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Abstract

A nearly self contained and detailed introduction to TDE physics with novel aspects

and a summary of observations is provided.

We have constructed a dynamical model of tidal disruption events (TDEs) that includes

physical parameters such as black hole (BH) mass M•, specific orbital energy E and

angular momentum J , star massM? and radius R?, and the pericenter of the star orbit

rp(E, J, M•). We have calculated the capture rate of stars Ṅt, in the galactic center

for a stellar density profile ρ ∝ r−γ with an initial mass function given by Kroupa

(2001), by solving the steady state Fokker-Planck equation and integrating over the

{E, J} phase space. Following the steady accretion model of Strubbe and Quataert

(2009), we calculate the rise time, the peak bolometric luminosity in terms of these

physical parameters and a typical light curve of TDEs which is then compared with the

detectors sensitivity to obtain the duration of flare detection. For the standard ΛCDM

model, black hole mass function of quiescent galaxies, we calculated the detection rate

of TDEs by various surveys such as Large Synoptic Survey Telescope (LSST), Pan-

STARRS 3π in optical bands and eROSITA in X-ray band and discuss the follow up of

TDEs through observations in various spectral bands from X-rays to radio wavelengths.

The crucial point is that the J plays an important role in the stellar dynamical process

through Ṅt and the accretion process through pericenter rp(E, J) which impacts the

detectable TDE rates; this has not been taken into account in previous calculations.

We have also constructed a self similar model of a time dependent accretion disk in

both super and sub-Eddington phase with fallback from outer debris and a general

viscosity prescription Πrφ ∝ Σb
dr
d where Σd is surface density, r is the radius and b

and d are constants that depends on the nature of pressure in the disk. The specific

choice of radiative and alpha viscosities and its parameters is decided by the expected



disk luminosity and evolution time scale being in the observed range. The outflow wind

structure in super-Eddington phase is modeled analytically using vertical momentum

equation. We have also constructed the transition dynamics of disk between the super-

Eddington to sub-Eddington phases and modeled the evolutionary track of TDEs. We

have fit our time dependent accretion models to the observations in X-ray, UV and

optical bands and found that the time dependent model shows a good fit to the

observations compared to steady accretion models.

We study the distribution of black hole mass and star mass in redshift obtained from

time-dependent models fit described above to the observations and found that the

TDEs are dominated by the disruption of low mass star by low mass super-massive

black holes with black hole mass M• ≤ 2.1× 107 M�. We also use the steady accre-

tion model with time varying accretion rate of Mageshwaran & Mangalam (2015) to

obtain the peak luminosity Lp with corresponding time tp in the given spectral bands

and assuming luminosity L ∝ t−5/3, obtained the flare’s detection duration which is

then compared with the detectors sensitivity to obtain the redshift limit of detection.

Using the stellar dynamical model of theoretical capture rate given in Mageshwaran

& Mangalam (2015), the Schechter black hole mass function with a duty cycle δ(z),

and the detector survey parameters such as sensitivity fl, cadence tcad and integra-

tion time tint, the expected detection rate was calculated which is then equated with

the observed detected rates of TDEs by the previous and ongoing surveys to derive

the Schechter parameters. We find that the discrepancy between theoretical and ob-

servational capture rates can be explained by the fact that the theoretical TDE rate

statitistically galaxy averaged over the black hole mass function is close to the observed

values of ∼ 2× 10−5/yr.
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(5.87) in steps over z, `, ē and m for various γ for (a) LSST survey
and (b) Pan-STARRS 3π survey for γ =0.6 (blue), 0.8 (red), 1.0
(orange), and 1.2 (brown). With increase in γ, the detectable rate
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Chapter 1

Introduction
Image: NASA/JPL-Caltech

The black holes, even though invisible, have strong effects on their surroundings

leading to various fascinating phenomena. Black holes are found in the universe

at all scales from stellar mass black holes in X-ray binaries to supermassive black

holes (SMBHs) in the galactic center. It is well known from observations that su-

permassive black holes (SMBHs) reside at the center of galactic nuclei (Kormendy

and Richstone 1995; Kormendy and Ho 2001) and the most luminous active nuclei

are called as quasars (quasi stellar objects). The quasars are the most powerful

known sources of energy in the universe that converts the mechanical energy of the

gas in the surrounding disk into radiation energy. These active quasars that are

also called as active galactic nuclei (AGN) are observationally identified through

high luminosity, strong emission lines in the spectra, variabilities, and jets (Tad-

hunter 2008; Padovani et al. 2017). The emission in various spectral bands are

associated with various physical processes: the emission in X-ray is associated

with the accretion disk and corona, ultraviolet (UV) and optical emission are due
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to accretion disks, infrared emissions is due to obscuration from dust clouds and

molecular disk, γ rays, and radio bands are associated with non-thermal emission

of inverse Compton and synchrotron respectively. The observation of AGNs at all

redshifts is used to obtain the luminosity function (Schechter 1976; Ueda et al.

2003) and study the evolution of black holes in the universe (Natarajan 2011;

Shankar et al. 2013).

However, all galaxies are not active, there are galaxies whose central black hole has

negligible or no surrounding disks and are called dead quasars or inactive galaxies

(Esquej et al. 2008; Lin et al. 2015). The observations of AGNs are insufficient

to study the black hole mass distribution as there are inactive galaxies which

are comparable or higher in number to the active galaxies in the local universe

(Soltan 1982; Shankar et al. 2013). The tidal disruption of stars provides the

mass for accretion by the black hole leading to emission and thus is a promising

phenomenon to observe the inactive nuclei.

A tidal disruption event depends on both the stellar dynamics of stars and the gas

dynamics of the disrupted debris. A star orbiting around the black hole experiences

gravitational encounters with other stars which results in the change in the energy

and angular momentum of the star until it falls in so close to the black hole

where the black hole’s tidal gravity, Fg = GM•R?/r
3
p, exceeds the star’s self-

gravity, Fs = GM?/R
2
?, leading to the tidal disruption of star. The strength of the

encounter is given by

ηt =

(
Fs
Fg

) 1
2

=

(
r3
p

GM•R?

GM?

R2
?

) 1
2

, (1.1)

and the star is tidally disrupted if ηt ≤ 1 which results in
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rp ≤ η
2/3
t

(
M•
M?

)1/3

R?, (1.2)

so that the tidal radius is given by

rt = η
2/3
t

(
M•
M?

)1/3

R? = 2.2× 10−6η
2
3
t

(
M•

106M�

) 1
3
(
M?

M�

)− 1
3
(
R?

R�

)
pc, (1.3)

with η is typically taken to be unity. In terms of mean density ρ̄? = 3M?/(4πR
3
?),

the tidal radius is given by

rt
Rs

' 109

(
M•

106M�

)−2/3(
ρ̄?
ρ�

)−1/3

, (1.4)

where Rs = 2GM•/c
2 is the Schwarzchild radius and ρ� = 1.41 g cm−3 is the

average density of sun. For a star to be tidally disrupted, rt > Rs which yields

ρ̄?
ρ�

< 1.3× 106

(
M•

106M�

)−2

. (1.5)

The compact objects such as white dwarf (ρ̄? ∼ 106 g cm−3) can be tidally

disrupted by low mass super-massive black holes whereas neutron star (ρ̄? ∼

1014 g cm−3) and black holes (ρ̄? ∼ 1015 g cm−3) have high densities and are

directly swallowed by the black hole.

The presence of tidal radius, results in a loss cone in the phase space, such that

any star whose velocity vector lies within the cone has its pericenter less than the
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tidal radius, leading to the capture of a star. Stars in the galactic center move in

the combined potential field of the SMBH and other stars in the galactic center.

A star with orbital energy E is tidally captured if the orbital angular momentum

is J ≤ Jlc =
√

2r2
t (Φ(rt)− E), where Jlc is the angular momentum of the loss

cone (Frank and Rees 1976) and Φ(r) is the combined potential of the BH and

other stars in the galactic center. The stellar interactions result in the diffusion of

the stars into the loss cone. The stellar distribution function (DF) f(E, J) obeys

the Fokker–Planck (FP) equation (Bahcall and Wolf 1976; Lightman and Shapiro

1977) and the rate of feeding of stars into the loss cone gives the theoretical tidal

disruption event (TDE) rate Ṅt. The rate of TDE per galaxy depends on the

stellar distribution in the galactic center, the SMBH mass M• and the structure

of galactic nuclei that could be axisymmetric, spherical, or triaxial nuclei (Merritt

2013a). Cohn and Kulsrud (1978) obtained the numerical solution to the FP

equation for spherical nuclei by means of a detailed boundary layer analysis and

applied it to globular clusters. Wang and Merritt (2004) solved the steady state

FP equation for the 51 galaxies with the Nuker profile by assuming a single mass

star distribution and obtained the Ṅt ∼ 10−4− 10−5 Yr−1. They further predicted

that Ṅt ∝ M−0.25
• for the isothermal case (also see Merritt (2013b)). Stone and

Metzger (2016) employed a stellar mass function, ξ(m), in their DF, and applied

it to a sample of 200 galaxies, and obtained Ṅt ∝M−0.4
• . Magorrian and Tremaine

(1999) solved the steady state FP equation for an axisymmetric nuclei with stars

on centrophobic (avoiding the center) orbits and obtained Ṅt ∼ 10−4M−0.19
• Yr−1.

The star tidally captured is disrupted and the debris following a Keplerian or-

bit returns to the pericenter (Rees 1988). We consider a star approaching the

BH on a parabolic orbit with pericenter distance Rp ≤ Rt. The star approaches

the black hole in dynamical time tdyn = (R3
p/(GM•))

0.5 with a tidal acclera-

tion a = GM•R?/R
3
p. Thus, the velocity change is given by ∆v = atdyn =

(GM•/Rp)
0.5(R?/Rp) = vorb(R?/Rp). For R? � Rp, ∆E ∼ vorb∆v ∼ GM•R?/R

2
p

where ∆E is the change in energy of the star debris as shown in Fig 1.1. As a star
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Figure 1.1: The disruption of a solar type star is shown for a parabolic orbit.
Nearly half of the debris is bound to the black hole and remaining escapes.
Courtesy: Rees 1988

comes close to the hole, the gravitational torque will spin up the star to a good

fraction to its co-angular velocity so that by the time it gets disrupted, it spins

close to its break up angular velocity (Li et.al 2002). To take into account this

effect, the spin factor “k” is introduced which is given as (Rees 1988; Alexender

& Kumar 2001).

k =

 1 non spin up ( no change in angular velocity)

3 spin up to break up angular velocity,
(1.6)

such that the energy is given by

∆E = −kGM•∆R
R2
p

, (1.7)

and the maximum energy is the energy of most tightly bound debris given by
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∆Emax = −kGM•R?

R2
p

. (1.8)

As the bound material falls back to its pericenter, it loses its energy and angular

momentum on time scales much shorter than t and thus accretes into the MBHs

and give rise to a flare (Phinney 1989). The total accretion rate of the debris

following Keplerian orbits at time t after disruption is given by

dM

dt
=

dM

d4E
d4E
dra

dra
dt

=
1

3
(2πGM•)

2
3

dM

d4E
t−

5
3 . (1.9)

The term (dM/d4E) is the energy distribution within the bound matter and

depends on the internal structure of the star. The time after which the most

tightly bound debris passes through its pericenter after disruption is given by

tmin =
π√

2GM•

R3
p

R
3
2
?

k−
3
2 . (1.10)

A schematic representation of the disrupted star is shown in Fig 1.2. The energy

spread is maximum for 4R = R?. If ρ(R) is the spherically symmetric mass

density of the star, then

dM

d4E
=

dM

d4R
d4R
d4E

' dM

d4R
R?

4Emax
;

dM

d4R
= 2π

∫ R?

4R
ρ(R)RdR (1.11)

We then define ε = −4E/4Emax as our dimensionless energy, x = 4R/R? as our

dimensionless pericenter distance and m = M/M?.
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Figure 1.2: The schematic represntation of the star disrupted by the black
hole. Courtesy: Lodato et al. 2009

The density profile ρ(R) can be obtained from the Lane-Emden equation which is

given by

1

χ2

d(χ2 dθ
dχ

)

dχ
= −θn (1.12)

so that ρ(R) = ρcθ
n where ρc is the central density of the star and radius R = αχ.

In terms of dimensionless quantities,

ε = x = τ−
2
3 ;

dm

dε
=

dm

dx
= 2πb

∫ 1

x

θn(x′)x′ dx′ ;
dm

dτ
=

2

3

dm

dε
τ
−5
3 (1.13)

where τ = t/tmin and b is the ratio of central density to mean density. Then, the

total mass accretion rate is given by Ṁ = (M?/tmin)(dm/dτ) and is shown in Fig

1.3 which follows t−5/3 at late stages.
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Figure 1.3: The evolution of dimensionless accretion rate for various values of
n = 3/2 (blue), 5/2 (red) and 3 (yellow). The late accretion rate follows t−5/3.

Thus the peak accretion rate and time of peak accretion for a star disrupted at

the tidal radius rt, are given by

Ṁp = 7.9× 1025 g sec−1 k
3
2m0.8M

− 1
2

6 (1.14)

tp = 38.55 days k−
3
2m0.2M

1
2

6 . (1.15)

Since the emission is dominated at inner radius rin, the luminosity is given by

L =
GM•Ṁ

rin
ζ, (1.16)

and is a function of accretion rate. Assuming that the accretion rate follows the

fall back rate, the peak luminosity is given by

Lp = 7.1× 1046 erg sec−1 k
3
2 m0.8 M

− 1
2

6 Z−1(j), (1.17)
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where rin is taken to be the ISCO given by rISCO = RsZ(j)/2, with Rs = 2GM•/c
2

is the Schwarzschild radius, j is the black hole spin and Z(j) is given by (Bardeen

et al. 1972)

Z1(j) = 1 + (1− j2)
1
3

[
(1 + j)

1
3 + (1− j)

1
3

]
(1.18a)

Z2(j) =
√

3j2 + Z1(j)2 (1.18b)

Z(j) = 3 + Z2(j)−
√

(3− Z1(j))(3 + Z1(j) + 2Z2(j)). (1.18c)

Since the rise of bolometric luminosity is sharp, we assume the rise to be linear

such that the total energy released during rising phase is given by

Erise =
1

2
Lptp = 1.67× 1053 erg m Z−1(j), (1.19)

and the total energy released is given by

ET = ζ

∫ ∞
tmin

GM•Ṁ

rin
dt = ζ

GM•
rin

1

3
(2πGM•)

2
3

∫ ∞
tmin

dM

d∆E
t−5/3 dt. (1.20)

For a constant dM/d∆E given by

dM

d∆E
' M?

∆E
' η2/3

k

1

G
M1/3

? M−1/3
• R?, (1.21)

and tmin = π
√
r3
in/(2GM•), the time period of inner orbit, eqn (1.20) gives
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ET =
η2/3

k

GM
5/3
• M

1/3
? R?

r2
in

ζ, (1.22)

and employing the ISCO radius as the inner radius, we obtain

ET =
η2/3

k

c4

G
M−1/3
• M1/3

? R?Z
−2(j)ζ (1.23)

= 8.4× 1054 erg

[
η2/3

k
m1/3M

−1/3
6

R?

R�
Z−2(j)ζ

]
. (1.24)

For a Schwarzschild black hole, j = 0, which gives Z(0) = 6 and the ratio of energy

released to star mass energy M?c
2 is given by

fR =


ER
M?c2

= 0.0155 rising phase

ET
M?c2

= 0.129η
2/3

k
m−2/3M

−1/3
6

R?
R�
ζ total energy,

(1.25)

implying that the energy in the falling phase (after the peak) is EF = ET − ER.

The debris experience stream collision either due to incoming stream that inter-

sects with the outflowing stream at the pericenter (Kochanek 1994) or due to

relativistic precession at the pericenter (Hayasaki et al. 2013). These interactions

result in circularization of the debris to form an accretion disk (Hayasaki et al.

2013; Shiokawa et al. 2015; Bonnerot et al. 2016). The hydrodynamical simula-

tions by Ramirez-Ruiz and Rosswog (2009) have shown that the debris interactions

result in the formation of an accretion disk with mass accretion rate showing devi-

ation from Lodato et al. (2009) at early times and following t−5/3 in the late stages.

Very recently, Bonnerot et al. (2016) have performed hydrodynamical simulations
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for a star on a highly elliptical orbit with the resulting debris undergoing apsidal

precession; they found that the higher the eccentricity (and/or) the deeper the en-

counter, the faster is the circularization. For an efficient cooling, the debris forms

a thin and narrow ring of gas. For an inefficient cooling, they settle in a thick

and extended torus, mostly centrifugally supported against gravity. The general

relativistic hydrodynamical simulation by Shiokawa et al. (2015) have shown that

the accretion rate still rises sharply and then decays as a power law. However,

its maximum is 10 % smaller than the previous expectation, and timescale of the

peak accretion is longer than the previously predicted values. This is due to the

mass accumulation at higher radius because of angular momentum exchange at

large radii. The overall conclusion is that the resulting debris will form an accre-

tion disk. The thickness of the disk formed and the circularization timescale as a

function of stellar parameters and M• are still need to be evaluated.

The accretion of gas to the black hole depends on the viscous dynamics in the

accretion disk and the pressure dominated. The viscosity depends on the nature

of pressure dominating in the disk such as α viscosity for gas pressure dominated,

the radiative viscosity for radiation pressure dominated, magnetic viscosity and

gravitational instability. Shakura and Sunyaev (1973) constructed a thin disk

steady accretion model with an α viscosity prescription whereas Pringle (1981)

constructed a time-dependent accretion model. The thin disk model is applicable

when the accretion rate is smaller than the Eddington rate but once the accretion

rate crosses the Eddington rate, the disk gets puffed up and the scale height is com-

parable to the radius. Such a disk is called slim disk which is radiatively inefficient

and some fraction of energy generated due to viscous heating is consumed by the

black hole (Paczyńsky and Wiita 1980; Jaroszynski et al. 1980; Abramowicz et al.

1988). The strong radiation pressure also results in an outflowing wind. The self

similar time-dependent accretion model for a sub-Eddington disk was constructed

by Mangalam (2001) with a general viscosity prescription Πrφ ∝ Σb
dr
d where Σd is
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the surface density of the disk, r is the radius and b and d are constants; this sub-

sumes the self similar accretion models derived earlier by (Lin and Pringle 1987;

Pringle 1981; Cannizzo et al. 1990). The TDE disks are complicated in the sense

that not only they simultaneously have accretion by the black hole and the fall

back from outer debris, but also a wind. Strubbe and Quataert (2009) constructed

a model of a slim disk with a spherical outflowing wind with an accretion rate that

follows the fallback rate. Shen and Matzner (2014) constructed a model of TDE

disk with and without fallback from disrupted debris by developing a self-similar

structure of a non-radiative, advective disk with an outflowing wind and using the

self-similar solution of Cannizzo et al. (1990) for a radiative thin disk with total

angular momentum constant.

The luminosity function (LF) which is the number of galaxies per unit co-moving

volume per unit log luminosity is useful in the demographics study of the black

holes and is usually obtained from observations of AGNs. The first analytic ap-

proximation for the luminosity function was proposed by Schechter (1976) which is

fit to the observed profile in optical bands (Turner and Gott 1976; Mobasher et al.

1993; Marzke et al. 1994; Muriel et al. 1995; Lin et al. 1996; Brown et al. 2001).

Ueda et al. (2003) investigated a sample of 247 AGNs over a wide flux range in

2-10 keV band to obtain the hard X-ray LF (HXLF) that is modeled by luminosity

dependent density evolution model (LDDE) which has a double power-law profile

along X-ray luminosity LX and an evolution factor that depends on redshift and is

used by (Shankar et al. 2009, 2013) to study the black hole evolution with redshift.

Hopkins et al. (2007) combined a large set of quasar luminosity function (QLF)

measurements from optical, soft and hard X-ray and Infrared bands in the redshift

interval z = 0− 6 to obtain the QLF that follows a double power-law profile along

luminosity which is a function of redshift and the QLF peaks at z = 2.15± 0.05.

The BHMF from LF is generally derived assuming the luminosity to be at the

Eddington limit. The observed nature of down-sizing in LF at both high and low

redshift with a peak at z = 2− 3 (Hopkins et al. 2007) implies that the non-active
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galaxies dominate at low redshift and low mass SMBHs dominate at high redshift

which grows by accretion.

The rate tension between the derived capture rate ∼ 10−4 yr−1 and the observed

rate ∼ 10−5 yr−1 depends on the distribution function of stars, the initial mass

function of stars, the relaxation mechanism and the structure of the galactic nuclei.

The accretion model of the TDEs is crucial to fit the observed light curve to get

the black hole mass and star mass. The derived black hole mass is useful to study

the demographics of black hole distribution.

1.1 Goals of the thesis

1. To provide a self-contained introduction with novel aspects to the physical

theory and observations of TDE.

2. To construct a stellar dynamical model of TDEs that includes the initial

mass function of stars to calculate the theoretical capture rate.

3. To construct a self-consistent accretion model of time-dependent TDE disk

that includes the flows of accretion, fall back, and the outflowing wind.

4. To fit the accretion model to the observed light curves to deduce the physical

parameters such as black hole mass and star mass to study the demographics

of black holes.

5. Using the stellar and accretion dynamical model to calculate the TDE de-

tection rate and compare it with the observed rates to deduce the BHMF.

6. To provide a context and approach for future studies in this field.

The pericenter of a star orbit is a function of orbital energy E and angular momen-

tum J . The J plays an important role in the stellar dynamical process through
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capture rate Ṅt(E, J, m, γ) and the accretion process through the pericenter

rp(E, J, M•, m) which impacts the detectable TDE rates; this has not been taken

into account in previous calculations. The inclusion of J in the calculation includes

all the possible stellar orbits and decides the radius upto which debris is bound to

the black hole at the moment of disruption and thus the fallback rate of the debris.

We have constructed a stellar and gas dynamical model of TDEs that includes J

and obtained a mass fallback rate which follows the structure of Lodato et al.

(2009) for a star with energy E = 0 and rp = rt. Using this, we have constructed

an accretion dynamical model of a time-dependent disk that includes all the es-

sential physics of accretion, wind and mass fallback. The detection rate of TDEs

depends on the theoretical capture rate, duration of TDE observation, BHMF of

non-active galaxies and instrumental parameters such as sensitivity, cadence and

integration time. Thus, the reverse can be done, that is by knowing the detection

rate of TDEs through observations, one can derive the BHMF.

1.2 The plan of thesis

The chapter-wise plan of the thesis is given below and is shown in Fig 1.4.

In chapter 2, we will discuss the history of transients, the observation of TDEs,

the classification of the source and the host galaxy properties. The demographics

of black holes from mass estimates in the literature will also be discussed. The

discussion on various surveys and the observations of TDEs will be presented.

In chapter 3, we will study the basic dynamics of stars in the galactic center. We

will discuss the distribution of stars through the distribution function and the

phenomena of gravitational interactions to calculate the diffusion coefficients and
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hence the Fokker-Planck equation. The loss cone dynamics and the capture of

stars will be calculated.

In chapter 4, we will study the basic accretion dynamics and the viscous stress

for the transport of angular momentum. The various viscosity paradigms will be

discussed and the accretion models such as standard thin disk and slim disk will

be investigated in both steady and time-dependent scenarios.

In chapter 5, we will construct a stellar and gas dynamical model that includes

the physical parameters such as black hole mass, star mass, star orbital energy

and angular momentum. We will derive the theoretical capture rate and use the

steady accretion models to calculate the detectable rate of TDEs by the various

survey.

In chapter 6, we will build the time-dependent model of accretion disks using a

general viscosity prescription that is a function of the surface density of disk and

radius. The choice of viscosity for different disks will be investigated and the

transition from one to another disk will be discussed.

In chapter 7, we fit our time-dependent accretion model to observations in various

spectral bands and deduce the physical parameters such as black hole mass and

star mass to study the demographics of black holes. The detectable rate for various

missions will be compared with the observed rate to derive the BHMF.

In chapter 8, we will summarize our work, discuss the novel aspects, and its im-

plications to the observations. The caveats and future theoretical approaches will

also be presented.
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Figure 1.4: The plan of the thesis is shown.



Chapter 2

Observations of TDEs

Image: ASAS-SN 14li
NASA/CXC/U. Michigan/J. Miller et al.

2.1 Introduction

The galaxies are classified into two broad categories that are active galactic nu-

clei (AGN) and quiescent nuclei. In AGNs, the central supermassive black holes

(SMBHs) accrete matter from the surrounding disk leading to luminosity in the

range Lbol ∼ 1041−1048 erg sec−1 with emission in all spectral bands ranging from

X-rays to radio bands and the host nuclei exhibit strong emission line features in

their spectra. The nuclei of some galaxies show no evidence of any AGN activity

which indicates that the black hole present is starved of fuel and are known as

quiescent galaxies which can be observed through the emission from the accretion

of debris by tidally disrupted stars leading to a transient event.

The Universe consists of various transient events such as gamma ray burst (GRB),
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cataclysmic variable star, kilonovae, supernovae, X-ray binaries, tidal disruption

events and AGN variability. The classification of the source in either of the cat-

egory depends on the luminosity, timescale, and spectral properties. GRBs are

highly luminous short duration events whose timescales varies from few seconds to

days with the luminosity ∼ 1051 − 1054 erg sec−1. The cataclysmic variable stars

are binary stars in which a high-density star consumes matter from the normal star

and the timescale varies over months. Kilonova is the merging of two neutron star

and is dominated in optical and infrared bands whereas supernova where a star

undergoes thermonuclear explosion, occurs on a timescale of hours to months. The

X-ray binaries where a black hole accretes matter from the companion star emits

in all spectral bands with X-ray luminosity ∼ 1038 erg sec−1 and timescale varies

over few days. The AGN variability is long duration transient which shows sub-

stantial variability over multiple timescales extending to years and even decades.

The tidal disruption events also vary over a timescale of months to years and can

be separated out from the AGN variability by its non-repetitive nature unless the

disruption of a star is partial as seen in case of TDE IC3599 with a gap of 20

years in successive peak luminosity. The TDEs and AGN variability can also be

classified on the basis of spectral properties where the AGN spectra are dominated

by narrow emission lines and TDE spectra are dominated by broad emission lines.

Any transient event detected by an All-Sky Survey or Deep Imaging Survey is

followed up by ground and space-based detectors with observations ranging from

X-rays to radio and the classification of the source depends on the light curve profile

and spectral properties. Since the TDE transients are nuclear transients, it is

necessary to subtract the background galaxy to extract the source. The analysis for

transient source requires source file and reference files which are the observations

later or prior to the detection of the transient. The difference imaging analysis

(DIA) is performed where the source file is subtracted from the reference file

by modeling the alignment difference, the point spread function (PSF), exposure

time, atmospheric extinction and sky background between them that results in
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the removal of all non-varying sources leaving out the varying sources. The source

offset from the galactic center is measured by getting the position of the source

from DIA and the centroid of galaxies based on the stacks of previous observations.

The emission is considered to be nuclear if the source lies within a few arcseconds

from the center.

The detection of the host galaxy of the source prior to the event is necessary to

quantify the nature of the source and the host galaxy. In those galaxies whose

archival spectrum is unavailable, one has to wait until the transient fades away.

If there are no X-ray observations from the galactic center prior to the transients,

then the galaxy is considered to be non-active or weak AGN whose classification

depends on the spectral properties. To extract the spectral features from the

galactic center, the contribution from stellar population needs to be removed.

The stellar population synthesis (SPS) model (Bruzual and Charlot 2003) is fit

to the host galaxy emission assuming an extinction law, declining star formation

history and an initial mass function (mostly Salpeter mass function is considered).

The SPS model fit provides us the star formation rate, the age of the stellar

population and the template spectrum that is to be subtracted from the host

spectrum to extract the spectrum from the central region. If the host spectrum

is dominated by absorption lines such as Balmer lines (Hα 6563 Å, Hβ 4861 Å),

Ca I G band (4304 Å), Mg I (5175 Å), Na I (5894 Å), Ca H (3934 Å) & K (3969

Å) and 4000Å break lines, the galaxy is populated with the intermediate-age

and old stellar populations. The strength of the 4000Å break caused by the

blanket absorption of high-energy radiation from metals in stellar atmospheres is

the characteristic of the old stellar population in the galaxies. There are some

TDEs whose host galaxy spectra shows the emission lines such as Hα, Hβ, Heii ,

Oii, Oiii, Nii and Sii with low intensity which suggests that the host could be a

weak AGN.
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2.2 Classification of host galaxies

AGN comprises of a broad class that includes a large variety of subtypes with the

luminosity range Lbol ∼ 1041 − 1048 erg sec−1. Seyfert galaxies were the first and

most common class of AGN we observe in the local universe with highly ionized

emission lines such as Hα, Hβ, Hγ and forbidden lines such as Oiii, Oii, Oi, Niii,

Nev, Nii. If the Balmer emission lines are broader (FWHM 103 − 104 km sec−1)

than the forbidden lines, the galaxy is Seyfert class 1 whereas the galaxy is Seyfert

class 2 if the forbidden and Balmer lines show the same narrow width. The presence

of strong Feii at 4570Å in the optical spectra is an indication of Seyfert class 1.

There are also intermediate Seyfert class subtypes known as Seyfert 1.2, 1.5, 1.8

and 1.9 according to their Balmer characteristic (Osterbrock 1977). The Seyfert

1.2 is a Seyfert galaxy with broad Balmer lines but slightly less broad Hβ lines.

In Seyfert 1.5, the strength of Hα and Hβ are comparable whereas Seyfert 1.8

shows weak broad Balmer lines. The Seyfert 1.9 has a broad Hα line and narrow

Hβ line. A subset of Seyfert 1 galaxies are the Narrow-Line Seyfert 1 (NLS1)

galaxies which are strong X-ray emitters but their Hα lines are broad, their Hβ

line is narrow (FWHM < 2000 km sec−1) and possess weak Civ and Ciii emission

lines. A class of galaxies known as low-ionization nuclear emission line regions

(LINER) galaxies have low luminosity core (Lbol ∼ 1040 erg sec−1) and strong

emission lines originating from the low ionized non-stellar gas with line widths

FWHM 200 − 400 km sec−1. LINER’s have strong emission lines Nii (6584 Å),

Sii (6731 Å) as compared to the Hα line. LINER galaxies properties are similar

to Seyfert 2 galaxies but have low luminosity which suggests that the LINER

is accreting with low radiative efficiency or at a low rate compared to Seyferts.

Some galaxies with emission line spectra similar to Seyfert 2 galaxies with massive

gas clouds of ionized hydrogen, the so called HII galaxies are preferentially spiral

galaxies and often exhibit strong forbidden oxygen lines compared to the Balmer

lines with Oiii(5007 Å)/Hβ > 3.
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An efficient way to classify the various subtypes of AGNs is to use diagnostic dia-

grams that compare various line ratios which depend on the nature of the ionizing

medium (stellar or non-stellar) (Baldwin et al. 1981; Kauffmann et al. 2003; Kewley

et al. 2006). These diagrams are commonly known as Baldwin−Phillips−Terlevich

(BPT) diagrams and are based on the four optical line ratios Oiii/Hβ, Nii/Hα,

Sii/Hα and Oi/Hα. Kewley et al. (2001) created a maximum starburst line on the

BPT diagram by considering the upper limit of the theoretical pure stellar pho-

toionization models and using the multiple stellar population models. Galaxies

lying above the starburst line are dominated by AGN and below are dominated

by star formation. Their models include a wide range of metallicity, ionization pa-

rameter, and dust depletion, and also make allowances for the effects of shock ex-

citation by supernovae. Kauffmann et al. (2003) based on the observational study

of 22623 narrow line AGN observed in SDSS in redshift range 0.02 < z < 0.3,

obtained an empirical relation which is lower than the maximum starburst line

by Kewley et al. (2001). Kewley et al. (2006) selected their sample of galaxies in

redshift range 0.04 < z < 0.1, from the 567486 galaxies observed in SDSS data

release 4 assuming the signal to noise ratio > 3 for accurate classification of AGN

and star-forming galaxies as shown in Fig 2.1. The star-forming galaxies have low

Oiii/Hβ and Nii/Hα lines and the sequence from low metallicities (low Nii/Hα,

high Oiii/Hβ) to high metallicities (high Nii/Hα, low Oiii/Hβ) is the star-forming

sequence (Kewley et al. 2006). The mixing of AGN with star-forming occurs at

high metallicity and extends towards high values of Nii/Hα and Oiii/Hβ. Galax-

ies that lies close to the starburst lines are classified as composite galaxies that

are likely to contain a metal-rich stellar population plus AGN. Galaxies with high

star-formation rate and intense narrow emission lines are called as starburst galax-

ies whose X-ray, UV, optical and radio properties are accounted by the collection

of young stars or supernova remnants (Weedman et al. 1981; Feldman et al. 1982).

The presence of strong Balmer absorption lines but no significant Oii line implies

that the star-formation is ceased. The central structure of these galaxies are con-

sistent with a power law early type galaxies and their spectra are a superposition
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Figure 2.1: The BPT diagram shows the classification schemes based in the
emission lines. The Kewley et al. (2001) maximum starburst line (red solid
line), the Kauffmann et al. (2003) pure star formation line (blue dashed line),
and the Kewley et al. (2006) Seyfert−LINER line (blue solid line) are used
to separate galaxies into Hii -region-like, Seyferts, LINERs, and composite Hii
AGN types whose spectra contain significant contributions from both AGN and
star formation.
Courtesy: Kewley et al. (2006)

of a young stellar population represented by A stars and an old population char-

acterized by K stars. These post-starburst galaxies are known as E (for elliptical)

+A galaxies (Dressler and Gunn 1983; Yang et al. 2004).

2.3 Black hole mass estimation

The black hole mass is calculated either using the galaxy relations such as M• −

σ relation given by M• ∝ σp where σ is the velocity dispersion with p = 4.86

(Ferrarese and Ford 2005), 4.24 (Gültekin et al. 2009), or 5.64 (McConnell and

Ma 2013), and M• −Mbulge relation given by M• ∝ Mn
bulge where Mbulge is the

bulge mass with n = 1.05 (McConnell and Ma 2013) and M• − L relation given

by M• ∝ Lq where L is the luminosity with q = 1.18 (Marconi and Hunt 2003)

in K band, 1.11 (McConnell and Ma 2013) in V band or using the fit to the light

curve by the emission model.
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2.4 TDE sources

ROSAT surveys made the early discoveries of TDEs in the 1990s as an X-ray

outbursts from quiescent galaxies (Bade et al. 1996; Komossa and Bade 1999).

The TDEs in X-rays were also observed by XMM-Newton (Esquej et al. 2007;

Saxton et al. 2012, 2014, 2017) and Chandra X-ray Observatory (Maksym et al.

2010, 2013). Apart from X-rays, the TDEs are also observed in the optical bands

(Gezari et al. 2008, 2012; van Velzen et al. 2011; Holoien et al. 2014, 2016b,a;

Chornock et al. 2014; Arcavi et al. 2014; Blagorodnova et al. 2017) and in UV

(Gezari et al. 2008, 2009; Holoien et al. 2014). The radio observations of TDEs

such as Swift J1644+57 (Burrows et al. 2011) and Swift J2058.4+0516 (Cenko

et al. 2012b) provides an evidence of an associated jet. Since all TDEs do not

have an associated jet, the detection of jetted TDEs has opened new challenges

in the field of TDE dynamics. The multi-wavelength observations of TDEs with

their high-resolution spectra provides deeper insights into the accretion disk and

the properties of the star (Holoien et al. 2014; Wyrzykowski et al. 2017).

From the study of multiple TDEs, the spectrum of TDE transient is dominated

by broad Hα, Hβ and sometimes He broad emission lines for TDEs. The TDEs

with broad Hα and Hβ lines are associated with the disruption of main sequence

star whereas TDEs such as PTF09ge, PS1-10jh, ASAS-SN 14li and ASAS-SN

15oi shows broad Heii strong lines at the initial stage which suggests that the

star disrupted is an evolved star. Some TDEs such as OGLE16aaa, iPTF16fnl,

iPTF16axa, ASAS-SN 14ae show both strong He and H lines.

Some TDEs are found to have an associated radio counterpart which are due to

non-thermal synchrotron emission. The synchrotron emission model fit to the

radio emission provides the density of the surrounding medium, magnetic field,

and velocity of the outflow ejecta. SWIFT J1644+57 was the first observed jetted

TDE shown in Fig 2.3, with β = v/c = 0.55 where v is the velocity, making this
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(a) (b)

Figure 2.2: (Left) The observed light curve profiles in various spectral bands
for TDE PS1-10jh at the redshift of z = 0.1696. (Right) The observed spectrum
of the source at time t = -22 days and 254 days measured from the time of peak
emission. The spectrum is dominated with Heii line and the absence of H lines
suggest that the disrupted star is helium rich evolved star. The spectrum is sub-
tracted with a combination (magenta) consist of continuum through blackbody
fit (blue) and stellar spectrum template of 2.5 Gyr old star population (red)
computed using Bruzual and Charlot (2003).
Courtesy: Gezari et al. (2012)

to be a relativistic jetted TDE (Zauderer et al. 2011). The radio observations

of ASAS-SN 14li and their fit to synchrotron model provides outflow ejecta with

β ∼ 0.11 measured at five different epochs suggesting that the outflow is non-

relativistic. XMMSL1 J074008.2-853927 was observed in radio bands 592 days

after its discovery and is consistent with the synchrotron model which gives β ∼

0.097 making it the second non-relativistic outflow TDE. SWIFT J2058+0516

was also observed in radio bands and due to high redshift, it provides only a

constrained value of β ≥ 0.88 (Cenko et al. 2012b) which declines with time to a
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(a) (b)

Figure 2.3: The X-ray observation of Swift J1644+57 (left) and it’s radio
counterpart (right) is shown with the observation from the trigger time 28 March
2011 at the redshift of z = 0.354and the prior observations by X-ray missions
such as ROSAT, XMM, BAT and MAXI are at their limiting sensitivity.
Courtesy: Burrows et al. (2011); Zauderer et al. (2013)

faint unresolvable source in 40 days after discovery (Pasham et al. 2015).

The variability in X-ray for TDE sources can be misinterpreted as the AGN vari-

ability. The spectral properties of the host galaxy classify the nature of the

galaxy for various TDE sources. The TDEs such as XMM J152130+0.74916,

SWIFT J1644+57, SWIFT J2058+0516, XMMSL1 J061927.1-655311, XMMSL1

J074008.2-853927 and ASASSN-14li have X-ray observations which varies over

timescales of months to year. Auchettl et al. (2017) have shown, by comparing

the X-ray TDEs to the AGN candidates, that the observed peak luminosity of

TDEs are higher than the AGN at that redshift which is because TDEs are less
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obscured due to surrounding medium are compared to AGN because of weak out-

flows leading to a low-density atmosphere. The luminosity of the TDEs and AGN

are of similar order but the power index n (luminosity L ∝ tn, where t is time)

shows a large variation in time in case of AGN due to the highly variable nature

suggesting that the TDEs decays more coherently than the AGN. The hardness

ratio HR= (H − S)/(H + S), where H is hard X-ray photon count, and S is

soft X-ray photon count, indicate that the TDEs are soft in nature (HR < 0.3)

and does not change significantly compared to AGN for which HR can go from -1

(thermal) to +1 (non-thermal). Thus the X-ray TDEs can be distinguished from

AGN variability by (1) the nature of host galaxy, (2) low power index n suggesting

coherent decay, and (3) low HR suggesting soft nature of TDEs.

The observed TDE candidates are given in Table 2.1. Below we study the spectral

properties of TDEs and the classification of their host galaxies.

1. NGC 5905 (Bade et al. 1996; Komossa and Bade 1999)

It is the earliest TDE detected by ROSAT on July 11, 1990, in soft X-ray

band. The post-outburst spectra showed a strong emission line in the con-

tinuum with deep absorption lines due to stellar content in the nucleus which

suggests that the stellar content dominates the spectrum. The emission lines

such as Oi, Oiii, Nii and Sii are detected whereas the high ionization lines

Heii and FeX are absent with FWHM 270-300 km sec−1.

Li et al. (2002) assuming the light curves to follow L ∝ Ṁ , where Ṁ is

the mass fallback rate, obtained the black hole mass M• = 107 − 108 M�

and star mass M? = 0.6 − 1 M�. Using the stellar velocity dispersion in

bulge σ = 174.6 ± 9.0 km sec−1 (Ho et al. 2009) and M• − σ relation given

in Gültekin et al. (2009), the black hole mass obtained is M• ∼ 107 M�

(Raichur et al. 2015).

2. IC 3599 (Komossa and Bade 1999)
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IC-3599 was detected on December 10, 1990, by ROSAT and whose host

galaxy spectra have emission lines such as Balmer lines, Oiii, Heii and FeVii.

The width of Balmer lines are larger than the forbidden lines Oiii and Sii

and thus we classify the host to be Seyfert 1.9.

Grupe et al. (2015) using the K band luminosity obtained through 2MASX

and black hole mass- K band luminosity (Marconi and Hunt 2003), obtained

M• = (2 − 12) × 106 M�. Campana et al. (2015) using the hydrodynamic

simulation code of Guillochon and Ramirez-Ruiz (2013) obtained M• ∼ 3×

106 M� with M? ≥ 1.5 M�.

3. NGC 3599 (Esquej et al. 2008)

The source was detected on November 22, 2003, by XMM-Newton in X-ray

bands. The starlight component obtained using single stellar population

synthesis model was subtracted from the optical spectrum taken on Febru-

ary 5, 2000, which shows Hα luminosity to be ∼ 1039 erg sec−1 suggesting

the host galaxy to be low luminosity AGN. The line ratios Oiii/Hβ=3.5

and Nii/Hα=1.1 and using the BPT diagram shown in Fig 2.1, the galaxy

is located in the transition region between Seyfert and LINER. From the

optical spectrum of the host galaxy, they obtained the velocity dispersion

σ = 73.2 km sec−1 and usingM•−σ relation from Ferrarese and Ford (2005)

obtained M• = (1.3± 0.6)× 106 M�.

4. XMM J152130+0.74916 (Lin et al. 2015)

The spectrum taken on May 28, 2011 (source detected on August 23, 2000)

shows absorption lines indicating the host to be inactive. The upper limit

luminosity of Oiii (5007 Å) is 1.6 × 1039 erg sec−1 which is nearly three

orders of magnitude smaller than that required for AGN. This implies that

the host is not a strong AGN. The SPS model fit to the SDSS observations

indicates the stellar population to be old. By using the hydrodynamic model

of Guillochon et al. (2014) obtained M• ∼ 106 M� for a solar mass star,.
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5. SDSS J132341.97+482701.3 (Esquej et al. 2008)

The source was detected on December 1, 2003, by XMM-Newton in X-

ray bands. The host galaxy optical spectrum shows the absorption lines

from stars and no emission lines suggesting the galaxy to be inactive. From

optical spectrum of the host galaxy, they obtained the velocity dispersion

σ = 80 km sec−1 and using M• − σ relation from Ferrarese and Ford (2005)

obtained M• = (2.2± 0.9)× 106 M�.

6. D1-9 and D3-13 (Gezari et al. 2008)

The host spectrum of the source D1-9 detected on August 12, 2004, and

D3-13 detected on January 15, 2004, by GALEX shows only stellar absorp-

tion lines with no X-ray detections and are classified as early type inactive

galaxies. Using the bulge luminosity and black hole mass-bluge luminosity

relation of Magorrian et al. (1998), they obtained M• = (0.3− 3)× 108 M�.

Using M• − σ, the black hole mass for D3-13 is etsimated to be M• =

(1 − 4) × 107 M�. By considering the luminosity L = ηṀc2 where η is the

efficiency and taking Lodato et al. (2009) model for Ṁ ,M• for the disruption

of a solar mass star is found to be 2.4× 107 M� for D1-9 and 1.2× 107 M�

for D3-13.

7. J234201.40+010629.2 (TDE1) and J232348.61-010810.3 (TDE2) (van Velzen

et al. 2011)

TDE1 and TDE2 were detected on November 19, 2005, and November 20,

2006, by SDSS. The host galaxy spectrum of TDE1 taken on November 7,

2009 shows Balmer absorption lines and no emission lines with Hα luminosity

< 4.4 × 1037 erg sec−1 and Oiii luminosity < 1.3 × 1038 erg sec−1 which

suggests that the host is inactive.

The host galaxy spectrum of TDE2 taken on November 5, 2010 after stellar

template subtraction generated using stellar synthesis model shows Hα lu-

minosity = 1.2× 1040 erg sec−1 with emission line ratio Nii/Hα=-0.4 ± 0.2

and Oiii luminosity < 3.6 × 1039 erg sec−1. Using the BPT diagram (Fig
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2.1), the observed ratio with broad Hα (FWHM=8000 km sec−1) is consis-

tent with an origin from star-formation and thus the galaxy seems to be a

star-forming galaxy.

From the magnitude ratio of bulge to total calculated by Tundo et al. (2007)

and using the scaling relation by Häring and Rix (2004), the M• for TDE1

is found to be (6− 20)× 106M� and for TDE2 is (2− 10)× 107M�.

8. D23H-1 (Gezari et al. 2009)

The source was detected on September 4, 2007. The spectrum was taken on

September 16, 2007 (13 days prior to peak on September 29, 2007) and after

subtracting a template for stellar absorption lines, the emission line ratios

are Oiii/Hβ=0.6±0.1, Nii/Hα=0.41±0.03, Sii/Hα=0.22±0.06 and Oi/Hα

< 0.035. In the BPT diagram, the line ratios lie in the region of H II which

is a combination of star-formation and AGN and since the Oiii/Hβ is small,

the star-formation dominates over AGN; thus the BPT diagram classifies the

host as a star-forming galaxy. The black hole mass estimated using Lodato

et al. (2009) model is M• = (5.4± 0.4)× 107 M� for the disruption of solar

type star.

9. PTF09ge, PTF09djl and PTF09axc (Arcavi et al. 2014)

The source spectrum is calculated at multiple days and is subtracted from the

stellar spectral template obtained using SPS model. PTF09ge and PTF09djl

shows no sign of an AGN emission lines but PTF09axc shows low Oiii lu-

minosity ∼ 2.4 ± 0.3 × 1039 erg sec−1 with Oiii/Hα >3.4 which indicates

the presence of weak AGN. In the X-ray observations through SWIFT XRT

after five years of the outburst, PTF09ge and PTF09djl have no X-ray flux

whereas PTF09axc show a low luminosity 7.13×1042 erg sec−1. These three

outbursts are not likely due to AGN though PTF09axc may contain an ex-

tremely weak AGN.

The host galaxy spectrum was obtained in 2013 after all the transient emis-

sion had faded. All of them display the Balmer absorption features. The
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spectrum of PTF09djl and PTF09axc have no strong emission lines imply-

ing no or very low ongoing star-formation. PTF09ge show weak Hα emission

but no strong emission lines. The Balmer absorption with no strong emis-

sion lines is a signature of E+A galaxy. The star-formation rate using Hα

luminosity for PTF09ge is 0.10 M� yr−1 and PTF09axc is 0.04 M� yr−1.

PTF09ge shows broad Heii emission with FWHM ∼ 1000 km sec−1 whereas

the spectrum of PTF09djl and PTF09axc exhibit broad Hα emission. This

implies that the PTF09ge shows the TDE of a He dominated star such as

an evolved star whereas PTF09djl and PTF09axc show the TDEs of an H

dominated star such as a main sequence star. From spectral energy distri-

bution, the estimated black hole masses for PTF09axc is (3± 0.1)× 106M�,

PTF09ge is (6± 0.1)× 106M� and PTF09djl is (2.5± 0.5)× 106M�.

10. PS1-10jh (Gezari et al. 2012)

The X-ray observation on May 22, 2011 (source detected on May 28, 2010)

using Chandra X-ray Observatory detected no X-ray source above the back-

ground with a 3σ upper limit. The spectra show no narrow emission line to

indicate the star-formation or an AGN. Arcavi et al. (2014) obtained the op-

tical spectra on April 29, 2014, and found that the spectra are dominated by

Balmer absorption lines with no strong emission lines which indicate E+A

galaxy.

