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Abstract

Ultracold atoms is one of the most rapidly expanding fields of modern science. Its ap-

plications are not restricted to just atomic and molecular physics, but also to condensed

matter physics, astrophysics, quantum information, and many more areas. This has be-

come possible because of the unprecedented advances on the experimental front, where

various physical quantities characterising a system can be exquisitely controlled to very

high precision. The focus of the thesis is on the existence of different quantum phases

and transitions between them in a system of ultracold bosonic atoms loaded in an optical

superlattice.

Using two different numerical techniques, the mean-field theory and the density matrix

renormalisation group (DMRG) method, this system has been analysed in details, re-

vealing novel quantum phases depending on the densities and the values of the system

parameters. This novel quantum phase, which has a periodic variation in the number oc-

cupancy in the sites, have been named as the superlattice induced Mott insulator (SLMI).

This phase arises in addition to the usual Mott insulator (MI) and superfluid (SF) phases.

Results from both the numerical methods are in qualitative agreement with each other.

The effects of the three-body interaction on these quantum phases and the critical points

of various quantum phase transitions are studied. At higher densities, it is found that the

insulating lobes get enlarged in the presence of the three-body interaction. Apart from

this, it is also seen that the SF phase shifts in the phase diagram when three-body inter-

action is included. A possible experimental scneario is proposed which can be employed

to measure the three-body interaction strengths.
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Ultracold atoms in different lattice geometries are very interesting to explore since they

contain rich physics in it. Two such cases are studied in this thesis. First an optical

superlattice with nearest and next-nearest hopping is considered. Such a model can be

mapped exactly into a zig-zag ladder with different potential depths along the two chains.

Using finite-size DMRG method, a detailed analysis is performed for hard-core bosons

at half-filling, spanning a wide range of values of the next-nearest hopping amplitudes in

both positive and negative directions. In the positive region, it is found that the system

exhibits two phases, the SLMI phase and the SF phase, and there is a phase transition

to the latter as the magnitude of the next-nearest tunneling amplitude is increased. On

the negative side, in the absence of the superlattice potential, the system goes from the

SF phase to the bond-ordered (BO) phase because of the geometric frustration induced

in the system. The BO phase has a finite bond order parameter, which distinguishes it

from the other phases. However, for finite values of the superlattice potential, the system

enters the gapped SLMI phase, and hence the transition to the BO phase occurs at a

more negative value of the next-nearest hopping amplitude.

Secondly, a two-leg Bose ladder is considered with inter- and intra-chain hopping such

that it induces a net flux of π in each of the plaquette. For low values of interaction, the

system is in the gapless phase, with a finite loop current order in each plaquette. This

phase is called the chiral superfluid (CSF). At high values of the repulsive interaction,

the system resides in the gapped MI phase with no loop current order. However, there

lies an intermediate range of interaction values where the the system is gapped, but si-

multaneously supports staggered loop currents which spontaneously breaks time-reversal

symmetry. This unique phase is named as the chiral MI (CMI). The transition from CSF

to CMI falls to the Berezinskii-Kosterlitz-Thouless type whereas CMI to MI transition
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belongs to the Ising class.

Having studied the time-independent properties of the optical superlattice, the dynamics

of ultracold atomic gases in optical superlattice is then pursued. The superlattice potential

is made a function of time (linear in nature), such that the system passes through two

critical points. Such a time evolution will generate defects. The scaling of these defects

formed with the rate of quenching is studied and the validity of Kibble-Zurek mechanism

is tested.
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Chapter 1

Introduction

In 1924-25, following the work of Satyendranath Bose, Albert Einstein predicted a unique

state of matter, which can be obtained if a system of dilute gas of bosons are trapped and

cooled to temperatures very near to absolute zero [1, 2]. Under these conditions, a large

fraction of the bosons occupy the lowest single particle quantum state. This phenomenon

of a macroscopic number of particles condensing to one state came to be known as Bose-

Einstein Condensation (BEC). But the experimental observation of this state of matter

eluded the scientists for seventy long years. Extensive developements in the cooling and

trapping techniques in the the 1970’s and 80’s [3, 4, 7, 6, 7] paved way for the first

experimental observation of BEC in the laboratory in 1995 [8, 9, 10, 11]. The Nobel Prize

in Physics was given for this landmark achievement in 2001. This discovery led to detailed

studies of the properties exhibited by BEC in various forms [12, 13].

A new field was emerging in parallel with the experiments on atomic BEC. It started

with the theoretical analysis of the Bose-Hubbard model by Fisher et al in 1989 [14]. A

phase transition from the Mott insulator (MI) to the superfluid (SF) phases was predicted

in their seminal paper. Then in 1998, Jaksch et al proposed the idea of observing this

quantum phase transition using ultracold atoms in optical lattices [15, 16]. Following

the advances in the creation of optical lattices using laser beams and trapping ultra-

3
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cold atoms in these systems, Greiner et al in 2002 were successful for the first time to

observe this quantum phase transition [17, 18]. This astounding feat opened the doors

of an exciting field whereby ultracold atoms of different species can be trapped in a

variety of lattice geometries and their properties studied both theoretically and exper-

imentally [16, 19, 20, 21, 22, 23, 24]. The unique features of these systems are that

they are nearly defect free, the interaction strengths (both magnitude and signs) and

other lattice parameters can be controlled and tuned to very high degree of accuracy.

Regimes that were not accessible earlier are now within experimental reach via ultracold

atoms, which have become testbeds to study and verify various phenomena from differ-

ent branches of physics. The applications of these systems have grown over the years,

and these range from simulating a host of condensed matter systems such as low dimen-

sional systems [25, 26, 27, 28, 29, 30, 31], spin systems [32, 33, 34, 35, 36], disordered

systems [37, 38, 39, 40, 41, 42], high Tc superconductivity [43, 44, 45], BCS-BEC cross-

over [46, 47, 48, 49, 50, 51], quantum magnetism [52, 53] to problems in astrophysics [54]

and quantum field theory [55, 56]. Ultracold atoms in optical lattices have also emerged

as a possible candidate for quantum computers [57, 58]. The field of ultracold atoms is

therefore clearly one of the areas in the forefront of modern physics [59, 60]. The present

thesis addresses some problems of current interest in this field.

1.1 Quantum Phase Transitions

We frequently encounter phase transitions in our everyday life, the most common being

ice melting to water, and water boiling off to steam. These phase transitions are driven

by changes in temperature, and are called classical phase transitions (also called thermal

phase transitions). The classical phase transitions occur due to competition between

the energy of the system and the entropy of its thermal fluctuations. But there exists

another class of transitions which occur at temperature, T = 0. This transition takes

place by tuning a non-temperature parameter, and are called quantum phase transitions
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(QPT) [61]. The underlying source for QPT are quantum fluctuations, unlike thermal ones

for the classical phase transitions. Quantum fluctuations are characterised by the quantity

~ω whereas for thermal fluctuations, it is kBT . So even at finite temperatures, when

~ω > kBT , the properties of the system will be dominated by quantum fluctuations, and

so we expect to see remnants or traces of the QPT even at low enough finite temperatures.

At high enough temperatures, the system enters the classical regime, which is dominated

by classical (thermal) fluctuations.

1.1.1 Quantum Phases in an Optical Lattice

The simplest way to form a one-dimensional optical lattice is by superposing two counter

propagating laser beams, each having the same frequency. An electron in an atom in

the presence of an oscillating electric field, E(r,t) of the laser attains a time-dependent

dipole moment, d. When the field frequency is far off from resonance, the induced dipole

moment follows the laser field oscillations. The energy of an atom thus gets shifted, and

this energy shift may be regarded as an external potential, V acting on the atom. This

is given by

V = −
1

2
α′(ω)〈E(r, t)2〉t (1.1)

where α′ is the real part of the dynamical polarizability of the atom, which can be

expressed in terms of the dipole moment, d, the ground state and excited state energies,

the frequency of the laser beam and the lifetime of the excited state. 〈E(r, t)2〉t is the

square of the electric field, averaged over a time much longer than the period of the wave.

Therefore to make a lattice potential, it is necessary to construct an electric field such

that 〈E(r, t)2〉t is periodic in space, which is provided by the counter propagating laser

beams. The height of the energy barrier depends on the intensity of the lasers and the

real part of the polarizability. Higher dimensional lattice potentials can be constructed
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Fig. 1.1: Schematic illustration of two dimensional (a) and three dimensional optical lattice (b)

by superimposing more than two beams with different wave vectors.

The system of ultracold atoms loaded in an optical lattice can be best described by

the Bose-Hubbard model given by

H = −t
∑

i

a†iai+1 + h.c.+
U

2

∑

i

ni(ni − 1) (1.2)

In the above equation, a†i (ai) creates (destroys) a particle at site i. They obey the

commutation relation for bosons : [a†i , aj] = δij. The number operator at a particular site

i is given by operator ni. The tunneling probability amplitude is given by t. Since the

hopping probability decreases exponentially with distance, hopping is typically assumed

to occur between nearest neighbouring sites. The on-site inter-atomic repulsive interaction

is given by U . This interaction is usually short-range, similar to van der Waals forces.

When the interaction between atoms is weak compared to the tunneling probability
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Fig. 1.2: By changing the lattice potential depth, one can undergo a quantum phase transition
from SF (a) to MI (b) transition. SF phase is characterised by zero gap with fluctuating number
of atoms at each site, whereas MI phase has a fixed number of atoms at all the sites. The left
panel shows schematically the two phases whereas the right panel denotes the interference peaks
observed in experiments

amplitude, the states of the many-atom system can be approximated as superpositions of

single-atom Bloch states. In the ground state, all atoms occupy the Bloch state with lowest

energy. This corresponds to a Bose-Einstein condensed state with perfect correlations

between the phases of the condensate wave function on different sites, although the number

of atoms on each site is not fixed. The atoms are mobile, and respond to weak force. This

corresponds to the situation for electrons in metals. In this state, the system is gapless

in nature, and such a phase of matter is called the superfluid (SF) phase.

On the other extreme, when hopping amplitude is negligible compared to the on-site

interaction energy, the atoms cannot move from one site to another. The ground state of

the hamiltonian in this scenario will have an integer number of atoms on each site and

there are no phase correlations between different sites, the reason being that the energy is

independent of the phases of the wave function. In particular, each site has equal number

of atoms in this phase. If in this state, one atom is removed from the system, then one

site has one less atom, while one site will have one additional atom. This will result in
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a finite amount of change in interaction energy. Consequently, there is an energy gap

between the ground state and the lowest excited state. This gapped phase is called as the

Mott insulator (MI). As the ratio of the tunneling matrix element to the repulsive energy

increases, the system undergoes a phase transition from MI to SF phase.

1.1.2 Experimental Detection of the Quantum phase transition

between MI and SF phases

Greiner et al in 2002 first provided the experimental evidence for the SF-MI transition [17].

The basic concept behind the experiment is to suddenly switch off the lattice potentials

and all other trapping potentials, and let the cloud of atoms expand. This will result in

sharp interference peaks if there is coherence between the phases of the atoms on different

sites, as in the SF phase, whereas there will be smooth distribution of atoms, with a

blurred interference pattern, if there is no coherence as in the case of MI state. They had

performed the experiment in a three dimensional optical lattice, and so in the superfluid

regime, where all the atoms are delocalized over the entire lattice with equal relative

phases between different sites, a high contrast three-dimensional interference pattern was

obtained as shown in Fig.( 1.3). Tuning the laser intensity leads to the transition into

the MI phase, where no interference pattern is visible at all, implying the complete loss

of phase coherence as shown in Fig.( 1.3).

They also probed into the excitation spectrum to distinguish between the two phases.

The lowest lying excitation in the MI phase is the creation of a particle-hole pair, where

an atom is removed from a lattice site and added to a neighbouring site. Due to the

presence of doubly occupied site, the energy of the system will be raised by an amount

equal to U , the on-site repulsive interaction, above the state with singly occupied site.

Therefore, to create an excitation, the finite amount of energy U is required. This is

provided by tilting the lattice potential through the application of a potential gradient.

This allows tunneling if the energy difference between neighbouring lattice sites due to
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Fig. 1.3: Absorption images of multiple matter wave interference patterns. These were obtained
after suddenly releasing the atoms from the lattice potentials of various depths ranging from 0
ER to 22 ER, where ER is the recoil energy.
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the potential gradient is equal to U , the on-site interaction energy. Two narrow resonance

peaks are clearly visible on top of an otherwise completely flat excitation probability. The

first resonance peak can be attributed to the creation of a particle-hole pair in the MI

phase, and directly proves that one has entered the MI regime. The second resonance,

which is weaker and has exactly twice the energy difference compared to the first, can

happen due to a number of reasons :

• Simultaneous tunneling of two particles in a MI phase with n > 1 atoms.

• Second order process, in which two particles-hole pairs are created simultaneously

• Tunneling process occurring between lattice sites with n = 1 atom next to lattice

sites with n = 2 atoms.

1.1.3 Outline of the forthcoming chapters

Having given an introduction to the optical lattice, and the possible basic quantum phases,

we now outline the forthcoming chapters in this thesis. In the next chapter, the different

theoretical methods used in this thesis, such as the Mean-Field Decoupling Approxima-

tion, density matrix renormalisation group (DMRG) method and the matrix product

states (MPS) method are described in detail. The third chapter is concerned with the

mean-field and the DMRG treatments of an optical superlattice with soft-core bosons.

The different phases such as the superfluid (SF) and the Mott insulator (MI) phases

along with a novel quantum phase with a periodic variation in the occupation, which is

called as the superlattice induced Mott insulator (SLMI) are presented and discussed.

The complete phase diagram is obtained for density one, with other relevant physical

quantities needed to distinguish between the phases. Chapter 3 ends with the inclusion

of three-body on-site interaction in the Bose-Hubbard hamiltonian modified for optical

superlattice, and analyses the shifts in the transition points that occur because of this

interaction. An experiment is also proposed at the end of the Chapter 3 to detect the
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three-body interaction. Chapter 4 contains frustrated ladded systems, and is divided into

two parts. The first part deals with the nearest and next-nearest neighbour hopping in

an optical superlattice. The phase diagram is plotted for this system along with different

signatures for the phase transitions. The second part deals with a two-leg Bose ladder,

with inter- and intra-chain hopping amplitudes having signs such that it induces an ef-

fective π flux in each of the plaquettes. A detailed analysis reveals a very remarkable

phase sandwiched between the conventional MI phase and SF phase with currents. This

phase is gapped, while simultaneously supporting staggered loop currents, and is called

chiral Mott insulator (CMI) phase. In Chapter 5, we move over from the static to the

dynamic regime. By considering the superlattice potential as a function of time, the ef-

fect of quenching through two quantum critical points are studied rigorously. The defect

generation, which is proportional to the residual energy, is found to have a power law de-

pendence on the quench rate. Finally, Chapter 6 summarizes our findings, and concludes

with future directions.
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2, 692 (2006).

[24] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker-Denschlag, A. J. Daley,
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[27] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[28] M.A. Cazalilla, J. Phys. B- Atom. Molec. Phys. 37, S1 (2004).

[29] A. Recati, P.O. Fedichev, W. Zwerger, and P. Zoller, Phys. Rev. Lett. 90, 020401

(2003).

[30] B. Paredes and J.I. Cirac, Phys. Rev. Lett. 90, 150402 (2003).
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Chapter 2

Numerical Methods

The different quantum phases that we have studied in this thesis are in the framework

of Bose-Hubbard model or modifications to it. In this chapter, we shall discuss three

different methods for determining the ground state wavefunction and the energy of the

Bose Hubbard hamiltonian. These quantities are used in evaluating the signatures of the

different phases. As can be seen from Eqn.( 1.2), BH model is expanded in the second

quantized form, and so it is convenient to work in the occupation number basis.

2.1 Mean Field Theory

A closer look at the hamiltonian described in Eqn.( 1.2) would show that there are two

types of terms in it. The first type contains operators defined at a single site, whereas

the second type has operators defined in different sites, for our case, the neighbouring

ones. The presence of these types of multi-site terms that makes it impossible to solve

such a hamiltonian. The Mean-Field theory attempts to decouple such terms, so that the

hamiltonian can be expressed in terms of single-site operators only.

