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Abstract

Magnetic fields are ubiquitous in the universe and play an important role in

variety of astrophysical phenomenon. It is thus very important to understand

the origin, structure and strength of these astrophysical magnetic fields. In

this Thesis, we use the concept of magnetic helicity conservation and prop-

erties of force-free magnetic fields to investigate the topological properties

of magnetic fields in the solar corona and the amplification and nonlinear

saturation of dynamo generated field in disc galaxies.

For the case of solar corona, we solve the linear and nonlinear force-free

field equation using photospheric boundary conditions to obtain simple ax-

isymmetric magnetic field configurations in spherical geometry. We show

that the condition of separability of solutions in the radial and angular vari-

ables leads to two classes of solutions: linear and nonlinear force-free fields

(NLFF). We extended the set of NLFF solutions with radial power law index

n = p/q, for all cases of odd p and cases of q > p for even p. We apply these

solutions to simulate photospheric vector magnetograms obtained using the

spectro-polarimeter on board Hinode and search for best-fit configurations.

The effectiveness of our search strategy is demonstrated on test inputs of

dipolar, axisymmetric, and non axisymmetric linear force-free fields. Using

the best fit, we build three- dimensional axisymmetric field configurations

and calculate the energy and relative helicity with two independent meth-
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ods. The magnetic helicity and free energy content of these fields are useful

indicators of energy available for release during eruptive events like solar

flares. We analyze five magnetograms for active regions (AR) 10930 span-

ning a period of three days during which two X-class flares occurred and

calculate the free energy and relative helicity of the active region before and

after the flare. Our analysis indicates a peak in these quantities before the

flare events, which is consistent with the previous results. We also analyze

single-polarity regions AR 10923 and 10933, which showed very good fits to

potential fields. This method provides useful reconstruction of NLFF and in-

put fields for other numerical techniques. We also apply the NLFF solutions

to calculate the amount of braiding in coronal magnetic fields using the con-

cept of mean crossing number. This is then used to estimate the free energy

content in solar active regions. We find that the free energy estimates ob-

tained from calculation of magnetic braiding is in good agreement with those

obtained by exact calculations of NLFF fields. We then apply the model of

self-organized criticality (SOC) to these braided field lines and calculate the

distribution of coherent braid sequences and flare energies. We find find good

agreement in the flare energy distributions obtained using SOC model and

NLFFF extrapolation. These results provide useful information on the coro-

nal loop structure and also imply that the coronal heating can be supplied

by the braiding in the case of the active sun.

We provide a new formulation for relative helicity in arbitrary geometries

using the toroidal-poloidal representation of the magnetic field iand discuss

the special cases of planar and spherical geometry. In a general astrophysical

application, the fields penetrate the generation region and extend to a sur-

rounding corona. It is important to develop gauge-free form for Helicity that

can be readily used in different geometries without involving integrals over
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external volumes. The further extension of the ideas here can be formalized

through use of differential geometry.

Magnetic fields correlated on kiloparsec scales are seen in disc galaxies.

The origin could be due to amplification of small scale seed fields by a tur-

bulent dynamo. Helicity conservation imposes constraints on dynamo action

and one can study the minimal field strength of the large scale magnetic field

that could arise despite the constraint. The calculation of helicity is tech-

nically complicated because of open boundaries and the usual form for the

magneto-hydrodynamic (MHD) invariant needs to be modified to take this

into account. We then present a global semi-analytic axisymmetric model

for a turbulent dynamo operating in a galaxy with a corona. Here, we show

that the supernovae (SNe) and magneto-rotational instability (MRI) driven

turbulence parameters have nearly the same radial dependence and can be

treated in a common formalism; however we assume the main contribution

from SNe. The general toroidal-poloidal representation is then used to cal-

culate the global gauge invariant relative magnetic helicity in cylindrical ge-

ometry. We present the analytic steady-state solutions within the disc that

are matched to force-free fields in the corona. A dynamical solution for the

dynamo is then obtained by expanding the time-dependent field in the basis

obtained using the steady-state solutions. The non-linear quenching of the

dynamo is alleviated by inclusion of small-scale advective and diffusive mag-

netic helicity fluxes, which allow the helicity to be transferred outside the

disc and consequently build up a corona during the course of dynamo action.

We find quadrupolar solutions for in the galactic disc that extend out into

the corona and show oscillations radially. The mean field is found to reach

saturation within a timescale of 1 Gyr with a strength which is of the order

of equipartition magnetic energy (∼ Beq ).
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The following is the arrangement of the Thesis. Chapter 1 gives an

overview of astrophysical magnetic fields with special focus on observations

of solar and galactic magnetic fields. Chapter 2 outlines the basics concepts

of MHD and describes the processes relating to magnetic field generation and

dissipation. We also discuss the topological properties of magnetic field using

magnetic helicity and provide a novel prescription for calculating magnetic

helicity in arbitrary geometries. Chapter 3 presents a description of potential

and force-free fields and outlines their important properties. We then discuss

analytical and numerical techniques for solving potential and force-free fields

equations for determining coronal magnetic fields. In Chapter 4, we present

an overview of various coronal heating mechanisms and discuss the statistical

properties of solar flares. We then discuss braiding in coronal magnetic fields

and calculate the free energy in these configurations due to braiding. Chap-

ter 5 gives an introduction to large-scale turbulent dynamos and discusses

various closure approximations used in mean field MHD. We then present its

application to disc galaxies, discuss the basic analytic solutions and give an

overview of current problems in dynamo theory. In Chapter 6, we present

new solutions to the nonlinear force-free field equation and discuss its appli-

cation for determining the topological properties of coronal magnetic fields,

such as their free-energy and relative helicity. We then apply the solutions to

a time sequence of vector magnetograms to estimate the energy released in

a solar flare due to change in magnetic field configuration. In Chapter 7, we

use the NLFF field solutions obtained in Chapter 6 and estimate the amount

of free-energy due to braiding in these configurations. We then apply a model

of SOC to this field and calculate the power-law distribution of flare energies

which is then compared with observations. In Chapter 8, we present a model

of nonlinear turbulent dynamo applied to a disc galaxy having a force-free
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corona. We discuss the significance of small-scale magnetic helicity fluxes

with regards nonlinear saturation of the dynamo. Chapter 9 then presents a

summary of the results from all chapters, highlight the novel aspects of this

Thesis with its impact. Then, we present future work which includes papers

under preparation.
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Abbreviations

AC Alternating Current.

AR Active Region.

CME Coronal Mass Ejection.

DC Direct Current.

DNS Direct Numerical Simulations.

EDQNM Eddy Damped Quasi-Normal Markovian.

emf electromotive force.

EUV Extreme Ultraviolet.

FOSA First-Order Smoothing Approximation.

HXR Hard X-rays.

ISM Interstellar Medium.

MFD Mean Field Dynamo.

MHD Magnetohydrodynamics.



Abbreviations xvi

MRI Magneto-rotational Instability.

MTA Minimal-τ Approximation.

NLFFF Nonlinear Force-Free Field.

PIL Polarity Inversion Line.

RM Faraday Rotation Measure.

SNe Supernovae.

SOC Self-Organized Criticality.

SOCA Second Order Correlation Approximation.

SOHO Solar and Heliospheric Observatory.

SP Spectro-Polarimeter.

SXR Soft X-rays.

TRACE Transition Region And Coronal Explorer.

UV Ultraviolet.



Nomenclature

Beq Equipartition magnetic field.

H ′ Mean small-scale magnetic helicity.

Rm Magnetic Reynolds number.

αk Kinetic α effect.

αm Magnetic α effect.

E Mean turbulent emf.

η Magnetic diffusivity.

ηt Turbulent diffusivity.

A Magnetic vector potential.

B Total magnetic field.

E Electric field intensity.

J Current density.

U Velocity of plasma.

b Small-scale magnetic field.



Nomenclature xviii

M Mach number of turbulence.

µ0 Magnetic permeability.

ν Kinematic viscosity.

H Large-scale magnetic helicity.

B Mean magnetic field.

ρ Mass density.

σ Electrical conductivity.
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Chapter 1

Introduction

1.1 Astrophysical magnetic fields

Magnetic fields are ubiquitous in the universe and play an important role

in variety of astrophysical phenomenon. It is thus very important to un-

derstand the origin, structure and strength of these astrophysical magnetic

fields. Magnetic field of Sun was first discovered by Hale (1908), a few hun-

dred years after the discovery of magnetic fields on Earth. The magnetic

fields on other stars were detected half a century later by Babcock (1947).

There is a large variation in strength of magnetic field as observed in different

astrophysical objects (presented in Table 1.1 along with the corresponding

observational technique). The first theory to explain the origin of magnetic

field in the Earth and the Sun was proposed by Larmor (1919). According

to this theory, known as the hydromagnetic dynamo theory, the magnetic

fields are maintained and amplified by fluid motion in a conducting plasma.

Cowling (1933), in an anti dynamo theorem proved the impossibility of main-

taining an axisymmetric magnetic field by fluid motions. Steenbeck, Krause,

and Rädler (1966) proposed a practical and convenient approach called the
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mean field electrodynamics, which simplified the study of large scale magnetic

fields. Parker (1955) proposed a hydrodynamic dynamo model associated

with the helicity of the flow. A topological approaches to the hydromagnetic

dynamo problem was proposed by Moffatt (Moffatt, 1969) which led to fur-

ther progress of the dynamo theory. Along with the large-scale fields, the

role played by small-scale, fluctuating magnetic field is particularly impor-

tant, especially with regards to the back reaction of the field on the fluid

motion (the nonlinear dynamo problem). A self-consistent treatment of the

back reaction of the magnetic field on the turbulence or rotation is required

to explain the saturation strength of the mean magnetic field (Zeldovich,

Ruzmaikin, and Sokolov, 1983; Gruzinov and Diamond, 1994; Brandenburg

and Subramanian, 2005a). This thesis focuses on the magnetic fields in the

solar corona and the large-scale fields observed in disc galaxies. We first be-

gin by giving below, a short description of the properties of magnetic fields

in the Sun and disc galaxies.

Object Field strength Observational technique

Intergalactic medium 10−9 G Faraday rotation

Galaxy 10−6 G Faraday rotation

Interstellar clouds 10−5 G Zeeman effect in 21 cm

Quasars 100 G Intrinsic Faraday rotation

Sun 1 G Zeeman effect, Hanle effect, Faraday rotation

White dwarfs 106 G Polarized synchrotron emission

Neutron stars 1012 G Polarized synchrotron emission

Table 1.1: The magnetic field strength observed for different astrophysical objects

with the corresponding observational technique.
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1.2 Solar magnetic fields

1.2.1 Overview of the solar interior and atmosphere

Our nearest star, Sun is a typical star in our galaxy, of spectral type G2-V

having a radius of R�= 7×1010 cm and a mass of M� = 2×1033 g. The Sun

is of particular significance to us as it the ultimate source of energy for the

entire solar system. The Sun has been an object of fascination and has been

studied with interest for thousands of years. It is the closest laboratory for

studying various astrophysical plasma processes in great detail. The basic

structure of the Sun is sketched in Figure 1.1.

Figure 1.1: The interior of the Sun. Figure courtesy: Kelvinsong (Wikipedia)1

The Sun was formed from a contracting and rotating interstellar cloud

1Licensed under CC BY-SA 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Sun poster.svg#/media/File:Sun poster.svg.
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around 5 billion years ago. After gravitational contraction and subsequent

collapse, the central object became the Sun when the core temperature was

hot enough to ignite thermonuclear reactions. The central core has a tem-

perature of ∼ 15 million K and a density of ∼ 160 g cm−3. The fusion

of hydrogen nuclei (H) into helium nucleus (He) takes place mainly by the

proton-proton (PP) chain and partly by the CNO cycle. During this process

four protons (1H) fuse to form one Helium nucleus (4He) releasing 27.6 MeV

of energy along with two positrons (e+) and two electron neutrinos (ν)

41H→4 He + 2e+ + 2ν + 27.6 MeV.

The radiative zone extends out from the core to about 0.7 solar radii,

where energy is transported mainly by radiative diffusion. The ions of hydro-

gen and helium emit hard X-ray photons, which travel only a brief distance

before getting scattered, absorbed and remitted by other ions during a period

of random walk for 105 − 106 years. In the Sun’s outer layer, from ∼ 0.7R�

to its surface, the temperature is lower than the interior so the heavier atoms

are not fully ionized. As a result, the heat transport through radiation is not

very effective and thermal convection becomes the dominant mode of energy

transport. Material at the base of the convection zone heats up, expands

(which reduces its density) and rises till the base of photosphere where it

releases energy through diffusion and radiation. As the material cools off, its

density increases and it sinks back to the base of the convection zone, where

it again picks up heat from the top of the radiative zone, thus continuing

the convective cycle. These thermal columns in the convection zone leave

an imprint on the photosphere as the solar granulation and supergranulation

patterns. At the photosphere (the solar surface that is observed in white

light), the temperature drops to ∼ 5,700 K and the photons leave the Sun

in optical wavelengths which is about a factor of 105 lower than the original
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hard X-ray photons generated in the nuclear core. The solar surface radiates

most of the its energy in the optical wavelengths, whereas in the solar corona,

which contains ionized plasma in the temperature range of ∼ 1 − 2 million

K, the emission in EUV is most dominant.

1.2.2 The solar dynamo and sunspots

The Sun possess a strong magnetic field (compared to the planets in the

solar system), which is generated with a magnetic field strength of B ∼ 105

G in the tachocline, which is a transition layer between the radiative zone

and the convective zone. In this region, there is a sharp change between

the uniform rotation of the radiative zone and the differential rotation of

the convection zone, which results in a large shear generation in this region.

Magnetic flux tubes can become buoyant and rise through the convection

zone and emerge at the solar surface in active regions, which leads to the

formation sunspots with magnetic field strengths of B ∼ 103 G. This is often

in the form of a leading sunspot, followed by groups of opposite magnetic

polarity. The coronal loops are seen with field strengths of B ∼ 102 G. The

differential rotation on the solar surface winds up the surface magnetic field,

which is carried to the poles through meridional circulation. This process re-

orients the toroidal component of the magnetic field line (which is oriented

in the east-west direction) at solar maximum into a poloidal field (which

connects the magnetic North Pole to the South Pole) in the solar minimum

(see Figure 1.2). This process which changes the direction of magnetic field

of the Sun almost every 11 years is called the solar dynamo. The initial

magnetic configuration is assumed every ∼ 22 years. This is known as the

solar cycle. During the maximum of the solar cycle, there is a peak in the

solar activity which is inferred from the sunspot number and occurrence of
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events like flares and coronal mass ejections (CMEs).

Figure 1.2: Illustration showing how magnetic fields are recycled to produce

sunspots within the solar convection zone (the top 30% of the solar interior, shown

in white, surrounding the radiative core, in orange). As the sun rotates faster at the

equator than the poles, the north-south (poloidal) magnetic field (a) gets twisted

into an east-west (toroidal) field (b). Regions of enhanced toroidal field become

buoyant and rise to the surface. These field lines get twisted in the process due

to the rotation of the Sun and emerge as sunspots on the photosphere(c, upper

right). Panels (d) and (e) show the solar dynamo, the meridional circulation of

the plasma (shown in yellow) carries the surface magnetic flux toward the poles.

This process reverses the direction of the polar field which eventually move back

toward the equator. The new sunspots that are formed now from the poloidal field

(f), will have opposite polarity to those that in (a). Figure courtesy: M. Dikpati,

NCAR2

The solar magnetic fields can be directly inferred from observations of

the photospheric field, from splitting of spectral lines in visible wavelengths

2http://www.ucar.edu/communications/quarterly/spring06/images/dikpati.jpg
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(e.g. Fe 5250 Å) due to the Zeeman effect. The two-dimensional (2D) maps

of the photospheric magnetic field strength are called magnetograms. An

example of a magnetogram depicting the line of site magnetic field obtained

through Solar and Heliospheric Observatory (SOHO) is depicted in Figure

1.3. Maps of three-component photospheric magnetic field are called vector

magnetograms which can be obtained using instruments like the Spectro-

Polarimeter (SP) on board HINODE. The coronal magnetic field is recon-

structed using extrapolation techniques from magnetograms at the lower

boundary, where the magnetic field is assumed to be following a potential

field or force-free field equation of state. The extrapolation of magnetic field

through the chromosphere and transition region is largely uncertain because

of the unknown currents and non force-free conditions. The coronal loops

generally exhibit much less expansion with height than predicted by potential

field models, so non-linear force-free models are more favored. Direct mea-

surements of the magnetic field in coronal heights are yet to be established.

Sunspots are the regions with the strongest magnetic fields on the photo-

sphere. Sunspots appear dark because they are regions of lower temperature

than the areas surrounding them. Large sunspots typically have tempera-

tures of about 4,000 K which is much lower than the temperature of 5,700

K in the photosphere, that surrounds the sunspots. Sunspots are good indi-

cators of solar activity. The appearance of sunspots are usually confined to

an equatorial belt ranging between -35 degrees south and +35 degrees north

in latitude. When a new solar cycle begins, sunspots tend to appear at high

latitudes, but as the cycle progresses towards its maximum (marked by large

numbers of sunspots), the sunspots appear at lower latitudes. During the

3http://solar-center.stanford.edu/solar-images/magnetograms.html
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Figure 1.3: Line-of sight magnetogram of the Sun. Here white represents the

north polarity (outward directed) while black represents the south polarity (inward

directed) of the magnetic field. The gray color represents regions of weak magnetic

field. Figure courtesy: SOHO3

minimum of the cycle, sunspots appear very close to the equator, and as a

new cycle begins, sunspots again form at high latitudes. This recurrent be-

havior of sunspots shows a “butterfly” pattern when the number of sunspots

are plotted as a function of latitude and time (Figure 1.4). This feature

was first discovered by Edward Maunder in the year 1904. All solar activ-

ity phenomena such as the flare rate, active region area, global soft X-ray

brightness, and radio emission, which are controlled by the magnetic field

have a similar solar cycle dependence as sunspots. The total luminosity of

the Sun lowers by ∼ 0.15% during the sunspot maximum due to appearance
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of dark sunspots.

Figure 1.4: Top: The butterfly diagram of sunspot appearance marks the latitude

of sunspot locations as a function of time, during the solar cycles 12-23 (covering

the years 1880-2000). Bottom: Sunspot area plotted as a function of time. Figure

courtesy: D. Hathaway, NASA/MSFC4

1.2.3 Coronal magnetic fields

The hot plasma can can only propagate along these field lines (the cross-field

diffusion is strongly inhibited), so the magnetic field controls the dynamics

and topology of all coronal phenomena. The coronal loops are nothing but

conduits filled with heated plasma whose geometry is shaped by that of the

coronal magnetic field. The solar corona is generally divided into three zones,

namely : (1) active regions, (2) quiet-Sun regions, and (3) coronal holes.

4http://solarscience.msfc.nasa.gov/images/bfly.gif
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1. Active regions: Active regions areas of strong magnetic field concen-

trations visible as sunspot groups in optical wavelengths or magne-

tograms. Active regions are mainly made up of closed magnetic field

lines of bipolar nature. Typically sunspots appear in a strongly concen-

trated leading magnetic polarity which is followed by a weaker trailing

group, having the opposite polarity. Magnetic activities like magnetic

flux emergence, flux cancellation and magnetic reconnection processes

occur in active regions which leads to events like flares and CMEs.

These processes lead to heating of the plasma in the chromosphere

which causes up flows hot plasma into coronal loops, which produce

bright emission in soft X-rays and EUV wavelengths. The closed-field

lines also produce a slow solar wind component of ∼ 400 km/s. Active

regions comprise a larger area around sunspots, with average photo-

spheric fields of B ≈ 100 − 300 G, containing small-scale pores with

typical fields of B ≈ 1000 G.

2. Quiet-Sun Regions: The areas outside of active regions are generally

referred to as quiet-Sun regions. Small-scale dynamic processes in the

quiet Sun include network heating events, nanoflares, bright points and

soft X-ray jets.

3. Coronal holes: The polar regions of the Sun are dominated by open

magnetic field lines. Since open field lines are efficient conduits for

transporting energy (fed by chromospheric upflows), from the corona

into the solar wind, they are generally darker than the equatorial zones.

Open-field lines connect the solar surface with the interplanetary field

and are the source of the fast solar wind (∼800 km/s). The quiet

Sun and the coronal holes have a net background magnetic field of
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B ≈ 0.1− 0.5 G.

1.2.4 Solar flares and CMEs

Flares and CMEs are eruptive phenomena in the solar corona which result

from a loss of equilibrium in the magnetic field configuration, driven by mag-

netic reconnection. New magnetic flux generated by the solar dynamo is

constantly added into the corona, which rises due to buoyancy from the bot-

tom of the convection zone through the photosphere into the corona. Also

the differential rotation and the motion at the solar surface continuously

twist and tangle the coronal fields. These dynamic boundary conditions con-

stantly stress the coronal magnetic field which has to adjust its topology by

restructuring the large-scale magnetic field through the magnetic reconnec-

tion processes. These topological changes in the magnetic field configuration

liberate the free (non potential) energy of the system, which is released into

the heating of plasma and the acceleration of particles. When the magnetic

reconnection processes happens suddenly with a large release in energy, they

are manifested as flares and CMEs. During these eruptive events, there is

emission of radiation in almost all wavelengths: radio, white light, EUV, soft

X-rays, hard X-rays, and even gamma rays during large flares. The energy

released in flares extend over many orders of magnitude; a large flare can

be of the order of 1033 ergs. Smaller flares that have an energy content of

10−6 to 10−9 times that of the largest flares are categorized as microflares

and nanoflares, and are observed not only in active as well as the quiet-Sun

regions of the corona.
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1.2.5 The coronal heating problem

Spectroscopic observations of the solar corona by Grotrian in 1930s revealed

some unusual absorption lines (Grotrian, 1934) which were identified as Fe IX

and Ca XIV by Edlén (Edlén, 1943). These highly ionized lines correspond

to a coronal temperature of T ∼ 1 MK. When this is compared to the

temperature of the underlying photosphere, which is close to 6000 K (see

Fig.1.5), we are confronted with the puzzle of how the coronal temperature

is maintained at several hundred times that of the photosphere. This is

known as the coronal heating problem.

Figure 1.5: Electron density and temperature model of the chromosphere

(Fontenla, Avrett, and Loeser (1990); Model FAL-C) and lower corona (Gabriel,

1976). Figure courtesy: Aschwanden (2004).

If we consider only thermal conduction, then the temperature in the

corona should steadily drop down from the chromospheric value with in-

creasing distance. Moreover, due to radiative losses through EUV emission

(as seen in the TRACE5 images, Fig. 1.6), the corona would cool off within

5TRACE is a NASA Small Explorer Project, built and operated by Lockheed Martin
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a timescale of few hours to days unless energy is constantly supplied to it

through some heating mechanisms. An overview of these heating mechanisms

is presented in §4.1.

Figure 1.6: EUV emissions from hot coronal loops taken from TRACE in the

171Å passband which has a characteristic plasma temperature of 1 MK.

1.3 Galactic magnetic fields

The total magnetic fields observed in spiral galaxies is typically of strength

B ∼ 10µG, which is comparable to the equipartition field strength Beq =
√
µ0ρuT of the Interstellar Medium (ISM) turbulence. For a density of order

10−24 g/cm3 and a turbulence velocity of about 10 km/s, Beq≈ 3.5µG. The

energy budgets for various components like ISM, magnetic fields, cosmic

rays, turbulence and gas rotation for NGC 6946 are shown in Table 1.2. We

can see that the turbulence and the magnetic fields are roughly in energy

Solar and Astrophysics Lab
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equipartition, which is one magnitude higher than the thermal energy of the

gas.

Warm medium Magnetic field Cosmic ray Turbulence Gas rotation

1 13 13 10 5000

Table 1.2: Average energy densities in 1012 erg/cm3 in the inner disc of NGC

6946 (Beck, 2002)

The total magnetic field B can be divided into a mean large-scale compo-

nent B with a coherent scale approaching the radius of the disc (∼ 10 kpc)

and a small-scale random component b which is coherent over the outer scale

of interstellar turbulence (∼ 100) pc. Thus we can write

B = B + b (1.1)

where B = B, b = 0 and 〈B2〉 = B
2
+〈b2〉. The overbar formally denotes en-

semble averaging, but for all practical purposes can be thought of as spatial

averaging over scales greater than the turbulent scale and less than the scale

of the system (Germano, 1992; Gent et al., 2013). The galactic magnetic

fields can be observed in the optical range through the polarization induced

in starlight, when it is scattered by interstellar dust grains present in the

foreground. These grains are elongated in shape and often get aligned by the

magnetic fields (such that the major axis of the grain becomes perpendic-

ular to the magnetic field lines). These aligned dust grains show polarized

infrared emission, which help us determine the magnetic fields in dust clouds

in the Milky Way. Relatively strong fields in the nearby dense gas clouds of

the Milky Way can be observed through the Zeeman splitting of radio spec-

tral lines. The most powerful technique for measuring magnetic fields across

Milky Way and nearby galaxies is through the observation of polarized syn-
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chrotron radio emission. The total magnetic field strength in the plane of the

sky can be inferred from the total synchrotron intensity, provided we know

the cosmic ray electron density, ncr. The polarized synchrotron emission is

produced only by magnetic fields with a preferred orientation. The amount

of Faraday Rotation Measure (RM) of the polarized synchrotron emission

along a given line of sight, which is produced only by large-scale magnetic

fields is determined by the magnetic field along the line of sight and the ther-

mal electron density, ne. The total I, polarized P synchrotron intensities

and the RM are calculated as weighted integrals of magnetic field over the

line of sight L as (Shukurov, 2004)

I = K

∫
L

ncrB
2
⊥dl

P = K

∫
L

ncrB
2

⊥dl (1.2)

RM = K1

∫
L

neB
2
‖dl

(1.3)

where subscripts ⊥ and ‖ refer to the perpendicular and parallel components

of the magnetic field taken with respect to the line of sight, and K and

K1 =e3/(2πm2
ec

4) =0.81 rad m−2 cm3 µG−1 pc−1 are certain dimensional

constants (with e and me the electron charge and mass and c the speed

of light). The degree of polarization p is related to the ratio 〈b2〉/B2
as

(Shukurov, 2004),

p ≡ P

I
≈ p0

B
2

⊥
B2
⊥

= p0
B

2

⊥

B
2

⊥ + 2
3
〈b2〉

(1.4)

where the random field b has been assumed to be isotropic, ncr has been

assumed to be constant and p0 ∼ 0.75. This widely used relation is only

approximate as it does not allow for any anisotropy of the random magnetic
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field or the dependence of ncr on B (Sokoloff et al., 1998). The intensity

of synchrotron emission is a measure of the density of cosmic-ray electrons

and of the strength of the total magnetic field component in the sky plane.

The degree of linear polarization of synchrotron emission for a completely or-

dered field can be as high as 75%. Anisotropic turbulent fields (with random

orientations), which are generated from isotropic turbulent fields can give

polarized emission on scales smaller than the telescope beam while isotropic

turbulent fields that have been generated by turbulent gas flows give rise to

unpolarized synchrotron emission. Thus three components of the total field

namely: regular, anisotropic turbulent and isotropic turbulent fields, can be

distinguished by observations. The Faraday rotation measure, RM, is sensi-

tive to the direction of B (the sign of B‖) and this allows one to determine

the orientation as well as the direction of B. Thus, the measurement of

Faraday rotation helps us in revealing the three-dimensional structure of the

magnetic field (Beck et al., 1996; Berkhuijsen et al., 1997).

In many cases, a quadrupolar symmetry of the magnetic fields is found

to be dominant along with symmetry with respect to the rotation axis (Fig-

ure 1.7). Krause and Beck (1998) mention the difference of dipolar and

quadrupolar field symmetry whereby, if the magnetic field amplitudes aver-

aged over the whole sky is zero, then the galactic magnetic fields have dipolar

symmetry; otherwise the symmetry is quadrupolar.

The pitch angle, defined as p = arctan(Br/Bφ) gives the ratio of the

radial (Br) and the azimuthal (Bφ) component of the magnetic field. For

galaxies pitch angles of in the range 10-40° have been reported which decrease

with the radial distance (Rüdiger and Hollerbach, 2004). Such observed

values indicate that the differential rotation does not play a dominant role

6http://www.scholarpedia.org/article/File:N5775.jpg
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Figure 1.7: Optical image of the spiral galaxy NGC 5775 seen almost edge-on

in the Hα line overlaid by contours of the total radio emission intensity at 6cm

wavelength and polarization vectors, observed with the VLA (Tüllmann et al.,

2000). We can notice that the field lines are parallel to the disk near the plane, but

orient vertically above and below the disc. Figure courtesy: Cracow Observatory6

in magnetic field generation in galaxies. The frozen-in magnetic fields which

are wound up by differential rotation (due to small magnetic diffusivity),

are expected to show small pitch angles. Only when the diffusivity is large,
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does one expect to observe large pitch angles. In NGC 4414, pitch angles

up to 45° have been found. In the case of NGC 6946 pitch angles have

been observed between 20° and 30°. Here, the large-scale magnetic fields

are concentrated between the optical spiral arms as seen in Figure 1.8 with

axisymmetric orientation for the azimuthal field (Beck and Hoernes, 1996).

The turbulent component of the magnetic field in the spiral arm is observed

to have a strength of 15 µG, while the regular field located in the inter arm

region is around 10 µG .