The source spectra contains the broad high-ionization Heii emissions with

FWHM 9000 ± 700 km sec−1 and lacks the Balmer emission lines which

requires extremely low hydrogen mass fraction < 0.2. Thus the TDE is

powered by the accretion of a star that has lost its mass either due to stellar

winds or through tidal interaction with supermassive black holes. The black

hole mass estimated using Lodato et al. (2009) model is M• = (2.8± 0.1)×

106 M� for disruption of star with mass M? = 0.23M� and R? = 0.33R�.

11. SDSS J120136.02+300305.5 (Saxton et al. 2012)
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The optical spectrum taken 12 days after the source detection on July 10,

2010 shows no emission lines and the absorption lines Mgi (λ 5167, 5173,

5184 Å) and Nai (λ 5890, 5895 Å) were observed. The second spectra taken

after 11 months when almost TDE faded away, showed no emission lines with

Hα and Hβ seen in absorption with Mgi and Nai. After subtracting the SPS

model of an old stellar population, the Oiii luminosity is < 4×1039 erg sec−1.

The galaxy shows no evidence of previous AGN and is thus inactive. Using

the scaling relation between black hole mass and K band luminosity given

by Marconi and Hunt (2003), they obtained M• = 2× 107 M�.

12. PTF10iya (Cenko et al. 2012a)

Host galaxy spectra show both absorption feature due to stellar population

and a series of narrow emission lines with no broad components. The typical

galaxy emission lines such as Oii, Hβ, Oiii, Nii, Hα, Sii are clearly present.

After subtracting the template for stellar contamination generated using

SPS model, the line ratios are Oiii/Hβ=0.65±0.07, Nii/Hα=0.29±0.04,

Sii/Hα=0.38±0.05 and Oi/Hα<0.03. Using BPT diagram, it is found that

the galaxy is a star-forming galaxy. The star-formation rate from Hα in-

tensity is found to be 1.5±0.5 M�yr−1. Since the galaxy position in BPT

diagram is lower than the theoretical separation limit, the narrow emission

lines might be due to the photoionization of young massive stars. Follow-

ing the accretion model of Strubbe and Quataert (2009), an estimate of

M• ∼ 107 M� for a solar mass star was made.

13. PS1-11af (Chornock et al. 2014)

The host galaxy spectrum obtained after the event faded away and subtract-

ing the template spectrum obtained using SPS, there are no emission lines

observed from Hα, Oiii and Oii which is the signature of AGN or star for-

mation. The 4000 Å break is present which is a signature of an old stellar

population. The SPS models provide the age to be 2.5 Gyr. The star-

formation rate is found to be 0.04 M� yr−1 and the absence of Oiii and Oii
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line indicates that there is no young stellar population in the host galaxy.

The host is not detected in the UV bands prior to transient which is against

the presence of an AGN. The host is then a quiescent early type galaxy with

no evidence of an AGN or star-formation in their spectra. By fitting the

model of Guillochon and Ramirez-Ruiz (2013), the parameters obtained are

M• = 106M� and M? = 0.65M�.

14. SWFIT J1644+57 (Burrows et al. 2011; Zauderer et al. 2011)

ROSAT All-Sky Survey observed the field of the source between 11 July 1990

and 13 August 1991 with the flux limit < 2.5× 10−13 erg sec−1 cm−2 in 1-10

keV which results in luminosity < 1.01× 1044 erg sec−1. The flux of SWIFT

J1644+57 is 2-4 orders of magnitude higher than the ROSAT observations.

The optical spectrum taken on April 1.34, 2011 UT and April 4.62, 2011 UT

(UT= universal time) shows narrow emission lines Hβ, Oiii, Hα along with

Oii which is for star-forming galaxy but high excitation lines such as NeV

(3345, 3425 Å) are absent. No broad Hα line is observed. The line ratios

log(Oiii/Hβ)∼0.15 and log(Nii/Hα)∼ -0.4 place the source in the position

of star-forming galaxy in BPT diagram (Fig 2.1). The prominent stellar

absorption lines are present. The inferred star-formation rate of the host in

0.5 M� yr−1 (Levan et al. 2011). The late time spectroscopy taken on March

23 to April 4, 2012, shows the same narrow emission lines of Hβ, Oiii, Hα

and Oii with no evolution. The black hole mass from M• − σ relation is

M• = 3× 106 M�.

15. SWIFT J2058.4+0516 (Cenko et al. 2012b)

The spectrum taken on June 1, 2011 (source detected on May 27, 2011)

reveals a blue continuum with strong absorption features corresponding to

Mgii (2796, 2803 Å) and Feii (2600, 2587, 2383, 2344 Å). No other significant

features were detected. The source redshift is 1.1853 and is the farthest

detected TDE till now. Due to high redshift, the standard lines do not fall

in the optical bandpass. The second spectrum taken on June 29, 2011, does
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not have any significant variations compared to the first spectrum and the

same absorption features are present. Due to high redshift, the upper limit

of black hole mass through black hole-bulge mass relation is found to be

2× 108 M�.

16. SWIFT J1112-8238 (Brown et al. 2015)

The optical spectroscopy done on December 16, 2012, shows a single weak

emission feature observed at 7045 Å which was identified to be O3727 Å at

redshift z=0.8901. The late time X-ray observations results in the luminosity

LX < 1044 erg sec−1 which is fainter than the observed quasar luminosity

implying that the ongoing nuclear activity is weak. The observed high X-ray

flux of the source places the event in the list of relativistic TDEs. Using the

scaling relation by Häring and Rix (2004), M• ∼ 2× 106 M� is obtained.

17. XMMSL1 J061927.1-655311 (Saxton et al. 2014)

The source spectrum taken on December 3, 2012, shows broad Hα and

Hβ and weak narrow low ionization Balmer lines and lines of Oiii, Nii

and Sii. The line ratios are Oiii/Hβ=3.1±1.3, Nii/Hα=0.85±0.15 and

Sii/Hα=1.0±0.3. The BPT diagram places the source on the boundary be-

tween a LINER and a Seyfert galaxy. The width of the Balmer line Hα and

Hβ are 5716 and 5714 km sec−1 respectively are greater than the forbidden

lines such as Oiii=330 km sec−1 and Nii=292 km sec−1 which classify the

host as Seyfert I galaxy. The second spectrum taken on October 18, 2013,

shows the same features of broad Balmer lines and weak narrow lines. Using

the Hα luminosity width, the black hole mass is estimated to be 3×107 M�.

18. XMMSL1 J074008.2-853927 (Saxton et al. 2017)

The host spectrum taken on January 17, 2002 (source detected on April 1,

2014) after subtraction from the SPS template spectra shows no emission

lines with Oiii flux < 4 × 10−15erg sec−1 cm−2. The host is an inactive
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galaxy. Using the K band luminosity of the host galaxy and the scaling

relation of Marconi and Hunt (2003), M• = (6± 2)× 106 M� is estimated.

19. ASASSN-14ae (Holoien et al. 2014)

The host spectrum is dominated by absorption lines, Balmer lines, Cai G

band, Mgi, Nai and 4000 Å break making the stellar population to be old.

There is no strong emission lines and the Oiii luminosity is 2.4×1039erg sec−1

suggesting a low level of star-formation and the line ratios suggest a weak

AGN.

The source spectrum shows a blue continuum with broad Balmer lines in

emission (FWHM Hα >8000 km sec−1) which are not present in host galaxy

spectrum and the broad Hα become stronger at the later epoch. The He

emission is also present whose intensity increases compared to Balmer lines

as the time progresses. With both He and H present in the spectra, the

source falls in the middle of He rich to H rich star disruption. From the

stellar synthesis model fit to the spectrum, the total mass of star distribution

is obtained and considering it to be the bulge mass, and using the scaling

relation between black hole mass and bulge mass given by McConnell and

Ma (2013), M• ∼ 106.8 M• is obtained.

20. ASASSN-14li (Holoien et al. 2016b)

The host galaxy was not observed in ROSAT survey suggesting that the

host does not have a strong AGN. Detection of the host in archival Wide-

field Infrared Survey Explorer (WISE) gives W3 band magnitude to be

12.367±0.439 corresponding to a luminosity of Lw3 ∼ 2× 107L�, where L�

is the solar luminosity. The host galaxy is also detected in radio band with

luminosity 2.96 ± 0.15 mJy for 1.4 GHz. This along with non-detection

in X-ray implies that AGN activity, if any, is weak. The SPS model fit

to the SDSS magnitude of host galaxy provides the star-formation rate to

be < 0.009 M� yr−1. The archival host galaxy spectrum shows no Hα or

Oii in emission but the luminosity of Oiii is ∼ 4.4 × 105 L� and of Nii is
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∼ 3.6× 105 L�. This indicates that the host is a low luminosity AGN with

weak nuclear activity.

The source spectrum contains strong blue continuum with broad Balmer

and helium lines in emission. The blue continuum weakens over time. The

spectra show Heii earlier compared to the ASAS-SN14ae where it appears

at late stages. Both helium and Balmer emission narrow as time progresses.

With both He and H present in the spectra, the source falls in the middle of

He-rich to H rich star disruption. From the stellar synthesis model fit to the

spectrum, the total mass of star distribution is obtained and considering it

to be the bulge mass, using the scaling relation between black hole mass and

bulge mass given by McConnell and Ma (2013), M• ∼ 106.7 M• is obtained.

21. ASASSN-15oi (Holoien et al. 2016a)

The source spectrum shows string blue continuum and broad helium lines in

emission but little to no H emission. The emission features are broad and

asymmetric which narrows over time and Heii dominates at the late time.

The absence of H lines suggests that the disrupted star is a helium rich. The

host galaxy is not detected in ROSAT survey suggesting the host not to be

a weak AGN. The spectrum taken when the transient fades away shows no

blue continuum and absorption lines. The absence of Balmer absorption lines

is consistent with the host to be a post-starburst galaxy. From the stellar

synthesis model fit to the spectrum, the total mass of star distribution is

obtained and considering it to be the bulge mass, using the scaling relation

between black hole mass and bulge mass given by McConnell and Ma (2013),

M• ∼ 107.1 M• is obtained.

22. OGLE16aaa (Wyrzykowski et al. 2017)

The host spectrum shows weak Oiii, Oii and Nii narrow forbidden lines

in emission as well as narrow emission lines of Hα and Hβ but no Balmer

absorption line series. The line ratios log(Oiii/Hβ) is -0.25 and log(Nii/Hα)
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is -0.43 which indicates that the galaxy is a mixture of star-forming and weak

AGN as per BPT diagram.

The source spectrum shows broad emission features around Heii and Hα

emission lines. Using the model of Guillochon et al. (2014), the obtained

parameters are M• = 106.2 M� and star mass M? = 0.1− 0.8 M�.

23. iPTF16axa (Hung et al. 2017)

The position of iPTF16axa coincides with SDSS J170334.34+303536.6 whose

photometry measurements in SDSS bands are available. The fit of SPS model

to the galaxy photometry indicates that the star-formation is quenched with

a star-formation rate of 10−6.6 M� yr−1. No host galaxy archival spectrum

is available and no historical variability activity was noted.

The source spectrum shows broad emission features around Heii and Hα

emission lines. The common AGN lines such as Oiii and Nii are not present

and the broad Balmer lines fade away with time suggesting that the broad

lines are associated with the transient. The source spectrum is a mixture of

Hii and Hα lines and they both evolve with the same trend with the FWHM

decreasing with time. The velocity dispersion σ = 101.3 ± 1.9 km sec−1

obtained using MgIb (λ = 5167, 5173, 5184) and using the M• − σ relation

from McConnell and Ma (2013), the black hole mass obtained is (2.7−12.9)×

106 M�.

24. iPTF16fnl (Blagorodnova et al. 2017)

The iPTF16fnl was observed multiple times by iPTF and no prior AGN

activity was detected. The source spectrum shows the broad Heii and Hα

emission lines. Several narrow absorption lines associated with host galaxy

were observed such as Baii (6496 Å), NAi (5889, 5896 Å) doublet, Mgi

(5167, 5173, 5184 Å), Fei (5266, 5324 Å), Caii (3934, 3968 Å) and strong

NIR triplet absorption at 8498, 8542, and 8662 Å. Early time spectrum was

dominated by blue continuum and broad Heii lines along with Hα and Hβ

emission lines. The emission lines fade away with time leaving the Heii
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line which gets narrow. With the fading of Balmer lines as transient fade

and the presence of high metal absorption lines indicates that the host is a

post-starburst E+A galaxy. The presence of Heii line at the late time when

other lines fade away means that the disrupted star is a helium rich star.

Using the TDE model of Guillochon and Ramirez-Ruiz (2013), the estimate

of M• = 2× 106 M� and M? = 0.8M� are made.

Table 2.1 show that the TDEs are dominated at low redshift with the number

of TDEs detected depending on the host galaxy properties is shown in Fig 2.4.

The TDEs are dominated in low mass supermassive black holes at low redshift

with mostly favored in the inactive, weak AGN and star-forming galaxies. The

detection of TDEs at different redshift is a probe to study the distribution of black

hole masses in the universe and hence the black hole mass evolution. The detection

rate of TDEs depends on the theoretical capture rate stars in the galactic center,

duration of TDE observations, black hole mass function (BHMF) and instrumental

parameters such as sensitivity, cadence and integration time which we will be

constructed in chapter 5. Thus, the observed detection rate for various missions

can be used to measure the BHMF.

2.5 TDE surveys and follow-ups

The search for TDEs has increased in a decade with the various ASS missions

and follow-ups from space and ground-based detectors. The transient is detected

through ongoing missions such as Monitor of All-sky X-ray Image (MAXI), As-

trosat SSM in X-rays and Zwicky Transient Factory (ZTF; iPTF), Optical Gravi-

tational Lensing Experiment (OGLE), All Sky Automated Survey for Supernova

(ASAS SN) and Panoramic Survey Telescope and Rapid Response System (Pan-

STARRS) in the optical band. The future surveys such as Large Synoptic Survey
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Figure 2.4: The distribution of TDEs is shown along black hole mass in (a),
host galaxies in (c), redshift in (d) and detected instrument in (e). The distribu-
tion in black hole mass and redshift are shown in (b). The TDE detections are
dominated in the inactive, weak AGN and star-forming galaxies which comprises
of 19 out of 28 TDEs listed with highest in the inactive galaxies with low mass
supermassive black hole galaxies at low redshift.
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S. No. Observation z ttrig Instrument Host galaxy Reference

1 NGC 5905 0.01124 11-7-1990 Rosat Starbust galaxy Bade et al. (1996)

2 IC 3599 0.021 10-12-1990 Rosat Seyfert 1.9 galaxy Komossa & Bade (1999)

3 XMM J152130+0.74916 0.179 23-8-2000 XMM-Newton Inactive galaxy Lin et al. (2015)

4 NGC 3599 0.0028 22-11-2003 XMM-Newton Low luminosity AGN Esquej et al. (2008)

5 SDSS J132341.97+482701.3 0.0875 1-12-2003 XMM-Newton Inactive galaxy Esquej et al. (2008)

6 D3-13 0.3698 15-1-2004 GALEX UV Inactive galaxy Gezari et al. (2008)

7 D1-9 0.327 12-8-2004 GALEX UV Inactive galaxy Gezari et al. (2008)

8 J234201.40+010629.2 0.136 19-11-2005 SDSS (g) Inactive galaxy Velzen et al. (2011)

9 J232348.61-010810.3 0.251 20-11-2006 SDSS (g) Star-forming galaxy Velzen et al. (2011)

10 D23H-1 0.1855 4-9-2007 GALEX UV Star-forming galaxy Gezari et al. (2009)

11 PTF09ge 0.064 7-5-2009 PTF (R) E+A galaxy Arcavi et al. (2014)

12 PTF09axc 0.1146 20-6-2009 PTF (R) E+A galaxy Arcavi et al. (2014)

13 PTF09djl 0.184 24-7-2009 PTF (R) Weak AGN Arcavi et al. (2014)

14 PS1-10jh 0.1696 31-5-2010 PS1-MDS (g) E+A galaxy Gezari et al. (2012)

15 SDSS J120136.02+300305.5 0.146 10-6-2010 XMM-Newton Inactive galaxy Saxton et al. (2012)

16 PTF10iya 0.224 11-6-2010 PTF (R) Star-forming galaxy Cenko et al. (2012)

17 PS1-11af 0.4046 30-12-2010 PS1 (g) Inactive galaxy Chornock et al. (2014)

18 SWFIT J1644+57 0.354 28-3-2011 SWIFT BAT Star-forming galaxy Burrows et al. (2011)

19 SWIFT J2058+0516 1.1853 27-5-2011 SWIFT BAT Cenko et al. (2012)

20 SWIFT J1112.2-8238 0.89 16-6-2011 SWIFT BAT Weak AGN Brown et al. (2015)

21 XMMSL1 J061927.1-655311 0.0729 12-11-2012 XMM-Newton Seyfert 1 galaxy Saxton et al. (2014)

22 XMMSL1 J074008.2-853927 0.0173 1-4-2014 XMM-Newton Inactive galaxy Saxton et al. (2017)

23 ASASSN-14ae 0.0436 25-1-2014 ASAS-SN (V) Weak AGN Holoein et al. (2014)

24 ASASSN-14li 0.0206 22-11-2014 ASAS-SN (V) Weak AGN Holoein et al. (2016)

25 ASASSN-15oi 0.0484 14-8-2015 ASAS-SN (V) Post starbust galaxy Holoein et al. (2016)

26 OGLE16aaa 0.1655 2-1-2016 OGLE IV (I) Weak AGN Wyrzykowski et al. (2017)

27 iPTF16axa 0.108 29-5-2016 iPTF (g) Inactive galaxy Hung et al. (2017)

28 iPTF16fnl 0.016328 29-8-2016 iPTF (R) Post starbust galaxy Blagorodonova et al. (2017)

Table 2.1: The TDEs detection catalog is shown with the detection time, the
detected instrument and the host galaxy properties.

Telescope (LSST) in optical and eROSITA in X-rays will further boost the detec-

tion rate of TDEs. The follow up of detected TDEs are done in X-rays by XMM-

Newton, Swift XRT, and Chandra X-ray telescope, in UV bands by XMM-Newton

Optical Monitors and Swift UVOT and in optical by XMM-Newton Optical Mon-

itors, Swift UVOT and Pan-STARRS as shown in Fig 2.5.

India’s multiwavelength space mission ASTROSAT has payloads such as SSM for
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monitoring the sky in nearly every six hours with a sensitivity of ∼30 mcrab, be-

sides UVIT to observe in far ultraviolet (FUV) and near ultraviolet (NUV), and

soft X-ray telescope (SXT) to observe in X-ray 0.2-10 keV bands. The 4m Inter-

national Liquid Mirror Telescope (ILMT) in Devasthal, India is entirely dedicated

to photometry and astrometry direct imaging surveys. ILMT points toward the

zenith and scans the strip of the sky every night with limiting magnitude of 22 in i

band and sub-arcsecond resolution. With a cadence of one night and higher sensi-

tivity in single integration, ILMT provides a potential mission for TDE search. The

3.6 m Devasthal Optical Telescope (DOT) observes in optical and near-infrared

bands with a high sensitivity. The 4k × 4k CCD imager (5 -10 arcmin) covers

UVBRI bands with a limiting magnitude of 24 in the R band. The 2 m Himalayan

Chandra Telescope (HCT) performs imaging in Bessell UBVRI bands with a lim-

iting magnitude of 22.2 in R band and spectroscopy with a resolution of 300 and

a limiting magnitude of 18.5 in V band using HFOSC. The Hanle Echelle Spec-

trograph (HESP) in HCT covers the entire optical wavelength with a spectral

resolution of 30000 and 60000.

t = 0

∼ Few Months

∼ Months to Year

∼ Year

∼ Few Years

Time

Alert: X-ray: MAXI, eROSITA-SRG, ASTROSAT SSM

Optical: iPTF/zPTF, OGLE, ASAS-SN, LSST,

Pan-STARRS, ILMT

X-ray: XMM-EPIC, SWIFT XRT, ASTROSAT SXT,

Chandra X-ray

UV: XMM-OM, SWIFT UVOT, ASTROSAT UVIT

Optical: XMM-OT, SWIFT UVOT, Pan STARRS, ILMT,

2m HCT, Devasthal Optical Telescope, ASTROSAT UVIT

Radio: VLBA, GMRT

Figure 2.5: The detection and follow up missions for TDEs are shown along
with the typical timescale of observations in various spectral bands starting from
the time of the alert. The blue color highlights Indian observatories.



Chapter 2: Observations of TDEs 41

Given that a high detectable event rate will become possible soon with eROSITA

in X-rays and iPTF/ZTF, ASAS SN and Pan-STARRS in the optical, there are

several opportunities available currently and in the future. In the Indian context,

it is possible that ILMT can be used for picking up these events. Once a trigger is

received, there could be follows up in X-rays (SXT), UV (UVIT), Optical (DOT,

HCT) and in Radio (GMRT) at the appropriate times given in Fig. 2.5. With the

DOT we can probe TDEs longer and also study fainter sources.

The ratio of tidal radius to schwarzchild radius
rt
Rs

' 109

(
M•

106M�

)−2/3(
ρ?
ρ�

)−1/3

,

where ρ? is the mean density of star. For high density stars such as neutron stars

and white dwarfs, the star is directly consumed rather than disrupted. The in-

spiralling of star around black holes emits gravitational radiation and is known as

EMRIs. For a separation of radius r, the frequency of emission is ν ∼ c/r and

since r > RS = 2GM•/c
2, ν < 0.1 M6 Hz, which is less than the detectable range

of Laser Interferometer Gravitational-Wave Observatory (LIGO). The future mis-

sion European Laser Interferometer Space Antenna (eLISA) will be able to detect

these EMRIs. This multi observations that includes the electromagnetic radiation

and gravitational radiation will be useful in studying the dynamics close to black

holes.

2.6 Summary

The TDEs are observed in various spectral bands ranging from X-ray to radio. The

TDEs are characterized by the broad Hα, Hβ and in some cases He emission lines.

The dominance of He line in the spectra indicates the disruption of an evolved

main sequence star. The nature of host galaxies is obtained through the spectra

taken before or after the TDE fade away. The absence of X-ray observations of

the galactic center prior to an event is an indication of inactive galaxies. The
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host galaxy of TDEs need not necessarily be an inactive galaxy and can be a

weak AGN or star-forming galaxy. The TDEs are dominated at low redshift by

low mass supermassive black holes. The follow-ups of these TDEs after an alert

from all-sky survey mission should be instantaneous to catch the event during its

initial phase and peak luminosity in X-ray band which is close to the bolometric

luminosity. The imaging and the spectroscopy of the source and the host galaxy

(prior to or after fading of transient) is required to confirm the transient as TDE.

The accretion model of TDEs is important to obtain the physical parameters such

as black hole mass M• and star mass M?.

We will construct the dynamical model to calculate the TDE rates in chapter 5 and

accretion models in chapter 6. The aim of the theoretical models is to reproduce

the observed light curves and deduce parameters such as M•, M?, E, J , black

hole spin j and other model-dependent parameters. From the parameters obtained

through a fit to observations, we can study black hole mass demographics such as

BHMFs and occurrence of host galaxies as a function of redshift. This exercise is

done in chapter 7.



Chapter 3

Stellar dynamics around black holes

Image: ESO/MPE/M. Schartmann

In this chapter, we introduce the basic equations of dynamics of stars around black

holes. We will discuss the evolution of stars in phase space (E, J) and describe

the phenomena of the loss cone: a hole in phase space where the stars are lost into

the black hole. The continuous supply of stars into this hole is made possible due

to gravitational encounters which is described by the Fokker-Planck equation. We

will discuss various approaches to the problem starting from sub-thermal diffusion

(Peebles 1972) leading upto the theory of Cohn and Kulsrud (1978), and more

modern approaches with their caveats.

3.1 Introduction

The dynamics of stars in the galaxy depends on the black hole at the galactic

center and the other stars. The distribution function (DF) of stars depends on
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the structure of galactic nuclei which can be symmetric, axis-symmetric or triaxial

nuclei (Merritt 2013a). The spherical distribution of stars is the simplest approx-

imation as the potential and the density is a function of radius r only (Peebles

1972; Bahcall and Wolf 1976; Wang and Merritt 2004; Stone and Metzger 2016).

The potential is dominated by the black hole at the inner radius and by stars at

the outer radius far away to the black hole. The black hole potential is given by

Φ• = −GM•
r

, (3.1)

whereas the stellar potential depends on the density distribution ρ? of stars and

is given by Poisson equation,

∇2Φ? = 4πGρ?, (3.2)

where G is gravitational constant. The total potential is given by Φ = Φ• + Φ?.

The radius below which the black hole potential dominates over stellar potential is

the radius of influence rh which is calculated assuming that the stellar distribution

is virialized (Rees 1988; Phinney 1989).

3.2 Virial theorem

A stellar system consisting of N stars have kinetic energy K given by

K =
N∑
i=1

1

2
miv

2
i , (3.3)



Chapter 3: Stellar dynamics around black holes 45

and potential energy W given by

W = −G
2

∑
i 6=j

mi mj

rij
, (3.4)

where mi is the star mass with velocity vi and rij = ri = rj is the separation

between ith and jth star where the distance is measured from the galactic center.

The moment of inertia is given by

I =
N∑
i=1

mir
2
i , (3.5)

and differentiating twice with time t gives

1

2

d2I

dt2
=

N∑
i=1

mi

[
ṙ2
i + rir̈i

]
, (3.6)

where dot represents derivative with time. Using eqn (3.3), ṙi = vi,
N∑
i=1

miṙ
2
i = 2K.

The force on the ith star is given by Fi = mir̈i = −∇Φ?|r=ri and using potential

given by

Φ?(ri) = −G
N∑
j=1

mi mj

|ri − rj|
, (3.7)

we obtain
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∑
mir̈iri = −G

2

∑
i 6=j

mi mj

|ri − rj|
= W. (3.8)

Thus eqn (3.6) is given by

1

2

d2I

dt2
= 2K +W, (3.9)

and taking an average over time T gives

1

2

〈
d2I

dt2

〉
= 2 〈K〉+ 〈W 〉 , (3.10)

where

〈A〉 =
1

T

∫ T

0

A dT, (3.11)

and A is d2I/dt2, K and W . For a virialized system, the stars would settle in

an equilibrium state such that the time average variation of I is too small to be

negligible and is taken to be zero such that 2 〈K〉 + 〈W 〉 = 0 (Chandrasekhar

1939). Thus, the total energy of a virialized system is given by

E = K +W =
W

2
= −K. (3.12)

The velocity of the virialized system is given by velocity dispersion σ which results

in the stellar potential Φ? = −σ2. The black hole potential dominates if Φ• > Φ?,
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which results in r < GM•/σ
2 and the radius of influence is given by

rh =
GM•
σ2

. (3.13)

3.3 Distribution function (DF)

The stellar dynamics depends on the star’s energy E, angular momentum J and

distribution of stars in the galactic center. The distribution function of stars

f(X, v, t) in the six dimensional phase space whose coordinates are three spatial

coordinates (X = {x, y, z}) and three velocity coordinates (v = {vx, vy, vz}),

is defined as the number of stars in phase space volume d3Xd3v. The number

density distribution of the star is given by

n =

∫ ∫ ∫
d3v f(X, v, t). (3.14)

We have considered the stellar distribution to be spherical in nature such that the

spatial volume in spherical coordinate (r, θ, φ) is given by d3X = r2 sin θdrdθdφ.

The velocity of star is given by v = (vr, vθ, vφ) and the distribution is isotropic

if vr = vθ = vφ. The velocity volume is given by d3v = 2πvtdvtdvr, with radial

velocity vr and tangential velocity vt =
√
v2
θ + v2

φ with total velocity v2 = v2
r + v2

t .

The energy E and the angular momentum J per unit mass of an orbit is given by

E = Φ(r)− v2

2
= Φ(r)− 1

2

(
v2
r + v2

t

)
and J = rvt, (3.15)
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where E is taken such that E > 0 corresponds to bound orbit requiring Φ(r) > 0.

The Jacobian transformation from (vr, vt) to (E, J) is given by

dvrdvt =

∣∣∣∣∣∣
dvr
dE

dvr
dJ

dvt
dE

dvt
dJ

∣∣∣∣∣∣ dEdJ = −1

r

1√
2(Φ(r)− E)− J2

r2

dEdJ (3.16)

Using eqn (3.14) and (3.16), we obtained

n(r) = 2π

∫ Φ(r)

0

dE

∫ √2r2(Φ(r)−E)

0

dJ
J

r2

f(E, J)√
2(Φ(r)− E)− J2

r2

. (3.17)

The density of stellar distribution is an observable parameter, so we need an

inversion to obtain the distribution function for the observed density structure.

For an isotropic distribution, d3v = 4πv2dv, the distribution function is a function

of energy alone, f(E, J) = f(E), and using eqn (3.15), eqn (3.14) reduces to

n(r) = 4
√

2π

∫ Φ(r)

0

dEf(E)
√

Φ(r)− E. (3.18)

Using Abel’s inversion given by

h(x) =

∫ x

0

dt
g(t)

(x− t)α
⇒ g(t) =

sin πα

π

d

dt

∫ t

0

dx
h(x)

(t− x)1−α , (3.19)

for 0 < α < 1, we obtain using eqn (3.18) the distribution function f(E) given by
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f(E) =
1√
8π2

d

dE

∫ E

0

dΦ√
E − Φ

dn?
dΦ

. (3.20)

This is called as Eddington’s formula (eg. Binney and Tremaine 2008) and using

this one can generate the distribution function provided the density is given for

an isotropic spherical distribution of stars.

For a stellar distribution n(r) = n0(r/r0)−γ with potential Φ dominated by the

black hole (eqn 3.1) where n0 and r0 are constants, the density is given by n =

n0r
γ
0 (GM•)

−γΦγ and using eqn (3.20), the distribution function is given by

f(E) =
n0r

γ
0√

8π3/2
(GM•)

−γ Γ(γ + 1)

Γ(γ − 1/2)
Ep, (3.21)

with constraints γ > 1/2 for f(E) > 0 and p = γ − 3/2. The more general

solution for a single power law density model that includes the stellar potential

will be shown in chapter 5.

Peebles (1972) has considered a single stellar population where the black hole

potential dominates and assumed a distribution function f(E) = KEp; this implies

that the density, using eqn (3.18) is given by

n(r) =

√
2π3/2K

1 + p

Γ(2 + p)

Γ(p+ 5/2)
(GM•)

p+3/2r−p−3/2, (3.22)
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and the mean square velocity is given by

〈
v2
〉

=
1

n(r)

∫
d3v v2f(E) =

3
√

2π3/2K

(1 + p)(2 + p)

Γ(3 + p)

Γ(7/2 + p)

(GM•)
p+5/2

n(r)
r−p−5/2

(3.23a)

=
6

5 + 2p

GM•
r

(3.23b)

Thus the mean energy is given by

〈E〉 (r) =
GM•
r
− 〈v

2〉
2

=
2 + 2p

5 + 2p

GM•
r

. (3.24)

In a thermal equilibrium, the 〈v2〉 is constant which results in n(r)|th ∝ r−p−5/2

and is lower than the actual density derived in eqn (3.22). The density gradient

d log(n(r))/dr in thermal equilibrium declines faster than the actual gradient

implying that the system is sub-thermal and this leads to the diffusion of the

stars.

Peebles (1972) showed that the number rate of star diffusion is dN(E)/dt ∝

E2p−3/2. In a steady state, he assumed that the rate of star diffusion is constant

which results in p = 3/4 and the density n(r) ∝ r−9/4.

Bahcall and Wolf (1976) assumed a distribution function similar to Peebles (1972)

for an isotropic single star mass distribution and derived a diffusion equation by

taking into account the star-star interaction which is the Fokker-Planck equation

in energy space as will be discussed in §3.5. They showed that the in a steady

state, the p = 3/4 leads to an infinite negative energy flux dE/dt that results in
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Figure 3.1: The number density of star distribution along radius that increases
with time as shown in various curves and attain a density structure similar to
Bahcall-Wolf cusp implying that the galactic center attained a steady state.
Courtesy: Merritt (2013b)

a rapid outward diffusion of stars which is unphysical and thus instead of number

rate being constant in a steady state, the energy flux should be constant, which

results in p = 1/4 with density n(r) ∝ r−7/4. This is called as the Bahcall-Wolf

cusp and is shown in Fig 3.1.

3.4 Stellar systems

Consider a system composed of N gravitationally interacting point mass of massM

and the number density of the star distribution is n. A star moving with velocity
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v in the gravitational field of other star experience a force GM/b2, where b is the

impact parameter for an interaction time ∼ 2b/v. Then the change in velocity in

perpendicular direction is given by

δv⊥ ∼
GM

b2

2b

v
=

2GM

bv
. (3.25)

The average rate of change in velocity is given by

d

dt

〈
δv2
⊥
〉

=

∫ bmax

bmin

δv2
⊥nv2πb db, (3.26)

where bmin and bmax are the minimum and maximum impact parameters. The eqn

(3.26) using eqn (3.25) is given by

d

dt

〈
δv2
⊥
〉

=

∫ bmax

bmin

(
2GM

bv

)2

nv2πb db =
8πG2M2n

v
ln

(
bmax
bmin

)
. (3.27)

The bmax is the maximum radius of the system and since δv⊥ < v, we get b >

2GM/v2 which gives the bmin given by

bmin ' GM/v2. (3.28)

The maximum radius of the system R = GMT/c
2, where total mass MT = NM

and using this we obtain bmin = R/N which reduces the eqn (3.27) to
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d

dt

〈
δv2
⊥
〉

=
8πG2M2n

v
lnN. (3.29)

For an isotropic distribution of stars, the relaxation time is the time required to

change 〈δv2
⊥〉 = v2 and by considering (d/dt) 〈δv2

⊥〉 = 〈δv2
⊥〉 /tr, the relaxation

time tr is given by

tr =
v3

8πG2M2n lnN
. (3.30)

The crossing time of the system is given by

tc =
R

v
. (3.31)

The ratio of relaxation time to crossing time is given by

tr
tc

=
v3

8πG2m2n lnN

v

R
=

v4R2

8πG2M2N lnN

4π

3
, (3.32)

where n = N/(4πR3/3) and for a virilized system v2 = GMT/R, which gives

tr
tc

=
1

6

M2
T

M2

1

N lnN
=

N

6 lnN
. (3.33)

A more detailed calculation gives tr = (N/(10 lnN))tc. The relaxation timescale

and the crossing time scales for various systems are given in Table 3.1.
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Object N tc (yr) tr (yr)

Galaxy 1011 108 1016

Galactic nuclei 108 104 1010

Globular cluster 106 105 109

Table 3.1: The relaxation time and the crossing time for various objects are
shown.

In the course of gravitational encounters, the stars may come too close for a face

off collision. The collision time tcoll ∼ (nΣv?)
−1, where number density n = N/r3,

Σ is cross section = π(2R?)
2 where R? is the radius of star, and v? is the velocity.

The ratio of collision time to crossing time is

tcoll
tc

=
R2

4πNR2
?

, (3.34)

and for a virialized system v2 = GNM/r and star velocity v? =
√

2GM/R? which

results in

tcoll
tc

= 0.02N
(v?
v

)4

. (3.35)

The ratio of tcoll and the tr is given by
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tcoll
tr

= 0.2
(v?
v

)4

lnN, (3.36)

and tcoll � tr which means that the inelastic scattering plays a little role in

structure.

Since the galactic center contains multiple star type, the evolution of galactic

center can lead to different evolution time and density structure which leads to

mass segregation. The segregation timescale for stars of mass M? is of the same

order as the relaxation timescale, and scales with M? as

tS ∼ tr
〈M?〉
M?

, (3.37)

where 〈M?〉 is the average mass in the galactic center and this concludes that the

high mass stars attain a steady state earlier than the low mass stars.

3.4.1 Characterstic scales

The dynamics of stars in the galactic center are governed by various lengthscale.

We now compare the various length scales.

1. Schwarzschild radius is horizon of a non-rotating black hole and is given by

Rs =
2GM•
c2

= 3× 1011

(
M•

106M�

)
cm (3.38)
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2. Radius of influence, rh is the radius below which BHs gravity dominate over

other stars gravity, given by

rh =
GMBH

σ2
= 3.38× 1017

(
M•

106M�

)( σ

200kmSec−1

)−2

cm (3.39)

3. Tidal radius Rt is the maximal distance from the MBH where the tidal forces

of the MBH can overwhelm the stellar self-gravity and tear the star apart:

rt = η
2/3
t

(
M?

M�

)1/3

R? ' 6.96× 1012η−1/3

(
M•

106M�

) 1
3
(
M?

M�

)− 1
3
(
R?

R�

)
cm

(3.40)

4. A critical mass is implied and is given by the condition Rt = Rs

Mc ' 3× 108M�

(
M?

M�

)− 1
2
(
R?

R�

) 3
2

(3.41)

5. Collision radius is the minimal distance from the MBH where large angle de-

flections by close gravitational encounters are possible. Closer to the SMBH

the relative velocity v between the interacting stars exceeds the escape ve-

locity from the stellar surface, vesc, and the distance of closest approach

required for a large angle deflection becomes smaller than the stellar radius

(i.e. when v2
esc ∼ GM?/R? < GM•/r ∼ v2)

rcol ' 7× 1016

(
M•

106M�

)(
M?

M�

)−1(
R?

R�

)
cm (3.42)

Figure 3.2: Shows various radii of physical importance.
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The length scales are shown in Fig 3.2 and 3.3 and it can be seen that the tidal

radius lies much below the radius of influence but is smaller than the Schwarzschild

radius for higher mass black hole

3.5 Fokker-Planck equation

The distribution function of N body is fN(W1, .....,WN , t) can be reduced to k

body distribution function through

fk(W1, ....,Wk, t) =

∫
d6Wk+1.....d

6WNf
N(W1, .....,WN , t), (3.43)

and

0.01 0.05 0.10 0.50 1 5 10

10-7

10-4

0.1

100

M● (108
M☉)

r
(p

c
)

Figure 3.3: The plot shows the run of various radii vs mass of the black hole:
from top to bottom, the collision radius rc (blue), the radius of influence, rh
(red), the tidal radius, rt (orange) with ηt = 1 and the Schwarzschild radius, Rs
(brown). The star mass is taken to be solar mass.
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∫
d6W1....d

6Wkf
k(W1, ....,Wk, t) = 1. (3.44)

We write the

f 1(W, t) =

∫
d6W1....d

6Wkf
k(W1, ....,Wk, t), (3.45)

and a 2 body distribution function can be written in the form

f 2(W1, W2, t) = f(W1, t)f(W2, t) + g(W1, W2, t), (3.46)

where g(W1, W2, t) is a 2 body correlation function. The probability of finding a

particular star in a unit volume of phase space centered on W1 is

f(W1|W2) =
f 2(W1, W2)∫

d6W
′
1f

2(W
′
1, W2)

=
f(W1)f(W2) + g(W1, W2, t)

f(W2) +
∫

d6W
′
1g(W1, W2)

. (3.47)

If g(W1, W2) = 0, then f(W1|W2) = f(W1). The kinetic energy of the system is

given by

〈K〉 =
1

2
M

∫
d6W1..d

6WNf
N(W1, ....,WN , t)

N∑
α=1

v2
α =

1

2
NM

∫
d6W1f(W1, t)v

2
1,

(3.48)

and the average potential is given by



Chapter 3: Stellar dynamics around black holes 59

〈W 〉 = −1
2

∫
d6W1..d

6WNf
N(W1, ....,WN , t)

N∑
α, β=1, & α 6=β

GM2

|Xα−Xβ |
(3.49)

1
2
M2N(N − 1)

∫
d6W1d6W2

f2(W1, W2, t)
|X2−X1| . (3.50)

If correlation function is small such that g(W1, W2, t) � f(W1, t)f(W2, t) and

for N � 1, the potential energy is

W = −1

2
GM2N2

∫
d6W1d6W2

f(W1, t)f(W2, t)

|X2 −X1|
=

1

2

∫
d3Xρ(X)Φ(X). (3.51)

Let Ψ(W, ∆W )d6(∆W )∆t be the probability that W is scattered to W + ∆W ,

the distribution function evolution is given by the master equation

df

dt
= Γ(f) =

∫
d6(∆W ) [Ψ(W −∆W,∆W )f(W −∆W )−Ψ(W,∆W )f(W )] .

(3.52)

In case of weak encounters δv � v, we expand the function Ψ(W−∆W,∆W )f(W−

∆W ) in Taylor series so that

Ψ(W−∆W,∆W )f(W−∆W ) = Ψ(W,∆W )f(W )−
6∑
i−1

∆Wi
∂

∂Wi

[Ψ(W,∆W )f(W )] +

1

2

6∑
i, j=1

∆Wi∆Wj
∂2

∂Wi∂Wj

[Ψ(W,∆W )f(W )] +O(∆W 3), (3.53)
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leading to

df

dt
= −

6∑
i=1

∂

∂Wi

{D[∆Wi]f(W )}+
1

2

6∑
i=1

∂2

∂Wi∂Wj

{D[∆Wi∆Wj]f(W )} , (3.54)

where D[∆Wi] and D[∆Wi∆Wj] are the diffusion coefficients given by

D[∆Wi] =

∫
d6(∆W )Ψ(W, ∆W )∆Wi (3.55)

D[∆Wi∆Wj] =

∫
d6(∆W )Ψ(W, ∆W )∆Wi∆Wj. (3.56)

The eqn (3.52) and (3.54) are the Fokker-Planck equations which is different from

the diffusion equation given by

∂f

∂t
=

6∑
i, j=1

∂

∂Wi

(
cij

∂

∂Wj

f(W )

)
, (3.57)

where cij are the diffusion coefficients. In action-angle variables (J, θ), the Hamil-

tonian H(J, t) and distribution function is taken to be f(J, t). Thus

df

dt
=
∂f

∂t
+ J̇i

∂f

∂Ji
+ θ̇i

∂f

∂θi
= Γ(f). (3.58)

The Hamilton’s equation are J̇i = −∂H/∂θi = 0 and θ̇i = ∂H/∂Ji = constant are

applied to give
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∂f

∂t
=

1

(2π)3

∫
d3θΓ(f) (3.59)

= − ∂

∂Ji

{
fD̄[∆Ji]

}
+

1

2

∂2

∂Ji∂Jj

{
dD̄[∆Ji∆Jj]

}
, (3.60)

where the orbit averaged diffusion coefficients are given by

D̄[∆Ji] =
1

(2π)3

∫
d3θD[∆Ji] (3.61)

D̄[∆Ji∆Jj] =
1

(2π)3

∫
d3θD[∆Ji∆Jj]. (3.62)

Let the number of stars in a volume V be given by NV (t), then

NV (t) = N

∫
V

d3J

∫
d3θf(J, t) = (2π)3N

∫
V

d3Jf(J, t). (3.63)

Thus the number rate of stars is given by

dNV

dt
= (2π)3

∫
V

d3J
∂f

∂t
= −

∫
V

d3J
∂Fi
∂Ji

, (3.64)

where Fi is given by

Fi = (2π)3

[
fD̄[∆Ji]−

1

2

∂

∂Ji

{
fD̄[∆Ji∆Jj]

}]
, (3.65)
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and using the Gauss divergence theorem, we find

dNV

dt
= −

∮
S

d2SiFi, (3.66)

where S is the surface element in angular momentum phase space.

3.5.1 Fokker-planck in {E, J} phase space

The evolution of DF due to the star-star interaction results in the diffusion of

stars due to the change in velocities which causes a change in energy and angular

momentum is given by the Fokker-Planck equation. We derive the Fokker-Planck

equation in terms of the energy E and dimensionless angular momentum R =

J2/J2
c , where J = rvt and J2

c = GM•/2E is the circular angular momentum.

The transition probability ψ(E; ∆E, R; ∆R)d∆Ed∆R for a star with E and R

to change by ∆E and ∆R in time ∆t, so that the changed distribution function

is given by (Lightman and Shapiro 1977; Cohn and Kulsrud 1978)

f(E, R, t+∆t) =

∫
f(E−∆E, R−∆R, t)ψ(E; ∆E, R; ∆R) d∆Ed∆R. (3.67)

Expanding f(E, R, t+ ∆t) using Taylor series in ∆t and f(E−∆E, R−∆R, t)

and ψ(E; ∆E, R; ∆R) using Taylor series in ∆E and ∆R, we obtain the Fokker-

Planck equation given by (eg. Lightman and Shapiro 1977)
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∂f(E, R, t)

∂t
+O(∆t) = − ∂

∂E
(f(E, R, t) 〈∆E〉t)−

∂

∂R
(f(E, R, t) 〈∆R〉t) +

1

2

∂2

∂E2

(
f(E, R, t)

〈
(∆E)2

〉
t

)
+

1

2

∂2

∂R2

(
f(E, R, t)

〈
(∆E)2

〉
t

)
+

∂2

∂E∂R
(f(E, R, t) 〈∆E∆R〉t) +O[

〈
(∆E)3

〉
t
] +O[

〈
(∆R)3

〉
t
] +O[〈(∆E∆R)〉t],

(3.68)

where the diffusion coefficients are given by (Lightman and Shapiro 1977)

〈∆X〉t =
1

∆t

∫
ψ(E; ∆E, R; ∆R)∆X d∆Ed∆R, (3.69a)〈

(∆X)2
〉
t

=
1

∆t

∫
ψ(E; ∆E, R; ∆R)(∆X)2 d∆Ed∆R, (3.69b)

〈∆X∆Y 〉t =
1

∆t

∫
ψ(E; ∆E, R; ∆R)∆X∆Y d∆Ed∆R, (3.69c)

with X and Y are E and R. The higher order terms are neglected as they are

small compared to the first and second order terms as will be justified later, which

results in

∂f(E, R, t)

∂t
= − ∂

∂E
(f(E, R, t) 〈∆E〉t)−

∂

∂R
(f(E, R, t) 〈∆R〉t) +

1

2

∂2

∂E2

(
f(E, R, t)

〈
(∆E)2

〉
t

)
+

1

2

∂2

∂R2

(
f(E, R, t)

〈
(∆E)2

〉
t

)
+

∂2

∂E∂R
(f(E, R, t) 〈∆E∆R〉t) . (3.70)
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Next section, we calculate the diffusion coefficients in terms of velocity and convert

it in terms of E and R.

3.5.2 Gravitational scattering

We consider a test star with mass m and velocity v that encounter a field star

with mass mf and velocity vf . The separation between the test and field star is

r = rs − rf where rs and rf is the position of test and field star given by

rs = rcm +
mf

m+mf

r, (3.71a)

rf = rcm −
m

m+mf

r, (3.71b)

where rcm is the center of mass. In the center of mass coordinate, ṙcm = 0 and

hence the velocities are given by

v =
mf

m+mf

u, (3.72a)

vf = − m

m+mf

u, (3.72b)

where u = ṙ = v − vf is the relative velocity and the equation of motion is given

by



Chapter 3: Stellar dynamics around black holes 65

r̈ = −G(m+mf )

r3
r. (3.73)

This equation represents the orbit of a star around an object of massMc = m+mf .

We use the Lagrangian dynamics to calculate the orbit of the star where the

Lagrangian, L(q, q̇ , t) = T (q, q̇ , t) − V (q, q̇ , t), where T is the kinetic energy,

V is the potential energy, q is the generalized coordinates and the Lagrangian

equation of motion is given by

∂

∂t

(
∂L(q, q̇ , t)

∂q̇

)
− ∂L(q, q̇ , t)

∂q
= 0. (3.74)

For a Keplerian orbit in a plane and using spherical coordinate such that q = (r, θ),

T = (1/2)m(ṙ2 + r2θ̇2) and the V = −GMcm/r. The equation of motion is given

by

r̈ − rθ̇2 +
GMc

r2
= 0 (3.75a)

θ̇ =
J

r2
, (3.75b)

where J is constant equal to the angular momentum of the orbit. Using x = 1/r,

the eqn (3.75a) and (3.75b) gives

d2x

dθ2
=
GMc

J2
− x, (3.76)
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whose solution is the well known Kepler’s equation

x =
1

r
= C cos(θ − θ0) +

GMc

J2
, (3.77)

where C and θ0 are the constants decided by the initial conditions. Let the initial

separation that is perpendicular to the initial relative velocity vector u0 be b, the

impact parameter of the encounter, the conserved angular momentum J = bu0;

hence the eqn (3.77) is given by

1

r
= C cos(θ − θ0) +

G(m+mf )

b2u2
0

. (3.78)

As t→ −∞, r →∞ and θ = 0 which gives cos θ0 = −G(m+mf )/(b
2u2

0C). Thus,

tan θ0 = −bu2
0/(G(m + mf )). The velocity is given by u = ṙ = Cu0b sin(θ − θ0)

and for θ = 0, u = −u0 which gives sin θ0 = 1/(bC). The point of closest approach

is θ = θ0 and the reduced particle velocity is deflected by an angle θdefl = 2θ0−π.