To demonstrate the mean-field theory we first consider the Bose-Hubbard model for

17
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optical lattice and then move on to optical superlattice. We write the operators ai and

a†i as a sum of some mean value and small fluctuations about this mean.

ai = 〈ai〉+ ãi; a†i = 〈a†i〉+
˜
a†i (2.1)

where 〈ai〉 is the expectation value of the operator ai with respect to the ground state

wavefunction. This approach is similar to that of solving a system of electrons, where

the motion of one electron is governed by all the other electrons and vice-versa. In such

a situation, a mean-field is considered which is generated by all the other electrons, and

the electron moves in such an effective field.

Without loss of generality, we consider 〈ai〉 to be real, and so we can replace 〈ai〉 =

〈a†i〉 = φi, where φi is also called the superfluid order parameter. Substituting the above

expression in the kinetic energy part of Eqn.( 1.2), we get :

−t
∑

〈i,j〉

(a†iaj + h.c) = −t
∑

〈i,j〉

(ã†i ãj + ãiã
†
j)

−t
∑

〈i,j〉

(ã†iφj + ãjφi + ãiφj + ã†jφi + 2φiφj) (2.2)

The first term is neglected, since it is second order in fluctuations. Such an approx-

imation is valid when t, the hopping amplitude is small compared to other terms in the

hamiltonian, such as U , λ, and µ. We then define φ̄i =
1
z

∑

δ φi+δ, δ being summed over

z = 2d nearest neighbours, and get the following mean-field hamiltonian,

HMF = −tz
∑

i

[φ̄i(ã
†
i + ãi) + φ̄iφi]

+
U

2

∑

i

ni(ni − 1)−
∑

i

µini (2.3)

Now substituting back from the relation, ãi = ai − φi, we get the following
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HMF = −tz
∑

i

[φ̄i(a
†
i + ai)− φ̄iφi]

+
U

2

∑

i

ni(ni − 1)−
∑

i

µini (2.4)

Thus, for a homogeneous case in an optical lattice, µi, φ are the same for all sites, and

so we are in a position to write the full hamiltonian as a sum of single-site hamiltonian

in the mean-field approximation, i.e., HMF =
∑

iH
MF
i , and dividing throughout by

zt to make the hamiltonian and other parameters dimensionless we get the single site

hamiltonian as

HMF
i = −φ̄i(a

†
i + ai) + φ̄iφi +

Ũ

2
ni(ni − 1)− µ̃ini (2.5)

where Ũ = U/zt, µ̃i = µi/zt are dimensionless on-site interaction and chemical

potential respectively.

Having written the single-site mean-field hamiltonian, we can solve it in two different

ways. The first one is the perturbative approach [12]. In cases where U is much larger

than other hamiltonian parameters, the system will be in the MI state with a fixed

number of atoms at every site. In such cases, the first two terms in the above equation

(the hopping part) may be considered as the perturbation. We can now apply various

orders of corrections, to get the wavefunction and energy. Looking at the structure of the

perturbative terms, it is evident that only even order corrections will survive.

The second method does not rely on the assumption of an initial ground state. Instead,

one assumes an initial value of φi, and the hamiltonian is expressed in some convenient

basis. It is then diagonalised, and with the ground state eigenvector, φi is evaluated. We

then put this value of φi in the hamiltonian, and keep on iterating till convergence is

achieved.
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2.2 Density Matrix Renormalisation Group Method

As seen in the previous section, the mean-field theory excludes the fluctuations, or the

correlations among atoms present in different sites. Consequently its accuracy is much

limited. Hence we use another numerical technique, the density matrix renormalisation

group (DMRG) method to evaluate the ground state wavefunction and energy, and even-

tually other physical quantities of interest.

The basics of DMRG was first developed by S. White in 1992 [2, 3]. Since then, it has

become a powerful numerical technique that has been widely used in low dimensional

strongly correlated fermionic and bosonic systems. Based on the concepts of renormali-

sation method, the algorithm begins with a small size of quantum chain, and solving the

hamiltonian to find the ground state wavefunction and energy. After this operation, the

size of the system is iteratively increased, which also increases the size of the Hilbert space

exponentially. As a result, a truncation is done on the Hilbert space at every iteration,

thus keeping the states with highest contribution to the ground state of the system. This

is continued till the desired length of the system is reached. The details of the DMRG

algorithm will be explained elaborately in the following subsections.

2.2.1 Basics of DMRG

Historically DMRG originated from the works of White and Noack in 1992 [2], when

they were analysing the failure of the real-space renormalisation group (RSRG) method

to give physically relevant solutions of low-energy ground state properties in quantum

many-body systems. The principle idea of the DMRG method is based on the concept of

density-matrix projection where we consider a small system, embedded in a larger system,

so as to mimic a very large system [4, 5, 6, 7, 8]. The information of the ’environment ’

(E) is automatically included in the information content of the reduced density-matrix

of the small system (S). This will help us to decide the relevant states to be considered
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when enlarging the size of the small system to some desired length, L.

Let us consider a scenario where the size of the system has reached l sites, with the

size of the Hilbert space beingMS, and the states being denoted as {|ωS〉}. Now consider

adding one more site to this system. Then the size of the Hilbert space will become

MS×Nsite, whereNsite is the size of the Hilbert space of one individual site. Thus the basis

states of the combined system and the added single site becomes {|ωSσS〉} = {|ωS⊗σS〉},

where |σS〉 are the Nsite basis states of a single site. To get rid of the strong boundary

effects, the system (S) is embedded in an environment (E) which is constructed in a similar

way. The basis states of E will thus be {|ωEσE〉}. Thus the two parts, the system and

the environment blocks, together form the superblock which is of length 2l+2. The main

aim of density-matrix projection is to select a set of mS states, such that it represents

quite accurately certain state, ψ, e.g. the ground state (also called the target state) of

the superblock

|ψ0〉 =

MS
∑

ωS=1

Nsite
∑

σS=1

ME
∑

ωE=1

Nsite
∑

σE=1

ψωSσSωEσE |ωS〉|ωEσE〉

=

NS ,NE
∑

i,j=1

ψi,j|i〉 ⊗ |j〉 (2.6)

where |i〉 = |ωSσS〉 and |j〉 = |ωEσE〉 are the basis states of the system (the size of

the Hilbert space being NS =MS ×Nsite) and environment (the size of the Hilbert space

being NE =ME×Nsite) respectively. We now want to obtain a variational wave function,

|ψ̂0〉, defined in an optimally reduced Hilbert space, generated by the mS system vectors

(mS < NS) as follows :

|α〉 =

NS
∑

i=1

uαi|i〉 (2.7)
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Thus the variational wavefunction can be written as :

|ψ̂0〉 =
m
∑

α=1

NE
∑

j

aαj|αj〉|j〉 (2.8)

We now try to minimize the modulus of the difference between this trial wave func-

tion, and the true wavefnction, with respect to the variational parameters, aαj

| |ψ0〉 − |ψ̂0〉 |
2

(2.9)

Substituting the forms of |ψ0〉 (Eqn.( 2.6)) and |ψ̂0〉(Eqn.( 2.8)) in Eqn.( 2.9), and

minimizing lead to the following expression :

| |ψ0〉 − |ψ̂0〉 |
2
= 1−

∑

α,j,i,i′

ψijuαiψi′juαi′ (2.10)

Now, the density matrix for a pure state of the universe is defined as

ρ = |ψ0〉〈ψ0|

But the reduced density matrix of the system is defined as :

ρii′ =
∑

j

ρij,i′j

=
∑

j

〈j|〈i|ψ0〉〈ψ0|i
′〉|j〉

=
∑

j

ψijψi′j (2.11)

It should be kept in mind that the eigenvectors of the reduced density matrix are

in fact |α〉, with the corresponding eigenvalues being ωα. Thus after doing all the proper

substitutions, we arrive at the following expression :

| |ψ0〉 − |ψ̂0〉 |
2
= 1−

∑

α

ωα (2.12)
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This important result clearly states that the error involved in using the approximate

wavefunction by using the truncated Hilbert space is exactly equal to the sum of the

discarded eigenvalues of the reduced density matrix of the system. This also implies

that to improve the accuracy of this approximation, we should keep those eigenstates of

the reduced density matrix, which correspond to the highest eigenvalues, as these states

contribute the most to the ground state of the system.

2.2.1.1 Infinite-Size DMRG Algorithm

The infinite size DMRG is used to compute the ground state properties of a quantum

chain in the thermodynamic limit, where the length of the chain tends to infinity, i.e.

L→ ∞. The algorithm consists of the following iterative steps :

1. The hamiltonian HBB′ is defined for the superblock (also called the universe), which

is formed by putting the two blocks of system [B], environment [B’] and two added

sites [a] and [a’]. The non-primed and primed blocks usually have similar structures,

but it can vary, for which we need to use finite-size DMRG, as described in the next

section.

2. The total Hilbert space of this superblock can be written as the direct product of

individual basis of B, a, a’ and B’. The size of the total Hilbert space will be (mn)2,

where m and n are the sizes of Hilbert space of the block and one site respectively.

But it should be kept in mind that if there are some constraints on the system (e.g.

fixed density), then the total size is much less than (mn)2.

3. The hamiltonian, HBB′ is diagonalised to obtain the ground state, |ψ0〉 using some

standard algorithms like the Lanczos or Davidson’s. |ψ0〉 is called the target state.

4. Using this ground state, the reduced density matrix of the system block, is computed
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:

ρii′ =
∑

j

ψ0,ijψ0,i′j

where |ψ0,ij〉 = 〈i ⊗ j|ψ0〉, and |i〉, |j〉 denote the basis states of system block and

environment block respectively.

5. The reduced density matrix of the system block is then diagonalised, and the eigen-

states corresponding to ’m’ highest eigenvalues are retained.

6. A qualitative description of the accuracy can be calculated from the expression

1−
∑m

α=1 ωα, where ωα are the eigenvalues of the reduced density matrix.

7. With these ’m’ states, a rectangular matrix ’O’ is formed, which is used to transform

all the operators in the system block in this new basis, including the hamiltonian.

8. Similar steps are carried out for the system block also, and then [B a], [B’ a’] are

renamed as [B] and [B’] respectively.

9. Two new sites, a and a’ are now added and the new superblock [B a a’ B’] is formed.

10. This iteration is continued until the desired length is achieved.

11. If there are more than one target states, then the reduced density matrix is defined

as :

ρii′ =
∑

l

pl
∑

j

φl,ijφl,i′j

where pl is the probability of finding the system in the target state, |φl〉.

2.2.1.2 Finite-Size DMRG

Many a times, infinite-size DMRG do not yield correct resuts. The reason for such

behaviour can be attributed to the fact that simulating the final system size may not

turn out to be correct by using a small environment block in the early stages of DMRG.

Also, if the system is inhomogeneous, or contains impurities randomly distributed, then
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infinite-size DMRG cannot take into account such effects, since the total hamiltonian

is not known in the intermediate steps. Finite size DMRG attempts to eliminate such

problems to a very large extent and also to reduce the truncation error. The flow of the

finite-size DMRG algorithm is as follows :

1. The infinite-size algorithm is stopped at some pre-selected size of the superblock,

L.

2. Now, instead of simultaneous growth of both the blocks, one of the blocks is grown,

at the expense of the other block, thus keeping the total length of the superblock

fixed.

3. Reduced basis transformations are performed only for the growing block.

4. Once we reach one end of the superblock by this process, we interchange the blocks

which grows, and which shrinks, and the process is continued till it reaches the other

end of the superblock.

5. A complete shrinkage and growth sequence of both the blocks is called a sweep.

6. Sweeping is continued till the energy values converge.

Such a process will increase the accuracy of the ground-state wavefunction, and the

energy, as well as optimize all the operators in the blocks.

2.2.2 Matrix Product States

In this section we introduce one more numerical technique, the Matrix Product states

(MPS) method to solve hamiltonians described on a 1-dimensional lattice. The connec-

tion between DMRG and MPS, was first pointed out by Rommer and Östlund [9], where

they stated that the thermodynamic limit of DMRG can be mapped into a position-

independent matrix product wavefunction. From the computational aspect, MPS came
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to the spotlight with the help of quantum information perspectives, which led to algo-

rithms to describe periodic boundary problems and finite temprature effects. In the next

subsection, we would show how any arbitrary quantum state can be decomposed into the

MPS form followed by the variational ansatz of minimizing the energy [10, 11, 12].

2.2.2.1 Expressing a quantum state as MPS

Let us consider a lattice of L sites, with each site described by a local Hilbert space of size

d, denoted by {σi}, where i = 1, 2, ...L. A general state on such a lattice can be written

as

|ψ〉 =
∑

σ1,...σL

cσ1,...σL
|σ1, ...σL〉, (2.13)

with the number of coefficients cσ1,...σL
being exponentially large (dL to be exact).

The idea is to find a notation which gives a more local notion of the state, but at the

same time preserves the quantum non-local charateristics of the state. We first rewrite

the dL coefficients in the form of a matrix of dimensions d × dL−1, with the components

related as :

Ψσ1,(σ2...σL) = cσ1...σL
. (2.14)

We now perform Singular Value Decomposition (SVD) on the matrix Ψ, which gives

cσ1,...σL
= Ψσ1,(σ2...σL) =

r1
∑

a1,b1

Uσ1,a1Sa1,b1(V
†)b1,(σ2...σL)

=

r1
∑

a1

Uσ1,a1ca1σ2...σL
(2.15)

In the last equality, S and V † have been multiplied and reshaped into the vector. The

rank r1 ≤ d, is essentially equivalent to the truncation in DMRG method. The matrix
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U is now decomposed into d row vectors called Aσ1 with components related through

Aσ1
a1

= Uσ1,a1 . At the same time, the vector ca1σ2...σL
is written in the form of the matrix

Ψ(a1σ2),(σ3...σL) of dimension r1d× dL−2 as follows :

cσ1σ2...σL
=

r1
∑

a1

Aσ1
a1
Ψ(a1σ2),(σ3...σL) (2.16)

This matrix Ψ is now subjected to SVD, such that we have

Ψ(a1σ2),(σ3...σL) =

r2
∑

a2,b2

U(a1σ2),a2Sa2,b2V
†
b2,(σ3...σL)

(2.17)

S and V are multiplied, and reshaped back into a row vector, ca2σ3...σL
, such that

cσ1σ2...σL
=

r1,r2
∑

a1,a2

Aσ1
a1
U(a1σ2),a2ca2σ3...σL

(2.18)

We now replace U by a set of ’d’ matrices, Aσ2
a1,a2

of dimensions r1 × r2, given by

Aσ2
a1,a2

= U(a1σ2),a2 (2.19)

Therefore we get,

cσ1σ2...σL
=

r1,r2
∑

a1,a2

Aσ1
a1
Aσ2

a1,a2
ca2,(σ3...σL) (2.20)

The above procedure is continued till we reach the L-th site, where we replace

UaL−1,σL
by a set of column vectors Aa

σL

L−1
. Thus we have arrived to a stage where we can

write the coefficients as a product of matrices :
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cσ1...σL
=

r1,r2...
∑

a1,a2,...aL−1

Aσ1
a1
Aσ2

a1,a2
...AσL−1

aL−2,aL−1
AσL

aL−1
(2.21)

Hence we can now write the general wavefunction of the system in the MPS form

as :

|ψ〉 =
∑

a1,a2,...aL−1
σ1,σ2...σL

Aσ1
a1
Aσ2

a1,a2
...AσL−1

aL−2,aL−1
AσL

aL−1
|σ1σ2...σL〉 (2.22)

which can be more compactly written as

|ψ〉 =
∑

σ1,σ2...σL

Aσ1Aσ2 ...AσL−1AσL|σ1σ2...σL〉 (2.23)

One of the properties of these A-matrices is that they are left normalised, that is,

∑

σL

Aσ†
LAσL = 1 (2.24)

It should be noted that the MPS form derived above is not unique, in the sense that

a gauge degree of freedom exists. The R.H.S. of the Eqn.( 2.23) will remain unchanged

under the following transformation on A matrix :

Aσk → A′σk = V [k] · Aσk ·W [k⊕1] (2.25)

where⊕ stands for the summodulus L, and where V [1], V [2], ..., V [L] andW [1],W [2], ...,W [L]

represent two sets of (not necessarily quadratic) matrices which fulfill the isometry con-

dition W [k] · V [k] = I, with I being identity matrix.