Figure 1.8: Polarized radio emission (contours) and B-vectors of NGC 6946,

combined from observations at 6 cm wavelength with the VLA and Effelsberg

telescopes (Beck, 2007), overlaid onto an H image. Figure courtesy: MPIfR, Bonn

7
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1.4 Aims of this thesis

� To obtain new solutions to the nonlinear force-free field equation and

applying them observed vector magnetograms of photospheric magnetic

fields. To use the full three-dimensional solutions to determine topo-

logical properties, like free-energy and relative helicity of the coronal

magnetic fields, and estimate the energy released in solar flares due to

changes in magnetic field topology.

� To estimate the amount of braiding in corona magnetic fields and apply

models of Self-Organized Criticality (SOC) to obtain the power-law

distribution for peak-flare energies.

� To study gauge invariant forms of magnetic helicity in arbitrary ge-

ometries and apply them to the specific cases of solar corona and disc

galaxies.

� To apply magnetic helicity conservation and study the nonlinear sat-

uration of dynamo for a disc galaxy in the presence of a force-free

corona. We also study the dependence of saturated field strength on

the small-scale helicity fluxes.

The thesis aims at using the magnetic helicity conservation and properties of

force-free magnetic fields in different astrophysical context. We solve the lin-

ear and nonlinear force-free field equation for the case of solar corona through

photospheric boundary conditions and use magnetic helicity to estimate the

free energy content in these fields, available for release during eruptive events

like solar flares. The magnetic helicity conservation is then used as a con-

straint on the action of turbulent dynamos in disc galaxies, which leads to

7http://www3.mpifr-bonn.mpg.de/staff/rbeck/MKSP/Pictures/n6946.jpg
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nonlinear saturation of the large-scale field strength. The magnetic helicity

flux from the galactic disc forms a corona surrounding the disc during the

course of dynamo action, which in its relaxed state, is assumed to follow the

linear force-free equation.

1.5 Thesis constituents

The structure of this thesis is arranged into the next eight chapters. Chapter

2 outlines the basics concepts of MHD and describes the processes relating

to magnetic field generation and dissipation. We also discuss the topological

properties of magnetic field using magnetic helicity and provide a novel pre-

scription for calculating magnetic helicity in arbitrary geometries. Chapter

3 presents a description of potential and force-free fields and outlines their

important properties. We then discuss analytical and numerical techniques

for solving potential and force-free fields equations for determining coronal

magnetic fields. In Chapter 4, we present an overview of various coronal

heating mechanisms and discuss the statistical properties of solar flares. We

then discuss braiding in coronal magnetic fields and calculate the free energy

in these configurations due to braiding. Chapter 5 gives an introduction to

large-scale turbulent dynamos and discusses various closure approximations

used in mean field MHD. We then present its application to disc galaxies,

discuss the basic analytic solutions and give an overview of current problems

in dynamo theory. In Chapter 6, we present new solutions to the nonlinear

force-free field equation and discuss its application for determining the topo-

logical properties of coronal magnetic fields, such as their free-energy and

relative helicity. We then apply the solutions to a time sequence of vector

magnetograms to estimate the energy released in a solar flare due to change



21 1.5 Thesis constituents

in magnetic field configuration. In Chapter 7, we use the NLFF field so-

lutions obtained in Chapter 6 and estimate the amount of free-energy due

to braiding in these configurations. We then apply a model of SOC to this

field and calculate the power-law distribution of flare energies which is then

compared with observations. In Chapter 8, we present a model of nonlinear

turbulent dynamo applied to a disc galaxy having a force-free corona. We

discuss the significance of small-scale magnetic helicity fluxes with regards

nonlinear saturation of the dynamo. Chapter 9 then presents a summary

of the results from all chapters, highlight the novel aspects of this Thesis

with its impact. Then, we present future work which includes papers under

preparation.
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Chapter 2

Basics of MHD and magnetic

helicity

2.1 General principles

In this chapter we develop from basic principles, some useful concepts such as

the induction equation, flux freezing of magnetic fields and obtain expressions

for magnetic energy and dissipation. We also introduce the basic concepts

of magnetic topology and relative helicity. These ideas are important to un-

derstand various plasma processes and explain the generation, amplification

and dissipation of magnetic fields. In this thesis our aim is to investigate

the structure and strength of magnetic fields in two astrophysical settings:

the Sun and disc galaxies. In §2.5 1 , we also provide a new formulation for

relative helicity in arbitrary geometries using the toroidal-poloidal represen-

tation of the magnetic field and discuss its utility for specific cases of planar

and spherical geometry.

The equations of Magnetohydrodynamics (MHD) are the usual electro-

1The work presented in part in §2.5 is in preparation for submission.
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magnetic and hydrodynamic equations, modified to take account of the in-

teraction between the motion and the magnetic field (Cowling, 1976). If J is

the current density, and B the magnetic field, then from Maxwell’s equations

(written in SI unites), we get,

∇×B = µ0J; ∇ · J = 0. (2.1)

where µ0 is the magnetic permeability. Also if E is the electric field intensity

∇× E = −∂B

∂t
, ∇ ·B = 0. (2.2)

If a material in the plasma moves with a velocity U, it is subjected to a total

electric field of E + U×B. Thus if σ is the electrical conductivity then

J = σ(E + U×B). (2.3)

For a mass density ρ, the hydrodynamic equation of continuity is given by

∂ρ

∂t
+∇ · (ρU) = 0. (2.4)

The Euler equation of motion in the presence of force due to gravity F is

given by

ρ
dU

dt
= −∇p+ F + Fvis + J×B, (2.5)

where p is the pressure, Fvis is the viscous force per unit volume and

d

dt
=

∂

∂t
+ U · ∇ (2.6)

In a liquid Fvis is given by

Fvis = ρν∇2U (2.7)

where ν is the kinematic viscosity. If Q is the heat loss per unit volume the

heat equation is

ρ
dQ

dt
=
p

ρ

dρ

dt
+ ε, (2.8)
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where ε is the heating effect per unit volume due to viscosity, heat conduction

and the flow of electric currents. In uniform liquids

ε = ρν|∇ ×U|2 + λ∇2T +
J2

σ
, (2.9)

where T is the temperature and λ the thermal conductivity.

2.2 Electromagnetic effects

An equation for the evolution of the magnetic field can be derived by com-

bining Ohm’s law and Faraday’s law. Assuming σ to be spatially uniform,

the Ohm’s law is given by equation (2.3). Rearranging the terms in equation

(2.3), we get the following expression for the electric field

E = −U×B +
J

σ
. (2.10)

Taking a curl of equation (2.10) we obtain

∇× E = −∇× (U×B) +
1

µ0σ
∇×∇×B. (2.11)

Combining equations (2.2) & (2.11), we get

∂B

∂t
= ∇× (U×B) + η∇2B, (2.12)

where η=(µ0σ)−1, is called the magnetic diffusivity. Equation (2.12) is known

as the induction equation. If the material is at rest, equation (2.12) reduces

to the diffusion equation:
∂B

∂t
= η∇2B. (2.13)

The equation indicates that the field leaks through the material from point

to point and decays as oppositely directed fields initially at different points

leak together and neutralize each other. Dimensional arguments indicate a
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time of decay of order: τ = L2/η = µ0σL
2. For lab conductors, the time

of decay is short, say 10 s for a Copper sphere of radius 1 m. For the Sun,

τ ∼ 109years. Thus, magnetic field lines in a large conducting mass leak

very slowly. Suppose the material is in motion, and has negligible electrical

resistance, then
∂B

∂t
= ∇× (U×B) . (2.14)

This implies that the field changes are the same as if the magnetic field lines

were constrained to move with the material. The ratio of the right hand side

(RHS), of equations (2.13) & (2.14) gives us a dimensionless number called

the magnetic Reynolds number, Rm, given by:

Rm =
vB/L

ηB/L2
=
Lv

η
. (2.15)

The transport effects are weak if Lv >> η i.e. Rm >> 1, which is readily

satisfied in astrophysical scenarios.

2.2.1 Frozen in fields

For a medium with infinite conductivity, σ = ∞, equation (2.10) becomes

E + U × B = 0. Under this condition, equation (2.12) reduces to equation

(2.14). If we consider any loop S in the plasma, there are two contributions

to the change in B with time. First, there may be changes in magnetic field

due to external causes and second, there is a change in flux due to motion of

the loop. The first contribution is

∫
∂B

∂t
· dS. The second component which

is due to induced emf produced by the motion of loop given by∫
B · ∂S

∂t
=

∫
B · ∂

∂t
(Udt× dl) = −

∮
(U×B) ·dl = −

∫
∇× (U×B) ·dS

(2.16)
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Adding, together both contributions, we obtain

d

dt

∫
B · dS =

∫
∂B

∂t
· dS−

∫
∇× (U×B) · dS

=

∫ (
∂B

∂t
−∇× (U×B)

)
· dS = 0. (2.17)

i.e. the magnetic flux through the loop is constant. In this situation the

behavior of field is controlled completely by the motion of fluid. One usually

says that the magnetic field is frozen into the medium. If dS is the normal

cross-section of a magnetic flux tube, the strength BdS of the tube must

remain constant as it is carried about with the material. If dl is the distance

along the tube between two neighboring cross-sections, the mass ρdldS be-

tween these sections also remain constant as the tube is carried about. Hence

during the motion B ∝ ρdl; i.e. if the motion extends the field lines, it in-

creases B/ρ in the same ratio. Using equations (2.2), (2.4) & (2.14), we can

work out the following steps

∂

∂t

(
B

ρ

)
+ U · ∇

(
B

ρ

)
= B

∂

∂t

(
1

ρ

)
+

1

ρ

∂B

∂t
+

1

ρ
(U · ∇) B + B (U · ∇)

1

ρ

= −B

ρ2

∂ρ

∂t
+

1

ρ
∇× (U×B) +

1

ρ
(U · ∇) B + B (U · ∇)

1

ρ

=
B

ρ2
∇ · (ρU) +

1

ρ
(B · ∇) U− 1

ρ
(U · ∇) B +

U

ρ
(∇ ·B)− B

ρ
(∇ ·U)

+
1

ρ
(U · ∇) B + B (U · ∇)

1

ρ

=
B

ρ
(∇ ·U) +

B

ρ2
U · (∇ρ) + B (U · ∇)

1

ρ
+

1

ρ
(B · ∇) U− B

ρ
(∇ ·U)

=
B

ρ2
U · (∇ρ) + B (U · ∇)

1

ρ
+

1

ρ
(B · ∇) U

=
1

ρ
(B · ∇) U (2.18)

Equation (2.18) can be integrated to indicate how the field is modified by a

given internal displacement of the fluid (Zeldovich, Ruzmaikin, and Sokolov,
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1983). If, after a finite time, the position vector r of a material point has

altered to r′; suppose that the field and density at this material point have

altered from B and ρ to B′ and ρ′. Then B′/ρ is the increment in r′ which

corresponds to the initial increment B/ρ in r. Integrating equation (2.18)

we obtain

B′

ρ′
− B

ρ
=

∫
B

ρ
· ∇
(

dr

dt

)
dt =

[
B

ρ
· ∇r(t)

]t=t′
t=0

=

(
B

ρ
· ∇
)

r′ − B

ρ
(2.19)

This gives
B′

ρ′
=

(
B

ρ
· ∇
)

r′. (2.20)

2.2.2 Magnetic Energy and Stresses

The energy density of a magnetic field is given by B2/2µ0 and the total

energy WM , is

W =

∫
B2

2µ0

dV, (2.21)

the integration being over the volume occupied by the field.

The rate of change of energy is given by

dW

dt
=

d

dt

∫
B2

2µ0

dV =
1

2µ0

∫
∂

∂t
(B2)dV =

1

µ0

∫
B · ∂B

∂t
dV

=
1

µ0

∫
B · {∇ × (U×B) + η∇2B}dV. (2.22)

Now

µ−1
0

∫
ηB · ∇2BdV = −µ−1

0

∫
ηB · ∇ × (∇×B)dV

= −
∫
ηB · (∇× J)dV

= −
∫
η[∇ · (J×B) + J · (∇×B)]dV

= −η
∮

(J×B) · dS − η
∫

J · (∇×B)dV

= −
∫

J2

σ
dV. (2.23)
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If the volume occupied by the field is infinite, the use of the divergence

theorem leads to a surface integral over an infinite sphere. To ensure that this

surface integral vanishes, it is sufficient to assume that the current density J

vanishes outside an appropriate finite volume. Thus the η term on the right

of equation (2.23) represents the conversion of magnetic energy into Joule

heating at the rate J2/σ per unit volume. Again the U term on the right of

equation (2.22) is

µ−1
0

∫
B · [∇× (U×B)]dV

= µ−1
0

∫
[∇ · [(U×B)×B] + (U×B) · (∇×B)]dV

= µ−1
0

∮
(U×B)×Bds+ µ−1

0

∫
(U×B) · (∇×B)dV

=

∫
(U×B) · JdV = −

∫
U · (J×B)dV. (2.24)

Thus this term represents the decrease of magnetic energy because of work

done by the magnetic force J ×B on the material. This term can be inter-

preted in terms of Maxwell’s stresses. Since ∇×B = µ0J and ∇ ·B = 0,

J×B = −µ−1
0 B× (∇×B) = µ−1

0

(
1

2
∇B2

)
+ (B · ∇)B

= −∇
(

B2

2µ0

)
+∇ ·

(
BB

µ0

)
, (2.25)

where the last term is a dyadic. This equation implies that the force J×B is

equivalent to a hydrostatic pressure B2/2µ0, together with a tension B2/µ0

per unit area along the magnetic flux tubes. If the motion produces no

density changes, a hydrostatic pressure does no work. Thus, changes in

magnetic energy result solely from work done against the tension B2/µ0

along the field lines; any extension of the field lines increases the magnetic

energy.
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2.3 Magnetic helicity

2.3.1 Introduction

The magnetic helicity of a magnetic-field configuration is defined as:

H =

∫
dV (B ·A), B = ∇×A. (2.26)

where A is the vector potential. For a given magnetic field configuration,

the vector potential is defined only to within a gauge transformation,

A→ A′ +∇χ, (2.27)

where χ is an arbitrary scalar function of position. The corresponding change

in helicity is given by

H → H ′ = H +

∫
dV (B · ∇χ)

H ′ −H =

∫
dV ∇ · (χB) =

∮
n̂ ·Bχ. (2.28)

where the surface integration is taken over the boundary containing the region

over which helicity is calculated. The helicity integral is well defined if the

field extends over all of space and if B decreases rapidly with distance. For

a magnetic field configuration of finite dimensions, we see that magnetic

helicity is well defined if and only if n̂ ·B = 0 on the boundary surface.

2.3.2 Helicity conservation

The helicity of a magnetic-field configuration is conserved if

1. the field is confined within a closed surface S,

2. n̂ ·B = 0 at the surface and
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3. the field permeates a perfectly conducting medium, that moves in such

a way that n̂ ·U = 0 on S.

From induction equation (2.12):

∂B

∂t
= ∇× (U×B)

∇× ∂A

∂t
= ∇× (U×B)

∂A

∂t
= (U×B) +∇χ (2.29)

To calculate the time derivative of the magnetic helicity we write

dH

dt
=

∫
dV

[
∂A

∂t
·B + A · ∂B

∂t

]
=

∫
dV

[
∂A

∂t
· (∇×A) + A · ∂

∂t
(∇×A)

]
.

The first term in the integral is∫
dV (U×B) ·B +

∫
∇χ ·BdV =

∫
B · n̂χdS = 0, (2.30)

so we can change its sign without affecting the value of the integral. Then

dH

dt
=

∫
dV ∇ ·

(
∂A

∂t
×A

)
= n̂ ·

(
∂A

∂t
×A

)
=

∫
dS

[
∂A

∂t
· (A× n̂)

]
.

According to our assumptions B(= ∇×A) is perpendicular to n̂. So, A

is parallel to n̂. Then A× n̂ = 0. Therefore

dH

dt
= 0; H = const. (2.31)
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Figure 2.1: Two linked flux tubes.

2.3.3 Self helicity and mutual helicity

Suppose that B is identically zero except in two flux-tubes occupying volumes

V1 and V2 of infinitesimal cross-section following curves C1 and C2 fig.(2.1)

and let Φ1 and Φ2 be the respective fluxes (Moffatt, 1978),

Hm =

∫
Vm

dV A ·B (m = 1, 2) (2.32)

For the configuration drawn, evidently BdV may be replaced by Φ1dx on C1

and Φ2dx on C2 with the result that

H1 = Φ1

∮
C1

A · dx = Φ1Φ2 (2.33)

and similarly

H2 = Φ2

∮
C2

A · dx = Φ1Φ2 (2.34)

More generally, if the tubes link round each other L times (i.e. L is the

linking number of C1 relative to C2) then H1 = H2 = ±LΦ1Φ2. The + or -

being chosen according to the relative orientation of the curves which may be

right- or left-handed. For closed magnetic tubes with i 6= j,Hij = LijΦ1Φ2

can be called the mutual helicity. For i = j, the term Hii is called the self

helicity.
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2.3.4 Dissipation of magnetic helicity

In order to estimate the rate of dissipation of magnetic helicity, we first

calculate the time-derivative of its density, given by

∂

∂t
(A ·B) =

∂A

∂t
·B + A · ∂B

∂t
(2.35)

In the presence of resistivity, the induction equation, (2.12) can be rewritten

as

∇× ∂A

∂t
= ∇× (U×B− η∇×B) (2.36)

Uncurling the above equation, we get (using units with µ0 = 1 for clarity)

∂A

∂t
= (U×B)− ηJ +∇χ. (2.37)

Taking a dot product of equation (2.37) with B, we get

∂A

∂t
·B = U×B ·B− η∇×B ·B +∇χ ·B = −ηJ ·B +∇ · (χB). (2.38)

Also taking the dot product of equation (2.12) with A, we get

A · ∂B

∂t
= A · ∂

∂t
(∇×A) = A · ∇ × ∂A

∂t
= ∇ ·

(
∂A

∂t
×A

)
+
∂A

∂t
·B

= ∇ ·
(
∂A

∂t
×A

)
− ηJ ·B +∇× (χB). (2.39)

Combining equations (2.35), (2.37) & (2.39), we obtain

∂

∂t
(A ·B) = ∇ ·

(
∂A

∂t
×A

)
+ 2∇ · (χB)− 2ηJ ·B. (2.40)

Thus, the rate of change of relative helicity is given by (cf. Mangalam, 2008)

dH

dt
= −2

∫
V

ηJ ·BdV + 2

∮
S

χB · n̂dS +

∮
S

(
∂A

∂t
×A

)
· n̂dS (2.41)

where S is the surface bounding volume V having a normal n̂. In absence

of helicity transfer across boundaries, the derivative of helicity can then be

written as
dH

dt
= −2

∫
V

ηJ ·BdV. (2.42)
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Let W =
∫

B2dV measure the magnetic energy. From equation (2.23), the

Ohmic dissipation rate is given by

∣∣∣∣dW

dt

∣∣∣∣ = 2

∫
ηJ2dV . The integrals are

related by Schwartz inequality (Berger, 1999; Berger, 2013)

1

2η

∣∣∣∣−∫ 2ηJ ·BdV

∣∣∣∣2 ≤ ∣∣∣∣∫ B2dV

∣∣∣∣ ∣∣∣∣∫ 2ηJ2dV

∣∣∣∣
⇒

∣∣∣∣dHdt
∣∣∣∣ ≤

√
2ηW

∣∣∣∣dW

dt

∣∣∣∣ (2.43)

We define a length scale L ≡
∣∣∣∣HW
∣∣∣∣, which measures the effective size

of helical field structure and a dissipation time scale τd =
L2

η
. Consider an

arbitrary reconnection or dissipating process occurring over a time ∆t.(
dH

dt

)2

≤ 2η
H

L

1

L

dH

dt

⇒ Ḣ2 ≤ 1

τd
2HḢ

⇒ Ḣ2 ≤ 1

τd

dH2

dt
. (2.44)

Integrating over time ∆t (
∆H

∆t

)2

≤ 1

τd

H2

∆t

⇒
(

∆H

H

)2

≤ ∆t

τd

⇒
(

∆H

H

)
≤

√
∆t

τd
. (2.45)

This inequality shows that ∆H is negligible for any fast reconnection

event, where ∆t << τd. For example, consider a solar flare, where ∆t ≈ 1000

s, L ≈ 103 km and η = 10−6km2s−1. With these values τd ≈ 1012 s and∣∣∣∣∆HH
∣∣∣∣ < 3× 10−5.
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2.4 Relative Helicity

The helicity is gauge invariant only if B · n̂ = 0 everywhere on the surface.

This condition is not satisfied in the case of open field lines. This leads to

ambiguity in counting the linkage outside the volume of interest. This is

resolved by defining a gauge invariant relative helicity which depends only

on the quantities defined within V , relative to an external volume (Berger

and Field, 1984), and is hence a physically meaningful quantity. We define

a volume external to the volume of interest (Va) and call it Vb, such that

volume V = Va + Vb has no open field lines i.e. B · n̂dS = 0 on the surface

of V. We construct a hypothetical reference magnetic field Bref which

1. Equals B in Vb but differs in Va,

2. Has the same normal component on Sint (interface between a and b) as

does B and,

3. Is easily calculated inside Va.

The simplest magnetic field prescribed by normal boundary condition on

the surface is the vacuum magnetic field Bvac. The vacuum field satisfies the

current-free condition ∇ × Bvac = 0 ⇒ Bvac = ∇χvac. Also ∇ · Bvac = 0

⇒ ∇2χvac = 0. So, except for a constant, χvac is completely determined by its

normal derivative on the boundary surface (Neumann boundary condition).

Also the vacuum field has the minimum energy for a given boundary flux

B · n̂|s.
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Figure 2.2: The left diagram shows a magnetic field on either side of a boundary.

the total helicity of this field is Htotal. In the right diagram, a vacuum field

has replaced the true field in the upper volume. The helicity of this field is Href ;

Htotal−Href provides a well defined helicity for the upper volume. Figure courtesy:

Pevtsov et al. (2014).

So, the reference field is constructed as (Bellan, 2013)

Bref =

Bvac inVa

B inVb

Aref =

Avac inVa

A +∇h inVb

(2.46)

where ∇ × Avac = Bvac in Va,∇ × A = B in Vb, n̂a · B = n̂a · Bvac on S

and ∇h characterizes any allowed difference between A and Avac in Vb. An

integral over V will have no ambiguities as V has no open field lines. Thus

both H =
∫
V

A ·BdV and Href =
∫
V

Aref ·BrefdV are gauge invariant.
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So Hrel = H −Href is also gauge invariant. Therefore,

Hrel =

∫
Va

(A ·B−Aref ·Bref ) dV +

∫
Vb

(A−Aref ) ·BdV

=

∫
Va

(A ·B−Avac ·Bvac) dV +

∫
Vb

∇h ·BdV

=

∫
Va

(A ·B−Avac ·Bvac) dV −
∮
Sint

hB · n̂adS (2.47)

Finn and Antonsen (1983) defined the relative helicity as:

HFA
rel =

∫
Va

(A + Avac) · (B−Bvac)dV (2.48)

=

∫
Va

(A ·B−Avac ·Bvac)dV +

∫
Va

(Avac ·B−A ·Bvac)dV

now Avac ·B−A ·Bvac = Avac · ∇ ×A−A · ∇ ×Avac = ∇ · (A×Avac)

HFA
rel =

∫
Va

(A ·B−Avac ·Bvac)dV +

∫
Va

∇ · (A×Avac)dV (2.49)

The last term in the r.h.s. can be written as:∫
V

∇ · (A×Avac)dV =

∮
S

(A×Avac) · n̂dS = 0.

∵ B · n̂ |S= Bvac · n̂ |S= 0.

Since both A and Avac are parallel to n̂, A×Avac is perpendicular to n̂. The

surface integral is calculated on a remote surface surrounding (Va + Vb).∫
Va

∇ · (A×Avac)dV

= −
∫
Vb

∇ · (A×Avac)dV = −
∫
Vb

∇ · {(Avac +∇h)×Avac} dV

= −
∫
Vb

∇ · (∇h×Avac)dV =

∫
Vb

∇h ·BvacdV

=

∮
Sint

hB · n̂bdS = −
∮
Sint

hB · n̂adS. (2.50)

This form is equivalent to equation (2.47). The advantage of HFA
rel is that it

involves integration over the volume of interest Va only.
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2.4.1 Relative helicity in different gauges

In section (2.4), we calculated the relative helicity HR which is both gauge

invariant and independent of external field given by Finn and Antonsen

(1983). Let Bv be the vacuum field (∇ × Bv = 0) associated with B, i.e.

Bv · n̂|S = B · n̂|S.

HR =

∫
V

(A + Av) · (B−Bv)dV

where V is the volume of interest and S being its bounding surface (Man-

galam, 2008). If a gauge potential ∇φ is added to A and ∇φv is added to

Av then the change in HR is∫
V

∇(φ+ φv) · (B−Bv)dV =

∮
S

(φ+ φv)(B−Bv) · n̂dS = 0.

The boundary conditions on Bv can be satisfied by choosing the gauges

of A and Av so that A × n̂|S = Av × n̂|S. The helicity (Jensen and Chu,

1984) can be written as

HR =

∫
V

(A ·B−Av ·Bv)dV +

∫
V

(Av ·B−A ·Bv)dV

=

∫
V

(A ·B−Av ·Bv)dV +

∮
S

∇ · (A×Av) · n̂dS

=

∫
V

(A ·B−Av ·Bv)dV (2.51)

on a remote boundary (A×Av) · n̂ = Av · (n̂×A) = Av · (n̂×Av) = 0.

We define another set of vector potentials CR and Cv (Berger, 1988)

which satisfy the boundary conditions

∇×Cv = Bv ∇×CR = B

∇ ·Cv = 0 ∇ ·CR = 0

Cv · n̂|S = 0 CR × n̂|S = Cv × n̂|S. (2.52)
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Furthermore, if V extends to infinity, then CR and Cv must vanish at infinity.

To show that these conditions uniquely define Cv, we suppose a different

field C′v = Cv + ∇φ satisfying the same boundary conditions. Taking the

divergence shows that φ satisfies the Laplace equation∇2φ = 0. Also ∇φ ·

n̂|S = 0. The only solution possible is∇φ = 0 throughout V . Thus C′v = Cv.

Next suppose C′R = CR +∇φ satisfies the same boundary conditions as CR.

Again ∇2φ = 0 and ∇φ × n̂|S = 0. Thus φ is a constant on S implying

∇φ = 0 in V . Now using eqn (2.51) with A and Av replaced by CR and Cv.

We write the vacuum field Bv = ∇ψ for some scalar ψ. By Gauss theorem,∫
V

Cv ·BvdV =

∫
V

Cv · ∇ψdV

=

∫
V

∇ · (ψCv)dV −
∫
V

ψ(∇ ·Cv)dV

=

∮
S

ψCv · n̂dS = 0

Thus the relative helicity can now be expressed as

HR =

∫
V

CR ·BdV (2.53)

Thus the gauge invariant HR can be calculated in the same way as the non

invariant ordinary helicity H, but with a special (unique and gauge invariant)

vector potential.

2.5 Magnetic helicity in arbitrary geometries

We define the poloidal and toroidal components of magnetic fields as

B = BP + BT , BP = ∇×∇× (P∇χ), BT = ∇× (T∇χ) (2.54)

and an operator L = −∇χ×∇, we get LP = ∇P ×∇χ = ∇× (P∇χ) and

BP = ∇× (∇P ×∇χ+ P∇×∇χ) = ∇× (∇P ×∇χ) = ∇× LP

BT = ∇× (T∇χ) = ∇T ×∇χ+ T∇×∇χ = LT (2.55)
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Combining equations (2.54) & (2.55), we get

B = ∇× LP + LT = ∇× LP +∇× (T∇χ). (2.56)

Uncurling equation (2.56), we get the expression for the vector potential of

the magnetic field as

A = LP + T∇χ+∇ψ (2.57)

where ψ is an arbitrary gauge function. Now the magnetic helicity density

is defined as

A ·B = (LP + T∇χ+∇ψ) · (∇× LP + LT )

= LP · (∇× LP ) + LP · LT + T∇ψ · (∇× LP )

+ T∇ψ · LT +∇ψ · (∇× LP ) +∇ψ · LT (2.58)

Now T∇χ·LT = (T∇χ·∇T )×∇χ = 0, thus equation (2.58) can be rewritten

as

A ·B = LP · (∇× LP ) + LP · LT + T∇ψ · (∇× LP ) +∇ψ ·B. (2.59)

Now, we will evaluate each term in the RHS in equation (2.59) separately.