The deflection angle is π/2 at the impact parameter

b90 =
G(m+mf )

u2
0

, (3.79)

and thus the deflection angle is given by θdefl = 2 tan−1(b90/b). By energy con-

servation, the relative speed after the encounter is equal to the initial speed u0.
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Hence the parallel and perpendicular component of the ∆u is given by

|∆u⊥| = u0 sin θdefl = 2u0
tan(θdefl/2)

1 + tan2(θdefl/2)
= 2u0

b/b90

1 + (b/b90)2
, (3.80a)

|∆u||| = u0(1− cos θdefl) = 2u0
tan2(θdefl/2)

1 + tan2(θdefl/2)
= 2u0

1

1 + (b/b90)2
, (3.80b)

and therefore the change in test star velocity is given by

|∆v⊥| = 2
mf

m+mf

u0
b/b90

1 + (b/b90)2
, (3.81a)

|∆v||| = 2
mf

m+mf

u0
1

1 + (b/b90)2
. (3.81b)

3.5.3 Diffusion coefficients

An interaction of test star with mass m and velocity v to the field star with

mass mf and velocity vf where the velocities are defined in coordinate system

(ê1, ê2, ê3), results in the change in the velocity vectors which results in a change

in the energy and angular momentum leading to the diffusion of stars in the phase

space. We define a coordinate system (ê
′
1, ê

′
2, ê

′
3) such that

ê
′

1 =
u

u
, u.ê

′

2 = 0, u.ê
′

3 = 0, (3.82)
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where u = v − vf = u1ê1 + u2ê2 + u3ê3, is the relative velocity vector before

interaction. Let u′ = u
′
1ê
′
1 + u

′
2ê
′
2 + u

′
3ê
′
3, be the relative velocity after interaction

such that the change in relative velocity is

∆u = |u′ − u| =
√
u′2 + u2 − 2u′u cos θ = 2u sin

(
θ

2

)
, (3.83)

where it is assumed that the interaction changes the velocity vector by an angle θ

with u′ = u. The change in individual component of u′ is

∆u
′

1 = 2u sin2

(
θ

2

)
, (3.84a)

∆u
′

2 = 2u sin

(
θ

2

)
cos

(
θ

2

)
cosφ, (3.84b)

∆u
′

3 = 2u sin

(
θ

2

)
cos

(
θ

2

)
sinφ, (3.84c)

such that ∆u
′

= −∆u
′
1ê
′
1 −∆u

′
2ê
′
2 + ∆u

′
3ê
′
3 (Binney and Tremaine 2008) and φ is

the angle between projection of ∆u on ê′2 − ê
′
3 plane and ê′2. Thus, the change in

velocity of test star using eqn (3.72) is given by

∆v
′

1 = 2
mf

m+mf

u sin2

(
θ

2

)
= 2

mf

m+mf

u
1

1 + (b/b90)2
, (3.85a)

∆v
′

2 = 2
mf

m+mf

u sin

(
θ

2

)
cos

(
θ

2

)
cosφ = 2

mf

m+mf

u
b/b90

1 + (b/b90)2
cosφ,

(3.85b)

∆v
′

3 = 2
mf

m+mf

u sin

(
θ

2

)
cos

(
θ

2

)
sinφ = 2

mf

m+mf

u
b/b90

1 + (b/b90)2
sinφ, (3.85c)
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The velocity change in (ê1, ê2, ê3) coordinate is given by

∆vµ = êµ.ê
′α∆v

′

α, (3.86a)

∆vµ∆vν = êµ.ê
′αêν .ê

′β∆v
′

α∆vβ. (3.86b)

For the field star distribution f(vf ), the diffusion coefficients are given by

〈∆vµ〉t =

∫
d3vf f(vf )

∫
db 2 π b u ∆vµ, (3.87a)

〈∆vµ∆vν〉t =

∫
d3vf f(vf )

∫
db 2 π b u ∆vµ∆vν , (3.87b)

and by taking an average over φ, integrating over b in limit {bmin, bmax} and using

eqn (3.81), we obtain (Binney and Tremaine 2008)

〈∆vµ〉t = 2πG2mf (m+mf )

∫
d3vff(vf )

vµ
u3

log
(
1 + Λ2

)
, (3.88a)

〈∆vµ∆vν〉t = 8πG2m2
f

∫
d3vf f(vf )

1

u

[
uµ
u

(
−1

2

)
1

1 + Λ2
+ (3.88b)

1

4

{
1

1 + Λ2
+ log

(
1 +

1

1 + Λ2

)(
δµν −

uµuν
u2

)}]
,
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where Λ = bmaxu
2/(G(m + mf )). For typical values of bmax = 1 pc, u =

200 km sec−1 and m = mf = M�, it follows that Λ = 4.6 × 106, so that we

can neglect 1/(1 + Λ2) keeping the log term only. If one neglects the velocity de-

pendency of the logarithmic term (Chandrasekhar 1943), then eqn (3.88) reduces

to

〈∆vµ〉t = 4πG2mf (m+mf ) log Λ
d

dvµ
h(v), (3.89a)

〈∆vµ∆vν〉t = 4πG2m2
f log Λ

d2

dvµdvν
g(v), (3.89b)

where h(v) and g(v) are Rosenbluth potentials given by (Rosenbluth et al. 1957)

h(v) =

∫
d3vf

f(vf )

|v − vf |
, (3.90a)

g(v) =

∫
d3vf f(vf )|v − vf |. (3.90b)

Since the Rosenbluth potentials depends on the velocity only, we can use the rela-

tion d/dvµ = (vµ/v)d/dv and d2/(dvµdvν) = (δµν/v−vµvν/v3)d/dv+(vµvν/v
2)d2/dv2.

If the velocity vector v is along the ê1 axes, then v1 = v and v2 = v3 = 0. The
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diffusion coefficients are then given by (Binney and Tremaine 2008)

〈
∆v||

〉
t

= 〈∆v1〉t = 4πG2mf (m+mf ) log Λ
dh(v)

dv
, (3.91a)〈

(∆v||)
2
〉
t

=
〈
(∆v1)2

〉
t

= 4πG2m2
f log Λ

d2g(v)

dv2
, (3.91b)〈

(∆v⊥)2
〉
t

= 2
〈
(∆v2)2

〉
t

= 2
〈
(∆v3)2

〉
t

= 4πG2m2
f log Λ

1

v

dg(v)

dv
, (3.91c)

which reduces the eqn (3.89) to (Binney and Tremaine 2008)

〈∆vµ〉t =
vµ
v

〈
∆v||

〉
t
, (3.92a)

〈∆vµ∆vν〉t =
vµvν
v2

[〈
(∆v||)

2
〉
t
− 1

2

〈
(∆v⊥)2

〉
t

]
+

1

2
δµν
〈
(∆v⊥)2

〉
t
. (3.92b)

The higher order diffusion coefficients 〈∆vi,1....∆vi,n〉 will have terms (∆v||)
c(∆v⊥)d

where c + d = n and 0 ≤ c ≤ n. Using eqn (3.81), for b � b90, ∆v|| ∝ b−2

and ∆v⊥ ∝ b−1 whereas for b � b90, ∆v|| is constant and ∆v⊥ ∝ b. Therefore

(∆v||)
c(∆v⊥)d ∝ b−n−c for b � b90 and is ∝ bn−c for b � b90. The diffusion

coefficients is proportional to the integration over the impact parameter which

gives
∫

db b1−n−c for b� b90 and
∫

db b1+n−c for b� b90. For n > 2, the integration

will result in some power of 1/Λ and there will be no log Λ terms. Since we have

seen that the Λ is a large quantity, the higher order diffusion coefficients are small

compared to the coefficients for n = 1 and 2. Thus the higher order diffusion

coefficients are neglected.



Chapter 3: Stellar dynamics around black holes 72

For an isotropic distribution in velocity space d3vf = v2
f sin θdvfdθdφ, the Rosen-

bluth potentials using eqn (3.90) are given by

h(v) = 4π

[∫ v

0

dvf
v2
f

v
f(vf ) +

∫ ∞
v

dvf vff(vf )

]
, (3.93a)

g(v) =
4π

3

[∫ v

0

dvf

(
3v2

fv +
v4
f

v

)
f(vf ) +

∫ ∞
v

dvf
(
3v3

f + v2vf
)
f(vf )

]
, (3.93b)

and using eqn (3.91), we have

〈
∆v||

〉
t

= −16π2G2mf (m+mf ) log Λ

v2

∫ v

0

dvf v
2
ff(vf ), (3.94a)

〈
(∆v||)

2
〉
t

=
32π2G2m2

f log Λ

3

[∫ v

0

dvf
v4
f

v3
f(vf ) +

∫ ∞
v

dvfvff(vf )

]
, (3.94b)

〈
(∆v⊥)2

〉
t

=
32π2G2m2

f log Λ

3

[∫ v

0

dvf

(
3
v2
f

v
−
v4
f

v3

)
f(vf ) + 2

∫ ∞
v

dvfvff(vf )

]
.

(3.94c)
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The diffusion coefficients in terms E and R using eqn (3.92) are given by

〈∆E〉t = −1

2

〈
(∆v||)

2
〉
t
− 1

2

〈
(∆v⊥)2

〉
t
− v

〈
∆v||

〉
(3.95a)〈

(∆E)2
〉
t

= v2
〈
(∆v||)

2
〉
t

(3.95b)

〈∆R〉t =
R

v2

(
1− 5v2

2E

)〈
(∆v||)

2
〉
t
+

[
r2

J2
c

− R

2v2

(
1− v2

E

)] 〈
(∆v⊥)2

〉
t
+

2
R

v

[
1− v2

2E

] 〈
∆v||

〉
(3.95c)

〈
(∆R)2

〉
t

=
4R2

v2

[
1− 9v2

8E

] 〈
(∆v||)

2
〉
t
+

[
2R

r2

J2
c

− 2
R2

v2

(
1− v2

4E

)] 〈
(∆v⊥)2

〉
t
−

R2 v

E

〈
∆v||

〉
(3.95d)

〈∆E∆R〉t = −2R

[
1− v2

2E

] 〈
(∆v||)

2
〉
t
. (3.95e)

Spitzer (1987) has shown that for a Maxwellian distribution of field stars f(vf ) =

(n/(2πσf )
3/2) exp[−v2

f/(2σ
2
f )] whose vrms =

√
3σf , the parallel component diffu-

sion coefficient
〈
(∆v||)

2
〉
t

= 〈∆v1∆v1〉t is given by
〈
(∆v||)

2
〉
t

=
√

2(nΓ/σf )G(x)/x,

where Γ = 4π2G2m2
f log Λ, G(x) = (Erf(x)−xdxErf(x))/(2x2) and x = v/(

√
2σf ).

The relaxation time is defined to be

tr =
1

3

v2
rms〈

(∆v||)2
〉
t
|v=vrms

, (3.96)
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and works out to be

tr = 0.065
v3

G2m2
fn log Λ

, (3.97a)

= 3.4× 109 yr
( v

km sec−1

)3
(

n

pc−3

)−1(
mf

M�

)−2

log−1 Λ. (3.97b)

The number rate of stars diffusion can be approximated as Ṅ ≈ n(r)r3/tr and

following Peebles (1972) argument that in steady state, the number rate, Ṅ , is

constant in the physical space, and using eqn (3.97), the mean velocity v2 =

GM•/r, it is seen that n(r) ∝ r−9/4. Similarly the energy rate can be written

as Ė = n(r)r3v2M?/t(r) and following Bahcall and Wolf (1976), n(r) ∝ r−7/4.

In phase space, the number rate of stars is given by Ṅ = f(E)Γ(E)E/tr where

the distribution function f(E) ∝ Ep, the phase space volume per energy Γ(E) ∝

r3v3 ∝ r(3/2) ∝ E−3/2 obtained using eqn (3.24), and tr(E) ∝ v3/n ∝ 1/f(E) ∝

E−p. Using this, the number rate Ṅ ∝ E2p−1/2, and assuming that the number

rate remain constant in phase space, we get p = 1/4. Thus the Bahcall and Wolf

(1976) solution suggest that the number rate of star flow should be constant in

phase space and not in coordinate space as shown by Peebles (1972).

3.6 Loss cone dynamics

The presence of tidal radius puts a constraint on the angular momentum J and

the star is tidally captured if J ≤ Jlc, where loss cone angular momentum Jlc as

shown in Fig 3.4, is given by (Frank and Rees 1976)
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Figure 3.4: The loss cone geometry in velocity space is shown. If the stars
angular momentum is less than Jmin = Jlc, then the star is tidally disrupted.
courtesy: Lightman and Shapiro (1977)

Jlc =
√

2r2
t (Φ(rt)− E). (3.98)

The radius of a circular orbit rc = GM•/(2E) and the velocity is v2
c = GM•/rc.

The maximum angular momentum Jmax of an orbit is the circular angular momen-

tum given by J2
max = J2

c = r2
cv

2
c = GM•/(2E). The ratio of Jlc and Jmax obtained

using eqn (3.15) is given by

GM•
rt
− E

GM•
r
− E

=

(
Jlc
Jmax

)2
r2

r2
t

, (3.99)

where E = GM•/r − 〈v2〉 /2, Jlc/Jmax = sin θlc and θlc is the loss cone angle and

with r � rt, we obtain
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sin2 θlc = 2
rt
r2

GM•
〈v2〉

. (3.100)

Thus 〈v2〉 is given by

〈
v2
〉

= 3σ2


rh
r

r < rh

1 r ≥ rh,

where σ2 is the line of sight velocity dispersion and this results in loss cone angle

given by

θlc = f


√

2
3
rt
r

r < rh√
2
3
rtrh
r2 r ≥ rh,

(3.101a)

= 1.9× 10−5

(
M•

106M�

)− 1
3
(
M?

M�

)− 1
6
(
R?

R�

) 1
2 ( σ

200 km sec−1

)
f


√

rh
r

r < rh
rh
r

r ≥ rh,

where the factor f takes account that stars with larger impact factor can be lost

from the cusp due to tidal capture and is taken to be 2 (Frank and Rees 1976).

Using eqn (3.89), the change in v⊥ in time t is given by ∆v⊥ =
√
〈(∆v⊥)2〉t t

and hence the change in angular momentum ∆J = r∆v⊥ = r
√
〈(∆v⊥)2〉t t. The

time-scale on which a star can survive in a loss cone is the dynamical time-scale

tdyn. The diffusion angle θD is given by

θ2
D =

(
∆J

Jmax

)2

=
〈(∆v⊥)2〉t tdyn

v2
=
tdyn
tR

, (3.102)
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where the dynamical time is given by

tdyn =


√

r3

GM•
r < rh

r
σ

r ≥ rh
=
rh
σ


(
r
rh

) 3
2

r < rh

r
rh

r ≥ rh.
(3.103)

Using eqn (3.97) along with v = σ(r/rh)
−1 for r < rh and v = σ for r ≥ rh, θD

given by

θ2
D = 15.38G2M2

f log Λ
rh
σ4
n(r)


(
r
rh

)3

r < rh(
r
rh

)
r ≥ rh.

(3.104)

For r � rh, the cluster mass Mc = nr3M? where n is the stellar density is higher

than the black hole mass and hence from virialization theorem, σ ' (GM?ncr
2
c )

1/2

where nc is the density and rc is the core radius. Assuming the density to be

n(r) = nc(r/rh)
−7/4 (Bahcall & Wolf cusp) for r < rh and n(r) = nc for r ≥ rh

with Mf = M?, θD using eqn (3.104) given by (Frank and Rees 1976)

θD = 3.9× 10−4

(
M•

106M�

) 1
2
(
M?

M�

)− 1
2
(

nc
104 pc−3

)−1(
rc

10 pc

)−3

·

log Λ


(
r
rh

) 5
8

r < rh(
r
rh

) 1
2

r ≥ rh.
(3.105)

The ratio q = θlc/θD is given by (Frank and Rees 1976)
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q = 3.13

(
M•

106M�

)− 5
6
(
M?

M�

) 5
6
(
R?

R�

) 1
2
(

nc
104 pc−3

) 3
2
(

rc
10 pc

)4

·

f√
log Λ


(
r
rh

)− 9
8

r < rh(
r
rh

)− 3
2

r ≥ rh.
(3.106)

The stars on the loss cone are consumed on the dynamical timescale and the filling

of loss cone depends on the diffusion time-scale which depends on the diffusion

angle. The loss cone is said to be full loss cone if q < 1 as the stars move in and

out of the loss cone whereas the loss cone is empty if q > 1 and the stars have to

diffuse into the loss cone. The angular diffusion of stars to the loss cone is similar

to the heat conduction in a hemispherical shell such that the heat conduction

rate is given by dQ/dt = −κA∇T , where Q energy, κ is thermal conductivity,

A = 2πr2 sin θ is the surface area and T is the temperature. For a constant dQ/dt,

it is found that T ∝ − log(tan(θ/2)) ∼ log(2/θ) and thus the heat conduction rate

dQ/dt ∝ (T2 − T1)/ log(2/θ) where T1 and T2 is the temperature at the equator

and co-latitude θ respectively. Based on similar arguments, the number rate of

stars in diffusive regime is ∝ 1/ log(2/θlc) = N/(tR log(2/θlc)), where N is the

total number of stars and thus we can say that the angular diffusion time to be

∼ tR log(2/θlc).

The radius at which q = 1 is the critical radius rcrit and separate the full loss

cone regime to the empty loss cone regime. The critical radius using eqn (3.107)

is given by (Frank and Rees 1976)
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rcrit
rh

=



rcrit < rh :

2.75
(

M•
106M�

)− 20
27
(
M?

M�

) 20
27
(
R?
R�

) 4
9
(

nc
104 pc−3

) 4
3
(

rc
10 pc

) 32
9
(

f√
log Λ

) 8
9

rcrit ≥ rh :

2.13
(

M•
106M�

)− 5
9
(
M?

M�

) 5
9
(
R?
R�

) 1
3
(

nc
104 pc−3

)(
rc

10 pc

) 8
3
(

f√
log Λ

) 2
3
.

(3.107)

Inside rcrit, the star diffuses into the loss cone whereas outside rcrit the loss cone

loses its significance as the given star drift in and out of it in dynamical time.

The mean energy E(r) = (3/2)v2 = (3/2)GM•/r and thus the critical energy is

E(rcrit). The capture rate of a star due to diffusion into loss-cone orbits follows

directly from the angular diffusion time scale and star density at rcrit, is given by

Ṅ = 4n(r)r2v(r)θ2
lc

=



rcrit < rh :

1.1× 10−6 yr f
8
9

(log Λ)
5
9

(
nc

104 pc−3

)− 7
6
(

rc
10 pc

)− 49
9
(

M•
106M�

) 61
27
(
M?

M�

)− 95
54
(
R?
R�

) 4
9

rcrit ≥ rh :

4× 10−6 yr f 2
(

nc
104 pc−3

) 1
2
(

rc
10 pc

)−1 (
M•

106M�

) 4
3
(
M?

M�

)− 5
6
(
R?
R�

)
,

(3.108a)

The number of stars using the distribution function f(E) and eqn (3.16) is given

by

N = 4π2

∫
dEf(E)

∫
dJ2

∫
dr

vr
, (3.109)
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and taking the radial period P (E) =
∫

dr/vr and integrating over J , the number

of stars in the loss cone and total number of stars in the energy range E and

E + dE are given by

Nlc(E) = 4π2f(E)J2
lc(E)P (E) (3.110a)

N(E) = 4π2f(E)J2
max(E)P (E). (3.110b)

Thus Nlc(E) = N(E)J2
lc/J

2
max. In the full loss cone model, the stars are captured

in dynamical time which is the radial period and using the balance of angular

momentum diffusion time scale with the supply rate of stars, J2
lc/J

2
max ' (P (E)/tr)

and thus the capture rate Ṅ =
∫

dE Nlc(E)/P (E) =
∫

dE N(E)/tr. For a

power law galaxy with the assumptions that total number of stars in r ≤ rh

is N(< rh) = 2M•/M? and that the potential is dominated by black hole, the

density is given by n(r) = (3− γ)/(2π)(M•/M?)r
−3
h (r/rh)

−γ and using eqn (3.22),

the distribution function is given by

f(E) =
3− γ

2
√

2π5/2

Γ(γ + 1)

Γ(γ − 1/2)
(GM•)

−γM•
M?

rγ−3
h rγ−3

h Eγ−3/2. (3.111)

For 1/2 < γ < 3 and the capture rate per energy F (E) is given by

F (E) = 2(3− γ)

√
2

π

Γ(γ + 1)

Γ(γ − 1/2)
G−2M

− 2
3

•

M
4
3
?

R?σ
6−2γ

(
1− rtE

GM•

)
Eγ−3/2, (3.112)
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which is integrated over energy E to get total capture rate Ṅ , between the limits

{Φ(rh) = GM•/rh, ∞} and the solution is diverging for γ > 1/2. However a

crude way to get the capture rate is Ṅ = Nlc/P (E = Φ(rh)), where Nlc is the

total number of stars in loss cone obtained by integrating eqn (3.110), P (E) is

taken to be Kepler orbital period and Jlc =
√

2GM•rt; this gives

Ṅf =

√
2

π

3− γ
2− γ

Γ(γ + 1)

Γ(γ − 1/2)

(
M•
M?

) 4
3

R?
σ5

(GM•)2
(3.113a)

= 0.03 yr
3− γ
2− γ

Γ(γ + 1)

Γ(γ − 1/2)

(
M•

106M�

)− 2
3
(
M?

M�

)− 4
3
(
R?

R�

)( σ

200 km sec−1

)5

,

where Ṅf is full loss cone rate.

Even though this method is approximate, it gives an estimate of the rate of capture

in the full loss cone regime. The stars experience scattering due to gravitational

encounters which results in a change in their energy and angular momentum.

By solving the Fokker-Planck equation, one obtains the evolution of distribution

function and the inflow rate of stars to the loss cone calculated at the tidal radius

gives the net capture rate.

3.6.1 Diffusion equation

If we consider that change in angular momentum over an orbital period due to

gravitational interaction is higher than the change in energy, then eqn (3.70) is

given by
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d

dt
f(E, R, t) = − ∂

∂R
(f(E, R, t) 〈∆R〉t) +

1

2

∂2

∂R2

(
f(E, R, t)

〈
(∆R)2

〉
t

)
,

(3.114)

and in the limit R→ 0, the eqn (3.95) gives

〈∆R〉t =
〈(∆R)2〉t

2R
, (3.115)

which reduces the eqn (3.114) to

d

dt
f(E, R, t) =

∂

∂R

[
R
∂

∂R
(f(E, R, t) 〈∆R〉t)

]
. (3.116)

Thus the Fokker-Planck equation reduces to simple diffusion equation with diffu-

sion occurring alongR. In steady state ∂f(E, R, t)/∂t = 0 and thus df(E, R, t)/dt =

vr∂f(E, R, t)/∂r and eqn (3.116) is given by

vr
∂

∂r
f(E, R, t) =

∂

∂R

[
R
∂

∂R
(f(E, R, t) 〈∆R〉t)

]
. (3.117)

In terms of variable j = J2/J2
c (E) and χ defined by

χ =
1

〈D(E)〉

∫ r

rp

lim
j→0

〈(∆j)2〉
2j

dr

vr
and y =

j

〈D(E)〉
(3.118)
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where 〈D(E)〉 =

∮
lim
j→0

〈(∆j)2〉
2j

dr

vr
is the orbit averaged angular momentum diffu-

sion coefficient and ylc is y at j = jlc, the eqn (3.117) is recast as

df(χ, y)

dχ
=

d

dy

(
y

df(χ, y)

dy

)
. (3.119)

Cohn and Kulsrud (1978) have calculated the steady state solution of FP equation

numerically for spherically symmetric and isotropic distribution. For a steady

state with diffusion in angular momentum space only, the FP equation reduces to

the equation describing a transfer of heat in a cylinder. The phase space density

(f(χ, y) where χ and y are timelike and angular momentum variables respectively)

was considered to vary along an orbit with the boundary condition given by

boundary condition =


f(0, y) = f(1, y) y ≥ ylc

f(0, y) = 0 y ≤ ylc

f(1, y) ≥ 0

In this boundary conditions, the solution of eqn (3.119) is given by

f(χ, y) = f(ylc)

[
1− 2
√
ylc

∞∑
m=1

e−β
2
mχ/4

βm

J0(βm
√
y)

J1(βm
√
ylc)

]
, (3.120)

where J0 and J1 are Bessel functions of the first kind and βm gives consecuitve

zeros of J0(β
√
ylc) = 0. Thus the average flux travelling across ylc is
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F (E) = 4π2P (E) 〈D(E)〉 J2
c (E)

∫ ylc

0

f(1, y) dy (3.121)

= 4π2J2
c (E)Rlcf(Rlc)

[
1− 4

∞∑
m=1

e−α
2
mq/4

α2
m

]
, (3.122)

where Rlc = J2
lc/J

2
c and q is given by

q(E) =
P (E) 〈D(E)〉

Rlc(E)
, (3.123)

where P (E) is the orbital period. For smoothness of f(χ, y) at y = 0, we take

the condition ∂f(χ, y)/∂
√
y = 0. Using this condition, the f(Rlc) is given by

f(Rlc) =
f(1)

1 + q−1ξ(q) ln(1/Rlc)
, (3.124)

where

ξ(q) = 1− 4
∞∑
m=1

e−α
2
mq/4

α2
m

. (3.125)

Thus the flux is given by

F (E) = 4π2J2
c (E)Rlc

f̄(E)

ξ(q)−1 + q−1 ln(1/Rlc)
= 4π2qJ2

cRlc
f̄(E)

ln(1/R0)
, (3.126)
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where f(1) = f̄(E) =
∫ 1

0
f(E, R) dR and R0 = Rlce

−q/ξ(q). Cohn and Kulsrud

(1978) suggested the value of R0 to be

R0(q) = Rlc

 e−q q � 1

e−0.186q−0.824
√
q q � 1

(3.127)

The limits of q � 1 and q � 1 in the previous equation are regime of empty and

full loss cone respectively. The eqn (3.126) in the limits of q is given by (Merritt

2013b)

F = Fmax

 q| lnRlc|−1 q � − lnRlc

1 q � − lnRlc,
(3.128)

where Fmax = 4π2J2
cRlcf̄(E). The transition from empty to full loss cone regime

occurs at the critical energy Ecrit when q(Ecrit) = lnRlc(Ecrit).

Cohn and Kulsrud (1978) also obtained the steady state 2D (E, R) solution of FP

equation where the time dependent part of FP equation was written as df/dt =

(df/dt)scat + (df/dt)coll, where (df/dt)scat, (df/dt)coll is scattering by star-star

interaction and physical collision term respectively. They included the physical

collision term (df/dt)coll = −νcollf where νcoll = 4πR2
?g(v) + 4πGM?R?h(v) is the

collision frequency, into the FP equation and obtained the rate of loss cone feeding

to be

Ṅ = 3× 10−7 Yr−1

(
M•

103M�

)2.33(
n

5× 104 pc−3

)1.6(
σ2

100 km2 sec−2

)−2.88

.

(3.129)
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Syer and Ulmer (1999) using the assumption of spherical symmetry, power law

distribution and loss cone mechanism, calculated a rough event rate for both main

sequence star and red giant star. Red giants may enter the loss cone in the same

manner as main-sequence stars: they diffuse towards an empty loss cone for orbits

below a critical radius, and above that radius, they scatter on to a full loss cone.

There is an additional contribution to the red giant capture rate. Red giants

also grow on to the loss cone as they expand. As the loss cone angle θ2
lc ∝ Rt,

and RtGiant � RtMS
, the number of red giants susceptible to capture may be

significant. In order to calculate the red giant capture rates, it is important to

determine their birth rate and their number density. The fraction of red giant stars

fRG = (dṄnew/dN)tRG where Ṅnew, tRG are birth rate and evolutionary time of red

giant stars. They used the Salpeter mass function dN/dm = 1.6m−1.35, the lifetime

of main sequence star tMS = 1010m−2.5 yr where m = M?/M�, dṄnew/dN =

(dN/dM?)(M?/tMS) and the red giant star lifetime tRG ∼ 7 × 108 yr. It is also

important to obtain the maximum radius Rmax, and minimum radius Rmin, of a

giant star, because it is the radius of a star that decides the size of loss cone and

is taken to be Rmax = 200R� and Rmin = 3R�. So, the capture rate of red giant

stars depends on the number of new giant stars formed and diffused into the loss

cone. It also depends on the number of stars that evolve to the red giant while

they are in loss cone. These authors assumed that all stars within the loss cone

that evolve to the red giant are disrupted, then the rate of red giant captures

within loss cone is dṄRG/dN = θ2
lcRG

(dṄnew/dN). The total capture rate per star

is then given by

dṄRG

dN
=

dṄnew

dN

[∫ Rt

Rmin

R

R�

θ2
lc

tdyn
dt+

∫ Rmax

Rt

1

tR log(2/θlc)
dt+

Rmax

R�
θ2
lc

]
(3.130)
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where θlc is the loss cone for main sequence stars. So the total capture rate is

given by

ṄRG = fRG

∫
dṄRG

dN
n(r)r2 dr (3.131)

For a Nuker density profile (Byun et al. 1996; Faber et al. 1997), they obtained

the capture rate to be Ṅ ' 10−8(M•/(106M�) yr−1.

Wang and Merritt (2004) solved the steady Fokker-Planck equation for a spheri-

cally symmetric nuclei with an isothermal density form ρ(r) = M?n(r) = σ2/(2πGr2),

and total potential as sum of black hole and stellar potentials. They obtained Ṅ ∝

σ7/2M−1
• and usingM•−σ relation given byM• = 1.48×108M�(σ/(200 km sec−1))4.65

(Merritt and Ferrarese 2001), they obtained the theoretical event rate given by

Ṅ = 6.5× 10−4

(
M•

106M�

)−0.25

yr−1. (3.132)

Wang and Merritt (2004) have also numerically solved the steady state Fokker-

Planck equation for a sample of 51 galaxies by assuming a single mass distribution

and obtained the capture rate shown in Fig 3.5. The consumption rate for power-

law galaxies is higher than that of core galaxies because the number of stars is

higher at lower radii for power-law galaxies.

The previous models use a single stellar mass distribution to calculate the capture

rate. Stone and Metzger (2016) employed a stellar mass function, ξ(m) given

by Kroupa (2001), the Kroupa mass function, in their distribution function, and

applied it to a sample of 200 galaxies with Nuker profiles, and by using the steady

Fokker-Planck equation, they obtained Ṅt ∝M−0.4
• .
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Figure 3.5: Consumption rate for core galaxies and power law galaxies as
function of M• for the sample of 51 galaxies.
Courtsey: Wang and Merritt (2004)

Apart from spherical nuclei, the galactic nuclei may be either axisymmetric or

triaxial. The potential of such non-spherical nuclei are complicated and apart

from Keplerian orbits, various other orbits are possible. The stars orbit precession

can lead to the capture of stars by the black hole (orbit draining). Stars in the loss

cone are drained in time tdyn and if the tdyn < tprec, then the loss cone is empty else

the loss cone is full. These centrophilic orbits (orbits that are capable of coming

too close to the black hole even in the absence of gravitational encounters or any

other effect that drives the star close to the black hole) can have a dramatic effect

on the consumption rate, because stars with J � Jlc can precess into the loss cone

so long as |Jz| < Jlc. Crudely speaking, the loss cone is replaced by a loss wedge

with the same extent |Jz| < Jlc in the Jz direction of phase space, but stretched

in the J direction to some J > Jlc.

Magorrian and Tremaine (1999) solved the FP equation which is taken to be in Jz
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direction and obtained the capture rate is found to be Ṅ ∝M−0.188
• . Vasiliev and

Merritt (2013) assuming the deviation of galactic nuclei from spherical structure

to be small and doing a detailed analysis of orbital structure and solving the

Fokker-Planck equation obtained Ṅ ∼ 10−4 − 10−6 yr−1.

The orbital evolution in the galactic nuclei is more complicated in the presence of

triaxial potentials, which support two distinct families of tube orbits circulating

about the long and short axes of the triaxial figure (Merritt and Vasiliev 2011).

In addition, there is a new class of centrophilic orbits called the pyramids, and

the defining feature of the pyramid orbit is that the minimum of J=0 and a

star on such an orbit will eventually find its way into the SBH even without the

assistance of collisional relaxation (Merritt and Valluri 1999). Feeding rates due

to collisional loss cone refilling are very large in such galaxies compared with the

spherical galaxies (Merritt and Poon 2004). A flow-chart of various model and

their references are given in Fig 3.6.

3.7 Summary

A star orbiting around the black hole experiences gravitational scattering from

neighbor star leading to change in energy and angular momentum. These inter-

action results in the diffusion of stars and the evolution of stellar system through

Fokker-Planck equation. However, there exists a tidal radius beyond which the

star is lost to the black hole. The presence of tidal radius results in a loss cone

such that a star with angular momentum less than the loss cone angular momen-

tum is fed to the black hole where the star is shredded by the black hole. This

feeding rate of star to the black hole is called as the theoretical capture rate and

is constrained by the ratio of loss cone angular momentum to diffusion angular

momentum defined by parameter q. The loss cone is empty if q > 1 and full
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if q < 1. The capture rate is calculated using the steady loss cone theory for

spherical galactic nuclei and is found to be ∼ 10−4 yr−1 which is higher than the

observed rate of 10−5 yr−1 leading to the rate tension.

3.8 Caveats

We discuss some caveats below (Merritt 2006)

1. The distribution function varies with the density model of a star as the total

potential is a sum of the black hole and stellar potentials; thus the choice of

density model is crucial.

2. The loss cone dynamics discussed here is a solution of a steady Fokker-

Planck equation. The dependence of f on J near the loss cone boundary

will be different from the steady form for the time-dependent Fokker-Planck

equation and thus the capture rate may vary.

3. The structure of galactic nuclei is crucial to decide the orbit of stars and the

geometry of loss cone such as it is a cone in spherical galactic nuclei and a

wedge in axisymmetric nuclei. This will also affect the capture rate.

4. The distribution function assumed here is isotropic but in general, the dis-

tribution is anisotropic which also affects the stellar distribution and thus

the capture rate.

5. Galactic nuclei may undergo catastrophic changes due to galaxy mergers,

star formation, infall of star cluster or black holes. These changes will have

a substantial effect on the feeding rates.
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The dynamical model considered here is for a star on a parabolic orbit however the

crucial point is that the J plays an important role in the stellar dynamical process

through pericenter radius rp. In chapter 5, we have discussed a dynamical model

that includes both energy and angular momentum to solve the steady Fokker-

Planck equation for spherical galactic nuclei with a power-law density profile and

the Kroupa’s initial stellar mass function.

We enlist the discussion points of this chapter below:

• Basic concepts of stellar dynamics around black holes: virial theorem, DF,

important time scales and radii.

• The master equation, Fokker-Planck equation and diffusion in phase space.

• The Fokker-Planck equation in {E, J} space for spherical systems.

• Derivations of the diffusion coefficients.

• Loss cone dynamics.

• Solution to Fokker-Planck with a loss cone boundary.

• Discussion of capture rates and caveats.
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Distribution functions
Peebles (1972)

Bahcall and Wolf (1976)

Fokker-Planck equation

Bahcall and Wolf (1976)

Lightman and Shapiro (1977)

Rosenbluth et al. (1957)

Loss cone theory

Frank and Rees (1976)

Lightman and Shapiro (1977)

Non-relativistic Relativistic

Axis-symetric nuclei

Magorrian and Tremaine (1999)

Vasiliev and Merritt (2013)

Spherical nuclei

Cohn and Kulsrud (1978)

Syer and Ulmer (1999)

Wang and Merritt (2004)

Merritt (2010)

Stone and Metzger (2016)

Mageshwaran and

Mangalam (2015)

Triaxial nuclei
Merritt (1997)

Sambhus and Sridhar (2000)

Valluri and Merritt (1998)

Merritt and Poon (2004)

Merritt and Vasiliev (2011)

Merritt et al. (2011)

Brem et al. (2014)

Kesden (2012)

Kesden (2012)

Will (2012)

Merritt and Vasiliev (2012)

Figure 3.6: The BH stellar dynamical literature flow chart and their contextual
interplay.
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Accretion physics Image: ESO / ESA / Hubble / M. Kornmesser.

4.1 Introduction

The energy source for luminous quasars is the accretion of matter from the sur-

rounding disk by the massive black holes. The simplest picture is that the source

of energy is the extraction of potential energy through an accretion of the mate-

rial from the disk. A mass element ∆M at a radius r is accreted by the black

hole M• and the energy released is ∆E = GM•∆M(1/Rs − 1/r), where Rs is the

Schwarzschild radius. The luminosity from the source is given by

L =
∆E

∆t
=
GM•
Rs

∆M

∆t

(
1− Rs

r

)
=
GM•Ṁ

Rs

(
1− Rs

r

)
= ηṀc2, (4.1)

where Ṁ is the accretion rate and η = (1/2)(1 − Rs/r) is the efficiency. At
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high luminosity, the accretion rate is controlled by the radiation pressure from the

photons to the accreting material through scattering and absorption. When the

radiation pressure overcomes the gravity from the black hole, the accretion halts

and the luminosity reaches the Eddington luminosity.

This simple accretion picture above involves the direct fall of matter into the black

hole, whereas in general, the gas in the disk is rotating and thus it is necessary to

remove the angular momentum to spiral down the matter into the black hole. The

viscosity acting within the gas layers is the source of angular momentum exchange

and depends on the nature of pressure dominating in the disk; this viscosity heats

up the disk which is then emitted in the form of radiation. In this chapter, we

will discuss various viscosity models, the accretion disk structure, the luminosity

emitted and discuss the appropriate model for TDEs.

4.2 Equations of gas dynamics

The matter in the accretion disk is in a gaseous form consisting of free electrons

and various species of ions that interacts within themselves through collision. The

collision of a gas particle with another particle results in the change in the state of

motion and these interactions occur over a length scale of mean free path. For a

uniform gas distribution, these random interactions result in some mean velocity

that is the velocity of the gas. Since we are interested in the length-scale� mean

free path, we can neglect these microscopic interactions and consider the fluid to

be continuous with density ρ having velocity v and temperature T .
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4.2.1 Equation of continuity

For a fluid density ρ in volume V0, the total mass is
∫
ρ dV where the integration

is over volume V0. The mass of the fluid moving out of the surface df along the

normal with velocity v is given by ρv · df , then the total mass of fluid flowing out

from V0 is
∮
V0
ρv · df . Thus the change in the fluid mass in volume V0 due to fluid

leaving V0 is given by

∂

∂t

∫
ρ dV = −

∮
V0

ρv · df , (4.2)

which then using the Gauss divergence theorem, gives (Landau and Lifshitz 1959)

∂ρ

∂t
+∇ · (ρv) = 0. (4.3)

4.2.2 Euler’s equation

For a pressure P acting on the fluid in volume V0, the total force is given by Fp =∮
P · df = −

∫
∇(P )dV . If the fluid is in gravitational field, then the gravitational

force is given by Fg =
∫
ρg dV such that the total force is F = Fp + Fg. The

equation of motion using F =
∫
ρ(dv/dt) dV gives (Landau and Lifshitz 1959)

ρ
dv

dt
= −∇P + ρg (4.4)

The change in velocity dv in time dt consists of change with t at a fixed point in

space and the difference in velocity at two points separated out by dr at the same
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time t where dr is the distance travelled by fluid in dt. Then the net change in

velocity is given by

dv

dt
=
∂v

∂t
+ (v ·∇)v. (4.5)

Using eqns (4.3, 4.4, 4.5), the momentum flux is given by

∂(ρvi)

∂t
= −∂Πik

∂xk
+ ρg, (4.6)

where Πik = Pδik + ρvivk is the momentum flux density tensor, vi is the velocity

component of v and xk is the spatial component.

The Euler equation shown in eqn (4.4) is for an ideal fluid whereas there is a

viscosity in real fluids. We now include the viscosity term in the Euler equation.

The viscosity provides an irreversible transfer of momentum from high velocity

to a low-velocity region and thus the equation of motion for a viscous fluid can

be obtained by adding the viscosity stress tensor −σ′ik to Πik given by Πik =

Pδik+ρvivk−σ
′

ik. Since the viscosity occurs when the different fluid particles move

with different velocities so that there is a relative motion between various particles,

the viscosity tensor should be a function of space derivative of the velocity, that

is σ′ik ∝ dvi/dxk. For a uniformly rotating fluid in which the velocity v = Ω× r,

where Ω is angular velocity, there is no friction which implies that σ′ik = 0 which

is possible if σ′ik = dvi/dxk + dvk/dxi. Thus using the above conditions, the most

general tensor is given by

σ
′

ik = η

[
∂vi
xk

+
∂vk
∂xi
− 2

3
δik
∂v`
∂x`

]
+ ζδik

∂v`
∂x`

, (4.7)
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where η and ζ are coefficients of viscosity, independent of bulk velocities and both

are positive. Thus momentum equation for a viscous fluid using eqn (4.6) is given

by

ρ

[
∂vi
∂t

+ vk
∂vi
∂xk

]
= − ∂P

∂xk
+

∂

∂xk

[
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂v`
∂x`

)]
+δik

∂

∂xk

(
ζ
∂v`
∂x`

)
+ρg,

(4.8)

which for constant η and ζ is given by

ρ
dv

dt
= −∇P + η∇2v +

(
ζ +

η

3

)
∇(∇ ·v) + ρg. (4.9)

For an incompressible fluid, ∇ ·v = 0, which reduces eqn (4.9) to (Landau and

Lifshitz 1959)

ρ
dv

dt
= −∇P + η∇2v + ρg, (4.10)

and this is called as Navier-Stokes equation.

4.2.3 Energy equation

For an adiabatic fluid, the entropy s is constant and using the law of thermody-

namics given by
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dw = Tds+ V dP, (4.11)

where w is the enthalpy (heat function per unit mass of fluid), V = 1/ρ is the

volume per unit mass and P is the pressure. Since entropy is constant, we have

dw = V dP =
dP

ρ
, (4.12)

and using eqn (4.4), we have

∂v

∂t
+ (v ·∇)v = −∇w + g. (4.13)

Using vector identity (1/2)∇v2 = v × (∇× v) + (v ·∇)v, eqn (4.13) is given by

∂v

∂t
− v × (∇× v) = −∇

(
w +

v2

2
+ Φ(r)

)
, (4.14)

where g = −∇Φ(r) and Φ(r) is the potential of gravitational field. For a steady

stream line flow along stream direction line `, eqn (4.14) is given by

∂

∂`

(
w +

v2

2
+ Φ(r)

)
= 0, (4.15)

which gives w+(1/2)v2+Φ(r) = constant and this is called as Bernoulli’s equation.
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The energy of unit volume of fluid is (1/2)ρv2 + ρε, where (1/2)ρv2 and ρε are the

fluid’s kinetic and internal energies. Using eqns (4.3), (4.9) and (4.12), we have

∂

∂t

(
1

2
ρv2

)
= −1

2
v2∇ · (ρv)−ρv ·∇

(
1

2
v2 + w

)
+ρTv ·∇s−ρ(v ·∇)Φ(r)+vi

∂σ
′

ik

∂xk
,

(4.16)

and since enthalpy w = ε+ P/ρ, by using eqn (4.12) and (4.3), we obtain

∂

∂t
(ρε) = −w∇ · (ρv)− ρTv ·∇s. (4.17)

Employing eqns (4.16) and (4.17), we have

∂

∂t

(
1

2
ρv2 + ρw

)
= −∇ ·

[
ρv

(
w +

1

2
v2

)]
− ρ(v ·∇)Φ(r) + vi

∂σ
′

ik

∂xk
. (4.18)

Applying the vector identity∇ · (ψA) = ψ∇ ·A+A ·∇ψ, ρ(v ·∇)Φ(r) =∇ · (ρvΦ)+

∂(ρΦ)/∂t− ρ∂Φ/∂t and since Φ(r) is independent of time, eqn (4.18) reduces to

∂

∂t

[
ρ

(
1

2
v2 + w + Φ(r)

)]
= −∇ ·

[
ρv

(
w +

1

2
v2 + Φ(r)

)
− v ·σ′

]
− σ′ik

∂vi
∂xk

.

(4.19)

By integrating eqn (4.19) over a volume V , we obtain (Landau and Lifshitz 1959)
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∂

∂t

∫ [
ρ

(
1

2
v2 + w + Φ(r)

)]
dV = −

∮ [
ρv

(
w +

1

2
v2 + Φ(r)

)
− v ·σ′

]
· df−∫

σ
′

ik

∂vi
∂xk

dV, (4.20)

where the first term on right hand side gives the rate of change of energy of the

fluid in V due to energy flux and the second term shows the decrease per unit time

in energy due to dissipation.

4.3 Viscous tensor in curvilinear coordinates

The structure of an accretion disk is taken to be either cylindrical or spherical

to solve the fluid equations. Thus, the viscous tensor in cylindrical and spherical

coordinates are given below (Landau and Lifshitz 1959).

4.3.1 Cylindrical coordinates

In cylindrical coordinates r, φ, z the components of stress tensor is given by

σ
′

rr = 2η
∂vr
∂r

, σ
′

rφ = η

(
1

r

∂vr
∂φ

+
∂vφ
∂r
− vφ

r

)
(4.21a)

σ
′

φφ = 2η

(
1

r

∂vφ
∂φ

+
vr
r

)
, σ

′

φz = η

(
∂vφ
∂z

+
1

r

∂vz
∂φ

)
(4.21b)

σ
′

zz = 2η
dvz
dz

, σ
′

zr = η

(
dvz
dr

+
dvr
dz

)
, (4.21c)
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Thus the Navier-Stokes equation and the equation of continuity are given by

∂vr
∂t

+ vr
∂vr
∂r

+
vφ
r

∂vr
∂φ

+ vz
∂vr
∂z
−
v2
φ

r
= −1

ρ

∂P

∂r
− ∂Φ

∂r
+

1

ρ

[
1

r

∂(rσ
′
rr)

∂r
+

1

r

∂σ
′

rφ

∂φ
+
∂σ
′
rz

∂z
+
σ
′
rr − σ

′

φφ

r

]
(4.22a)

∂vφ
∂t

+ vr
∂vφ
∂r

+
vφ
r

∂vφ
∂φ

+ vz
∂vφ
∂z

+
vrvφ
r

= − 1

ρr

∂P

∂φ
− 1

r

∂Φ

∂φ
+

1

ρ

[
1

r2

∂

∂r

(
r2σ

′

rφ

)
+

1

r

∂σ
′

φφ

∂φ
+
∂σ
′

φz

∂z

]
(4.22b)

∂vz
∂t

+ vr
∂vz
∂r

+
vφ
r

∂vz
∂φ

+ vz
∂vz
∂z

= −∂P
∂z
− ∂Φ

∂z
+

1

ρ

[
1

r

∂

∂r

(
rσ
′

zr

)
+

1

r

∂σ
′

zφ

∂φ
+
∂σ
′
zz

∂z
+
σ
′
zr

r

]
(4.22c)

∂ρ

∂t
+

1

r

∂

∂r
(rρvr) +

1

r

∂

∂φ
(ρvφ) +

∂

∂z
(ρvz) = 0. (4.22d)
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4.3.2 Spherical coordinates

In spherical coordinates (r, θ, φ) the components of stress tensor are given by

σ
′

rr = 2η
∂vr
∂r

, σ
′

rφ = η

[
∂vφ
∂r

+
1

r sin θ

∂vr
∂φ
− vφ

r

]
(4.23a)

σ
′

φφ = 2η

[
1

r sin θ

∂vφ
∂φ

+
vr
r

+
vθ cot θ

r

]
, σ

′

φθ = η

[
1

r sin θ

∂vθ
∂φ

+
1

r

∂vφ
∂θ
− vφ cot θ

r

]
(4.23b)

σ
′

θθ = 2η

[
1

r

∂vθ
∂θ

+
vr
r

]
, σ

′

θr = η

[
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

]
,

(4.23c)
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Thus the Navier-Stokes equation and the equation of continuity are given by

ρ

[
∂vr
∂t

+ vr
∂vr
∂r

vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ
−
v2
θ + v2

φ

r

]
= −∂P

∂r
−

ρ
∂Φ

∂r
+

1

r2

∂

∂r
(r2σ

′

rr) +
1

r sin θ

∂

∂θ
(sin θσ

′

rθ)+

1

r sin θ

∂σ
′

rφ

∂φ
−
σ
′

θθ + σ
′

φφ

r
(4.24a)

ρ

[
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vφ

r sin θ

∂vθ
∂φ

+
vrvθ
r
−
v2
φ cot θ

r

]
= −1

r

∂P

∂θ
+

ρ

r

∂Φ

∂θ
+

1

r

∂

∂r
(rσ

′

θr) +
1

r sin θ

∂

∂θ
(sin θσ

′

θθ) +
1

r sin θ

∂σ
′

φφ

∂φ
+

2σ
′

rθ − cot θσ
′

φφ

r
(4.24b)

ρ

[
∂vφ
∂t

+ vr
∂vφ
∂r

+
vθ
r

∂vφ
∂θ

+
vφ

r sin θ

∂vφ
∂φ

+
vrvφ
r

+
vθvφ cot θ

r

]
= − 1

r sin θ

∂P

∂φ
+

ρ

r sin θ

∂Φ

∂φ
+

1

r

∂

∂r
(rσ

′

φr) +
1

r

∂σ
′

θφ

∂θ
+

1

r sin θ

∂σ
′

φφ

∂φ
+

2

r
(σ
′

rφ + cot θσ
′

θφ) (4.24c)

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρvr) +

1

r sin θ

∂

∂θ
(ρvθ sin θ) +

1

r sin θ

∂

∂φ
(ρvφ) = 0. (4.24d)

4.4 Eddington luminosity

The maximum luminosity of a source in hydrostatic equilibrium is the Eddington

luminosity. If the luminosity exceeds the Eddington limit, then the radiation



Chapter4: Accretion physics 104

pressure drives an outflow. The radiation flux is given by

F = − c
κ

1

ρ
∇P, (4.25)

where κ is the opacity and P is the radiation pressure. From Euler’s equation in

hydrostatic equilibrium given by eqn (4.4), the mean acceleration of zero implies

that

dv

dt
= −1

ρ
∇P + g = 0, (4.26)

while eqn (4.25) then gives

F =
c

κ
g. (4.27)

The luminosity of a source bounded by a surface f in a volume V using Gauss’s

divergence theorem and g = −∇Φ, is given by

LE =

∫
F ·df =

∫
c

κ
g ·df = − c

κ

∫
∇Φ ·df = − c

κ

∫
∇2ΦdV, (4.28)

and using Poisson equation given by ∇2Φ = −4πGρ, the Eddington luminosity is

given by (Rybicki and Lightman 1986)

LE =
4πGc

κ

∫
ρdV =

4πGM•c

κ
. (4.29)
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Thus, using eqn (4.1), the Eddington mass accretion rate is given by

ṀE =
4πGM•
ηκc

. (4.30)

The opacity κ is a measure of the impenetrability of medium to photons through

absorption and scattering of radiation in a medium that depends on the nature of

interactions between photons and electrons. The opacity due to elastic scattering

of photons by an electron is called as Thomson opacity in which the photon energy

hν � mc2, where m is the particle mass and ν is the frequency of the photon.