Indeed, one can also start from the right most site, or even mix the decomposition

by starting from left and right. In reality, one must understand that the degree of non-

uniqeness is much higher, each having their own advantages and disadvantages. The

gauge degrees of freedom can be used cleverly to decrease the manipulations significantly.
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2.2.2.2 MPS Variational Method

In the approach mentioned in the earlier section, consider the parameters from SVD,

r1, r2... be all equal (= m), called the bond link of the MPS. It can be shown with the

help of the area law [13], that ground states for 1D systems can be accurately described

even with a bond link dimension, m which does not scale with the system length. Such a

representation will thus decrease drastically the amount of needed sources from exponen-

tial to polynomial growth with the system size.

Having known the MPS structure, the best approximation to the ground state in

an MPS-like form of a given hamiltonian, H can be obtained by applying the variational

principle, which will minimize the energy function, under the normalisation constraint.

E := ε/N =
〈ψ|H|ψ〉

〈ψ|ψ〉
(2.26)

Consider an hamiltonian describing a 1D lattice of finite size, N , of the form :

H =
N
∑

k=1

∑

α,β

h
(α,β)
k Oα

k ⊗Oβ
k+1 (2.27)

where Oα
k denotes some operators defined at site k, and h

(α,β)
k are the respective

coupling strengths. For any site, k, let us define the so-called transfer matix, E [k][Ok] of

dimensions m2 ×m2 :

E [k][Ok] =
d

∑

σk,σk
′=1

〈σk
′|Ok|σk〉(A

σk
′

)∗ ⊗ Aσk (2.28)

Hence the expectation value of the hamiltonian, H, can be written as :
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ε = 〈ψ|H|ψ〉

=
N
∑

k=1

∑

α,β

hαβk 〈E [1]E [2] · ... · E [k][Oα
k ] · E

[k+1][Ok+1]
β · E [k+2] · ... · E [N ] (2.29)

In the above expression, the abbreviation E [k][1k] := E [k] is used to describe the

transfer matrix of identity operator, 1
k

and 〈· · ·〉 := Tr[...] denotes Trace operation. The

algorithm deals with sequentially minimizing the energy with respect to all the A’s by

fixing all of them except the ones defined at a given site k. It is essentially a single-site

optimization process, compared to DMRG, which is a two-site optimization method. As

is apparent from the above equation, the dependence on Aσk is quadratic in nature. The

minimization of energy thus involves minimizing a quadratic polynomial ε with quadratic

constraints N which essentially boils down to solving the eigenvalue equation :

Hkxk = λkNkxk (2.30)

Here the unknown coeffiecients of the m × m matrix, Aσk (where σk = 1...d), is

mapped onto a column vector, xk of dimensions dm2, whereas the matrices Hk and Nk

have dimensions dm2 × dm2, called the “effective hamiltonian” and the “effective norm

operator” respectively, are formed by similar mapping. Once the optimization of Aσk

associated with the k-th site is over, the next step involves the optimization of Aσk+1 . We

continue the iteration until we reach the rightmost end of the lattice, i.e. site N . Then,

the process is repeated, this time going from the rightmost site to the leftmost site, which

is essentially called sweeping. At each step, the matrices associated with a particular site

is computed, until the energy value converges to a minimum.

Having computed the ground state wavefunction, various quantities such as overlaps

between wavefunctions, expectation values and general matrix elements can be evaluated
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in quite a straightforward way. In fact there exists a graphical representation of MPS

which makes all these calculations much simpler.

2.2.3 DMRG leading to MPS

Assume a block represented by a chain of L − 1 sites [14]. If d is the size of the local

Hilbert space defined on each site, then the size of the Hilbert space of the entire block,

if we were to treat it exactly, would be dL−1. Now assuming an approximation made

in the previous iterations aiming to describe ground-state properties, the chain can be

represented by a smaller number of states labelled by |β〉L−1. The number of states in

this basis is m, with m ≤ dL−1. We now add a single site to the chain. The new block

will now have L sites with d × m states in its basis. The basis states are now given as

the direct product of the basis of the single site and the block : {|sL〉 ⊗ |β〉L−1}. We now

generate a new truncated basis with typically m states using a projection operator AL.

These m states represent the most important states of the new block. So, we can write

a relation between the basis of L − 1 and L sites in a simple manner by the recursion

relation of the following form :

|αL〉 =
∑

β,sL

A
α,(β,sL)
L |sL〉 ⊗ |β〉L−1 (2.31)

Here the initial state, |β〉0 should be given beforehand. The matrices AL are the

variational parameters of MPS method, as described in the previous section. Determin-

ing these matrices are the central problem to solve in MPS. DMRG actually provides a

convenient way to determine these parameters by keeping the largest eigenvalues of the

density matrix.

We now perform a simple change in notation Aα,β
L [sL] ≡ A

α,(β,sL)
L and write the m×

(md) matrix as a set of d m×m matrices. If we now recursively apply the renormalisation

step in the previous equation, the state of the chain of length L sites takes the form :
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|αL〉 =
∑

sL,...,s1

(A[sL]A[sL−1]...A[s1])
α,β|sLsL−1...s1〉 ⊗ |β〉0 (2.32)

We thus see that the renormalisation procedure results in a wavefunction which can

be written in a matrix-product form.
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Chapter 3

Quantum Phases in Optical

Superlattice

3.1 Introduction

In this chapter, we present a detailed analysis of the phases exhibited by a system of

soft-core bosons loaded in an optical superlattice. Two different numerical methods, as

described in Chapter 2, are used for this purpose. An optical superlattice is created by

superposing two optical lattices of different frequencies, resulting in the formation of an

interference pattern. In particular, if the frequency of one of the optical lattices is double

that of the other, then it will produce a two-period optical superlattice, as shown in

Fig.( 3.1). The neighbouring sites get displaced with respect to each other, and it seems

as if a bias has been provided at alternate sites. Such a modification in the geometry

corresponds to an extra term in the Bose-Hubbard model as shown below :

H = −t
∑

〈i,j〉

a†iaj +
U

2

∑

i

ni(ni − 1) +
∑

i

λini (3.1)

Here a†i is the creation operator for bosons, ni is the number operator. The last term

in Eqn.( 3.1) is due to the optical superlattice, and the difference in the minimas of the

35
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λ

Fig. 3.1: Schematic diagram of a two-period optical superlattice, with the superlattice potential
denoted by λ

adjacent sites is denoted by λi, which is called the superlattice potential. For a 2-period

optical superlattice, λi = 0 for even sites, and λ for odd sites. The competition between

the parameters in the above hamiltonian will give rise to various novel phases, which is

quite distinct from the existing phases exhibited by the Bose-Hubbard model in an optical

lattice. Previously it has been shown using exact diagonalisation, quantum Monte Carlo,

and the mean field decoupling approximation methods that ultracold bosonic atoms loaded

in optical superlattices exhibit different phases. Apart from the usual Mott insulator

(MI) and superfluid (SF) phases, different charge-density-wave orders were found to be

present [1, 2, 3, 4]. In the presence of a disordered and quasiperiodic potential, it has been

shown that the system exhibits, in addition to MI and SF phases, the quasi-Bose glass

phase and the incommensurate charge-density-wave phases [5, 6]. Various experiments

on this subject have been proposed and carried out in different laboratories [7, 8, 9]. The

mean-field analysis of the above system is presented below and it is followed by the DMRG

treatment.

3.2 Mean-Field analysis

There have been a number of versions of mean-field theory which have been applied to

the study of ultracold atoms [10, 11]. For example the Bogoliubov approximation [11],

the Gutzwiller approach [12, 13, 14], and the mean-field decoupling approximation [15].

The Bogoliubov approach is useful when the interactions between the atoms are weak.
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Fig. 3.2: Variation of average density ρ as a function of the chemical potential µ for U=2, but
for different values of λ starting from 0.5 (red solid curve) to 5.5 (magenta double dash dot
curve) at the intervals of 1.0.

However, the SF-MI transition cannot be studied by such a method since it takes place

in the strong interaction regime. The mean field theory in the decoupling approximation

decouples the Bose-Hubbard hamiltonian into a sum of single-site hamiltonians. This

resulting mean-field equation can be solved either analytically using a perturbative ap-

proach, or numerically by diagonalising the matrix expressed in some convenient single

site basis in a self consistent manner. In this thesis, the decoupling approach has been

applied to a d-dimensional system of optical superlattice with a periodicity of two sites.

As shown in the previous chapter, after decoupling, the single site mean-field hamil-

tonian looks like (from Eqn.( 2.5)):

HMF
i = −φ̄i(a

†
i + ai) + φ̄iφi +

Ũ

2
ni(ni − 1)− µ̃ini (3.2)

where Ũ = U/zt, µ̃i = µi/zt are dimensionless on-site interaction and chemical

potential respectively. For the optical superlattice with a periodicity of two sites, the unit

cell will consist 2d sites, with alternate sites having an energy shift of λi. To take this
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into account, we consider the on-site chemical potential as µi = µ − λi, where µ is the

chemical potential of the system, and λi being the superlattice potential. Since the entire

system can be constructed using the unit cell comprising two neighbouring sites, and all

dimensions are equivalent, we can work on any one such direction, and hence we denote

the two neighbouring sites by 1 and 2. The mean-field hamiltonian of this unit cell, in

the presence of superlattice potential can be written as :

HMF
uc = −φ̄2a(a

†
1 + a1)− φ̄1(a

†
2 + a2) + 2φ̄1φ2 +

Ũ

2
[n1(n1 − 1) + n2(n2 − 1)]

−µ̃[n1 + n2] + λ̃1n1 + λ̃2n2 (3.3)

We express all the operators in the above hamiltonian in the occupation number

basis, and starting with initial guess values of the superfluid order parameters, φ1 and φ2,

the matrixHMF
uc is diagonalised using the Jacobi method to obtain the ground state energy

and the corresponding wavefunction. The superfluid order parameter, φi, as mentioned

in the previous chapter is defined as φi = 〈ai〉. So, using the ground state wavefunction,

the expectation values are calculated, and substituted back into HMF
uc . The process is

iterated, until the values of φ1 and φ2 converge to 10−6. The analysis of the various

phases are carried out using the values of these superfluid densities.

3.2.1 Results

Considering the two-period optical superlattice, we can simplify by taking λ1 = 0, and

λ2 = λ, where λ is the difference between the neighbouring potential minimas, called the

superlattice potential. We investigate a wide range of λ, densities ρ, and four characteristic

values of the on-site repulsive interaction, U , so as to cover an extensive part of the phase-

diagram. Throughout our analysis, we have taken zt = 1.0, so all the quantities such as

U , λ and µ are expressed conveniently in units of zt. As for the size of the Hilbert space

on a particular site, we have truncated it to nmax = 10, i.e. each site can accommodate a
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Fig. 3.3: Variation of average superfluid density ρs as a function of µ for the same set of
parameters as in Fig. 3.2.

maximum of 9 bosons.

We first investigate the effect of superlattice potential on the superfluid (SF) phase.

We start with U = 2.0 in Figs.( 3.2) and ( 3.3) which show the plots of average density, ρ

and the superfluid density, ρs for a range of values of chemical potential, µ, for different

values of λ starting from 0.5 to 5.5 at intervals of 1.0. It should be noted that ρ and ρs

are respectively the average density and the superfluid density of the unit cell, defined as

ρ = (ρ1 + ρ2)/2 and ρs = (φ2
1 + φ2

2)/2. For U = 2.0, in the absence of any superlattice

potential, the system will be always in the SF phase.

Figs.( 3.2) and ( 3.3) show that density ρ increases with an increase in µ for non-zero

but small values of λ. The superfluid density, ρs continues to be finite, indicating the SF

phase throughout for λ = 0. But as λ increases further, say for example 4.5, the density,

ρ remains constant at 0.5, forming a plateau sort of structure for a range of µ values as

can be seen in Fig.( 3.2). This signifies a finite gap in the energy spectrum, for this range

of µ values, with a vanishing compressibility, κ = ∂ρ
∂µ
. Fig.( 3.3) also indicates vanishing

superfluid density for the same range of µ. For all other densities, ρ 6= 1/2, including



40 Chapter 3. Quantum Phases in Optical Superlattice

at integer densities, the superfluid density remains finite. The above two features clearly

imply that for U = 2, model described in Eq.( 3.1) exhibits SF phase for all values of

ρ 6= 1/2, for all values of λ. However, for ρ = 1/2, there is a transition from SF to an

insulator phase as λ increases.

Table 3.1: U = 2.0
λ ρ µ ρs1 ρs2 n1 n2

0.5 0.620 0.00 0.58 0.45 0.73 0.51
0.5 1.022 0.70 0.87 0.75 1.12 0.92
0.5 2.017 2.60 1.72 1.57 2.13 1.91
1.5 0.490 0.20 0.52 0.21 0.77 0.21
1.5 1.020 1.20 0.98 0.62 1.32 0.71
1.5 2.020 3.10 1.87 1.41 2.34 1.69
2.5 0.490 0.47 0.39 0.08 0.91 0.08
2.5 1.030 1.71 1.11 0.49 1.53 0.53
2.5 2.030 3.61 2.02 1.26 2.57 1.49
3.5 0.500 0.70 0.07 0.01 0.99 0.01
3.5 1.020 2.10 1.14 0.33 1.70 0.34
3.5 2.030 4.10 2.16 1.10 2.79 1.28
4.5 0.500 0.40 0.00 0.00 1.00 0.00
4.5 1.000 2.40 1.08 0.19 1.82 0.19
4.5 2.000 4.50 2.24 0.91 2.96 1.03
5.5 0.500 0.30 0.00 0.00 1.00 0.00
5.5 1.000 2.60 0.89 0.10 1.91 0.10
5.5 2.000 5.00 2.36 0.77 3.18 0.84

This insulator is not the same as the conventional Mott insulator (MI), which arises

due to strong on-site interactions, U . The MI phase is not expected for as low a value as

U = 2. The cause of the above mentioned insulator phase is the superlattice potential,

and to distinguish it from the MI, we label it as the superlattice induced Mott insulator

(SLMI). In order to get an idea of the SLMI phase, the distribution of bosons in a unit

cell in this phase is listed in Table 3.1, along with other relevant quantities. As discussed

earlier, the unit cell consists of 2d sites, and we choose one of the directions consisting

of two sites, labelled as 1 and 2. The values of the on-site occupancy, ρ1 and ρ2 and

superfluid densities, ρs1 and ρs2 are listed in the table for different values of λ, for U = 2.

For λ < 3.7, the on-site superfluid densities ρs1 and ρs2 remain finite for all densities.
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Fig. 3.4: Variation of average density of a unit cell ρ as a function of the chemical potential µ
for U=5, but for different values of λ starting from 0.2 (red solid curve) to 7.2 (orange large
dashed curve) at intervals of 1.0.

However for λ > 3.7, and average density ρ = 1/2, we find ρs1 = ρs2 = 0 and ρ1 = 1,

ρ2 = 0. This means that within the unit cell, one site is occupied, whereas the other

is empty. Since this unit cell can be repeated in all directions to construct the entire

lattice, the system has every alternate site occupied, and the other being empty, similar

to a charge density wave (CDW) phase, which normally arises in the presence of the

nearest neighbour interactions [16] . However, the appearance of this CDW-like density

distribution is because of the superlattice potential, and the nearest neighbour interactions

are not involved. This distribution of atoms of the form [1 0 1 0 1 0 ...] is called the SLMI-I

phase. Table 3.1 also confirms that there is no insulating phase at integer densities.