First, we evaluate the following

∇× LP = ∇× [∇× (P∇χ)] = ∇(∇ · P∇χ)−∇2(P∇χ)

= ∇(P∇2χ+∇χ · ∇P )−∇χ∇2P − 2(∇P · ∇)∇χ− (P∇2)∇χ
(2.60)

and the first term in the RHS in equation (2.59) as

LP · ∇ × LP = ∇P ×∇χ · [∇(P∇2χ+∇χ · ∇P )

− ∇χ∇2P − (2∇P · ∇)∇χ− P∇2(∇χ)]. (2.61)

Noting that (∇P × ∇χ) · (∇χ∇2P ) = 0 and (∇P × ∇χ) · P∇2(∇χ) =

(∇P ×∇χ) · ∇(P∇2χ). We get the following expression for equation (2.61)

LP · (∇× LP ) = LP · [∇(∇χ · ∇P )− 2(∇P · ∇)∇χ] (2.62)
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The first term in the RHS of equation (2.62) can be evaluated as

LP ·∇(∇χ·∇P ) = ∇·[LP (∇χ·∇P )]−(∇χ·∇P )∇·LP = ∇·[LP (∇χ·∇P )]

(2.63)

as ∇ · LP = 0. Thus equation (2.62) can be rewritten as

LP · (∇× LP ) = ∇ · [LP (∇χ · ∇P )]− 2LP · (∇P · ∇)∇χ. (2.64)

The third term in the RHS of equation (2.59) can be written as

T∇χ · (∇× LP ) = ∇ · (LP × T∇χ) + LP · LT (2.65)

Combing equations (2.59), (2.64) & (2.65), we get the following expression

for the helicity density

A·B = ∇·[LP (∇χ·∇P )]+∇·(LP×T∇χ)+2LP ·LT−2LP ·(∇P ·∇)∇χ+∇ψ·B.

(2.66)

The magnetic helicity is then given by the volume integral of equation (2.66).

2.5.1 Magnetic helicity in planar geometry

The analysis for magnetic helicity given in §2.5 can be followed for the special

case of planar geometry by substituting ∇χ = ẑ, where ẑ represents the unit

vector along the z axis. So, for the planar geometry, we write (cf. Berger,

1985)

B = BP + BT , BP = ∇×∇× P ẑ, BT = ∇× T ẑ (2.67)

and L = −ẑ × ∇. The poloidal and toroidal components of the magnetic

field are then given by

BP = ∇×∇× (P ẑ) = ∇× (P∇× ẑ +∇P × ẑ) = ∇× LP (2.68)

BT = ∇× (T ẑ) = ∇T × ẑ + T∇× ẑ = LT (2.69)
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Thus the expression for the magnetic field B and its vector potential A are

given by

B = ∇× LP + LT, A = LP + ẑT +∇ψ. (2.70)

Thus the expression for the helicity density can now be obtained by substi-

tuting ∇χ = ẑ in equation (2.66) and noting that (∇P · ∇)ẑ = 0. We then

get the magnetic helicity density in planar geometry as

A ·B = ∇ · [(ẑ · ∇P )LP ] +∇ · (LP × ẑT ) + 2LP · LT +∇ψ ·B (2.71)

The divergence terms in equation (2.71) vanish upon volume integration, as

shown below∫
V

∇ · [(ẑ · ∇P )LP ]dV =

∫
S

(ẑ · ∇P )∇P × ẑ · ẑdS = 0 (2.72)∫
V

∇ · (LP × ẑT )dV =

∫
S

LP × ẑT · dS = 0. (2.73)

Thus the final expression for magnetic helicity H in planar geometry is given

by

H =

∫
V

A ·BdV = 2

∫
V

LP · LTdV +

∫
S

ψB · ẑdS. (2.74)

2.5.2 Magnetic helicity in spherical geometry

For calculating the magnetic helicity in spherical geometry we follow steps

similar to that given in §2.5 & §2.5.1 with ∇χ = r (cf. Berger, 1985). The

main results are mentioned as follows.

B = BP + BT , BP = ∇×∇× (Pr) = ∇× LP, BT = ∇× (Tr) = LT.

(2.75)

with L = −r × ∇. The helicity density is given by substituting ∇χ = r in

equation (2.66) as

A·B = ∇· [(r·∇P )LP ]+∇·(LP×rT )+2LP ·LT−2LP ·(∇P ·∇)r+∇ψ ·B.

(2.76)
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Now we can write

(∇P · ∇)r = (∇r · ∇P )−∇P × (∇× r) = ∇P · 1 = ∇P (2.77)

where 1 is the unit dyadic. Thus the second last term in RHS of equation

(2.76) becomes

LP · (∇P · ∇)r = (∇P × r) · ∇P = 0, (2.78)

since in this case LP = ∇P × r. Equation (2.76) now reduces to

A ·B = ∇ · [(r · ∇P )LP ] +∇ · (LP × rT ) + 2LP · LT +∇ψ ·B. (2.79)

The divergence terms in the RHS of equation (2.79) vanish upon volume

integration as shown below∫
V

∇ · [(r · ∇P )LP ]dV =

∫
S

(r · ∇P )(∇P × r) · r̂dS = 0 (2.80)∫
V

∇ · (LP × rT )dV =

∫
S

LP × rT · r̂dS = 0. (2.81)

Thus the final expression for magnetic helicity for spherical geometry is given

by

H =

∫
V

A ·BdV = 2

∫
V

LP · LTdV +

∫
S

ψB · r̂dS. (2.82)

The gauge-invariant expression for magnetic helicity for planar and spher-

ical geometry corresponding to equations (2.74) & (2.83)

H =

∫
V

A ·BdV = 2

∫
V

LP · LTdV. (2.83)

was previously obtained in Berger (1985). In the context of constant-α force-

free fields (discussed in Chapter 3), it is shown that if the volume of a spher-

ical shell region is increased indefinitely holding the helicity constant, then α

tends to zero. This means that the magnetic field asymptotically relaxes to
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a potential field while conserving the helicity, which is possible only if recon-

nection is allowed over a large volume. It is also found that even though for a

given boundary condition and helicity, there may exist several α eigenvalues,

but only the lowest α state, having the minimum energy for the given helicity,

is stable against all helicity-preserving fixed-boundary perturbations.

2.5.3 Absolute magnetic helicity in cylindrical coordi-

nates

Low (2006) present a primitive form of magnetic helicity that is based on a

general partitioning of an ideal hydromagnetic fluid into disjoint, infinites-

imally thin, toroidal sub volumes using a two-flux description of the em-

bedded magnetic field. Here each of these toroidal sub volumes of fluid is

endowed with a gauge-independent magnetic helicity conserved during its

ideal Lagrangian evolution. The magnetic field is represented using the

Chandrasekhar-Kendall (C-K) representation in cylindrical coordinates as

(Low, 2011)

B = Bφ + Bψ, (2.84)

where Bφ and Bψ are given by

Bφ = ∇× φẑ =
1

R

∂φ

∂ϕ
R̂− ∂φ

∂R
ϕ̂, (2.85)

Bψ = ∇× (∇× ψẑ) = −(∇⊥ψ)ẑ +
∂2ψ

∂z∂R
R̂ +

1

R

∂2ψ

∂z∂ϕ
ϕ̂

= −(∇2ψ)ẑ +∇∂ψ
∂z
, (2.86)

for the scalar functions φ and ψ. The subscript ⊥ denotes derivatives in the

R− ϕ plane. The induction equation (2.12) takes the form (Low, 2011)

∇×
(
∇× ∂ψ

∂t
ẑ

)
+∇× ∂φ

∂t
ẑ = ∇× (U× [∇× (∇×ψẑ)+(∇×φẑ)]). (2.87)
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Considering the domain V (L0) : |z| < L0; 0 < R < R0, a cylinder of length

2L0 and radius R0. The boundaries are taken as rigid, perfect electrical

conductors. Assuming the field is tangential on R = R0 and threads across

z = ±L0, the variables ψ, φ and U are subject to the following boundary

conditions

UR|R=R0 = 0, φ|R=R0 = 0, (2.88)

∂ψ

∂R
|R=R0 = − F0

2πR0

, ψ|z=±L0 = ψ±(R,ϕ), (2.89)

U|z=±L0 = 0, (2.90)

where ψ± is the solution of

∇2
⊥ψ = −Bz(R,ϕ, z), (2.91)

with the prescribed Bz at z = ±L0. The absolute helicity for this system is

then defined as

Habs[B;V ] =

∫
V

(∇× ψẑ) · [∇× (∇× ψẑ) + 2(∇× φẑ)dV. (2.92)

The absolute helicity, Habs can be shown to be a constant of motion. There

is no issue of gauge dependence because φ and ψ are uniquely defined in the

helicity density

habs(ψ, φ) = (∇× ψẑ) · [∇× (∇× ψẑ) + 2(∇× φẑ)]. (2.93)

Similarly, the magnetic vector potential defined as

A = ∇× ψẑ + φẑ (2.94)

is a physically well defined quantity. The rate of change of the absolute

helicity can be shown to be written in terms of surface integrals as (Low,

2011)
dHabs

dt
= S1 + S2 + S3, (2.95)
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where the expressions for S1, S2 and S3 are defined below.

S1 = 2

∫
∂V

[(U×B)×A] · dS

= 2

∫
∂V

[(A ·U)B− (A ·B)U] · dS, (2.96)

where ∂V denotes the rigid boundaries R = R0 and z = ±L0. On R =

R0, the normal components of B and U vanish. On z = ±L0, the normal

component of U vanish by the rigid boundary condition. But the tangential

components of U must also vanish for the continuity of the tangential electric

field since the normal component of B is nonzero. Thus, S1 = 0. The second

integral is given by

S2 = −
∫
∂V

[(
∇× ∂ψ

∂t
ẑ

)
× (∇× ψẑ)

]
· dS. (2.97)

The contribution from R = R0 vanishes because ẑ · dS = 0 on that surface.

On z ± L0, the boundary value of ψ is independent of time and ∇∂ψ
∂t
× ẑ

evaluated on that boundary has only derivatives in R and ϕ. Hence, S2 = 0.

Finally, we have

S3 = 2

∫
∂V

[(
∇× ∂ψ

∂t
ẑ

)
× φẑ

]
· dS = 0, (2.98)

because φ = 0 on R = R0 and the integral vanishes on z = ±L0 by the

property that dS is parallel to ẑ on that boundary. Hence,

dHabs

dt
= 0, (2.99)

and hence Habs is a constant. We use the gauge invariant helicity density

given in equation (2.93) in Chapter 8 to calculate the magnetic helicity for

linear force-free fields present in the corona of a disc galaxy. In the following

chapter, we know give a description of force-free fields and its properties.



Chapter 3

Force free fields

In this chapter, we discuss the simplest possible configurations of coronal

fields, namely: potential and force-free fields, that can be derived from pho-

tospheric fields (in the case of the Sun) or from the fields specified at the disc

surface (in case of a galaxy).

3.1 Potential magnetic fields

We start with a description of the potential fields, which are the simplest.

If the current density vanishes everywhere, then from equation (2.1), we get

∇×B = 0. We can thus express the magnetic field as

B = ∇Ψ, (3.1)

where Ψ is the scalar magnetic potential. Applying the condition ∇ ·B = 0,

we get

∇2Ψ = 0. (3.2)

Such fields are called potential magnetic fields. The solutions of equation

(3.2), Ψ can be uniquely determined within a closed volume if the normal
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component of the magnetic field (∂Ψ/∂n ≡ Bn) are specified on the bound-

ary. Potential fields are of particular interest in solar physics. For a semi-

infinite region such as the solar atmosphere above the photosphere (which

can be taken as plane or a spherical surface with large radius), for a speci-

fied normal field at the photosphere, the potential fields contain the smallest

amount of magnetic energy (given by equation 2.21) provided that there are

no sources at infinity and the field falls of faster than R−2 at large distances

R. The basic proof for this theorem is given as follows (Priest, 2014).

We start with a potential field B0 and write any other arbitrary magnetic

field with the same normal boundary conditions at a surface S as B = B0 +

B1, such that Bn = B0n and B1n = 0. The magnetic energy of this field

using equation (2.21) can be written as

W =

∫
B2

2µ0

dV =

∫
(B0 + B1) · (B0 + B1)

2µ0

dV =

∫
B2

0 + 2B0 ·B1 +B2
1

2µ0

dV.

(3.3)

Using equation (3.1), we can write∫
B0 ·B1dV =

∫
(∇Ψ0) ·B1dV =

∫
∇ · (Ψ0B1)−Ψ0(∇ ·B1)dV

=

∫
n̂ · (Ψ0B1)dS =

∫
Ψ0B1ndS = 0 (3.4)

as B1n = 0 on S. Thus equation (3.3) now reduces to

W =

∫
B2

2µ0

dV =

∫
B2

0 +B2
1

2µ0

dV. (3.5)

Since B2
1 > 0, the energy of the magnetic field given in equation (3.5) will

always be greater than that of a potential field

(
=

∫
B2

0

2µ0

dV

)
.

Below we present the standard solutions to equation (3.2) obtained using

the method of separation of variables for different coordinate systems (Priest,

2014).
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1. Cartesian coordinates (x, y, z): For a solution above the x − y plane

that decays for large values of z, we can write

Ψ(x, y, z) = a exp(ikxx+ ikyy − kz), (3.6)

where kx, ky, k > 0 are real and k2 = k2
x + k2

y. If the field is periodic

and vanishes on the sides x = 0, y = 0, x = a and y = b, the general

solution can be written as

Ψ =
∞∑
n=0

∞∑
m=0

anm sin

(
2nπx

a

)
sin

(
2mπy

b

)
exp(knmz), (3.7)

where k2
nm = (2nπ/a)2 + (2mπ/a)2 and the coefficients anm can be

written in terms of Bz prescribed at z = 0.

2. Spherical polar coordinates (r, θ, φ): The general solution is given by

Ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[
almr

l + blmr
−(l+1)

]
Pm
l (cosθ) exp(imφ), (3.8)

where Pm
l are the associated Legendre polynomials. For axisymmetric

fields, the solutions are independent of φ and can be written as

Ψ(r, θ) =
∞∑
l=0

[
alr

l + blr
−(l+1)

]
Pl(cosθ), (3.9)

where Pl represents the Legendre polynomials.

3. Cylindrical coordinates (R, φ, z): The general solution can be written

as

Ψ(R, φ, z) =
∞∑

n=−∞

[cnJn(kR) + dnYn(kR)] exp(inφ± kz), (3.10)

where Jn and Yn are Bessel functions.
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The magnetic field in the solar corona can be expected to be potential

if the following conditions are satisfied: magnetic pressure dominates over

plasma pressure, the region contains no magnetic helicity, and photospheric

perturbations are small enough that the field can reduce to its minimum

energy configuration. Several techniques have been used to find potential

fields, either for a local part of the corona (treated as a plane) or for the global

corona (treated as a sphere). There are two main techniques for calculating

potential fields, when treating the coronal base as a plane. The first, called

the Green’s function method (Schmidt, 1964), places a series of monopoles on

the lower boundary at points (x′, y′, 0), each having a magnetic flux Bndx′dy′.

As the magnetic potential from a single source of half-flux Fm at a distance r

is −Fm/(πr), the resulting potential at (x, y, z) due to the normal magnetic

field Bn(x′, y′) on z = 0 is (Priest, 2014)

Ψ(x, y, z) =

∫
Bn(x′, y′)Gn(x, y, z, x′, y′)dx′dy′, (3.11)

where Gn(x, y, z, x′, y′) = −1/(π|r − r′|) is the Green’s function and |r − r′|

is the distance between (x, y, z) and (x′, y′, 0).

The second technique, called the Fourier expansion method is to expand

the boundary value in its Fourier components over appropriate values of kx

and ky as

Bn(x, y) = B0 +
∑
k

Bk exp(ikxx+ ikyy), (3.12)

whose solution obtained using equation (3.6) is given by (Priest, 2014)

Ψ(x, y, z) = B0z −
∑
k

Bk

k
exp(ikxx+ ikyy − kz). (3.13)

Sakurai (1982) adapted the Green’s function technique for a spherical

surface while treating the coronal base as a sphere. Altschuler and Newkirk

(1969) on the other hand, approximate the global magnetic field line by a
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series (equation 3.8) whose coefficients are determined by matching it with

the photospheric field. More detailed global MHD models have been used in

Mikić et al. (2007), Linker et al. (2011) and Riley, Linker, and Mikič (2013).

3.2 Force-free magnetic field

The Lorentz force dominates the pressure gradient and gravitational force

in equation (2.5) in systems having low plasma beta, defined as the ratio

of plasma pressure p0 and magnetic pressure, β = (2µ0p0)/B2
0 , the systems

achieves equilibrium under the condition

J×B = 0. (3.14)

This implies that the electric current density has a direction parallel to the

magnetic field. Using equation (2.1), we can write

∇×B = αB, (3.15)

where α is a scalar function of space. Taking a divergence of equation (3.15)

and using ∇ ·B = 0, we get

(B · ∇)α = 0. (3.16)

This implies that the scalar function α remains constant along any given

magnetic field line. If α is independent of space, then we obtain the linear

or constant-α force-free fields. In this case, taking the curl of equation (3.15)

gives us the vector Helmholtz equation,

(∇2 + α2)B = 0. (3.17)

Equation (3.17) is easier to solve compared to the more general nonlinear

force-free field problem where α varies as a function of space.
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3.2.1 Properties of force-free fields

3.2.1.1 Virial theorem for magnetic energy

In order to estimate the energy in force-free fields using the Virial theorem,

we start with the following volume integral (Chandrasekhar, 1961)∫
V

r · (J×B)dV =

∫
V

∇×B · (B× r)dB. (3.18)

Using the identity∫
V

Φ · ∇ ×ΨdV =

∫
V

Ψ · ∇ × ΦdV −
∫
S

(Φ×Ψ) · dS (3.19)

and substituting Ψ = B and Φ = B× r, we get upon rearranging∫
V

r · (∇×B×B)dV =

∫
V

B · [∇× (B× r)]dV −
∫
S

(B× r)×B ·dS (3.20)

The last term in the RHS of equation (3.20) can be written as∫
S

(B× r)×B · dS =

∫
S

|B|2r · dS +

∫
S

(B · r)(B · dS) (3.21)

while the first terms in the RHS of equation (3.20) can be calculated through

the following steps∫
V

B · [∇× (B× r)]dV

=

∫
V

B · [B(∇ · r)− r(∇ ·B) + (r · ∇)B− (B · ∇)r]dV

=

∫
V

3|B|2dV + B · [(r∇)B− (B·)r]dV

= 2

∫
V

|B|2dV +
1

2

∫
V

r · ∇|B|2dV

=
1

2

∫
V

|B|2dV +
1

2

∫
S

|B|2r · dS. (3.22)

Substituting equations (3.21) & (3.22) into equation (3.20), we get∫
V

r·(∇×B×B)dV =
1

2

∫
V

|B|2dV−1

2

∫
S

|B|2r·dS+

∫
S

(B·r)(B·dS). (3.23)
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For force-free fields ∇×B×B = 0, thus equation (3.23) reduces to

1

2

∫
V

|B|2dV =
1

2

∫
S

|B|2r · dS− 2

∫
S

(B · r)(B · dS). (3.24)

Rewriting equation (3.24) in terms of the magnetic energy, we get

W =

∫
V

B2/(2µ0)dV =

∫
S

[(r ·B)B− 1

2
B2r] · dS/µ0. (3.25)

The magnetic virial theorem thus allows us to calculate the magnetic en-

ergy contained in a coronal force-free magnetic field by a surface integral

at the photospheric boundary involving the three components of the vector

magnetic field (Klimchuk, Canfield, and Rhoads, 1992).

3.2.1.2 Woltjer’s theorem

Consider the following problem (Sturrock, 1994): What is the magnetic-field

configuration when the plasma relaxes to a state that minimizes the magnetic

energy, subject to the constraint that the magnetic helicity is constant? We

have to minimize the magnetic energy

(
1

8π

∫
V

|∇ ×A|2 dV

)
subject to the

condition that magnetic helicity

(∫
V

A · ∇ ×AdV

)
is conserved (Woltjer,

1958). Then

δ

∫
V

(
|∇ ×A|2 − αA · ∇ ×A

)
dV = 0 (3.26)

Expanding the above equation, we can write∫
V

[2(∇×A) · (∇× δA)− α(δA · ∇ ×A + A · ∇ × δA)]dV = 0. (3.27)

Now

∫
V

(A · ∇ × δA)dV =

∫
V

(∇×A) · δAdV −
∫
V

∇ · (A× δA)dV

=

∫
V

(∇×A) · δAdV −
∮
S

(A× δA) · dS
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The surface integral vanishes as δA is taken to be zero on the boundary, and

thus ∫
V

(A · ∇ × δA)dV =

∫
V

(∇×A) · δAdV

Also

∫
V

(∇×A) · (∇× δA)dV

=

∫
V

δA · ∇ × (∇×A)dV −
∫
V

∇ · (∇×A× δA)dV

=

∫
V

δA · ∇ × (∇×A)dV −
∮
S

(∇×A× δA) · dS

Dropping the surface integral as δA = 0 on the boundary, we get∫
V

(∇×A) · (∇× δA)dV =

∫
V

∇× (∇×A) · δAdV

⇒
∫
V

(∇× (∇×A)− α∇×A) · δAdV = 0. (3.28)

Since δA is arbitrary, the integrand must vanish identically and we must

have

∇×∇×A− α∇×A = 0.

⇒ ∇×B = αB. (3.29)

Thus the force-free fields with a constant α represents the lowest state of

magnetic energy which a closed system can attain. This has two important

consequences:

1. It proves in a general way the stability of force-free field with constant

α.

2. It shows that in a system which the magnetic forces are dominant and

in which there is a mechanism to dissipate the fluid motions, the force-

free fields with a constant α are the natural end configurations.
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3.2.1.3 Taylor’s hypothesis

Taylor (1974, 1976) pointed out that in a perfectly conducting plasma the

magnetic helicityH =

∫
V

A ·BdV is an invariant for every infinitesimal tube.

The minimum-energy field subject to this constraint is given by the nonlinear

force-free fields ∇×B = α(r)B, where α(r) is constant for a given field line.

Taylor suggested that even for non-ideal systems having a large magnetic

Reynolds number, the magnetic field topology changes are accompanied with

small changes in the total magnetic helicity in such a way that the helicity

density (A ·B) is redistributed among the field lines but its integral over all

field lines, the magnetic helicity H remains unchanged. A more general class

of force-free fields is obtained when the energy of the system is minimized

with constraints of total mass, angular momentum, cross helicity, and relative

helicity (Mangalam and Krishan, 2000).

3.3 Solutions to linear force-free fields

Here we discuss axisymmetric solutions to linear force-free fields which where

first presented in Chandrasekhar (1956). Any axisymmetric magnetic field

can be expressed as the sum of a toroidal field T and a poloidal field ψ given

by

B = ẑ × rT +∇× (ẑ × rψ), (3.30)

where ẑ is the unit vector along the axis of symmetry (assumed here to be the

z axis) and ψ and T are scalar functions which are independent of φ. Now

onwards we will use the notation of (r, θ, φ) for spherical polar coordinates

and ($, φ, z) for cylindrical polar coordinates.
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In cylindrical coordinates, equation (3.30) takes the following form

B = −$∂ψ
∂z
$̂ +$Tφ̂+

1

$

∂($2ψ)

∂$
ẑ, (3.31)

where $̂, φ̂ represent the unit vectors along $ and φ. Taking a curl of

equation (3.31), we obtain (Chandrasekhar, 1956)

∇×B = −$∂T
∂z

$̂ −$∆5ψφ̂+
1

$

∂($2T )

∂$
ẑ, (3.32)

where ∆5 is an operator defined as

∆5 =
∂2

∂$2
+

3

$

∂

∂$
+

∂2

∂z2
(3.33)

Combining the force-free condition given in equation (3.15) and equations

(3.31) & (3.32), we obtain

α∇($2ψ) = ∇($2T ) (3.34)

∆5ψ = −αT. (3.35)

If α is a constant then equation (3.34) implies (without loss of any generality)

αψ = T (3.36)

and equation (3.35) now becomes

∆5ψ = −α2ψ. (3.37)

In spherical coordinates equation (3.58) can be written as (Chandrasekhar,

1956) (
∂2

∂r2
+

4

r

∂

∂r
+

1− µ2

r2

∂2

∂µ2
− 4µ

r2

∂

∂µ
+ α2

)
ψ = 0, (3.38)

where µ = cos θ. The general separable solutions to equation (3.38) were

first presented in Chandrasekhar (1956), which are given by

ψn =
Cn+3/2(αr)

r3/2
C3/2
n (µ), (3.39)
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where C
3/2
n (µ) denotes the Gegenbauer polynomials and Cn+3/2 are linear

combinations of cylindrical Bessel functions Jn+3/2(αr) and J−(n+3/2)(αr).

The expression for magnetic field now given by (cf. equation 3.31)

B = α(ẑ × r)ψn −
1

$2
(ẑ × r)×∇(ψn$

2). (3.40)

Writing out the various components of B given by equation (3.40) explicitly

in spherical polar coordinates, we get

B =

(
−1

r2

∂

∂µ
[ψnr

2(1− µ2)],
−1

r(1− µ2)1/2

∂

∂r
[ψnr

2(1− µ2)], αr(1− µ2)1/2ψn

)
.

(3.41)

Non-axisymmetric solutions to the linear force-free field equation were pre-

sented in Chandrasekhar and Kendall (1957).

3.3.1 Solutions to force-free equations in cylindrical

geometry

The magnetic fields in the corona of galactic or accretion discs are expected

to be in a Taylor-like relaxed state following a force-free field geometry (Man-

galam and Subramanian, 1994). Here we present the solutions of the force-

free equation in cylindrical geometry that can be applied the cases of accre-

tion or galactic discs. The magnetic field follows the force-free equation given

by

∇×B = µB, ∇ ·B = 0 (3.42)

where µ is a constant. Here µ = 0 corresponds to taking the region outside

to be current-free, which is likely initial state. We can expect µ to increase

to higher non-zero values and relax to a stable configuration as the corona

builds up outside the disc. By taking the curl of equation (3.42), we get

∇2B = −µ2B. (3.43)
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We first split the magnetic field B into poloidal (BP ) and toroidal (BT ) parts,

which under axisymmetry can be written as

BP = Brr̂ +Bz ẑ =
1

r
∇ψ × φ̂ =

(
−1

r

∂

∂z
r̂ +

1

r

∂

∂r
ẑ

)
ψ ≡ P̂ψ (3.44)

Bφ =
T

r
φ̂. (3.45)

We can now split equation (3.43) into poloidal and toroidal parts. We write

out following equations for the poloidal field

∇2P̂ψ = −µ2P̂ψ ⇒ P̂Λψ = P̂ (−µ2ψ)⇒ Λψ = −µ2ψ (3.46)

where

Λ = r2∇ ·
(
∇
r2

)
= r

∂

∂r

(
1

r

∂

∂r

)
+

∂2

∂z2
(3.47)

which follows the property ∇2P̂ = P̂Λ (see §3.A & Appendix A in Mangalam

and Subramanian (1994) for a derivation). Similarly for the toroidal field,

we write

∇2(T/r) = −µ2(T/r)⇒ 1

r
ΛT = −µ2T

r
⇒ ΛT = −µ2T. (3.48)

Since both equations (3.46) & (3.48) have the same functional form, we now

proceed to solve equation (3.46) by writing out Λ explicitly as

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= −µ2ψ. (3.49)

Using separation of variables, we write ψ(r, z) = R(r)Z(z). Equation (3.48)

can be written as

Zr
d

dr

(
1

r

dR

dr

)
+R

d2z

dz2
= −µ2RZ

1

R
r

d

dr

(
1

r

dR

dr

)
+

1

Z

d2z

dz2
= −µ2 = k2

z − k2
r[

1

R
r

d

dr

(
1

r

dR

dr

)
+ k2

r

]
+

[
1

Z

d2z

dz2
− k2

z

]
= 0. (3.50)
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Since the first term in the LHS of equation (3.50) is a function of r only and

the second term is a function of z only, the equality holds only if both the

terms are independently zero. The z part of equation (3.50) can be written

as
d2Z

dz2
− k2

zZ = 0 (3.51)

whose solutions are given by

Z = c1 exp(kzz) + c2 exp(−kzz) (3.52)

where c1 and c2 are arbitrary Since the solution should be finite for large

values of z, we choose solutions that are decaying at infinity. Thus, we get

Z = c exp(−kzz). (3.53)

The radial part of equation (3.50) is given by

r
d

dr

(
1

r

dR

dr

)
+ k2

rR = 0. (3.54)

Substituting R = rf in equation (3.54), we get the following equation after

rearranging terms

r2 d2f

dr2
+ r

df

dr
+ (k2

rr
2 − 1)f = 0 (3.55)

which is the Bessel’s differential equation, with the solutions given as

f = J1(krr) + Y1(krr). (3.56)

If we demand f = 0 at r = 0, we obtain

R = rJ1(krr). (3.57)

If we call kr = p, then kz =
√
p2 − µ2. Since p can take continuous values,

the solution given in equation (3.57) will have continuous coefficients, a(p).

