of an
magnetic field, which transforms an electrostatic wave to an electromagnetic
wave, is presented. Langmuir waves (warm plasma) and ion-acoustic waves
which arise due to compressibility and charge effects are discussed in brief.
Quasi-linear as well as nonlinear aspects of plasma waves are presented at
the end of the chapter. For example, the nonlinear Schrodinger equation and
the Zakharaov—Shabat equation and their solutions are presented briefly. The
final chapter deals with the notion of instabilities in hydrodynamics and plas-
mas. Some of the important instabilities, such as the Kelvin—Helmholtz insta-
bility, Taylor—Goldstein instability, and parametric instabilities, are presented
in this chapter. Also plasma instabilities such as the two-stream, sausage, kink,
and ballooning are presented at the end of the chapter.

We have provided some simple exercises at the end of each chapter. This
will enable the student to have a good grasp of the basics involved in each of the
topics covered. The book is far from complete. In fact, books and monographs
have been written in the past for each of the types of the waves presented in
this book. These works are more technical and exhaustive. One would agree
that a work which covers several aspects of waves and oscillations is a very
ambitious project and it would be impossible to do a good justification in
bringing out such a work. However, this is an earnest effort by us to write a
book at an introductory level on the various types of waves and oscillations
that one encounters in nature. The long list of bibliography sources will enable
the interested reader to get into more technical aspects. We hope that this
book will be a welcome introduction to researchers working in different areas
of physics and hopefully serve as a good reference book.
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