Results for U = 5 is very similar to the U = 2 case, since both of them exhibit the

SF phase for λ = 0. Figs.( 3.4) and ( 3.5) respectively show plots of the density and the

superfluid density as a function of µ for various values of λ. The system is in the SF phase

at ρ = 1/2 and ρ = 1 initially for low values of λ (< 2.6). But as λ is increased beyond 2.6,

a plateau develops at ρ = 1/2, indicating a gap in the energy spectrum. Consequently the
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Fig. 3.5: Variation of average superfluid density of a unit cell as a function of µ for the same set
of parameters as in Fig. 3.4.

SF density vanishes in this region (Fig.( 3.5)). As λ is increased, the extent of the plateau

structure increases. However, the system remains in the SF phase at ρ = 1 for all the

values of λ that have been considered. Table 3.2 has the values of the on-site density and

the SF density within the cell. We thus conclude that the transition from SF to SLMI-I

takes place at λ = 2.6, when the SF density vanishes, and the occupancy configuration

takes the form [1 0 1 0 ...]. But at all other values of ρ, and for all values of λ, the SF

densities, ρs1 and ρs2 remain finite.

Results for U = 10 show a marked difference from that of the U = 5 case. The reason

for this is that as discussed in Chapter 1, there is a MI-SF transition for integer densities

in the Bose-Hubbard model. For ρ = 1, the mean-field decoupling theory predicts the

critical U value, Uc ∼ 5.8 [10]. So for U = 10 (greater than Uc), the system will be in

the MI phase for ρ = 1, when λ = 0. Figs.( 3.6) and ( 3.7) show respectively the plots of

density ρ and SF density, ρs as a function of µ for various values of λ. It can be seen that

a plateau exists at ρ = 1 for small values of λ (Fig.( 3.6)), and the SF density vanishes

in the same range of µ, confirming the expected MI phase. The system remains in the
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Table 3.2: U = 5.0
λ ρ µ ρs1 ρs2 n1 n2

0.2 0.523 0.0 0.370 0.35 0.57 0.48
0.2 1.030 2.5 0.270 0.26 1.03 1.02
0.2 2.080 7.5 1.190 1.17 2.09 2.06
2.2 0.500 0.9 0.110 0.06 0.95 0.06
2.2 1.010 3.3 0.433 0.36 1.13 0.90
2.2 2.000 8.1 1.250 1.09 2.19 1.81
3.2 0.500 0.5 0.000 0.00 1.00 0.00
3.2 1.000 3.8 0.570 0.42 1.22 0.78
3.2 2.010 8.7 1.350 1.08 2.30 1.73
4.2 0.500 0.2 0.000 0.00 1.00 0.00
4.2 0.990 5.3 0.790 0.29 1.65 0.34
4.2 2.010 10.2 1.540 0.91 2.62 1.40
7.2 0.500 0.2 0.000 0.00 1.00 0.00
7.2 1.010 5.8 0.620 0.18 1.82 0.20
7.2 2.020 10.7 1.54 0.83 2.73 1.30
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Fig. 3.6: Variation of average density of a unit cell ρ as a function of the chemical potential µ
for U=10, but for different values of λ, varying from 0.2 (red solid curve) to 14.2 (orange large
dashed curve) at intervals of 2.0
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Fig. 3.7: Variation of average superfluid density of a unit cell as a function of µ for the same set
of parameters as in Fig. 3.6.

SF phase for all other densities. However as λ is increased, the plateau at ρ = 1 starts

shrinking, leading to its complete disappearance, and again it reappears as λ is increased

further.

At ρ = 1/2, a plateau develops for λ > 2.3, and for ρ = 3/2, the transition takes

place for λ > 5.3. From the values as listed in Table 3.3, we can infer that the insulator

at ρ = 1/2, is the same as SLMI-I with the occupancy configuration [1 0 1 0 ...]. But at

ρ = 3/2, the values indicate that the configuration is [2 1 2 1 ...], which we call SLMI-III.

At ρ = 1, there are two insulating phases. For λ < 6.5, the system is in the MI phase

with the configuration [1 1 1 1 ...]. For λ > 13.1, the system re-enters into an insulator

phase, with the configuration [2 0 2 0 ...], which we call SLMI-II. For 6.5 < λ < 13.1, the

system resides in the SF phase.

The model at U = 15 behaves similar to that for U = 10. At ρ = 1/2, the system

starts off in the gapless SF phase for low values of λ (< 2.2), as evident from Figs.( 3.8)

and ( 3.9), and also Table 3.4. As λ becomes greater than 2.2, the system enters the

gapped SLMI-I phase, with vanishing SF density, and an occupancy of [1 0 1 0 ...]. At
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Table 3.3: U = 10.0
λ ρ µ ρs1 ρs2 n1 n2

0.2 0.48 0.00 0.30 0.29 0.53 0.44
0.2 1.00 2.00 0.00 0.00 1.00 1.00
0.2 2.00 14.50 0.00 0.00 2.00 2.00
2.2 0.50 1.20 0.00 0.00 1.00 0.00
2.2 1.00 3.00 0.00 0.00 1.00 1.00
2.2 2.00 15.00 0.00 0.00 2.00 2.00
6.2 0.50 0.50 0.00 0.00 1.00 0.00
6.2 1.00 7.50 0.00 0.00 1.00 1.00
6.2 1.50 12.00 0.00 0.00 2.00 1.00
10.2 0.50 0.19 0.00 0.00 1.00 0.00
10.2 1.00 9.97 0.65 0.32 1.51 0.47
10.2 1.50 12.16 0.00 0.00 2.00 1.00
14.2 0.50 0.10 0.00 0.00 1.00 0.00
14.2 1.00 10.70 0.00 0.00 2.00 0.00
14.2 1.50 15.60 0.00 0.00 2.00 1.00
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Fig. 3.8: Variation of average density of a unit cell ρ as a function of the chemical potential µ
for U=15, but for different values of λ, varying from 0.2 (red solid curve) to 18.2 (violet large
dot dashed curve) at intervals of 3.0
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Fig. 3.9: Variation of average superfluid density of a unit cell as a function of µ for the same set
of parameters as in Fig. 3.8.

ρ = 3/2, the system undergoes a transition from SF to SLMI-III at λ = 4.8, with a

configuration of [2 1 2 1 ...]. At ρ = 1, the system stays in the MI phase for λ = 0, since

the value of U is greater than Uc. It remains in the MI phase till λ is increased to a value

of 11.7, after which it enters the SF phase. Further increase of λ beyond 18.1 takes the

system to SLMI-II phase, with the configuration [2 0 2 0 ...].

Table 3.4: U=15.0
λ ρ µ ρs1 ρs2 n1 n2

0.2 0.52 0.10 0.28 0.28 0.57 0.47
0.2 1.00 1.30 0.00 0.00 1.00 1.00
0.2 2.00 17.80 0.00 0.00 2.00 2.00
6.2 0.50 0.18 0.00 0.00 1.00 0.00
6.2 1.00 6.66 0.00 0.00 1.00 1.00
6.2 1.50 16.11 0.00 0.00 2.00 1.00
15.2 0.50 0.10 0.00 0.00 1.00 0.00
15.2 1.02 15.10 0.60 0.30 1.55 0.49
18.2 0.50 0.09 0.00 0.00 1.00 0.00
18.2 1.0 16.00 0.00 0.00 2.00 0.00
18.2 1.50 19.08 0.00 0.00 2.00 1.00
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3.3 Density Matrix renormalisation Group Method

Analysis

In this section, we present the analysis of the Bose-Hubbard model for ultracold atoms

in an optical superlattice described in Eq. 3.1 using the DMRG method. To obtain the

ground-state wavefunction and the energy eigenvalues of this model for a system of N

bosons in a lattice of length L, with on-site interactions, tunneling and the relative en-

ergy shifts between neighbouring sites due to the superlattice potential, we use the finite

size DMRG (FSDMRG) method with open boundary conditions [17, 18]. As investi-

gated earlier, this method works quite accurately for the one-dimensional Bose-Hubbard

model [18, 19, 20, 21, 22].

For all our computations, we have taken four bosonic states per site, that is a

maximum of three bosons can be accommodated at a single site. The weights of the

states neglected in the density matrix for either right block or left block is less than 10−6.

In order to improve the convergence, at the end of each DMRG step, we use a finite-size

sweeping procedure given in [17, 18, 19, 20]. To obtain the ground state wavefunction,

|ΨLN〉 and the associated energy, ELN , for densities ranging from 0.24 to 1.25, we start the

process with 4 sites and 4 atoms. We then increase the number of sites and atoms by two

at every DMRG step, until we have 24 atoms. After this, we keep the number of atoms

fixed, and increase the number of sites to 100, by adding 2 sites at a time in each DMRG

step. At the end of each step, sweeping is done from left to right, and vice-versa across

the entire lattice. This is continued until the energy value converges. The superlattice

potential breaks the symmetry between the system and the environment. Therefore it

is necessary to perform the calculations separately on each of the blocks at each DMRG

iteration. Once the length, L = 100 is reached, we keep it fixed, and increase the number

of atoms one at a time, and perform the complete DMRG sweep for the convergence of the

energy. This iterative procedure is continued till the number of atoms reach the value of
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125. Such a process will yield the ground state wave function and the energy for a range

of densities from 0.24 to 1.25. We fix the hopping amplitude, t = 1.0 and the on-site

repulsive interaction, U = 10, and vary the superlattice potential, λ from 0 to 15 for our

simulations.

Using the ground state wavefunction, |ΨLN〉 and the energy, ELN , the following

physical quantities of interest are evaluated, to identify the various phases of the system.

• The chemical potential of a system of density, ρ = N/L, is defined as

µ =
δEL(N)

δN
(3.4)

The gapped and gapless phases of the system can be determined from the behaviour

of ρ as a function of µ.

• The on-site density, 〈ni〉 is defined as

〈ni〉 = 〈ΨLN |n̂i|ΨLN〉 (3.5)

This will give information about the on-site density distribution in the various

phases.

• The momentum distribution defined as the Fourier transform of the single-particle

density matrix

n(k) =
1

L

∑

p,q

eik(p−q)〈
ˆ
a†pâq〉 (3.6)

is a signature of the presence of the SF phase in the system.
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• The structure function defined as the Fourier transform of the density-density cor-

relation function

S(k) =
1

L

∑

p,q

eik(p−q)〈n̂pn̂q〉 (3.7)

probes the presence of any density-wave order in the system and also the effects of

the superlattice potential on the Brillouin zone boundaries.

3.3.1 Results

To get a reasonable idea of the various gapped and gapless phases in the system, we plot ρ

as a function of µ, defined in Eqn.( 3.4) as shown in the 3-d graph of Fig.( 3.10), for a fixed

value of U = 10.0, but with λ varying from 0 to 15. The presence of the gapped phases

are revealed by the plateaus with the gap GL being equal to the width of the plateau, i.e.

GL = µ+
L − µ−

L , where µ
+
L and µ−

L are the values of the chemical potential at the upper

and lower knees of the plateau, respectively. The value of U considered is much larger

than the critical Uc ∼ 3.4 as predicted by previous DMRG calculations. So at ρ = 1.0, we

expect the system to be in the MI phase. Indeed we do see that in Fig.( 3.10), where at

λ = 0.0, there exists only one plateau at ρ = 1.0. The MI phase survives for small values

of λ. As the strength of the superlattice potential, λ is increased, two interesting features

become evident from the plots :

• a new plateau appears at ρ = 1/2

• the width of the plateau at ρ = 1 starts shrinking

These features are more clearly seen from the 2-d plots of ρ vs µ for different values

of λ as shown in Fig.( 3.11). For λ = 0.2, the gapped phase exists only at ρ = 1.0 and is

gapless at other densities including ρ = 1/2. As λ is increased beyond 0.8, two gapped
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Fig. 3.10: Density ρ is plotted against the chemical potential for various values of λ at a fixed
U = 10 and t = 1.
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phases appear. One at ρ = 1/2 and the other at ρ = 1.0. The gapped phase at ρ = 1/2

appears because of the transition from SF to SLMI-I phase, with alternate sites being

occupied by one atom. For the region between λ = 0.8 and 9.6, the system exhibits two

gapped phases, one at ρ = 1/2 and the other at ρ = 1. The gap at ρ = 1/2 keeps on

increasing steadily as λ is increased, and remains finite throughout. On the other hand,

as mentioned earlier, the gap at ρ = 1 shrinks gradually with increasing λ, and vanishes

completely at λ = 9.6. This marks the transition from the gapped MI phase to the

gapless SF phase. It should be noted that this SF region appears for λ ≈ U values. A

further increase of λ beyond 10.4 causes the gap to reappear, marking the transition to

the SLMI-II phase with alternate sites being occupied by 2 atoms. The reason for the

existence of the SF window inspite of the high value of U is quite interesting. It arises due

to the competition between U and λ. When U is larger than λ, the MI phase is stabilised

with a configuration [1 1 1 1 ...], and when λ is greater than U , λ dominates and this

forces the system to enter the SLMI-II phase with [2 0 2 0 ...] configuration. But when

their values are comparable, no particular configuration is attained, resulting in a random

distribution of atoms in the lattice, thus leading to the SF phase. Fig.( 3.12) shows this

effect in a schematic way. At all incommensurate densities the system remains in the SF

phase for all values of λ.

For a different perspective on the appearance of the various quantum phases, we

consider the dependence of the on-site average number density distribution, 〈ni〉, on the

site index, i. Fig.( 3.13) shows the plot of atom distribution in the lattice for ρ = 1/2. For

values of λ less than 0.8, the number occupancy remains flat at the value of 0.5. However,

as λ is increased, density oscillations set in slowly in the system. At higher values of λ,

a clear [1 0 1 0 ...] occupancy configuration is observed from Fig.( 3.13). This confirms

the presence of the SLMI-I phase. Fig. 3.14 shows the distribution of atoms in the lattice

for ρ = 1. For low values of λ, the plot shows that all the sites have an equal number

of atoms, equal to 1, signifying the MI phase. Increasing λ induces some oscillations in
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Fig. 3.11: The chemical potential, µ is plotted against density ρ for various values of λ, and
U = 10.

the system, but it is still in the MI phase. Even for 9.6 ≤ λ ≤ 11.4, when the system

enters the SF region, there are density oscillations, varying from 1.5 (maximum) to 0.5

(minimum) values. This is signficantly different from a [2 0 2 0 ...] configuration. As

λ is increased further, the system enters the gapped SLMI-II phase, with the occupancy

configuration slowly tending towards a [2 0 2 0 ...] structure, signifying the onset of the

SLMI-II phase.
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Fig. 3.12: Schematic representation of the phases appearing for various values of λ.
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Fig. 3.13: On-site number density plotted against lattice site index at density, ρ = 0.5.
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Fig. 3.14: On-site number density plotted against lattice site index at density, ρ = 1.0.

We now turn to the momentum distribution defined in Eqn.( 3.6). The value of

n(k) at k = 0, which denotes the population in the k = 0 momentum eigenstate, is a

signature of the SF phase, where it has a relatively large value. It is clear from Fig.( 3.15)

that for ρ = 1/2, n(k = 0) has a high value for low values of λ. But as λ is increased,

n(0) falls off to values very close to zero, implying a transition from SF to some gapped

phase. For ρ = 1, n(0) is small for low λ values, since the system is in the MI phase. As

λ approaches closer to the value of U , n(0) starts increasing, and takes on a large finite

value, indicating a transition from MI to SF phase. Further increase of λ makes n(0)

drop back to values close to zero, corresponding to the transition to the gapped SLMI-II

phase. At an incommensurate density, for example ρ = 0.7, the value of n(0) is always

finite, supporting the fact that the system remains in the SF phase for all values of λ.