Integrating all these solutions, we get

ψ(r, z) =

∫
a(p) exp

(
−
√
p2 − µ2|z|

)
rJ1(pr)dp. (3.58)
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Similarly, we can write the toroidal solution as

T (r, z) =

∫
b(p) exp

(
−
√
q2 − µ2|z|

)
rJ1(qr)dq. (3.59)

From the force-free condition, the following steps follow

∇×Bφ = µBφ

⇒ P̂ (rBφ) = µP̂ψ

⇒ P̂ T = P̂ (µψ). (3.60)

Thus the amplitudes in equations (3.58) & (3.59) are related by

b(k) = µa(k). (3.61)

3.4 Solutions to the nonlinear force-free field

equation

When we allow α to be function of space, solving equation (3.15) becomes

very difficult, even when the field is independent of one of the spatial co-

ordinates. In Cartesian coordinates a 2.5 dimensional field B(x, z) can be

written in terms of a flux function ψ in the following manner (Priest, 2014)

Bx =
∂ψ

∂z
, By(x, z), Bz = −∂ψ

∂x
(3.62)

which satisfies ∇ ·B = 0 automatically. The components of J ×B = 0 can

then be written as

∇2ψ
∂ψ

∂x
+By

∂By

∂x
= 0, (3.63)

∂By

∂z

∂ψ

∂x
− ∂By

∂x

∂ψ

∂z
= 0, (3.64)

∇2ψ
∂ψ

∂z
+By

∂By

∂z
= 0. (3.65)
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From equation (3.64) we find that By is a function of ψ alone and remains

constant on surfaces ψ = constant. Equation (3.63) or (3.63) then gives

(Priest, 2014)

∇2ψ =
d

dψ

(
1

2
B2
y

)
, (3.66)

which is known as the Grad-Shafranov equation. Equation (3.66) determines

ψ and thus Bx andBz, once By(ψ) and the boundary conditions are pre-

scribed.

In cylindrical polar ($,φ, z), the axisymmetric field has the form

B =

(
− 1

$

∂ψ

∂z
,
bφ
$
,

1

$

∂ψ

∂$

)
, (3.67)

where bφ is a function of ψ alone and α = dbφ/dψ. Using ∇×B = αB, we

get
∂2ψ

∂$2
− 1

$

∂ψ

∂$
+
∂2ψ

∂z2
= − d

dψ

(
1

2
b2
φ

)
. (3.68)

In spherical polar coordinates (r, θ, φ), axisymmetric fields exist in the form

(Priest, 2014)

B =
1

r sin θ

(
1

r

∂

∂ψ
θ,−∂ψ

∂r
, bφ(ψ)

)
, (3.69)

where bφ depends only on ψ. The force-free condition then gives

∂2ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
+

d

dψ

(
1

2
b2
φ

)
= 0. (3.70)

Analytical solutions to equation (3.70) that are confined between two cones

with rJφ = cψ1+2/l and decreasing with distance as r−l have been applied to

astrophysical jets and coronal arcades (Lynden-Bell and Boily, 1994; Gour-

gouliatos, 2008).

Low and Lou (1990) applied nonlinear force-free fields to model active

regions in the solar corona. Here the poloidal and toroidal components of

the magnetic field is written as

BP =
1

r
∇ψ × φ̂, T =

Q(ψ)

r sin θ
, (3.71)
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then the magnetic field is given by

B =
1

r sin θ

(
1

r

∂ψ

∂θ
,−∂ψ

∂r
,Q(ψ)

)
, (3.72)

where Q depends only on ψ. ∇×B = αB then gives

∂2ψ

∂r2
+

1− µ2

r2

∂2ψ

∂µ2
+Q

dQ

dψ
= 0, α =

dQ

dψ
(3.73)

where µ = cos θ. Equation (3.73) allows for separable solutions of the form

ψ =
P (µ)

rn
, Q(ψ) = aψ1+1/n (3.74)

where a and n are constants and the scalar function P satisfies the following

differential equation (Low and Lou, 1990)

(1− µ2)
d2P

dµ2
+ n(n+ 1)P + a2 (1 + n)

n
ψ1+2/n = 0. (3.75)

Equation (3.75) needs to be solved numerically for the condition P (±1) = 0,

which determines the eigenvalues (anm) of a. For the particular case of a = 0,

which corresponds to potential fields with α = 0, equation (3.75) simplifies

to

(1− µ2)
d2P

dµ2
+ n(n+ 1)P = 0, (3.76)

whose solutions are given by

P = (1− µ2)1/2P 1
n(µ) (3.77)

where P 1
n(µ) are the associated Legendre functions of the first kind for the

integer n.

3.4.1 Numerical methods for nonlinear force-free fields

There have been several numerical methods proposed to extrapolate the non-

linear force-free field in the active regions of the corona using the magnetic
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field measured at the photosphere as boundary conditions. The aim is to

solve the equations ∇ × B = αB and (B.∇)α = 0 with the divergence-free

condition∇·B = 0. As the system of equation has a mixed elliptic-hyperbolic

nature, it is difficult to formulate it as a well-defined boundary value problem

(Priest, 2014). For a given α, the equation for B is elliptic and thus we can

impose the normal component of the field (Bn) as the boundary condition,

whereas for a given B, the equation for α is hyperbolic which can be solved

by prescribing α at one end of a field line. Imposing all three components

of the magnetic field (as obtained from the vector magnetograms) gives ex-

tra conditions which makes the problem ill-posed. Even if the problem is

posed properly, the existence and uniqueness of solutions is not guaranteed

and has been demonstrated only for small values of α (Boulmezaoud and

Amari, 2000). Below we give a short description of the various numerical

extrapolation techniques (Wiegelmann, 2008; Priest, 2014)

1. The upward integration method : In this method (Nakagawa, 1974; De-

moulin and Priest, 1992), equations (3.15) & (3.16) are written as four

equations for ∂Bx/∂z, ∂By/∂z, ∂Bz/∂z, ∂α/∂z are integrated inte-

grated upwards as a Cauchy problem from the lower boundary (z = 0),

with B(x, y, 0) and α(x, y, 0) taken as the initial values.

2. The Grad-Rubin method : This method was proposed for fusion plasmas

by (Grad and Rubin, 1958) and first applied to coronal magnetic fields

by Sakurai (1981). In the form used by Amari et al. (1997); Amari,

Boulmezaoud, and Mikic (1999); Amari, Boulmezaoud, and Aly (2006),

Régnier, Amari, and Kersalé (2002), Inhester and Wiegelmann (2006),

the iterative scheme is written as

Bn.∇αn = 0, ∇×Bn+1 = αnBn, ∇ ·Bn+1 = 0. (3.78)
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3. The MHD relaxation method : In this method time dependent MHD

codes are used to relax an initial field towards a final configuration

which satisfies the stated boundary conditions. This method was ap-

plied to force-free coronal magnetic fields by Mikic and McClymont

(1994) where an initial potential field configuration was driven at the

boundaries using viscosity to dissipate the flow energy while the topol-

ogy changes due to resistivity. In Roumeliotis (1996), a stress-and-relax

method is used in which field configuration is driven from the boundary

and relaxed in alternating steps.

4. Optimization methods : This approach was proposed by Wheatland,

Sturrock, and Roumeliotis (2000) based on an earlier variational prin-

ciple of Sakurai (1979) and later developed by Wiegelmann (2004) and

Wiegelmann, Inhester, and Sakurai (2006). Here a functional

L =

∫
[B−2|(∇×B)×B|2 + |∇ ·B|2]dV (3.79)

is setup and minimized in an evolutionary manner. A force-free con-

figuration is achieved when L reduces to zero.

5. The boundary element (or Greens function like) method : In this method

developed by Yan (1995, 2003) and Yan and Sakurai (2000) a tensor

Green’s function is used to rewrite the nonlinear integral equations over

the volume, together with a surface integral which is discretized using

the boundary-element method.

All the numerical techniques face the challenge of obtaining realistic field

configurations that can be compared to the observations (Schrijver et al.,

2006; Metcalf et al., 2008). A major challenge is to make a fast and accurate

code that can account for the noise in the measurements (Wiegelmann and
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Inhester, 2010). Furthermore, the magnetic fields are measured at the photo-

sphere which is not force free region (chromospheric magnetograms are still

not accurate). One needs to develop magneto-hydrostatic codes which can

accurately model the forces in the photosphere. In many models a technique

called preprocessing is used to derive boundary conditions that are force free

and consistent with the photospheric measurements (Wiegelmann, Inhester,

and Sakurai, 2006; Wiegelmann, 2008). Finally, the the boundary conditions

taken at the lateral and upper boundaries greatly affect greatly the solutions.

We propose a new and relatively fast technique to compute NLFF fields

that has several advantages in Chapter 6.



Appendix

3.A Properties of operators P̂ and Λ

Here we give a derivation of the relation ∇2P̂ = P̂Λ used in §3.3.1. We write

P̂ = − r̂
r
∂z +

ẑ

r
∂r and Λ = r∂r

1

r
∂r + ∂2

z ,

where the partial derivatives have been abbreviated. We point out that the

r and z eigenfunctions of Λ are

Λr = r J1(krr) and Λz = exp(kzz). (3.80)

Now,

[∇2P̂ ]z =

(
1

r
∂rr∂r + ∂2

z

)(
1

r
∂r

)
=

(
1

r
∂r

)(
r∂r

1

r
∂r + ∂2

z

)
= P̂zΛ, (3.81)

for the z component and for the r component, we find that

[∇2P̂ ]r =

(
∂r

1

r
∂rr + ∂2

z

)(
−1

r
∂z

)
= −∂z∂r

1

r
∂r −

1

r
∂z∂

2
z = P̂rΛ. (3.82)

Similarly one can show

∇× P̂ = −φ̂ Λ

r
and P̂ (rΩ) = ∇× (Ωφ̂) (3.83)

where Ω is an arbitrary axisymmetric function.



Chapter 4

Coronal heating mechanisms

and braided magnetic fields

4.1 Overview of coronal heating mechanisms

In this chapter we give a brief overview of the different coronal heating mech-

anisms. In particular we describe braiding in coronal magnetic fields and

calculate the energy released in the corona due to small-scale reconnection

events occurring in these braided structures.

The corona is composed of very tenuous gas with an average density ∼ 108

cm−3. The energy requirement to compensate the radiative and conductive

losses and maintain a million degree corona can be estimated to be (Withbroe

and Noyes, 1977; Klimchuk, 2015)

� Active regions: 107 ergs cm2s−1 and

� Quiet regions: 3× 105 ergs cm2s−1.

It is a basic requirement of the coronal heating theory to identify the

energy source that can maintain these losses. The mechanical motions in



Coronal heating mechanisms and braided magnetic fields 68

and below the photosphere are thought to be the source of this energy. It is

customary to classify coronal heating models into two groups:

1. Alternating Current (AC) heating: If the photospheric motion changes

on a time scale faster than what the coronal loop can adjust to (e.g.,

by damping and dissipation of Alfvén waves), the dissipation of waves

is referred to as AC heating.

2. Direct Current (DC) heating: If the random motions displace the foot-

points of the coronal magnetic field lines on time scales much longer

than the Alfvén transit time along a coronal loop, so that the loop can

adjust to the changing boundary condition in a quasi-static way, the

dissipation of magnetic stresses is referred to as DC heating.

Brief discussions on both AC and DC heating mechanisms are presented

in the following subsections.

4.1.1 AC heating

In AC heating models, energy is provided by dissipation of waves in the

corona. In general, turbulent convective motions on the solar surface generate

three different types of waves involving the magnetic field waves propagating

upwards in the solar atmosphere. These waves are

1. Alfvén waves

2. Fast magneto-acoustic wave and

3. Slow magneto-acoustic wave.

The Alfvén waves travel along the magnetic field, while fast and slow magneto-

acoustic waves can also travel across the magnetic field. The speed of the
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magneto-acoustic waves depend on the direction of propagation and on the

plasma properties, so these waves reflect against the transition region where

there is a large gradient in pressure and density. Thus these waves cannot

transport energy from the photosphere to the corona. The natural candidate

for heating then are the Alfvén waves (Alfvén, 1947). Alfvén waves are much

more resilient and do not dissipate in the corona except at small scales. It

is thus very difficult to convert the wave energy into heat. The following are

the two broadly proposed mechanisms for AC heating of the corona:

1. Resonant absorption (Ionson, 1978; Hollweg, 1984; Davila, 1987): If the

frequency of a standing wave excited in a magnetic loop matches that

of the Alfvén wave, then resonance in the loop creates large velocity

gradients, which in turn leads to a dissipation of energy. The resonant

Alfvén waves have also been found to generate slow magneto-acoustic

waves (Beliën, Martens, and Keppens, 1999; Ballai and Erdelyi, 1998;

Erdélyi, Ballai, and Goossens, 2001), which are compressional waves.

These waves give rise to density variations which further fragment the

resonant layers.

2. Phase mixing (Heyvaerts and Priest, 1983): The excitation of the mag-

netic field by the Alfvén waves leads to a gradient in the wave speed.

The waves in the nearby field lines then propagate at different speeds

(phase mixing), which results in instabilities and dissipation of energy.

Phase mixing is an essential ingredient of resonant absorption (Poedts,

2002) but it does not need resonances to be effective. Phase mixing

can cause a cascade of energy to small length scales, where dissipation

becomes more efficient (Poedts et al., 1997).
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4.1.2 DC heating

The footpoints of the coronal magnetic fields are constantly shuffled by the

photospheric granular and super granular flows, which have random walk

characteristics. Due to the high electrical conductivity of the corona, the

magnetic field lines are frozen-in with the plasma. The magnetic field lines

then get twisted and wrapped around each other (Fig. 4.1), which leads to

formation of current sheets in highly stressed regions. When the current in

these sheets reaches a threshold value, reconnection sets in, which releases

the magnetic energy and heats up the corona.

Figure 4.1: Magnetic flux tubes twisted and braided by stochastic footpoint

motions. Figure courtesy: (Parker, 1972)

Suppose we start with a magnetic field configuration of flux Φ = πr2B0

with a uniform magnetic field B0 and radius r extending between two planes

at height z = 0 (photosphere), up to a plane z = L in which its footpoints are

fixed (as shown in Fig. 4.2). If the footpoint of a given elemental flux tube

moves in the photosphere with random velocity v, the rate of non potential

energy build-up per unit area (dW/dt) integrated over the volume V = πr2L
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Figure 4.2: Magnetic flux tubes extending between the photosphere (z = 0) and

a plane at z = l get wound among its neighbors due to the random footpoint

motions. Figure courtesy: (Parker, 1983)

would be (Sturrock and Uchida, 1981; Aschwanden, 2004),∫
dW

dt
dV =

ΦB0v
2τc

4π
, (4.1)

where τc is the correlation time scale of random motion. Sturrock and Uchida

(1981) estimated that for the observed field strengths of ∼1500 G in the flux

tubes with radius of the order of 150 km and mean velocities of 1 kms−1 over

a coherence time of 2 × 103s, the magnetic energy input to the flux tube is

equal to the radiative and conductive losses (∼ 107 ergs cm−2s−1).

The Sturrock-Uchida model has been further investigated by Berger (1991)

and Karpen et al. (1993) where they calculate the root mean square twist

induced in the field lines due to photospheric motions. If v represents the
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two-dimensional random velocity, then the twist rate is written as (Berger,

1994)

∇v =

 ∂xvx ∂xvy

∂yvx ∂yvy

 =
1

2

ωz
 0 1

−1 0

+ (∇ · v)

 1 0

0 1

+ S


(4.2)

where wz = ∂xvy − ∂yvx is the vorticity and S is the symmetric shear tensor.

The term ∇·v term does not contribute to the rotation, while the symmetric

shear part contributes up to 50% as much as the vorticity term for a turbulent

velocity field. Assuming that both senses of rotation are equally likely, the

average twist is zero. We define T to be the number of turns a field line takes

about the axis of the coronal tube and τc and λ to be the correlation time

and correlation length of the flow. Then using the relation ω = ∇×v = 2Ω,

where v = Ω × r, we can write ωz =
2v

λ
. Thus, the expression for mean

square vorticity is given by ω2
z =

4v2

λ2
, where v2 represents the mean square

velocity. If the twist angle is written as δθ = Ωτc, then we can write after

time t

T =
δθ
√
N

2π
=

ΩτcN

2π
. (4.3)

where N = t/τc. The root mean square twist T (for twisting at both ends)

can be written as (cf. Berger, 1994)

T 2 = 2× 3Ω2τct

4π2
= 2× 3ω2τct

16π2
=

3τcv
2

2π2λ2
t. (4.4)

For granular motions with λ = 800 km, τc = 800 s and v = 1 km/s, the above

equation gives T 2 = t/(1.5 hours). To obtain the energy flux, we consider

a single photospheric flux element Φ∗ = πR2
cBz, where Rc is coronal radius

and Bz the vertical field strength. For a magnetic field with axisymmetric

and uniform twist over length L, we write

B = Bz(ẑ + 2πrTL−1θ̂). (4.5)
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Rotations at both ends provide a mean energy density of

W =
1

πR2
cL8π

∫
(2πrTBz/L)2dV =

BzΦ∗T
2

4L2
. (4.6)

The mean energy input per unit area is (Berger, 1994)

P =
L

2

dW

dt
=

3B2
zΦ∗v

2τc
16π2Lλ2

. (4.7)

At the photosphere, the flux Φ∗ is compressed into small intense flux element

of radius R∗ and field strength B∗. For the values B∗ = 1500 G, R∗ = 250

km, and Bz = 100 G, we get the power P = 7× 105 ergs cm−2 s−1, which is

an order of magnitude less than the requirement for coronal heating.

We now present the energy estimate given by Parker (1983, 1988): If

Bt '
B0vt

L
represents the transverse component of the magnetic field built

due to the random motions after a time t, then the magnetic stress in the

flux tube is given by
BtB0

4π
. The rate of energy build-up of can be estimated

to be Parker (1972, 1983, 1988); Aschwanden (2004)

dW

dt
=
B0Btv

4π
=
B2

0v
2t

4πL
. (4.8)

With the values B0 = 100 G, v = 0.5 km s−1, L = 1010 cm, it follows that

an energy build-up rate of dW/dt = 107 erg cm−2 s−1, can be achieved in a

timescale of about t = 5× 104 s. At this point, Bt ∼ B0/4 and the deviation

of the field line from vertical, θ = arctan

(
vt

L

)
is around 14°. At this critical

angle, the tangential discontinuity produced in the coronal field ∆B (see Fig.

4.2) is of the same order as the transverse field Bt = 25 G. With a velocity

v = 0.5 km s−1, the footpoint traverses a distance ∼ 25 Mm during a period

of t = 5 × 104 s. If we associate each random step of the footpoint with a

lifetime of the adjacent granules, τ = 500 s, and length l = vτ = 250 kms−1,

the total path length is then covered in n = t/τ = 100 random steps. The

wrapping of the individual flux bundle can be assumed to follow the winding
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of the footpoint. We then expect each flux bundle to undergo n = 100

windings along the vertical height L. Thus the vertical extent of the braid

along the tube is given by

∆L ≈ L/n = l cot θ =
lL

vt
= 103km. (4.9)

The energy E in the magnetic field associated with the braiding is of the

order
B2
t

8π
multiplied by the volume V ≈ l2∆L associated with each winding.

With the values l = 250 km, ∆L = 103 km, Bt = 25 G, we get

E =
l2∆LB2

t

8π
≈ 6× 1024ergs. (4.10)

The amount of released energy per dissipation event is about nine orders of

magnitude smaller than in the largest flares, which defines the term nanoflare.

In the following section we discuss the observations and statistical properties

related to these flares.

4.2 Statistical properties of flares

The Parker model involves heating of the solar corona through nanoflares

due to reconnection of braided magnetic flux elements. Most of this braiding

happens between the unresolved strands in the coronal loops. The X-ray

corona can simply be thought as the superposition of a very large number

of these nanoflares. From observations, we find a wide range in the spatial

scale and energies for these events. The distribution of the peak flare energy

has been found to be following a power-law with the logarithmic slope near

1.8 (Charbonneau et al., 2001). It was suggested by Lu and Hamilton (1991)

that the phenomenon of SOC can be the underlying mechanism that gives

rise to this power-law distribution. In the Lu and Hamilton (1991) model, the

random stressing of the magnetic field footpoint by the photospheric motions
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provides the input energy while the large number of small-scale flare events

provide the output. Initially a local increase in magnetic energy excites a

nanoflare, which triggers an avalanche of nanoflares in its neighborhood thus

resulting in a large flare. The energetics of the power-law distribution can

be understood as follows.

If F (E)dE is the energy between E and E + dE released in a flare per

unit time, then the frequency distribution F (E) reconstructed from UV,

EUV, and X-ray observations can be represented as (Charbonneau et al.,

2001)

F (E) = F0E
−α, α > 0. (4.11)

Then the total energy released by these flares per unit time from equation

(4.11) is given by,

Etot =

∫ Emax

Emin

F (E)EdE = F0

[
E2−α

2− α

]Emax

Emin

, α 6= 2, (4.12)

(with Etot = F0 log (Emax/Emin) for α = 2). If α ≤ 2, the energy released

is dominated by the large flares, whereas if α ≥ 2 the smallest flare are en-

ergetically dominant. From equation (4.12), we see that Parker’s conjecture

evidently requires α > 2 (Parnell and De Moortel, 2012). The distribu-

tion of flares, microflares and nanoflares were determined by Crosby, As-

chwanden, and Dennis (1993); Parnell and Jupp (2000); Aschwanden et al.

(2000); Aschwanden and Parnell (2002) using instruments like Solar Max-

imum Mission/Hard X-ray Burst Spectrometer, Yohkoh/Soft X-ray Tele-

scope, SOHO/EIT and TRACE. The power-law index for the distribution of

event energies was reported to be in the range 1.5 < α < 2.7. It is currently

not possible to accurately determine the power-law index of distribution flare

energies using the direct detection techniques, but the nanoflare heating can

still be treated as one of the most promising candidates for the coronal heat-
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Figure 4.3: Frequency of observed flare events in the EUV, SXR and HXR

plotted with the estimated energy release. A power-law with index -1.8 extending

over the energy range 1024 − 1032 ergs is shown for comparison. Figure courtesy:

(Aschwanden et al., 2000)

ing mechanism. The following section presents analytic techniques that can

be used to quantify the self-organized braiding in the magnetic field struc-

tures and estimate the power-law index for the frequency distribution of the

peak flare energies.
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4.3 Braided magnetic fields

The coronal loops observed by TRACE and Hinode show a highly regular

structure (Fig. 1.6). The loops are almost parallel and of similar diameters.

The coherence in the structure of the loops (given the fragmented nature of

magnetic field generation) and the existence of a power law in the distribution

of flare energies suggests the presence of a mechanism through which the

field reorganizes itself by releasing the excess energy. The large number of

small scale reconnection events between the magnetic flux elements (micro

and nanoflares) could be responsible for this, which also leads to heating of

the corona (Parker, 1988; Berger and Asgari-Targhi, 2009). The magnetic

field lines get twisted due to the random rotations of the footpoints, while

braided structures are created due to the random walk of the footpoints. Such

braided magnetic strands were recently reported in the high resolution (0.2

arc seconds) observations of the solar corona (Cirtain et al., 2013) and also

found in simulations using Nonlinear Force-Free Field (NLFFF) as shown in

Fig. 4.4 (Thalmann, Tiwari, and Wiegelmann, 2014).

4.3.1 Analytical modeling of braided magnetic fields

A braid defines a collection of curves stretching between two parallel planes.

Fig.4.5 shows two configurations of curves extending between z = 0 and

z = L. It is possible to deform one configuration to the other, hence they

are said to be topologically equivalent.

If we consider N coronal flux tubes, whose footpoints are constantly mov-

ing around each other in the photosphere. These tubes quickly get braided

against each other. The increase in the topological complexity leads to in-

crease in the magnetic energy of the system. For continuous fields without
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Figure 4.4: Braided field lines simulated from NLFF magnetic field model for

a AIA 19.3 nm image observed on July 11, 2012 at 19:00 UT. Figure courtesy:

(Thalmann, Tiwari, and Wiegelmann, 2014)

distinct flux tube structures, some number N of individual field lines can be

chosen within the loop, and the braiding between these lines can be quanti-

fied. Wilmot-Smith, Hornig, and Pontin (2009) present such a semi-analytic

force-free model of a pigtail braid where three magnetic field lines cross each

other six times. In the following analysis, we only deal with field lines that

are divided into discrete flux elements, as we know from observations that

the magnetic flux in the photosphere is highly localized. In order to deter-
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Figure 4.5: Topologically equivalent configurations of a 3-braid. Figure courtesy:

(Berger, 1994)

mine the amount of free energy stored in these configurations, we need to

estimate the extent of braiding in the coronal loop. It is extremely difficult

to determine the equilibrium configuration of highly tangled fields through

direct calculations. Berger (1993) defines a quantity called the “asymptotic

crossing number” which provides a measure of the braiding in the system.

Consider two field lines stretching between two planes z = 0 and z = L. Let

φ be the polar angle in the x-y plane. When the curves are observed from a

viewing angle φ the two curves will exhibit a certain number of crossovers,

c(φ). Note that c(φ) is dependent on the viewing angle (see Fig. 4.6), but

the integrated quantity c =
1

π

∫ π

0

c(φ)dφ gives an independent measure.

To compute the crossing number directly, we represent the two curves

as x1(z) and x1(z), where x1(z) = (x1, y1). Also the displacement vector

r12(z) = x2(z) − x1(z) is assumed to be making an angle θ12(z) with the

z axis. An observer with a viewing angle φ will see crossovers wherever
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Figure 4.6: Crossover of two curves as seen from a viewing angle φ. Figure

courtesy: (Berger, 1993)

∆θ12(z) = φ or φ + π. If the net angle swept by r12(z) is given by ∆θ12 =∫ ∣∣∣∣dθ12

dz

∣∣∣∣ dz, then a crossover will be seen by a fraction ∆θ12/π of randomly

distributed observers. Then the asymptotic crossing number for these curves

can be written as

c =
1

π

∫ L

0

∣∣∣∣dθ12

dz

∣∣∣∣ dz. (4.13)

This quantity is not a topological invariant, but like the magnetic energy it

has a positive minimum value for a given magnetic topology. The minimum

asymptotic crossing number, times a constant coefficient, provides a lower

bound for the equilibrium energy. We now consider that all the magnetic

field is confined within a cylinder of radius R and sum the crossing number

c for all pairs of lines to obtain the crossing number for the magnetic field
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(Berger, 1993):

C ≡ 1

π

∫ L

0

∫ ∫
Bz1Bz2

∣∣∣∣dθ12

dz

∣∣∣∣ d2x1d2x2dz. (4.14)

We assume that the axial field is much stronger than the horizontal field,

so the equilibrium magnetic field can be written as (van Ballegooijen, 1985;

Berger, 1994)

B = Bz(b + ẑ), b = (bx, by) (4.15)

where Bz is a constant. The free energy of the field is then defined to be

Ef =
B2
z

8π

∫
b2d3x. (4.16)

Then a lower bound for the free energy for any field b is given by (Berger,

1993)

Ef ≥ 9.18× 10−3
(
LR4B2

z

)−1
C2. (4.17)

When derived for a field consisting of N discrete flux tubes, Ef is to be

multiplied by the factor N/(N−1). Berger (1994) estimates the power input

to an X-ray loop consisting of three braids, each with flux Φ and radius R/
√

3

to be

Efmin ≥ (3/2)× 9.18× 10−3(LR4B2
z )
−1Φ4K2 = 1.5× 10−2Φ2L−1K2, (4.18)

where K = min(c). If K(t) evolves with time due to footpoint motion, which

are assumed to be in random walk within a circular area of radius d. Then

the minimum power input is given by

P =
3× 10−2Φ2

πR2L
K

dK

dt
. (4.19)

In numerical simulations of three random braids with step size λ and V/λ

steps per second it was observed that (Berger, 1994):

dK

dt
= q0V λt/d

2 (4.20)
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where q0 ≈ 0.5. We assume that the energy loss through reconnection bal-

ances the input when the transverse field reaches a critical value b = B1/Bz =

µ. Then we get K ≈ 1.6µL/Rc and the power as (Berger, 1994):

P = 0.05µε0V B
2
zλRc/d

2. (4.21)

Using the values d ≈ λ, V = 1 km s−1, Bz=100 G, µ = 0.25 and Rc/d = 2,

we get P ≈ 107 erg cm−2s−1 which is the amount of energy required for

heating the active region corona (Withbroe, 1988).

In Chapter 7, we discuss the of self-organization process in these braided

magnetic fields through analytical modeling and estimate the free energy

content in the braiding for active regions.



Chapter 5

Turbulent Dynamos

5.1 Introduction

The magnetic fields in a conducting medium is thought to be amplified by the

inductive effects associated with the motions present in the medium. This

process through which the kinetic energy associated with the fluid motions

is converted to magnetic energy is generally referred to as a ‘dynamo’. In

particular, the large-scale magnetic field in disc galaxies is generated through

to a combination of turbulent motions in the ISM and the differential rotation

in the disc which transforms the kinetic energy into magnetic energy. The

mean toroidal field is generated from mean poloidal field by the radial shear,

in a process known as the Ω effect. The mean poloidal field of the same sign

is regenerated from mean toroidal field by a process known as the α effect

(Parker, 1955).

Other ideas like the ‘primordial fields’ theory have also been proposed to

explain galactic large-scale magnetic fields. This theory posits that large-

scale field currently observed in the galaxy is a result of amplified by com-

pression and differential rotation of frozen-in fields that were present at the
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time of galaxy formation. This theory suffers from various shortcomings. It

doesn’t explain the origin of the primordial field itself. Also, this theory pre-

dicts pitch angle of the regular magnetic field that is much smaller than those

that are observed (Shukurov, 2005). Moreover, the turbulent diffusion (which

is much stronger than the Ohmic diffusion), is expected to severely limit the

growth of such fields or cause them to decay. Mean-field successfully ex-

plains the general properties of the observed galactic magnetic fields, such as

growth rates, symmetry and the large scale-structure (Ruzmaikin, Sokolov,

and Shukurov, 1988; Shukurov, 2005). Both direct numerical simulations

and analytic approaches are required to understand how these dynamos op-

erate and saturate. In the following section, we give a brief outline of the

mean-field turbulent dynamos.