The Thomson opacity is given by κes = 0.20(1+X) cm2 g−1, where X is hydrogen

mass fraction and for solar composition X = 0.7 which gives κ = 0.34.

The electron passing close to ions experience the acceleration and an accelerat-

ing charge emits radiation. This is free-free emission, also called Bremsstrahlung

dominates at high temperature where plasma is highly ionized. A free electron can

also absorb a photon during a collision with an ion and this is called as free-free

absorption. The opacity due to free-free absorption called as Kramers opacity is

given by

κff = 3.68× 1022gff (1− Z)(1 +X)
ρ

g cm−3
T−7/2 cm2 g−1, (4.31)

where gff is the quantum mechanical correction, Z is the mass fraction of elements

higher than hydrogen. Since κ is due to the Thomson scattering, the opacity is

taken to be constant in the calculation of Eddington luminosity.
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Figure 4.1: The exchange of fluid blob in a diffrentially rotating fluid that
results in a transfer of angular momentum from inner annulus to the outer.

4.5 Viscous torques

We consider an accretion disk which is rotating with Keplerian velocity ω =√
GM•/r3 and whose inner radius is rin and outer radius is rout. The matter

is accreted by the black hole at the inner radius and the matter at higher radius

moves inward. Since the matter is following a Keplerian orbit with specific an-

gular momentum J =
√
GM•r and with a value inner radius of Jin =

√
GM•rin,

the matter has to lose its angular momentum through some viscous mechanism to

move inward.

A rotating accretion disk whose angular velocity ω is a function of radius r has a

shear viscosity where the differential rotation results in an orthogonal transport of

the momentum to the direction of gas motion which results in an inward flow of

mass. We consider an accretion disk in a cylindrical coordinates with density ρ(r)

and height H(r), rotating with velocity vφ = rω(r). Let us consider a surface R

through which the mass is flowing due to shear viscosity from both upper and lower

layers at a separation of λ/2 from R with a velocity ṽ. Due to chaotic motion of

the plasma in an equilibrium flow, the mass flux through the surface is equal from

upper and lower layers but this flow of matter results in the transfer of angular

momentum with a net angular momentum flux as shown in Fig 4.1. The φ−
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momentum flux crossing R from R+λ/2 is given by L+
φ = ρṽH(R+λ/2)vφ(R−λ/2)

and from layer R−λ/2 is given by L−φ = ρṽH(R−λ/2)vφ(R+λ/2). Using a Taylor

series expansion for λ� 1, we obtain to first order in λ, a torque per unit length

given by (Frank et al. 2002)

L̇ = −ρṽHλR2ω
′
, (4.32)

where ω′ = dω/dr. The non-vanishing component of stress here is the force in φ−

direction and using eqn (4.21), it is found to be σ′ = −ηRω′ . By comparing σ′rφ
with eqn (4.32), we obtain the kinematic viscosity ν = λṽ and torque exerted by

the outer layer on the inner layer to be given by

G = 2πνRΣR2ω
′
, (4.33)

where Σ = ρH. Since the plasma is in thermal motion, the particles carrying

energy and momentum will interact to attain an equilibrium state. Thus, the

microscopic properties of this plasma will affect the macroscopic properties through

transport process which is important when there is a large gradient in velocity

and temperature of the plasma. The net rate of momentum transferred across the

surface is given by

− ρṽ
(
vφ + λ

∂vφ
∂r

)
+ ρṽ

(
vφ − λ

∂vφ
∂r

)
= −2ρṽλ

∂vφ
∂r

(4.34)

The momentum transferred implies that there is a force acting along r directions

which can be obtained by calculating the momentum transferred at r and r + dr
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so that

dFvis = 2ρṽλdA

(
∂vφ
∂r

+
∂2vφ
∂r2

dr

)
− 2ρṽλdA

∂vφ
∂r

(4.35a)

= 2ρṽλ
∂2vφ
∂r2

dAdr, (4.35b)

where dA is the area element and volume is given by dV = dAdr which results in

the viscous force density given by

fvis, shear = 2ρṽλ
∂2vφ
∂r2

. (4.36)

The inertia of the plasma is given by ρ(∂tv + (v ·∇v)) and since the velocity is

dominated by rotational velocity, the inertia is ∼ ρv2
φ/r. The Reynolds number is

given by

Re =
Interia

Viscous
∼
v2
φ

r

1

2ṽλvφ/r2
∼ rvφ

λṽ
∼ rvφ

ν
, (4.37)

and the viscosity is important if Re � 1.
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4.5.1 Molecular viscosity

Any small perturbation from hydrostatic equilibrium propagates through the gas

as sound waves with speed cs =
√

dP/dρ, and for gas pressure dominated sys-

tem P = ρkBT/(µmp), where kB is the Boltzmann constant, T is the tem-

perature, µ is the mean-molecular weight and mp is the mass of proton, cs =

10(T/104K)1/2 km sec−1. The coloumb interaction energy e1e2/(4πε0b0) where ε0

is the emissivity of the medium, e1 and e2 are the charges, is of the order of mean

thermal energy (1/2)mv2 ∼ kBT at the radius b0 given by

b0 =
e1e2

4πε0kBT
. (4.38)

Thus the mean free path of the interaction λ = 1/(nπb2
0) which gives λ = 7 ×

105T 2n−1 cm, where n(cm−3) is the density of the medium. With a more de-

tailed analysis of coloumb interactions, the mean free path is given by λ =

7× 105T 2n−1 ln Λ cm, where Λ = λD/b0 and λD = kBT/(4πe
2n). Using the mean

velocity ṽ ∼ cs and the Keplerian velocity vφ = rω =
√
GM•/r, the Reynolds

number is given by

Re = 0.2
( n

cm−3

)(M•
M�

) 1
2 ( r

1010 cm

) 1
2

(
T

104 K

)− 5
2

, (4.39)

and since density n ∼ 1015 cm−3, it follows that the Re � 1 which in turn implies

that the microscopic viscosity is negligible.
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4.6 Radiative flux

For annuli of inner radius r and outer radius r + dr, the angular momentum of

the fluid changes and thus the rate of working is given by

∂E

∂t
= ω

∂G
∂r

dr =

[
∂

∂r
(Gω)− Gω′

]
, dr (4.40)

where the first term on RHS is just the rate of convection of rotational energy

through the gas by the torques and the second term is the local rate of loss of

mechanical energy that must go into internal (heat) energy. Thus the viscous

dissipation per unit area is given by (Frank et al. 2002)

D(r) =
Gω′

4πr
=

1

2
νΣ(rω

′
)2, (4.41)

which is obtained using eqn (4.33). The viscous stress tensor is given by σ′rφ =

2νρrω
′ and thus using eqn (4.33), G/σ′rφ = πr2Σ/ρ and for ρ = Σ/H, G =

πr2Hσ
′

rφ. The vertically integrated stress Πrφ =
∫
σ
′

rφ dz = Hσ
′

rφ, results in

G = πr2Πrφ. Then the viscous dissipation is given by

D(r) =
Gω′

4πr
=
rω
′
Πrφ

4
=

3

8
ωΠrφ. (4.42)

In the thin disc approximation, the disc medium is essentially plane-parallel at each

radius, so that the temperature gradient is effectively in the z-direction. The flux

of radiant energy through a surface at given z is given by (Rybicki and Lightman

1986)
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F = −16σSBT
3

3κρ

∂T

∂z
=

4σSB
3κρ

∂T 4

∂z
' 4σSB

3τ
T 4(z), (4.43)

where the optical depth is given by τ = ρκH = κΣ. The energy radiated per unit

volume per unit time is given by

∂F

∂z
= q−rad. (4.44)

The energy balance equation is

q−rad = q+, (4.45)

where q+ is the volume rate of energy production by viscous dissipation. After

integrating, we obtain

F (H)− F (0) =

∫
q+ dz = D(r). (4.46)

Using eqn (4.43), and the fact that the central temperature exceeds the surface

temperature such that T 4
c � T 4(H), we obtain

4σSB
3τ

T 4
c = D(r), (4.47)

and the radiative rate per unit area is Q+
rad = σSBT

4
e = 4σSBT

4
c /(3τ), where Te is

the effective temperature. With the given effective temperature and assuming the
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system to have blackbody emission, the emission flux is given by

Fν =
2hν3

c2

1

exp
[

hν
kBTe

]
− 1

, (4.48)

where ν is the frequency and h is the Planck constant.

In the above relation, it is assumed that the energy dissipated through viscous

heating is radiated away. In some cases, where accretion rate is high, the energy

dissipated may be consumed by the black hole through advection. The advection

rate per unit volume is given by

q−adv =
ρvr
r
Tc

ds

d ln r
, (4.49)

where s is the entropy and the vertical integration gives the advection rate per

unit area, given by

Q−adv =
Σvr
r
Tc

ds

d ln r
. (4.50)

Thus the energy conservation equation gives

q+ = q−rad + q−adv. (4.51)

The following classes of solutions have been investigated earlier:
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1. q−adv � q+ ≈ q−rad: cooling dominated accretion flows (Shapiro et al. 1976)

2. q−rad � q−adv ≈ q+: Slim disk, advection dominated accretion flows (ADAF)

(Narayan and Yi 1995)

3. q+ � q−rad ≈ −q
−
adv: cooling flows, low angular momentum (Medvedev and

Narayan 2000)

4.6.1 α viscosity prescription

The fluid motion is turbulent if Re > 1 where the fluid shows chaotic motion on

arbitrary short times and lengthscales. The motion is smooth below the turbulence

lengthscale λturb and velocity vturb. For an accretion disk with height H, the

maximum turbulence scale is λturb = H and for a subsonic flow vturb ≤ cs, the

turbulent viscosity ν ∼ λturbvturb which gives

ν = αcsH, (4.52)

where α is a constant. This is the α− prescription of Shakura & Sunyaev (1973).

For a streamline flow, the viscosity should less than the turbulent viscosity which

implies that α < 1 and is generally taken to be 0.1. The viscous stress is given by

(Shakura and Sunyaev 1973)

Πrφ = αsPgH, (4.53)
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where αs is the constant, H is the scale height and Pg is the gas pressure. Using

eqn (6.47) and the radiative loss given by Q−rad = σT 4
e = (4ac/3κ)(T 4

c /Σd), the

energy conservation equation gives

3

8
ωΠrφ =

4ac

3κ

T 4
c

Σd

, (4.54)

which together with eqn. (4.53) gives

Πrφ =

(
9

32

κ
√
GM•
ac

(
αskB
2µmp

)4
) 1

3

Σ
5/3
d r−1/2 (4.55)

4.6.2 Magnetic viscosity

The local shear tensor due to the magnetic field B, depends on the magnetic

density ∼ B2/(8π). The magnetic field induces a Lorentz force due to motion of

plasma and the shear tensor is given by

Πrφ ≈
B2H

8π
. (4.56)

A strongly magnetized disk would behave according to the viscosity prescription

given by eqn (4.56) and in the weak field limit, it is likely to be approximately

given by eqn (4.53) with α ∼ 0.01− 0.1 as seen in various simulations (King et al.

2007; Frank et al. 2002).
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4.6.3 Gravitational instability

Any perturbation in the disk will induce mass accumulation and these regions

with more matter will exert a gravitational force on the neighboring regions which

results in the collapsing of the accretion disk. The criteria for the stability of the

disk is given by (Toomre 1964)

QT =
csω

πGΣ
>

1

2
, (4.57)

where Σ0 is the surface density. For a uniformly rotating isothermal disk, the cri-

teria for stability is QT > 1.06 (Goldreich and Lynden-Bell 1965). Lin and Pringle

(1987) estimated the effective kinematic viscosity due to gravitational instability

to be ν = ω`2, where ` is the critical shearing length given by ` = GΣω2 which is

the maximum possible size for instability. Hence the viscous stress is given by

Πrφ = −αgνΣr
∂ω

∂r
, (4.58)

which for a Keplerian disk is given by (Mangalam 2001)

Πrφ =
3

2
αgνΣ3ω−2, (4.59)

where Q2
T < αg < 1 is a constant parameter.
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4.6.4 Radiative viscosity

The photons interact with the electrons through Thomson scattering and the pho-

ton is scattered if the interaction lies within the area of cross section σT . Thus,

the mean free path is λ = 1/(neσT ), where ne is the electron density. The x-

direction momentum transferred by photon from y-direction is λ(∂vx/∂y) 〈E〉 /c2,

where 〈E〉 is the average photon energy. For an isotropic distribution of photons,

the y flux of photons, that is the number of photons per unit area per unit time is,

∼ εγc/(3 〈E〉), where εγ is the energy of a photon. Total x-momentum transported

per unit area per unit time is

λ
∂vx
∂y

εγ
3c

=
εγ

3neσT c

∂vx
∂y

. (4.60)

The viscous stress is given by η(∂vx/∂y) and by comparing with eqn (4.60), we

obtain

ηγ =
1

3

εγ
neσT c

. (4.61)

A complete model that includes the Thomson cross section and anisotropic photon

distribution gives (Misner 1968; Weinberg 1971)

ηγ =
8

27

εγ
neσT c

, (4.62)

which is close to the value estimated in eqn (4.61) by an order 9/8 = 1.125. The

viscous stress is given by (Mangalam 2003)
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Πrφ = ηγrH
∂ω

∂r
, ηγ =

8

27

εγ
neσT c

, (4.63)

and is called as the radiative viscosity.

We now study the disk structure using the viscosity prescription discussed above

and the most commonly used viscosity is the α viscosity.

4.7 Thin disk structure

We consider cylindrical coordinates (r, φ, z) where matter lies very close to the

mid-plane z = 0 and is rotating around the black hole with angular velocity ω. For

an axially symmetric disk, ∂/∂φ = 0 and assuming the dominant viscous stress to

be Πrφ, the vertical momentum equation of the disk using eqn (4.22) by neglecting

other viscous terms is given by

1

2

∂

∂z
v2
z = −1

ρ

∂

∂z
P − ∂

∂z
Φ(r, z), (4.64)

where for a hydrostatic equilibrium vz = 0, and the vertical structure of disk is

given by

1

ρ

∂

∂z
P +

∂

∂z
Φ(r, z) = 0, (4.65)
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which for Φ(r, z) = −GM•/
√
r2 + z2 and for a disk in hydrostatic equilibrium, in

the limit scale height H � r, reduces to

H2GM•
r3

= c2
s =

∣∣∣∣∂P∂ρ
∣∣∣∣
z=0

. (4.66)

The radial momentum equation of the disk using eqn (4.22) in the limit of vr � vφ,

where vr is the radial velocity and vφ is the azimuthal velocity, is given by

v2
φ

r
=

1

ρ

∂

∂r
P − ∂

∂r
Φ(r, z), (4.67)

where vφ = rω(r). Using eqn (6.8)

1

ρ

∂

∂r
P =

1

ρ
c2
s

∂

∂r
ρ =

(
H

r

)2
GM•
r2

, (4.68)

which is much smaller than the term ∂rΦ(r, z)|z=0 = GM•/r
2; therefore by ne-

glecting pressure term in eqn (4.67), we obtain

ω =

√
GM•
r3

. (4.69)

We consider the conservation equations for the mass and angular momentum trans-

port in the disc due to the radial drift motions. An annulus of the disc material

lying between r and r + ∆r has total mass 2πr∆rΣ and angular momentum

2πr∆rΣr2ω. The rate of change these quantities is given by the net flow from the

neighbouring annuli. For mass conservation,
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∂

∂t
(2πrΣ∆r) = 2πrΣ(r, t)vr(r, t)− 2π(r + ∆r) ·

Σ(r + ∆, t)vr(r + ∆r, t) (4.70)

= −2π∆r
∂

∂r
(rΣ vr), (4.71)

and in the limit ∆r → 0, the mass conservation reduces to

∂Σ

∂t
= −1

r

∂

∂r
(rΣ vr). (4.72)

The angular momentum conservation for the net effect of viscous torque G(r, t),

is given by

∂

∂t
(2πrΣ∆rr2ω) = 2πrΣ(r, t)vr(r, t)r

2ω − 2π(r + ∆r)Σ(r + ∆, t) ·

vr(r + ∆r, t)(r + ∆r)2ω(r + ∆r) +
∂G(r, t)

∂r
∆r (4.73)

= −2π∆r
∂

∂r
(rΣ vrr

2ω
′
) +

∂G(r, t)

∂r
∆r, (4.74)

where G(r, t) is given by eqn (4.33) and in the limit ∆r → 0, the eqn (4.74)

reduces to

r
∂

∂t
(Σr2ω) +

∂

∂r
(rΣvrr

2ω) =
1

2π

∂G(r, t)

∂r
. (4.75)

Using eqns (5.15), (4.75) and (4.33), the disk evolution equation is given by
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∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r
(νΣr1/2)

]
, (4.76)

and the radial velocity vr is given by

vr = − 3

Σr1/2

∂

∂r
(νΣr1/2). (4.77)

4.7.1 Steady thin disk

For a stable disc, ∂/∂t = 0 and using the mass conservation given by eqn (5.15),

we have rΣvr = constant and since vr < 0, the accretion rate is given by (Frank

et al. 2002)

Ṁ = −2πrΣvr. (4.78)

Using angular momentum conservation given by eqn (4.75) is

rΣvrr
2ω =

G
2π

+
C

2π
, (4.79)

where C is a constant. Since the matter leaves the accretion disk at r = rin, the

angular velocity ω(rin) < ωK , where ωK is the Keplerian velocity. In this case, the

angular velocity of the disc material remains Keplerian and thus increases inwards,

until it begins to decrease to the value ω(rin). This implies that at some radius

rin + b, ω′(rin + b) = 0 which reduces the eqn (4.79) to
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C = 2πΣvrr
3
inω(rin + b), (4.80)

and for b� 1, C = −Ṁ(GM•rin)1/2, which using eqns (4.77) and (4.79) gives

νΣ =
Ṁ

3π

[
1−

√
rin
r

]
. (4.81)

Using eqns (4.78) and (4.98), the radial velocity is given by

vr = −3ν

2r

[
1−

√
rin
r

]−1

. (4.82)

We can see that the vr ∼ ν/r = αcsH/r � 1 for the α viscosity prescription given

by eqn (4.52). The Mach numberM, is defined by

M =
vφ
cs
. (4.83)

For a Keplerian velocity ω =
√
GM•/r3 and using eqn (6.8), we obtain

H = M−1r (4.84)

vr = αcsM−1. (4.85)

Since H � r, M � 1 and thus circular velocity vφ is Keplerian and highly

supersonic whereas the radial velocity vr is subsonic. The radial drift velocity and
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vertical scale-height are self-consistently small.

Thus the viscous dissipation for Keplerian velocity is given by

D(r) =
9

8
νΣ

GM•
r3

=
3

8π

GM•Ṁ

r3

[
1−

√
rin
r

]
, (4.86)

and comparing it with the radiation flux, the temperature is given by

σSBT
4
e =

9

8
νΣ

GM•
r3

=
3

8π

GM•Ṁ

r3

[
1−

√
rin
r

]
. (4.87)

Following a blackbody assumption, the luminosity is given by

L =

∫ r2

r1

2πrσSBT
4
e dr =

3GṀM•
2

[
1

r1

(
1− 2

3

(
rin
r1

)1/2
)
− 1

r2

(
1− 2

3

(
rin
r2

)1/2
)]

.

(4.88)

For r1 = rin and r2 →∞, the luminosity is given by

L =
1

2

GM•Ṁ

rin
, (4.89)

which implies that the half of the potential energy at the inner radius in radiated.

The sound speed cs is given by
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c2
s =

P

ρ
(4.90)

where, in general, the pressure P is the sum of gas and radiation pressures that is

given by

P =
ρkBTc
µmp

+
a

3
T 4
c , (4.91)

where Tc is the mid-plane temperature and a is the radiation constant. To obtain

the structure of thin disk, we need to solve a complete set of equations that are

given below:

ρ =
Σ

H
(4.92)

H =
csr

3/2

√
GM•

(4.93)

c2
s =

P

ρ
(4.94)

P =
ρkBTc
µmp

+
a

3
T 4
c (4.95)

τ = Σκ (4.96)
4σT 4

c

3τ
=

3GM•Ṁ

8πr3

[
1−

√
rin
r

]
(4.97)

νΣ =
Ṁ

3π

[
1−

√
rin
r

]
(4.98)

ν = αcsH, (4.99)

where τ is the optical depth. If we assume that the pressure is dominated by

gas and the opacity is Kramers opacity κ = 5 × 1024ρT
−7/2
c cm2 g−1, using eqns
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(4.97) and (4.96), we obtained T 4
c /(Σκ) ∝ M•Ṁf 4/r3, which using eqns (4.93)

and (4.98) results in T 8
c ∝ DΣ2

√
M•r

−3/2, where f = 1 −
√
rin/r and D =

(3GM•Ṁ/(8πr3))f . Then, using eqns (4.98) and (4.99), the temperature and

surface density are given by

T 8
c ∝ Σ2DM

1
2
• r
− 3

2 (4.100)

Σ ∝ α−
4
5Ṁ

7
10M

1
4
• r
− 3

4f
14
5 . (4.101)

A complete solution of Shakura-Sunyaev disk is

Σ = S1 α
− 4

5Ṁ
7
10M

1
4
• r
− 3

4f
14
5 (4.102)

H = S2 α
− 1

10Ṁ
3
20M

− 3
8

• r
9
8f

3
5 (4.103)

ρ = S3 α
− 7

10Ṁ
11
20M

5
8
• r
− 15

8 f
11
5 (4.104)

Tc = S4 α
− 1

5Ṁ
3
40M

1
4
• r
− 3

4f
6
5 , (4.105)

where S1, S2, S3, S4 are the scales and all other parameters are scaled by the

numbers given in Table 4.1.

Using eqn (4.103), the H/r ratio is given by

H

r
= α−

1
10Ṁ

3
20M

− 3
8

• r
1
8f

3
5

 1.7× 10−2 Stellar

1.7× 10−3 AGN
(4.106)
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Figure 4.2: The continuum spectrum of a steady optically thick accretion disk
assuming the disk to be a blackbody with different ratios rout/rin. The frequency
is normalized to kBTout/h where Tout = T (rout) is temperature at outer radius.
Courtesy: Frank et al. (2002)

Scale Stellar AGN

S1 (g cm−2) 5.2 5.2× 106

S2 (cm) 1.7× 108 1.7× 1011

S3 (g cm−3) 3.1× 10−8 3.1× 10−5

S4 (K) 1.4× 104 1.4× 106

Parameter Stellar AGN

Ṁ (g sec−1) 1016 1026

M• (M�) 1 108

r (cm) 1010 1014

Table 4.1: The scales of the set of equations (left) and the parameters (right)
that are given in (4.102−4.105) are shown for stellar mass and AGN black holes.

where the parameters on the RHS are scaled. We have taken the opacity to be

Kramers opacity which dominates over the Thomson opacity for the radius r > rK ,

where rK is given by

rK
cm

= Ṁ
2
3M

1
3
• f

8
3

 2.5× 107 stellar

5.4× 1016 AGN.
(4.107)
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and the parameters in the RHS are scaled.

The accretion disk we considered here is a steady disk but in general, the accretion

disk is a time-dependent disk where the surface density evolves with time.

4.7.2 Time-dependent thin disk

The time-dependent disk equation is given in eqn (4.76) and for constant viscosity,

the equation reduces to (Pringle 1981)

∂Σ

∂t
=

3ν

r

∂

∂r

{
r1/2 ∂

∂r
(r1/2Σ)

}
, (4.108)

and multiplying r1/2, eqn (4.108) simplifies to

∂

∂t
(r1/2Σ) =

3ν

r

(
r1/2 ∂

∂r

)2

(r1/2Σ). (4.109)

Taking s = 2r1/2 and a separable solution such that r1/2Σ = T (t)S(s). we obtain

Ṫ

T
=

12ν

s2

1

S(s)

d2S(s)

ds2
= constant = −λ2, (4.110)

where λ is a constant and the solution are

T (t) ∝ e−λ
2t (4.111)
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and

d2S(s)

ds2
+

λ2

12ν
s2S(s) = 0. (4.112)

Assuming k2 = λ2/(12ν), the eqn (4.112) reduces to

d2S(s)

ds2
+ k2s2S(s) = 0, (4.113)

Let at the initial time t = 0, the mass is constrained into a ring such that the

surface density is given by

Σ(r, t = 0) =
m

2πr0

δ(r − r0), (4.114)

where δ(r − r0) is the Dirac-Delta function. Then the Σ evolution is given by

(Pringle 1981)

Σ(x, τ) =
m

πr2
0

τ−1x−
1
4 exp

(
−1 + x2

τ

)
I1/4(2x/τ), (4.115)

where I1/4 is the modified Bessel function, x = r/r0 and τ = 12νt/r2
0. The viscosity

has the effect of spreading the original ring in radius on a typical viscous timescale

given by

tvis ∼
r2

ν
. (4.116)
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Figure 4.3: A ring of mass m kept at r = r0 spreads out due to viscous stress
where the outer radius moves outward due to transfer of angular momentum
from inward and the viscosity ν is constant.
Courtesy: Pringle (1981)

Using eqn (4.77), the radial velocity is given by

vr = −3ν
∂

∂r
(ln(Σr

1
2 )), (4.117)

and using eqn (4.115), vr is given by

vr = −3ν

r0

∂

∂x

[
1

4
x− 1 + x2

τ
+ ln I1/4(2x/τ)

]
. (4.118)

The asymptotic behavior of I1/4(z) is given by

I1/4(z) ∝

 z−1/2ez z � 1

z1/4 z � 1,
(4.119)
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such that the radial velocity is given by

vr ∼
3ν

r0


[

1
4x

+ 2x
τ
− 2

τ

]
2x� τ

−
[

1
2x
− 2x

τ

]
2x� τ.

(4.120)

Thus, the matter at the outer radius moves outward taking out the angular mo-

mentum of the inner parts such that the matter at the inner radius moves inward

as one can see from Fig 4.3. Now, τ increases with time t such that the matter that

is moving outward starts losing angular momentum to the matter at still larger

radii and thus drift inwards. After a very long time (τ � 1), all of the angular

momenta has been carried to very large radii by a very small fraction of the mass.

4.8 Self-similar evolution of the disk

The time-dependent model we have considered previously is by assuming a con-

stant viscosity. Now in this section, we construct the time-dependent model for

a viscous stress that is a function of surface density Σ and radius r. The vertical

averaging of eqn (4.22) in the limit vr � vφ and for an axially symmetric disk is

given by

r
∂Σ

∂t
= − ∂

∂r
(rΣ vr) (4.121)

ω2 =
1

r

∂Φ(r, z)

∂r
|z=0 (4.122)

Σvr
∂

∂r
(r2ω) = −1

r

∂

∂r
(r2Πrφ). (4.123)
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We now proceed to calculate a detailed model of self-similar evolution of a disk

from the diffusion equation obtained from eqn (4.123) and given by

∂tΣ =
1

r
∂r

(
1

∂r(r2ω)
∂r[r

2Πrφ]

)
, (4.124)

where the viscous stress can be parameterized as Πrφ = K2Σbrc and in addition, the

rotation law is assumed to be of the form ω = K1r
a. This very useful formulation

of a self-similar form is due to Pringle (1981) but only particular analytic solutions

to the diffusion equation has been reported for the specific cases of (a = −3/2, b =

c = 3; Lin and Pringle (1987)) in the context of accretion of a protostellar disk

onto a point mass via gravitational instabilities and (a = −3/2, b = 5/3, c = −1/2;

Cannizzo et al. (1990); see §4.6.1) in the context of disk accretion of a tidally

disrupted star onto a massive black hole. Note that in CLG, the scaling law for

the viscous stress is obtained by the closure of the conditions of local dissipation

in an α disk in a Kepler potential and vertical equilibrium. Here, an analytic

solution to the general problem of the type (Πrφ ∝ Σb rc, ω ∝ ra) is presented so

that possible viscosity mechanisms discussed earlier and expressible in this way,

can be explored within the same formulation. The general solution presented

below has a larger utility in contexts other than one considered here (Mangalam

2001).

If b = 1, the equation is linear and the general solution is easily found. Proceeding

generally, under the assumptions of self-similarity for (b 6= 1), one may write the

surface density in the following form

Σ = Σ0(t/t0)βg(ξ) rf = rs(t/t0)α, (4.125)
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where ξ ≡ r/rf , and rs is the associated radius scale. We set the constants

t0 =
K1

K2

ra+2−c
s Σ0, Md = 2πlΣ0r

2
s , l =

∫ 1

0

ξ2g(ξ)dξ (4.126)

where Md is the initial disk mass. Here we seek a particular solution when there

is no external torque, which implies the total angular momentum, J , of the disk is

a constant. Using the scaling relations above that are implicit in eqn (4.124) and

J = 2πK1r
4+a
s Σ0j, j =

∫ 1

0

ξ3g(ξ)dξ (4.127)

it follows that α = (4b+ ab− 2− c)−1 and β = −(a+ 4)α. At this point we note

that the disk edge travels outward if 2 + c < b(4 + a). Substituting into the form

for the surface density, as given in (4.125), and simplifying (4.124), we obtain the

following ordinary differential equation,

− αξg′ + βg = − 1

(a+ 2)ξ
dξ
(
ξ−(a+1)dξ(ξ

2+cgb)
)
. (4.128)

After some algebraic transformations, one can integrate it once to obtain

α(a+ 2)gξa+4 + (a− c)ξ2+cgb = bξ3+cgb−1g′ + c1. (4.129)

Now, we apply the boundary condition that the density vanishes at the disk edge,

ie.,
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Σ(r = rf ) = 0; g(1) = 0. (4.130)

Moreover, if b > 1, which is the case for the examples considered here, then c1 = 0.

By rearranging terms and integrating, we obtain the following solution

g(ξ) = ξ(a−c)/b
(

1− ξ2+
(a−c)
b

)1/(b−1)

. (4.131)

Now we consider the particular case of magnetic accretion (a = −1, b = 4/3, c =

−1/3, Mangalam 2001) which has the solution

α = 3/7, β = −9/7, gm(ξ) = ξ−1/2
[
1− ξ3/2

]3
. (4.132)

Similarly, the accretion due to gravitational instabilities (a = −1, b = 3, c = 2)

has the solution

α = 1/5, β = −3/5, gg(ξ) = ξ−1 [1− ξ]1/2 . (4.133)

Fig 4.4 shows the g(ξ) of the self-similar disk for magnetic accretion and gravita-

tional instabilities.
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Figure 4.4: The structure g(ξ) of the self-similar disk, Σ = Σ0

(
t
t0

)β
g(ξ)

where ξ = r/rf , rf = rs

(
t
t0

)α
. The magnetic solution, gm(ξ) =

ξ−1/2
[
1− ξ3/2

]3 is shown by a solidline, and the solution of the disk with grav-
itational viscosity, gg(ξ) = ξ−1 [1− ξ]1/2, is shown by a dashed line.
Courtesy: Mangalam (2001)

4.9 Slim disk model

The thin disk approximation breaks down for high accretion rate as H/r ∼ 1 (eqn

4.106) and the pressure is dominated by the radiation. Such discs puff up to be-

come slim or thick discs and advect the accretion energy with the flow (Paczyńsky

and Wiita 1980; Jaroszynski et al. 1980; Abramowicz et al. 1988).

By integrating eqn (4.4) over a surface f contain in a volume V , we obtain

∫
dv

dt
· df =

∫
−1

ρ
∇P · df +

∫
g ·f . (4.134)
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Figure 4.5: Different region of slim disk model are: (A) Sub Eddington thin
disc. (B) Radiation pressure dominated region. (C) Porus layer forms at less
dense region above convection layer. (D) Thin porus layer, wind is accelerated.
Courtesy: Dotan and Shaviv (2011)

Using the Gauss divergence theorem, g = −∇ ·Φ(r), and eqns (4.25, 4.28), the

eqn (4.134) is given by

∫
∇ · dv

dt
dV =

κ

c
(L− LE), (4.135)

which shows that when the luminosity exceeds the Eddington luminosity, there is

an outward velocity from the volume resulting in an outflow of mass and thus the

wind. The structure of a slim disk is shown in Fig 4.5.

A simple steady slim disk model is given by Strubbe and Quataert (2009) where

they assumed the disk equations to follow eqns (4.78,4.82, 4.51) and obtained the

effective temperature profile given by

σSBT
4
e =

3GM•Ṁf

8πr3

1

2
+

1

4
+

3

2
f

(
Ṁ

ηṀE

)2(
r

Rs

)−2


1
2


−1

. (4.136)
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where f = 1−
√
rin/r and Rs is the Schwarzchild radius. The scale height is given

by

H

r
=

3

4
f

(
Ṁ

ηṀE

)(
r

Rs

)−1

1

2
+

1

4
+

3

2
f

(
Ṁ

ηṀE

)2(
r

Rs

)−2


1
2


−1

. (4.137)

Since the pressure is dominated by radiation, the radiation force can exceed the

gravity which will result in the luminosity exceeding the Eddington luminos-

ity and this strong radiation pressure results in an out-flowing wind. So the,

gas is likely to form an advective accretion disk accompanied by powerful out-

flows. Strubbe and Quataert (2009) constructed a wind model following a spher-

ically adiabatic outflow. The main assumption is that from the launching radius

RL ' 2Rp, the wind expands adiabatically and radially with a constant velocity

vw ∼ fvvesc ∼ fv
√

2GM•/RL (Lodato and Rossi 2011). The radiation tempera-

ture at the base of the wind TL = T (RL) can be derived by energy conservation

in the wind. If all the internal energy at the base of the wind is converted into

kinetic energy, then aT 4
L ∼ 0.5ρ(RL)v2

w. We approximate the outflow geometry as

spherical with density profile ρ(R) ∼ (Ṁout/4πR
2vw) where Ṁout = foutṀfb, and

the Ṁfb is mass accretion rate. The radius of the photosphere (radius at which

Rκρ(R) ∼ 1) is given by

Rph ≈ 1011fout
fv

M
2
3

6

(
R?

R�

) 1
2
(
M?

M�

)− 1
6 ( η

0.1

)−1
(
Ṁ

ṀE

)
meter (4.138)

Assuming that the wind expands adiabatically, the temperature changes as T ∝

ρ1/3. Thus, the temperature at the photosphere is given by



Chapter4: Accretion physics 136

Tph ≈ 1.41×105f
− 5

12
out f

11
12
v M

− 1
18

6

( η

0.1

) 1
2

(
R?

R�

)− 7
24
(
M?

M�

) 7
72

(
Ṁ

ṀE

)− 5
12

K (4.139)

Strubbe and Quataert (2009) have considered the fraction of mass outflows con-

stant. Dotan and Shaviv (2011) have constructed a super-Eddington slim disk

model by solving the steady disk equation with α viscosity where the vertical

structure of super-Eddington disk is divided into two regions, a hydrostatic region

which includes the porous atmosphere, and the region of a continuum driven wind

and obtained the fraction of mass outflowing wind fout in terms of accretion rate

Ṁ which we have approximated to the following relation

fout =
2

π
arctan

[
1

4.5

(
Ṁ

ṀEdd

− 1

)]
(4.140)

In chapter 6, we will derive solutions for a more complicated physics of accretion,

wind, and fallback for the case of TDEs.

4.10 Disk structure

The steady poloidal momentum equation is given by

(vp ·∇)vp = −1

ρ
∇P −∇Φ + ω2r +∇ ·σ′ , (4.141)

and by neglecting the viscous term ∇ ·σ′ , the possible steady accretion flows are
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given in Table 4.2. When the pressure in the disk is small compared to the gravity,

the rotation of the disk supports gravity which results in a Keplerian thin disk.

In case if the disk is non-rotating, there is no force to support the gravity and the

disk will collapse resulting in an inward flow. If gravity and pressure dominate

with negligible contribution from the rotation, then the source is stars, stellar

envelopes, and atmosphere. If the advection dominates along with the gravity

and rotation, then the disk is radiatively inefficient and the disk gets puffed to

due radiation pressure to form a slim disk. If the radiation pressure is high, the

H > r and the disk is a thick disk. In case of Bondi-Hoyle accretion, the matter

falls into the black hole radially and thus rotation is negligible. In case of a thick

disk, if advection is significant, then the disk is sub-Keplerian and the flow is the

accretion dominated advection flow.

Hence, the nature of accretion disk depends on the significance of terms such as

advection, pressure, gravity, and rotation. In an accretion disk, different quantities

dominate at the different radii: advection dominates at the inner radius, radiation

pressure dominates in the inner region and gas pressure dominates in the outer

region. The transition from one disk structure to other disk structure is gener-

ally obtained by matching the mass accretion rate and the angular momentum

exchange rate at the transition radius. However, the nature of transition is poorly

understood and is a topic of our research.

4.11 TDE disks

The TDE disks are complicated in structure due to the existence of the accre-

tion by the black hole, fallback from outer debris and the wind outflows in case

of super-Eddington accretion. Montesinos Armijo and de Freitas Pacheco (2011)

have numerically solved the axisymmetric disk equation with the time-dependent
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Physical quantity Terms Disk

Gravity + Rotation −∇Φ + ω2r = 0 Thin Keplerian disk

Gravity + Pressure −∇Φ− 1
ρ
∇P Stars, stellar envelopes and atmosphere

Advection + Gravity (vp ·∇)vp = −∇Φ Gravitational collapse

Advection + Gravity + Rotation (vp ·∇)vp = −∇Φ + ω2r Slim disk

Pressure + Gravity + Rotation −1
ρ
∇P −∇Φ + ω2r = 0 Thick disks

Advection + Pressure + Gravity (vp ·∇)vp = −1
ρ
∇P −∇Φ Bondi-Hoyle accretion

Advection + Pressure + Gravity + Rotation (vp ·∇)vp = −1
ρ
∇P −∇Φ + ω2r Sub-Keplerian ADAF

Table 4.2: Shows various possible steady accretion flow with their dominant
terms using eqn (4.141).

mass input at the outer radius rp due to fallback debris, without an outflowing

wind and the viscosity prescription given by ν = 2πruφ/Ry, where Ry is the

Reynolds number characterizing the flow and uφ is the azimuthal velocity. They

have considered the disk edges to be constant and showed that the mass accretion

rate follows the fallback rate at the late stages. Armijo and de Freitas Pacheco

(2013) applied this model to the PS1-10jh observations and deduced a black hole

mass M• = 6.3× 106 M�. Shen and Matzner (2014) have constructed the model

of TDE disk with and without fallback from disrupted debris by developing a

self-similar structure of a non-radiative, advective disk with an outflowing wind

for general viscosity prescription Πrφ ∝ Σb
dr
d where Σd is surface density, r is the

radius and b and d are constants that depend on the nature of pressure in the disk.

The time-dependent accretion model for sub-Eddington disk was proposed by Can-

nizzo et al. (1990) as a self-similar accretion model with a constant total angular

momentum of the disk and α viscosity which is generalized by Mangalam (2001)

for other viscosities. The previous TDE models and their underlying assumptions
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are summarized in Table 4.3.

In this thesis, we describe a time-dependent disk that includes accretion, fallback,

and wind. In chapter 6, we will construct a self-similar model of a time-dependent

TDE accretion disk in both sub and super-Eddington phases by taking in account

the accretion, fallback, and wind. We will also study the transition dynamics be-

tween the phases. This chapter covered the following aspects of accretion physics.

• The basic disk equations.

• Various physical processes that produce viscosity.

• Thin disk and its spectrum.

• A time-dependent model under simplifying assumptions of self-similar disk

profiles.

• TDE models.

With this background, we will discuss our new models for TDE accretion in chapter

6.
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# Reference Application Disk structure Ṁfb Ṁ Ṁw Edge radii Assumptions

1 Mangalam (2001)

& (2003)

BH formation

at z = 5

Time dependent disk

Sub-Eddington

Super-Eddington

None

None

None

None

None

None

Evolving Total disk angular momentum is constant

Πrφ ∝ Σb
dr
d: α disk, gravitational Instability,

magnetic stress, radiative stress

Super-Eddington: self gravitating disk

2 Strubbe &

Quataert (2009)

Lodato &

Rossi (2011)

TDE Steady structure disk

Sub-Eddington

Super-Eddington

None

None

∝ t−5/3

∝ t−5/3

None

∝ t−5/3

Static α disk: Standard Shakura-Sunyaev viscosity

Sub-Eddington disk: radiative thin disk

Super-Eddington disk: slim disk with

adiabatic and spherical wind outflow

3 Armijo &

Pacheco (2011)

TDE Time dependent disk

Sub-Eddington ∝ t−5/3 ∝ t−5/3 None

Static β viscous model, ν = 2πruφ/Ry

Mass fallback at outer radius

Numerical simulation.

4 Shen & Matzner (2014) TDE Time dependent disk

Sub-Eddington

Super-Eddington

∝ t−5/3

∝ t−5/3

∝ t−19/16

∝ t−η

None

∝ t−η1

Evolving Πrφ ∝ Σb
dr
d

Sub-Eddington with constant angular momentum

Super-Eddington: non radiative advective disk

η and η1 are function of ratio of wind to disk

angular momentum.

5 Mageshwaran &

Mangalam (2015)

TDE Steady structure disk

Sub-Eddington

Super-Eddington

None

None

∝ t−5/3

∝ t−5/3

None

∝ fout(t)t
−5/3

Static α disk: Standard Shakura-Sunyaev viscosity

Star’s angular momentum is included

Fraction of mass outflow fout is obtained

from Dotan & Shaviv (2011)

Table 4.3: Various accretion models in the literature with and without steady
structure are compared that includes the accretion rate Ṁ , fallback Ṁfb and
mass outflow rate due to wind Ṁw. The accretion model of TDE by Magesh-
waran & Mangalam (2015) includes the dynamical parameters E and J whereas
the other models of TDE have assumed the initial orbit of disrupted star to be
parabolic E = 0 and have not included the angular momentum J .
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Stellar and gas dynamics of TDEs

and the event rates

Image: ASAS-AN 15lh around spinning black hole

5.1 Introduction

The dynamics of tidal dsiruption events considered previously is for a star on

a parabolic orbit. The pericenter of the orbit is a function of both energy E

and angular momentum J and thus, it is nessecary to take both in account. In

this chapter, we have included J in both stellar dynamical model and accretion

dynamical model to calculate the theoretical capture rate and simulate the light

curve which is then used to calculate the detectable TDE rates by various surveys.

The energy of the debris Ed depends on the pericenter of the star orbit rp(E, J, M•, m).

Hence, the mass accretion rate Ṁ(E, J, M•, m), the flux, and δtf depends on E
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and J . We build an accretion model based on the initial stellar system parameters

and simulate light curve profiles as a function of E and J in the optical and X-ray

bands. For a DF that depends on the E only, the stars are diffused into the loss

cone through star-star interactions, which leads to the change in orbital angular

momentum of the star (Lightman and Shapiro 1977); thus the DF of stars within

the loss cone depends on both E and J and we calculate Ṅt(E, J, m, γ) and the

detectable rates of TDE ṄD for the various optical and X-ray surveys.

The observed sample of candidate TDE is expanding rapidly, mainly at the op-

tical frequencies due to the advent of the highly sensitive wide-field surveys such

as Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), ob-

serving in both the medium deep survey (MDS) mode and 3π survey mode (Kaiser

et al. 2002). The study of TDE will be further revolutionized in the next decade

by the Large Synoptic Survey Telescope (LSST) with high sensitivity in optical

frequencies (LSST Science Collaboration et al. 2009) and the extended Roentgen

Survey with an Imaging Telescope Array (eROSITA) in the X-ray band, which

performs an all-sky survey (ASS) twice a year (Merloni et al. 2012) and can detect

hundreds or thousands of TDE per year (Gezari et al. 2008; van Velzen and Farrar

2014; Khabibullin et al. 2014). We calculate the detectable rate ṄD for Pan-

STARRS 3π, Pan-STARRS MDS, and LSST in the optical g band and eROSITA

in soft X-ray band; whose instrument details are given in Table 5.2.

The Figure 5.1 shows the methodology we have adopted to calculate the detectable

TDE with the initial parametersM•,M?, R?, E, J and redshift z. In Section 2, we

solve the steady state FP equation for a power law density profile ρ(r) ∝ r−γ and

stellar mass function ξ(m). We obtain Ṅt(E, J, m, γ) for the typical parametric

range of density profiles (γ = 0.6 – 1.4), energy, and angular momentum (J ≤ Jlc),

which we use it later to calculate the detection rate, ṄD. In Section 3, we calculate

the energy Ed of the disrupted debris and the maximum radius Rl(E, J) from the

star center to the point where the debris is bound to the BH. We then simulate
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Ṁ(E, J, t). In Section 4, we compare the accretion ta, ring formation tr, viscous

tv and radiation tR timescales and discuss the conditions for the formation of an

accretion disk. In Section 5, by equating the Ṁ and Eddington mass accretion

rate ṀE, we obtain the critical BH mass Mc(E, J), such that for M• < Mc, the

accretion disk formed has a super Eddington phase. We then simulate the light

curve profiles in the optical and X-ray as a function of E, J , and M•, depending

on whether the accretion disk is super Eddington or sub Eddington. The flux

from the source at a redshift z is compared with the sensitivity of the mission

instrument to obtain the δtf . In Section 6, we calculate ṄD for optical and X-ray

missions by assuming the standard cosmological parameters and BH mass function

to obtain the galaxy density. The Table 5.1 shows a glossary of symbols we use in

this chapter.

5.2 Theoretical capture rate

Using eqn (1.3) and taking the quantity ηt = 1, for a main sequence star with the

mass-radius relation R? = R�m
n, where m = M?/M�, the tidal radius given by

rt(M•, m) ≈ 2.25× 10−6

(
M•

106M�

) 1
3

mn− 1
3 pc (5.1)

and for n > 1/3, rt(M•, m) increases with m. We take n = 0.8 for the entire

range of stellar masses in our calculations (Kippenhahn and Weigert 1994). We

take the lifetime of the main sequence star tMS ∝ M−2.5
? and the dynamical time

of the star to fall into the BH tdyn =
√
a3/GM•, where a is the semimajor axis of

the star to the BH. For a star to be captured during its main sequence lifetime,

tdyn < tMS, which gives
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Required parameters

M•, M?, R?, E, J and z

Distribution function

F (E, m)

(Equation ((5.7), 5.14))

Debris energy Ed

(Equation (5.50))

Accretion rate Ṁ

(Equation (5.53))

Timescales: ta & tr

(Equation (6.53) & (5.61))

Critical black hole mass

Mc such that Ṁ = ṀE

Is

tr ≤ ta ?