The structure function as defined in Eqn.( 3.7) is plotted in Fig.( 3.16). In the

regular optical lattice, where the periodicity is one lattice site, the structure function

peaks at k = ±2π in the MI phase. However, for a 2- period optical superlattice, since

the periodicity is two, the Brillouin zone gets halved. Hence in the MI phase for an optical
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Fig. 3.15: n(k = 0) against various values of λ for densities, ρ = 0.5, 0.7 and 1.0.

superlattice, we expect to observe the peaks of S(k) at k = ±π. From Fig.( 3.16), we can

see two well defined peaks at k = ±2π for ρ = 0.5, at a very large value of λ, implying

the presence of the SLMI-I phase. For ρ = 0.7, which is an incommensurate density,

there are two peaks at ρ = 0.7 for λ ≥ 2.0. This is a consequence of density oscillations

setting in the system due to the superlattice potential (Fig.( 3.17)). Fig.( 3.18) shows the

behaviour of S(k) for ρ = 1.0. For lower values of λ, there are no peaks at k = ±π. But

as λ increases, the peaks start appearing. The emergence of the peaks imply the influence

of the superlattice potential, which changes the Brillouin zone boundaries.

Fig.( 3.19) shows the plot of S(k = π), for three different densities, as a function of

λ. For ρ = 0.5, S(π) starts from very close to zero, increases steadily, and then becomes

constant. For ρ = 1, there is no peak initially. As λ increases, even in the MI phase, we

see a finite value of S(π), indicating the onset of the effect of the superlattice potential.

Once λ crosses the value of U(= 10), the value of S(π) increases rapidly, showing the

existence of the SLMI-II phase. For ρ = 0.7, S(π) is close to zero for low values of λ, and

then increases after λ becomes greater than some value, implying the existence of some
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Fig. 3.17: Structure function, S(k) versus the momentum, k, for density 1.0.
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density modulations in the system.
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Fig. 3.18: Structure function, S(k) vs the momentum, k, for density 0.7 for different values of
λ.

The phase diagram in the µ-λ plane for U = 10 is shown in Fig.( 3.20). µ+
L is

defined as the energy cost when an atom is added to the system, i.e. µ+
L = EL(N + 1)−

EL(N), whereas µ−
L is defined as the energy cost to remove an atom from the system,

i.e. µ−
L = EL(N) − EL(N − 1). In order to get a correct phase diagram, we need to

have accurate values of the chemical potential (both µ+
L and µ−

L) in the thermodynamic

limit, i.e. L → ∞. For this purpose we plot the chemical potential versus the inverse

of length (1/L), and then extrapolate to length tending to infinity (1/L → 0). We plot

these chemical potential values in Fig.( 3.20) for densities 0.5 and 1.0, for a range of λ.

We further performed rigorous calculations to find the phase diagram in the U -λ

plane to obtain the transition points accurately. The critical points were determined using

the scaling relation of the Gap, which is defined as :

GL = µ+
L − µ−

L (3.8)
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In the gapless phase, the gap scales as GL ∝ 1/L because of the finite-size effects,

whereas in the insulating phase, it is GL ∝ constant. Thus if simulations are carried out

for various values of lengths of the system, L, and LGL is plotted against λ, then in the

SF phase, curves for various L will coalesce, whereas in the insulating phase, they will

branch out. One such case is depicted in Fig.( 3.21). We thus identify the critical points

by checking the value of LGL for L = 140 and 200, and see if the difference is less than

4%. Fig.( 3.22) thus shows the complete phase diagram for ρ = 1.
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Fig. 3.21: Plot of L*Gap as a function of λ for U = 8

3.4 Three-Body on-site interaction in Optical Super-

lattice

The system of ultracold bosons with three-body interactions loaded in an optical super-

lattice can be best described by the following hamiltonian

H = −t
∑

〈i,j〉

a†iaj +
U

2

∑

i

ni(ni − 1) +
∑

i

λini +
W

6

∑

i

ni(ni − 1)(ni − 2) (3.9)
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where W is the on-site three-body interaction amplitude. Zhang et al. had earlier

found the insulating lobes being extended for optical lattice in the presence of three-

body interactions, using decoupling mean-field theory [23]. Using two body collisions of

atoms confined to the lowest vibrational state of the optical lattice, effective three- and

higher-body interactions can be generated [24]. In earlier works, the effect of three-body

interactions on the insulating lobes in an optical lattice were studied using mean-field and

functional integral approaches [25].

On the experimental side, Will et al. [26] have detected and precisely measured the

on-site three- and higher-body interaction strengths by observing the collapse and revival

of the superfluid matter waves in a deep optical lattice. Nägerl et al. [27] have been able

to accurately determine the on-site interaction energies including multibody interaction

shifts. In another work, Greiner et al. [28] have determined the three-body interaction

strengths by using occupation-sensitive photon-assisted tunneling. We now present the

results of the effects of including the three-body interactions on various phases exhibited

by ultracold bosonic atoms in an optical superlattice using FS-DMRG method.
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We plot the phase diagram for two different densities, ρ = 1.5 and 2 to see the effects

of three-body interactions as shown in Fig.( 3.23). Of course, at lower densities, there will

be no effects of W , since the probability of three or more atoms being found at one site is

negligible. For ρ = 1.5, in the absence of three-body interactions, the system undergoes a

phase transition from the SF phase to the SLMI phase with configuration [2 1 2 1 ...] at

λ ∼ 0.3. However, at finite W (=5.0), the above transition occurs at λ ∼ 0.15, signifying

the enlargement of the insulating lobes (Fig.( 3.23a)). At ρ = 2.0, in the absence of W ,

the system exhibits three phases for U = 10.0. For λ < U , the system is in the MI phase

with [2 2 2 2 ...] configuration. It then undergoes a transition to the SF phase when λ

becomes comparable to U (9.4). The system undergoes another quantum phase transition

from SF phase to the SLMI phase with configuration [3 1 3 1 ...] as λ is increased beyond

10.6. But in the presence of W (=5.0), the SF window is shifted to a λ value which is

comparable to U +W as shown in Fig.( 3.23b). The SF window not only shifts to a new

λ value, but also shrinks when compared to that of W = 0.0.

We now propose an alternate method to observe three-body effects in an optical
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lattice and superlattice. The effect of W is very small compared to the two-body inter-

action. From Eqn.( 3.9), it is clear that the three-body energy scales as n3. Therefore in

order to observe the effect of three-body interaction in the experiments, it is necessary

to study the SF-MI transition at higher densities. In the seminal experimental work by

Greiner et al. [29], the SF-MI transition was observed by probing the excitation spectrum

resulting from a particle-hole excitation. Such an excitation was provided by the potential

gradient to the system in MI phase. Two narrow resonance peaks were seen in the plot of

excitation probability versus the applied potential gradient. The first peak corresponds

to the MI shell at density one. The appearance of the second peak may be due to the

MI shell at density two. In the MI phase at density two, the particle-hole excitation at a

given site would populate one of the neighbouring site with three atoms. In such a case,

the atoms will experience the effects of W , along with that of U . In general, when there

are n atoms in each site, the system is in MI phase with density n, and the excitation

gap is given by ∆ = U + (n − 1)W for the optical lattice, and ∆ = U + (n − 1)W + λ

for the optical superlattice. Therefore, by measuring the values of the potential gradients

for higher-order peaks, and taking the difference between them for different values of n,

it would be possible to determine the value of W .

3.5 Conclusions

We now summarize the findings from both the mean-field and DMRG approaches to the

Bose-Hubbard model for ultracold atoms in a one dimensionl optical superlattice. The

results can be broadly classified into two categories, one concerning density, ρ = 1/2, and

the other for ρ = 1.

For ρ = 1/2, we see that for λ = 0, the system is always in the SF phase, no matter

what the value of the on-site interaction, U is. As λ increases, the system undergoes

a transition from the gapless SF phase to a gapped insulating phase, which we call as
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the SLMI-I phase. This phase has the occupancy configuration [1 0 1 0 ...], displaying a

density-wave character.

For ρ = 1, we further categorize our results into two parts, depending on the value

of U . If U is less than the critical Uc for the SF-MI transition in the BH model, then the

system will be in SF phase for λ = 0. As λ is increased, it goes to the gapped SLMI-II

phase with a configuration of [2 0 2 0 ...] phase. However, if U > Uc, then the system

will be in MI phase for λ = 0 with configuration [1 1 1 1 ...]. As λ is incremented, the

system goes to the SF phase when λ ≈ U . A further increase of λ drives the system into

the SLMI-II phase. This window of SF diminishes as the value of U is increased, since a

large U will tend to localise the atoms.

For the incommensurate density, ρ = 0.7, as expected that the system always re-

mains in the SF phase. However, we also find density modulations induced by the super-

lattice potential, coexisting with this SF phase.

Thus our extensive analysis of the Bose-Hubbard model for a 1D optical superlattice

has revealed novel quantum phases using two different theoretical methods, which agree

with each other qualitatively to a large extent.

We also investigated the effects of three-body effects in optical superlattice at higher

densities, and found the extension of the insulating lobes at ρ = 1.5. At ρ = 2, the SF

window is found to be shifted to λ value which is comparable to U +W . The presence

of W has also shrunk the SF window. We have also proposed a possible experimental

scenario to find the values of W .
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Chapter 4

Quantum Phases in Frustrated

Ladder Systems

4.1 Introduction

In the previous chapter, we presented the results obtained for a system of ultracold bosonic

atoms loaded in an optical superlattice, and determined the phase diagram. We found the

existence of the superfluid (SF), Mott insulator (MI) and the superlattice induced Mott

insulator (SLMI) phases. We now turn our attention to a system of ladders, and present

the findings on two of different configurations. We first consider a zig-zag ladder with

hardcore bosons loaded in it, followed by a regular two-legged ladder, which has hopping

amplitudes that lead to an effective flux of π in each of the plaquettes. Both these systems

display geometric frustration leading to novel quantum phases.

4.2 Triangular lattice with Superlattice Potential

In this section, we present our results for a system of hard-core bosons in a zig-zag

ladder, with different potential depths in the two legs. This essentially maps onto a 1-d

optical superlattice, with nearest and next-nearest hopping as shown in Fig.( 4.1). The

hamiltonian describing such a system can be written as :

67
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t t

t′
λ

Fig. 4.1: Schematic diagram of an one-dimensional two-period optical superlattice with nearest
and next-nearest hopping

H = −t
∑

i

(a†iai+1 + h.c.)− t′
∑

i

(a†iai+2 + h.c.)

+
∑

i

λini (4.1)

where a†i and ai are creation and annihilation operators respectively for hard core bosons

at site i, and ni = a†iai is the boson number operator at site i. To avoid multiple

occupancies of the lattice sites we use the constraint that a†2i = a2i = 0. Here t is the

hopping amplitude for tunneling to the nearest neighbouring site, t′ is the probability

amplitude to tunnel to the next-nearest neighbour and λi is the superlattice potential. In

the present work, we have considered a two-period superlattice, with λi = λ for i being

odd and λi = 0 for i being even. We study the system for a wide range of t′ and λ while

fixing the value of t = 1.

Recent experimental developements have resulted in the creation of various lattice

geometries, using suitable arrangements of laser beams, such as optical superlattices [1],

triangular lattices [2], Kagome lattices [3], etc. Using Feshbach resonance, the interatomic

interactions can be tuned and controlled to a very high degree of precision [4], and these

interactions can be made attractive or repulsive . The magnitude and sign of intersite

hopping can now be controlled very accurately using shaking techniques [5, 6]. These

remarkable advances on the experimental front motivate us to perform theoretical studies
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of ultracold atoms in different lattice geometries and look for novel quantum phases.

Phases with density wave like configurations were theoretically predicted in a system

of ultracold bosons in an optical superlattice [7, 8, 9, 10, 11, 12]. They are referred to as

superlattice induced Mott insulator (SLMI) phases and have different densities depending

on the occupation number of the atoms in a unit cell [13, 14]. The competition between

frustration arising from lattice geometry and interactions has been widely studied [15,

16, 17], revealing rich physics with a variety of novel quantum phases exhibited by the

superlattice system.

For the particular case for t′ = 0, the model described in Eqn.( 4.1) can be mapped

exactly to a system of spinless fermions. Applying the Jordan-Wigner transformation [18],

a†i = f †
i

i−1
∏

β=1

e−iπf†f , ai =
i−1
∏

β=1

e−iπf†ff †
i (4.2)

Eqn.( 4.1) can be mapped to

H = −t
∑

i

(f †
i fi+1 + h.c.) +

∑

i

λif
†
i fi (4.3)

where f †
i and fi are the creation and anihilation operators for the spinless fermions and

f †
i fi is the number operator.

The above hamiltonian described in Eqn.( 4.3) can be solved exactly to obtain the

single particle eigenstates. Two bands arise due to the breaking of the translational

symmetry of the lattice by the superlattice potential. The energy spectra of the two

bands are given by

E±(k) =
λ±

√

λ2 + [4tcos(ka)]2

2
(4.4)

where a is the lattice spacing and k, the crystal momentum that runs from −π
2a

to

π
2a
. A plot of these spectra is shown in Fig.( 4.2). From this figure and Eqn.( 4.4) it

can be seen that at half filling, the system exhibits a gap which is equal to the value of

the superlattice potential. Finite values of λ takes the system into a gapped insulating
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Fig. 4.2: Dispersion relation as computed from the Eqn.( 4.4)

phase, which is a SLMI phase. The situation becomes more complex when t′ is turned

on, resulting in a model which cannot be solved exactly. Hence we take recourse to

the numerical technique of density matrix renormalisation group (DMRG) method as

described in Chapter 2 to determine the ground state energy and wavefunction. Positive

t′ ensures a greater likelihood of hopping for the atoms, whereas negative values of t′

implies frustration, whereby hopping along one of the legs of the zig-zag ladder increases

energy. In our work, we have considered both positive and negative values of t′, in order

to investigate the new quantum phases that could arise in the presence of a superlattice

potential.

Due to the hard-core nature of the atoms, only zero or single occupancy in a single

site will be allowed. This effectively results in a†2i = 0. For this scenario, the model can

be exactly mapped into a zig-zag ladder, with different inter- and intra-chain hopping

strengths. The presence of a superlattice potential means that the two legs of the ladder

are at different depths. Eqn.( 4.1) can be mapped onto a spin 1/2 Hamitonian through
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Fig. 4.3: Phase diagram for a system of hard-core bosons with nearest-neighbour hopping in an
optical superlattice, at a filling factor of half

the following substitution :

S+
i = a†i , S

−
i = ai (4.5)

Sz
i = (ni − 1/2) (4.6)

The hamiltonian then takes the form:

H =
1

4

∑

i

[−2t(Sx
i S

x
i+1 + Sy

i S
y
i+1)]

∑

i

[−2t′(Sx
i S

x
i+2 + Sy

i S
y
i+2)] +

∑

i

λi(S
z
i + 1/2) (4.7)

4.2.1 Method

As mentioned before, to obtain the ground state properties of the model represented by

Eqn.( 4.1), we employ the finite-size DMRG with open boundary conditions [19, 20], which

is suitable for one-dimensional systems. In all our computations, we studied systems up

to a length of 300 sites, and retained the 128 highest eigenstates corresponding to the

density matrix. The weight of the discarded states were less than 10−6.
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For the purpose of obtaining the ground state phase diagram, several physical quan-

tities were evaluated as listed below :

• To distinguish between the gapped and gapless phases, the energy gap is given by

GL = E(L,N + 1) + E(L,N − 1)− 2E(L,N). (4.8)

In Eqn.( 4.8), E(L,N) is the ground-state energy of a system with L sites and N

bosons.

• For detecting the BO phase, we look at the bond order parameter given by

OBO =
1

L

∑

i

(−1)iBi (4.9)

where Bi = 〈b†ibi+1 + b†i+1bi〉 is the bond energy.

• The SLMI phase is characterised by the structure factor, given by the Fourier trans-

form of the density-density correlation function

S(k) =
1

L

∑

i,j

ei(i−j)k〈n†
inj〉 (4.10)

• The momentum distribution is given by

n(k) =
1

L

∑

i,j

ei(i−j)k〈a†iaj〉 (4.11)

Before proceeding onto the results obtained with the parameters considered in our

FS-DMRG simulations, we would like to mention that the set of parameters assumed in

our computations are sufficient to obtain accurate results for this model. This is evident

from the computation of energy gap as shown in Eqn.( 4.8) for the system when t′ = 0

given by Eqn.( 4.3). An exact analytical treatment of Eqn.( 4.3) shows that this gap will

be equal to the superlattice potential, λ considered in our work. We compared the gap

values obtained from numerical computations, and found |G− λ| ∼ 10−5
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Fig. 4.4: Thermodynamic value of G plotted against t′ for λ = 0.5 to locate the transition point.