5.2 Large-scale turbulent dynamos

The large-scale magnetic field generation in the Sun and spiral galaxies is

generally attributed to a turbulent dynamo. The generation mechanism of

this turbulent dynamo can be understood from the Mean Field Dynamo

(MFD) theory (Moffatt, 1978; Krause and Rädler, 1980).

In the MFD theory, it is customary to split any field F into a mean-field

F and a fluctuating part f . The total field, F = F + f and f = 0 . The

overbars denote ensemble averaging which could be practically thought of as

spatial average over length scales which are intermediate between the size

of the system and the scale of turbulence. The magnetic field B and the

velocity field U are thus expressed as,

B = B + b, U = U + u (5.1)

where U and B are the mean velocity and magnetic fields with u and b being
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their fluctuating parts. The Ohm’s law (equation 2.3) can now be written as

J = J + j = σ
[
E + E′ + (U + u)× (B + b)

]
(5.2)

where E and E′ are the large and small-scale components of the electric field

E respectively. Taking the ensemble average of the last term in the RHS of

equation (5.2) gives

(U + u)× (B + b) = U×B + u×B + U× b + u× b

= U×B + u×B + U× b + u× b

= U×B + u× b (5.3)

Taking the ensemble average of equation (5.2) and substituting equation (5.3)

gives

J = σ(E + U×B + E), (5.4)

where E = u× b is known as the mean electromotive force (emf). The

induction equation (2.12) can be expanded as

∂B

∂t
+
∂b

∂t
= ∇× (U×B + u×B + U× b + u× b) + η∇2(B + b). (5.5)

Averaging equation (5.5) gives us the equation for evolution of the mean

magnetic field
∂B

∂t
= ∇× (U×B) +∇× E + η∇2B (5.6)

whereas, averaging equation (2.5) (for incompressible flows), we get the evo-

lution equations for the mean velocity U as[
∂U

∂t
+ U · ∇U

]
= −∇p

ρ
+

J×B

ρ
+ ν∇2U + F + F (5.7)

where F is given by

F = −u · ∇u +
1

ρ
j× b. (5.8)
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The mean emf E = u× b in equation (5.6) depends on the statistical prop-

erties of the turbulent fields u and b. If velocity fluctuations u and field

fluctuation b were completely uncorrelated we would have u× b=u×b = 0.

E could be non zero only if there is a correlation between u and b. The next

critical step central is to find an expression for the E in terms of B, U and u

and its derivatives. There are various approaches that are used to express the

mean emf, E in terms of the mean-field B. Evaluating the term E , requires

one to solve the evolution equations for the fluctuating magnetic field b and

the fluctuating velocity field u simultaneously. The first step is to evaluate

b in terms of the mean fields. Fluctuating part of equation (5.5) is given by

∂b

∂t
= ∇× (u×B + U× b) + η∇2b + G. (5.9)

Here G = u× b− E is the nonlinear term. We can also derive the equation

for u by subtracting the averaged momentum equation (5.7) from the full

momentum equation (2.5). With the assumption of incompressible flows

(∇ · u = 0) and constant kinematic viscosity (ν), we get,

∂u

∂t
= −u · ∇U−U · ∇u− 1

ρ
∇
(
p′ +

1

µ
B · b

)
+ ν∇2u

+
1

µρ

[
(B · ∇)b + (b · ∇)B

]
+ f + T (5.10)

Here p′ and f are the fluctuating components of pressure and force respec-

tively, and

T = −(u · u)′ − 1

µρ

[
(b · ∇b)′ − 1

2
∇(b2)′

]
(5.11)

contains terms that are nonlinear in u and b. Now, in order to find an

expression for E , one can take recourse to various closure schemes such as

First-Order Smoothing Approximation (FOSA) or Minimal-τ Approximation

(MTA). Outline of these two schemes are presented next.
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5.2.1 First-order smoothing approximation (FOSA)

The first-order smoothing approximation (FOSA) or the Second Order Cor-

relation Approximation (SOCA) is one of the simplest way of expressing the

turbulent emf, E in terms of the mean magnetic field B and its derivatives. In

this approximation the equations for the fluctuating quantities are linearized

by neglecting the terms that are nonlinear in fluctuations and E = u× b is

then evaluated for a prescribed velocity field, u. In doing so, one must keep

in mind that neglecting the nonlinear term G = u × b − u× b, is justified

only when the fluctuations are small as compared to the mean values. This

is true when the magnetic Reynolds number Rm is small i.e Rm � 1. In the

absence of the term G (assuming U = 0 for simplicity), b is generated at

a rate ' uB/l while it is dissipated at a rate ' ub/l2. For the equilibrium

condition for the rate of generation and dissipation of b, one finds b ' RmB.

Therefore, b is very small when Rm � 1 and can be treated as a perturba-

tion to the mean field B. However, in most astrophysical scenarios, Rm � 1.

FOSA is still thought to be applicable here, provided the correlation time

of turbulence τ is small, such that τurmskf � 1, where urms and kf are the

root mean square (rms) velocity and the correlation wavenumber associated

with the fluctuating velocity field u (Moffatt, 1978; Brandenburg and Subra-

manian, 2005a). Under such conditions, it can be shown that G� (∂b/∂t).

Thus neglecting the nonlinear term G and the resistive term (since Rm � 1)

in equation (5.9) we get,

∂b

∂t
= ∇× (u×B) (5.12)
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Hence the departure b from B resulting from u operating for the correlation

time τ is

b ≈ τ∇× (u×B)

b = τ(B · ∇)u− τ(u · ∇)B. (5.13)

where we have assumed ∇·u = 0 because of incompressibility and∇·B = 0).

Using equation (5.13) to evaluate E , we get

(u× b)i = εijku
′
jB
′
k

= εijku
′
jBl

∂u′k
∂xl

τ − εijku′ju′l
∂Bk

∂xl
τ. (5.14)

Taking the ensemble average and interchanging l and j we get

Ei = εilku′l
∂u′k
∂xj

τBj − εilku′lu′jτ
∂Bk

∂xj

Ei = αijBj + βijk
∂Bk

∂xj
(5.15)

where αij = εilku′l
∂u′k
∂xj

τ, βijk = −εilku′lu′jτ. (5.16)

If the turbulence is assumed to be isotropic then we can write

αij = αδij, βijk = −ηtεijk (5.17)

which leads to the following equations

α =
1

3
αii =

1

3
εilku′l

∂u′k
∂xi

τ = −1

3
u′lεlik

∂u′k
∂xi

τ

βijk = −1

3
εijku′lu

′
jτδjl. = −1

3
u′ju

′
jτεijk = −ηtεijk. (5.18)

We thus get the following equations for α and ηt

α = −1

3
u · (∇× u)τ (5.19)

ηt =
1

3
u · uτ (5.20)
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Thus the mean emf for isotropic turbulence is given by

E = αB− ηt∇×B. (5.21)

substituting equation (5.21) in equation (5.6) gives

∂B

∂t
= ∇× (U×B) +∇× (αB) + (η + ηt)∇2B (5.22)

where we have neglected the spatial variation of ηt. ηt is the coefficient of

turbulent diffusion, α which is directly proportional to u · (∇× u) is a mea-

sure of helical motion in the turbulent fluid. Usually η << ηt and dropping

the bar denoting averages equation (5.22) becomes

∂B

∂t
= ∇× (U×B) +∇× (αB) + ηt∇2B (5.23)

which is the basic mean-field dynamo equation.

5.2.2 Minimal-τ approximation (MTA)

The ‘minimal’-tau approximation (MTA) is a simplified version of the τ -

approximation first introduced by Orszag (1970) and subsequently used by

Pouquet, Frisch, and Leorat (1976) in the context of the Eddy Damped

Quasi-Normal Markovian (EDQNM) approximation. The MTA as intro-

duced by Blackman and Field (2002) uses the triple correlations arising from

the quadratic nonlinearities in the equations for u̇ and ḃ assuming their sum

is to be proportional to a negative multiple of the mean emf E with the relax-

ation time being the proportionality coefficient. This is motivated from the

more general EDQNM closure, where a damping term is introduced in order

to express third order moments in terms of lower order moments. In both

FOSA and MTA, the linear terms in the evolution equations for the fluctu-

ations are solved exactly. In the MTA, we begin by writing an equation for
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the time derivative of the E (Blackman and Field, 2002),

∂E
∂t

= u× ḃ + u̇× b, (5.24)

where dots denote time derivatives. For ḃ, we substitute equation (5.9) and

for u̇, the Euler equation for the fluctuating velocity field

∂u

∂t
= −∇p′ + f + ν∇2u + H (5.25)

where H = −u · ∇u + u · ∇u is the nonlinear term, f is a stochastic forcing

with zero divergence and ν∇2u is the viscous term (assuming ∇ · u = 0).

Equation (5.25) assumes the absence of a mean flow (U = 0) in the kinematic

regime, where the Lorentz forces are small. The contribution to u̇× b comes

only from the triple correlation involving b and H. Combining all these

terms and rearranging them in equation (5.24) we obtain,

∂E
∂t

= α̃B− η̃tJ−
E
τ

(5.26)

where all triple correlations are now contained in the damping term, E/τ .

Blackman and Field (2002) motivate this term by arguing that in the absence

of any mean-field B, the turbulent emf E should always decay to zero. Here,

α̃ = −1

3
u · ω, η̃t =

1

3
u2 (5.27)

where ω = ∇× u are the turbulent transport co-efficients which are closely

related to α and ηt previously obtained in equations (5.19) and (5.20) through

the relations α = τ α̃ and ηt = τ η̃t. We now find that the inclusion of the

Lorentz force in equation (5.25) results in new small scale magnetic correction

in the expression for α̃ given by,

α̃ = −1

3
(u · ω − j · b), η̃t =

1

3
u2. (5.28)
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In the steady state, the solution of equation (5.26) yields,

E ' τ α̃B− τ η̃tJ ' αB− ηtJ (5.29)

where,

α = −1

3
τu · ω = αk + αm, ηt =

1

3
τu2 (5.30)

with αk = −1

3
τu · ω and αm =

1

3
j · b. The presence of additional term which

is proportional to the current helicity j · b provides a negative feedback which

quenches the total α-effect (Pouquet, Frisch, and Leorat, 1976). This has in-

teresting consequences for the saturation of large-scale magnetic fields which

will be presented in greater detail in the subsequent chapters.

5.3 Magnetic field generation in disc galaxies

Spiral galaxies are flat, rotating discs containing stars, gas and dust. There

is a central concentration of stars known as the bulge, which is surrounded

by a much fainter spherically symmetric distribution of stars called the halo.

The average number density of the interstellar medium is about n ∼ 1 cm−3,

which corresponds to a mass density of ρ ≈ 2× 10−24 g cm−3. The radius of

the galactic disc is R ∼ 15 kpc, while its half-thickness is h ∼ 0.5 kpc. The

magnetic diffusivity in the ISM (assuming the plasma to be fully ionized)

is given by η = 107(T/104 K)−3/2 cm2 s−1. The temperature of the warm

diffuse gas is estimated to be 104 K which gives a η ' 107 cm2 s−1. The

diffusion timescale for the magnetic field based on the molecular diffusivity

is h2/η ∼ 1027 yr. Since this timescale is much larger than the age of the

galaxy (∼ 1010 yr), it would suggest suggest that magnetic fields once gener-

ated during the formation of galaxy would survive and thus additional gen-

eration through the dynamo action is not required. This is not true because
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the ISM in spiral galaxies is turbulent (due to the energy supplied by ran-

dom Supernovae (SNe) explosions occurring at different places in the disc).

The diffusion timescale thus must be based on turbulent magnetic diffusivity

ηt. The turbulent diffusivity for SN driven turbulence can be estimated as

ηt ∼
1

3
u2τ ∼ 1

3
l0u0; where l0 (∼ 100 pc) is the correlation scale of interstellar

turbulence and u0 (∼ 10 km/s) is the turbulent velocity (Shukurov, 2007).

The corresponding turbulent diffusivity ηt ' (0.5− 3)× 1026 cm2 s−1 gives a

turbulent diffusion time scale, td = h2/ηt ' ×109 yr (for h = .5 kpc) which

is much shorter than the galactic lifetime. We therefore need dynamo op-

eration in the galaxy to maintain a steady magnetic field of the observable

magnitude.

Galaxies exhibit differential rotation with the inner region rotating faster

than the outer region. As the plasma in ISM in highly conducting, the mag-

netic flux is frozen with the motion of the plasma. Due to the differential ro-

tation of the disc, the poloidal component of the magnetic field gets wounded

up and amplified to produce a toroidal component (as shown in Fig. 5.1). For

the dynamo to operate, one needs to regenerate the poloidal component of

the magnetic field from the toroidal one. This is accomplished through the α-

effect arising out of the cyclonic turbulence present in the galactic disc. Due

to combined effect of the galactic rotation and density stratification the SN

driven turbulence becomes helical. Under these conditions, a blob of plasma

moving upwards expands due to the decrease in density. The Coriolis force

acting on this expanding bubble imparts a angular momentum about the

vertical axis generating a negative (positive) kinetic helicity in the northern

(southern) hemisphere. We can easily see, that the kinetic helicity 〈u · ω〉

has the same sign for both the ascending and descending vortices in a given

hemisphere. The helical motions of the gas perpendicular to the disc can pull
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Figure 5.1: The poloidal magnetic field (upper panel) is twisted and wounded up

by the differentially rotating galactic disc to produce a toroidal field (lower panel).

Figure courtesy: Ruzmaikin, Sokolov, and Shukurov (1988)

out the toroidal field into a Ω shaped loop. For motions having a non-zero

net helicity, the component of the current parallel to the toroidal field add

up coherently resulting in generation of poloidal fields. Theses fields then

reconnect due to the finite microscopic diffusivity and eventually produce

the large-scale poloidal magnetic field (see Fig. 5.2). This toroidal-poloidal
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regeneration cycle leads to an exponential growth of the mean field.

Figure 5.2: The poloidal magnetic field is re-generated from the toroidal field

due to helical turbulent motions resulting in twisted magnetic loops. The upper

part of the field (shown in dashed in the lowest panel) leaves the disc. Figure

courtesy: Ruzmaikin, Sokolov, and Shukurov (1988)
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5.3.1 The galactic dynamo formalism

The following treatment is based on (Ruzmaikin, Sokolov, and Shukurov,

1988). We consider the galactic disc as a thin turbulized slab of thickness

2h which rotates with angular velocity Ω(r). The equation for the mean

axisymmetric magnetic field has the following components in polar cylin-

drical coordinates (r, φ, z) with the z-axis coincident with the rotation axis

(Baryshnikova et al., 1987)

∂Br

∂t
= − ∂

∂z
(αBφ) + η(∆B)r

∂Bφ

∂t
= GBr + η(∆B)φ

∂Bz

∂t
= −1

r

∂

∂r
(rαBφ) + η(∆B)z (5.31)

where Br, Bφ and Bz are the components of the mean magnetic field, and

G = r
dΩ

dr
is the measure of differential rotation. Because of axial symmetry

∂

∂φ
= 0, and we can express Br and Bz in terms of azimuthal component of

the vector potential Aφ.

Br = −∂Aφ
∂z

, Bz =
1

r

∂

∂r
(rAφ) (5.32)

which guarantees ∇ ·B = 0.

We try to get solution at fixed radius. In this case

(∆B)r =
∂2Br

∂z2
, (∆B)φ =

∂2Bφ

∂z2
, (∆B)z =

∂2Bz

∂z2

The first two equations from equation (5.31) become

∂A

∂t
= αB + η

∂2A

∂z2
,

∂B

∂t
= −G∂A

∂z
+ η

∂2B

∂z2
(5.33)

where we have dropped the subscript φ from A and B. The axial symmetry

implies B = 0 for |z| > h, while potential A obeys the following equation:

∂2A

∂z2
+

∂

∂r

(
1

r

∂

∂r
(rA)

)
= 0, (5.34)
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whose solution is a linear combination of function of the form exp(kz)J1(kr),

with the boundary conditions ∇ × B = 0 at r = R and
∂A

∂z
= kA ≈ 0

(k ∼ R−1 << h, with R the radius of the galactic disc). The boundary

conditions at |z| = h are

B(±h) = 0, Br = −∂A
∂z

(h) ≈ 0. (5.35)

These boundary conditions are referred to as vacuum boundary conditions.

Adopting these conditions we seek the solutions to the equation (5.32) of the

form

B(t, z) = B(z)eγt, Br(t, z) = Br(z)eγt, A(t, z) = A(z)eγt. (5.36)

We introduce dimensionless variables z → z/h, t→ h2/η, γ → γ/(η/h2) and

α → α0α(z) and dimensionless amplitudes of the field and potential whose

ratio is A0/B0 = α0h
2/η. We denote the dimensionless quantities with the

same symbols as the dimensional ones. In dimensionless form, the generation

equations are (
γ − ∂2

∂z2

)
Br = − ∂

∂z
(αB)(

γ − ∂2

∂z2

)
B = DBr (5.37)

B(±1) = Br(±1) = −∂A
∂z

(±1) = 0

and D = Gα0h
3/η2 is a dimensionless quantity called the dynamo number.

The first equation in equation (5.37) can be replaced by(
γ − ∂2

∂z2

)
A = αB. (5.38)

Properties of solutions:

1. Symmetry. The equations possess an important symmetry since α(z) =
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−α(z). The system of equations (5.37,5.38) is invariant with respect to trans-

formation z → −z, provided

A(−z) = A(z), Br(−z) = −Br(z), B(−z) = −B(z) or otherwise

A(−z) = −A(z), Br(−z) = Br(z), B(−z) = B(z)

Therefore, solutions to the generation equations can be divided into two

classes conveniently distinguished accordingly to the symmetry of B(z): the

odd solutions (dipolar in Br, Bz) and the even ones (quadrupolar in Br, Bz).

2. Decay modes. The generation equation can be easily solved in absence of

the sources, α = G = 0. Growth rates of the odd modes are

γDk = −k2π2

while for the even modes

γQk = −(k + 1/2)2π2

where k = 0, 1, 2...

The lowest quadrupole mode decays four times as weakly as the lowest

dipole one and is thus generated preferentially at a larger growth rate then

the dipole ones.

3. Small dynamo numbers. In this limiting case the right hand side of

equation (5.37) can be considered as small perturbations. We re-normalize

Br → |D|1/2Br and recast the generation equation as(
d2

dz2
− γ − V

)(
Br

B

)
= 0 (5.39)

where V = |D|1/2
0 ∂α

∂z

1 0

.

The standard perturbation theory for a doubly degenerate energy level gives

the following first approximation correction to the eigenvalue of the decaying

of the decaying mode:

∆ = ±(V12V21)1/2
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where V12 and V21 are the corresponding matrix elements calculated from

undisturbed, free decaying eigenfunctions. We put α = z for the sake of

simplicity. This gives

γD = −π2 ± |D|1/2

γQ = −π
2

4
± |D|1/2 (5.40)

for the dipole and the quadrupole modes, respectively. Thus the lowest order

quadrupolar solutions can be written as:

B(z, t) = cos

[(
π2/4−

√
D
)1/2

z

]
exp

(
−π2/4 +

√
D
)
t (5.41)

A(z, t) = sin

[(
π2/4−

√
D
)1/2

z

]
exp

(
−π2/4 +

√
D
)
t (5.42)

5.3.2 Radial field distribution

When the radial dependence of both the generators and the field is included,

the generation equation for the axisymmetric field take the form

∂B

∂t
= −G∂A

∂z
+ η

∂2B

∂z2
+ η

∂

∂r

[
1

r

∂

∂r
(rB)

]
∂A

∂t
= αB + η

∂2A

∂z2
+ η

∂

∂r

[
1

r

∂

∂r
(rA)

]
(5.43)

We consider exponentially growing solutions (A,B) ∝ exp(Γt) with the

growth rate denoted by Γ and introduce the dimensionless variables (R,Z, T )

such that Z = z/h0, R = r/r0, T = tη/h2
0.

We also introduce dimensionless angular velocity, its shear, and helicity: ω =

Ω/Ω0, g = G/Ω0, α∗ = α/α0.

The units convenient for applications to spiral galaxies are h0 = 400 pc,

r0 = 10 kpc, h2
0/η = 5 × 108 years, Ω0 = 10−15s−1, α0 = 1 kms−1. Further,

we normalize the magnetic field by some arbitrary amplitude for instance the

initial one B0
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A∗ = A/(B0h0) B∗ = Bα0h0/(B0η),

and measure the growth rate Γ in units of the inverse diffusion time, η/h2
0(≈

(5 × 108 year)−1). The asterisks at the dimensionless field, potential and

helicity will be dropped below.

In terms of dimensionless variables equations (5.43) are

ΓB = −Dg∂A
∂Z

+ η
∂2B

∂Z2
+ λ2 ∂

∂R

[
1

R

∂

∂R
(RB)

]
ΓA = αB + η

∂2A

∂Z2
+ λ2 ∂

∂R

[
1

R

∂

∂R
(RA)

]
(5.44)

where the dynamo number is defined as

D =
α0Ω0h

3
0

η2

while λ = h0/r0. For the chosen units, λ = 0.04. The small value of λ

which characterizes the galactic disc allows us to obtain a simple asymptotic

solution of the dynamo equations (5.44). Let us represent the solutions as

B(R,Z) = Q(R)B̂(R,Z)

A(R,Z) = Q(R)Â(R,Z)

where Â(R,Z) and B̂(R,Z) satisfy, by definition, the following one-dimensional

equations:

γ(R)B̂ = −Dg∂Â
∂Z

+ η
∂2B̂

∂Z2

γ(R)Â = αB̂ + η
∂2Â

∂Z2
(5.45)

whose forms coincide with the dynamo equations (5.37) for an infinitesimally

thin slab. The quantity γ(R) may be considered as the local growth rate of

the field. We introduce the dimensionless half-thickness, H(R) = h(R)/h0.

Presuming that there are no electric currents flowing outside the disc, the

boundary conditions are

∂Â

∂Z
(±H,R) = B̂(±H,R) = 0. (5.46)
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We decompose the coefficient α(R,Z) as

α = α1(R) · α2(Z)

and introduce new variables

Z̃ = Z/H(R), B̃ = B̂α1(R)H2(R), Ã = Â.

Eqns. (5.45,5.46) are recast as

γ̃(R)B̃ = −Deff (R)
∂Ã

∂Z̃
+
∂2B̃

∂Z̃2

γ̃(R)Ã = α2(Z̃)B̃ +
∂2Ã

∂Z̃2
(5.47)

∂Ã

∂Z̃
(±1) = B̃(±1) = 0,

where

γ̃(R) = γ(R)H2(R) (5.48)

and the effective dynamo number

Deff = Dα1(R)g(R)H3(R) (5.49)

is defined like the local dynamo number but includes the radial variations of

both the generators, α and G, and the disc thickness.

Simultaneously with the equations (5.45), the following Schrödinger equa-

tion is derived for Q(R):

λ2 d

dR

[
1

R

d

dR
(RQ)

]
+ [γ(R)− Γ]Q = 0, (5.50)

in which −γ(R) plays the role of potential and the growth rate taken with

opposite sign takes the place of total energy.

We take the simplest model in which generation sources are uniformly

distributed across the ring R1 ≤ R ≤ R2 with impervious radial boundaries:

γ(R) =

γm for R1 ≤ R ≤ R2

−∞ for R > R2 and R > R1
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equation (5.50) is reduced to the Bessel Equation whose solution is given by

Q(R) = C1J1

(
(γm − Γ)1/2

λ
R

)
+ C2Y1

(
(γm − Γ)1/2

λ
R

)
,

where J1 and Y1 are the Bessel Functions of the first and second kind, respec-

tively. The boundary conditions are Q(R1) = Q(R2) = 0. The eigenvalues

can be estimated with the help of the asymptotic form of the Bessel functions

J1(x) '
(

2

πx

)1/2

cos

(
x− 3π

4

)
,

Y1(x) '
(

2

πx

)1/2

sin

(
x− 3π

4

)
,

which are applicable for sufficiently high energy levels γm − Γ >> λ2R−2.

This gives

Γn ' γm −
πnλ2

R2 −R1

,

where n is an integer.

5.3.3 External fields

We introduce the magnetic stream function ψ (equivalently, the poloidal

flux), which determines the poloidal field strength (Mangalam and Subrama-

nian, 1994),

Bp = Brr̂ +Bzẑ = φ̂×
(

1

r
∇ψ
)
≡ P̂ψ. (5.51)

ψ = −rAφ (5.52)

We also define the poloidal current function T by

T = rBφ = − c
2
ip, (5.53)

where ip is the poloidal current and Bφ is the toroidal field.
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We take the external field to be a force-fee vacuum field satisfying the

equation

∇2B = 0. (5.54)

The general solution of the above equation can be split into poloidal and

toroidal parts, and under axisymmetry we can write

ψe(r, z) =
N∑
n=1

AnrJ1(knr) exp(−knz) (5.55)

Te = 0 (5.56)

5.3.4 Lowest order solutions

Using the boundary conditions (5.38) and the continuity of fields inside and

outside the disc, we get the solutions for the lowest quadrupole mode as:

T (r, z) =

cos
[(

3π
2

)
z
]
rJ1(k1r) r < 1, z < 1

0 r > 1, z > 1

(5.57)

ψ(r, z) =

sin
[(

3π
2

)
z
]
rJ1(k1r) r < 1, z < 1

exp[k1(1− z)]rJ1(k1r) r > 1, z > 1

(5.58)

which gives the saturation value for the dynamo number as D = π2 + 1 =

10.86.
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Figure 5.3: Variation of T (blue curve) and ψ (yellow curve) functions with z at

r = 5 Kpc.

5.4 Current issues in dynamo theory

One of the central issues in the mean-field dynamo (MFD) theory, is express-

ing the mean turbulent electromotive force E in terms of the mean magnetic

field and its derivatives using closure approximations. These closure ap-

proximations closure approximations like the First-order smoothing approx-

imation (FOSA) and the Minimal-τ approximation (MTA) give the dynamo

coefficients - the α-effect and the turbulent magnetic diffusivity ηt, both of

which are related to the statistical properties of the turbulent flow. The α-

effect is crucial in driving the mean-field dynamos, while ηt enhances mean

magnetic field diffusion. In spite of extensive studies for the past few decades,

several potential problems associated with the dynamo paradigm remain un-

explained. The first issue is, whether one can relate the turbulent transport

coefficients namely, α and ηt to the statistical properties flow in the kinematic
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Figure 5.4: Meridional cross-section contour plot of poloidal current function T

for disc radius = 10 kpc and half width = 400 pc. The poloidal current increases

radially and achieves a maximum at 6 Kpc. The current density reverses sign and

goes to zero as we move towards the disc edge.

regime. Another question is the applicability of approximations like FOSA

and MTA for large magnetic Reynolds number (Rm) systems, as it is seen in

such systems, that the small-scale dynamo produces random magnetic fields

at a rate much faster than the mean-field. Since, the correlation time of

the turbulence measured in units of the eddy turnover time is not small for
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Figure 5.5: Meridional cross-section contour plot of poloidal stream function ψ

for disc radius = 10 kpc and half width = 400 pc. The contours indicate the

poloidal component of the field lines.

turbulent flows, it becomes difficult to relate the transport coefficients with

the statistical properties of the flow. Using Direct Numerical Simulations

(DNS) of helically forced turbulence, Sur, Subramanian, and Brandenburg

(2007) show that in the kinematic regime, up to moderate Rm ∼ 220, ho-

mogeneous, isotropic, helical turbulence leads to an α-effect and ηt, whose
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values are independent of Rm, for Rm ¿ 1 and consistent with expectations

from the closure approximations.

Another long standing problems in the MFD theory is the effect of non-

linear back reaction on the transport coefficients, which occurs when the

Lorentz force becomes strong enough to affect the fluid motions. It is argued

by several authors (Pouquet, Frisch, and Leorat, 1976; Gruzinov and Dia-

mond, 1994; Blackman and Field, 2002) that this back reaction leads to the

modification of the α-effect by a term which is proportional to the current

helicity of the small-scale field. A greater understanding of the back reaction

from the small-scale fields is crucial in explaining the saturation of turbu-

lent dynamos. As the magnetic helicity is conserved in high Rm systems,

the addition of a magnetic alpha to the kinetic alpha profoundly impacts

the large-scale dynamo action. The conservation law implies that, equal and

opposite amounts of helicity are produced in the large- and small-scale fields.