No disk is formed

L = ηṀc2; Ṁ = M/td

Is

M• ≤Mc ?

Super Eddington phase

Ṁ > ṀE

Sub Eddington phase

Ṁ < ṀE

Flux observed fobs

(Equation (5.78))

Flare duration δtf

Probability of detection

P (M•, z) (Equa-

tion (5.86))

Net Event Rate ṄD

(Equation (7.21))

Luminosity distance

and galaxy density

Mission Instrument Detail

fs, tcad, tint, fl

Fokker-Planck

(FP) equation

(Equation 3.119)

Distribution of

orbital elements

(Equation (5.26))

Theoretical rate Ṅt

(Equation (5.46))

No

Yes

No

Yes

Figure 5.1: The flow chart of the procedure we have adopted in the calculation
of event rates. The stellar dynamics and gas dynamics are connected by the
parameters of specific energy E and specific angular momentum J of the star’s
initial orbit. The flux fobs is compared with the sensitivity fl of the detector
to obtain flare duration. For the given instrument details, such as cadence
tcad, integration time tint and fraction of sky observed fs, we calculate the net
detectable TDE rate for the detector. The td is the dynamical time of the in-fall
of the debris to the black hole.
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Common Parameters

M• Black hole mass J Orbital angular momentum

M6 M•/(106M�) Jlc Loss cone angular momentum

M? Stellar mass Jc Angular momentum of circular orbit

E Orbital energy ` J/Jlc

ξ(m) Stellar mass function m M?/M�

Stellar Dynamical Parameters

j J2/J2
c E E/σ2

rt Tidal radius ρ Galactic density

rh Black hole influence radius γ Galaxy density power law

s r/rh st rt/rh

Rs Schwarzschild radius Φ? Stellar potential

rb Break radius of Nuker profile Φ• Black hole potential

σ stellar velocity dispersion Φ Total potential= Φ• + Φ?

q Diffusion parameter tMS Main sequence lifetime

Ec Critical energy for q = 1 Tr Radial period of orbit

Ṅt Theoretical TDE rate f? Probability of main sequence star capture

Accretion Dynamical Parameters

rp Pericenter of the orbit td dynamical time

ē E/(GM•/rt)= (rt/rh)E Γ Adiabatic index

Ed Energy of disrupted debris k Spin factor

Rl Maximum radius from star center to bound debris tm Orbital period of inner-most debris

xl Rl/R? ta Accretion timescale

x ∆R/R? ∆R Debris radius from star center

ε Ed/Edm Edm Energy of inner-most bound debris

µ M/M? M Debris mass with energy Ed

Ṁ Mass accretion rate τ t/tm

ṀE Eddington mass accretion rate tr Ring formation timescale

fr Fraction of star mass bound to black hole tv Viscous timescale

Mc Critical black hole mass tR Radiation timescale

κ Opacity of the medium Tr tr/ta

rc Circularization radius Tv tv/tR

rL Outflowing wind launch radius Tph Temperature of photosphere

rph Radius of photosphere of outflowing wind Te Effective temperature of disk

Le Luminosity emitted from the source L Luminosity

ψ(M•) Black hole mass function LE Eddington luminosity

P (M•, z) Probability of detection z Redshift

Υ Detection efficiency of a detector ṄD Detectable rate

Instrumental Parameters

fl sensitivity of the detector tcad Cadence of instrument

tint Integration time of detector fs Fraction of sky survey

Table 5.1: Glossary of symbols

ml =

(
t�

√
GM•
a3

)0.4

, (5.2)

where t� is the life time of the sun and is shown in Figure 5.2 for a = rh.

Stars in the galactic center move in the potential field of both SMBH and other

stars in the galaxy. The DF is assumed to be a function of energy E = Φ(r)−v2/2
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Figure 5.2: The mass limit of star ml as a function of black hole mass M• =
106M�M6 for a = rh. It is the maximum mass of star in the cluster that can
be captured during its main sequence lifetime. The thin gray line shows the
maximum mass in the Kroupa (2001) sample of stars.

only and is given by f(E) ∝ Ep for r ≤ rh and Φ(r) = GM•/r, where rh = GM•/σ
2

is the radius of influence and σ is the stellar velocity dispersion and is related to

the M• through the M• − σ relation given by Ferrarese and Ford (2005)

M• = 1.66× 108M�

( σ

200 Km sec−1

)4.86

(5.3)

Bahcall and Wolf (1976) introduced the stellar scattering and diffusion and found

that p = 3/4 (Peebles 1972) gives a negatively divergent flux; they also obtained

p = 1/4 for the steady state distribution, which gives a constant energy flux.

The stars are tidally captured if the angular momentum is J ≤ Jlc(E, rt) where

Jlc(E, rt) =
√

2r2
t (Φ(rt)− E) is the loss cone angular momentum (Frank and Rees

1976). The maximum value of J is Jlc(E, rt). As Jlc(E, rt) ≥ 0, the maximum

value of energy is Em = Φ(rt).
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Figure 5.3: The blue points show the break radius rb for the sample of galaxies
given in Wang and Merritt (2004). The red line shows the radius of influence
rh. The plot indicates that for most of galaxies rb > rh, which implies that for
r ≤ rh, the density ρ(r) can be taken to be a single power law profile.

Because Jlc(E, rt) depends on rt, which varies with M?, so we consider a DF that

depends on the stellar mass function ξ(m) given by (Kroupa 2001)

ξ(m) ≈

 Hm−1.3 0.08 < m < 0.5

Bm−2.3 0.5 < m < 150
(5.4)

where

H = 2B , B =
1

7.91− 0.77m−1.3
m

and m =
M

M∗
,

wheremm is the maximum mass of a main sequence star in the stellar distribution,

taken to be 150.

Wang and Merritt (2004) and Stone and Metzger (2016) have taken the sample of
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galaxies with a Nuker law, which is basically a double power law profile with break

radius rb that separates inner and outer slopes. In Figure 5.3, we have shown the

range of rb and rh for the sample of galaxies given in Wang and Merritt (2004).

For most of the galaxies rb > rh, which is also true for the sample of galaxies given

in Stone and Metzger (2016). Because the stellar dynamics in the galactic center

is influenced by the BH for r ≤ rh, we consider a single power law density profile

ρ(r) = ρ0(r/r0)−γ for r ≤ rh, where γ is the inner slope of the Nuker law. We

define the rh, where M?(rh) = 2M• (Wang and Merritt 2004), such that

ρ0r
γ
0 =

3− γ
2π

M•r
γ−3
h (5.5)

The potential due to the stellar distribution is obtained from the Poisson equation

and given by

Φ?(r) = 2σ2


1

2−γ

[
1−

(
r
rh

)2−γ
]

γ 6= 2

ln( rh
r

) γ = 2

(5.6)

The total potential is given by Φ(r) = Φ•(r) + Φ?(r), where Φ•(r) = GM•/r is

the potential due to the BH. We consider the DF as

F (E, m) = f(E)ξ(m) (5.7)

The density of stars for F (E, m) is given by

ρ(r) =

∫
d3v M? F (E, m) =

∫
d3v f(E)

∫
dm ξ(m) M?, (5.8)
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where d3v = 2πvtdvtdvr with radial velocity vr and tangential velocity vt is given

by

vt =
J

r
; vr =

√
2(Φ(r)− E)− J2

r2
; d3v =

2π

r2vr
JdEdJ (5.9)

For a spherically isotropic galactic center, the function f(E) is obtained through

the inverse transform of Equation (5.8), and is known as the Eddington formula,

given by (Binney and Tremaine 2008)

f(E) =
1√

8π2 〈M?〉
d

dE

∫ E

Emin

dρ

dΦ

1√
E − Φ

dΦ, (5.10)

where

〈M?〉 =

∫ 150

0.08

M? ξ(m) dm (5.11)

and Emin is the minimum of E taken to be -100. The number of stars in the cluster

for a given F (E, m) is

N =

∫
d3r

∫
d3v

∫
dm F (E, m), (5.12)

where d3r = 4πr2dr for spherical galaxy. In terms of dimensionless variables

` = J/Jlc and E = E/σ2, the number of stars is given by
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N(E , `) dE d` =

∫
dm 8π2 J2

lc σ
2 ` Tr(E , `) F (E , m) dE d` (5.13)

where Tr(E , `) =

∮
dr

vr
is the radial period. For a spherical geometry, Tr(E , `) is

a function of E only, and the N(E , `) increases with `.

From the given stellar density profile and potential Φ(r), the DF f(E) is given by

f(E) =
M•
〈M?〉

1

r3
hσ

3
g(E) (5.14)

where

g(E) =
1

4
√

2π3


γ(3− γ) d

dE

∫ s2
s1

sγ−1√
E−s− 2

2−γ (1−sγ−2)
ds γ 6= 2∫ E

Emin

L(2+L)
(1+L)3

1√
E−Ψ

dΨ γ = 2

(5.15)

and L is the Lambert function given by LeL = (1/2)eΨ/2 where Ψ = Φ/σ2, s =

rh/r, E = E/σ2 (Wang and Merritt 2004) and s1 and s2 are obtained by solving

s1 +
2

2− γ
(1− sγ−2

1 ) = Emin (5.16a)

s2 +
2

2− γ
(1− sγ−2

2 ) = E (5.16b)

The Figure 5.4 shows the plot of g(E) for various γ. For γ = 2, g(E) corresponds

to Equation (17c) of Wang and Merritt (2004). The BH potential dominates over

the star potential for r � rh as shown in Figure 5.5 and thus g(E) ∝ Eγ−3/2 for
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Figure 5.4: The dimensionless g(E) is shown for various γ. For γ = 2, g(E)
corresponds to Equation (17c) of Wang and Merritt (2004).
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Figure 5.5: The stellar potential Φ?(r), black hole potential Φ•(r) and total
potential Φ(r) are shown for γ = 1.2. For r � rh, the black hole potential
Φ•(r) = GM•/r dominates over the star potential.

E � 1.
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5.2.1 Loss cone theory

The loss cone is a geometrical region in phase space for which rp ≤ rt. We adopt

the Cohn and Kulsrud (1978) formalism for computing the flux of stars into the

loss cone in E and the j = J2/J2
c (E) phase space, where Jc(E) is the angular

momentum of circular orbit with energy E . We consider the diffusion in the j

space only and in the limit j → 0, the steady state FP equation as given in eqn

(3.119), is given by (Merritt 2013a)

dF(χ, y)

dχ
=

d

dy

(
y

dF(χ, y)

dy

)
(5.17)

with the boundary condition

F(0, y) = 0 ∀ y < ylc (5.18a)

F(0, y) = F(1, y) ∀ y ≥ ylc (5.18b)

where

χ =
1

〈D(E)〉

∫ r

rp

lim
j→0

〈(∆j)2〉
2j

dr

vr
and y =

j

〈D(E)〉
(5.19)

and 〈D(E)〉 =

∮
lim
j→0

〈(∆j)2〉
2j

dr

vr
is the orbit averaged angular momentum diffusion

coefficient and ylc is y at j = jlc. Merritt (2015b) has expressed F(χ, y) in terms of

the distribution of the pericenters rp and apocenters ra, and calculated the capture
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rate Ṅt in terms of ra and rp while we use appropriately scaled values of E and

J2 for calculating rp and various other parameters required in the gas dynamical

calculation in the following sections. Note that in the calculation we use the total

potential inclusive of the stars and the BH.

The local diffusion coefficient in the limit j → 0 is given by (Magorrian and

Tremaine 1999)

lim
j→0

〈(∆j)2〉
2j

=
r2

J2
c (E)

〈
(∆v⊥)2

〉
(5.20)

where 〈(∆v⊥)2〉 is given in Appendix L of Binney and Tremaine (2008). Thus, the

orbit averaged diffusion coefficient is given by

〈D(E)〉 =
32
√

2

3

π2G2
〈
M2

f

〉
log Λ

J2
c (E)

M•
〈M?〉

1

σ2
(2h1(E) + 3h2(E)− h3(E)) (5.21)

where Mf is the mass of field star with the maximum mass taken to be 150 M�,

Λ ≈M•/M? and

〈
M2

f

〉
= M2

�

∫ 150

0.08

m2
fξ(mf ) dmf (5.22a)

h1(E) =

∫ s(E)

0

ds′
s
′2√

Ψ(s′)− E

∫ E
−∞

dE ′ g(E ′) (5.22b)

h2(E) =

∫ s(E)

0

ds
′ s

′2

Ψ(s′)− E

∫ Ψ(s
′s)

E
dE ′
√

Ψ(s′)− E ′ g(E ′) (5.22c)

h3(E) =

∫ s(E)

0

ds
′ s

′2

(Ψ(s′)− E)2

∫ Ψ(s
′
)

E
dE ′(Ψ(s

′
)− E ′)

3
2 g(E ′) (5.22d)
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where s(E) is obtained by solving Ψ(s) = E , s = r/rh and

Ψ(s) =
Φ

σ2
=

1

s
+

2

2− γ
(1− s2−γ). (5.23)

Now J2
c (E) is given by

J2
c (E) = σ2r2

h [sc(E) + 2s4−γ
c (E)] (5.24)

where sc(E) is given by

1

2sc
+

2

2− γ
(1− s2−γ

c )− s2−γ
c = E . (5.25)

The solution of Equation (5.17) with the boundary conditions (5.18) is given by

(Merritt 2013a)

F(χ, y) = X(jlc)

1− 2
∞∑
n=1

e
−α2

nq

4
χ

αn

J0

(
αn
√
y/ylc

)
J1(αn)

 (5.26)

where αn are the consecutive zeros of the Bessel function J0(α), q = 1/ylc, and

X(jlc) is given by

X(jlc) =
f(E)

1 + q−1ζ(q) log
(

1
jlc

) ; ζ(q) = 1− 4
∞∑
n=1

e
−α2

nq

4

α2
n

(5.27)
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Figure 5.6: The F(0, `) is obtained by transforming Equation (5.26) from
y to ` = J/Jlc space such that y/ylc = `2, and calculating for 1000 terms
in summation of Equation (5.26). The boundary condition given by Equation
(5.18a) shows that F(0, `) is a step function with ` for ` ≤ 1. Thus, taking 1000
terms in summation satisfies the boundary condition within a fraction of about
10−3.

where f(E) is given by Equation (5.14). The Equation (5.26) gives the DF of stars

in the loss cone in terms of energy E and angular momentum ` = J/Jlc =
√
y/ylc.

Figure 5.6 shows the plot of F(0, `) for 1000 terms in the summation in Equation

(5.26), which matches with the boundary condition given by Equation (5.18a) with

an accuracy of ∼ 10−3. With increase in the number of terms in summation, the

order of accuracy of F(0, `) to Equation (5.18a) increases; however, we use 1000

terms in summation to calculate F(χ, `) beacuse it is in close agreement with the

boundary condition.

The approximation to ζ(q) given by Cohn and Kulsrud (1978) is

ζ(q) ≈ ζCK(q) =


1 q � 1

q

0.186q + 0.824
√
q

q � 1
(5.28)

We have compared the ζ(q) obtained for a summation of 10,000 terms in Equation

(5.27) with ζCK(q), and it does not fit very well for q close to unity, as shown in
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Figure 5.7. Thus we have used a better approximation to ζ(q) given by

ζ(q) ≈

 1 q ≥ 4
q

0.86q0.5 + 0.384q − 0.379q1.5 + 0.427q2 − 0.095q2.5
q < 4

(5.29)

which follows Equation (5.28) for q � 1 and gives a better fit to ζ(q) for q close

to unity. The residual for Equation (5.28) is higher than the residual for Equation

(5.29), as shown in Figure 5.7.

The function q(E) given by

q(E) =
〈D(E)〉
jlc

=
〈D(E)〉 J2

c (E)

J2
lc(E , rt)

=
〈D(E)〉 J2

c (E)

2r2
t (Φ(rt)− Eσ2)

(5.30)

can be interpreted as the ratio of the orbital period to the timescale for diffusional

refilling of the loss cone. The regime q(E) > 1 defines the pinhole or full loss cone

in which stellar encounters replenish loss cone orbits much more rapidly than they

are depleted, whereas q(E) < 1 defines the diffusive or empty loss cone regime.

The Figure 5.8 shows q(E) plotted as a function of E for γ = 1.0. The function q(E)

decreases with E which implies that the high energy orbits have smaller diffusion

angle. The smaller the diffusion angle, the higher the diffusion time and thus the

lower the feeding rate to the loss cone. The critical energy Ec defined by q(Ec) = 1

decreases with M•, and m is shown in Figure 5.9 for γ = 1. The Ec is the energy

from which the majority of the loss cone flux originates (Lightman and Shapiro

1977). With an increase inM•, the relaxation time of the galaxy increases; thus the

diffusion timescale increases (Frank and Rees 1976) and q decreases, which results

in a decrease in Ec. As rt(M•, m) ∝ mn−1/3, it increases with m for n = 0.8; and
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Figure 5.7: The figure (a) shows q/ζ(q) as a function of q over all ranges
under various approximations. The blue line corresponds to ζ(q) summed up
to 10,000 terms. The red thin line corresponds to our approximation of ζ(q)
given by Equation (5.29). The green line shows the results obtained by Cohn
and Kulsrud (1978) and is given by Equation (5.28). Asymptotically, the blue
line follows the red thin line. The figure (b) shows q/ζ(q) that for q close to
unity; our approximated formula gives a good fit to ζ(q). The figure (c) shows
the residual of q/ζ(q) for our approximated equation (blue) and the Cohn and
Kulsrud (1978) approximation (red).
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Figure 5.8: The function q(E) given by Equation (5.30) is shown as a function
of E for γ = 1.0 and m = 1; q(E) decreases with E which implies that the high
energy orbits have smaller diffusion angle.

Jlc increases and so q decreases, which results in a decrease of Ec. As γ increases,

the diffusion timescale decreases due to an increase in the number of scatterers,

and thus q increases and thus, Ec increase.

Using Equation (5.26) and the mass function of stars in the galaxy ξ(m) given by

Equation (5.4), the loss cone feeding rate is given by (Merritt 2013a)

d2Ṅt

dE dy
= 4π2

∫
dm ξ(m)J2

c (E) 〈D(E)〉 F(χ = 1, y) (5.31)

The corresponding feeding rate in terms of E and j is given in Merritt (2015a).

The Jacobian of the transformation from {E, y} space to dimensionless variables

{E , `2 = (J/Jlc(E , rt))2 = j(Jc(E)/Jlc(E , rt))2} is given by

dE dy = Det

[
∂(E, y)

∂(E , `2)

]
dE d`2, where

∂(E, y)

∂(E , `2)
=

∂(E, y)

∂(E, J2)
· ∂(E, J2)

∂(E , `2)
(5.32)
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Figure 5.9: The top panel (a) shows Ec for which q(E) = 1 as function of M6

and m for γ = 1. The bottom panel (b) shows the Ec as a function of γ for a
star of unit solar mass and radii that increases with γ.
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Figure 5.10: The theoretical capture rate Ṅt (Equation (5.34)) is shown as a
function of E for various ` and for M6 = 1 and γ = 0.8. The capture rates for
high energy orbits are small and increase with ` due to an increase in N(E , `)
(see Equation (5.13)).

and the following result is obtained by calculating the product of the determinants

of the two Jacobians in the above equation as

dE dy = σ2 J2
lc(E , rt)

〈D(E)〉 J2
c (E)

dE d`2. (5.33)

Then, the feeding rate is given by

d2Ṅt

dE d`2 dm
= 4π2 σ2ξ(m) J2

lc(E) F(χ = 1, `) (5.34)

Figure 5.10 shows the plot of Ṅt as a function of E for various ` for M6 = 1 and

γ = 0.8. The capture rates decreases with E because of the decrease in diffusion

coefficient D(E) and increases with ` due to the increase in N(E , `) (see Equation

(5.13)).

Beacuse Jlc(rt) =
√

2r2
t (Φ(rt)− E) (see Section 2), this implies that E < Φ(rt)
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and the maximum value of E = Em = Φ(rt). Because rt(M•, m)/rh ∼ 10−6−10−5,

and for r � rh, the potential is dominated by the BH potential as shown in the

Figure 5.5, which implies that Em(M•, m) = Φ(rt(M•, m)) = GM•/rt(M•, m).

The orbital motion of a star at the turning point of the orbit rx, is given by

E = Φ(rx)−
J2

2r2
x

(5.35)

where Φ(r) = Φ•(r) + Φ?(r), Φ•(r) = GM•/r and Φ?(r) is given by Equation

(5.6). In terms of dimensionless variables, ` = J/Jlc and ē = E/Em, where

Em = GM•/rt, such that ē = (rt/rh)E , and the Equation (5.35) using Equation

(5.23) is given by

ē

st
=
sx − `2st + 2

2−γ

[
s2
x(1− s2−γ

x )− `2s2
t (1− s

2−γ
t )

]
s2
x − `2s2

t

(5.36)

where sx = rx/rh, st = rt/rh. Since ē is a monotonically decreasing function of

sx, and both the pericenter and apocenter of the orbit should lie below rh, the

minimum value of ē is at sx = 1 for rx = rh; taking ē(sx = 1) = ēh, the Equation

(5.36) reduces to

ēh
st

=
1− `2st − 2

2−γ `
2s2
t (1− s

2−γ
t )

1− `2s2
t

. (5.37)

Now st = rt/rh ∼ 10−5–10−6, ēh ' rt/rh. Beacuse Jlc(rx) =
√

2r2
x(Φ(rx)− E),

this implies that E < Φ(rx) and the maximum value of E = Φ(rx) ' Φ(rt), which

corresponds to ē ' 1 and thus ē . 1. The total potential is dominated by the

BH near rt, as shown in the Figure 5.5. After ignoring the second term in the

numerator in the righthand side of Equation (5.36), which is a factor st = rt/rh '



Chapter 5: Stellar and gas dynamics of TDEs and the event rates 162

10−5 − 10−6 � 1 lower than the first, the Equation (5.36) reduces to

ē =
xx − `2

x2
x − `2

, (5.38)

where xx = sx/st. If xp is lower of the two roots of xx, it is given by

xp =
1

2ē

(
1−

√
1− 4ē(1− ē)`2

)
. (5.39)

For a star to be tidally disrupted, xp < 1 which results in

(1− ē)(1− `2) > 0 (5.40)

and xp > 0 results in

`2ē(1− ē) > 0. (5.41)

The Equation (5.41) restricts the range of ē to ē < 1 and thus Equation (5.40)

implies that ` < 1. Thus, the applicable ranges are ēh < ē < 1 and 0 < ` < 1. We

derived the turning points sx by solving Equation (5.36) subject to the constraint

rp < rt and rt < ra < rh, and verified the range for ē and ` derived above.

While we have ignored relativistic effects in the analysis above, we plan to include

them in the future.
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The lifetime of a main sequence star is tMS = t�m
−2.5 where t� = 1010 yr is the

lifetime of a solar type star and the radial period is given by

Tr =

∫ ra

rp

1

vr
dr. (5.42)

In terms of s = r/rh and using Equation (5.23), Tr is given by

Tr(ē, M•, m) =
rh√
2σ

∫ sa

sp

s
√
st√

st
(
s− `2st + 2

2−γ

[
s2(1− s2−γ)− `2s2t (1− s

2−γ
t )

])
− ē(s2 − `2s2t )

ds, (5.43)

where sa and sp are the dimensionless apocenter and pericenter that are obtained

by solving Equation (5.36). We find numerically that the radial period Tr is

approximated by

Tr(ē, M•, m) ' π

2
√

2

rh
σ

 0.57e
[0.27(1.47− ē

st
)]

ē < 1.47st(
ē
st

)− 3
2

ē ≥ 1.47st
(5.44)

Because the BH potential dominates at high energy, the corresponding orbits

are Keplerian and the radial period ∝ ē(−3/2). Using the M• − σ relation given

by Equation (5.3) and rh = GM•/σ
2, the radial period in Keplerian regime is

Tr ∝ M0.38
• E−3/2, where E = ē/st. The stars on the loss cone orbits are captured

in the radial period timescale and the number of stars in the loss cone orbit is

Nlc(E)dE (Merritt 2013a). Thus the capture rate is approximately given by Ṅt =∫
(Nlc(E)/Tr(E)) dE ∝M−0.38

• in the regime ē > 1.47st, which is consistent with the

average best-fit slope of −0.3 over the entire range of ē that was found numerically.
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A tidally captured star is on main sequence if its main sequence lifetime is tMS >

Tr, where Tr is the radial period of the orbit. Considering all possible radial phases

of the star in an orbit, the probability that a star of mass m is tidally captured as

a main sequence is given by

f?(ē, M•, m) = Min

[
1,

tMS(m)

Tr(ē, M•, m)

]
. (5.45)

Using Equations (5.26), (5.34), and dE d`2 = s−1
t dēd`2, the capture rate is given

by

d2Ṅt

dē d`2 dm
= 4π2 s−1

t σ2 ξ(m)f?(ē, M•, m) J2
lc(ē) F(χ = 1, `). (5.46)

Figure 5 of Freitag and Benz (2002) gives the maximum mass of BH as function

of mass m of the star that is disrupted. We observe that stars with mass m > 0.8

are tidally disrupted in the entire range of BH mass 106M� < M• < 108M� and

for m < 0.8, a substantial fraction is tidally captured without disruption. Thus

we take the effective star mass range to be 0.8 < m < 150. The net capture rate

is given by

Ṅt(γ, M•) = 4π2

∫ 150

0.8

dm

∫ 1

ēh

dē

∫ 1

0

d`2 σ2s−1
t (M•, m)ξ(m)f?(ē, M•, m) ·

J2
lc(ē) F(χ = 1, `). (5.47)

We solved Equation (5.26) to obtain F(1, `) and used it in Equation (5.46) to

calculate the capture rate. The integration of Equation (5.46) over the energy
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Figure 5.11: For γ = 1.0 and M6= 1 (blue), 10 (red), 50 (orange), and
100 (brown). Figure (a) shows dṄt/dm obtained using Equation (5.26) and
integrating Equation (5.46) over ē and ` decreases with m as ξ(m) decreases
withm. Figure (b) shows dṄt/d` obtained using Equation (5.26) and integrating
Equation (5.46) over ē and `.
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Figure 5.12: Panel (a) shows the net Ṅt obtained using Equations (5.26) and
(5.47) as a function of M6 for various γ. Panel (b) shows Ṅt as a function of
M6 for M6 > 10 and γ=0.6 (blue), 0.8 (red), 1.0 (orange), 1.2 (brown), and 1.4
(purple), and it follows that Ṅt ∝M−β6 where β = 0.3± 0.01.

range ēh < ē < 1 and angular momentum range 0 < ` < 1 results in a capture

rate per unit mass dṄt/dm, which is a decreasing function of m as ξ(m) decreases

with m and is shown in Figure 5.11a for various M• = 106M�M6 and γ = 1.0.

Similarly, integrating Equation (5.46) over energy ēh < ē < 1 and test star mass

0.8 < m < 150 results in dṄt/d`, which is an increasing function ` as shown in

Figure 5.11b.
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Figure 5.13: The figure shows the Ṅt obtained using Equations (5.26) and
(5.47) as a function of γ for various M6=1 (blue), 10 (red), 50 (orange), and
100 (brown), and it follows Ṅt ∝ γp with the best-fit value of p ∼ 2.1. The Ṅt

increases with γ due to an increase in the density of the central stellar population.

The net Ṅt obtained using Equations (5.26) and (5.47) increases with γ and de-

creases with M6 as shown in Figure 5.12. For M6 ≥ 10, the Ṅt ∝ Mβ
6 where

β = 0.3± 0.01, as shown in the Figure 5.12b for various γ. The increase with γ is

nonlinear as shown in Figure 5.13 and for Ṅt ∝ γp, the best-fit value of p ∼ 2.1.

The galaxies with larger γ posses higher rates because their denser central stellar

populations naturally feature shorter relaxation times and faster rates of energy

and angular momentum diffusion.

5.3 Physics of tidal disruption

The classical description of a TDE was outlined by Rees (1988). In this picture,

a star on parabolic orbit is tidally captured and disrupted at the pericenter and

the distribution of mass of disrupted debris with respect to specific binding energy

dM/dEd is roughly flat, where Ed is the energy of the disrupted debris. For stars

on a parabolic orbit, Lodato et al. (2009) found that dM/dEd depends on the
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properties of the star and adiabatic index Γ. Using Equation (5.39), the pericenter

is given by

rp(ē, `, M•, m) =
rt
2ē

(
1−

√
1− 4ē(1− ē)`2

)
= rt

(
2`2(1− ē)

1 +
√

1− 4`2ē(1− ē)

)
.

(5.48)

Equivalently

rp(E, J, M•) =
GM•
2E

[
1−

√
1− 2EJ2

G2M2
•

]
=

J2

GM•

[
1 +

√
1− 2EJ2

G2M2
•

]−1

.

(5.49)

The stars on the loss cone orbits are captured within the dynamical time td =

(r3
p/GM•)

0.5 with tidal acceleration at = GM•∆R/r
3
p where ∆R is the debris

distance from the star center at the moment of breakup. Then, the energy of the

disrupted debris is given by

Ed(ē, `, M•, m, ∆R) ≈ ēEm(M•, m)− 2kGM•∆R

r2
p(ē, `, M•, m)

(5.50)

where ∆R ∈ {−R?, R?}, the negative sign corresponds to the region toward the

BH and k is the spin-up factor due to tidal torque by the SMBH on a star given

by (Alexander and Kumar 2001)

k =

 1 non spin up (no change in angular velocity)

3 spin up to break up angular velocity
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Figure 5.14: A contour plot of the maximum distance from the star center
xl(ē, `,M•, m) = Rl/R? (Equation (5.51)) to the point where the debris is
bound to the black hole for M6 = 1 and m = 1. The green line corresponds to
rp = Rs and for rp > Rs, the contours lie above the green line.

The maximum distance from the center of a star to the point where the debris is

bound to the BH at the moment of disruption is obtained by setting Ed = 0 in

Equation (5.50) and is given by

Rl(ē, `, M•, m) =
r2
p(ē, `, M•, m)ē

2krt(M•, m)
. (5.51)

Figure 5.14 shows the contour plot of xl ≡ xl(ē, `,M•, m) = Rl(ē, `,M•, m)/R?

for M6 = 1 and m = 1. The value of rp(ē, `, M•, m) is less than Schwarzschild

radius Rs(M•) for ` ≤ 0.2; whereas xl(ē, `,M•, m) increases with ē and the in-

crease with ` is significant for high energy orbits. With the increase in the value

of xl(ē, `,M•, m), the mass of the debris bound to the BH increases and for

xl(ē, `,M•, m) = 1, the entire debris is bound to the BH.
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The time taken for the most tightly bound debris to return its pericenter after

disruption is given by

tm(ē, `, M•, m) =
2πGM•

[2Ed(ē, `, M•, m, −R?)]3/2
. (5.52)

As the bound material falls back to its pericenter, it loses its energy and angular

momentum, thus accreting into the SMBH and giving rise to the flare (Phinney

1989). The in-fall mass accretion rate at time t after disruption for the debris

following Keplerian orbits is given by

dM

dt
=

dM

dEd

dEd
da

da

dt
=

1

3
(2πGM•)

2
3

dM

dEd
t−

5
3 (5.53)

where a is the semimajor axis of the debris with orbital energy Ed(ē, `, M•, m, ∆R).

The term dM/dEd is the energy distribution within the bound matter and depends

on the internal structure of the star (Phinney 1989; Lodato et al. 2009). We now

write it in terms of dimensionless quantities using Equations (5.50) and (5.51),

and modify the dimensionless quantities given in Lodato et al. (2009) by including

the dependence on rp(ē, `, M•, m) through Rl(ē, `, M•, m) and express

ε =
xl − x
xl + 1

, x = xl − τ−2/3(1 + xl) (5.54)

dµ

dε
= (1 + xl)

dµ

dx
,

dµ

dτ
=

2

3

dµ

dε
τ
−5
3 (5.55)

where ε(ē, `, M•, m) = Ed(ē, `, M•, m, ∆R)/Ed(ē, `, M•, m, −R?),
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Figure 5.15: The dimensionless mass accretion rate given by Equation (5.55),
as a function of dimensionless time τ for various xl. The peak accretion rate
increases with xl whereas the time for peak accretion decreases with xl.

x = ∆R/R?, µ = M/M? and τ(ē, `, M•, m) ≡ t/tm(ē, `, M•, m) where

Edm = Ed(ē, `, M•, m, −R?) is the energy of inner-most tightly bound debris.

The term dµ

dµ

dx
=

3

2
b

∫ 1

x

θu(x′)x′ dx′ (5.56)

where b is the ratio of central density ρc to mean density ρ? = 3M?/4πR
3
? and θ

is the solution of Lane–Emden equation for the given polytrope u related to the

density by ρ = ρcθ
u. The total mass accretion rate is given by Ṁ(ē, `, M•, m, t) =

(M?/tm)(dµ/dτ) which depends on the orbital parameters through xl and tm. We

simulated the mass fallback rate for u = 1.5, which corresponds to Γ = 5/3. Figure

5.15 shows the plot of dµ/dτ for various values of xl. With an increase in ē, the

xl increases and the orbital period of the debris decreases, which implies that the

mass in-fall rate increases. Thus, the peak accretion rate increases with xl. Next,

we examine the conditions for formation of an accretion disk.
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5.4 Formation of an accretion disk

The debris of the disrupted star follows a Keplerian orbit around the BH. This

debris experiences stream–stream collision either due to an incoming stream that

intersects with the outflowing stream at the pericenter (Kochanek 1994) or due

to relativistic precession at the pericenter (Hayasaki et al. 2013). This stream–

stream collision results in a shock breakout which circularizes the debris and forms

an accretion disk (Ramirez-Ruiz and Rosswog 2009).

Even though the circularization timescale (time required for the debris to circu-

larize to form an accretion disk) is not accurately known, it is roughly given by

tc ≈ norbtm, where norb is the minimum number of orbits required for circulariza-

tion (Ulmer 1999). As the debris falls toward the pericenter, it is accreted with

an accretion rate given by Equation (5.53). The formation of an accretion disk

depends on tc and the accretion timescale ta, which we define as the time required

to consume 99% (at the 3σ level) of bound debris. If this timescale is less than

tc, the matter is accreted before the disk is formed. We approximated dµ/dx

for convenience with a Gaussian function because it depends on the solution of

Lane–Emden equation, which is symmetric about the center of the star and is

given by dµ/dx ' 1.192e−4.321x2 . The total mass consumed in dimensionless time

τa = ta/tm is given by

∆µ =

∫ τa

1

dµ

dτ
dτ (5.57)

where dµ/dτ is given by Equation (5.55). If fr is the fraction of debris bound

to the BH, then in time τa, the mass accreted by the BH is ∼ 0.99fr. Then, the

accretion timescale ta is given by
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ta(ē, `, M•, m) = tm

(
1 + xl

xl + 1
2.0787

Erf−1[0.997− 1.962fr]

) 3
2

(5.58)

where

fr ≡ fr(ē, `, M•, m) =

∫ xl

−1

dµ

dx
dx (5.59)

The orbital period of debris will vary due to energy. The energy gradient between

the bound debris will fill out a ring and the initial spatial distance between the

bound debris will determine the ring formation timescale tr. Let the dispersion in

the energy around the initial energy E be ∆E. A ring is formed in the timescale

tr = 2π/∆Ω, where ∆Ω is the dispersion in the orbital frequency (Hadrava et al.

2001). The orbital frequency Ω = (2E)3/2/(GM•) and dispersion ∆Ω ∝ E1/2∆E

and ∆E are given by

∆E(ē, `, M•, m) =
2kGM•

r2
p(ē, `, M•, m)

(Min[Rl(ē, `, M•, m), R?] +R?) (5.60)

Then, tr is given by

tr(ē, `, M•, m) =
π

3
√

2k

r2
p(ē, `, M•, m)

ē1/2E
1/2
m (M•, m)

(R? + Min[Rl(ē, `, M•, m), R?])
−1

(5.61)

The ratio Tr(ē, `, M•, m) = tr(ē, `, M•, m)/ta(ē, `, M•, m) is given by
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Figure 5.16: The top panel (a) shows a contour plot of the ratio
Tr(ē, `, M6, m) (Equation (5.62)) for M6 = 1 and m = 1. The green line cor-
responds to rp = Rs. For rp > RS which lies above green line, Tr(ē, `) < 1 and
thus an accretion disk is formed. The bottom panel (b) shows the Max[Tr(ē, `)]
as a function of M6 obtained in the range 10−6 ≤ ē ≤ 1 and 0 ≤ ` ≤ 1.
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Tr(ē, `, M•, m) =
1

3
√

2

xl
1 + Min[1, xl]

(
xl + 1

2.0787
Erf−1[0.997− 1.962fr]

xl

) 3
2

(5.62)

and an accretion disk is formed if Tr(ē, `, M•, m) < 1. In Figure 5.16, the top

panel (a) shows the contour plot of Tr(ē, `, M•, m) for M6=1, m = 1, and for

rp(ē, `, M6, m) > Rs, Tr < 1. The bottom panel (b) shows that Max[Tr( 10−6 ≤

ē ≤ 1, 0 ≤ ` ≤ 1, 1 ≤ M6 ≤ 100)]< 1, which implies that the bound debris will

form an accretion disk.

The radiation timescale of the disk is given by

tR(ē, `, M•, m) =
frM?c

2

ηṀ(ē, `, M•, m)
c2 (5.63)

where c is the light speed, Ṁ is the accretion rate, and η is the radiative efficiency

of the disk. The viscous timescale tv of the disk formed is given by

tv =

∫ rc

rin

1

Vr
dr (5.64)

where Vr is the radial inflow velocity of matter in the disk, rin is the inner radius

of disk, and the circularization radius obtained using angular momentum conser-

vation is given by

rc(ē, `, M•, m) = 2rp(1− rpē/rt). (5.65)
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The radial inflow velocity given in eqn (4.82), is given by

Vr = −3

2

ν

r

1

f
(5.66)

where f = 1−
√
rin

r
and ν is the viscosity of the medium given by ν = αcsH. The

parameter α is taken to be 0.1 and cs = H
√
GM•/r3 where H is the disk scale

height. Strubbe and Quataert (2009) have calculated the disk scale height for a

slim disk (see Section 4.9) to be

H

r
(ē, `, M•, m, r) =

3

4
f

(
Ṁ

ηṀE

)(
r

Rs

)−1

·1

2
+

1

4
+

3f

2

(
Ṁ

ηṀE

)2(
r

Rs

)−2


1
2


−1

(5.67)

where ṀE is the Eddington mass accretion rate and Ṁ is taken to be the time

averaged accretion rate. Using Equations (5.64) and (5.66), the viscous timescale

is given by

tv(ē, `, M•, m) =
2

3α

1√
GM•

∫ rc(ē, `, M•, m)

rin

(
H(ē, `, M•, m, r)

r

)−2√
rf dr

(5.68)

The ratio Tv(ē, `, M•, m) = tv(ē, `, M•, m)/tR(ē, `, M•, m) is given by
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Tv(ē, `, M•, m) =
4

9α

1√
GM•

η3

frM?

Ṁ2
E

Ṁ

∫ rc

rin

(
r

Rs

)2 √
r

f
·1

2
+

1

4
+

3f

2

(
Ṁ

ηṀE

)2(
r

Rs

)−2


1
2


2

dr (5.69)

where radiative efficiency is typically η = 0.1 and an accretion disk formed is a

slim disk if Tv < 1. The Figure 5.17 shows the contour plot of Tv(ē, `, M•, m)

for m = 1 and `=1 and 0.6. We conclude that the accretion disk formed is a slim

disk for M6 ≤ 31.6. For higher mass SMBHs, a thin disk forms from the disrupted

debris of a star on low energy orbit and ` ∼ 1, and a thick disk for a star on high

energy orbit.

5.5 Accretion disk phase

The Eddington mass accretion rate is given by

ṀE =
4πGM•
ηκc

(5.70)

where κ is the opacity of the medium taken to be Thompson opacity and η is the

radiative efficiency. For a given tidally disrupted star, the accretion disk formed

has a super Eddington phase ifMc(ē, `, m) > M• whereMc(ē, `, m) is the critical

BH mass. We have numerically equated the peak accretion rate Ṁp and ṀE, and

obtained the Mc(ē, `, m) as shown in Figure 5.18 for m = 1. The Mc(ē, `, m)

decreases with ` and increases with ē. For a given `, an increase in ē increases
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Figure 5.17: The contour plot of Tv(ē, `, M•, m) (Equation (5.69)) is shown
for ` = 1 (top) and ` = 0.6 (bottom) for m = 1. The green line corresponds to
rp = Rs. For M6 ≤ 31.6, the accretion disk formed is a slim disk.
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Figure 5.18: A contour plot of Mc(ē, `, m) is shown for the disruption of a
star of solar mass. The peak Ṁ increases with a decrease in ` and an increase
in ē, and thus, the Mc increases with decreasing in ` and increasing in ē.

Ed and thus the orbital period of the disrupted debris decreases, which results

in an increase in the Ṁ and hence the peak accretion rate Ṁp. For a given ē,

the pericenter rp increases with `, which results in a decrease in Ed and thus Ṁp

decreases. For a given ē and `, rp(ē, `,m) increases with m, which results in a

decrease in Ed. The decrease in Ed implies an increase in fallback time and a

decrease in peak accretion rate Ṁp which results in a decrease in Mc(ē, `,m).

5.5.1 Super Eddington Phase

For M• ≤ Mc(ē, `, m), the radiation produced by viscous stress in the rotating

disk is trapped by electron scattering and the disk is radiatively inefficient. The

time for the photon to diffuse out of the gas is longer than both the inflow time

in the disk and the dynamical time for the outflow. Thus, the disk is radiation

pressure dominated and the opacity is given by the electron scattering. We assume
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that the opacity due to the Thompson scattering and in our flux calculation adopt

the work of Strubbe and Quataert (2009). The strong radiative pressure induces

an outflowing wind. At the launch radius rL(ē, `, M•, m) = rc(ē, `, M•, m) =

2rp(1 − rpē/rt), the internal energy is converted into the kinetic energy of the

outflows, and the material leaves the disk with the temperature at the launch

radius as determined by aT 4
L ≈ (1/2)ρ(rL)v2

w (Lodato and Rossi 2011), where a

is the radiation constant. The outflow geometry is assumed to be spherical. The

photons are trapped up to the radius where ρκr ∼ 1 and the radius of photosphere

rph ∼ (ρκ)−1 is given by

rph(ē, `, M•, m, t) =
foutṀκ

4πvw
, (5.71)

where M• = M6106M�, fout = (Ṁout/Ṁ) and vw = fv
√
GM•/rL is the velocity of

outflowing wind where fv is taken to be unity. The outflowing wind is assumed to

expand adiabatically so that the density is ρ(r) ∝ T 3(r), where T is the temper-

ature of the out flowing wind. Using this scaling relation, the temperature at the

photosphere is Tph = TL(ρ(rph)/ρ(rL))1/3 and using Equation (5.71), Tph is given

by

Tph(ē, `, M•, m, t) = (4π)
5
12

(
1

2a

) 1
4

κ−
2
3f
− 5

12
out f

11
12
v Ṁ− 5

12 r
− 7

24
L (GM•)

11
24 . (5.72)

Dotan and Shaviv (2011) have calculated the fraction of outflowing material from

the super Eddington slim disk with Ṁ/ṀE=1, 5, 10, and 20 respectively. We

approximated their result by the following relation (Lodato and Rossi 2011)
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fout(ē, `, M•, m, t) =
2

π
arctan

[
1

4.5

(
Ṁ

ṀE

− 1

)]
. (5.73)

Thus, the luminosity from the outflowing wind is given by Lout
ν (ē, `, M•, m, t) =

4πr2
phBν(Tph) and Bν(Tph) is the intensity obtained assuming the outflowing wind

as a black body.

In the super Eddington phase, the time for the photon to diffuse out of the disk is

longer than the viscous time, so that the disk that is formed is thick and advective,

whereas in the case when Ṁ ≤ ṀE, the disk is thin and cools by radiative diffusion.

Strubbe and Quataert (2009) considered a slim disk model by introducing an

additional advection term the in energy conservation equation, where the effective

temperature profile of the disk as a function of radius is given by (also see §4.9)

σSBT
4
e (ē, `, M•, m, r, t) = 8.54× 1017

M−1
6

(
η

0.1

)−1
(

r
Rs

)−3 (
Ṁ
ṀE

)
f

1
2

+

{
1
4

+ 3f
2

(
Ṁ
ηṀE

)2 (
r
Rs

)−2
} 1

2

Wm−2

(5.74)

where f = 1−
√
rin

r
, σSB is Stefan–Boltzmann constant, rin is the inner radius of

the disk and Rs is the Schwarzschild radius BH.

5.5.2 Sub-Eddington Phase

The disk is sub-Eddington for the BH mass M• > Mc(ē, `, m) and Ṁ < ṀE. We

then consider the disk as the radiative thin disk whose the temperature profile is

shown in eqn (4.87) and is given by
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σSBT
4
e (ē, `, M•, m, r, t) = 8.54× 1017M−1

6

( η

0.1

)−1
(
r

Rs

)−3
(
Ṁ

ṀE

)
f Wm−2

(5.75)

We see that Equation (5.74) is the modified temperature profile of the thin disk

and follows the thin disk for Ṁ < ṀE. Since the super-Eddington phase exists

only for a certain duration, we assume that Equation (5.74) is the temperature

profile for the entire duration as it approaches the thin disk model for Ṁ <

ṀE. Assuming the disk to be a black body, the intensity of the disk is given by

Bν(Te(ē, `, M•, m, r, t)) and thus the disk luminosity is given by

LDisk
ν (ē, `, M•, m, t) =

∫ rc(ē, `, M•, m)

rin

Bν(Te(ē, `, M•, m, r, t))2πr dr, (5.76)

The total luminosity can be written as

Lν(ē, `, M•, m, t) =



M• < Mc(ē, `, m) :

LDisk
ν (ē, `, M•, m, t) + Lout

ν (ē, `, M•, m, t)

M• ≥Mc(ē, `, m) :

LDisk
ν (ē, `, M•, m, t)

If νl and νh are the minimum and maximum frequency of the spectral band, then

the luminosity of the emitted radiation in the given spectral band in the rest frame

of the galaxy is given by
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Le(ē, `, M•, m, z, t) =

∫ νh(1+z)

νl(1+z)

Lν(ē, `, M•, m, t) dν (5.77)

The observed flux fobs(ē, `, M•, m, z, t) = Le(ē, `, M•, m, z, t)/(4πd2
L(z)), where

z is the redshift and dL is the luminosity distance, and the radiation is observed

only if

fl < fobs(ē, `, M•, m, z, t) =
Le(ē, `, M•, m, z, t)

4πd2
L(z)

(5.78)

where fl is the sensitivity of the detector. The Equation (5.78) is utilized to

generate a digital signal A(t) such that

A(t) =


1 if Equation (5.78) holds true

0 if Equation (5.78) does not hold true

(5.79)

The width of the digital signal gives the duration of the flare detection used in the

event rate calculation (see Section 5.6.3).

As an example, the observed flux in optical g band is shown in Figure 5.19 for

M6 = 1, z = 0.1, and `= 0.6 (blue), 0.8 (red), 1.0 (orange). For M6 = 1, both the

outflowing wind and disk contribute to the observed flux and the flux from wind

dominates in the initial time. We can observe a dip in flux due to the outflowing

wind whose rph ∝ Ṁ and Tph ∝ Ṁ−5/12 and the occurrence time of dip is nearly

at the time of peak accretion rate Ṁp (see Figure 5.15). With an increase in ē, the

Ṁp increases, which results in an increase in rph and a decrease in Tph and thus a

decrease in the intensity of radiation B(Tph). The flux is due to out flowing wind
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Figure 5.19: The observed flux fobs (Equation (5.78)) in the optical g band
for M6 = 1, m = 1, redshift z = 0.1, and `= 0.6 (blue), 0.8 (red), 1.0 (orange).
The peak flux decreases with ` and the light curve profile gets widened with a
decrease in `. The initial dip in the flux is due to the outflowing wind. The
time is scaled with tm (in days), which is the orbital period of inner-most bound
debris that decreases with ` due to the increase in the energy of the disrupted
debris.
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∝ r2
phB(Tph) and decreases with Ṁp if the decline in B(Tph) is higher than the rise

in rph. Ulmer (1999) predicted that the minimum value of norb for the disrupted

debris to get circularized is ∼ 2–3 and thus we have utilized the fobs starting from

the time τ = 3 to generate a digitized signal and calculate the duration of the

detection.