4.2.2 Results

We now discuss in details the findings of our computations. For t′ = 0, the system goes

from a gapless SF to a gapped SLMI phase for any finite value of λ. This behaviour can

be attributed to the fact that the atoms being hard core in nature, a small value of λ

will create a difference in potential depths in the two legs of the zig-zag ladder. As a

result, the atoms occupying the deep lattice site, i.e. one of the legs of the ladder, will

be energetically favourable, giving rise to the distribution of [0 1 0 1 0 1]. The situation

becomes interesting when t′ is turned on. We investigate the system for both positive and

negative values of t′, and for a range of values of λ at half filling.

The phase diagram of the system described by Eqn.( 4.1) is shown in Fig.( 4.3). We

divide our results into two sections depending on the sign of t′, duly presented in the next

two subsections.
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Fig. 4.5: Gap, G, plotted against 1/L, along with the extrapolation for different values of t′ for
λ = 0.5

4.2.2.1 Positive t′ scenario

For positive values of t′, in the absence of a superlattice potential, the system is an

unfrustrated triangular ladder described by a simple t − t′ model. Any finite value of t′

drives the system into the gapless phase. However for non-zero values of λ, the system

goes to the SLMI phase for small values of t′. Now fixing λ, if one increases t′, the

SLMI order in the system gradually disappears, leading to a gapless SF phase. This can

be understood in the following way. In the SLMI phase, alternate sites are occupied.

Because of the large value of t′, one such atom may hop to the next nearest site which is

already occupied. Because of the hard-core nature of the atoms, the latter atom will hop

to its nearest neighbour, which incidentally is a free site. And this process can continue

leading to a delocalisation of the wavefunction, which will then correspond to a SF phase.

The signature employed to detect this transition is the energy gap, G.

A finite size scaling of the gap, GL is performed by fitting with a quadratic polyno-

mial in 1/L. It is then extrapolated to L→ ∞ to get the thermodynamic limit of G. The
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Fig. 4.6: Bi is plotted against i for λ = 0.5.

range of L considered for the above fitting were from 100 to 300. The extrapolated values

of G as a function of t′ for λ = 0.5 is shown in Fig.( 4.4). This clearly shows the gap to fall

down gradually signifying the transition to belong to the Berezinskii-Kosterlitz-Thouless

(BKT) universality class. In Fig.( 4.5), the finite size scaling of the gap, GL, for different

values of t′ are plotted, along with the extrapolated functions. As the transition point

approaches, the fitted function tends to 0, indicating the onset of the SF phase. We

impose the criterion that GL→∞ ∼ 10−3 to determine the critical point for the gapped to

the gapless phase transition.

4.2.2.2 Negative t′ scenario

The negative values of t′ induces frustration in the system leading to interesting phases.

In the absence of the superlattice potential, λ = 0, the system has been investigated
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Fig. 4.7: Plot of thermodynamic values of the OBO against t′ for λ = 0.5. A discrete jump in
the values can be observed around the transition point. Inset: The first derivative showing a
peak at the transition point from SLMI to BO phase

extensively. It has been predicted that the system remains in the SF phase for small

values of t′. For |t′| > 0.33, the system dimerises, with atoms getting localized between

neighbouring sites. This phase is called the BO phase, which is gapless in nature, and the

transition from SF to BO phase is of the BKT type. At t′ = −0.5, the system exhibits a

Majumdar-Ghosh type of state [17]. As discussed in the previous case, the system enters

the SLMI phase for any small finite value of λ. Therefore on the negative t′ side, there

exists only a SF line which extends till t′ = 0.33. For finite values of λ, the atoms begin to

occupy in the lower potential wells thus entering the SLMI phase. However, if λ is fixed,

and |t′| is increased, then the atoms delocalise between neighbouring sites, thus entering

BO phase. The BO phase is characterised by the periodic oscillations in the bond energy.

In Fig.( 4.6) we plot Bi as a function of lattice sites for various values of t′ when λ = 0.5.

Fig.( 4.6 a, b, c and d) show that for small values of |t′|, there is an exponential decay

in the Bi with the lattice length. However, in Fig.( 4.6 e), we see the setting in of long-

range bond oscillations in the system. These oscillations are sustained throughout the
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Fig. 4.8: Energy gap, G plotted for different lengths against t′. The minima implies the critical
point.

entire lattice structure and become increasingly prominent as the value of |t′| is increased.

This clearly suggests the presence of the BO phase at lower values of t′. Now, having

known the presence of these two phases, we proceed to locate the critical points. For this

purpose, we compute the BO order parameter, OBO as defined in Eqn.( 4.9). To avoid

the finite size effects, we extrapolate OBO using a third order polynomial as a function of

1/L. The thermodynamic value obtained in this way, for 1/L→ ∞, is plotted for various

t′ in Fig.( 4.7). The BO phase is characterised by a non-zero OBO, whereas in the SLMI

phase, it is zero. Fig.( 4.7) clearly shows a discrete jump in its value implying a transition

from the SLMI to the BO phase. The inset of the Fig.( 4.7) plots the first derivative

of OBO. As expected, it shows a sharp maximum, the position of the peak giving us

the transition point. A complementary approach for determining this phase transition is

based on the behaviour of the gap GL. In Fig.( 4.8), we plot GL as a function of t′ for

different values of length, L, including L → ∞, obtained by a second order polynomial

extrapolation. Along the λ axis, the gap is always finite. It decreases as we approach

the critical point, and reaches a minimum at the transition point, followed by an increase
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Fig. 4.9: Thermodynamic values of S(π) is plotted for the entire range of t′ for λ = 0.5

again as t′ is increased. The minima shifts towards the actual critical point, as we consider

larger lengths, L. In the thermodynamic limit, the minima or the critical point is located

at t′ = −0.604, which agrees with the value obtained from OBO scaling.

The SLMI phase has the occupancy configuration of the form [1 0 1 0 1 0 ...]. As

a result, the structure factor, S(k), as defined in Eqn.( 4.10) will display finite peaks at

k = ±π. But in the BO and SF phases, this peak value will decrease. As before, to

correct for the finite size effects, we plot the thermodynamic values of S(π) as a function

of t′ for two fixed values of λ = 0.5, 0.05 in Fig.( 4.9) and Fig.( 4.10) respectively. The

thermodynamic values are obtained by a third order polynomial fit. Its value in the BO

phase stays low. As t′ approaches the critical point for the BO-SLMI transition, the value

of S(π) gradually increases. At the critical point, we observe a sharp peak, after which the

latter decreases. As t′ increases towards zero, S(π) again increases steadily for λ = 0.5,

whereas it decreases continuously for λ = 0.05. In both the cases the system now is in the

SLMI phase. For positive values of t′, both the plots for λ = 0.5 and 0.05 show a gradual

decrease in the value of S(π) as the system passes through the SLMI-SF phase transition.
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We now turn our attention to a physical quantity which can be directly observed in

experiments. One such quantity is the momentum distribution which can be measured

through the time-of-flight images. We numerically compute the momentum distribution,

and plot it in Fig.( 4.11). In the SLMI phase, it shows a broad peak at k = 0. But as the

system enters the BO phase, we observe the appearance of two peaks, which shifts away

from k = ±π (Fig. 4.11 a and b). For positive t′ region, the population of atoms in the

k = 0 state is very small, as indicated in Fig.( 4.11 c). But as the system enters the SF

region, k = 0 state fills up, resulting in a large peak as shown in Fig.( 4.11 d).

It is convenient to analyse the model described by Eqn.( 4.1) in two different regions

: negative and positive next-nearest hopping amplitude, t′. For negative t′ values, λ being

zero, the system remains in SF phase for t′ ≥ −0.33. Smaller values of t′ takes the system

to the bond-ordered (BO) phase. Finite values of λ, drive the system into the SLMI phase

since it is energetically favourable for the hard core bosons to occupy the lower potential

wells. The transition to the BO phase for finite values of λ will now occur at a t′ value

smaller than −0.33 since it will require larger values of t′ to break the SLMI order in the
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Fig. 4.11: Momentum distribution for different values of t′ for λ = 0.5

system. In the positive t′ region, for λ = 0, the system remains in the SF phase for all

values of t′. But finite values of λ takes the system to the SLMI phase with alternate sites

being occupied. Increasing t′ results in atoms having higher hopping probabilities to the

next-nearest sites ultimately leading to the transition to a SF phase.

4.2.3 Conclusions

In conclusion, we analysed a system of hard-core bosonic atoms at half-filling loaded in

an optical superlattice, with finite nearest and next-nearest hopping amplitudes using the

FS-DMRG method. Our findings suggest the existence of three phases, namely the BO

phase, the SLMI phase and the SF phase, depending on the values of the superlattice

potential and the next-nearest hopping amplitude.
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4.3 Two-Leg Bose Ladder with π flux in each plaque-

tte

Motivated by the recent developements in experiments where a uniform or staggered

“synthetic magnetic field” for neutral atoms can be generated using two photon Raman

transitions [21, 22, 23], thus permitting us to access large magnetic fields for bosons

loaded in a lattice, we proceed to study the competition between strong correlations and

frustration in the fully frustrated Bose-Hubbard (FFBH) model, with half a “magnetic

flux” quantum per plaquette [24, 25, 26, 27]. Earlier works have studied the repulsive

interactions quenching the “kinetic frustration”, which led to the emergence of uncon-

ventional superlfuids [28, 24, 25, 26, 27], or quantum Hall liquids [29]. Such “kinetic

frustration” can also be obtained by controlling the sign of the atom hopping amplitude

using time-dependent shaking of the optical lattice, or populating higher bands of an

optical lattice [28].

Fig. 4.12: (a) Dispersion of the FFBH model at U = 0, with two degenerate minima in the
low-energy α band. Interactions force an equal number of bosons (on average) to condense into
each of the two minima. (b) Alternating pattern of plaquette currents in the presence of chiral
order.
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Fig. 4.13: The upper panel denotes the dispersion for U = 0 and t⊥ = 0 showing the degeneracy.
The degeneracy is lifter by turning on t⊥ as shown in the lower panel.

The hamiltonian of the FFBH model on a two-leg ladder is given by

H = −t
∑

i

(a†iai+1 + a†i+1ai) + t
∑

i

(b†ibi+1 + b†i+1bi)− t⊥
∑

i

(a†ibi + b†iai)

+
U

2

∑

i

(n2
a,i + n2

b,i) (4.12)

where a and b are the labels for the two legs of the ladder as shown in Fig.( 4.12 b).

The inter-chain hopping is denoted by t⊥, and U denotes the on-site repulsive interaction.

The opposite signs of the intra-chain hopping, t, contributes to an Aharonov-Bohm phase

of π for a boson hopping around an elementary plaquette.

The single-particle dispersion relation (U = 0) for the model given by Eqn.( 4.12) is

given in Fig.( 4.12 a). It exhibits two bands, with the lower (α) band having degenerate

minima at momenta k = 0, π. This leads to a large number of many-body ground states

to be degenerate. So a ground state of N bosons correspond to having N1 bosons in

one minimum, and the rest in the other one. The minimum at k = 0 (k = π) has a

wavefunction that is located on leg-a (leg-b).

The dispersion relation can be viewed from a different perspective as well. For
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Fig. 4.14: The phase diagram for a 2-leg Bose ladder, with π flux per plaquette

U = 0, and t⊥ = 0, the dispersion is as shown in the upper panel of Fig.( 4.13), with two

bands (corresponding to each leg of the ladder) being inverted with respect to each other,

and intersecting at k = ±π. The band with the minimum located at k = 0 corresponds

to leg-a, whereas the one with the maximum at k = 0 denotes leg-b. When t⊥ is non-zero,

the degeneracies at the points of intersection gets lifted. This leads to the formation of

two bands with a gap as shown in the lower panel in Fig.( 4.13). The two minima in the

lower band located at k = 0 and π originate from the bands corresponding to each of the

legs. The k = 0 minimum corresponds to bosons being localized in leg-a, whereas k = π

has bosons in leg-b. A single-particle condensate wave function for U = 0 can thus be

written as a linear superposition of the states residing at the two minima.

In the presence of non-zero repulsive interaction, U , the system will avoid double

oocupancy at a single site. Thus an equal distribution of bosons in both the legs will

be favoured. Hence the single-particle condensate wave function has equal probability

amplitudes in the states |k = 0〉 and |k = π〉 with a relative and global phase.
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4.3.1 Methods

We used the FS-DMRG method [19] to compute the ground state properties of this system

described by Eqn.( 4.12). For convenience, we have mapped the 2-leg Bose-ladder into

one single chain, carefully keeping track of the hopping parameters. We went upto system

sizes of 200, which is equivalent to 100 rungs of the ladder system. The calculations were

carried out at a filling factor of 1, with the size of the local Hilbert space in each site

fixed to 6. 200 density matrix states were retained, with the error of the weights of the

discarded states being less than 10−5. The following relevant physical quantities were

computed using the ground state wave function :

• Momentum distribution

n(k) =
1

L

∑

x,x′

eik(x−x′)[〈a†xax′〉+ 〈b†xbx′〉] (4.13)

• Rung current structure factor

Sj(k) =
1

L2

∑

x,x′

eik(x−x′)〈jxjx′〉 (4.14)

where jx = i(a†xbx − b†xax)

4.3.2 Results

We first present the phase diagram exhibited by a system of ultracold bosons loaded in a

2-leg ladder following the hamiltonian given by Eqn.( 4.12) in Fig.( 4.14). As a result of

the competition between the on-site interaction, (U), intra-chain hopping (t), and inter-

chain hopping (t⊥), three different quantum phases arise; the chiral superfluid (CSF), the

chiral Mott insulator (CMI), and the regular Mott insulator (MI).

To understand the emergence of these phases, we study the phase diagram more

carefully. When the repulsion (U) is small, the system exhibits a gapless SF region with
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Fig. 4.15: The vortex and antivortex picture of CMI

a finite loop current order in each plaquette, which we call the chiral SF (CSF). For

intermediate values of U , the system undergoes a transition from CSF to a phase which

has a finite charge gap. This novel phase simultaneously supports staggered loop current
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Fig. 4.16: The momentum distribution plotted for three different phases, all of them showing
peaks at k = 0, π
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Fig. 4.17: n(0)L−3/4 plotted as a function of U/t for different system sizes, showing a crossing
point at 3.98 which we identify as the CSF-CMI transition point which is in the BKT universality
class. The inset shows the charge gap opening up at this transition into the inuslator

and spontaneously breaks time-reversal symmetry. We have named this phase as the

chiral Mott insulator (CMI). The transition from CSF to CMI belongs to the Berezenskii-

Kosterlitz-Thouless (BKT) class. Further increase of U breaks this loop current order

also, and the system undergoes an Ising transition to enter the regular MI phase.

An alternate physical picture of the CMI phase can be obtained if we consider the

CSF phase, with staggered currents as a vortex crystal, where vortices and antivortices are

nucleated by the presence of frustration, and locked into an “antiferromagnetic” pattern,

due to strong intervortex repulsion as shown in Fig.( 4.15). Large values of U causes

this crystal to melt, thus delocalizing the vortices completely. This vortex superfluid is

nothing but the regular MI phase. However, if a small number of defect vortices in the

vortex crystal delocalize, they kill superfluidity, but still retain the background vortex

crystallinity. This vortex supersolid is the dual description of CMI.

We now plot the momentum distribution in Fig.( 4.16). As expected from the

dispersion relation, we observe two peaks at k = 0, π respectively in all the phases. We
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plot the momentum distribution for U values corresponding to all the three phases. In the

CSF phase, the two peaks are sharp and grow rapidly with system size. But in both the

insulating phases, the peaks decrease in height, and a careful scaling analysis has shown

that these peaks do not grow with system size. In the CMI phase, the peaks are still

sharp in nature, but becomes distinctly broad in the MI phase.