The current helicity associated with the growing small-scale field contributes

to the magnetic alpha (αm) which suppresses the total α-effect and eventually

leads to quenching of the dynamo. Thus, to explain the existence of coherent

magnetic fields, one has to search for mechanisms that are capable of shedding

the small-scale magnetic helicity. In this context, Sur, Shukurov, and Subra-

manian (2007) study the influence of various kinds of magnetic helicity fluxes

on galactic dynamos. They discuss the implications of two types of magnetic

helicity flux, one produced by advection (e.g., due to the galactic fountain or

wind) and the other - the Vishniac-Cho flux, arising from anisotropy of tur-

bulence and shear. They find that the steady-state strength of the large-scale

magnetic field supported by the helicity advection is still weaker than that

corresponding to equipartition with the turbulent energy. However, inclusion

of the Vishniac-Cho helicity flux allows the magnetic field to achieve energy
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equipartition with turbulence. Chamandy et al. (2014) present a comparison

of different models and approximations for non-linear mean-field dynamos

in disc galaxies and assess their applicability and accuracy. They consider

two dynamo saturation mechanisms, namely, the magnetic helicity balance

involving helicity fluxes (the dynamical α-quenching) and the algebraic α-

quenching. The non-linear solutions are then compared with the marginal

kinematic and asymptotic solutions. They find that the different models

lead to similar solutions for the mean magnetic field and that the algebraic

α-quenching non-linearity can be obtained from a more physical dynamical

α-quenching model in the limit of nearly azimuthal magnetic fields. They

also incorporate galactic outflows into a simple analytical dynamo model to

show that the outflow can produce leading magnetic spirals near the disc

surface.

In Chapter 8, we present a global three-dimensional model of the non-

linear turbulent dynamo which is applied to a disc galaxy with a force-free

corona. We show that a global helicity conservation requires a build up of

a force-free corona due to the small-scale magnetic helicity fluxes. We also

discuss the global structure of the field and the nonlinear saturation of the

dynamo.
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Chapter 6

Force free reconstruction from

photosphere to the corona

6.1 Introduction

The active regions in solar photosphere are locations of high magnetic

field where magnetic pressure starts to dominate over gas pressure. In such

conditions the plasma is likely to follow a force-free equation of state, where

the Lorentz force vanishes at all points. It was shown by Taylor (1974) that

in systems where magnetic forces are dominant in the presence of kinematic

viscosity, linear force-free fields are natural end configurations. A more gen-

eral class of force-free fields is obtained when the energy of the system is

minimized with constraints of total mass, angular momentum, cross-helicity

The work presented in this chapter was published in:

i. Prasad, A., and Mangalam, A. (2013), eds. Gopalswamy, N., Hasan, S. S., Rao, P.

B., & Subramanian, P 2013, ASI Conf. Ser. 10, 53

ii. Prasad, A., Mangalam, A. and Ravindra, B., 2014, ApJ, 786, 81
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and relative helicity (e.g. Finn and Antonsen (1983), Mangalam and Krishan

(2000)). Within the context of force -free configurations, there are numerous

possibilities that can be obtained due to underlying geometry and symmetry

of the problem in addition to the invariants involved. There have been several

attempts to construct such full three dimensional models from two dimen-

sional data obtained at one level vector magnetograms. A summary of the

various numerical techniques are discussed in Schrijver et al. (2006) and Met-

calf et al. (2008). They compare six algorithms for the computation of non-

linear force-free (NLFF) magnetic fields which include optimization (Wheat-

land, Sturrock, and Roumeliotis, 2000; Wiegelmann, 2004; Wiegelmann, In-

hester, and Sakurai, 2006), magneto frictional (Yang, Sturrock, and Anti-

ochos, 1986; McClymont and Mikic, 1994; Roumeliotis, 1996; McClymont,

Jiao, and Mikic, 1997), Grad–Rubin based (Amari et al., 1997; Amari, Boul-

mezaoud, and Aly, 2006; Wheatland, 2007; Wheatland and Régnier, 2009),

and Green’s function-based methods (Yan and Sakurai, 1997, 2000) by evalu-

ating their performance in tests on analytical force-free-field models for which

boundary conditions are specified either for the entire surface area of a cubic

volume or for an extended lower boundary. Figures of merit were used to

compare the input vector field to the resulting model fields. Based on these,

they argue that all algorithms yield NLFF fields that agree best with the

input field in the lower central region of the volume, where the field and

electrical currents are strongest and the effects of boundary conditions the

weakest. The NLFF codes when applied to solar data, do not necessarily

converge to a single solution. To address this Wheatland and Leka (2011)

include uncertainties on the electric current densities at the boundaries it-

eratively until the two non-linear solutions agree, leading to a more reliable

construction.
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Since the NLFF techniques require good input fields for fast convergence

and are subject to uncertainties at the boundary conditions which propagate

during extrapolation, we are exploring fits of the data directly to analytic

solutions. The best fit to a well known (non-) linear (semi-) analytic solution,

would give us more insight into the kind of structure that could be present in

the volume given an optimal correlation with the fields observed on the mag-

netogram. The solution thus found can then be exploited to yield quantities

of interest such as relative helicity and free energy that can be computed for

the 3D configuration. Further, one can explore the stability and dynamics of

these structures at a later stage.

While there are several possible topologies for various geometries and

boundary conditions e.g. Marsh (2006), it is our goal here to take the simplest

geometric approach of a sphere. We show that separability condition leads to

two classes of solutions: linear and non-linear force-free fields. We call these

linear fields as Chandrasekhar solution (Chandrasekhar, 1956), hereafter re-

ferred to as C modes and the non-linear fields as Low-Lou solutions (Low

and Lou, 1990), hereafter referred to as LL modes. These computationally

cheap three dimensional analytic models are comparable with other numerics

or with observations and this allows us to make more precise predictions of

the physically relevant configurations. Since the validity of physical assump-

tions can vary from active region to active region, we restrict our selves to

explore the most simplest of solutions involving the least number of param-

eters, namely the choice of the modes and the two of the three Euler angles

that will represent any arbitrary rotation of the configuration space into the

coordinates of the observed magnetogram.

The chapter is presented as follows: In §6.2 we describe the formulation

of the free energy and relative helicity in a shell geometry. In §6.3, we show
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that the force-free field equation under assumption of axisymmetry leads

to linear (C modes) and non-linear (LL modes) force-free fields which are

discussed in §6.4 and §6.5 respectively. In §6.6, we present the construction

of magnetogram templates and the search strategy for obtaining the best fit

using suitable fitting parameters. In §6.7 and §6.8 we present the data used

for this study and compare them with the simulated models. The summary

and conclusions are presented in §6.9. Details of mathematical derivations

for some of the relations are referred to the Appendices. Table 6.6 provides

a formulary for the C and LL modes.

6.2 Formulation of the free energy and rela-

tive helicity in shell geometry

In this chapter, we study the solutions of axisymmetric linear and non-linear

force-free fields in a spherical shell geometry and calculate the relevant quan-

tities like free energy and relative helicity for these configurations. The free

energy of the system is the difference between the energies of a force-free field

and a potential field in the entire volume. The expression for free energy Efree

is given by

Efree = Eff − EP , (6.1)

where Eff and EP are the energies of the force-free field and the potential field

respectively. Since the potential field is the minimum energy configuration

for a given boundary condition, Efree is always positive.

Relative helicity is a gauge invariant measure of linkages between the field

lines with respect to a potential field matching to the perpendicular field at

the surface (Berger and Field, 1984). Relative helicity can be computed using
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geometry

the Finn-Antonsen formula (Finn and Antonsen, 1983)

Hrel =

∫
V

(A + AP ) · (B−BP )dV. (6.2)

where AP and BP are the vector potential and magnetic field for the potential

field with the constraint that (BP )r = Br, where r represents the radius at

the boundary. Another expression that can be used for calculating relative

helicity in spherical geometry which is independent of the potential field by

following the treatment given in Berger (1985), where

Hrel = 2

∫
V

LP · LTdV, (6.3)

L = −r ×∇ is the angular momentum operator, and P , T are the poloidal

and toroidal components of the magnetic field respectively. The expres-

sion in equation (6.3) can be further simplified for axisymmetric magnetic

fields in spherical geometry. The toroidal component LT = Bφφ̂, whereas

LP = Aφφ̂ + ∇ψ which includes the gauge term ∇ψ; Aφ and Bφ are the

φ components of the vector potential and the magnetic field. We now use

the gauge invariance of equation (6.3) to get the final expression for relative

helicity to be∫
V

LP · LTdV =

∫
V

AφBφdV +

∫
V

∇ψ · (Bφφ̂)dV. (6.4)

The last term in the RHS of equation (6.4) vanishes as∫
V

∇ψ · (Bφφ̂)dV =

∫
V

∇ · (ψBφφ̂)dV =

∫
S

(ψBφ)φ̂.r̂dS = 0. (6.5)

Thus equation (6.4) simplifies to

Hrel = 2

∫
V

AφBφdV. (6.6)

In the above derivation, it is seen that LP and LT are parallel to each

other and perpendicular to the surface normal which leads to Hrel being
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independent of the choice of ψ. This is peculiar only to certain geometries

like spherical and planar. Also see Low (2006) where an absolute helicity

is derived independent of the potential field in the special geometries which

employs Euler potentials. In the case of linear models used here (C modes;

§6.4) the energy and helicity are finite and in the case of the non-linear model

used here (LL modes; §6.5), B ∝ r−n−2 (n > 1) and energy and helicity show

singular behavior at the origin.

6.3 Axisymmetric linear & non-linear force-

free fields

The force-free magnetic field B is described by the equation

∇×B = αB (6.7)

from which it follows that B ·∇α = 0. This requires α to be a constant along

the magnetic field lines. Following the treatment in Low and Lou (1990), we

assume an axisymmetric magnetic field configuration and express it in terms

of two scalar functions ψ and Q(ψ) in spherical polar coordinates

B =
1

r sin θ

(
1

r

∂ψ

∂θ
r̂− ∂ψ

∂r
θ̂ +Qφ̂

)
, (6.8)

which is divergence free by construction. For an orthonormal coordinate

system with a metric defined as ds2 = giidx
idxi, the line element along

the magnetic field line dl is given by l̂ =
√
gii

dxi

ds
î =

Bi

|B|
î; hence

√
giidx

i

Bi

represents the equation for lines of force and applying this in axisymmetry

gives ψ = const. whose contours represent the poloidal field lines. Combining

the equations (6.7, 6.8), we obtain

α =
dQ

dψ
(6.9)



115 6.4 The β = 1 case: C modes

and
∂2ψ

∂r2
+

(1− µ2)

r2

∂2ψ

∂µ2
+Q

dQ

dψ
= 0, (6.10)

where µ = cos θ. To solve the above equation we choose a separable form of

the type

ψ = f(r)P (µ), Q = aψβ, (6.11)

where f and P are scalar functions of r and µ respectively; a and β are

constants. Combining equations (6.10) and (6.11), it follows that

r2f
′′

f
+ (1− µ2)

P ′′

P
+ a2βr2f 2β−2P 2β−2 = 0. (6.12)

The first term in the LHS of the above equation is a function of r alone

and the second term is that of µ alone. The resulting two possibilities for

obtaining separable solutions are that the third term be a function of either,

(a) r alone, which is satisfied if β = 1; these solutions were presented in

Chandrasekhar (1956) and which we refer to as C modes or

(b) µ alone, which is satisfied if r2f 2β−2 = 1; these solutions were partially

explored by Low & Lou (1990) and are termed here as LL modes.

6.4 The β = 1 case: C modes

The C modes pertain to the linear force-free fields since the condition β = 1

along with equation (8.70) implies α = a and it follows from equation (6.12)

that

r2f
′′

f
+ a2r2 + (1− µ2)

P ′′

P
= 0. (6.13)

The radial part of the above equation is given by

r2f
′′

f
+ a2r2 = n′(n′ + 1) (6.14)
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where n′ is a constant whose solutions are

fn′(r) = c1

√
rJ(1+2n′)/2,(ar) + c2

√
rY(1+2n′)/2(ar) (6.15)

where J and Y are cylindrical Bessel functions; c1 and c2 are constants to

be determined from the boundary conditions. The angular part of equation

(6.13) is given by

(1− µ2)
P ′′

P
= −n′(n′ + 1), (6.16)

whose solution is given by

P (µ) = (1− µ2)1/2P 1
n′(µ), (6.17)

where P 1
n′ is the associated Legendre function of the first kind for integer n′.

This solution is equivalent to that obtained in Chandrasekhar (1956) and the

following equations give the correspondence between the solutions

a ↔ α

fn′(r) ↔
√
rgm+3/2(αr)

P 1
n′(µ) ↔ −(1− µ2)1/2C3/2

m (µ)

n′ ↔ m+ 1 (6.18)

where C
3/2
m (µ) denotes the Gegenbauer polynomial and gm+3/2(αr) repre-

sents any arbitrary linear combination of the cylindrical Bessel functions

Jm+3/2(αr) and Ym+3/2(αr). Henceforth for the calculations of C modes we

will be using the expressions from Chandrasekhar (1956). ψ can now be

rewritten as

ψ = f(r)P (µ) = fn′(r)(1− µ2)1/2P 1
n′(µ) = r2Sm(r)(1− µ2), (6.19)

where

Sm =
gm+3/2(αr)

r3/2
C3/2
m (µ). (6.20)
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The application of these solutions to the case of finite spheres, under suitable

boundary conditions are discussed in §6.A.

The above expression can be further simplified by substituting for Sm

using equations (6.20) and (6.64) to

B =

(
−Jm+3/2(αr)

r3/2

d

dµ
[(1− µ2)C3/2

m (µ)],
−1

r

d

dr
[r1/2Jm+3/2(αr)]

(1− µ2)1/2C3/2
m (µ),

αJm+3/2(αr)

r1/2
(1− µ2)1/2C3/2

m (µ)

)
. (6.21)

The derivation for the potential field corresponding to equation (6.66) is given

in §6.C. The final expressions for the potential field is found to be

BP =

([
(m+ 1)am+1r

m − (m+ 2)bm+1

rm+3

]
Pm+1(µ),

− (1− µ2)1/2

[
am+1r

m +
bm+1

rm+3

]
dPm+1

dµ
, 0

)
. (6.22)

P(m+1)(µ) are the Legendre polynomials, where the coefficients are calculated

to be

χl = χm+1(r1) =
(m+ 1)(m+ 2)

r
3/2
1

J(m+ 3/2, αr1) (6.23)

al = am+1 =
χm+1(r1)

(m+ 1)

rm+3
1

r2m+3
1 − r2m+3

2

bl = bm+1 =
(m+ 1)

(m+ 2)
am+1r

(2m+3)
2 (6.24)

For the general case of open field lines, where the field has a non-zero

normal component at the boundaries, the energy of the force-free field is

given by

Eff (α, n,m, r1, r2) =
1

4

∫ r2

r1

∫ 1

−1

(B2
r +B2

θ +B2
φ)r2drdµ. (6.25)

Upon evaluation, the above equation takes the following form
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Eff (α, n,m, r1, r2) =
(m+ 1)(m+ 2)

2(2m+ 3)

[
2

∫ r2

r1

α2rJ2
m+3/2(αr)dr

− r
1/2
1 Jm+3/2(αr1)

d

dr
{r1/2Jm+3/2(αr)}|r=r1

]
(6.26)

An alternative and equivalent expression for the energy can also be obtained

from equation (6.72), from which Eff = Ev(r2)− Ev(r1), where

Ev(r) =
(m+ 1)(m+ 2)

2(2m+ 3)

[
r

[
d

dr

{
r1/2Jm+3/2(αr)

}]2

+
{
α2r2 − (m+ 1)(m+ 2)

}
J2
m+3/2(αr)

]
. (6.27)

We have verified that equations (6.27 & 6.26) are analytically equivalent

through the use of equation (6.14) and algebraic manipulation of Bessel iden-

tities. In order to calculate the free-energy of the configuration using equa-

tion (6.1), we compute the energy of the potential field constructed from this

force-free field (see §6.C.1) which is given by

Epot(m, r1, r2) =
1

2(2m+ 3)

∫ r2

r1

[(
(m+ 1)am+1r

m+1 − (m+ 2)bm+1

rm+2

)2

+ (m+ 1)(m+ 2)

(
am+1r

m+1 +
bm+1

rm+2

)2]
dr. (6.28)

We now calculate the relative helicity of the configuration using equation

(6.2). The relevant quantities to be calculated for this purpose are the vector

potentials for the force-free field A and that of the potential field AP. We

use gauge freedom for the vector potential to write A = B/α. The vector

potential for the potential field is calculated in §6.D, and is given by

AP =

(
0, 0, (1− µ2)1/2P ′m+1(µ)

[
am+1r

m+1

m+ 2
− bm+1

(m+ 1)rm+2

])
. (6.29)
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The relative helicity for region II can be written as

Hrel(α, n,m, r1, r2) =

∫ (
B2

α
+ AP ·B−

B

α
·BP

)
dV

=
8πEff
α

+
4π(m+ 1)(m+ 2)

α(2m+ 3)

[
α2

∫ r2

r1

(am+1r
m+1

m+ 2
− bm+1

(m+ 1)rm+2

)
r3/2Jm+3/2(αr)dr + r

1/2
1

(
am+1r

m+1
1 +

bm+1

rm+2
1

)
Jm+3/2(αr1)

]
. (6.30)

An equivalent formula for the relative helicity obtained using equation (6.6)

works out to be

Hrel(α, n,m, r1, r2) =
2

α

∫
V

B2
φdV =

8πα(m+ 1)(m+ 2)

2m+ 3

∫ r2

r1

rJ2
m+3/2(αr)dr.

(6.31)

The analytical equivalence of equations (6.30 & 6.31) is presented in §6.F.1.

6.5 The r2f 2β−2 = 1 case: LL modes

We now study the second set of solutions obtained in §6.3 namely the LL

modes. The condition r2f 2β−2 = 1 along with equation (6.12) implies

fβ−1 = r−1. (6.32)

Assuming the functional form

f(r) = r−n, (6.33)

where n is a constant, gives the condition β = (n+ 1)/n and equation (6.12)

then yields the following equation as obtained by Low and Lou (1990)

r2f
′′

f
= n(n+ 1) (6.34)

(1− µ2)P ′′ + a2n+ 1

n
P 1+2/n + n(n+ 1)P = 0. (6.35)
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There is an arbitrary amplitude of P in equation (6.35) which can be scaled

away. Then this ODE together with the homogeneous boundary conditions

pose an eigenvalue problem to determine the scaled parameter a as an eigen-

value. Recalling equation (6.8), we have the following expression for the

non-linear force-free modes

B =
−1

r
√

1− µ2

(√
1− µ2

r

∂ψ

∂µ
r̂ +

∂ψ

∂r
θ̂ −Qφ̂

)
(6.36)

where ψ = P (µ)/rn and Q = aψ(n+1)/n. Now P is the solution of equation

(6.35) and equation (6.36) which takes the form

B =

(
−1

rn+2

dP

∂µ
,
n

rn+2

P

(1− µ2)1/2
,
a

rn+2

P (n+1)/n

(1− µ2)1/2

)
. (6.37)

Eqn (6.35) is not straightforward to integrate numerically except for the case

n = 1, which was presented in Low and Lou (1990), as there is an inherent

singularity at µ = 0. We extend these solutions to higher values of odd n,

by using the following transformation

P (µ) = (1− µ2)1/2F (µ), (6.38)

through which equation (6.37) stands as

B =

(
−1

rn+2

[
(1− µ2)1/2F ′(µ)− µF (µ)

(1− µ2)1/2

]
,
n

rn+2
F,

a

rn+2
(1− µ2)

1
2nF

n+1
n

)
(6.39)

and equation (6.35) becomes

(1−µ2)F ′′−2µF ′+

[
n(n+ 1)− 1

(1− µ2)

]
F+

a2(n+ 1)

n
F

(n+2)
n (1−µ2)

1
n = 0.

(6.40)

Eqn (6.40) can be solved for all values of positive n, which represent the

physically interesting cases. The initial requirement of ψ = P/rn requires

only n > 0 where n can take any positive rational or integral value. A
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stringent condition on n is enforced if we demand Q = aψ1+1/n is real which

is required for physically acceptable solutions. This means that for rational

values of n = p/q, Q = aψψq/p and ψq should be positive for all even values

of p. Also this implies possibilities like (odd p, odd q) and (even q, odd p)

are permissible. In summary, solutions exist for all odd values of p while for

even p, it exists only if F (µ) > 0 in the domain −1 ≤ µ ≤ 1. As examples,

the solutions for n = 2/3, 2/5, 4/7 etc are allowed. Therefore the acceptable

values of n form a sufficiently dense set in the range 0 < n < ∞, so that

one can find instances of p/q arbitrarily close to a given n. Recently, semi-

analytic solutions to equation (6.35) for n = 5, 7... 201 under the assumption

of self-similarity were presented in Zhang, Flyer, and Chye Low (2012).

6.5.1 Conditions for physically acceptable solutions

The following conditions are required to be satisfied for obtaining physically

acceptable solutions:

1. The field should be finite as r →∞. This is ensured if n is positive.

2. The field should be well behaved and finite along the axis of symmetry.

Since we have

Bθ, Bφ ∝
1

(1− µ2)1/2
P (µ);

this requires that P (µ) should vanish at µ = 1,−1. This gives the

condition

P (µ)→ (1− µ2)s at µ = ±1

where s ≥ 1/2.

The function F (µ) satisfies the boundary condition (see §6.H)

F (µ) = 0 at µ = ±1. (6.41)
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Further, it follows that equation (6.40) reduces to the equation for the as-

sociated Legendre polynomials (where the last term is ignorable compared

to the third term) in the limit µ2 → 1. So we can construct LL solutions

by direct integration of equation (6.40) subject to equation (6.41) for any

positive n. We have cross-verified with the only case, n = 1, that was given

in Low and Lou (1990) and calculated other allowed values of n as well. The

cases for the modes n = 1 to n = 3 are shown in Fig. 6.1 for the first three

eigenvalues m of the variable a. These solutions are singular at the origin,

so the energy and helicity calculation are done excluding a spherical region

around the origin. As specific examples of the non-integer type, we depict

realizations of radial modes n = 7/5, 3/2, 9/5, in the left column of Fig. 6.5.

6.5.2 Energy and relative helicity for the LL modes

The energy in the magnetic field is given by equation (6.71)

Eff (n,m, r1) =
1

4(2n+ 1)r2n+1
1

∫ 1

−1

dµ

[
P ′(µ)2 +

n2P (µ)2

1− µ2
+
a2P (µ)(2n+2)/n

1− µ2

]
(6.42)

where the expression for the field from equation (6.37) is used. The energy

of the force-free field calculated using the virial theorem of equation (6.72)

gives the equivalent expression,

Eff =
1

4r2n+1
1

∫ 1

−1

{(
dP

dµ

)2

− (n2 + a2P 2/n)P 2

(1− µ2)

}
dµ. (6.43)

The equation (6.42) reduces to equation (6.43) by the use of equation (6.35).

It may noted the function P (µ) is implicitly dependent on the parameters

n and m. The contour plot in Fig. 6.2 shows the dependence of energy

on the variables n and m and we find that the magnetic energy of the field
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Figure 6.1: The sections (avoiding the origin where the fields are singular) shown

above are taken perpendicular to the radius at r = 0.05 for different solutions of

LL, with angular modes m = 1 to m = 3 (columns) and radial modes n = 1 to

n = 3 (rows). The contours represent the magnetic field lines projected on the

plane and the density plot represents the strength of the field perpendicular to the

plane of the figure. The values 0 and 1 in the color bar correspond to the minimum

and maximum values of the perpendicular magnetic field respectively.
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increases with both the variables. The change in energy is very sharp with

n as compared to m, so the value of contours are given in logarithmic scale.

The potential field corresponding to the LL mode is calculated in §6.C.2 and

its final expression is given by

BP =

(
∞∑
l=0

−(l + 1)
bl
rl+2

Pl(µ),
∞∑
l=0

−bl
rl+2

(1− µ2)1/2 dPl
dµ

, 0

)
. (6.44)

where

al = 0, bl =
2l + 1

2(l + 1)
rl−n1

∫ 1

−1

dP

dµ
Pl(µ)dµ. (6.45)

The energy for the potential field constructed from the LL modes (see §6.C.2)

is given by

Epot(l, r1) =
∞∑
l=0

b2
l (l + 1)

2(2l + 1)r2l+1
1

. (6.46)

In order to calculate the relative helicity, we find the vector potential for the

LL modes in §6.E, given by

A =

(
0,
−a
nrn+1

P (µ)(n+1)/n

(1− µ2)1/2
,

1

rn+1

P (µ)

(1− µ2)1/2

)
. (6.47)

The vector potential for the potential field is given by equation (6.107) with

al and bl as defined in equation (6.45). Then the relative helicity is calculated

from equation (6.2) to be

Hrel(n,m, r1) =

∫
V

(AP ·B−A ·BP )dV (6.48)

since A ·B = AP ·BP = 0. Thus, even if the absolute helicity A ·B is zero in

our chosen gauge, the cross terms in the Finn Antonesen formula give rise to

the non-zero values of the relative helicity. The expression in equation (6.48)

can be further simplified to

Hrel(n,m, r1) = −2πa
∞∑
l=0

∫ 1

−1

bl

nlrn+l
1

P 1+1/ndPl
dµ

dµ. (6.49)
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Using equation (6.6), we get an equivalent form for the relative helicity which

works out to be

Hrel(n,m, r1) =
2πa

nr2n
1

∫ 1

−1

P 2+1/n

(1− µ2)
dµ. (6.50)

The two formulae in equations (6.49 & 6.50) are equivalent as shown in

§6.F.2.

6.6 Simulation of magnetograms

In this chapter, our aim is to get reasonably good and quick estimates of

free energy and relative helicity for the active region observed in the magne-

tograms. It is well known that NLFF fields best represent the solar active

regions and the most useful and widely used analytic solution is the Low-

Lou solution in the spherical geometry. Hence this geometry was naturally

chosen. In our scheme, we first compute a large set of linear and non-linear

three dimensional force-free modes in a spherical shell volume where the

magnetogram is a tangent plane to the lower boundary, see Fig. 6.3.

For the linear case, the field is defined between radii r0 and r2. A plane

representing the magnetogram is placed tangential to a shell of radius r1. A

potential field is constructed in the spherical shell between radii r1 and r2

(region II) using the normal components of the force-free field at the lower

boundary, r1. For the non-linear case, the field is defined outside a shell of

radius r1 (region II) where the plane representing the magnetogram is placed

tangentially. Again the potential field is constructed using the normal com-

ponents of the force-free field at r1. The fit to the magnetogram data selects a

particular mode of force-free field in spherical geometry (details given below).

Apart from this, the magnetogram also sets a length-scale for the problem

and fixes an amplitude of the magnetic field. Both the force-free field and
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Figure 6.2: The top left panel shows contours of energy for different angular

and radial modes for the LL modes. The energies (normalized with respect to the

maximum) are shown for different modes at the same lower boundary r1 = 0.5.

The value of contours are given in logarithmic scale as the parametric dependence

is very sharp. The values 0 and 1 in the color bar correspond to the minimum

and maximum values of energy respectively. The next three panels show the

realizations of P (µ) for the cases of m = 1 to 4 for n = 1, 3 and 5. Note that the

number of polarities for a given (n,m) set is given by n+m− 1.
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Figure 6.3: This figure shows the geometry used in the problem for the linear

(left panel) and non-linear (right panel) fields. For the linear case, the field is

first computed between radii r0 and r2. A plane representing the magnetogram

is placed tangential to a shell of radius r1. A potential field is constructed in the

spherical shell between radii r1 and r2 (region II) using the normal components

of the force-free field at the lower boundary, r1. For the non-linear case, the

field is computed outside a shell of radius r1 where the plane representing the

magnetogram is placed tangentially. Again the potential field is constructed using

the normal components of the force-free field at r1.

potential field are known completely in region II, so we calculate the free

energy and relative helicity (using Finn-Antonesen and Berger formula) in

region II. In order to compare with the other estimates available in literature,

where the potential fields are usually extended from the planar surface of the

magnetogram to a cuboidal volume over the magnetogram, we rescale our

physical quantities obtained for a hemisphere by the factor of the solid angle

subtended by the magnetogram at the center. We would like to emphasize

that our problem is to reconstruct the entire field from the knowledge of the

field in a two dimensional plane which does not a priori force any choice of
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geometry. So calculation of free energy and relative helicity in the shell geom-

etry does not compromise our original goal, which is to get quick reasonable

estimates of these quantities over the solid angle subtended by the magne-

togram. The validity of this approximation can be seen from the general

agreement with other estimates (including observations, presented later in

Table 6.5). An advantage in this method is its ease and utility to calculate

these physical quantities, in particular the relative helicity is thus far not

calculated by other approaches. Further, we don’t have to assume any other

boundary condition for the side walls, as required in the other extrapolation

techniques using the cuboidal volume.

We now use the library of LL and C modes by taking two dimensional

sections of the force-free spheres appropriately and compare these sections

with the observed magnetograms. We describe the best fit mode and figure

of merit of fit in §6.6.2. The following steps are taken in simulating the

sections:

1. We compute the 3D force-free magnetic field in spherical geometry

corresponding to a given C and LL mode from equation (6.66) and

equation (6.37) respectively.

2. The coordinates on the magnetogram are labeled as the x and y axes,

where the x, y ∈ [−0.5, 0.5], so that the magnetogram is of unit length.

3. A cross-section of the sphere is taken at a radius r1 and all three compo-

nents of magnetic field are computed over this two dimensional surface,

see Fig. 6.4. The orientation of the magnetogram is given by the three

Euler angles (φ′, θ′, ψ′) of which the angle φ′ is redundant as the fields

are axisymmetric. The transformation matrix for the Euler rotation is
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given by

Λ(θ′, ψ′) =


cosψ′ cos θ′ sinψ′ sinψ′ sin θ′

− sinψ′ cos θ′ cosψ′ cosψ′ sin θ′

0 − sin θ′ cos θ′

 . (6.51)

In effect the position and orientation of the section is fixed by three

parameters (r1, θ
′, ψ′). We then transform a point on the magnetogram

with coordinates (x, y, z) by the inverse of Λ.