5.6 Event rate calculation

For any transient survey, the net detectable TDE rate depends on the number

density of non-active galaxies, the theoretical capture rate per galaxy (see Section

5.2), the luminosity distance of galaxies, the sensitivity of the detector, and the du-

ration of flare detection. In this section, we will carry out the detailed calculation

of each quantity separately and then combine them in Section 5.6.3.

5.6.1 Number density of non active galaxies

The number density of quasars is a function of redshift and luminosity, where

quasars emitting radiation of low intensity (L < 1040 erg sec−1) are non-active

galaxies as compared to the normal quasars (L� 1045−1046 erg sec−1). According

to the Soltan (1982) argument, if quasars were powered by accretion onto a SMBH,

then such SMBH must exist in our local universe as “dead” quasars or non-active

galaxies. The number density of galaxies (quasars) can be obtained by using the

quasar luminosity function (QLF; Hopkins et al. (2007)),

dψ

d logL
=

ψ∗

( L
L∗

)γ1 + ( L
L∗

)γ2
, (5.80)
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where ψ∗, L∗, γ1, γ2 are a function of redshift z. As TDEs are the main observa-

tional signatures of quiescent galaxies, we need to determine the number density of

quiescent galaxies at any redshift z. Chen et al. (2007) used the QLF to obtain the

duty cycle δ(z) = 10−3 (z/0.1)2.5 where δ(z) is defined as the ratio of the number

of active galaxies to the total number of galaxies. Thus, the BH mass function of

quiescent galaxies is given by

dψ

dM•
= (1− δ(z))

dψ

d logL

∣∣∣∣d logL

dM•

∣∣∣∣ (5.81)

where L is the luminosity of the quasars, which is taken to be L = ηLE =

η4πGM•c/κ where LE is the Eddington luminosity, η is taken to be 0.1, and

κ is the opacity due to Thompson scattering. This gives the number density of

quiescent galaxies as a function of BH mass M• and redshift z as

dψ

dM•
(M•, z) = (1− δ(z))

1

M•

dψ

d logL
(5.82)

5.6.2 Luminosity Distance

We assume ΛCDM cosmology with Ωm = 0.315,ΩΛ = 0.685,

Ho = 67.3 Km sec−1 Mpc−1 (Planck Collaboration et al. 2013). The luminosity

distance as a function of redshift z is given as

dL(z) = (1 + z)
c

Ho

∫ z

0

1

((1 + z′)3Ωm + ΩΛ)0.5
dz′. (5.83)

Consider now a small volume of the universe at redshift z with radial width dz
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covering an opening angle ω on the observer’s sky (Khabibullin et al. 2014). The

comoving volume of the slice is

dVc = ωd3
H

I2(z)

W (z)
dz (5.84)

where ω = 4πfs, dH = c/Ho, W (z) = ((1 + z)3Ωm + ΩΛ)0.5,

I(z) =

∫ z

0

1

((1 + z′)3Ωm + ΩΛ)0.5
dz′ (5.85)

and fs is the fraction of sky observed.

5.6.3 Probability of flare detection

We generate the spectrum in the form of digital signal using Equation (5.79), and

the width of the digital signal provides the duration of flare detection

δtf (ē, `, M•, m, z). If tcad and tint are the cadence and integration time of the

detector, then the probability of detection of an event is given by

P (ē, `, M•, m, z) = Min

[
1,
δtf (ē, `, M•, m, z)

tcad + tint

]
(5.86)

Using Equations (5.26), (5.46), (5.82), (7.13) and (5.86), the net detectable event

rate by the detector is given by
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d5ṄD(γ, ē, `,M•,m, z)

dM•dmdēd`dz
= ωd3

H

(
dΨ

dM•

)
d2Ṅt

dēd`dm
(γ, ē, `,M•,m)

I2(z)

W (z)
·

P (ē, `,M•,m, z) (5.87)

With the given initial parameters M•, m, ē, ` and z, we generate the light curves

using Equation (5.77) in the optical g and soft X-ray bands. The generated spec-

trum is compared with the sensitivity of the detector fl to generate a digital signal

using Equation (5.79), and the width of the digital signal gives the duration of

flare detection. The range of initial parameters in the calculation are taken to be

M6 = M•/106M� = 1− 100, m = 0.8− 150, ē = ēh−1, ` = 0−1 and z = 0− zs,

where zs(M•, m, ē, `) is the detection limit of the survey. Then, using Equation

(5.87), we calculated the net detectable rate by integrating in steps over redshift

z, `, ē, m, and finally over M• such that

ṄD =

∫ 100

1

dM6

∫ 150

0.8

dm

∫ 1

ēh

dē

∫ 1

0

d`

∫ zs

0

dz
d5ṄD(γ, ē, `,M6,m, z)

dM6dmdēd`dz
. (5.88)

The detectable rate per M6 integrated over z, ē, ` and m for various γ is shown in

Figure 5.20 for LSST and Pan-STARRS 3π detectors parameters. As the Ṅt and

BH mass function decreases with M6, the dṄD/dM6 decreases with M6. The net

ṄD integrated over ē, `, m and M6 is plotted as a function of γ in Figure 5.21 for

various missions. The resulting ṄD ∝ γ∆ where ∆ is given in Table 5.2.

Using Equation (5.26), (5.34), (5.82) and (7.13), the occurrence rate of TDE is

given by
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Ṅo =

∫ 100

1

dM6

∫ 150

0.8

dm

∫ 1

ēh

dē

∫ 1

0

d`

∫ zs

0

dz ωd3
H

(
dΨ

dM6

)
·

d3Ṅt

dēd`dm
(γ, ē, `,M6,m)

I2(z)

W (z)
(5.89)

where integration limits are same as those taken for Equation (7.21). We define

the detection efficiency of TDE for a detector to be

Υ =
ṄD

Ṅo

(5.90)

The ṄD calculated for LSST, Pan-STARRS 3π, Pan-STARRSMDS, and eROSITA

mission along with their detection efficiency are given in Table 5.2. van Velzen

et al. (2011) estimated the event rates on the basis of observational studies in the

optical bands for the Sloan Digital Sky survey (SDSS) and scaled the result of

SDSS to the other missions using the relation Ṅ ∝ fs f
−3/2
l (Gezari et al. 2009).

This relation is valid only if we assume all other parameters, such as cadence and

integration time of the detector, to be same and Table 5.2 shows the estimated

rates by van Velzen et al. (2011) Ṅobs (column with c notation) and our predicted

rates ṄD (column with a notation). The value of γ from the observed density

profile is in the range ∼ 0.5-1.2(Wang and Merritt 2004; Stone and Metzger 2016).

Our results are in reasonable agreement with their results. Khabibullin et al.

(2014) calculated the number of events N detectable at any moment in the X-ray

band for the eROSITA mission assuming a constant theoretical rate forM6 ∼ 1–10

and light curve profile to follow the t−5/3 law, whereas we have followed a more

rigorous calculation to obtain ṄD. Our prediction for eROSITA does not include

the limitations in Khabibullin et al. (2014), but are more precise and in agreement

with their rough estimate.
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Figure 5.20: The detectable rate, ṄD perM6 obtained by integrating Equation
(5.87) in steps over z, `, ē and m for various γ for (a) LSST survey and (b) Pan-
STARRS 3π survey for γ =0.6 (blue), 0.8 (red), 1.0 (orange), and 1.2 (brown).
With increase in γ, the detectable rate increases due to the increase in Ṅt.

The values of γ for which our predictions of ṄD match with the scaled-up values

in van Velzen et al. (2011) are shown as γs in Table 5.2. The only free parameter

in our estimate is γ and this is likely to vary from source to source. Not knowing

the expected distribution of γ as a function of say redshift, we have calculated the

error in our estimation of ṄD by taking a fiduciary range in the observed median

of γ = 0.7± 0.1, as is shown in Table 5.2.
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Figure 5.21: The detectable rate, ṄD (Equation (7.21)), as a function of
γ for LSST (blue), Pan-STARRS 3π (red), Pan-STARRS MDS (orange), and
eROSITA (brown). It is seen that ṄD ∝ γ∆ where ∆ is the slope given in Table
5.2.
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Survey Band fs Sensitivity/flux Cadence time Integration time ṄD (yr−1)a γbs Ṅobs (yr−1)c Υd ∆e

(s) (s) γ = 0.7 ± 0.1

LSST Optical 0.5 24.5 AB mag (g band) 2.6 × 105 10 5003 ± 1421 0.63 4131 0.91 1.97

Pan-STARRS (MDS) Optical 0.0012 24.8 AB mag (g band) 3.46 × 105 30 12.3 ± 3.5 0.77 15 0.92 1.98

Pan-STARRS 3π Optical 0.75 24 AB mag (g band) 6.05 × 105 30 6337 ± 1800 0.48 3106 0.85 1.94

eROSITA X-ray 1 2.4×10−14(erg sec−1 cm−2) 1.58 × 107 1.6 × 103 679.5 ± 195 – – 0.7 2.06

Table 5.2: Mission instrument parameters and predicted rate of the surveys

The parameters of the survey are taken from (1) LSST (Strubbe and Quataert (2009) & http://www.lsst.org/lsst/overview/),

(2) Pan-STARRS (MDS; Medium Deep survey; van Velzen et al. (2011)),

(3) Pan-STARRS 3π (Strubbe and Quataert (2009) & http://pan-starrs.ifa.hawaii.edu/public/),

(4) eROSITA (SRG; Khabibullin et al. (2014) & http://www.mpe.mpg.de/eROSITA)
a Our predicted values along with the error estimates for an assumed range of ∆γ = 0.1 around a typically observed median of γ = 0.7.
bṄD(γs) = ṄD estimated by van Velzen et al. (2011).
c Results from van Velzen et al. (2011).
d Detection efficiency of the detector given by Equation (5.90).
e Detectable rate ṄD ∝ γ∆.

http://www.lsst.org/lsst/overview/
http://pan-starrs.ifa.hawaii.edu/public/
http://www.mpe.mpg.de/eROSITA
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Figure 5.22: The galaxy averaged Ṅt (Equation (5.91)) increases with γ and
for γ ≤ 1.2,

〈
Ṅt

〉
≈ γ2.

5.7 Discussion of the results

The star’s initial orbital parameters E and J have significant effects on both stellar

and accretion dynamics. We have seen that the effect of J which has not been

included previously, plays a crucial role in constructing the shape of light curve

profiles.

We have employed a single power density model because most of the galaxies given

in Wang and Merritt (2004) and Stone and Metzger (2016) have a break radius

rb > rh and we calculated the Ṅt ∼ 10−5 − 10−4 Yr−1, which shows a nonlinear

dependence with M• as shown by Wang and Merritt (2004) for single stellar mass

distribution with a Nuker profile. Using Equations (5.26), (5.47), (5.82) and (7.13),

the galaxy average Ṅt is given by

〈
Ṅt

〉
(γ) =

∫ 108M�
106M�

dM•
∫ 1

0
dz

(
dψ

dM•

)
I2(z)
W (z)

Ṅt(γ, M•)∫ 108M�
106M�

dM•
∫ 1

0
dz

(
dψ

dM•

)
I2(z)
W (z)

(5.91)
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and is shown in Figure 5.22. For γ = 0.7,
〈
Ṅt

〉
∼ 6.8 × 10−5 yr−1 which is

close to the observational inferred value ∼ 10−5 yr−1 and
〈
Ṅt

〉
≈ γ2 for γ ≤ 1.2.

The sample of galaxies taken by Stone and Metzger (2016) have γ varying over all

ranges upto γ = 1.2, which implies that their < Ṅt > is γ independent, whereas

we have calculated the < Ṅt > assuming that all galaxies to have the same γ. The

discrepancy in theory and observation is smaller in our model for γ ≤ 1 compared

with Stone and Metzger (2016) who have predicted < Ṅt > ∼ few × 10−4 yr−1

by taking into account the Schechter BH mass function and a Nuker profile. The

γ averaged
〈
Ṅt

〉
integrated over the range 0.6 ≤ γ ≤ 1.2 is ∼ 1.3× 10−4 yr−1.

Rees (1988) and others have considered the stellar orbit to be nearly parabolic.

We have included the angular momentum J in the calculation and studied the

effect of J on accretion dynamics. We have modified the dimensionless quantities

given in Lodato et al. (2009) and for the low eccentric orbits, which results in an

increase in peak accretion rate. Strubbe and Quataert (2009) and Lodato and

Rossi (2011) have calculated the spectral profile for a parabolic orbit that does

not have any dip in their luminosity profile. The inclusion of J induces a dip in

the light curve profile, which gets deeper with increased energy. We can also see

that our results in the optical band match with the result of Lodato and Rossi

(2011) for ē� 1.

In general, the accretion of matter into the BH is non-steady because the mass at

the outer radii are higher than the mass at inner radii. Montesinos Armijo and

de Freitas Pacheco (2011) evaluated the surface density and temperature profile

assuming the accretion disk to be thin and the accretion rate ∝ t−5/3. A model for

a non-steady accretion mechanism that includes both super- and sub-Eddington

phase is required to better understand the evolution and emission from the disk.

The α viscosity prescription used by Strubbe and Quataert (2009) is not applicable

in the super-Eddington phase due to low efficiency and high opacity of the disk, so

a general viscosity prescription, such as ν ∝ Σd(r)re where d and e are constants,
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can be used to evaluate the accretion disk, where Σ(r) is surface density profile

(Mangalam 2001; Shen and Matzner 2014).

Strubbe and Quataert (2009) have predicted ṄD assuming a constant capture

rate, stellar orbits to be parabolic, and the flare duration to be the duration of

Eddington phase, which is obtained assuming dM/dEd as a constant. Gezari

et al. (2008) and van Velzen et al. (2011) have used the observed detectable rate

for the GALEX mission in the Near Ultra Violet (NUV) and SDSS in optical

band respectively and scaled it to the other missions assuming survey parameters

such as cadence and integration time to be same. van Velzen et al. (2011) have

observationally estimated higher rates compared to the estimation by Gezari et al.

(2008) due to low sample size. We have performed a detailed calculation, taking

into account the both stellar and accretion dynamics, and predicted the detectable

rates that are in agreement with the prediction by van Velzen et al. (2011). We

have not included the filter transmission in generating the spectrum. As the filter

transmission varies over the wavelength in the given spectral band, and is less than

unity, the simulated flux gets reduced, which results in the reduction in the δtf

and hence the detectable rate ṄD.

India’s space mission ASTROSAT that was launched recently, has a payload SSM

(Sky Scanning Monitor) to follow up the transient universe in the X-ray band

by nearly scanning half the sky in about 6 hours duration for a continued same

stellar pointing of the spacecraft (http://astrosat.iucaa.in/?q=node/13). The

sensitivity of the instrument is ∼ 7.2 × 10−10 erg sec−1 cm−2 with the integration

time of the detector to be 10 min. With these parameters, the detectable rate for

ASTROSAT is expected to be less than ∼ 1 yr−1. For the optical surveys in the

g-band, namely LSST and PAN-STARRS, the TDE may not be resolved and the

rates corresponding predicted could be an over estimate by a factor of a few.

http://astrosat.iucaa.in/?q=node/13
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5.8 Summary and conclusions

We studied in detail, the model of the TDE, taking into account the both stellar

dynamical and gas dynamical inputs. The overall system parameters include BH

mass M•, specific orbital energy E and angular momentum J , star mass M? and

radius R? and pericenter of the star orbit rp(E, J, M•). We solved the steady state

FP equation using the standard loss cone theory for the galactic density profile

ρ(r) ∝ r−γ and stellar mass function ξ(m), where m = M?/M� and obtained the

feeding rate of stars to the BH Ṅ(E, J, m, γ) that it is an increasing function of J

and γ, but a decreasing function of E and m. Because the stars evolve along their

orbits toward the BH, we compared the lifetime of main sequence star to the radial

period of its orbit and calculated the probability f? for a star to be captured as a

main sequence given by Equation (5.45). Using this we model the in-fall rate of

the disrupted debris, Ṁ(E, J, m, t), and discuss the conditions for the formation

of an accretion disk considering accretion, viscous, ring formation, and radiation

timescales. We find that the accretion disk is almost always formed for the fidu-

ciary range of the physical parameters. By equating the peak of Ṁ(E, J, m, t) to

the Eddington rate, we derive the critical black mass Mc(E, J, m). We simulated

the light curve profiles in relevant optical g band and soft X-rays for both super-

and sub-Eddington accretion disks as a function of Ṁ(E, J, m, t), taking typical

stellar system parameters. Specifically, we have found the following key results:

1. In Section 5.2.1, we have approximated the radial period of an orbit with

Equation (5.44) and the M• − σ relation. The radial period of an or-

bit in Keplerian potential is Tr ∝ M−0.38
• E−3/2. The capture rate Ṅt =∫

(Nlc(E)/Tr) dE ∝M−0.38
• .

2. The applicable ranges of dimensionless energy ē and angular momentum `

are given by {ēh < ē < 1, 0 < ` < 1} where ēh = st = rt/rh.
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3. We solved the steady state FP equation in Section 5.2.1 and obtained the

capture rate using Equation (5.47). We found that the capture rate Ṅt does

not show a power law dependence with M• and it increases with γ. Even

though the increase in Ṅt with γ is non linear, an approximate fit gives

Ṅt ∝ γp, where p ∼ 2.1 (see Figure 5.13). For M6 > 10, Ṅt ∝ M−β
6 and β

∼ 0.3± 0.01 (see Figure 5.12).

4. In Section 5.3, we show that the fractional radius from the star center

xl(ē, `, M•, m) to the point where the debris is bound to the BH increases

with ē and ` (see Figure 5.14). The increase with ` is significant only for

high energy orbits. The peak accretion rate increases with xl. The decline to

later t−5/3 law is steeper if the energy of the initial orbit is higher, as shown

in Figure 5.15 .

5. In Section 5.5, by equating Ṁp and ṀE, the critical BH mass Mc(ē, `, m) is

found to increase with ē and decrease with ` and m (see Figure 5.18). With

the decrease in `, the rp decreases and thus Ṁ increases, which results in an

increase in Ṁp. For higher ē and lower `, Mc(ē, `, m) can exceed the BH

mass limit for TDE to occur (i.e, ∼ 3 × 108M�).

6. In Section 5.4, we found that Max[Tr( 10−6 ≤ ē ≤ 1, 0 ≤ ` ≤ 1, 1 ≤

M6 ≤ 100)]< 1, which implies that the debris will form an accretion disk

(see Figure 5.16). The ratio Tv < 1 for M6 ≤ 31.6 which implies that the

accretion disk formed is a slim disk. The Tv increases withM6 and decreases

with ē as shown in Figure 5.17. The higher mass SMBHs form a thin disk

from the disrupted debris of a star on low energy orbit and ` ∼ 1 and a

thick disk for a star on a high energy orbit.

7. In Section 5.5.2, we derive the observed flux as a function of ē and `. Fig-

ure 5.19 shows the observed fluxes fobs in the optical g band and the peak

observed flux increases with a decrease in `. The decline of the light curve

profile to the later stage gets steeper with increasing `.
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8. In Section 5.6, the net detectable rate ṄD is calculated for the various mis-

sions observing in optical and X-ray bands. Using standard cosmological

parameters and mission instrument details, we predict the detectable tidal

disruption rates for γ = 0.7 for LSST to be ∼ 5003 yr−1; Pan-STARRS in the

optical g band performing in either all-sky survey (ASS) mode or the deep

imaging survey (DIS) mode were predicted to be ∼ 6337 yr−1 for operation

in 3 π mode and ∼ 12.3 yr−1 in the MDS mode, which are in reasonable

agreement with scaled-up values based on Sloan Digital Sky Survey (SDSS)

detection. Our prediction for eROSITA in the soft X-ray band is about ∼

679.5 yr−1, which is consistent with Khabibullin et al. (2014). The values of

γ for which our predictions of ṄD match with the scaled-up values in van

Velzen et al. (2011) are shown as γs in Table 5.2. We have also estimated

the error in ṄD for an error in fit to γ which is taken to be 0.1 and is also

shown in Table 5.2.

9. Our results are in reasonable agreement with the scaled-up values from the

SDSS observations (van Velzen et al. 2011), as given in Table 5.2 along with

the detection efficiency of the detector Υ. The Υ is lowest for the eROSITA

mission due to the high cadence of half year and is highest for Pan-STARRS

MDS due to very high sensitivity. The ṄD ∝ γ∆, where ∆ ∼ 1.95 in optical

band is shown in Figure 5.21.
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Accretion and wind dynamics in

TDEs

Image: ASAS-AN 14li
NASA/CXC/U. Michigan/J. Miller et al

6.1 Introduction

In chapter 4, we have discussed the viscous transport dynamics and the accretion

disk model of the thin disk and slim disks with an outflowing wind. We have

studied the steady and time-dependent model of the thin disk and derived the self-

similar model of thin disks. The existing TDE disk models are shown in Table 4.3.

In this chapter, we construct the self-similar models of time-dependent and non-

relativistic accretion disk for both sub-Eddington (model A) and super-Eddington

disks (model B) with an outflowing wind with a general viscosity prescription. We

consider the pressure to be dominated by gas pressure for the sub-Eddington disk

and radiation pressure for the super-Eddington disk and obtained the constants b
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and d. In our case, the total angular momentum of the disk is a function of time

due to the introduction of the fallback and thus our TDE solutions differ from the

solution obtained by Mangalam (2001). We construct the super-Eddington model

for a radiative slim disk whereas Shen and Matzner (2014) have constructed the

model of TDE disk with and without fallback from disrupted debris by developing

a self-similar structure of a non-radiative, advective disk with an outflowing wind

and using the self-similar solution of Cannizzo et al. (1990) for a radiative thin disk

with total angular momentum constant. In this work, we calculate the structure

of outflowing wind using vertical momentum equation and obtained a relation

between mass out flowing rate Ṁw and Ṁa, which is different from Dotan and

Shaviv (2011).

Table 4.3 shows the various accretion models with their assumptions and assumed

viscosity prescriptions for the accretion disk structures shown in Fig 6.1. The

Table 6.1 shows a glossary of symbols we use in this paper. Table 6.2 shows

various accretion models constructed by us.

6.2 Physics of TDEs

The tidally captured star is disrupted and debris falls back towards the pericenter

and circularizes to form a seed accretion disk which evolves due to accretion by the

black hole, wind outflow and continuous supply of mass from the fallback debris.

The vertically integrated time-dependent equations of an axially symmetric disk
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Figure 6.1: (a) A schematic structure of accretion disk showing the accretion
rate, Ṁa, mass fallback rate, Ṁfb, and mass outflow rate, Ṁw. The evolution
of the disk inner radius rin (blue) and outer radius rout (red) are shown in (b)
and (c).

are given by

∂

∂t
Σd = −1

r

∂

∂r
(rvrΣd)− Σ̇w + Σ̇f (6.1a)

vrΣd
∂

∂r
(r2ω(r)) + Σ̇wr

2ω(r) = −1

r

∂

∂r
(r2Πrφ) + j̇f , (6.1b)

where ω(r) is the rotational velocity, Σ̇w is the mass loss rate per unit area due to

the outflowing wind and Σ̇f and j̇f are the rates of mass and angular momentum
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Dynamical input parameters

M• black hole mass M6 M•/106M�

M? star mass m M?/M�

E orbital energy of star ē GM•/rt

J orbital angular momentum ` J/Jlc

rt tidal radius Jlc loss cone angular momentum

R? radius of star j black hole spin

rISCO radius of innermost stable circular orbit

Disk structure parameters

ρ density of disk κ opacity taken to be Thompson opacity

Σd surface density of disk H disk height

Md disk mass Jd disk angular momentum

rout outer radius of disk rin inner radius of disk

Pr radiation pressure Pg gas pressure

K Constant of equation of state Ṁa accretion rate

Wind parameters

c1(r) Bernoulli parameter c2 (c1(r)
√
r2 + z2

ph)/(GM•)

Σ̇w rate of surface density of wind Ṁw mass loss rate due to wind

fout Ṁ/Ṁa zph photosphere height

Accretion parameters

Rl maximum radius from star center to bound debris xl Rl/R?

ε Ed/Edm Edm energy of inner-most bound debris

µ M/M? M debris mass with energy Ed

Ṁfb fallback rate of debris

Viscosity parameters

Πrφ viscous stress ω angular frequency

b power index of Σd d power index of r

Self similar quantities

t0 self similar time constant r0 self similar radius taken to be outer radius at t0

Σ0 self similar surface density at t0 β and α self similar constants

ξ (r/r0)(t/t0)−α vr radial velocity

ξout (rout/r0)(t/t0)−α ξin (rin/r0)(t/t0)−α

Thermodynamical quantities

Te effective temperature of disk Lb bolometric luminosity

Th hydrostatic temperature Tph photosphere temperature

TE Eddington temperature LE Eddington luminosity

Q+ viscous heating rate per unit area Q−rad radiative loss rate per unit area

Q−adv energy loss rate per unit area due to advection Lν luminosity in spectral band

Table 6.1: Glossary of symbols used in our calculations.

per unit area added to disk by the fallback debris respectively.

Using eqn (6.1), the reduced disk equation is given by

Σ̇d =
1

r

∂

∂r

[
∂r(r

2Πrφ)

∂r(r2ω(r))

]
+ ω(r)r

∂

∂r

[
Σ̇wr

∂r(r2ω(r))

]
+ S(r, t) (6.2)
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where

S(r, t) = Σ̇f −
1

r

∂

∂r

(
j̇fr

∂r(r2ω(r))

)
. (6.3)

The viscous stress Πrφ has a self-similar form given by

Πrφ = KΣb
dr
d, (6.4)

where K is a constant and

Σd = Σ0

(
t

t0

)β
g(ξ), ξ =

r

r0

(
t

t0

)α
. (6.5)

where Σ0, r0 and t0 are the constants. We describe a general time-dependent

accretion disk whose dynamics and evolution depends on the mass fallback rate,

the viscous stress and the wind outflow rate in the following sections.

The inner radius is taken to be the ISCO given by rISCO = RsZ(j)/2, where

Rs = 2GM•/c
2 is the Schwarzschild radius, j is the black hole spin and Z(j) is

given by (Bardeen et al. 1972)

Z1(j) = 1 + (1− j2)
1
3

[
(1 + j)

1
3 + (1− j)

1
3

]
(6.6a)

Z2(j) =
√

3j2 + Z1(j)2 (6.6b)

Z(j) = 3 + Z2(j)−
√

(3− Z1(j))(3 + Z1(j) + 2Z2(j)), (6.6c)
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and outer radius rout = rtf(ē, `) to be the circularization radius where f(ē, `)

obtained using eqn (5.65) is given by

f(ē, `) =
4`2(1− ē)

1 +
√

1− 4`2ē(1− ē)

[
1− 2`2ē(1− ē)

1 +
√

1− 4`2ē(1− ē)

]
, (6.7)

and R? = R�m
0.8 where m = M?/M� (Kippenhahn and Weigert 1994).

6.2.1 Disk structure

The accretion disks we consider here are sub-Eddington with a vertical structure

similar to standard thin disk and super-Eddington disks with an extended vertical

structure. We first derive the structure of these disks and then obtain the forms

of viscous stress based on nature of pressure dominating in the disk.

6.2.1.1 Sub-Eddington disk structure

The sub-Eddington disk structure is discussed in §4.7 and we saw that the scale

height is given by

H2GM•
r3

= c2
s =

∣∣∣∣∂P∂ρ
∣∣∣∣
z=0

, (6.8)

and the angular velocity is

ω =

√
GM•
r3

. (6.9)
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The total pressure is P = Pr+Pg with gas pressure Pg = ρkBTc/µmp and radiation

pressure Pr = aT 4
c /3, where ρ = Σd/(2H), Tc is the mid-plane temperature of the

disk, mp is the mass of the proton and µ is the mean molecular weight taken to

be of solar metallicity equal to 0.65.

6.2.1.2 Super-Eddington disk structure

In the case of a super-Eddington disk, the pressure is dominated by radiation

pressure which gives strong radiative outflows. The vertical momentum equation

is given by

1

2

∂

∂z
v2
z = −1

ρ

∂

∂z
P − ∂

∂z
Φ(r, z), (6.10)

where P is the total pressure and Φ(r, z) = −GM•/
√
r2 + z2. A radiation dom-

inated disk is radiatively inefficient and the strong radiative pressure leads to an

extended disk geometry, whose vertical structure is in hydrostatic equilibrium up

to a height zph, from where the wind is launched. We consider a polytropic rela-

tion in which the total pressure is given by P = Kργ where K is a constant that is

set by the entropy of the gas; this is a more general assumption than adiabaticity

(Chandrasekhar 1939, p86) as it results in the energy transport in the disk leading

to radiation. Using this, eqn (6.10) gives

v2
z

2
+

γ

γ − 1
Kργ−1 + Φ(r, z) = c1(r), (6.11)

where c1(r) is constant of integration taken to be zero in the hydrostatic equilib-

rium regime and non-zero at the photosphere zph. The hydrostatic regime (vz = 0)
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gives the hydrostatic density to be

ρ(r, z) = ρ0

[
r√

r2 + z2

] 1
γ−1

, (6.12)

where ρ0 = Br−1/(γ−1), and B is given by

B =

[
γ − 1

γ

] 1
γ−1

K−
1

γ−1 (GM•)
1

γ−1 . (6.13)

The total pressure is given by

P = Pr + Pg =
1

3
aT 4 +

kB
µmp

ρT, (6.14)

where a is the radiation constant. We consider Pg = βgP (Chandrasekhar 1939),

which gives the temperature

T =

[
3

a

kB
µmp

] 1
3
[

1− βg
βg

] 1
3

ρ
1
3 . (6.15)

Using eqn (6.14) and (6.15), we obtain γ = 4/3 and K given by

K =

[
3

a

] 1
3
[
kB
µmp

] 4
3

(1− βg)
1
3β
− 4

3
g . (6.16)

Using eqn (6.12) and (6.15), the hydrostatic temperature is given by
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Th(r, z) =

[
3

a

kB
µmp

] 1
3
[

1− βg
βg

] 1
3

B
1
3 r−1

[
r√

r2 + z2

]
. (6.17)

The height of the disk H using eqn (6.12) and

Σd = 2

∫ H

0

ρ(r, z) dz = 2
B

r2

yh√
1 + y2

h

(6.18)

where yh = H/r; in the limit yh � 1 which is justified a posteriori, we obtain

yh =
1

2B
Σdr

2. (6.19)

6.2.1.3 Wind structure

The outflowing wind is launched from the photospheric height zph. Considering

a plane parallel atmosphere, the temperature using Eddington approximation is

given by

T 4(τ) =
3

4
T 4
e

(
τ +

2

3

)
, (6.20)

where τ is the optical depth measured from the top of the atmosphere. Thus, the

photosphere temperature is given by

T 4
ph = T 4

0

4

3

1

τph + 4
3

, (6.21)
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where τph is the optical depth at the photosphere measured from the mid-plane of

the disk. Using eqn (6.17), we obtain

T 4
ph = T 4

0 (1 + y2
ph)
−2 (6.22)

where yph = zph/r. Now τph is given by

τph =

∫ zph

0

ρκ dz = ρ0 κ r
yph√

1 + y2
ph

, (6.23)

where κ is the opacity due to Thompson scattering; using eqn (6.21), (6.22) and

(6.23), we find

yph(2 + y2
ph)
√

1 + y2
ph =

3

4
ρ0κr, (6.24)

whose limiting solutions are

yph ≈


(

3Bκ
4

) 1
4 r−

1
2 , yph � 1

3Bκ
4

1
r2 , yph � 1

(6.25)

The outflowing wind is launched at z = zph and the velocity of the wind decreases

for z > zph due to gravity, thus dv2
z/dz|zph < 0, so that the eqn (6.10) reduces to
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v2
z(zph) =

8

βg

[
kB
µmp

]
(Tph − TE) + 2c1(r), (6.26)

where TE is the Eddington temperature given by eqn (6.17) at the photosphere.

Due to strong radiative pressure, the photospheric height zph/r = yph � 1 and

thus using eqn (6.25), the Eddington temperature is given by

TE =

[
GM•
aκ

] 1
4

(1− βg)
1
4 r−

1
2 . (6.27)

Hence using eqn (6.26),

v2
z(zph) =

8kB
µmp

(
GM•
aκ

) 1
4

(1− βg)
1
4β−1

g r−
1
2

[
Tph
TE
− 1 + c2

]
, (6.28)

where c2 = c1(r)/(2Φ(r, zph)) is taken to be a constant. This simplifying assump-

tion ensures the existence of the wind as decided by

Tph
TE
− 1 + c2 ≥ 0, (6.29)

which is taken to be only a function of time and independent of radius. The rate

of surface density of the out flowing wind Σ̇2
w = ρ2(zph)v

2
z(zph) with ρ(zph) given

in eqn (6.12), is given by
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Σ̇w =

√
8

3

(
µmp

kB

) 1
2

(GM•)
7
8a

1
8κ−

7
8β

1
2
g (1− βg)−

1
8 r−

7
4

·
√
Tph
TE
− 1 + c2. (6.30)

For a TDE disk, the viscous heating decreases with time after the wind is switched

on which results in a decrease in the radiative pressure and thus a decrease in mass

outflow rate. Since mass outflow rate decreases, Σ̇w decreases, so we assume

√
Tph
TE
− 1 + c2 =W

(
t

t0

)δ
, (6.31)

such that Σ̇w is given by

Σ̇w = Wr−
7
4

(
t

t0

)δ
, (6.32)

where

W =

√
8

3

(
µmp

kB

) 1
2

(GM•)
7
8a

1
8κ−

7
8β

1
2
g (1− βg)−

1
8W . (6.33)

So eqn (6.31) results in Tph/TE being purely a function of time and independent

of the radius and along with the assumption of constant c2, this ensures that the

entire disk is super-Eddington with wind outflow at all radii, provided eqn (6.29)

is satisfied.
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The rotational velocity of the gas in a super-Eddington disk is non-Keplerian as

the radiation pressure is significant. We adopt a solution of a thick disk along

the lines of [Loeb and Laor (1992); see the appendix] for a radiative viscosity

η = 8εph/(27neσT ) (Misner 1968; Weinberg 1971), where εph is the photon en-

ergy density, ne is electron density and σT is Thompson scattering coefficient,

the velocity vφ(r) depends on the ratio δp = εph/(ρc
2) which is taken to be

δp = (27/8)δ0 (c2r/GM•)
−s.

The radial and vertical momentum equations for vr, vz � vφ, are given by

v2
φ =

1

r

∂P

∂r
+

GM•r

(r2 + z2)3/2
(6.34a)

1

r

∂P

∂r
= − GM•r

(r2 + z2)3/2
. (6.34b)

Loeb and Laor (1992) used a radiative viscosity η = (8/27)εphmp/(ρcσt) and ob-

tained the corresponding conservation equation that is given by

η

[(
∂vφ
∂r
− vφ

r

)2

+

(
∂vφ
∂z

)2
]

=∇ ·F , (6.35)

where radiative heat flux F for Thomson scattering is given by

F = − c

neσT
∇P = −mpc

σT

1

ρ
∇P. (6.36)

Using the Euler equation given by
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∂v

∂t
+ v · ∇v −

v2
φ

r
r̂ = −1

ρ
∇P + g, (6.37)

and the divergence of eqn (6.36) is given by

∇ ·F =
mpc

σT

1

r

∂v2
φ

∂r
, (6.38)

for a space dependent velocity field. Thus, assuming v ·∇v = (vr∂r+vφ∂φ+vz∂z)v,

where vr and vz are small and ∂φ = 0, the energy conservation equation is given

by

η

[(
∂vφ
∂r
− vφ

r

)2

+

(
∂vφ
∂z

)2
]

=
mpc

σT

1

r

∂v2
φ

∂r
. (6.39)

Using the density structure given in eqn (6.12) that is obtained using the pressure

P = Kργ, the δp = εph/(ρc
2) for γ = 4/3 is given by

δp(r) =
3

8

1− βg
Z(j)

(
r

rISCO

)−1

, (6.40)

which is in the range 0.0625− 0.375 for j = 0− 1 and decreases with radius. The

disk extent is few times rISCO initially and the variation in δp is small.

Using η = (8/27)(mpc/σT )δp(r), eqn (6.39) is given by

8

27
δp(r)

[(
∂vφ
∂r
− vφ

r

)2

+

(
∂vφ
∂z

)2
]

=
1

r

∂v2
φ

∂r
. (6.41)
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We consider the solution of eqn (6.41) for vφ = v0(r/r0)−f with f > 0, assuming

the variation in δp to be small which leads to

f(r) = −1 +
27

8δp(r)
± 27

8δp(r)

√
1− 16δp(r)

27
. (6.42)

Assuming that the δp(r)� 1 and neglecting O(δ3
p), we obtain

f(r) = −1∓ 1 +
27

8δp(r)
(1± 1)∓ 4δp(r)

27
(6.43)

which gives f(r) = −2− 4/(27δp(r)) + (27/4)δp(r) or f(r) = 4δp(r)/27. The first

solution of f(r) is very high and negative for small δp(r); so we take the second

solution f = 4δp(r)/27. This solution produces f in the range of 0.01 to 0.05 so

that v0 is nearly constant. Following Loeb and Laor (1992), who assumed δp =

(27/8)δ0(c2r/(GM•))
−s, where δ0 is a constant and applying the radial momentum

equation given in eqn (6.34) at the mid-plane plane, we integrate it to obtain the

density structure
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ln

(
ρ

ρ0

)
=



s 6= 1 :

8
9δ0c2

(
c2r0
GM•

)s [
v2
0

s−2f

{(
r
r0

)s−2f

− 1

}
−

1
s−1

GM•
r0

{(
r
r0

)s−1

− 1

}]
+ s ln

(
r
r0

)

s = 1 :

8
9δ0c2

(
c2r0
GM•

)[
v2
0

1−2f

{(
r
r0

)1−2f

− 1

}
−

GM•
r0

ln
(
r
r0

)]
+ ln

(
r
r0

)

(6.44)

Since v0 is independent of radius, we take r0 = rISCO = (GM•/c
2)Z(j) and we

assume that ρ(rq) = ρ0 where rq = qr0, so that v0 is given by

v2
0 =



s 6= 1 :

s−2f
qs−2f−1

[
1
s−1

GM•
r0

(qs−1 − 1)− 9δ0c2

8
s
(
GM•
c2r0

)s]
,

s = 1 :

(
1− 9δ0

8

) (1−2f) ln q
q1−2f−1

GM•
r0
,

(6.45)

The azimuthal velocity, vφ(r), is nearly constant if δp � 1 which is valid in TDE

disks for r/(GM•) < (1/c2)(v0/c)
−2/(1−δ0). The TDE disks are evolving from the

initial radii ratio q = rout/rin, which is slightly higher than the unity. The range of

δ0 = (8/27)δp is 0.018−0.11 and the range of f(r) = (4/27)δp is 0.01−0.05. Thus,

we neglect the variation of vφ ∝ r−f(r) in radius and consider it to be a constant.

We take vφ = ω(r)r = v0(r/r0)−f , where f = δ0/2, δ0 = 0.05 and ω = χr−e, where
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χ = v0r
δ0/2
0 and e = 1 +

δ0

2
. (6.46)

We assume the angular frequency to be ω = χr−e, where r0 is taken to be ISCO

radius, for the super-Eddington thick disk. Here, we consider δ0 as a free parameter

in the range 0.018−0.11. While this parameterization is justified within the context

of a thick disk (with properties averaged for the mid-plane) as proposed by Loeb

and Laor (1992), a full quasi-spherical model will be presented in a subsequent

paper.

6.2.2 Viscous stress

The viscous stress results in the exchange of angular momentum and viscous heat-

ing in the disk. The heat generated due to viscous heating is emitted in the form

of radiation in the sub-Eddington disk, whereas in a case of super-Eddington disk,

some fraction of heat is advected to the black hole and the remaining is radiated.

The heating flux in the disk is given by (see eqn 6.47)

Q+ =
3

8
ωΠrφ (6.47)

which results in the flux radiated from the disk given by

Q−rad = Q+, (6.48)

and the luminosity to be
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L =

∫ rout

rin

Q−rad 2πr dr, (6.49)

where rin and rout are inner and outer radius of the disk. We now derive the form

of viscous stress for a sub and super-Eddington disk with viscosity driven by α,

radiation, and gravitational instabilities. We then compare these viscous stresses

based on their luminosity and accretion time-scales to obtain the most viable and

dominant viscous stress in the typical regime of the physical parameter space.

In this paper, we consider the opacity to be Thompson opacity κ = 0.34 and mean

molecular weight µ = 0.65 which is the mean molecular weight of the ionized solar

atmosphere.

6.2.3 α viscous stress: sub-Eddington disk

The accretion disk in sub-Eddington phase is gas pressure dominated and the

viscous stress as given by (Shakura and Sunyaev 1973)

Πφr = αsPH, (6.50)

where αs is the constant, H is the scale height and P = Pr/(1 − βg). Using eqn

(6.47) and the radiative loss given by Q− = σT 4
e = (4ac/3κ)(T 4

c /Σd), the energy

conservation equation gives

3

8
ωΠφr =

4ac

3κ

T 4
c

Σd

=
4c

κ

Pr
Σd

, (6.51)
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which together with eqn. (6.50) gives Πφr = KΣb
dr
d where b = −1, d = 0 and K

is given by

K =
512

9

(1− βg)2

αs

c2

κ2
. (6.52)

The accretion timescale for a steady flow is given by (Mangalam 2001)

ta '
Mdω

2πΠrφ

(6.53)

where Md is the disk mass. Using eqns (6.53), (6.48) and (6.49), the accretion

time, heating flux and the luminosity are estimated to be

tsubα = 8.2× 106 yr
( αs

0.1

)−1

M−1
6

(
Md

M�

)(
Σd

106 g cm−2

)
·
(
r

Rs

)− 3
2

(1− βg)−2 (6.54)

Q+ = 1.2× 1017
( αs

0.1

)−1
(

Σd

106 g cm−2

)−1(
r

Rs

)− 3
2

M−1
6

(1− βg)2 erg sec−1 cm−2 (6.55)
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Lsubα = 1.3× 1040
( αs

0.1

)−1
(

Σd

106 g cm−2

)−1

M6(1− βg)2

·

((
rout
Rs

) 1
2

−
(
rin
Rs

) 1
2

)
erg sec−1 (6.56)

6.2.4 α viscous stress: super-Eddington disk

The α viscous stress for a gas pressure dominated disk is given by

Πrφ = αsPH. (6.57)

The H is given by eqn (6.19) and P = Kρ4/3
0 with K given is by eqn (6.16)

and density ρ0 = B/r3 where B is given by eqn (6.13). Thus the viscous stress

Πφr = KΣb
dr
d where b = 1, d = −1 and K is given by

K =
αs
8
GM•. (6.58)

Taking δ0 = 0.01, eqns (6.53), (6.48) and (6.49), the accretion time, heating flux

and luminosity are estimated to be

tsupα = 0.018 yr

(
Md

M�

)
M−1

6

(
Σd

106 g cm−2

)−1 ( αs
0.1

)−1

(
r

Rs

)−0.005

Z(j)−
1
2 (6.59)



Chapter 6: Accretion and wind dynamics in TDEs 219

Q+ = 2.1× 1023

(
Σd

106 g cm−2

)( αs
0.1

)
M−1

6

(
r

Rs

)−2.005

Z(j)−
1
2 erg sec−1 cm−2 (6.60)

Lsupα = 2.35× 1048
( αs

0.1

)( Σd

106 g cm−2

)
M6Z(j)−

1
2[(

rin
Rs

)−0.005

−
(
rout
Rs

)−0.005
]

erg sec−1, (6.61)

6.2.5 Radiative viscous stress: super-Eddington disk

The radiative viscous stress is given by (Misner 1968; Weinberg 1971; Mangalam

2003)

Πrφ = ηγrH

∣∣∣∣dωdr
∣∣∣∣ (6.62)

where ηγ = (8/27)(εγ/σTnec). Following Loeb and Laor (1992),

the η = (mpc/σT )(c2/(GM•))
sδ0r

−s, ω = χr−e and H given by eqn (6.19), the

viscous stress is given by

Πrφ = KΣb
dr
d (6.63)

where b = 1, d = 2− e− s and
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K =
96e

a

mp

σT c
δ0

(
c2

GM•

)−s [
kB
µmp

]4

(GM•)
−3χ(1− βg)β−4

g . (6.64)

Here we take a radiation pressure dominated disk (βg � 1) which is justified

later. Using ω = χr−e with s = 1, eqns (6.53), (6.48) and (6.49), the accretion

time, the heating flux and the luminosity are estimated to be

tsupR = 0.143 yr

(
Md

M�

)(
r

Rs

)−2(
Σd

106 g cm−2

)−1

·
(

βg
10−6

)4

(1− βg)−2 , (6.65)

Q+ = 1.16× 1024

(
Σd

106 g cm−2

)
M−2

6 (1− βg)2

(
βg

10−6

)−4

Z(j)−0.99

(
r

Rs

)−0.01

erg sec−1 cm−2, (6.66)

LsupR = 3.24× 1045

(
Σd

106 g cm−2

)
(1− βg)2

(
βg

10−6

)−4

Z(j)−0.99

[(
rout
Rs

)0.99

−
(
rin
Rs

)0.99
]

erg sec−1. (6.67)
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6.2.6 Radiative viscous stress: sub-Eddington disk

Using eqn (6.62), ρ = Σd/(2H), ω =
√
GM•/r3, H2ω2 = ∂P/∂ρ|z=0 where P =

Pr/(1− βg) and using eqn (6.51), we obtain Πφr = KΣb
dr
d where b = 0, d = 0 and

K is given by

K =

√
1028

9

√
σT c

mp

( c
κ

) 3
2

(1− βg). (6.68)

Using eqns (6.53), (6.48) and (6.49), the accretion time, heating flux and the

luminosity are estimated to be

tsubR = 23.6 yr

(
Md

M�

)
M−1

6 (1− βg)−1

(
r

Rs

)− 3
2

, (6.69)

Q+ = 8.2× 1021

(
r

Rs

)− 3
2

M−1
6 (1− βg) erg sec−1 cm−2 (6.70)

LsubR = 9.1× 1044M6(1− βg)

[(
rout
Rs

) 1
2

−
(
rin
Rs

) 1
2

]
erg sec−1 (6.71)

From eqns (6.54), (6.69), (6.59) and (6.65), we can see that

tsupα (βg) < tsupR (βg) < tsubR (βg) < tsubα (βg), (6.72)

and using eqns (6.56), (6.61), (6.67) and (6.71), we find

Lsubα (βg) < LsubR < LsupR (βg) < Lsupα (βg). (6.73)
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The time scales and the luminosity of the radiative super-Eddington, the α super-

Eddington and the radiative sub-Eddington disks depend on βg. The smaller the

value of βg, the higher is the dominance of radiation pressure and the luminos-

ity which implies that the radiation pressure dominated disk is more luminous

compared to gas pressure dominated disk.

The self-gravity in a disk dominates if the density is sufficiently high. Since the

tidally disrupted star has a mass much lower than the black hole, the instabilities

due to the self-gravity of the disk are negligible. So we are left with four cases, a

sub-Eddington disk with α or radiative viscosity and super-Eddington disk with

α or radiative viscosity.

6.3 Self similar disk solution

Using eqns (6.2), (6.5) and Πrφ = KΣb
dr
d(t/t0)δ1 , we obtain

βg(ξ)− αξdξg(ξ)− 1

2− e
1

ξ
dξ(ξ

e−1dξ(ξ
2+dgb(ξ)))− e− 7/4

2− e
ξ−7/4

= S(r, t)
t0
Σ0

(
t

t0

)1−β

, (6.74)

K

χ
Σb−1

0 rd+e−2
0 t0 = 1, δ1 + β(b− 1) + α(d+ e− 2) + 1 = 0, (6.75)

Wr
−7/4
0 t0
Σ0

= 1, and δ − 7

4
α + 1− β = 0. (6.76)
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We consider a power law solution g(ξ) = Aξp so that the eqn (6.74) reduces to

(β − αp)A− Ab

2− e
(p b+ d+ 2)(p b+ d+ e)ξp (b−1)+d+e−2−

e− 7/4

2− e
ξ−7/4−p = S(r, t)

t0
Σ0

(
t

t0

)1−β

ξ−p, (6.77)

and we assume

S(r, t)
t0
Σ0

(
t

t0

)1−β

ξ−p = sc, (6.78)

where sc is a constant and using eqn (6.5), S(r, t) = (sc/A)Σd/t.