It is known that at a BKT transition, the correlation function decays with distance

following a power law as follows :

〈a†xax′〉 = 〈b†xbx′〉 ∼ 1/|x− x′|1/4 (4.15)

So n(0)L−α with α = 3/4 will be independent of the system length, L. Thus, to locate

the critical point, we plot n(0)L−3/4 for different L as a function of the tuning parameter,

and the point where all the curves intersect each other is identified as the transition point

from CSF to CMI phase. Fig.( 4.17) plots n(0)L−3/4 as a function of U/t with t⊥ = t.

Curves for different lengths intersect at U = 3.98(1), denoting the CSF-CMI transition.

The inset of Fig.( 4.17) shows the charge gap plotted against U/t. It becomes non-zero
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at this point, signalling the onset of the insulating phase, thus providing a non-trivial

consistency check for locating the critical point quite accurately.

To confirm that such an intersection is not obtained for α < 3/4, we plot n(0)L−α

with α = 0.6 and find that these curves for different lengths cross at significantly different

U/t values as shown in Fig.( 4.18) (left panel). Within the CSF phase, however we expect

real-space correlations to decay slower than 1/|x− x′|1/4, so that curves of n(0)L−α with

α > 3/4 are simply expected to cross at smaller U . This is shown in the Fig.( 4.18) where

the crossing point is much well defined for α = 0.75 (middle panel) and α = 0.8 (right

panel)

Having located the CSF-CMI transition point accurately, we now turn to the CMI-

MI transition. It is expected to belong to the Ising class, and so we use the scaling of

rung current structure factor, Sj(π) as shown in Fig.( 4.19). If Sj(k = π) scales linearly

with the length, then it signifies a long-range staggered current order. We thus expect

4.0 4.0 4.1 4.2 4.2
U/t

0.5

1.0

1.5

2.0

S j(π
)L

2β
/ν

L=50
L=60
L=70
L=80
L=90
L=100

-10 0 10
δ L1/ν

0.5

1.0

1.5

2.0

S j(π
)L

2β
/ν

Fig. 4.19: Rung-current structure factor Sj(π)L
2β/ν vs U/t at t⊥ − 1. The intersection point

yields the CMI-MI Ising transition at Uc ≈ 4.08t. The inset shows Sj(π)L
2β/ν vs δL1/ν with

δ ≡ (U −Uc)/t, for different U/t, leading to a scaling collapse for 2D Ising exponents ν = 1 and
β = 1/8
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Sj(k = π) to obey the critical scaling of the form

Sj(k = π)L2β/ν = f((U − Uc)L
1/ν) (4.16)

where Uc is the critical point for the CMI-MI transition, f(..) is a universal scaling func-

tion, and β = 1/8 and ν = 1 are the critical exponents for Ising-like transitions. As

a result, curves of Sj(k = π)L2β/ν for different lengths, L, are expected to intersect at

the CMI-MI transition point, Uc. For t⊥ = 1, this crossing takes place at Uc = 4.08,

as shown in Fig.( 4.19). The inset of Fig.( 4.19) plots the Sj(k = π)L2β/ν as a function

of (U − Uc)L
a/ν . For Uc = 4.08, the plots show a complete collapse. Such an analysis,

when performed for a range of values of t⊥/t, allows us to map the critical points for the

CMI-MI transition very accurately.

4.3.3 Conclusions

In Conclusion, we computed the phase diagram for the FFBH model for a 2-leg ladder,

with π flux per plaquette, depicting three phases : CSF, CMI and MI phases. The CMI

phase is sandwiched between the CSF and the MI phases. This remarkable phase is

gapped and simultaneously supports staggered loop currents which spontaneously breaks

time-reversal symmetry. The transition from CSF to CMI has been confirmed to be of

the BKT type, whereas from CMI to MI belongs to the Ising class.
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043606 (2007).

[11] Guo Huai-Ming, Liang Ying, Commun. Theor. Phys. (Beijing, China) 50, 1142

(2008).

[12] Bo-Lun Chen, Su-Peng Kou, Yunbo Zhang, Shu Chen, Phys. Rev. A 81, 053608

(2010).

[13] A. Dhar, T. Mishra, R. V. Pai and B. P. Das, Phys. Rev. A 83, 053621 (2011).

[14] A. Dhar, M. Singh, R. V. Pai and B. P. Das, Phys. Rev. A 84, 033631 (2011).

[15] A. Dhar, M. Majhi, T. Mishra, R. V. Pai, S. Mukerjee and A. Paramekanti, Phys.

Rev. A (R) 85, 041602 (2012).

[16] S. Greschner, L. Santos and T. Vekua, Phys. Rev. A 87, 033609 (2013).

[17] T. Mishra, R. V. Pai, S. Mukerjee and A. Paramekanti, Phys. Rev. B 87, 174504

(2013).

[18] P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928).



REFERENCES 91

[19] S. R. White, Phys. Rev. Lett. 69, 2863 (1992), Phys. Rev. B 48, 10345 (1993).
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[25] V. M. Stojanović, C. Wu, W. V. Liu, and S. Das Sarma, Phys. Rev. Lett. 101, 125301

(2008).

[26] L.-K. Lim, C. M. Smith, and A. Hemmerich, Phys. Rev. Lett. 100, 130402 (2008).

[27] S. Sinha and K. Sengupta, Europhys. Lett. 93, 30005 (2011).

[28] G. Wirth, M. Olschlager, and A. Hemmerich, Nat. Phys. 7, 147 (2011).

[29] A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, 086803 (2005).



92 REFERENCES



Chapter 5

Time dynamics study of optical

superlattices

5.1 Introduction

After studying the static part of the modified Bose-Hubbard model, taking into account

the superlattice potential, we now turn our attention to the time-dependent scenario,

where one parameter of the hamiltonian will be made a function of time. In particular,

we would be interested in the effects of quasi-adiabatic dynamics of ultracold bosons

loaded in a one-dimensional optical superlattice. Because of the recent developements in

the experimental side, various parameters can be varied in time with sufficient control,

such as the optical lattice depth or the magnetic field close to the Feshbach resonances [1].

Such exquisite experimental facilities has generated much interest to study both sudden

and quasi-adiabatic quantum quenches.

Previous works have analysed the dynamical properties of BH model after a quasi-

adiabatic crossing of the quantum critical point going from MI to SF and vice-versa [1, 2].

The evolution of various local observables such as density, compressibility, and on-site par-

ticle distribution were studied as a function of ramp time using numerical techniques[1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In both the cases, forma-

93
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tion of topological defects were found. More recently, the effects of parabolic trapping

potential were also taken into account [19, 20]. On the experimental side, quenches across

the MI-SF quantum phase transition using ultracold atoms trapped in optical lattices

were performed [21, 22, 23]. Using the time-of-flight measurements, excitations of the

condensate formed after the quench were measured. It was observed that the degree of

excitations and energy produced during the quench have a power-law dependence on the

quench rate, suggesting the excitation process to be governed by Kibble-Zurek mecha-

nism [24]. Moreover the redistribution of quasimomentum in a gas of atoms trapped in

an optical lattice when the lattice depth is reduced was also investigated both experimen-

tally and numerically [25]. Superposition of two optical lattices with different frequencies

can give rise to the study of local relaxation dynamics if a sudden quench in the optical

superlattice is performed.

The mechanism by which defects were formed in the case of classical phase tran-

sitions, by rapidly varying a thermodynamic parameter in order to drive the system

out of equilibrium, in the context of the early universe was first studied by Kibble and

Zurek [26, 27, 28]. More recently, this mechanism has been extended to quantum phase

transitions [29, 30], for the case of adiabatic quenches across a transition point. Com-

pared to classical phase transitons, the quantum phase transitions involve completely

closed quantum mechanical evolution at zero temperature [31]. The quenches are per-

formed by varying a parameter in the hamiltonian which will drive the system from one

phase to another. The quantum evolution in some cases can be described to quite an

extent by means of an effective two-level approximation with an avoided level crossing,

within the Landau-Zener formalism [32, 33, 34]. This led to a number of theoretical stud-

ies on many-body systems, including quantum gases. Despite such efforts, many aspects

involving the response of such systems to slow quenches needs further analysis. In fact, it

is known that in the presence of non-isolated critical points or of extended critical regions,

the validity of K-Z mechanism may not be that obvious. Although in some cases it is still
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possible to predict the defect density by identifying a critical point or by using scaling

arguments [9, 11, 12].

5.1.1 Kibble-Zurek Mechanism

The Kibble-Zurek mechanism (KZM) describes the non-equilibrium dynamics and the

formation of topological defects in a system which is driven through a continuous phase

transition across an isolated critical point between two gapped phases at a finite rate. This

mechanism is attributed to Tom W. B. Kibble, who worked on the structure formation

in early universe in the 1970’s [27], and Wojciech H. Zurek, who carried forward this

formalism to apply in the context of condensed matter systems [27]. The essence of the

mechanism is an adiabatic-impulse-adiabatic approximation. This essentially means that

during the very slow time evolution, when the system is far away from the critical region,

is assumed to be adiabatic in nature, whereas in the close neighbourhood of the gapless

critical point, we consider the system to be effectively frozen out, whereby the state will

remain unchanged. As a result, the state after the transition has a finite correlation length

ξ̂ ∼ τ
ν

1+νz

Q , where τQ is a characteristic time of the adiabatic transition between the two

phases and ν, z are the crtical exponents. This universal scale of length determines density

of excitations or excitation energy above the ground state scales as an inverse power of

the transition time, τQ [34].

It should be noted that the generalized KZM formalism is not only restricted to the

above said scenario. Indeed it can be also extended to the case where one drives an infinite

system into a gapped phase starting exactly at the critical point. It can also be applied

to quantum phase transitions happening in space, and not time, i.e. the parameter in the

hamiltonian driving the transition is time-independent, but inhomogeneous in space, so

that different parts of the system are in different phases. The phase transition can also

be driven in an inhomogeneous way such that some parts of the system cross the critical

point earlier than the other.
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KZM and the Landau-Zener (LZ) model of level crossing are closely related to each

other. The adiabatic-impulse-adiabatic approximation, which forms the central theme in

KZM, can be used to obtain approximate solutions of the LZ model in some limits of the

parameters. There are certain classes of integrable models which can be mapped onto

sets of independent LZ transitions. Such a treatment provides exact solutions supporting

KZM and its generalisations. Time-dependent perturbation theory can also be the starting

point to derive the KZM, although it only reproduces approximately the exact results in

the integrable models.

Under a linear quench, KZM estimates the density of topological defects, and pre-

dicts that it obeys a power law in the quench rate. This prediction is universal in nature,

and the power law exponent is given in terms of the critical exponents of the transition.

The KZM generally applies to spontaneous symmetry breaking scenarios where a global

symmetry is broken.

In this work, we consider a one-dimensional optical superlattice, with a periodicity

of two sites, at integer density. Such a system at zero temperature will undergo a quantum

phase transition between various phases, such as the conventional MI, SF and various su-

perlattice induced Mott insulator (SLMI), which has a periodic modulation in the on-site

occupancy [35, 36, 37]. We study the effects of a linear time variation of the superlattice

potential such that the system crosses multiple critical points, beginning and ending in

the insulator phases, thus passing through SF region. The problem of slow quenching

becomes non-trivial in such a case where the system passes through a quantum critical

point or/and a gapless superfluid region. Since the gap closes, the system is unable to

stay in the equilibrium ground state of the instantaneous hamiltonian, no matter how slow

the quench is performed. Near this non-adiabatic region, the correlation length and the

relaxation time (the time taken for the system to relax to external perturbations) tends
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to infinity. As a result, defects are formed which results in an excited state at the end

of the time evolution. We are interested to study the defect formation in the final state

after the quench is performed, and show a non-trivial scaling of the final excess energy

as a function of the quench rate. We perform our studies in the realm of time-dependent

density matrix renormalisation group method, in the formalism of matrix product states

ansatz.



98 Chapter 5. Time dynamics study of optical superlattices

5.2 Model

The one-dimensional BH model modified for optical superlattice reads as follows :

H = −J
∑

〈i,j〉

a†iaj +
U

2

∑

i

ni(ni − 1) +
∑

i

λini (5.1)

Here ai and a†i are annihilation and creation operators respectively, signifying the

hopping from one site to its neighbouring site, ni is the number operator for a site i,

and λi is the superlattice potential. For a two period optical superlattice, formed by the

superposition of two optical lattices with one having double the frequency of the other,

we can consider λi = 0 for odd sites and λi = λ for even sites. In the absence of λ, the

system underdoes a quantum phase transition from SF to MI at Uc ≈ 3.3 as calculated

using various numerical techniques. Now the presence of λ will shift the lattice depths at

various sites, with repect to its neighbour.

At integer fillings, the system of ultracold bosons can exhibit various phases depend-

ing on the values of U and λ. For U ≤ Uc, the system stays in SF phase for λ = 0. For

a finite λ, the system goes to the SLMI phase with a configuration of [2 0 2 0 ...]. For

U ≥ Uc, the system stays on MI phase with one aton at each site for λ = 0. As λ is

increased, the system enters the SF region when λ value becomes comparable to U value.

A further increase in λ takes the system to SLMI phase, with a configuration of [2 0 2 0

...]. The width of the intermediate SF region decreases as U value is increased as shown

in Fig.( 5.1).

We now vary λ linearly in time as :

λ(t) = λ0 + (λf − λi).t/τ (5.2)

Here τ denotes the time of quench, while λ0 and λf are the initial and final values
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Fig. 5.1: Phase diagram of bosons in an optical superlattice with filling factor one

of the superlattice potential, λ before and after the quench, respectively. We fix the value

of U , and choose accordingly λ0 and λf such that the system starts off in the MI phase,

passes through SF phase, and ultimately ends in the SLMI phase. This evolution scenario

is true for all U values except for U < Uc, where the system starts in the SF phase and

ends in SLMI phase. We perform the quench for various values of τ . Due to the presence

of the gapless region, a finite number of defects will be formed in the final state after

the time evolution, no matter how slow we perform the quench. Our primary aim is to

see how the defect formation depends on τ , and in turn on U , since the width of the SF

region depends on it as mentioned earlier.

The system wavefunction evolves according to the time-dependent Schrödinger equa-

tion as follows :

|ψ(t)〉 = exp(−i

∫ t

o

H(t′)dt′)|ψ(0)〉 (5.3)

whereH(t′) is the time-dependent hamiltonian according to which the system evolves,

|ψ(0)〉 is the initial ground state of the hamiltonian with λ = λ0. For our simulations,
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we evaluated the final time evolved wavefunction, |ψ(t)〉 using the time-adaptive DMRG

within the formalism of MPS. For numerical purposes, the integration is replaced by

summation. We break up the time interval for evolution [0,τ ] into many small slices,

(t, t+∆t) of time interval, ∆ ≪ 1, approximating that H(t) is constant during that small

time-slice. The correponding time-evolution operator is e−iH(t)∆t is expanded using the

sixth order Suzuki-Trotter (ST) decomposition. Let us spend some time to understand

the ST decomposition in a bit more detail.

The first order ST decomposition is given by :

e−iHt ≈ (
L−1
∏

1

e−iH(L,L+1)∆t)n (5.4)

where n = ∆t/t, gives the discretization of time in small intervals ∆t. H(L,L+ 1)

is the interaction hamiltonian (plus the local terms) between site L and L + 1. Higher

order decompositions can be performed by dividing the hamiltonian into two parts, F

and G, defined by F =
∑

LevenH(L,L+ 1), containing only the even bonds and G =
∑

LoddH(L,L+ 1), containing only the odd bonds. Since our hamiltonian consists of

only nearest neighbour terms, F and G will commute. We can then have an even-odd

expansion :

e−iHt ≈ (e−iF ∆t

2 e−iG∆te−iF ∆t

2 )n (5.5)

This is the second order ST decomposition, in which the error is proportional to

(∆t)3. Similarly, higher order approximations can be applied. For an approximation of

order p, the error involved is proportional to (∆t)p+1. For a sixth order decomposition,

we have
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e−iHt =
15
∏

i=1

(e−iH(−1)ici∆t)n +O(∆t)7 (5.6)

Here Hodd/Heven depends on i, and H = Hodd +Heven, and ci are the coefficients.