4. The coordinates in spherical xS ≡ (r, θ, φ) are obtained from Cartesian

coordinates xC ≡ (x, y, z) through the operator S given by

xS = S(xC)

r = (x2 + y2 + z2)1/2

φ =

 arctan (y/x) x > 0

arctan (y/x) + π x ≤ 0

θ = arccos
(
z/(x2 + y2 + z2)1/2

)
to get xS as a function of (x, y, z), so that we have the coordinates of

all the points on the magnetogram in spherical coordinates

xS = S
(
Λ−1(θ′, ψ′)xC

)
. (6.52)

5. We now evaluate the magnetic field in spherical coordinates BS(xS) and

then convert the components of magnetic field from spherical polar to

Cartesian coordinate system so that

BC [xC , θ
′, ψ′, x, y] = Λ(θ′, ψ′)T

(
BS

[
S(Λ−1(θ′, ψ′)xC)

])
. (6.53)
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where

T =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 , (6.54)

is the transformation from spherical to Cartesian. Here the coordinate

θ and φ are locations on the magnetogram computed from equation

(6.52). Since Λ and T are orthogonal, their inverses are the corre-

sponding transposes.

Figure 6.4: A magnetogram is simulated by taking a cross-section of the axisym-

metric 3D force-free field at a radius r1.The magnetogram is then rotated through

the Euler angles θ′ and ψ′ to match the components of the observed magnetogram.

The rotation φ′ is redundant as the field is axisymmetric.

We illustrate simulated sections thus generated for the LL modes (n,m) =

{(7/5, 2), (3/2, 3), (9/5, 1)} in Fig. 6.5. The parameter values (r1, θ, φ)
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chosen are indicated in the caption and the resulting sections are typical of

the single and double polarity active regions seen in observations.

6.6.1 Search strategy

We have the following free parameters in the problem:

1. The radial and angular mode numbers, n and m: the values for n and

m fix the force-free modes (for both C and LL solutions). While n

takes only integral values for C modes, LL modes can take integral as

well as fractional values (with the exceptions mentioned in §6.5). The

value of m takes only integers for both C and LL modes.

2. The first derivative d = F ′(µ = −1): the value of the derivative of

F (µ) at the boundary which is used as a boundary condition for solving

equation (6.40) is a free parameter; this only scales the solution by an

arbitrary constant. In this chapter we have used d = 10 as a constant

input for all calculations.

3. Euler angles, θ′ and ψ′: The C modes repeat in θ′ at an interval of

π/(m + 1) for a given m and θ′ was taken to be the larger of this

value and the angle subtended by the magnetogram at the center to

avoid redundancy; θ′= max{π/(m+ 1), arctan (L/r1)}. For LL modes

we search in the domain θ′ ∈ [0, π]. For both cases, we search for ψ

in the range, ψ′ ∈ [0, 2π]. If the magnetogram has np polarities in a

range ∆µ = 1− cos γ for a mode which has mp total polarities over the

domain [−1, 1], then we estimate

np
mp

' ∆µ

2
=

1− cos γ

2
= 1/(1 + (r1/L)24) (6.55)

where γ is the angle subtended by the magnetogram at the center.
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Figure 6.5: The sections for different LL solutions, taken perpendicular to the

radius at r = 0.05 with parameters (n,m, r1, θ, φ)={(7/5, 2, 0.29,1.75,4.14), (3/2,

3, 0.29,1.75,4.14), (9/5, 1, 0.39, 0.18, 4.14)} are shown in the top, middle and bot-

tom rows respectively. In the left column, the contours represent the magnetic field

projected on to the plane of the figure and the density plot represents the strength

of the field perpendicular to it. The circles are drawn at radius r1. The middle

column is a section of the field and the right column is a section of the resulting

current density; for an illustration of the section geometry and the parameters,

see Fig. 6.4. The legends representing the strength of component normal to the

page are shown below corresponding to the left and middle/right columns. The 0

and 1 in the legend scale correspond to the minimum and maximum values of the

normal magnetic field respectively.
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4. The radius r1 at which the cross-section is to be taken is in the range 0

to r2. Here r2 is the outer radius up to which the energies and helicity

are calculated. In case of C modes r2 is finite and necessarily at the root

of J(m+3/2, αr). We have restricted the calculations to only one radial

oscillation (corresponding to only one visible closed loop along the line

of sight), whereas for LL modes r2 is infinite as the fields tend to zero

only at infinity. The finite radial boundary r2 is needed for the C modes

and not the LL modes. For a linear force-free field in the Taylor theory

of relaxation in the unbounded atmosphere, the minimum energy state

is a C mode provided the domain is finite (Low, 1996). In case of C

modes, the constraint that the magnetogram is contained within the

sphere of radius r2 leads to the condition

r1 ≤
√
r2

2 − L2/4. (6.56)

In case of LL modes, there is no obvious constraint on r1.

5. The force-free parameter α: for C modes, α is a constant and has to

be given as an input. We restrict α−1 to be of order unity in line

with typical observed magnetograms where the field reverses over this

length.

To summarize, the parameter space to search for C modes is (n,m, r1, r2,

α, θ′, φ′). We start sweeping from lowest combinations of (n,m), in increasing

energy and searching for r1 with the constraint on the range of θ′ and r1 given

above and allowing only for one radial oscillation.

For LL modes, we have to search for the parameters (n,m, r1, θ
′, φ′). Here,

we start by sweeping from lowest combinations of (n,m) and looking for r1

near unity to find the best fit lowest energy modes within the allowed range

of θ′ and ψ′. Due to computational constraints involved we were only able to
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survey a subset of the parameter space. The run time for a combination of

(n,m, α) for C modes and (n,m) for LL modes is about 8 hrs upon parallel

computation on three computers with second generation Intel i7 processors.

The search for the best fit parameter is done in the following manner. For

a particular mode of the solution by (specified by the values of n, m and

α, in case of C modes), we choose 6 equispaced grid points in the θ′ and

ψ′ domain and 8 equispaced points for r. For the C modes the values for

r are chosen between two Bessel zeros, whereas for the LL modes we start

with an initial guess of r = 1. Then for each combination of (r, θ′, ψ′) the

field is computed over a 380×380 grid (for a typical magnetogram). Thus,

each mode of the solution involves evaluating the field for about 42 million

combinations. All the template grids thus generated are compared with the

observed data; following this initial search, the best fit set is selected and

a finer grid of (r, θ′, ψ′) defined about this set with four grid points each is

searched to obtain the final parameter set. We plan to expand upon the

search in the future when we are able to make our code, which is already

parallelized, to run on a faster cluster.

6.6.2 Fitting parameters

In the previous section we described how we explore the parameter space and

generate a large ensemble of magnetograms. In order to select the best fit

with the observations, we define a figure of merit, c for the magnetic field B

as

c =
〈(BT ·BO)|BO|〉
〈|BT |3〉1/3〈|BO|3〉2/3

,

which is the normalized dot product between the observed, BO, and the

theoretically simulated field, BT , weighted by the strength of the observed

magnetic field so that |c| would be unity for a perfect correlation. Here 〈〉
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represents the mean computed over the entire grid. We also calculate the

following correlation parameters to estimate the goodness of the fit for the

selected configuration

d =
〈(BO ·BT/|BT |)〉

〈|BO|〉
, and (6.57)

ε =
〈|BT |2〉
〈|BO|2〉

, (6.58)

where d is the average of the cosine of the angle between the two fields com-

puted over the entire grid which is normalized by the strength of the observed

field, while ε is the ratio of the magnetic energies of the theoretical and ob-

served fields. The amplitude of the theoretical field is set by multiplying a

scaling constant, g where

g2 =
〈|BO|3〉/〈|BO|〉
〈|BT |3〉/〈|BT |〉

, (6.59)

which is deduced from the weighted ratio of energies. Since the energy and

helicity are computed for the entire sphere, we need to scale down these

quantities by the fraction solid angle subtended by the magnetogram. The

fraction of solid angle subtended by square loop of size L placed at a distance

r1 from the center is given by

Ωf =
1

π

∫ L/2

0

∫ L/2

0

r1 dx dy

(r2
1 + x2 + y2)3/2

=
1

π

∫ L/2

0

dx

r2
1 + x2

∫ L

(2
√

x2+r2
1)

0

r1 dz

(1 + z2)3/2

=
Lr1

2π

∫ L/2

0

dx

(r2
1 + x2)

√
L2/4 + r2

1 + x2
=

1

π

∫ arctan [ L
2r1

]

0

cos θdθ√
cos θ2 + 4r2

1/L
2

=
1

π
arcsin

(
L2

L2 + 4r2
1

)
. (6.60)

The final expressions for energy and helicity as given by

E = EΩfg
2L3 and Hrel = HrelΩfg

2L4, (6.61)

where E and Hrel represent the energy and relative helicity respectively cal-

culated over the volume containing the magnetogram.
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6.6.3 Effectiveness of the search strategy

In order to estimate the effectiveness of our search strategy, we try to recover

the field configurations and energies of known input fields. The input fields

used as test cases are

(a) a pure dipole field

(b) an axisymmetric linear force-free field (C modes)

(c) a non-axisymmetric linear force-free field, Chandrasekhar and Kendall

(1957) (CK modes).

In each of these case, we gave a two dimensional cross-section of the mag-

netic field as an input to our code and obtained a best fit with axisymmetric

non-linear force-free fields (LL modes). The parameter search grid used for

this analysis is the same as that used for the observed field. The details of

the fit and the comparison of energy and helicity are presented in Table 6.1.

No. Test Field Mode Correlation, c Energy Energy Relative Helicity Relative Helicity

n, m (input field) (best fit field ) (input field) (best fit field)

a. Dipole field 1, 1 0.9925 7.77 6.76 0 0

b. C mode 3, 1 0.662 1.24 1.34 -4.97 0

c. CK mode 3, 1 0.636 0.237 0.134 -0.327 0

Table 6.1: The table presents the correlation parameter for fits of the input test

field with the LL modes along with a comparison of energy and relative helicity.

In all the cases above the length-scale of the two dimensional cross-section is taken

to be unity.

The summary of our investigations can be presented as follows.

(a) Pure dipole field: We find that the dipolar field gives an almost exact

fit to the LL mode. This is because it is an exact solution to the n = 1,
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m = 1 LL mode. The accuracy of the fit can be improved by taking

more grid points in our parameter space. In this case, axis of symmetry

does not match exactly due to smaller grid resolution that is chosen

because of numerical constraints. Of course when the exact values of

the parameters are chosen, we recover perfect fits. We also see that

the energy of the best fit field closely matches with that of the original

field.

(b) C mode: We obtain a moderately good fit with 66% correlation with the

original field. The n = 3, m = 1 mode is picked up which represents

a potential field. This may be suggestive of the fact that the only

constant α solution allowed within the LL modes is the potential α = 0

mode. We find that the energies of the best fit field matches with that

of the original field within a factor of 2.

(c) CK mode: We get a fit of 64% correlation with the original field. Again

in this case the n = 3, m = 1 mode is picked up as in the previous

case. The non-axisymmetry of this field makes it further difficult to fit

with a axisymmetric non-linear force-free field which accounts for the

low correlation.

Thus, we find that we are able to get the correct configuration for the

input field (as in the dipole case). The accuracy of the fits can be improved

by taking more grid points in our parameter search space. This is computa-

tionally extensive and will be taken up in near future. We do not get good

matches to linear/non-axisymmetric linear force-free fields using non-linear

axisymmetric fields where the relative helicity in these cases could not be ob-

tained accurately, the energy however has been obtained in all cases within

a factor of two. The morphological match in all the three cases are shown in
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Fig. 6.6. We see that the overall features of fields are well captured in the

fits. In this context, we remark that our fits for observed data are higher.

6.7 Preparation of observational data

In order to compare the analytic solutions computed in this chapter with

the real magnetic field measurements and its associated quantities, we use

the active region magnetic field data from spectro-polarimeter onboard Hin-

ode. Spectro-polarimeter (SP) is one of the instrument of the solar optical

telescope (SOT). The SOT/SP obtains Stokes profiles with a spatial reso-

lution of 0.3′′ (Ichimoto et al., 2008) in magnetically sensitive Fe I lines at

630.15 and 630.25 nm. The SOT/SP can make the map of an active re-

gions in four modes, these are normal map, fast map, dynamics and deep

magnetogram modes. In this study, we use the data from fast mode, spatial

resolution along the slit direction is 0.295′′ and in the scanning direction it

is 0.317′′/pixel. The obtained Stokes profiles were calibrated using the so-

lar software suites for the SP. The Stokes vectors have been inverted using

the Milne-Eddington inversion (Skumanich and Lites, 1987; Lites and Sku-

manich, 1990; Lites et al., 1993) and the three components of magnetic field

were obtained. The 180°ambiguity in the transverse field has been resolved

using the minimum energy algorithm developed by Metcalf (1994) and im-

plemented by Leka, Barnes, and Crouch (2009) in Fortran. This algorithm

minimizes the electric current density and divergence simultaneously, select-

ing the field orientation with minimum free energy. The algorithm is best

among the several codes for automatically resolving the 180°ambiguity (Met-

calf et al., 2006). The resulting vector components have been transformed

to the disk center (Venkatakrishnan, Hagyard, and Hathaway, 1988). The
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Figure 6.6: The left panels in the figure represent the input fields whereas the

right panels represent the corresponding best fits by LL modes. The input in the

top, middle and bottom rows are: dipole, C mode and CK mode respectively.

More details are given in Table 6.1.
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resulting vertical, Bz, and transverse, Bt, field strengths have 1-σ error bars

of 8 and 30 G respectively.

We have chosen magnetograms of 3 active regions (Table 6.2) spanning

the years 2006 to 2007 for our analysis. Most of the AR appeared in the

southern hemisphere at a latitude close to the equator.

No. Active Region Date & Time of Obs. Latitude Pixel resolution Length, L (109) cm

1. 2006-Dec-12, 2000 UT 0.306′′ 8.0

2. 2006-Dec-13, 0400 UT 0.306′′ 8.0

3. NOAA 10930 2006-Dec-14, 1700 UT S05 0.306′′ 8.44

4. 2006-Dec-14, 2200 UT 0.306′′ 8.44

5. 2006-Dec-15, 0545 UT 0.306′′ 8.44

6. NOAA 10923 2006-Nov-11, 1430 UT S04 0.306′′ 8.44

7. NOAA 10933 2007-Jan-07, 0000 UT S05 0.306′′ 8.44

Table 6.2: Serial numbers are assigned to the active regions in the first column

for reference. The date, time and latitude for the observations are given in the

next two columns. The last two columns represent the mean pixel resolution and

the physical length-scale of the magnetogram.

6.8 Comparison of models to observations

6.8.1 Results

We list our findings below:

1. All the field configurations analyzed were found to be negatively twisted

as seen from the α for the C modes and the sign of the helicity for the

LL modes. The fits with non-linear LL modes are substantially better

than the linear C modes confirming the non-linear nature of the force-

free fields.
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2. Table 6.4 lists all the parameters compiled for the AR listed in Table

6.2.

3. The AR 10930 has been fit by LL modes with a figure of merit c = 0.7–

0.8 and d = 0.65–0.7. The energy ratio, ε is away from unity due to

the fact that the data is noisy and that we had not done any pre-

processing. There was a X3.4 class flare on December 13, 2006 and

we confirm in both models a substantial decrease in free energy and

relative helicity after the flare. The relative helicity and free energy in

the C mode increased and in the LL mode decreased marginally after

the X1.5 class flare on December 14, 2006.

4. The two ARs 10923, 10933 with single polarity fitted with potential

fields with a high figure of merit > 90%. They also show good correla-

tion numbers for d and ε (near unity).

5. The formula (6.55) for the predicted mp(np, r1/L) bears out for the

force-free configurations found for AR 10930 (see first five rows of

Table 6.3 for the modes (n,m) for C and LL modes. For example,

in the case of C modes, mp = 2m − 2 = {18, 18, 8, 14, 14} for the

five cases and we find the estimated mp from equation (6.55) to be

{16, 16, 7.25, 11.7, 11.7}. For the five cases of LL, mp = n + m − 1 =

4 in all the five cases while the estimated mp = {4.25, 4.6, 4.6, 3.8, 3.8}

from equation (6.55). It is clear that since the mp estimates are closer

for the LL modes as compared to the C modes, the corresponding fig-

ures of merit are higher for the C modes. The suggested mp estimates

are for lowest energy configurations.
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Figure 6.7: The magnetograms for active region NOAA 10930 are shown in

the top and bottom panels of the figure for the dates 12th and 13th Dec 2006

respectively. The left and right panels represent the magnetograms simulated by

the C and LL modes respectively. The middle panel represents the magnetogram

observation by HINODE. There was an occurrence of a X 3.4 class flare between

the dates; the figure depicts the field configuration before and after the flare.
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Figure 6.8: The magnetograms for active region NOAA 10930 are shown in

the top and bottom panels of the figure for the dates 14th and 15th Dec 2006

respectively. The left and right panels represent the magnetograms simulated by

the C and LL modes respectively. The middle panel represents the magnetogram

observation by HINODE. There was an occurrence of a X 1.5 class flare between

the dates; the figure depicts the field configuration before and after the flare.
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Figure 6.9: Free energy (circle) and relative magnetic helicity (square) simulated

for AR 10930 (see rows 1 to 5 in Table 6.3) for the C (left) and LL (right) mode

are plotted as a function of time. The time of the first observation (Dec 12, 2006;

UT 2000) is set as zero hrs. The vertical lines represent the times of X3.4 and X1.3

class flares respectively. The values in y axis have been normalized with respect

to their maximum.

6.8.2 Discussion of the results

AR 10923 and AR10933 show good fits (c > 90%) with single polarity poten-

tial configurations and are negatively twisted with the energies of 10.7×1033

and 2.063× 1033 ergs respectively. The corresponding goodness of fit param-

eters (d, ε) are near unity and indicate good fits, (see Table 6.4).

Active region NOAA 10930 is a center of focus for several studies and

the HINODE/SOT has followed the active region for several days in many

wavelength regions. The spectro-polarimeter (SP) produced vector magne-

tograms of this region till it disappeared on the West limb of the Sun. Using

the vector magnetic field measurements at the photospheric levels and by

applying a technique called pre-processing several authors employ NLFF ex-

trapolation methods to compute the coronal magnetic fields (e.g., Schrijver et

al. 2008). An X3.4 class flare has occurred in this active region on December
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C mode LL mode

N0. AR # c d ε c d ε

1. 0.58 0.521 1.834 0.81 0.695 1.273

2. 0.581 0.511 1.876 0.70 0.645 1.88

3. NOAA 10930 0.33 0.324 1.791 0.75 0.673 1.687

4. 0.42 0.395 1.724 0.76 0.698 1.765

5. 0.40 0.374 1.644 0.74 0.697 1.682

6. NOAA 10923 0.76 0.888 1.517 0.92 0.928 0.943

7. NOAA 10933 0.56 0.788 2.40 0.95 0.871 1.113

Table 6.4: The correlation parameters obtained for estimating the goodness of

fit for different active regions. The definitions of the correlation parameters are

given in §6.6.2.
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13, 2006. Using the three-dimensional magnetic fields information, Schrijver

et al. (2008) found that 3×1032 ergs of drop in free energy after the flare

compared to the pre-flare free energy. On the other hand, Guo et al. (2008)

find that only 2.4×1031 ergs of energy was released during the flare. At the

same time, using a similar technique, Jing et al. (2010) did not find any

release in free energy during the flare, instead they found a slight increase in

free energy after the flare. These results are summarized in Table 6.5 along

with our results.

Modelref Pre-flare Post-flare ∆Efree ∆Hrel

Eff Epot Eff/Epot Efree Hrel Eff Epot Eff/Epot Efree Hrel

1033 1033 1033 1043 1033 1033 1033 1043 1033 1043

erg erg erg Mx2 erg erg erg Mx2 erg Mx2

C modesa 1.5 0.905 1.66 0.595 − 1.91 6.27 0.76 8.25 5.51 −10.69 4.915 −8.78

LL modesa 3.46 2.77 1.249 0.69 −0.322 11.69 9.34 1.252 2.35 −1.17 1.66 −0.848

Current-field iteration b 1.32 1.14 − .32

Optimizationc 1.33 1.2 1.13 1.11 1.27 1.16 .11 1.09 − .02

Weighted optimizationd ∼.75 ∼.85 .1

Table 6.5: The values for the energy of the force-free field and the correspond-

ing potential field for the active region NOAA 10930 mentioned in literature are

compiled in the table along with our results for reference. The quantities such as

the free energy of the configuration, ratio between energies of the force-free and

potential field and the change in free energy before and after the flare are also

mentioned. a: current chapter, b: Schrijver et. al. (2008) , c: Guo et. al. (2008),

d: Jing et. al. (2010)

We find that free energies derived from the LL model are consistent with

a drop after both the flare events (note that the time coverage before and

after the flare is not complete), indicating a strong probability of a peak in

the free energy (and relative helicity) just before the first flare event, see Fig.
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6.9. This picture is conducive to the idea that the loss of the free energy

in the photosphere is strongly related to the energy dissipated in the flare

events.

The coronal mass ejection (CME) associated with this event carried ki-

netic energy (deprojected velocity ) of 4.5×1032 ergs with it (Ravindra and

Howard, 2010). This is in rough agreement with our estimate of a loss of

1.66×1033 ergs (LL modes) as about half of this would be released in the

kinetic energy channel. The magnetic cloud associated with the CME had a

helicity of about -7×1041 Mx2 as estimated here by Ravindra, Yoshimura, and

Dasso (2011) which is much less than the drop in helicity estimated for the LL

modes to be -0.322 ×1043 Mx2. However our estimate of the relative helicity

injected into the active region corona is found to be -0.848×1043 Mx2 before

the initiation of X3.4 class flare which is comparable to the −4.3×1043 Mx2

found by Park et al. (2010). All the NLFF extrapolation techniques em-

ployed (other than this work) in computing the free energy using the vector

magnetic field data made use of pre-processing technique to make the field

more close to force-free. However, in doing so the field gets smoothed and

there by reducing the field strength and hence the free energy.

For the same datasets other authors using different NLFF extrapolation

techniques for the analysis obtain slightly different results. In some cases,

there is an increase in the free energy after the flare whereas in other cases

they find that it decreases. In our analysis, both the free-energy and relative

helicity increase after the first flare, as can be seen from the last two columns

in Table 6.5. The ratio of the energies of the force-free field and the potential

field that remains almost constant before and after the flare for the LL mode

while for the C mode it increases. This can be used to infer that during the

flare process there is a dynamic evolution of both the force-free field and the
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potential field from a lower to higher energy state, implying that there was a

peak in free-energy and relative helicity between the two observations which

are separated by a large time gap of 8 hrs.

6.9 Summary & conclusions

Here we first summarize the key results of this chapter.

1. Analytic results

We have shown that there are two solutions possible (albeit known al-

ready and denoted here as C and LL) from the separability assumption.

We calculate the energies and relative helicity of the allowed force-free

fields in a shell geometry.The final expression for the field of C modes is

given in equation (6.66). We then calculated the corresponding poten-

tial field for calculating relative helicity in this region. The expressions

for the potential field and its vector potential are given in equations

(6.67) and (6.29). The relative helicity thus calculated is given by

equation (6.30). The expression for energies of the force-free field and

the potential field are given by equations (6.26) and (6.28) respectively

whereby we can calculate the free energy of the system using equation

(6.1). The alternative expressions for the energy of the force-free field

and relative helicity are given in equations (6.27) and (6.31) respectively

which are analytically in agreement with the previous expressions.

For the LL mode we were able to extend the solution set obtained in

Low and Lou (1990) from n = 1 to all rational values of n =
p

q
by

solving the equation (6.40) for all cases of odd p and for cases of q > p

for even p, in effect extending solution to practically all n. The final ex-

pression for the magnetic field is given by equation (6.39) and its vector
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C MODES

B(r1 < r < r2) =
(
−Jm+3/2(αr)

r3/2
d

dµ
[(1− µ2)C

3/2
m (µ)], −1

r
d
dr

[r1/2Jm+3/2(αr)](1− µ2)1/2C
3/2
m (µ),

αJm+3/2(αr)

r1/2 (1− µ2)1/2C
3/2
m (µ)

)

A(r1 < r < r2) = B/α; am+1 =
(m+2)r

m+3/2
1 Jm+3/2(αr1)

r2m+3
1 −r2m+3

2

; bm+1 =
(m+1)r2m+3

2 r
m+3/2
1 Jm+3/2(αr1)

r2m+3
1 −r2m+3

2

BP (r1 < r < r2) =
([

(m+ 1)am+1r
m − (m+2)bm+1

rm+3

]
Pm+1(µ), −(1− µ2)1/2

[
am+1r

m + bm+1

rm+3

]
dPm+1

dµ
, 0
)

AP (r1 < r < r2) =
(

0, 0, (1− µ2)1/2P ′l (µ)
[
alr

l

l+1
− bl

lrl+1

])

Ev(r) = (m+1)(m+2)
2(2m+3)

[
r
[

d
dr

{
r1/2Jm+3/2(αr)

}]2
+ {α2r2 − (m+ 1)(m+ 2)} J2

m+3/2(αr)
]

;

Eff (α, n,m, r1, r2) = Ev(r2)− Ev(r1) = (m+1)(m+2)
2(2m+3)

[
2
∫ r2
r1
α2rJ2

m+3/2(αr)dr − r1/2
1 Jm+3/2(αr1) d

dr
{r1/2Jm+3/2(αr)}|r=r1

]

Epot(m, r1, r2) = 1
2(2m+3)

∫ r2
r1

[(
(m+ 1)am+1r

m+1 − (m+2)bm+1

rm+2

)2

+ (m+ 1)(m+ 2)
(
am+1r

m+1 + bm+1

rm+2

)2]
dr

HFA
rel (α, n,m, r1, r2) =

8πEff

α
+ 4π(m+1)(m+2)

α(2m+3)

[
α2
∫ r2
r1

(
am+1rm+1

m+2
− bm+1

(m+1)rm+2

)
r3/2Jm+3/2(αr)dr

+ r
1/2
1

(
am+1r

m+1
1 + bm+1

rm+2
1

)
Jm+3/2(αr1)

]

HB
rel(α, n,m, r1, r2) = 8πα(m+1)(m+2)

2m+3

∫ r2
r1
rJ2

m+3/2(αr)dr.

LL MODES

B(r < r2) =
(
−1
rn+2

dP
∂µ
, n
rn+2

P
(1−µ2)1/2 ,

a
rn+2

P (n+1)/n

(1−µ2)1/2

)
; A(r < r2) =

(
0, −a

nrn+1

P (µ)(n+1)/n

(1−µ2)1/2 ,
1
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P (µ)

(1−µ2)1/2

)
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∫ 1

−1
dP
dµ
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(∑∞
l=0−(l + 1) bl
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∑∞

l=0
−bl
rl+2 (1− µ2)1/2 dPl

dµ
, 0
)
.
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(
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[
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l

l+1
− bl

lrl+1

])
; Epot(l, r1) =

∑∞
l=0

b2l (l+1)

2(2l+1)r2l+1
1

Eff (n,m, r1) = 1
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1
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dµ
[
P ′(µ)2 + n2P (µ)2
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dP
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∑∞
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Table 6.6: Formulary for the various quantities calculated for the C and LL

modes. B and A denote the force-free magnetic field and its corresponding vec-

tor potential. The same quantities for the potential field are denoted by BP and

AP respectively. Eff , Epot, Efree and Hrel are the force-free energy, potential

energy, free energy and the relative helicity of the magnetic field configuration

respectively calculated using the Finn Antonesen & Berger formulae that are an-

alytically equivalent.
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potential by equation (6.47) respectively. The expression for the poten-

tial field consistent with this force-free field is given by equation (6.44)

and the corresponding vector potential is given by equation (6.29) with

the constants evaluated from equation (6.45). The relative helicity in

the region using the Finn-Antonsen formula is given by equation (6.49).

The energies for the force-free and potential fields are given by equa-

tions (6.42) and (6.46) respectively. Again, the alternative expressions

for the energy of the force-free field and relative helicity are given in

equations (6.43) and (6.50) respectively which are analytically in agree-

ment with the previous expressions. For convenience these results are

included in the formularies for C and LL modes in Table 6.6.

2. Numerical Results

We formulated a search strategy with parameters including two Euler

rotations of the force-free sphere and a variable set that corresponds

to the various C and LL modes, see §6.6. A study of effectiveness

of our search strategy is presented in §6.6.3. Here we find that we

are able to get the correct configuration for the input field (as in the

dipole case) and are able to fit the energies within a factor of 2. We

then studied the field configurations for 3 active regions, c.f. Table

6.2 and calculated the free-energy and relative helicity for these cases.