The matter added to the disk at outer radius rout results in a jump in the density

at outer radius so that the eqn (6.2) is given by

∂

∂t
(Σd(r

+
out, t)− Σd(r

−
out, t)) =

1

r

∂

∂r

[
∂r(r

2Πrφ)

∂r(r2ω(r))

]
r−out

+ ω(r)r
∂

∂r

[
Σ̇wr

∂r(r2ω(r))

]
r−out

+ S(r+
out, t). (6.79)

In the r−out region, S(r−out, t) = 0 and thus the equation reduces to

∂

∂t
Σd(r

+
out, t) = S(r+

out, t). (6.80)
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The infall mass rate at rout can be written as Ṁ(r+
out, t) = 2πΣd(r

+
out, t)r

+
outvf (r

+
out) =

Ṁfb, where vf (r+
out) is the infall velocity of the debris. Using eqn (6.78), the source

function reduces to

S(r+
out, t) =

sc
2πA

Ṁfb

t r+
out vf (r

+
out)

δ

(
r

rout
− 1

)
; (6.81)

further, if the infall velocity vf (r
+
out) is constant and Ṁfb ∝ t−5/3, the source

function S(r+
out, t) ∝ t−8/3.

We neglect the jump in density at outer radius by assuming that the matter added

is instantaneously (quickly compared to the disk evolution time) distributed on

the disk so that the self-similar solution holds at all radii. For r < rout, the eqn

(6.77) reduces to

(β − αp)A− Ab

2− e
(p b+ d+ 2)(p b+ d+ e)ξp (b−1)+d+e−2−

e− 7/4

2− e
ξ−7/4−p = 0, (6.82)

and for the equation to be ξ independent, p = (2 − e − d)/(b − 1) and −7/4.

We consider a seed disk whose initial mass is Md(t0), and the mass conservation

equation is given by

Ṁd = Ṁfb − Ṁa − Ṁw, (6.83)

where Md is the disk mass, Ṁa is the accretion rate onto the black hole and Ṁw is
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the mass outflow rate leaving the disk. The mass and angular momentum of the

disk are

Md(t) =

∫ rout

rin

2πΣdr dr (6.84a)

=
2π

2 + p
AΣ0r

2
0

(
t

t0

)β+2α

(ξ2+p
out (t)− ξ2+p

in (t)), (6.84b)

Jd(t) =

∫ rout

rin

2πΣdr
√
GM• dr (6.85a)

=
2πA

p+ 5/2

√
GM•Σ0r

5
2
0

(
t

t0

)β+ 5
2
α (
ξ
p+ 5

2
out − ξ

p+ 5
2

in

)
, (6.85b)

The accretion rate to the black hole Ṁa = 2πrΣdvr|rin , and the mass outflow rate

are given by

Ṁa = 2π
Σ0r

2
0

t0

(
t

t0

)β+2α−1



sub− Eddington :

Ab

2−e(p b+ 2 + d)ξp b+d+e
in ,

super− Eddington :

Ab

2−e(p b+ 2 + d)ξp b+d+e
in +

ξ
1/4
in

2−e ,

(6.86)
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Ṁw = 2π
Σ0r

2
0

t0

(
t

t0

)β+2α−1



sub− Eddington :

0,

super− Eddington :

4
(
ξ

1
4
out − ξ

1
4
in

)
,

(6.87)

Differentiating eqn (6.84) and using eqn (6.83), (6.86) and (6.87), we obtain

A(β + 2α)

2 + p

[
ξ2+p
out − ξ

2+p
in +

2 + p

β + 2α
t
(
ξ1+p
out ξ̇out − ξ

1+p
in ξ̇in

)]
= χm

dµ

dε

(
t

t0

)− 5
3
−β−2α+1

− t0
2πΣ0r2

0

(Ṁa + Ṁw)

(
t

t0

)−β−2α+1

. (6.88)

where χm = (1/2π)(M?/Σ0r
2
0)(t0/tm)−2/3. As dµ/dε is initially an increasing

function of time (eqn 5.55) which attains a steady value at late times, we assume

β + 2α = −2

3
(6.89)

so that Ṁd ∝ t−5/3 at late times.

Using eqns (6.47) and (6.49), the effective temperature and the luminosity of the

disk obtained to be

σSBT
4
e =

3

8

χ2Σ0r
2−2e
0 Ab

t0
ξp b+d−e

(
t

t0

)β−2α(e−1)−1

, (6.90)
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Ldb =
3πχ2

4

Σ0r
4−2e
0

t0

Ab

p b+ d− e+ 2

(
t

t0

)β−2α(e−2)−1

·[
ξp b+d−e+2
out − ξp b+d−e+2

in

]
, (6.91)

where σSB is the Stefan-Boltzmann constant and χ =
√
GM• with e = 3/2 for

sub-Eddington disk.

The out flowing wind starts from the photosphere zph and using eqns (6.31), (6.49)

and (6.27), temperature of the photosphere, wind luminosity and Eddington lu-

minosity are

Tph = TE

(
W2

(
t

t0

)2δ

+ 1− c2

)
(6.92)

Lwb =

(
W2

(
t

t0

)2δ

+ 1− c2

)4

LE (6.93)

LE =
π

2

GM•c

κ
(1− βg) Log

(
rout(t)

rin

)
(6.94)

The luminosity in the given spectral band {νl, νh}, is given by

Lν(T ) =

∫ νh(1+z)

νl(1+z)

dν

∫ rout

rin

dr 2πrB(T ) (6.95)
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where B(T ) is the intensity of blackbody emission corresponding to temperature

T and z is the redshift. The spectral luminosity is given by

Lν =


Lν(Te), sub− Eddington

Lν(Te) + Lν(Tph), super− Eddington

(6.96)

In the case of the sub-Eddington disk, the third term on LHS of eqn (6.82) is zero

which results in p = (2− e− d)/(b− 1), which gives p = −1/4 for α viscosity and

p = −1/2 for radiative viscosity. In the case of the super-Eddington disk with α

viscosity, eqn (6.82) reduces to

(β − αp)A = A
(p+ 1)(p− 1 + e)

2− e
ξe−3 +

e− 7/4

2− e
ξ−7/4−p, (6.97)

whose solution for A is possible if e = 3 and p = −7/4 or β − αp = 0 and

p = 5/4− e. In case β − αp = 0, then Σd ∝ rp which is independent of time and

this is not possible, whereas for e = 3, the disk is super-Keplerian, which is not

possible for a super-Eddington disk and thus there is no solution to eqn (6.100).

Thus the TDE self-similar disks in the super-Eddington phase with wind are not

α viscosity dominated. The scale height H for sub-Eddington disk with radiative

viscosity is obtained using eqns (6.8) and (6.68), and given by

H

r
=

3

16

√
1028

9

√
σT c

mp

√
c

κ

√
r

GM•
= 3.06

(
r

Rs

) 1
2

> 1, (6.98a)
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Thus, we can conclude that the disk with radiative viscosity cannot be a sub-

Eddington thin disk.

Hence we investigate the cases of accretion disks of TDEs that are sub-Eddington

with α viscosity called model A and super-Eddington disk with radiative viscosity

called model B.

The outer radius is r0 = rout = rtf(ē, `) and Σ0 = Σd in the eqn (6.91) is taken

to be the average surface density given by

Σd =
Md

π(r2
0 − r2

in)
' Md

πr2
0

, (6.99)

where the disk mass Md = fsM?, fs =
∫ xl
−1

(1 + xl)dµm/dx dx is fraction of debris

bound to the black hole where dµm/dx is given in eqn (5.55) and r0 � rin, so that

the luminosity of accretion disk depends on ē, `, M6, m, j and t0. The observation

time scale of accretion disk varies with spectral bands and is ∼ 1 yr in the optical

bands. The black hole and star mass range are taken to be M6 = 1 − 100 and

m = 1 − 100. We compare the luminosity from various models of viscous stress

by comparing the region covered in {M6, m} and {L, t0} phase space taking the

luminosity range L = 1042− 1048 erg sec−1 and t0 = 0.1− 1 yr based on estimates

from observations.

For super-Eddington disk with radiative viscosity, the eqn (6.82) reduces to

(β − αp)A = A
(p+ 5− e− s)(p+ 3− s)

2− e
ξs−1 +

e− 7/4

2− e
ξ−7/4−p, (6.100)

and the solution for A is possible if s = 1 and p = −7/4.
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In the L, t0, M6 and m parameter ranges we have taken for comparison, we find

that the sub-Eddington disks are low luminosity disks whereas high luminosity

disks are super-Eddington radiative disks as shown in Fig 6.2.

Based on the range of luminosity and accretion timescale seen in the phase dia-

grams in Fig 6.2, we propose the following model of evolution. The luminosity of

a TDE undergoes multiple phases with an initial rise and decline at late times.

In the initial phase of accretion, the luminosity is low and the disk is expected to

follow model A. Then the luminosity from the disk rises and if the peak luminosity

is outside the applicable region of model B as shown in Fig 6.2, the disk entirely

follows model A. If the luminosity lies in the model B regime, then the radiation

pressure results in an extended disk from which the wind is launched. Then the

disk follows model B and transits to model A later. The evolution of the disk

through various phases depends on the physical parameters and the fitting will

determine details of the transition times between phases.

The t0 for model B given in Table 6.3 is solved numerically; this gives two values

of t0 whose difference is the duration of super-Eddington phase, τ0. We find that

the high mass black holes have a weak super-Eddington phase as the mass of the

outflowing wind varies with W . The given observed range of (L and τ0) maps to

the shaded region in the {L, t0} phase space of model B as shown in Fig 6.2 where

the disk is super-Eddington and outside of which it is sub-Eddington. The disk

structures for a sub and super-Eddington disks are shown in Fig 6.3.

The criteria for the existence and duration of the phases are based on the observed

range of the physical parameters. Given the observed TDE light curves, we fit our

TDE models (see §7.1) with the input physical parameters ē, `, M6, m and j and

obtain the best fit physical parameters through the procedure explained in Fig

7.1. With the obtained parameters and the model, we derive the shape of light

curve including transition through the phases.
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Figure 6.2: The shaded regions shows the applicable ranges of model A (or-
ange) and model B (blue) for ē = 0.01, ` = 1, j = 0.5, α = 0, δ0 = 0.05. The
low luminosity disks are sub-Eddington α disks and high luminosity disks are
super-Eddington radiative disks.

(a) Sub-Eddington (b) Super-Eddington

Figure 6.3: The schematic representation of the disk structure for sub-
Eddington and super-Eddington phase is shown. The blue, red and orange
shaded regions show the mass fallback of debris, the disk structure, and the
wind structure respectively. The photospheric height of the wind outflows is
zph. The thick black arrows show the evolution of outer radius.
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Model Dynamics Disk Viscous stress Ṁfb Wind structure Outer radius

A Time dependent Sub-Eddington α viscosity ∝ t−5/3 None Evolving

B Time dependent Super-Eddington Radiative viscosity ∝ t−5/3 Σ̇w = W (t/t0)δr−7/4 Evolving

C Steady structure Sub-Eddington α viscosity None None Static

D Steady structure Super-Eddington α viscosity None Ṁw = foutṀa Static

Table 6.2: We consider various models of accretion disks. The first column
identifies the model and the second column corresponds to the disk structure.
The steady disk in C and D correspond to models of MM15 and is explained
in Table 4.3. In all the models, the inner radius is taken to be fixed at ISCO
radius.

6.4 Model A: sub-Eddington disk α viscous stress

Using eqns (6.8) and (6.50), H is given by

H

r
=

32

3

c

αsκ
Σ−1
d ω−1r−1 (6.101a)

= 1.1× 10−4
( αs

0.1

)−1
(

Σ0

106 g cm−2

)−1(
r0

Rs

) 1
2
(
t

t0

)−1

ξ
3
4 . (6.101b)

The free parameters are ē, `, M6, m, α, e and βg. We have solved the set of

equations in Table 6.3 numerically to obtain t0 and Σ0 shown in Fig 6.4. The

calculated values of Σ0 and r0 for each simulation set is given in Table 6.5. Using

eqn (5.55) and (6.86), the ratio of accretion rate by the black hole and the mass

fallback rate is given by
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Model A: sub-Eddington disk with α viscosity

b = −1, d = 0, β = 2/3, α = −2/3, δ1 = 0, p = −1/4, A =
√

63/4 and ω =
√
GM•/r3.

Σ0 = 2+p
2π

1
A
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r2
0

1

ξ2+p
out (t0)−ξ2+p

in (t0)
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Model B: super-Eddington disk with radiative viscosity

b = 1, d = 2− e− s, β = −2/3− α, δ1 = −1, s = 1, p = −7/4, A =
(
e−7/4
2−e

) [
β + 7

4α−
1
16

9−4e
2−e

]−1
and ω = χr−e.
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Table 6.3: Formulary for the various quantities calculated for models A and B.
The Eddington luminosity LE is given by eqn (6.94). The viscous stress is given
by Πrφ = −KΣb

dr
d(t/t0)−δ1 where the self similar forms are Σd = Σ0(t/t0)βg(ξ)

and ξ = (r/r0)(t/t0)α with g(ξ) = Aξp. The parameters t0 and Σ0 are obtained
by solving eqns (6.74, 6.75).
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Set ē ` M6 m j q

I1 0.01 1 1 1 0 2

I2 0.01 1 1 10 0 2

I3 0.01 1 10 1 0 2

I4 0.01 1 1 1 0 2

I5 0.01 1 1 1 0.5 2

I6 0.01 1 1 10 0.5 2

I7 0.01 1 10 1 0.5 2

I8 0.01 1 1 1 0.5 2

Table 6.4: The parameter sets used for simulations in our sub and super-
Eddington models A and B.

Ṁa

Ṁfb

= 1.9
q−

7
4

1− q− 7
4

(
Md(t0)

M�

)(
M?

M�

)−1(
t0
tm

) 2
3

·
[

dµm
dε

(t)

]−1(
t

t0

) 7
6

(6.102)

where dµm/dε is given by eqn (5.55). Since we assume that the matter added

by the fallback debris is instantaneously distributed in the disk such that the self-

similar structure remains same, the outer radius of the disk expands initially as the

mass fallback is higher than the accretion and decreases at late time as accretion

dominates over fallback as shown in Fig 6.5 obtained using eqn (6.88). Since t0 is

smaller, the accretion dynamics is faster for high spin BHs which implies that the
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Set t0 (days) Σ0(103g cm−2) r0(Rs)

I1 2.47 7.76 6

I2 4.22 10.1 6

I3 7.70 4.3 6

I4 2.47 7.76 6

I5 2.42 8.4 4.23

I6 4.17 10.9 4.23

I7 7.26 4.6 4.23

I8 2.42 8.4 4.23

Table 6.5: The values of t0, Σ0 and r0 in units of Rs = 2.9 × 1011M6 in cm
with M6 = 1 obtained using equations given in Table 6.3 for the sub-Eddington
α disk and βg = 0.01.

fallback rate is high and hence more mass is added to the disk which causes the

outer radius to move outward more.

From eqn (6.102) and Fig 6.6, we see that the rate of mass loss by the disk due

to accretion is higher than the mass gain by the addition of fallback debris at

late times which results in the decline in the disk mass as shown in Fig 6.7. The

overall angular momentum of the disk including the angular momentum loss due

to accretion and the addition by fallback debris is shown in Fig 6.7.

The bolometric luminosity is given by eqn (6.91) and the spectral luminosity is

given by eqn (6.96).
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Figure 6.4: (a) The self similar parameters t0(tm) and (b) Σ0 g cm−2 as a
function of black hole mass M6 for parameter set I1 (blue), I2 (red), I5 (orange)
and I6 (green).

10 1000 10
5

10
7

5

10

50

100

t(t0)

{r
in

&
r o

u
t}
(R

s
)

(a)

Figure 6.5: (a) The values of rin (red) and rout (blue) in terms of r0 for the
parameter set I1.



Chapter 6: Accretion and wind dynamics in TDEs 237

1 5 10 50 100 500 1000

10
-4

0.001

0.010

0.100

1

10

t(t0)

M
ď
a

M
ď

fb

Figure 6.6: The ratio of accretion rate to mass fallback rate from the disrupted
debris is shown for the parameter set I1 (blue), I3 (red), I5 (green dashed) and
I7 (red dashed). The increase in the ratio results in a decrease in the disk mass.

The Fig 6.8, shows the bolometric luminosity as a function of t. From eqn (5.55),

we can see that the mass fallback rate causes an enhancement in surface density,

viscous heating, effective disk temperature and luminosity. The spectral luminosity

simulated in various spectral bands for the set I1 are also shown.

6.5 Model B: super-Eddington radiative viscous

stress dominated thick disk

We have numerically solved the eqns given in Table 6.3 to obtain the maximum

value of W denoted by Wmax as shown in Fig 6.9 and normalized the W with

respect to its maximum given by Wn = W/Wmax. The Wn is taken to be a free

parameter and is used to obtain t0 and then Σ0 is given by eqn (6.84) at t = t0. For

a given value ofWn, there are two values of t0 and we have considered the smaller

value because the super-Eddington phase dominates early. The free parameters

are ē, `, M6, m, α andWn. The value for δ0 is taken to be 0.05 which is typically

the mid-value in the range of δ0.
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Figure 6.7: (a) The evolution of the mass of disk and (b) the angular momen-
tum is shown for the parameter set I1 (blue), I3 (red), I5 (orange) and I7 (green)
with the Σ0 and r0 values given in Table 6.5.

The ratio of mass outflow to the accretion by the black hole using eqns (6.86) and

(6.87) is given by

fout =
Ṁw

Ṁa

=
4(ξ

1/4
out − ξ

1/4
in )

A
2−e(p+ 4− e)ξp+4−e

in +
ξ
1/4
in

2−e

, (6.103)
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Figure 6.8: (a) The bolometric luminosity (eqn 6.91) as a function of t for the
set I1 (blue), I2 (orange), I3 (red), I5 (blue dashed), I6 (orange dashed) and I7
(red dashed). It is found that I1 is overlapping with I5 and I2 is overlapping
with I6. The spectral luminosity simulated in various bands for the run I1 and
redshift z = 0.1 for soft X-ray in (b), UV where Swift UVM2 (1800-3000 A◦)
(blue) and UVW2 (1500-2500 A◦) (red) in (c) and optical in (d) where the curves
for V band (blue), B Band (red) and U Band (green) are indicated.
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Run Wn t0 (days) Σ0(103 g cm−2) r0(Rs)

I1 0.01 2.62 101.66 6

I2 0.01 4.68 797.94 6

I3 0.01 6.55 1.57 6

I4 0.1 3.21 1279.2 6

I5 0.01 2.62 204.25 4.23

I6 0.01 4.69 1603.2 4.23

I7 0.01 6.55 3.16 4.23

I8 0.1 3.21 2570.1 4.23

Table 6.6: The values of t0, Σ0 and r0 for α = 0 and δ0 = 0.05, obtained using
equations given in Table 6.3 in units of Rs = 2.9× 1011M6 cm with M6 = 1 for
the super-Eddington radiative disk are given above.

which shows that the mass outflow rate dominates on the accretion by black hole

which results in the decrease in disk mass.

The t0 and Σ0 values are shown in Fig 6.10 for model B. For higher m, the fallback

rate of the debris is higher which results in the growth of the mass of the disk,

enhanced surface density and viscous stress shortening t0. The pressure in the disk

is dominated by radiation because of the small value of βg as shown in Fig 6.11.

The Fig 6.12 shows the evolution of outer and inner radius obtained using eqn

(6.88) and the radius decreases with j and α. The Fig 6.13 shows the evolution

of Ṁa, Ṁw and Ṁfb. In the initial stages, the mass fallback rate dominates and

as the time progresses, the mass loss due to wind dominates over accretion and

fallback which results in the reduction in the mass of the disk as shown in Fig 6.14.
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Figure 6.9: The W as a function of parameter t0 in terms of tm for the set I1
(blue), I2 (red) and I3 (orange) given in Table 6.4.

The outflowing wind also carries the angular momentum from the disk and the

dominance of mass loss rate due to the wind later stages results in the reduction

of disk angular momentum as shown in Fig 6.15.

In previous studies by Strubbe and Quataert (2009) and MM15, a spherical Ed-

dington luminosity was assumed with Thompson opacity given by

LsE = 4πGM•c/κ = 1.48× 1044 M6 erg sec−1, whereas we have considered a cylin-

drical geometry given by eqn (6.94) and LE/L
s
E shown in Fig 6.16. The wind

luminosity given by eqn (6.93) is shown in Fig 6.17 for various values of c2 and it

shows a cutoff for higher value of c2, as expected.

The Fig 6.18 shows the bolometric luminosity obtained using eqn (6.91) and spec-

tral luminosity in various spectral bands using eqn (6.96).
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Figure 6.10: (a) The parameters t0 in units of tm and (b) Σ0 as a function of
M6 with other parameters given in set I1 (blue), I2 (red), I5 (orange dashed) and
I6 (green dashed). It is found that I1 is overlapping with I5 and I2 is overlapping
with I6.
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Figure 6.11: The value of βg given in Table 6.3 is shown as a function of
M6 for the parameter sets I1 (blue), I2 (red), I5 (orange dashed) and I6 (green
dashed) given in Table 6.4. It is found that I1 is overlapping with I5 and I2 is
overlapping with I6.

6.6 Model T: Transition from super-Eddington ra-

diative disk with wind to without wind

The luminosity in model B decreases with time and goes below the Eddington

limit after a certain time when the wind shuts off. Since the wind shut off cannot

be instantaneous, we consider that the disk transits from super-Eddington disk

with wind to without wind when the wind luminosity Lwb = uLdb , where u is the

unknown parameter fixed through boundary conditions.

In case of the super-Eddington radiative disk without wind, the self similar solution

is obtained by solving eqn (6.1) with Σ̇w = 0, so that the third term on LHS of

eqn (6.82) is zero and p(b− 1) + d+ e− 2 = 0 which gives

(β − αp)− (p b+ d+ 2)(p b+ d+ e)

2− e
= 0, (6.104)

and p can be obtained for a given β and α. From mass conservation given by eqn
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Figure 6.12: (a) The evolution of outer radius for set I1 with e = 1 and various
values of α. (b) The evolution of outer radius with time for the set I1 (blue), I4
(red), I5 (orange dashed) and I8 (green dashed).

(6.88), we have β + 2α = −2/3 and we take α as a free parameter to obtain β

and p. The evolution of outer radius is given by eqn (6.88) with Ṁa given by eqn

(6.86) and Ṁw given by eqn (6.87).

At the time of transition, the mass, bolometric luminosity and the derivative of

the luminosity remain same. We denote the model B parameters as it is and the

model T parameters with 1 as a subscript. The transition time is denoted by tr for
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Figure 6.13: The accretion rate Ṁa (blue), mass fallback rate Ṁfb (orange)
and wind outflow rate Ṁw (red) for super-Eddington disk with time for the
run I1. At the late stage, the wind loss rate dominates over fallback rate and
accretion rate which implies that the disk mass will decrease at late stages.

model B and tr,1 for model T. The bolometric luminosity is below the Eddington

luminosity for t > tr.

We consider the edge radius rout and rin to be same during the transition and

using eqn (6.84) for disk mass matching at the transition, we obtain

A1
Σ0,1

rp1

0,1

(
tr,1
t0,1

)β1−α1p1

=
2 + p1

2 + p
A

Σ0

rp0

(
tr
t0

)β−αp [
r2+p
out − r

2+p
in

r2+p1
out − r

2+p1

in

]
. (6.105)

The luminosity in model T is given by

Lb,1 = A1
Σ0,1

rp1

0,1

(
tr,1
t0,1

)β1−α1p1 ∆

tr,1
, (6.106)

where ∆ is given by
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Figure 6.14: The mass evolution of super-Eddington disk with time for the
set I1 (blue), I4 (red), I5 (orange dashed) and I8 (green dashed) in (a) and for
various values of α= -2 (blue), -1 (red), 0 (orange) and 1 (purple) with δ0 = 0.01
for set I1 in (b) and the derived values of Σ0 and r0 are given in Table 6.6. It
is found in (a) that I1 is overlapping with I5 and I4 is overlapping with I8. The
mass decreases at late stages because the mass loss rate due to outflowing wind
dominates over the mass fallback rate.
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Figure 6.15: The angular momentum evolution of super-Eddington disk for
the set I1 (blue), I4 (red), I5 (orange dashed) and I8 (green dashed) in (a) and for
various values of α= -2 (blue), -1 (red), 0 (orange) and 1 (purple) with δ0 = 0.01
for set I1 in (b) and the derived values of Σ0 and r0 are given in Table 6.6. It is
found in (a) that I1 is overlapping with I5 and I4 is overlapping with I8.
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Figure 6.16: The ratio of Eddington luminosity to the Eddington luminosity
for spherical geometry LSE = 1.48 × 1044 M6 erg sec−1 for the set I1 (blue), I4
(red), I5 (orange dashed) and I7 (green dashed) in (a) and I1 (blue), I2 (red)
and I3 (orange) in (b). It is found in (a) that I1 is overlapping with I5 and I4 is
overlapping with I7.
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Figure 6.17: The wind luminosity as a function of time for the simulation I1
with various values of c2.
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Figure 6.18: (a) The bolometric disk luminosity, wind luminosity and total
luminosity of super-Eddington disk are shown for the run I1, c2 = 1 and χ = 109.
The spectral luminosity in various bands for redshift z = 0.1 for soft X-ray in
(b), UV where Swift UVM2 (1800-3000 A◦) (blue) and UVW2 (1500-2500 A◦)
(red) in (c) and optical in (d) where the curves for V band (blue), B Band (red)
and U Band (green) are indicated.
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∆ =
3πχ2

1

4

r
p1−2(e1−2)
out − rp1−2(e1−2)

in

p1 − 2(e1 − 2)
−

2πGM•
2− e1

p1 + 4− e1

p1 + 1

(
rp1+1
out − r

p1+1
in

)
. (6.107)

with e1 = 1 + δ0,1/2. By matching the luminosity of the disk at the time of

transition using eqn (6.91), we obtain

tr,1 = A1
Σ0,1

rp1

0,1

(
tr,1
t0,1

)β1−α1p1 ∆

Lb
, (6.108)

where Lb is given by eqn (6.91) for model B. In model B, the time is given by

t

t0
=
t0 + td
t0

= 1 +
td
t0
, (6.109)

where td is the time parameter assuming that the dynamics of accretion disk starts

at t0, whereas for super-Eddington disk without wind, the time is given by

t1
t0,1

=
t0,1 + td,1
t0,1

= 1 +
td,1
t0,1

. (6.110)

The difference in the timescale of both disks is given by ∆t = t0 + td − t0,1 − td,1
which reduces to t0,1 + td,1 = t0 + td −∆t where ∆t = tr − tr,1. Thus the time in

model T is given by
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t1
t0,1

=

(
1 +

td −∆t

t0

)
t0
t0,1

. (6.111)

We find the net luminosity of the disk to be given by

Lb =

 LBb (xd) xd ≤ xr − 1

LTb

((
1 + xdt0−∆t

t0

)
t0
t0,1

)
xd > xr − 1

(6.112)

where xd = td/t0, LBb and LTb are given by eqn (6.91) for model B and model T

respectively.

The Fig 6.19 shows the evolution of the disk mass and outer radius including both

model B and model T. The transition time is decided by the parameter u = Lw/Ld

and increases with u. It can be seen that the transition is smoother for a smaller

value of u because the luminosity is dominated by the disk. The derivative of the

bolometric luminosity with respect to td is matched at the transition to obtain the

parameter u which is then used to obtain the net luminosity profile.

The Fig 6.20 shows the bolometric luminosity and spectral luminosity in various

bands. In the next sections, we discuss the fits of our accretion model to the

observations.

6.7 Discussion

We have constructed a self-similar model of the time-dependent and nonrelativistic

accretion disk with fallback from disrupted debris and viscosity prescription Πrφ =

KΣb
dr
d and derived b and d for an assumed pressure and density structure of
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Figure 6.19: The outer radius (a) and the mass (b) are shown as a function
of time for set I1, c2 = 1, α = α1 = 0 and δ0 = δ0,1 = 0.05 where r0 and t0
are parameters for model B. The transition time decreases with u = Lw/Ld and
transition is smoother for lower value of u.

the disk. We have considered four models which include the α viscosity sub-

Eddington, the radiative viscosity sub-Eddington, the α viscosity super-Eddington

and the radiative viscosity super-Eddington. The sub-Eddington radiative disk

has a strong radiative pressure which results in an extended disk and the thin disk

approximation is no longer valid, but our disk structure for super-Eddington disk

holds instead. We further found that the super-Eddington α disk does not have

consistent solutions and thus we are left with two types of accretion disks which
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Figure 6.20: (a) The bolometric disk luminosity for set I1 (blue), I2 (red) and
I3 (orange) for α = α1 = 0 and δ0 = δ0,1 = 0.05. For I1, the spectral luminosity
simulated in soft X-ray in (b), UV where Swift UVM2 (1800-3000 A◦) (blue)
and UVW2 (1500-2500 A◦) (red) in (c) and optical in (d) where the curves for
V band (blue), B Band (red) and U Band (green) are indicated.

are α viscosity sub-Eddington (model A) and radiative viscosity super-Eddington

with wind (model B). When the luminosity in model B goes below the Eddington

luminosity, the disk should transit from model B to model A and the viscosity

transits from radiative to α which has a lower Q+. Thus we conclude that the

model B transits to model T and then to model A at late times. The evolutionary

track of a super-Eddington disk is given in Fig 6.21.

Shen and Matzner (2014) considered the surface density of out flowing wind

Σ̇w ∝ Σd ν/r
2 ∝ Σd r

−3/2, which is derived on the basis that for non-radiative



Chapter 6: Accretion and wind dynamics in TDEs 253

Super-Eddington

Sub-Eddington

Model A

Without wind

Model T

With wind

Model B

Without

Wind

Model T

Sub-Eddington

Model A

Figure 6.21: The evolutionary track of super-Eddington TDEs. The sub-
Eddington TDEs will have a single phase which can be fit by model A. The
dynamics in the individual phases and the transition between them decide the
light curve profiles.

advective disks the steady accretion rate is Ṁa ∝ rs, where s is constant. We have

modeled the super-Eddington disk (model B) with the radiative structure and fol-

lowing vertical momentum equation obtained the surface density of the wind Σ̇w ∝

r−7/4(t/t0)δ where δ = −5/3. Strubbe and Quataert (2009) have developed the

wind structure using spherical geometry and fraction of out flowing mass constant.

Dotan and Shaviv (2011) using their porous model with steady accretion disk ob-

tained the fraction of outflow fout = Ṁw/Ṁa, numerically which is approximated

by a formula in MM15 of the form fout = (2/π) arctan
[
(1/4.5)(Ṁa/ṀE − 1)

]
where ṀE is the Eddington mass accretion rate given by LSE/(ηc2) and η is ra-

diative efficiency. In model B, the fout is the function of edge radius ξout and ξin

as shown in eqn (6.103) and grows as ξout/ξin = rout/rin evolves. Thus the mass

loss rate by outflows is higher than that of accretion and is even higher than the

fallback rate as shown in Fig 6.13 which results in reduction in disk mass at late

times as shown in Fig 6.14.

For a system with radiation Pr = (1/3)aT 4 and gas pressure Pg = (R/V )T , where

R is the gas constant, V is the volume and T is the temperature, the first law of

thermodynamics gives (Chandrasekhar 1939)

dQ =
V

T

(
12Pr +

1

Γ− 1

)
dT + (4Pr + Pg) dV, (6.113)
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where Γ = cp/cv, cv = dQ/dT |constant V and cp = dQ/dT |constant P with P = Pr+Pg

as total pressure. Following our assumption Pg = βgP with constant βg and using

eqn (6.113), we obtained P ∝ ργ where γ is given by (Chandrasekhar 1939)

γ =
βg(

C
R
− Γ

Γ−1
)− 16(1− βg)

βg(
C
R
− 1

Γ−1
)− 12(1− βg)

, (6.114)

where C = dQ/dT is constant. For βg � 1 (which is true in our radiation

dominated model B; see Fig 6.11), γ ≈ 4/3 (limβg→0 γ = 4/3) which validates our

assumption.

Strubbe and Quataert (2009) have taken the edge radius of the disk to be steady

with an inner radius as rISCO and outer radius to be circularization radius ∼ 2 rp.

The self-similar model by Mangalam (2001) and Cannizzo et al. (1990) for sub-

Eddington disks have shown that the outer radius increases with time as rout ∝ t3/8.

We have used the mass conservation to derive the evolution of outer radius rout

which increases with time for both super and sub-Eddington disks. The evolution

of outer radius is faster for model B due to a smaller timescale of accretion t0.

The mass and angular momentum of the disk in Model A enhances at late stages

whereas it diminishes for model B because of the wind outflow rate which dom-

inates at late times. The previous studies have taken the spherical Eddington

luminosity LSE = 1.48 × 1044 M6 erg sec−1 and the disk is considered to be sub-

Eddington if the luminosity is less than the LSE. The wind is launched if pho-

tosphere temperature is higher than the Eddington temperature which is derived

using vertical momentum equation given by eqn (6.26) and the Eddington luminos-

ity can exceed the spherical Eddington value at late times. Therefore Eddington

temperature is useful in defining the wind structure locally and we have assumed

the ratio Tph/TE to be the function of time alone so that the entire disk is super-

Eddington with wind as seen in eqn (6.31).
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We have considered that the fallback debris forms a seed disk which evolves due

to mass loss due to accretion by the black hole and the out flowing wind and mass

gain through fallback debris assuming that the self-similar structure of accretion

disk remains same. If the matter enters at the outer radius, this induces a high

density at the outer radius which results in a jump in the self-similar structure at

the outer radius. We have assumed that the added matter is quickly distributed

in the disk since the disk evolutionary time scale is longer than the accretion time

scale.

The bolometric luminosity of the model A is given by Lb ∝ t−1(ξ
3/4
out − ξ

3/4
in ) (see

eqn 6.91) and the net bolometric luminosity at late time is found to be Lb ∝ t−0.7.

Cannizzo et al. (1990) obtained the bolometric luminosity of the sub-Eddington

accretion disk without fallback and constant edges radius to be Lb ∝ t−1.9 which

is similar to our result if we consider the ξout and ξin to be constant. Strubbe and

Quataert (2009) and Lodato and Rossi (2011) have assumed the accretion rate

to be Ṁ ∝ t−5/3 and for sub-Eddington disk without fallback and constant outer

edge radius, they found Lb ∝ Ṁ ∝ t−5/3 and for super-Eddington disk with slim

disk structure, they obtained the bolometric luminosity from out flowing wind as

Lb ∝ t−5/9 and from the disk as Lb ∝ t−5/3 . Montesinos Armijo and de Freitas

Pacheco (2011) performed the numerical simulation of an accretion disk without

wind with edge radius constant and showed that the bolometric luminosity evolves

as Lb ∝ t−5/3 at late stages.

The bolometric disk luminosity for model B is Ldb ∝ t−5/3+(3−2e)α(ξ
9/4−2e
out − ξ9/4−2e

in )

and the outflow luminosity Lwb ∝ (W2(t/t0)(−10/3−α/2)+1−c2)4ln(rout/rin) where α,

e and c2 are considered to be a free parameters. From Fig 6.18, we can see that the

bolometric luminosity decreases with time and we found that if the disk transits

from model B to model A, there is a huge drop in the luminosity of the disk. This

is because a radiation pressure dominated disk with wind cannot instantaneously

change to a gas pressure dominated disk with no outflow.
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The super-Eddington model B is two-dimensional as the density and the tempera-

ture of the disk are functions of r and z. We have also used the vertical momentum

equation to obtain the velocity of the outflow that occurs at the photosphere zph,

where the luminosity is calculated. Our simplistic semi-analytic model of the

super-Eddington disk which includes the fallback Ṁfb, accretion Ṁa, and out-

flow Ṁw, is able to produce reasonable fits to the observations as compared to

earlier steady accretion models. A more general multi-dimensional model with

a detailed radiative transfer which entails intensive high-performance computing

will be taken up in the future. However, we expect a multi-dimensional model of

the disk to have a structure similar to our models.

6.8 Summary

We have constructed the self-similar models of the time-dependent and non-relativistic

accretion disk in both sub and super-Eddington disk with fallback from disrupted

debris. We have obtained the following results.

• The self similar parameters {β, α, p, Σ0, t0, r0} obtained for models A and

B are given in Table 6.3.

• The parameter t0 is smaller in model B (Fig 6.4) compared to model A

(Fig 6.10). This implies that the accretion process starts earlier in a super-

Eddington disk.

• Using the mass conservation equation, we have found that the outer radius

increases for a super-Eddington model (model B) as both the accretion rate

and the wind outflow decreases with time whereas the outer radius increases

initially and then decreases for the sub-Eddington disk (model A) as the

accretion rate increases and dominates over fallback at late times.
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• The disk mass in models A and B increases initially and decreases as accre-

tion rate dominates over the mass fallback rate at late times in model A,

whereas the mass outflow rate dominates over the fallback rate in model B.

• The angular momentum as shown in Fig 6.7 for model A and in Fig 6.15 for

model B increases initially and decreases at late stages due to the dominance

of outflow rate.

• The bolometric luminosity of the model A is given by Lb ∝ t−1(ξ
3/4
out − ξ

3/4
in )

(see eqn 6.91) and the net bolometric luminosity at late time is found

to be Lb ∝ t−0.7. The bolometric disk luminosity for model B is Ldb ∝

t−5/3+(3−2e)α(ξ
9/4−2e
out − ξ9/4−2e

in ) and the outflow luminosity

Lwb ∝ (W2(t/t0)(−10/3−α/2) + 1 − c2)4 ln(rout/rin) where α, e and c2 are con-

sidered to be a free parameters which are obtained by fit to the observations.

• We found that there is a huge drop in the luminosity if the disk transits

from model B to model A and this is because the viscosity transits from

radiative to α viscosity; we model transition from model B to model T by

taking Lwb = uLdb and then to model A at later time.

• We have fit our time-dependent accretion model to the X-ray observations

of XMMSL1 J061927.1-655311 and SDSS J120136.02+300305.5 as shown in

Fig 7.2, in optical and UV observations of PS1-10jh as shown in Fig 7.3 and

X-ray observations of Swift J1644+57 in Fig 7.4. We have also compared

our time-dependent accretion models A and B with steady accretion models

C and D of MM15 and found that the models A and B give a good fit to

the observations. The best fit physical parameters to the observations are

shown in Table 7.1 and 7.2.
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6.9 Conclusions

We have been able to construct TDE light curves in both super-Eddington and

sub-Eddington regimes by demonstrating that our models A and B are viable.

1. There is likely to be an α viscous sub-Eddington disk which would be op-

erative during the rising phase. The typical time scale of this phase will be

given by either the typical rise time in the Ṁ profile or the time taken to

reach the Eddington luminosity.

2. If there is a super-Eddington phase to follow as determined by eqn (6.10),

then the typical time scale would be given by eqn (6.65). The super-

Eddington disk will be effected by radiative viscosity with a wind launched

from the photosphere. During the onset and the decline of this super-

Eddington phase, the wind is rendered weak in our models and we have

illustrated in §6.6 a method of calculating this transition through model T

so that the light curves smoothly connect to the sub-Eddington regimes.

3. The TDE physics we have employed includes all the essentials of accretion,

fall back, and the wind; we have presented hydrodynamic criteria for the

operation of the wind with v2
z ∝ (T − TE) given by eqn (6.26). We have

demonstrated in §6.2 that the timescales of evolution and magnitude of the

bolometric luminosity are in good agreement with typical observed values.

4. While our time-dependent models are reasonably successful in producing fits

to the four diverse TDE sources chosen here, we plan on producing fits to a

larger sample of light curves available in the literature with a higher resolu-

tion search in parameter space. In the fits produced thus far, we have been

able to extract the mass of the star and its orbital elements, the black hole
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mass, and the initial accretion disk radius. The parameter search was lim-

ited by numerical resources; in the future, we plan on doing more extensive

simulations.

5. The basic paradigm is sufficiently elaborate in terms of essential physics; it

also transparently and adequately demonstrates the existence of two different

phases with a transition model that produces reasonably good fits. In the

future, we plan to add an atmosphere to predict the details of the spectrum.

6. One can with a large statistics of detection that will soon become available,

infer the basic parameters using our models and study the demographics of

the black hole mass and stellar properties such as mass and evolutionary

state as a function of redshift (Kochanek 2016,Stone and Metzger 2016).

7. It is also desirable and possible in the future to add black hole spin and mass

evolution to predict the jet phase.



Chapter 7

Demographics of black holes derived

from TDE model fits to observations

Image: LIGO/A. Simonnet.

7.1 Fit to observations

In this chapter, we have fit the time-dependent accretion models A and B devel-

oped in chapter 6 to the observed TDEs and derive the physical parameters such

as dimensionless orbital energy ē and angular momentum `, star mass m, black

hole mass M6, q and δt, where δt is the shift in time t to the light curves con-

sidering the starting time of accretion to be t = t0. We first fit model A to the

observations to obtain the physical parameters and then compare the bolometric

luminosity obtained using the derived physical parameters with the Eddington

luminosity. If the bolometric luminosity is less than the Eddington luminosity,

the disk is sub-Eddington and we obtain the required parameters. If not, we fit



Chapter 7: Demographics of black holes derived from TDE model fits to
observations 261

Physical parameters
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Figure 7.1: The flow chart of the procedure we have adopted in fitting the
model to the observations.

model B to obtain the physical parameters. The Fig 7.1 shows the flowchart of

the procedure adopted in fitting the model to the observational data.

In MM15, we have developed a steady accretion model with edge radii constant

and this model is based on a slim disk model given in Strubbe and Quataert

(2009) with accretion rate following the eqn (5.55) as shown in Table 4.3. We

have compared the fits given by models C and D with that of our time-dependent

accretion models given by models A and B as shown in Table 6.2.

The Fig 7.2 shows models B and C fit to the X-ray observations of XMMSL1

J061927.1-655311 and SDSS J120136.02+300305.5 whereas Fig 7.3 and Fig 7.4

show the model B and D fit to the PS1-10jh observations in optical and UV bands

and Swift J1644+57 observations in X-ray band. Our time-dependent model gives

a better fit to the observations as compared to the steady accretion models. The

physical parameters obtained through the best fits are α, δ0, ē, `, M6, m, q, Wn

and δt. They are shown in Table 7.1 for model B and C fits to the X-ray ob-

servations of XMMSL1 J061927.1-655311 and SDSS J120136.02+300305.5 and in
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Model Observation Band α ē ` M6 m q j wn c2 δt (days) χs

B XMMSL1 J061927.1-655311 X-ray 0 0.001 1 8 8.3 5 0.5 0.44 0.1 200 1.6

C XMMSL1 J061927.1-655311 X-ray – 0.00001 1 2.5 1 – 0.4 – – 20 2.8

B SDSS J120136.02+300305.5 X-ray 0 0.001 1 7 8.3 5 0.6 0.425 0.1 180 1.94

C SDSS J120136.02+300305.5 X-ray – 0.00021 1 6.8 2.15 – 0.5 – – 5 2.93

Table 7.1: The physical parameters obtained from reduced chi-square χ2
s fit

of models B and C to the observations with a time shift of δt, mass of star m,
star’s initial dimensionless energy ē, angular momentum `, and black hole mass
M6 and spin j along with the χs values are shown.

Table, 7.2 for model B and D fit to the PS1-10jh observations in optical and UV

and Swift J1644+57 observations in X-rays.

Fig 7.11 show the distribution of black hole mass and star mass in redshift obtained

from the time-dependent model fit to the observations. The TDEs are dominated

by the disruption of a low mass star by low mass supermassive black holes.

For disruption of a solar mass star, the energy released Erad ∝ M−0.4
• obtained

using thin disk model and is shown in Fig 7.12. The capture of TDEs in the initial

phase is crucial to understand the initial dynamics of TDEs and the bolometric

peak luminosity is a function of black hole mass and star mass. From §5.3, the

mass fallback rate is approximated by

Ṁfb =
2

3

M?

tm
(1 + x`)(−0.0175 x2 + 0.0175 Exp[−4.216(x2 − 1)])τ−

5
3 , (7.1)
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Figure 7.2: The model B (red) without transition and model C (purple) fits to
the X-ray observations of XMMSL1 J061927.1-655311 (top) Saxton et al. (2014)
and SDSS J120136.02+300305.5 (bottom) Saxton et al. (2012). The derived
parameters are given in Table 7.1.
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Figure 7.3: The model B (brown) without transition and model D (purple) fit
to the PS1-10jh observations (Gezari et al. 2012) and the deduced parameters
are given in Table 7.2.
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Figure 7.4: The model B without transition fit to the X-ray observation of
Swift J1644+57 (Burrows et al. 2011) and model D is not able to fit the obser-
vation.
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where τ = t/tm, x = x`−τ−2/3(1+x`) and tm is time period of inner bound debris

given by

tm = 0.041 days m0.7ē−
3
2

[
1 +

1

x`

]− 3
2

, (7.2)
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Figure 7.6: The time-dependent model fit to the observations ASAS-SN 15oi
(top) and iPTF16axa (bottom).
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Figure 7.7: The time-dependent model fit to the observations OGLE16aaa
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Figure 7.8: The time-dependent model fit to the observations PS1-10jh (top)
and PS-11af (bottom).
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Figure 7.9: The time-dependent model fit to the observations PTF09ge (top)
and PTF09djl (bottom).
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Model Observation Band α ē ` M6 m q j wn c2 δt (days) χ

B PS1-10jh g band 0 0.01 1 6.8 1.0 1.119 0.4 0.101 1 225 4.1

D g band – 0.00001 1 12 3 – 0.4 – – 16 23.3

B PS1-10jh r band 0 0.01 1 6.8 1.25 1.119 0.4 0.1 1 28 3.66

D r band – 0.001 1 13 3.16 – 0.6 – – 15 11.97

B PS1-10jh i band 0 0.01 1 6.8 1.1 1.119 0.4 0.091 1 28 3.78

D i band – 0.001 1 11 3.5 – 0.6 – – 18 4.22

B PS1-10jh z band 0 0.01 1 6.8 1.19 1.119 0.4 0.091 1 29 2.1

D z band – 0.001 1 11 3.6 – 0.6 – – 18 8.67

B PS1-10jh nuv band 0 0.01 1 6.8 1.15 1.119 0.4 0.11 0.61 27 3.8

D nuv band – 0.01 1 3.98 5.8 – 0 – – 20 4.78

B Swift J1644+57 X-ray 0 0.01 1 1 21 1.29 0.4 0.09 0.1 400 3.8

D X-ray – – – – – – – – – – –

Table 7.2: The physical parameters obtained from reduced chi-square χ2 fit
with models B and D to the observations with a time shift of δt, mass of star m,
star’s initial dimensionless energy ē, angular momentum ` and black hole mass
M6 and spin j along with the χs values are shown above.

where m = M?/M� and R? = R�m
0.8. The peak mass fallback rate and the

corresponding rise time are approximated by
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Observation Band ē α ` M6 m q j Wn c2 δt (days) χ

ASAS-SN 15oi i band 0 0.001 1 7 1.3 3 0.5 0.09 0.3 35 0.9

V band 0 0.004 1 7 1.2 3 0.5 0.09 0.38 30 1.46

b band 0 0.01 1 6.5 1.0 3 0.5 0.1 0.46 27 2.23

W1 band 0 0.001 1 6.5 1.51 2.9 0.5 0.13 0.7 10 1.41

W2 band 0 0.01 1 7 1.5 3 0.5 0.18 0.7 35 3.37

M2 band 0 0.001 1 6.5 2 3 0.5 0.15 0.8 20 1.6

iPTF16axa W1 band 0 0.0001 1 5 1.1 3 0.4 0.15 0.3 30 1.06

M2 band 0 0.0001 1 5 1.1 3 0.4 0.15 0.46 25 1.45

W2 band 0 0.0001 1 5 1.1 3 0.4 0.17 0.40 32 2.45

U band 0 0.0001 1 5 1.0 3 0.4 0.1 0.40 33 0.88

g band 0 0.0001 1 5 1.0 3 0.4 0.1 0.68 33 1.94

r band 0 0.0001 1 5 0.8 3 0.4 0.07 0.69 33 1.80

i band 0 0.0001 1 5 0.8 3 0.4 0.07 0.69 38 1.29

OGLE16aaa I band 0 0.0001 1 11 2.2 3 0.5 0.33 0.70 12 1.63

V band 0 0.0001 1 11 1.9 3 0.5 0.37 0.7 10 1.13

W2 band 0 0.00005 1 10.5 3.8 3 0.5 0.55 0.50 25 1.72

W1 band 0 0.0001 1 10 4.5 3 0.5 0.46 0.60 30 1.19

M2 band 0 0.0001 1 10 4.1 3 0.5 0.48 0.4 30 1.62

PS1-10jh g band 0 0.01 1 6.8 1 1.119 0.4 0.101 1 25 6.0

r band 0 0.01 1 6.8 1.25 1.119 0.4 0.100 1 28 3.66

i band 0 0.01 1 6.8 1.1 1.119 0.4 0.091 1 28 3.78

z band 0 0.01 1 6.8 1.19 1.119 0.4 0.091 1 29 2.11

nuv band 0 0.01 1 6.8 1.15 1.119 0.4 0.11 0.61 27 3.88

PS1-11af g band 0 0.0001 1 10 1 3 0.45 0.26 0.63 40 4.3

z band 0 0.0001 1 11 0.8 4 0.45 0.25 0.7 38 1.22

i band 0 0.0001 1 11 0.8 2.5 0.45 0.17 0.8 31 1.16

r band 0 0.0001 1 11 1.1 2.5 0.45 0.17 0.8 27 2.04

nuv band 0 0.0001 1 11 1.5 2.5 0.45 0.17 0.57 27 1.13

Table 7.3: The physical parameters obtained from reduced χ2 fit of time-
dependent model to the observations with a time shift of δt, mass of the star m,
star’s initial dimensionless energy ē, angular momentum ` and black hole mass
M6 and spin j along with the χ values are shown above. The model fits to light
curves are shown in Figs 7.6, 7.7 and 7.8.
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Observation Band ē α ` M6 m q j Wn c2 δt (days) χ

PTF09axc r band 0 0.0001 1 7.3 1 3.3 0.50 0.4 0.7 17 2.28

PTF09ge g band 0 0.0001 1 9.0 0.8 2 0.6 0.2 0.75 9 4.9

r band 0 0.0001 1 9.4 0.65 2 0.6 0.185 0.8 14 3.38

i band 0 0.0001 1 9.4 0.55 2 0.6 0.18 0.83 16.5 5.2

PTF09djl r band 0 0.0001 1 7.0 1.5 3.3 0.50 0.40 0.63 30 1.45

g band 0 0.0001 1 8.0 1.2 3.22 0.7 0.3 0.73 5 0.84

D23H-1 FUV band 0 0.0001 1 21 1 3 0.4 0.35 0.56 39 2.35

NUV band 0 0.0001 1 21 1 3 0.4 0.35 0.56 45 0.41

Swift J1644+57 X-ray 0 0.01 1 1 21 1.29 0.4 0.09 0.1 400 3.86

Swift J2058+0516 g band 0 0.0001 1 3.8 1.15 3.3 0.65 0.47 0.4 45 4.5

r band 0 0.0001 1 3.8 1.12 3.3 0.65 0.45 0.35 35 1.49

i band 0 0.0001 1 3.3 1.5 3.3 0.65 0.46 0.40 45 0.84

z band 0 0.0001 1 3.3 1.5 3.3 0.65 0.44 0.4 45 2.37

XMMSL1- W2 band 0 0.005 1 10.5 1.1 3 0.3 0.4 0.69 100 3.9

J074008.2-853927 M2 band 0 0.005 1 10.5 1.1 3 0.3 0.4 0.69 130 2.02

W1 band 0 0.005 1 10.5 1.1 3 0.3 0.4 0.6 170 1.50

U band 0 0.005 1 10.5 1.0 3 0.3 0.5 0.485 210 0.05

B band 0 0.0001 1 10.5 1.5 3 0.3 0.535 0.455 210 0.33

Table 7.4: The physical parameters obtained from reduced χ2 fit of time-
dependent model to the observations with a time shift of δt, mass of the star m,
star’s initial dimensionless energy ē, angular momentum ` and black hole mass
M6 and spin j along with the χ values are shown above. The model fits to light
curves are shown in Figs 7.5, 7.9 and 7.10.