Considering a time-step of ∆t = 0.05, and a threshold in the weight of the discarded

states as ε = 10−9, by using a bond link dimension m ≤ 200 states for all our simulations,

in which we went to a system size of L = 100, and kept the size of the local Hilbert space

of a particular site fixed to 4, that is, a maximum of three bosons can be accommodated

at each site. In order to quantify the number of defects formed, we look at a quantity

called residual energy, ∆E, which is the difference between the final energy of the system

after evolution and the ground state energy of the final hamiltonian.

∆E = 〈ψf |Hf |ψf〉 − 〈ψg
f |Hf |ψ

g
f〉 (5.7)

The above expression can be further simplified considering the entire eigen spectrum

of the final hamiltonian, Hf . Let ψ
n
f denote the eigen functions of Hf , with n = 0, 1, 2, ....

The ground state eigenfunction corresponds to n = 0 which is also written as n = g in

the above equation. Since ψn
f forms a complete basis, the final wavefunction after time

evolution can be expanded in this basis in the following way :

|ψf〉 =
∑

n

cn|ψ
n
f 〉 (5.8)

where cn denotes the coefficients. Substituting this in the expression of residual

energy, ∆E, we get,

∆E =
∑

n

|cn|
2〈ψn

f |Hf |ψ
n
f 〉 − 〈ψg

f |Hf |ψ
g
f〉 (5.9)
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Fig. 5.2: Plot of residual energy vs 1/τ for U=5.0

Separating the n = 0 part, and identifying |ψn
f 〉 as eigenfunctions of Hf with eigen-

values En
f , we get

∆E =
∑

n 6=0

|cn|
2En

f + |c0|
2E0

f − E0
f (5.10)

Since the states are normalised,
∑

n |cn|
2 = 1, we therefore get

∆E =
∑

n 6=0

|cn|
2(En

f − E0
f ) (5.11)

Hence it can be seen that the residual energy is a weighted sum of all the excitation

energies. The number of defects, or in our case, the deviation from the final ground state

is directly proportional to the residual energy.
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Fig. 5.3: Plot of residual energy vs 1/τ for U=8.0

Table 5.1: List of λ0 and λf for various U

U λ0 λf

2.5 0.0 8.0
5.0 2.5 7.5
8.0 5.5 10.5
10.0 7.5 12.5
15.0 12.5 17.5
20.0 17.5 22.5
25.0 22.5 27.5

5.3 Results

We now present the behaviour of the residual energy, ∆E, when the superlattice potential,

λ is varied in time following Eqn.( 5.2) with various rates. Particularly, we look for the

scaling of ∆E as a function of τ for several values of on-site interaction, U , as shown in

Figs.( 5.3, 5.4, 5.5, 5.7). Table 5.1 lists the initial and final values of λ considered for each

of the U values.

According to the K-Z mechanism, the residual energy typically follows a power law
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Fig. 5.4: Plot of residual energy vs 1/τ for U=10.0
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Fig. 5.5: Plot of residual energy vs 1/τ for U=15.0

behaviour with the quench rate, τ as

∆E ∼ τ−κ (5.12)

where in some cases, the exponent κ can be predicted with high enough accuracy.

Looking at the plots, we can identify three distinct regions as a function of τ . The very
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Fig. 5.6: Plot of residual energy vs 1/τ for U=20.0

slow quench or the adiabatic limit (τ ≫ 1), which is characterised by a universal power

law decay given by κ = 2. On the other side, when τ ≪ 1, it is the sudden quench, where

the initial state is essentially frozen during such a fast quench, and the residual energy

saturates with τ . The intermediate regime is the most interesting one, since it is crucially

affected by the behaviour of the system about the critical points.

In recent years, KZ mechanism has been found useful to explain the dynamics of

systems crossing isolated critical points. It also gives an accurate estimate of the scaling

of the number of defects formed during the quench. Since residual energy is directly

proportional to the number of defects formed, it provides a direct way to estimate κ in

the intermediate regime. As an example, the exponent for 1D quantum Ising model turns

out to be κ∗ = 0.5, when one goes from one gapped phase to another passing through a

critical point.

However the KZ formalism cannot be strictly applied to our case since the system

goes from one gapped phase to another gapped phase, but passing through an extended

gapless region, thus traversing through two critical points. Hence we expect different
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Table 5.2: K-Z coefficients for various U
U κ

2.5 0.98268
5.0 0.955161
8.0 0.932564
10.0 0.917662
15.0 0.866299
20.0 0.809662
25.0 0.752259

exponents in our problem. To extract the values of κ, we first identified the intermediate

region, which will be different for various values of U considered, since the width of the SF

phase varies with U . The results are reported in Fig.( 5.7), and also listed in Table 5.2.

We also tried to find the behaviour of κ with U , and found that it behaves as a power law

also. In the large U limit, where the SF gap shrinks to a point, we find that κ approaches

a value of 0.5, which is the same as the 1D quantum Ising model.

We also studied the dependence of the KZ coefficient on system size. For U = 8.0,

5 10 15 20 25

U

0,75

0,8

0,85

0,9

0,95

α 5 10 20 30

U
0.2

0.3

0.4

α 
− 

α∗

Fig. 5.7: Power law decay rate κ for the excess energy in the intermediate scaling region as a
function of on-site interaction, U . The inset displays the same data in the log-log scale after a
rescaling of κ∗ = 0.5, while the straight line is the best fit to the numerical data for U ≥ 10
correponding to κ− κ∗ = 1.485× U−0.551
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Fig. 5.8: Plots of residual energy as a function of τ for different system sizes

it resulted in a decrease of κ with increase in L, which is consistent with previous works,

as shown in Fig.( 5.8) [19].

5.4 Conclusions

In Conclusions, we have looked at the effects of quenching the superlattice potential as

described in model (Eqn.( 5.1)) linearly in time in the quasi- adiabatic regime. Such

a quenching takes the system from the Mott insulator phase to the SLMI phase passing

through a gapless SF region, thus crossing two critical points. The intermediate SF region

width depends on the on-site repulsive interaction, U . Such a quenching process produces

defects which depend on the rate of quench as well as U . Our analysis has shown a power

law dependence of the residual energy on the quench rate, thus implying a Kibble-Zurek

mechanism to be responsible for the production of defects. KZ coefficients at different

values of U also show a power law behaviour, saturating at a value of 0.5, which coincides

with the value for a Ising model when the system undergoes a quench from gapped to

gapped phase, through a critical point.



108 REFERENCES

References

[1] S.R. Clark and D. Jaksch, Phys. Rev. A 70, 043612 (2004).
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

We now summarize the findings that have been described in the previous chapters. This

thesis has primarily aimed at the study of the behaviour of ultracold atoms when loaded

in an optical superlattice. The search for novel quantum phases that can be exhibited by

these systems is the principal motivation for the present work. This has been achieved

by combining the power of quantum many-body theories with state-of-the art numerical

methods.

We started by investigating a system of ultracold atoms in an optical superlattice

in the context of the Bose-Hubbard model. In the absence of a superlattice potential,

the system of soft-core bosons exhibit two distinct quantum phases at the filling factor of

one. When the ratio of the hopping amplitude (t) to the on-site repulsive interaction (U)

is small, the Mott insulator phase is found to exist, whereas in the opposite extreme, the

superfluid phase is the preferred ground state. This quantum phase transition occurs at

a critical value of (t/U). Turning on the superlattice potential breaks the translational

symmetry of the system. Our analysis has shown that for on-site repulsive interaction

amplitudes smaller than the critical value, the system stays in the gapless superfluid phase

111
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in the absence of the superlattice potential. As the superlattice potential is increased,

the system undergoes a transition to a gapped phase, which has a periodic variation in

the number occupancy of the individual sites, of the form [2 0 2 0 ...]. The behaviour of

the ultracold atoms becomes even more interesting when the on-site repulsive interaction

amplitude is greater than the critical value. In the absence of the superlattice potential,

the system resides in the gapped Mott insulator phase with all the sites being occupied

by one atom. As the superlattice potential is increased, the gap gradually decreases, and

ultimately vanishes when the superlattice potential becomes comparable in magnitude to

the on-site repulsive interaction. This results in the emergence of the gapless superfluid

phase. It should be noted that this superfluid phase exists even at large values of the

repulsive interaction. Further increase of the superlattice potential reopens the gap with

the system entering a gapped phase with a periodic variation in the number density of the

form [2 0 2 0 ...]. This novel phase is peculiar to the superlattice potential, and hence we

named it as superlattice induced Mott insulator. At density half, the system undergoes

a transition from the superfluid phase to the gapped phase with configuration [1 0 1 0

...]. At other incommensurate densities, the system remains a superfluid throughout, but

with a finite density wave order [1, 2].

We had used the density matrix renormalisation group method and the mean field

decoupling approximation to study the above mentioned problems in one and higher di-

mensions respectively. Both the approaches yielded results that are in qualitative agree-

ment with each other. From the ground state wave functions and energies, we evaluated

various physical quantities of our interest, which were used to distinguish between various

quantum phases and characterise them. We presented a complete phase diagram for the

system of optical superlattice at density one.

The introduction of the three-body on-site interaction in the above scenario signif-

icantly modifies the phase diagram. At lower densities, the three-body effects will not

be there since the probability of having more than three atoms at a particular site is
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extremely small. At higher densities, there is a marked signature of the presence of three-

body effects. The insulating lobes get bigger in the phase diagram. Also the location

of the presence of the intermediate superfluid phase gets displaced in the presence of

three-body interaction [3].

Frustrated models embody rich physics, and we analysed two such cases in detail.

The first model that was considered was an optical superlattice with the nearest and next-

nearest hopping amplitudes being finite. This model can be mapped exactly into a zig-zag

ladder with the two legs of the ladder having different potential depths. Hard-core bosons

at half-filling, in the absence of a superlattice potential remains in the superfluid phase

for positive values of the next-nearest hopping ampltude. Negative next-nearest hopping

induces frustration in the system which results in a transition from the superfluid phase

to a gapped bond ordered phase. Finite superlattice potential values in the absence of

next-nearest hopping takes the system to the superlattice induced Mott insulator phase

with a configuration of [1 0 1 0 ...]. On the positive next-nearest hopping region, the

system undergoes a transition from this gapped phase to the gapless superfluid phase.

On the other hand, for negative values of next-nearest hopping the system goes from

the gapped superlattice induced Mott insulator phase to another gapped bond ordered

phase [4].

The second model we considered was that of a two leg ladder, but with inter and

intra-chain hopping such that an effective π flux per plaquette is induced. At high values

of the on-site repulsive interaction, the system resides in the standard Mott insulating

phase with a finite gap. At low values of the interaction, the system is in the superfluid

phase with finite loop current order in each of the plaquettes. We call this phase as the

chiral superfluid phase. For intermediate values of the interaction, the system chooses

the ground state with a finite charge gap and also simultaneously supports a staggered

loop current, thus spontaneously breaking time reversal symmetry. This remarkable novel

quantum phase is called the chiral Mott insulator [5, 6].
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Having explored the ground state properties of ultracold bosonic atoms in an opti-

cal superlattice using the Bose-Hubbard model, we also addressed the dynamics of this

system. By considering the superlattice potential as a function of time, the system is

allowed to evolve, and the properties are investigated after the time evolution. The choice

of the initial and final values of the superlattice potential are made such that the sys-

tem starts off in the Mott insulating phase, passes through the superfluid phase, and

then becomes a superlattice induced Mott insulator. In this journey, the system passes

through two quantum critical points, and hence the final evolved state is expected to have

defects present in it. The number of defects formed is proportional to the residual energy,

and it is observed to scale with the rate of quenching, following a power law behaviour.

We therefore conclude that the Kibble-Zurek mechanism holds for this system in order

to explain the generation of defects. An interesting observation we made was that the

exponent of the power law depended on the width of the superfluid region.

6.2 Future Directions

The rapidly developing field of ultracold atoms has brought to the fore a wide range of

important problems that can be explored in the future. Some of them are listed below.

• Ultracold molecules are becoming increasingly important especially now that it is

possible to experimentally cool and trap them in optical lattices. The study of

molecules with long-range interactions due to strong dipole moments can exhibit

a number of novel quantum phases depending on internal states. Internal states

include hyperfine and rotational degrees of freedom that can be controlled using

external fields.

• The dynamics of ultracold molecules with long-range interactions will be worth

investigating. At incommensurate densities, the supersolid phase exists in such

systems. Hence it would be quite interesting to study the dynamics in such systems,
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and to shed light on whether this dynamics would be regular or chaotic in nature.

Investigating the validity of the Kibble-Zurek mechanism in such evolution secnarios

will also be interesting, where analytical studies are not possible including non-

integrable systems.

• Another problem which is of current interest is the role of quantum chaos and the

outstanding question of the relation between chaos analogs in strongly-correlated

systems, semiclassical chaos, and spatial entanglement. The latter is naturally

tracked dynamically in the matrix product state method.

• Two dimensional optical lattices with long-range interaction can give rise to various

types of charge density waves, by taking into account different nearest neighbour

couplings. A detailed exploration of the elusive supersolid phase and its properties

in a two dimensional optical lattice can be investigated.

• Quantum magnetism, especially the study of frustrated antiferromagnets have been

at the cutting edge of condensed matter physics for decades, having implications

from high temperature superconductors to spintronic devices. Cold atoms offer op-

portunities to create various frustrated spin models in triangular, or even Kagome

lattices. In the past few years, quantum magnetism involving higher spins [SU(N)]

has been a topic of considerable interest. It has been proposed that such SU(N) Hub-

bard model describing N-flavor fermions hopping on a lattice with flavor-independent

on-site interactions can be achieved using ultracold alkaline-earth-metal atoms. We

can consider a dimerized 2D optical lattice and triangular lattice with fermions of

spin greater than 1/2, along with different hopping among neighbouring sites. The

inclusion of harmonic trap in such a system will also give rise to interesting physics.

• The dynamics of the zig-zag ladder with optical superlattice where the system is

quenched across different quantum critical points can be investigated, and the va-

lidity of the Kibble-Zurek mechanism can be checked.
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• The projects described above involve bosonic atoms. It would be perfectly in order

to focus on ultracold fermionc gases, and explore novel quantum phases and new

types of quantum dynamics possible for systems with long-range interactions.

• The density matrix renormalisation group method and the matrix product states

method yield very accurate results for one-dimensional systems, but fail to do so

in higher dimensions. Hence, developing a method which would be suitable in

higher dimensions could be a challenging project. One such candidate is the coupled

cluster method, but to date, it has not been formulated for bosonic atoms in optical

lattices. This method has been applied to spin systems in two dimensions, and has

shown to reproduce fairly accurate results and provide new insights. This provides

the impetus to develop suitable coupled cluster formalisms that could be fruitfully

applied to ultracold bosonic and fermionic atoms in two and three dimensional

optical lattices.

The last two decades have been a witness to an overwhelming progress in atomic,

molecular and optical (AMO) physics. It can be undoubtedly said that ultracold atoms

will be at the forefront of modern physics for the coming decades. As mentioned in the

Introduction chapter in this thesis, it has a wide range of applications, starting from

fundamental physics to industrial purposes. Till date eight physicists have been awarded

the Nobel Prize in Physics, the latest being in 2012. This clearly implies the importance

of the field of ultracold atoms. Because of great advancements in trapping of ultracold

atoms and molecules in various optical lattice geometries, experimentalists have been

able to reach regimes which were unthinkable even one decade ago. The high degree of

controllability and tunability for various system parameters, together with the near defect

free systems, have caused these systems to become testbeds for phenomena from various

branches of physics. Along with the experimental progress, this is also the right moment

for theoreticians to investigate different systems and predict novel quantum phases with
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signatures which can be observed experimentally. The future directions proposed in this

thesis is extremely relevant in the current scenario, and if pursued, would surely contribute

a lot to the scientific community.
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