Chapter 7: Demographics of black holes derived from TDE model fits to
observations 274

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5

10

15

20

z

M
●
(1

0
6
M

☉
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5

10

15

20

z

M
*
(M

☉
)

Figure 7.11: The black hole mass (top) and star mass (bottom) as a function
of redshift obtained by time-dependent model fit to the various TDE sources
given in Table 2.1. The TDE observations are dominated by low star mass.
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For a standard thin model with constant radii, the peak bolometric luminosity is

given by
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accretion model for the various physical parameters.
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Thus, keeping the leading term, we find
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If the coefficients of eqn (7.9) are measured, then it is possible to obtain the black

hole mass, star mass, and star radius.

7.2 The supermassive black hole mass function

The black hole mass function (BHMF) for 105 < M•/M� < 109, shows an evolution

of the distribution of SMBH mass and is crucial to trace the growth of black

holes. The surveys for estimating the BHMF are constrained by the luminosity

criteria: the luminosity from galactic nuclei is to be above a limiting value that

depends on the star luminosity that is subject to the detectors sensitivity and a

theoretical model of emission. The black hole mass is related to the host galaxy

properties such as black hole-bulge mass relation (Häring and Rix 2004) and black

hole-stellar velocity dispersion (Ferrarese and Merritt 2000; Ferrarese and Ford

2005; McConnell and Ma 2013). The black hole mass can be estimated by either

measuring the velocity dispersion of the stars or the luminosity from the nuclei.

The method of mass estimation through velocity dispersion is useful for non-active

nuclei but is constrained by the resolution of the stars and their spectrum at high

redshift whereas the mass estimation through luminosity is used for high redshift

galaxies.

The tidal disruption events (TDEs) where a star is captured by the black hole in

the galactic nuclei depends on the host galaxy properties and the emission from

the accretion of the debris is a primary tool to measure the black hole mass of

the non-active galaxies. The detection rate of TDEs depends on the theoretical

capture rate, duration of the TDE observation, BHMF of non-active galaxies and

instrumental parameters such as sensitivity, cadence and integration time. The

observed detection rate for various missions can be used to measure the LF of non-

active galaxies. Milosavljević et al. (2006) obtained a luminosity function of X-ray
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LF for TDEs assuming a Schechter LF with X-ray luminosity assumed to follow

the bolometric luminosity. They found that TDEs makes a negligible contribution

to the higher luminosities and black hole massM• > 107 mostly grow by accreting

nonstellar material. Their measurement is limited by the low sample size. The

detection rate of TDEs for various surveys are calculated by Strubbe and Quataert

(2009) and Mageshwaran and Mangalam (2015) (hereafter MM15) using the QLF

of Hopkins et al. (2007) with MM15 including the duty cycle given by Chen et al.

(2007) to obtain LF of non-active galaxies.

In this chapter, we fit the time-dependent accretion model (Mageshwaran & Man-

galam 2017) to various multiwavelength observations to obtain the physical pa-

rameters such as M•, M?, E and J and study the demographics of the black hole

mass and star mass. We will use the Schechter luminosity function with Faber-

Jackson law and the M•− σ relation, where σ is the velocity dispersion, to obtain

the black hole mass function which is then used to calculate the detection rate of

TDEs for various surveys and from the detected number of TDEs by the surveys,

we will derive the Schechter parameters. The Fig 2.5 shows the distribution for

TDE sources in redshift given in Table 2.1. Most of the TDEs are at low redshift

which may be attributed to a low occurrence rate of TDEs, detectors sensitivity,

sky coverage, cadence and black hole mass function.

The detection rate of TDEs depends on the theoretical capture rate of stars

by black hole, the probability of detection and the black hole mass function

(BHMF) of the galaxies Φ(M•, z). We consider a separable form of black hole

mass function Φ(M•, z) = µ(M•)Z(z), where Z(z) = 1 − δ(z) with duty cy-

cle δ(z) = 10−3(z/0.1)2.5 (Chen et al. 2007) and µ(M•) obtained using Schechter

function given by (Schechter 1976)

Φ(LR)dLR =
Φ?

L?

(
LR
L?

)−α
exp(−LR/L?)dLR, (7.10)
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where LR is the R-band luminosity and α = 1.1. Brown et al. (2001) obtained the

Schechter parameters Φ? = 4.9× 10−3h3
7 Mpc−3 and L? = 2.9× 1010h−2

7 L� where

L� is the solar luminosity and h7 = H0/(70 Km sec−1 Mpc−1). Combining the

Faber-Jackson law which gives the velocity dispersion σ ∝ L
1/n
R and the M• − σ

relation which gives σ ∝ M
1
λ
• , we obtain LR ∝ M

n/λ
• . Then µ(M•) is given by

(Aller and Richstone 2002)

µ(M•) =
Φ?ε

Ms

(
M•
Ms

)β
exp(−(M•/Ms)

ε), (7.11)

where Ms ∝ L
λ/n
? , β = ε(1− α)− 1 and ε = n/λ.

We assume ΛCDM cosmology with Ωm = 0.308,ΩΛ = 0.692,Ho = 67.8 Km sec−1 Mpc−1

(Planck Collaboration et al. 2016). The luminosity distance as a function of red-

shift z is given by

dL(z) = (1 + z)
c

Ho

∫ z

0

1

((1 + z′)3Ωm + ΩΛ)0.5
dz′. (7.12)

Consider now a small volume of the Universe at redshift z with radial width dz

covering an opening angle ω on the observer’s sky (Khabibullin et al. 2014). The

comoving volume of the slice is

dVc = ωd3
H

I2(z)

W (z)
dz (7.13)

where ω = 4πfs, fs is the fraction of sky observed, dH = c/Ho, W (z) = ((1 +

z)3Ωm + ΩΛ)0.5, and
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I(z) =

∫ z

0

1

((1 + z′)3Ωm + ΩΛ)0.5
dz′, (7.14)

whose integral is given by

I(z) =
1√
Ωm

1

31/4ω1/6

[
F

{
Cos−1

(
−(−1 +

√
3)ω1/3 + 1

(1 +
√

3)ω1/3 + 1

)
,
2 +
√

3

4

}
−

F

{
Cos−1

(
−(−1 +

√
3)ω1/3 + 1 + z

(1 +
√

3)ω1/3 + 1 + z

)
,
2 +
√

3

4

}]
, (7.15)

where F is Elliptic integral of first kind and ω = ΩΛ/Ωm. Thus the luminosity

distance is given by dL(z) = (c/H0)(1 + z)I(z).

The probability of event detection depends on the peak luminosity and the de-

tectors parameters such as sensitivity of the detector fl, cadence tcad, and inte-

gration time tint. We consider the steady accretion disk model with time varying

accretion rate of MM15 for parabolic orbit with rp = rt, to calculate the peak lu-

minosity Lp(M•, M?, z) in the given spectral bands with the corresponding time

tp(M•, M?, z). Assuming the luminosity decline from the peak to be

L = Lp(M•, M?, z)

(
tp(M•, M?, z) + δt

tp(M•, M?, z)

)− 5
3

, (7.16)

where δt is the time after the peak and comparing it with the sensitivity of the

detector fl, we obtained the duration of flare detection given by
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Figure 7.13: (Left:) The model given by eqn (7.23) is shown in green dashed
line and the numerically obtained result is shown in blue. (Right:) The relative
error= Abs[(fit-numerical)/numerical] of the fit to the numerical results.

δtf (M•, M?, z) = tp(M•, M?, z)

[(
Lp(M•, M?, z)

4πfld2
L(z)

) 3
5

− 1

]
. (7.17)

The probability of detection is given by (MM15)

P (M•, M?, z) = Min

[
1,
δtf (M•, M?, z)

tcad + tint

]
, (7.18)

and we assume in our calculation that δtf (M•, M?, z) ≥ tcad + tint which implies

that P (M•, M?, z) = 1; by taking the limiting value δtf (M•, M?, z) = tcad + tint,

the maximum detectable redshift is zm(M•, M?) which is obtained by solving

d2
L(zm) =

Lp(M•, M?, zm)

4πfl

(
tp(M•, M?, zm) + tcad + tint

tp(M•, M?, zm)

)− 5
3

. (7.19)

Thus, the detection rate of TDEs for a given survey is given by
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ṄD =

∫ ∫ ∫
Φ(M•, z)dM•

dṄt(γ, M•, M?)

dM?

dM?
dVc

1 + z
, (7.20)

where dṄt(γ, M•, M?)/dM? is obtained using eqn (5.47), and using eqn (7.11)

and (7.13), ṄD is given by

ṄD = 4πfsd
3
H

∫
dM•µ(M•)

∫
dM?

dṄt(γ, M•, M?)

dM?

∫ zm(M•, M?)

0

dz K(z),

(7.21)

where K(z) is given by

K(z) =
Z(z)

1 + z

I2(z)

W (z)
, (7.22)

and 1 + z is due to the time dilation. Then K(z) is solved numerically and the

best fit model is given by

K(z) = 0.179z2 − 0.477z3 + 0.427z3.5 − 0.11z4, (7.23)

as shown in Fig 7.13, which results in the detection rate given by

ṄD = 4πfsd
3
H

∫
dM•µ(M•)χ(M•), (7.24)

where χ(M•) given by



Chapter 7: Demographics of black holes derived from TDE model fits to
observations 282

χ(M•) = 4πfsd
3
H

∫ 150M�

0.8M�

dM?
dṄt(γ, M•, M?)

dM?

(0.06z3
m−0.12z4

m+0.095z4.5
m −0.022z5

m),

(7.25)

is numerically evaluated for various γ and M• in range 106 − 108M�. The numer-

ically obtained result is fit with the model given by

χ(M6) = a1M
p1

6 + a2M
p2

6 + a3M
p3

6 + a4M
p4

6 + a5M
p5

6 , (7.26)

as shown in Fig 7.14 where M6 = M•/106M� where the obtained parameters,

{an(γ), pn(γ)}, are shown in Table 7.5.

Using eqns (7.11, 7.24, 7.26) and integrating over M• gives

ṄD = φ?

5∑
i=1

ai

(
Ms

106M�

)pi [
Γ

(
1 + β + pi

ε
, xεmin

)
− Γ

(
1 + β + pi

ε
, xεmax

)]
,

(7.27)

where ai and pi are the elements shown in eqn (7.26), xmin = Mmin
• /Ms with

Mmin
• = 106M� and xmax = Mmax

• /Ms with Mmax
• = 108M�. The number of

TDEs detected in a survey time ts is given by ND = ṄDts, where ts and ND is

shown for various surveys in Table 7.6. We use the total number of TDEs detected

in a given duration by various surveys such as All Sky Automated Survey for

SuperNovae (ASAS-SN), Palomar Transient Factor (PTF), intermediate Palomar

Transient Factor (iPTF), Pan-STARRS and Galaxy Evolution Explorer (GALEX)

to obtain the detection rate and compare it with the theoretical detection rate

derived using Schechter luminosity function to extract the Schechter parameters.
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Survey γ (a1(105), p1) (a2(105), p2) (a3(105), p3) (a4(105), p4) (a5(103), p5)

ASAS-SN 0.6 (-0.089, -0.396) (0.734, 0.204) (0.111, 0.604) (-0.722.4, 0.304) (-1.81, 0.804)

0.7 (-0.117, -0.388) (0.972, 0.212) (0.147, 0.612) (-0.955, 0.312) (-2.39, 0.812)

0.8 (-0.151, -0.387) (1.246, 0.213) (0.188, 0.613) (-1.224, 0.313) (-3.06, 0.813)

0.9 (-0.189, -0.391) (1.572, 0.210) (0.237, 0.610) (-1.542, 0.310) (-3.85, 0.810)

1.0 (-0.235, -0.393) (1.955, 0.207) (0.295, 0.607) (-1.919, 0.307) (-4.79, 0.807)

1.1 (-0.290, -0.398) (2.419, 0.202) (0.365, 0.602) (-2.376, 0.302) (-5.94, 0.803)

PTF 0.6 (-2.25, -0.305) (15.7, 0.295) (5.492, 0.695) (-13.6, 0.495) (-75.5, 0.895)

0.7 (-2.97, -0.298) (15.3, 0.301) (7.266, 0.701) (-18.6, 0.501) (-99.9, 0.902)

0.8 (-3.81, -0.298) (19.7, 0.302) (9.327, 0.703) (-23.5, 0.502) (-128.16, 0.902)

0.9 (-4.81, -0.301) (24.8, 0.298) (11.7, 0.698) (-29.1, 0.498) (-161.6, 0.898)

1.0 (-5.96, -0.301) (31.5, 0.298) (14.6, 0.698) (-36.2, 0.498) (-201.4, 0.898)

1.1 (-7.34, -0.306) (38.1, 0.293) (18.1, 0.693) (-44.8, 0.493) (-249.02, 0.894)

iPTF 0.6 (-1.26, -0.306) (6.44, 0.293) (3.031, 0.693) (-7.52, 0.493) (-41.6, 0.893)

0.7 (-1.66, -0.300) (8.51, 0.300) (4.012, 0.700) (-9.95, 0.500) (-55.0, 0.9)

0.8 (-2.13, -0.298) (10.9, 0.302) (5.149, 0.701) (-13.6, 0.501) (-70.6, 0.901)

0.9 (-2.69, -0.302) (13.8, 0.297) (6.493, 0.697) (-16.1, 0.497) (-88.9, 0.898)

1.0 (-3.33, -0.302) (17.2, 0.298) (8.085, 0.697) (-20.4, 0.497 ) (-110.8, 0.897)

1.1 (-4.10, -0.307) (21.2, 0.293) (9.995, 0.693) (-24.8, 0.493) (-137.1, 0.893)

PS-MDS 0.6 (-0.266, -0.074) (0.219, 1.026) (-0.309, 0.926) (0.43, 0.226) (-0.524, 1.426)

0.7 (-0.30, -0.07) (0.289, 1.03) (-0.408, 0.930) (5.67, 0.230) (-0.692, 1.43)

0.8 (-0.448, 0.068) (0.371, 1.032) (-0.524, 0.932) (7.27, 0.232) (-0.889, 1.432)

0.9 (-0.56, -0.069) (0.468, 1.031) (-0.666, 0.931) (9.17, 0.231) (-1.12, 1.431)

1.0 (-0.696, -0.07) (0.583, 1.028) (-0.823, 0.928) (1.138, 0.228) (-1.39, 1.428)

1.1 (-0.855, -0.075) (0.722, 1.025) (-1.018, 0.925) (1.404, 0.225) (-1.73, 1.425)

GALEX 0.6 (-0.0213, 0.312) (0.604, 1.412) (-1.495, 1.312) (0.963, 1.21) (-0.712, 1.812)

0.7 (-0.0276, 0.317) (0.798, 1.416) (-1.972, 1.316) (1.271, 1.21) (-0.939, 1.817)

0.8 (-0.0343, 0.319) (1.022, 1.42) (-2.525, 1.32) (1.626, 1.22) (-1.203, 1.82)

0.9 (-0.0416, 0.320) (1.284, 1.42) (-3.173, 1.32) (2.044, 1.22) (-1.513, 1.82)

1.0 (-0.0489, 0.319) (1.590, 1.419) (-3.928, 1.318) (2.53, 1.22) (-1.875, 1.81)

1.1 (-0.0562, 317) (1.952, 1.417) (-4.822, 1.316) (3.10, 1.21) (-2.304, 1.81)

Table 7.5: The parameters (a, p) in eqn (7.26) for various surveys and γ.



Chapter 7: Demographics of black holes derived from TDE model fits to
observations 284

The Faber-Jackson law given by σ = 150 km sec−1(LR/1010L�)1/4 with n = 4

(Stone and Metzger 2016) and the M• − σ relation gives λ = 4.86 (Ferrarese and

Ford 2005) which results in ε = 0.823. The best fit to the parameters φ?, β and

Ms are obtained by minimizing the function F (φ?, β, Ms), given by

F (φ?, β, Ms) =
5∑
j=1

N j
D,obs(N

j
D −N

j
D,obs)

2, (7.28)

where j represents the sum over all missions given in Table 7.6 and is weighted

with the number of TDEs detected.

The function F (φ?, β, Ms) has multiple minima points and thus it is necessary to

constrain the range for parameter search which is done on the basis of observational

estimates. The approximate estimates for the Schechter parameters from observa-

tions are φ? ≈ 10−3 Mpc−3, α = 1.09± 0.09 which results in β = −1.072± 0.063

and L? ≈ 1010L� (Brown et al. 2001; Aller and Richstone 2002) which results

in Ms ≈ 108M�, where L� is the solar luminosity. Based on these estimates,

we consider the typical range φ? = 10−4 − 10−3 Mpc−3, β = −1.2 to − 0.8 and

Ms(106M�) = 0.01 to 1000 to search the minimum of eqn (7.28) to obtain the

Schechter parameters that are shown in Table 7.7.

For a distribution given by {{x1, g1}, {x2, g2}, {x3, g3}, ......., {xn, gn}}, the mean

ḡ and the standard deviation gSD are given by

ḡ =

n−1∑
i=1

(gi+1+gi
2

)
(xi+1 − xi)

xn − x1

, (7.29)

and
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gSD =

√√√√ n∑
i=1

(gi − ḡ)2

n
. (7.30)

Using eqns (7.29, 7.30) with xi = γi and gi as various Schechter parameters given

in Table 7.7, the mean Schechter parameters are found to be φ? = 10−4 Mpc−3,

Ms(106M�) = 0.592± 0.09, β = −1.017± 0.136 and ε = 0.823.

Our Schechter parameters for various γ given in Table 7.8 are compared with the

parameters obtained from observations given in Table 7.11 and we found that the

parameters are close for γ = 0.9. Using this the detectable rate per unit black

hole mass and star mass are shown in Fig 7.15.

7.3 Discussion

The number of TDEs observed is high at low redshift as shown in Fig 2.5 as the

detection is constrained by the flux sensitivity of the detector and the cadence of

the survey missions. Fig 7.11 shows that the most of the TDEs are dominated

by the disruption of low mass stars by low mass SMBHs. This is because the

theoretical capture rate of stars decreases with increase in M? and M•; thus their

detection rates (MM15, Stone and Metzger 2016).

The TDE detection rate depends on the BHMF and thus the reverse can be done,

that is by knowing the detection rate of TDEs through observations, one can

derive the BHMF. Donley et al. (2002); van Velzen and Farrar (2014) have used

the observed detection rates to calculate the theoretical TDEs rate per galaxy

and is found to be ∼ 10−5 yr−1 galaxy−1 which is less than the observed rate by

∼ 10−4 yr−1 galaxy−1. Stone and Metzger (2016) have used the Nuker density
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profile for a sample of galaxies to calculate the TDE rates Ṅt and using a Schechter

LF with occupation fraction focc, which is the probability of the occurrence of a

black hole with mass M• for a the given bulge mass, calculated the volumetric

detection rate of TDEs. They also calculated the SMBH mass distribution of

observed TDEs and found that it is dominated by TDEs in optical emissions. The

theoretical capture rate Ṅt ∝ M−β
• was found where β = 0.19 (Magorrian and

Tremaine 1999), 0.25 (Wang and Merritt 2004), 0.404 (Stone and Metzger 2016)

and 0.3 (MM15); the decrease in Ṅt with M• is small which implies that the low

observation rate of high mass SMBH TDEs is due to the BHMF. Kochanek (2016)

has shown using the LF given in Shankar et al. (2009), that the dominance of low

mass SMBHs in observed TDEs are driven by the steep slope of BHMF rather

than the mass dependence TDE rates.

Kiang (1961) has found that the LF of galaxies in terms of magnitude is given

by φ(M) ∝ (M −M0)k for faint galaxies and is φ(M) ∝ 100.2M for bright galax-

ies (Zwicky 1957), where M is the magnitude, M0 is the limiting magnitude and

k is constant. Peebles (1968) found that the bright galaxies drops sharply com-

pared to the previous estimates with φ(M) ∝ exp[α(M − M0)], where α is a

constant. Press and Schechter (1974) have shown that an initial perturbation

in a self-gravitating gas condenses the mass into aggregates whose mass function

is given by φ(m)dm ∝ (m/mc)
−1−α1 exp(−(1/2)(m/mc)

2(1−α1))dm, where mc is

the mass at initial perturbation and the mass dispersion of aggregates in volume

V is ∝ V α1 . If one considers that the this mass spectrum extends to galactic

mass scale, then using a mass to light ratio given by m ∝ Lβ, one can obtain

φ(L) ∝ (L/L?)
β−1+(1+α1)/β exp(−(1/2)(L/L?)

2(1−α1)/β) where L? is the luminosity

for m = ms which follows the Schechter LF for α1 = 0.456 and β = 1.088.

Table 7.9 shows the various LFs in use to fit the surveys given in in Table 7.10.

The observations from various galaxies at different redshifts are divided in various

redshift bins and the LFs are used to fit the observed profile. The fit at various
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redshift bins provides the evolution of the LF in the universe observed. The

observed profile in optical and UV bands are mostly fit with the Schechter LF

whereas Böhringer et al. (2014) have found that the profile in X-ray shows better

fit with the modified Schechter function. A double power law profile is also used

to fit the observations; Maloney and Petrosian (1999) found that the inner slope

is similar to the fit to the Schechter function. Magnelli et al. (2013) using the IR

band observations showed that the break luminosity increases with redshift. The

hard X-ray luminosity function is fit with the LDDE model (Ueda et al. 2003) as

done by the La Franca et al. (2005).

As the Schechter function shows a good fit to the observations, we have used

it in our model of TDE rates along with the duty cycle and by matching it to

the observed TDE rates, the obtained Schechter parameters are given in Table

7.8. The mean Schechter parameters over γ is found to be φ? = 10−4 Mpc−3,

L? = (1.16± 0.15)× 1042 erg sec−1 and α = 1.021± 0.16.

By comparing the Schechter parameters obtained from previous estimates given

in Table 7.11, we can see that our model with γ = 0.9 is close to the previous

estimates (Brown et al. 2001; Montero-Dorta and Prada 2009; Wylezalek et al.

2014):

α = 1.093, φ? = 10−4 Mpc−3 and L? = 1.13× 1042 erg sec−1. (7.31)

The Fig 7.15 and 7.16 show the detectable rate per unit black hole mass and star

mass for various missions obtained using eqn (7.21). The rate decreases with black

hole mass due to a decrease in BHMF and with star mass due to stellar initial

mass function. Given the BHMF and the theoretical capture rate in a galaxy given

by eqn (5.47), the galaxy averaged theoretical capture rate is given by
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〈
Ṅt

〉
=

∫ 108M�
M•=106M�

∫ 1

z=0
dṄt
dM•

Φ(M•, z) dzdM•∫ 108M�
M•=106M�

∫ 1

z=0
Φ(M•, z) dzdM•

, (7.32)

and is shown in Fig 7.17 where it is found that
〈
Ṅt

〉
∼ 2× 10−5γ2 yr−1.

The observed TDE rate depends on the sample of galaxies in a given cosmological

volume and is essentially the galaxy averaged capture rate as the TDE sources lie

at different redshifts. We can see that the galaxy averaged capture rate from our

statistical analysis of the surveys is close to the observed range. A detailed mod-

eling of the galactic nuclei considering an anisotropic distribution and including

the resonant relaxation along with the two body relaxation mechanism is however

required for a better understanding of the event rates.

7.4 Summary

We summarize our results below.

• We had used Mageshwaran and Mangalam (2015) and Mageshwaran & Man-

galam (2017) models to fit the light curve of sources given in Table 2.1 to

extract the paramteres such as M•, M?, ē and `.

• With the distribution of M• with z, we find the best fit luminosity function

and Schechter parameters.

• We infer that γ = 0.9, is the optimal solution that matches the observed

Schechter parameters and the best inferred Schechter parameters from our

model fit is α = 1.093, φ? = 10−4 Mpc−3 and L? = 1.13× 1042 erg sec−1.
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• The galaxy averaged capture rate is
〈
Ṅt

〉
∼ 2 × 10−5γ2 yr−1 which is

comparable with observations. Thus, the rate tension between observation

(∼ 10−5 yr−1) and theory (∼ 10−4 yr−1) for individual galaxies can be ex-

plained by the statistical average over the BHMF. More detailed dynamical

models with resonant relaxation and axisymmetric nuclei, may be necessary

to confirm this result.
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Survey ts (yr) ND,obs

ASAS-SN ∼ 4 3

PTF ∼ 4 4

iPTF ∼ 4 2

PS-MDS ∼ 4 2

GALEX ∼ 10 3

Table 7.6: The TDE surveys with the duration of survey ts and the number
of TDEs detected ND for the sample of TDEs given in Table 2.1.

γ φ? (Mpc−3) Ms(106 M�) β ε Fmin(φ?, β, Ms)

0.6 10−4 0.78 -0.843 0.823 39.27

0.7 10−4 0.66 -0.874 0.823 39.55

0.8 10−4 0.56 -0.944 0.823 39.73

0.9 10−4 0.57 -1.077 0.823 39.85

1.0 10−4 0.538 -1.1876 0.823 39.924

1.1 10−4 0.484 -1.166 0.823 39.967

Table 7.7: The obtained parameters by minimizing eqn (7.28) with minimum
value of F (φ?, β, Ms).
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Figure 7.14: The χ(M•) as a function of M6 = M•/106M� for various γ =
0.6 (blue), 0.7 (red), 0.8 (orange), 0.9 (purple), 1.0 (magenta), 1.1 (brown)
are shown. The points denotes the numerically obtained χ(M•) and solid lines
denotes the fit.
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γ α φ? (Mpc−3) L?(1042 erg sec−1)

0.6 0.809 10−4 1.47

0.7 0.846 10−4 1.27

0.8 0.932 10−4 1.12

0.9 1.093 10−4 1.13

1.0 1.228 10−4 1.08

1.1 1.202 10−4 0.99

Table 7.8: The obtained Schechter parameters from the obtained values given
in Table 7.7.
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Figure 7.15: The detectable TDE rates per unit black hole mass (left) and
star mass (right) are shown for various γ. The rate decreases with black hole
mass due to decrease in BHMF and with star mass due to stellar initial mass
function.
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Figure 7.16: The detectable TDE rates per unit black hole mass (left) and
star mass (right) for various γ are shown. The rate decreases with black hole
mass due to decrease in BHMF and with star mass due to stellar initial mass
function.

0.6 0.7 0.8 0.9 1.0 1.1

2.×10-5

3.×10-5

4.×10-5

5.×10-5

6.×10-5

γ

<
N

th
>
(y

r-
1
)

Figure 7.17: The galaxy averaged theoretical capture rate is shown and found
to be

〈
Ṅt

〉
∼ 2× 10−5γ2 yr−1.
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Sl. Model Luminosity function Parameters References

1 Schechter φ(L)dL = φ?

(
L

L?

)−α
exp

(
− L

L?

)
dL

L?
α, φ?, L? Schechter (1976)

φ(M)dM = 0.4 ln(10)φ?10−0.4(M−M?)(1−α) exp(−10−0.4(M−M?))dM α, φ?, M
?

2 Double power law φ(L)dL = φ?

[(
L

L?

)k1

+

(
L

L?

)k2
]−1

dL

L?
φ?, L?, k1, k2 Maloney and Petrosian (1999)

Hopkins et al. (2007)

3 q exponential φ(L)dL = φ?

(
L

L?

)−α [
1 + (1− q) L

L?

] 1
1−q dL

L?
φ?, α, L?, q Balaguera-Antolínez et al. (2012)

Böhringer et al. (2014)

4 Modified Schechter φ(L)dL = φ?

(
L

L?

)−α
exp

(
− L

L?

)[
1−

(
1 +

L

βL?

)−γ] dL

L?
α, φ?, L?, β, γ Böhringer et al. (2014)

5 Evolution model dφ(L)
d logL = φ?

[(
L
L?

)k1

+
(
L
L?

)k2
]−1

, φ?, L?, k1, k2 Ueda et al. (2003)

Evolution factor e(z) =


(1 + z)p1 , z < zc

e(zc)
(

1+z
1+zc

)p2

, z > zc

p1, p2, zc

Pure luminosity evolution (PLE)
dφ(L/e(z))

d logL

Pure density evolution (PDE)
dφ(L)

d logL
e(z)

6 Luminosity dependent-
dφ(L)

d logL
= φ?

[(
L

L?

)k1

+

(
L

L?

)k2
]−1

,
dφ(L, z)

d logL
=

dφ(L)

d logL
e(z, L), φ?, L?, k1, k2 Ueda et al. (2003)

density evolution (LDDE) e(z, L) =


(1 + z)p1 , z < zc(L)

e(zc)
(

1+z
1+zc(L)

)p2

, z > zc(L)

, p1, p2, La, z
?
c Shankar et al. (2009)

zc(L) =


z?c , L < La

z?c

(
L
La

)α
, L > La

Table 7.9: The various luminosity functions with their fitting parameters in
terms of luminosity L or absolute magnitude M are given above.
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Sl. References Survey Redshift Survey area/ # of QSO Band Model LF

1 Gardner et al. (1997) Wide-Field 4.4 deg2 K band Schechter

K-Band Survey

2 Maloney and Petrosian (1999) Large Bright QSO survey 0.3− 2.2 1055 B band Combining together,

Homogenous Bright QSO survey 0.3− 2.2 285 B band Double power

Durham/AAT survey 0.3− 2.2 419 B band law profile

3 Brown et al. (2001) Century survey 0.003− 0.15 64 deg2 V and R band Schechter

4 Norberg et al. (2002) 2dF Galaxy Redshift Survey ∼ 0 2151.6 deg2 bJ band Schechter

5 Willott et al. (2005) CFHT 5.7− 6.4 3.83 deg2 i
′
and z

′
bands double power law

6 La Franca et al. (2005) HELLAS2XMM sample + other catalog 0− 4 508 AGNs 2− 10 keV LDDE model

7 Willmer et al. (2006) DEEP2 Redshift Survey 0.2− 1.2 11,284 B, R and V bands Schechter

8 Zucca et al. (2006) VIMOS VLT Deep Survey 0.2− 1.5 0.61 deg2 UBVRI bands Schechter

9 Babbedge et al. (2006) Spitzer Wide-area 0− 4 6.5 deg2 3.6, 4.5, 5.8, 8 and 24 µm Schechter

Infrared Extragalactic Legacy Survey Double power law

10 Vestergaard et al. (2008) SDSS DR3 0.3− 5 1644 deg2 i-band φ(M) ∝Mβ

11 Montero-Dorta and Prada (2009) SDSS DR6 0.02− 0.17 7425 deg2 u band Schechter

12 Vestergaard and Osmer (2009) Large Bright Quasar Survey 0.2− 3.4 453.8 deg2 BJ band φ(M) ∝Mβ

Bright Quasar Survey z ≤ 0.5 10714 deg2 BJ band

Fall Equatorial Stripe (SDSS) 3.6− 5 182 deg2 griz bands

13 Richards et al. (2009) SDSS (DR6) 8417 deg2

14 Rodighiero et al. (2010) Deep Spitzer surveys 0− 2.5 0.85 deg2 8, 12, 15, 24 µm

15 Magnelli et al. (2013) Herschel -PACS far-infrared survey 0.1− 2.3 IR (70, 100, 160 µm) L < L? : φ(L) = φ?(L/L?)
−0.6

L > L? : φ(L) = φ?(L/L?)
−2.2

16 Böhringer et al. (2014) REFLEX II 0− 0.4 13,924 deg2 X-ray (0.1− 2.4 keV) Schechter

q exponential

Modified Schechter

17 Wylezalek et al. (2014) Spitzer snapshot program CARLA 1.3− 3.2 420 radio 4.5 µm mid-IR Schechter

loud AGNs

M? is apparent magnitude here

18 Eardley et al. (2015) Galaxy and Mass 0.04− 0.26 1,13,000 r band Schechter

Assembly survey (GAMA)

Table 7.10: The surveys in various spectral bands to obtain the luminosity
function are shown with fit to the LF model given in Table 7.9. The Schechter
parameters are listed as (α, L?(erg sec−1) or M?, φ?(Mpc−3))
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Sl. α φ? (10−4 Mpc−3) L? (1045 erg sec−1) References

1 0.9 ± 0.1 57.1 ± 5 2.98 ± 0.19 Gardner et al. (1997)

2 1.07 ± 0.09 160 ± 3 0.076 ± 0.002 Brown et al. (2001)

3 1.21 ± 0.3 55 ± 2 0.12 ± 0.038 Norberg et al. (2002)

4 1.3 2.61 ± 2.1 0.84 ± 0.004 Willmer et al. (2006)

5 1.0 ± 0.04 100 ± 3 0.002 ± 0.0001 Montero-Dorta and Prada (2009)

6 1.74 ± 0.087 0.005 0.302± 0.066 Böhringer et al. (2014)

7 1.01 ± 0.1 N/A 0.043 ± 0.0043 Wylezalek et al. (2014)

8 1.22 ± 0.02 900 ± 7 0.42 ± 0.008 Eardley et al. (2015)

Table 7.11: Schechter parameters obtained from previous surveys listed in
Table 7.10.



Chapter 8

Summary, conclusions and caveats

One of the big mysteries about the black hole at the center

of the galaxy is, ’Why don’t we see emission from matter

falling onto the black hole, or, rather, the black hole eating

up its surroundings?’
Andrea M. Ghez, September 14, 2009 in EarthSky.org

This thesis is devoted to a study of the physics of transients known as tidal dis-

ruption events and their observational implications. We have studied various dy-

namical aspects of TDEs starting from the capture of star by the black hole to

their disruption, accretion and observations by various surveys. In this chapter,

we summarize the thesis, discuss the novel aspects and its impact. We will then

discuss the implications for future theoretical work.
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8.1 Highlights

Below, we summarize the highlights of each chapter in sequence:

• Chapter 1: The basic dynamics of TDEs is developed. A tidally disrupted

star debris following a Keplerian orbit falls back with a rate ∝ t−5/3 at late

stages. This law is considered to be the characteristic decay model of light

curves for early TDE observations and is used to confirm the source as a

TDE.

• Chapter 2: The TDEs are mostly identified through the broad Hα, Hβ and

sometimes He emission lines in their spectra. The X-ray TDEs can be dis-

tinguished from AGN variability by (1) the nature of host galaxy, (2) slow

decay in time suggesting coherent decay, (3) low hardness ratio suggests soft

nature of the TDEs. The TDEs are observed in the distinct type of galaxies

that are mostly inactive and the star-forming galaxies.

• Chapter 3: We studied the basic dynamics of stars around black holes in

the center of galaxies. The gravitational interaction of star results in the

change in energy and angular momentum leading to the diffusion of stars

that results in the evolution of central sellar cusp and density attains a form

ρ ∝ rp, where p ' −7/4 if a steady state is reached. The presence of a tidal

radius results in a loss cone in phase space such that any star with angular

momentum within the loss cone will be tidally disrupted. With a steady loss

cone model, the theoretical capture rate is found to be ∼ 10−4 yr−1.

• Chapter 4: The disrupted debris forms a gaseous disk which can accrete in

either sub-Eddington or super-Eddington modes. The viscosity in the accre-

tion disk results in the angular momentum transfer outwards which results in

expansion of the outer radius. The microscopic viscosity is negligible in case

of an accretion disk and thus a possible source of turbulent viscosity depends
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on the nature of pressure in the disk that may either magnetic pressure, gas

pressure or radiation pressure. The gravitational instability is also a source

of viscosity which is effective for higher density where the self-gravity domi-

nates over the external gravity; however, this is not likely for TDE disks. In

the case of a sub-Eddington disk, the radiation pressure is smaller than the

gas pressure and the disk is thin whereas, for a super-Eddington disk, the

strong radiation pressure results in an out flowing wind and the resulting

disk is a slim disk.

• Chapter 5: We have constructed a dynamical model of TDEs with the input

physical parameters that include the black hole mass M•, specific orbital

energy E and angular momentum J , star mass M? and radius R? (Magesh-

waran and Mangalam (2015)). The maximum value of J is Jlc(E, rt) and

as Jlc(E, rt) ≥ 0, the maximum value of energy is Em = Φ(rt). We define

the dimensionless energy ē = E/Em and angular momentum ` = J/Jlc and

the constrained in energy and angular momentum phase space is given by

ēh = rt/rh < ē < 1 and 0 < ` < 1. We have derived the DF for stel-

lar density profile ρ(r) ∝ rγ with mass function ξ(m)dm given in Kroupa

(2001) and solved the steady state Fokker-Planck equation to obtain Ṅt.

The capture rate obtained by integrating over phase space in the range

ēh < ē < 1, 0 < ` < 1 and 0.8 < m < 150 where m = M?/M� is found to

be Ṅt ∝M−0.3
• and Ṅt ∝ γ2.1.

• Chapter 5: We have calculated the mass fallback rate of the debris as a

function of E and J which includes the case of mass fallback rate ob-

tained by Lodato et al. (2009) for a star on parabolic orbit with E = 0

and J =
√

2GM•rt. Following the steady accretion model of Strubbe and

Quataert (2009) with accretion rate similar to Ṁfb, we simulated the light

curve profiles in various spectral bands. With the given instrumental pa-

rameters such as sensitivity, cadence tcad and the integration time tint of the

detector, the cosmological parameters and the black hole mass function of
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quiescent galaxies (Hopkins et al. 2007; Chen et al. 2007), we calculated the

detection rate of TDEs for optical surveys such as LSST to be 5003 yr−1,

Pan-STARRS 3π to be 6337 yr−1, Pan-STARRS medium deep survey to be

12.5 yr−1 and for X-ray mission eROSITA to be 679.5 yr−1 (MM15). These

estimates are in agreement with estimates of van Velzen et al. (2011) who

scaled up SDSS results to other surveys.

• Chapter 6: We have constructed self-similar models of a time-dependent ac-

cretion disk in both sub and super-Eddington phases with wind outflows

for tidal disruption events (TDEs). The physical input parameters are the

black hole (BH) mass M•, specific orbital energy E and angular momentum

J , star mass M? and radius R?. We consider the sub-Eddington and super-

Eddington phases to be gas pressure or radiation pressure dominated with

the viscosity prescribed by the stress tensor, Πrφ ∝ Σb
dr
d where Σd is the

surface density of the disk, r is the radius and b and d are constants. The

specific choice of radiative or α viscosity and its parameters is decided by

the expected disk luminosity and evolution time scale being in the observed

range. The disk evolves due to mass loss by accretion onto the black hole

and an outflowing wind, and mass gain by fallback of the debris; this results

in an increasing outer radius. The bolometric luminosity of the model A is

given by Lb ∝ t−1(ξ
3/4
out −ξ

3/4
in ) (see eqn 6.91) and the net bolometric luminos-

ity at late time is found to be Lb ∝ t−0.7. The bolometric disk luminosity for

model B is Ldb ∝ t−5/3+(3−2e)α(ξ
9/4−2e
out − ξ9/4−2e

in ) and the outflow luminosity

Lwb ∝ (W2(t/t0)(−10/3−α/2) + 1 − c2)4 ln(rout/rin) where α, e and c2 are con-

sidered to be a free parameters which are obtained by fit to the observations.

• Chapter 7: We fit our time-dependent accretion models developed in chapter

6 to the observations given in Table 2.1. We found that the time-dependent

model gives a good fit compared to the steady accretion model. We found

through fits that the TDEs are dominated by disruption of low mass stars

by low mass supermassive black holes; this is expected as both are dominant
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populations. Using the stellar dynamical model developed in chapter 5 and

the Schechter luminosity function, we obtained detectable rates for various

surveys and by comparing it to the observed rate, we derived the most prob-

able Schechter parameters as a function of γ and that are in broad agreement

with the previous estimates for γ = 0.9. The galaxy averaged capture rate

inferred by the TDE models applied to the survey data is smaller than the

typical theoretical capture rate.

8.2 The novel aspects and their impact

1. We have included the angular momentum of the star in the stellar model for

TDEs that has not taken been into account in previous work. The inclusion

of angular momentum plays a crucial role in the calculation of capture rate

and the mass fallback rate. We have calculated the capture rate per unit

energy and angular momentum and integrated over them to calculate the

net rate.

2. We calculated the TDE detectable rates by various surveys which are in good

agreement with previous estimates.

3. The TDE physics we have employed includes all the essentials of accretion,

fall back, and the wind; we have presented hydrodynamic criteria for the

operation of the wind with v2
z ∝ (T − TE) given by eqn (6.26). We have

demonstrated in §6.2 that the timescales of evolution and magnitude of the

bolometric luminosity are in good agreement with typical observed values.

The detailed fits produced by models A and B in §7.1 produce good χ2 values.

This validates our simplified semi-analytic models that are calculated from

a basic dynamical input set of parameters given in Table 6.1. Models A and

B are clearly favored over steady models C and D.
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4. We have also studied the transition dynamics from one to another disk.

Since TDE disks undergo multiple phase evolution, our transition model can

provide transition time and the basic parameters during the transition.

5. The simple model for the extraction of BHMF (§7.2) provides the Schechter

parameters α = 1.093, φ? = 10−4 Mpc−3 and L? = 1.13 × 1042 erg sec−1,

which is close to the previous estimates for γ = 0.9. If one is provided with

the detectable rates from a larger set of observations, our model can be used

to calculate the black hole mass function more precisely.

6. The galaxy averaged capture rate
〈
Ṅt

〉
∼ 2 × 10−5γ2 yr−1 is comparable

with the observations. However, the rate tension between individual galaxy

and observations require more detailed dynamical models.

We have demonstrated that basic physics of the gas and stellar dynamics can

provide a reasonably good explanation of the tidal disruption events. TDEs are

excellent laboratories to study accretion physics: the fact that certain viscosity

models in chapter 6 were eliminated indicates that they are good discriminators

of the underlying physics. As more data of detections pour in from follow up

surveys like LSST, zPTF, eROSITA, ASTROSAT etc, they can be used to create

larger sample sets for statistical studies of black hole demographics as has been

demonstrated. It will perhaps be more accurate than current methods in the

future; currently it is a useful independent determinant.

8.3 Caveats

We list some of the caveats below:
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1. The rate tension between the theory and observations require a more detailed

modeling of the galaxy centers. A time-dependent loss cone theory with

a resonant relaxation mechanism for non-spherical galactic nuclei is to be

developed.

2. There is likely to be an α viscous sub-Eddington disk which would be op-

erative during the rising phase. The typical time scale of this phase will be

given by either the typical rise time in the Ṁ profile or the time taken to

reach the Eddington luminosity. A detailed model during the rising phase

needs to be developed.

3. If there is a super-Eddington phase to follow as determined by eqn (6.10),

then the typical time scale would be given by eqn (6.65). The super-

Eddington disk will be effected by radiative viscosity with a wind launched

from the photosphere. During the onset and the decline of this super-

Eddington phase, the wind is rendered weak in our models and we have

illustrated in §6.6 a method of calculating this transition through model T

so that the light curves smoothly connect to the sub-Eddington regimes. We

are yet to include model T to our fits which is numerically more challenging

and plan to do so in the next phase.

4. While our time-dependent models are reasonably successful in producing fits

to the four diverse TDE sources chosen here, we plan on producing fits to a

larger sample of light curves available in the literature with a higher resolu-

tion search in parameter space. In the fits produced thus far, we have been

able to extract the mass of the star and its orbital elements, the black hole

mass, and the initial accretion disk radius. The parameter search was lim-

ited by numerical resources; in the future, we plan on doing more extensive

simulations.

5. The basic paradigm is sufficiently elaborate in terms of essential physics; it

also transparently and adequately demonstrates the existence of two different
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phases with a transition model that produces reasonably good fits. In the

future, we plan to add an atmosphere to predict the details of the spectrum.

6. One can with a large statistics of detection that will soon become available,

infer the basic parameters using our models and study the demographics of

the black hole mass and stellar properties such as mass and evolutionary

state as a function of redshift (Kochanek 2016, Stone and Metzger 2016).

8.4 Future directions

1. A more detailed modeling of the galaxy centers by including the resonant

relaxation and for an axisymmetric nuclei is to be done.

2. The time-dependent accretion model developed here is for non-relativistic

disks. For higher mass black holes, the tidal radius is close to the horizon

and thus it is necessary to construct a time-dependent relativistic accretion

model with all the essential physics of accretion, fallback and wind.

3. It is also desirable and possible in the future to add black spin and mass

evolution to predict the jet phase.

4. Given the possibility of detection of gravitational waves of these events as

extreme mass ratio inspirals in the frequency window of eLISA (10−4− 10−1

Hz), we need to develop theoretical tools for the dynamics and templates of

detection.

Given that a high detectable event rate will become possible soon with eROSITA

in X-rays and iPTF/ZTF, ASAS SN and Pan-STARRS in the optical, there are

several opportunities available currently and the future. The area of TDE physics

is rich, bright and exciting.
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THE END!
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