We were able to get reasonable fits for the above cases, c.f. Table

6.4. All the field configurations analyzed were found to be negatively

twisted as seen from the α for the C modes and the helicity of the

LL modes, c.f. Table 6.3. The fits with non-linear LL modes seem to

be better than the linear C modes. In the case of AR 10930, there

was a X3.4 class flare on December 13, 2006 and we confirm in both

modes a substantial decrease in free energy and relative helicity after
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the flare. A comparison of results obtained in this chapter with those

in literature for the same flare event is presented in Table 6.5. The

relative helicity and free energy in the C mode increased and in the

LL mode decreased marginally after the X1.5 class flare on December

14, 2006. The two ARs 10923, 10933 with single polarity show very

high correlation (> 90%) with potential fields. We were not able to

explore the full parameter space because of computational constraints

mentioned in §6.6. Since our best fit with the observational data for

the LL modes is substantially better ( 75%) than those obtained in the

test cases, this lends much credibility to the results presented in the

chapter.

We find that the approach taken here is fairly good in estimating the

quantities of interest namely relative helicity and free energy, see Table 6.5

and §6.8. In order to compare with the other estimates available in literature,

where the potential fields are usually extended from the planar surface of

the magnetogram to a cuboidal volume over the magnetogram, we rescale

our physical quantities obtained for a hemisphere by the factor of the solid

angle subtended by the magnetogram at the center. This enables us to

approximate their trend before and after a flare event. The validity of this

approximation can be seen from the general agreement with other estimates

(including observations). An advantage in this method is its ease and utility

to calculate these physical quantities, in particular the relative helicity is thus

far not calculated by other approaches. Further, we don’t have to assume

any other boundary conditions for the side walls, as required in the other

extrapolation techniques using the cuboidal volume. This method can also

provide useful reconstruction of the non-linear force-free fields as well as

reasonable input field for other numerical techniques. It is clear that non-
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linear LL modes are dominantly better fits than the linear C modes. The

search is now limited by computational constraints; in future, we hope to

improve the fits by applying the method to a larger space of geometrical

parameters and in more cases of mode numbers n and m.

The LL solution of (n = 1 in Low and Lou (1990) and n = 5, 7, 9 (odd

cases) in Flyer et al. (2004)) have been extended here to the cases of nearly

all n. The topological properties of these extended solutions can be further

studied by considering other boundary conditions.The analytic solutions for

LL suffer from the problem of a singularity at the origin which render them

unphysical; this implies that more realistic boundary conditions are neces-

sary.

To learn more about the evolution and genesis of these structures, it

would be useful to carry out dynamical simulations allowing for footpoint

motions with the analytic input fields constructed above to study how the

non-linearity develops; a stability analysis of the non-linear modes would

also be a useful tool (Berger (1985) has analyzed the linear constant α case).

Clearly, these are difficult mathematical problems to be addressed in the

future.



Appendix

6.A Boundary conditions and formulae for C

mode fields

The conditions to be satisfied at a interface (where α has a discontinuity)

are

1. The divergence condition implies the continuity of normal component

of the magnetic field, whereas the absence of surface currents on the

boundaries leads to continuity of the parallel components of the field.

Therefore magnetic field B should be continuous.

2. The normal component of the current density J should be continuous

as there is no accumulation of charges at the boundary.

The second condition requires the continuity of the normal component of αB;

on the other hand, the first condition requires normal component of B to be

continuous. If α changes discontinuously at a spherical shell (say at a radius

R), then the two conditions can be met only if the normal component of B

vanishes. In spherical coordinates, the conditions at the shell are therefore,

Br = 0, Bθ and Bφ are continuous. This condition on Br at r = R can be

met only if

gm+3/2(αr)|r=R = 0. (6.62)
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and αR is the zero the function. Let

gm+3/2(αr) = c1Jm+3/2(αr) + c2Ym+3/2(αr) (6.63)

where c1 and c2 are constants to be determined from the boundary conditions.

Finiteness of g at r = 0 demands c2 = 0; physically this implies that the

poloidal flux, is finite. Then

gm+3/2(αr) = c1Jm+3/2(αr). (6.64)

Finally, the expression for magnetic field is given by

B =

(
−1

r2

∂

∂µ
[Smr

2(1− µ2)],
−1

r
√

(1− µ2)

∂

∂r
[Smr

2(1− µ2)], αr
√

(1− µ2)Sm

)
.

(6.65)

The above expression can be further simplified by substituting for Sm using

equations (6.20) and (6.64) to

B =

(
−Jm+3/2(αr)

r3/2

d

dµ
[(1− µ2)C3/2

m (µ)],
−1

r

d

dr
[r1/2Jm+3/2(αr)]

(1− µ2)1/2C3/2
m (µ),

αJm+3/2(αr)

r1/2
(1− µ2)1/2C3/2

m (µ)

)
. (6.66)

The various modes of C modes are shown in Fig.6.10 for different values of

the variable m. Note that m represents the number of angular oscillations

of the mode. The total number of poles in the sphere being 2m. The self

similarity of the solutions is evident from Figure 6.10.

The derivation for the potential field corresponding to equation (6.66)is

given in §6.C. The final expressions for the potential field is found to be

BP =

([
(m+ 1)am+1r

m − (m+ 2)bm+1

rm+3

]
Pm+1(µ),−(1− µ2)1/2

[
am+1r

m +
bm+1

rm+3

]
dPm+1

dµ
, 0

)
. (6.67)
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Figure 6.10: The different angular modes from m = 1 (top left) to m = 9 (bottom

right) are shown in the figure. The contours represent the poloidal stream function

ψ and the density plot represents the strength of the azimuthal field Bφ. The two

circles are drawn at first and second radial roots. The 0 and 1 in the legend

corresponds to the minimum and maximum value of Bφ respectively.
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P(m+1)(µ) are the Legendre polynomials, and where the coefficients are given

as

χl = χm+1(r1) =
(m+ 1)(m+ 2)

r
3/2
1

J(m+ 3/2, αr1) (6.68)

al = am+1 =
χm+1(r1)

(m+ 1)

rm+3
1

r2m+3
1 − r2m+3

2

bl = bm+1 =
(m+ 1)

(m+ 2)
am+1r

(2m+3)
2 (6.69)

The above expressions can be further simplified by substituting for χl, which

gives

am+1 =
(m+ 2)r

m+3/2
1 Jm+3/2(αr1)

r2m+3
1 − r2m+3

2

bm+1 =
(m+ 1)r2m+3

2 r
m+3/2
1 Jm+3/2(αr1)

r2m+3
1 − r2m+3

2

(6.70)

6.B Energy for closed field lines of C mode

The energy of force-free magnetic field in a spherical shell geometry is given

by

E(B) =
1

8π

∫ r2

r1

∫ 1

−1

∫ 2π

0

|B|2r2drdµdφ =
1

4

∫ r2

r1

∫ 1

−1

|B|2r2drdµ (6.71)

where axisymmetry is applied in the last step. The expression for energy for

the force-free field given in equation (6.71) uses a volume integral, whereas

we can calculate it via a surface integral using the virial theorem for force-free

fields (Chandrasekhar 1961) in spherical geometry as

Eff =
1

8π

∫
V

|B|2dV =
1

8π

∫
S

|B|2r · dS− 1

4π

∫
S

(B · r)(B · dS) (6.72)

where S is the surface enclosing the volume of interest V . In axisymmetry,

the equation (6.72) reduces to

Eff =
1

8π

∫
V

|B|2dV =
R3

4

∫ 1

−1

(B2
θ +B2

φ −B2
r )dµ. (6.73)
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where R is the radius of the shell. For the energy of a potential field, we use

EP = E(BP ), which is calculated from equation (6.71). In order to study

the dependence of energy on the various radial and angular modes, we first

calculate the contribution from the toroidal component given by

ET =
α2

4

∫ r2

r1

dr rJ2
m+3/2(αr)

∫ 1

−1

dµ(1− µ2)
[
C3/2
m (µ)

]2
(6.74)

using equation (6.71) and E(B) = E(BT ) + E(BP ), the total energy (for

volumes containing closed field lines) is given by Eff = 2ET (Chandrasekhar,

1961). The energy for C mode can be calculated analytically if the field lines

close at the inner and outer boundaries. The radial part of the integration

in equation (6.74) can be written as

R = α2

∫ r2

r1

dr rJ2
m+3/2(αr). (6.75)

If r1 = 0 and r2 = rnm, where Znm = αrnm is the nth root of Jm+3/2(αr),

then equation (6.75) can be written as

R =
1

2
(Znm)2

[
Jm+5/2(Znm)

]2
. (6.76)

The angular part of equation (6.74) can be written as

Θ =

∫ 1

−1

dµ(1− µ2)C3/2
m (µ)2. (6.77)

Using the orthogonality properties of Gegenbauer polynomials, the above

integral can be evaluated as

Θ =
πΓ(m+ 3)

4!(m+ 3/2)[Γ(3/2)]2
=

2(m+ 1)(m+ 2)

2m+ 3
. (6.78)

Combining equations (6.76 & 6.78), we obtain the following expression for

equation (6.74)

ET =
Z2
nm

4

(m+ 1)(m+ 2)

2m+ 3

[
Jm+5/2(Znm)

]2
. (6.79)
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and plot contours of the result in Fig. 6.11 (left panel). We find that for a

sphere of fixed radius, the energy increases with higher angular m and radial

n modes. The radial modes of the solution are given by the Bessel functions,

which represents the number of radial oscillations and the energy of the field

increases with the number of oscillations. The angular modes are given by

(1−µ)1/2C
3/2
m (µ) which are presented in the right panel of Fig. 6.11 and the

field reverses (m+ 1) times for a given value of m.

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

3

Μ

P
H
Μ
L

Figure 6.11: The left panel shows contours of energy for different angular and

radial modes for C modes computed for the same volume and normalized with

respect to the maximum. The 0 and 1 in the legend refer to the maximum and

minimum values of the energies respectively. The right panel shows the behavior

of P (µ) which changes sign (m+ 1) times in the domain for a given value of m.
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6.C Calculating potential fields correspond-

ing to the force-free fields

A potential field is defined by the equation

∇×BP = 0. (6.80)

Thus the field can be expressed as BP = ∇ΦP for a scalar potential ΦP

which satisfies the Laplace equation ∇2ΦP = 0. The general solution for this

equation in spherical coordinates is given by

ΦP (r, µ) =
∞∑
l=0

(alr
l +

bl
rl+1

)Pl(µ) (6.81)

where Pl(µ) is the Legendre polynomial of order l; al and bl are constant

coefficients to be determined by matching the normal components of potential

field with that of the force-free field at the boundaries. We have to solve the

Laplace equation for a spherical shell with r1 and r2 as inner and outer

boundaries.

The radial component of the potential field [Br(r, µ)]P is given by

[Br(r, µ)]P = (∇Φ)r =
∂Φ

∂r
=
∞∑
l=0

Pl(µ)χl(r) (6.82)

where χl is given by

χl(r) =

[
lalr

l−1 − (l + 1)
bl
rl+2

]
. (6.83)

We assume that the radial component of the force-free magnetic field can be

separated as functions of r and µ denoted by R(r) and Θ(µ) respectively:

[Br(r, µ)]ff = R(r)Θ(µ). (6.84)

To match the radial components of potential and force-free fields, we use

equations (6.82) and (6.84) and equate the two fields at the lower boundary,
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fields

r = r1

R(r1)Θ(µ) =
∞∑
l=0

Pl(µ)χl(r1). (6.85)

Using the orthogonality property of Legendre functions we get

R(r1)

∫ 1

−1

Θ(µ)Pl(µ)dµ =
2

(2l + 1)
χl(r1). (6.86)

So, the expansion coefficients for the potential field can be obtained from

equation (6.86) as

χl(r1) =
(2l + 1)

2
R(r1)

∫ 1

−1

Θ(µ)Pl(µ)dµ (6.87)

6.C.1 Matching potential field to C modes at the inner

shell

Using equations (6.87) and (6.64) we can write at the inner boundary r = r1

χl(r1) =
(2l + 1)Jm+3/2(αr1)

2r
3/2
1∫ −1

1

∂

∂µ

[
C3/2
m (µ)(1− µ2)

]
Pl(µ)dµ (6.88)

=
(m+ 1)(m+ 2)

r
3/2
1

Jm+3/2(αr1), (6.89)

where l = m+ 1, the calculation of the µ integral in equation (6.88) is given

in Appendix 6.G. At the outer boundary at r = r2, we have χl(r2) = 0, which

results in the following condition for the coefficients al and bl

bl = b(m+1) =
(m+ 1)

(m+ 2)
a(m+1)r

(2m+3)
2 . (6.90)

Using equation (6.83) and the above equation, we find the following expres-

sion for the coefficient a(m+1)

al = a(m+1) =
χ(m+1)(r1)

(m+ 1)

r
(m+3)
1

r
(2m+3)
1 − r(2m+3)

2

. (6.91)
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Upon simplification the coefficients can be written as

am+1 =
(m+ 2)r

m+3/2
1 Jm+3/2(αr1)

r2m+3
1 − r2m+3

2

bm+1 =
(m+ 1)r2m+3

2 r
m+3/2
1 Jm+3/2(αr1)

r2m+3
1 − r2m+3

2

(6.92)

Thus the expression for the potential field is given by

BP =
([

(m+ 1)a(m+1)r
m −

(m+ 2)b(m+1)

r(m+3)

]
P(m+1)(µ),

− (1− µ2)1/2

[
a(m+1)r

m +
b(m+1)

r(m+3)

]
dP(m+1)

dµ
, 0
)
. (6.93)

6.C.2 Matching potential field to LL modes at the in-

ner shell

We recall the definitions for the general potential field from equation (6.81).

Now the boundary condition at the outer boundary r2(= ∞) is given by

χl(r2) = 0, and since the potential should be finite for all values of r, it

implies that

al = 0 (6.94)

and the scalar potential takes the form

ΦP (r, µ) =
∞∑
l=0

bl
rl+1

Pl(µ) (6.95)

while the radial component of the potential field is given by

Br(r, µ) =
∞∑
l=0

−(l + 1)
bl
rl+2

Pl(µ). (6.96)

From equation (6.36) we recall that the radial component of the non-linear

field has the following form

Br(r, µ) = − 1

rn+2

dP

dµ
. (6.97)
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Equating the two radial fields at the lower boundary, r = r1 we get

∞∑
l=0

−(l + 1)
bl

rl+2
1

Pl(µ) = − 1

rn+2
1

dP

dµ
. (6.98)

Using the orthogonality property of the Legendre polynomials we get the

following expression for the expansion coefficient bl

bl =
2l + 1

2(l + 1)
rl−n1

∫ 1

−1

dP

dµ
Pl(µ)dµ. (6.99)

So the final expression for the potential field matched to LL modes is given

by

BP =

(
∞∑
l=0

−(l + 1)
bl
rl+2

Pl(µ),
∞∑
l=0

−bl
rl+2

(1− µ2)1/2 dPl
dµ

, 0

)
. (6.100)

6.D Vector potential of potential fields

The vector potential for the potential field is given by the relation

∇×AP = ∇ΦP (6.101)

where ΦP is the scalar potential obtained from equation (6.81). Since a

potential field is entirely poloidal and curl of a toroidal field is always poloidal,

we expect AP to have only toroidal component. Then for an axisymmetric

field AP will be of the following form,

AP = Aφ(r, µ)φ̂ (6.102)

Expanding the above equation in spherical polar coordinates, we obtain the

following pair of equations

−1

r

∂

∂µ

[
(1− µ2)1/2Aφ

]
=
∂ΦP

∂r
(6.103)

1

r

∂

∂r
(rAφ) =

(1− µ2)1/2

r

∂ΦP

∂µ
(6.104)
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Solving the above two equations simultaneously, we find the unique solution

Aφ(r, µ) =
∞∑
l=0

(1− µ2)1/2P ′l (µ)

[
alr

l

l + 1
− bl
lrl+1

]
. (6.105)

Aφ(r, µ) =
∞∑
l=0

(1− µ2)1/2P ′l (µ)

[
alr

l

l + 1
− bl
lrl+1

]
. (6.106)

So, the final expression is given by

AP =
∞∑
l=0

(
0, 0, (1− µ2)1/2P ′l (µ)

[
alr

l

l + 1
− bl
lrl+1

])
. (6.107)

6.E Vector potential for LL modes

Since A is uncertain within a choice of gauge, we choose a convenient gauge

such that the radial component of the vector potential, Ar is zero. Then the

vector potential in spherical polar coordinates can be written as

A = (0, Aθ, Aφ). (6.108)

Using the definition B = ∇×A, we get the following three equations for the

components of A

−1

r2

∂ψ

∂µ
=
−1

r

∂

∂µ

[
(1− µ2)1/2Aφ

]
−1

r(1− µ2)1/2

∂ψ

∂r
=
−1

r

∂

∂r
(rAφ)

aψ(n+1)/n

(1− µ2)1/2
=

∂(rAθ)

∂r
. (6.109)

By solving the above set of equations, we find

A =

(
0,
−a
nrn+1

P (µ)(n+1)/n

(1− µ2)1/2
,

1

rn+1

P (µ)

(1− µ2)1/2

)
(6.110)

As a consequence of equations (6.36, 6.110), A·B = 0 everywhere. For closed

field lines in a volume, the magnetic helicity

H =

∫
A ·B dV = 0. (6.111)
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force-free spheres

6.F Equivalence of Finn Antonsen and Berger

formulae for force-free spheres

6.F.1 C modes

To show the equivalence of expressions of relative helicity obtained from

equations (6.30 & 6.31), we first express equation (6.30) as

Hr =
8πEff
α

+
4π(m+ 1)(m+ 2)

α(2m+ 3)
(I1 + I2) (6.112)

where Eff is given by equation (6.26), I1 is the integral given by

I1 =

∫ r2

r1

α2

(
am+1r

m+1

m+ 2
− bm+1

(m+ 1)rm+2

)
r3/2Jm+3/2(αr) (6.113)

and I2 is the boundary term given by

I2 = r
1/2
1

(
am+1r

m+1
1 +

bm+1

rm+2
1

)
Jm+3/2(αr1). (6.114)

Upon simplification, we get

I1 + I2 =

(
am+1r

m+2
1

m+ 2
− bm+1

(m+ 1)rm+1
1

)
d

dr

[
r1/2Jm+3/2(αr)

]
|r=r1 . (6.115)

Now from the continuity of the radial component of the force-free field to

the potential field at r = r1, (BP )r = (B)r, where B and BP are given by

equations (6.66) and (6.67) respectively, we find(
am+1r

m+2
1

m+ 2
− bm+1

(m+ 1)rm+1
1

)
= r

1/2
1 Jm+3/2(αr1) (6.116)

which leads to

I1 + I2 = r
1/2
1 Jm+3/2(αr1)

d

dr

[
r1/2Jm+3/2(αr)

]
|r=r1 . (6.117)

Substituting equations (6.26 & 6.117) in equation (6.112) we arrive at equa-

tion (6.31).
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6.F.2 LL modes

To prove the equivalence of the expressions of relative helicity given in equa-

tions (6.49 & 6.50), we start with equation (6.98) which can be rewritten

as

∞∑
l=0

(l + 1)
bl
rl1
Pl(µ) =

1

rn1

dP

dµ
. (6.118)

Integrating the above equation with respect to µ and rearranging the terms,

we get
∞∑
l=0

(l + 1)
bl

rl−n1

∫
Pl(µ)dµ = P. (6.119)

Now from the Legendre differential equation, we have the identity[
(1− µ2)

dPl
dµ

]
= −l(l + 1)

∫
Pldµ. (6.120)

Substituting equation (6.120) in equation (6.119), we get

−
∞∑
l=0

bl

lrl−n1

[
(1− µ2)

dPl
dµ

]
= P. (6.121)

Multiplying both sides of equation (6.121) by
2πaP 1+1/n

nr2n
1 (1− µ2)

we get the equal-

ity between the integrands of equations (6.49 & 6.50).

6.G Calculation of angular integral in the ex-

pression (6.88)

Here we give the derivation of the angular integral in equation (6.88).∫ 1

−1

∂

∂µ

[
C3/2
m (µ)(1− µ2)

]
Pl(µ)dµ. (6.122)



167 6.H Boundary conditions for F in equation (6.40)

We now expand Gegenbauer polynomials in terms of Legendre polynomials

by using the following relation

(1− µ2)C3/2
m (µ) = (1 +m) [Pm(µ)− µPm+1(µ)] = (1− µ2)P ′m+1(µ). (6.123)

Equation (6.122) can now be written as∫ 1

−1

∂

∂µ

[
(1− µ2)P ′m+1(µ)

]
Pl(µ)dµ

=
[
Pl(µ)(1− µ2)P ′m+1(µ)

]1
−1
−
∫ 1

−1

P ′l (µ)P ′m+1(µ)(1− µ2)dµ

=

∫ 1

−1

P ′l (µ)dµ

∫
(m+ 1)(m+ 2)Pm+1(µ)dµ

=

[∫
(m+ 1)(m+ 2)Pm+1(µ)Pl(µ)dµ

]1

−1

−
∫

(m+ 1)(m+ 2)Pm+1(µ)Pl(µ)dµ

= −(m+ 1)(m+ 2)δ0,m+1Pl(µ)− 2(m+ 1)(m+ 2)

2l + 1
δl,m+1

= −2(m+ 1)(m+ 2)

2m+ 3
(6.124)

where we have used Legendre differential equation to substitute for the

derivative of P ′m+1(µ) in the third step and the orthogonality property of

Legendre polynomials in the final step.

6.H Boundary conditions for F in equation

(6.40)

We motivate the transformation of the variable from P to F by P = (1 −

µ2)1/2F . This enables us to write an ODE equation (6.40) to solve directly

for LL fields for all the allowed cases of n that is numerically difficult to

implement with the ODE for P , given by equation (6.35). The angular part
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of the LL mode is given by equation (6.35)

(1− µ2)P ′′ + a2n+ 1

n
P 1+2/n + n(n+ 1)P = 0. (6.125)

We assume

P (µ) = (1− µ2)Γg(µ), (6.126)

as P (µ = ±1) = 0 for the highest possible Γ > 0 such that g(µ = ±1) 6= 0.

Substituting for P in equation (6.35) we obtain

(1− µ2)2g′′ +
[
−2Γ(1− µ2) + 4µ2Γ(Γ− 1) + n(n+ 1)(1− µ2)

]
g

−4µΓ(1− µ2)g′ + a2 (n+ 1)

n
g

n+2
n (1− µ2)

2Γ
n

+1 = 0. (6.127)

We now expand P using equation (6.126) in a power series of (1− µ2) near

µ = ±1,

P (µ) = (1− µ2)Γ

∞∑
γ=0

Cγ(1− µ2)γ, (6.128)

where C0 is the leading term which is non-zero by definition. Comparing

equation (6.126) and (6.128), we can expand g(µ) near µ2 = 1 in a power

series with coefficients Cγ as

lim
µ2→1

g(µ) = C0 + C1(1− µ2) + C2(1− µ2)2 + ... (6.129)

t is clear from above that in the limit µ2 → 1, g → C0 which is a constant.

Also we know that g′ and g′′ are finite as µ2 → 1 since P (µ) is finite in this

limit. As a result, upon the substitution µ2 → 1, equation (6.127) gives

4µ2Γ(Γ− 1)g = 0, (6.130)

leading to Γ = 0, 1. The Γ = 0 solution is not allowed whereas Γ = 1 implies

P (µ) = (1− µ2)g = (1− µ2)1/2F. (6.131)

Thus F satisfies the boundary conditions

F (µ) = 0 at µ = −1, 1. (6.132)



Chapter 7

Analytical modeling of braided

magnetic fields

7.1 Introduction

In this chapter, we estimate the free-energy available in braided structures

using topological quantities and compare them with the numerical estimates

made in Chapter 6. This free energy provides a reservoir for coronal heat-

ing by micro- and nanoflares. We first describe the analytical modeling of

braiding and propose a self-regulatory mechanism of twist and reconnection

for obtaining a steady heating rate. We then apply this model to one of the

active regions studied in Chapter 6 and calculate the distribution of flare en-

ergies. These results provide useful information on the coronal loop structure

and also imply that the coronal heating can be supplied by the braiding in

the case of the active sun.

The work presented in part in Section 7.2 is in preparation for submission.
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7.2 Analytic modeling of the self-organized

braided magnetic fields

A simple analytic model of braided magnetic fields which gives a power-

law distribution of energy releases is presented in Berger and Asgari-Targhi

(2009). Following is a brief overview of this model. Consider a braid on three

strings as shown in Fig. 7.1. The sections of the braid where the two strings

on the left twist about each other are called coherent sequences and single

crossings which swap the middle string on the right are called interchanges.

Figure 7.1: (a) A three-braid configuration with two coherent sequences sepa-

rated by an interchange. (b) The interchange is removed by reconnection. (c) The

final relax configuration with the crossings canceled out. Figure courtesy: Berger

and Asgari-Targhi (2009)

The braid structure is assumed to be generated at the boundaries by a

succession of the following two motions which alternate with each other:

1. The first motion rotates the leftmost and middle endpoints through
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fields

some net twist angle θ, where θ is a multiple of π. This generates

a winding w in the strings between the boundaries which correspond

to c = |w| crossings (w = θ/π or −θ/π for upper and lower boundary

motions respectively). The crossing can be right- handed or left-handed

based on the sign of w.

2. The second motion gives a single half-twist between the middle- and

right-hand end point which generates an interchange.

For example, the braid of Figure 7.1 can be generated from three straight

curves by the following steps:

1. The leftmost end points rotate at the top boundary through three anti-

clockwise half-turns (w = +3) which gives the strings below three pos-

itive (right-handed) half-twists.

2. The second motion exchanges the third string with the middle string.

3. A twist of three clockwise turns gives the two strings on the left three

negative half-twists (w = −3). The twists cannot cancel because of the

interchange (which can be removed only by reconnection). The result

of reconnection on the curves involved in the interchange is shown in

the middle configuration in Figure 7.1. Now the positive and negative

twists connect to each other and cancel out.

In order to model the distribution of coherent braid sequences, we con-

sider the evolution of the braid by random processes which can either add

a new structure or remove/simplify an old structure. We begin with some

arbitrary initial braid having m sequences separated by m− 1 interchanges.

At each step, one new coherent sequence is added with one new interchange.

Simultaneously, a reconnection event randomly removes one of the existing
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interchanges due to which, the sequences on either side either merge or cancel

out. After iterating this for many steps, the braid reaches a statistical steady

state which is independent of the initial structure. The braid structure can

then be thought of as self-organized. If number of sequences with crossing

number w is given by n(w), then

m =
∞∑

w=−∞

n(w), (7.1)

and the total number of crossings is given by

ctot =
∞∑

w=−∞

|w|n(w). (7.2)

We can then define f(w) = n(w)/m as the probability distribution function

for the sequence lengths w. For simplification, w is assumed to be continu-

ous rather than a discrete variable. The number of crossings between w and

w+ δw can then be written as n(w)δw. At each time step, one new sequence

and one new interchange is added, while one of the interior interchanges is re-

moved by reconnection. We take the probability distribution of new sequence

lengths to be p(w). At each time step, the probability distribution function

f(w) changes by δf(w), which is contributed by the following factors:

1. A probability of p(w) that the new sequence will add to f(w).

2. A sequence will disappear, if the sequence to the left of the reconnecting

interchange has a winding w. So, there is a probability f(w) that

the number n(w) = mf(w) of sequences with crossing number w will

decrease by one.

3. The sequence to the right of the obstruction has probability of f(w) of

removing a w sequence.
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4. If the left sequence has w1 windings and the right sequence has w2 =

w − w1 windings, a new w-sequence will be created.

Combining all the above factors, we write

δn(w) = [p(w)− 2f(w)] +

∫ ∞
−∞

f(w1)dw1 ×
∫ ∞
−∞

f(w2)dw2δ[w − (w2 + w1)]

= [p(w)− 2f(w)] +

∫ ∞
−∞

f(w1)f(w − w1)dw1

In a steady state, the left-hand side of the above equation vanishes. So

p(w)− 2f(w) + (f ∗ f)(w) = 0, (7.3)

where f ∗ f represents the Fourier convolution. To solve this, we take the

Fourier transform of the previous equation,

p̃(k)− 2f̃(k) + f̃ 2(k) = 0, (7.4)

whose solution is given by

f̃(k) = 1−
√

1− p̃(k). (7.5)

If the input a new sequence follows a Poisson process for some λ, then

p(w) =
λ

2
exp−λ|w|, and p̃(k) =

λ2

λ2 + k2
, (7.6)

Substituting p̃(k) in equation (7.5), we obtain

f̃(k) =

(
1− |k|√

λ2 + k2

)
. (7.7)

Using standard integrals to solve the inverse transform of f̃(k), we get

f(w) =
λ

2
(L−1(λw)− I1(λw)) (7.8)

where I is a Bessel function and L is a Struve L function. The function f(w)

asymptotically behaves as w−2.
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In order to calculate the distribution of flare energies F (E) corresponding

to distribution of coherent braid sequences f(w), we rewrite the free energy

of a set of braided magnetic flux tubes using equation (4.17) as Efree = ac2,

where the constant a depends on the length and diameter of the tubes. If

the reconnection event reduces the number of crossings from cinitial to cfinal

then the flare energy can be defined as (ignoring the constant a)

E = ∆Efree/a = c2
initial − c2

final. (7.9)

We assume that reconnection occurs when the total crossing number reaches

some critical value ccrit. We start with two coherent sequences of length

w1 and w2 (|w2| ¿ |w1|) which are of opposite sign, they merge to form a

single sequence of length |w2|-|w1|. The total length of the two sequences

was initially |w2|+ |w1|, thus the loss of crossings is 2|w1| and the change in

crossing number squared is

E = c2
crit − (ccrit − 2|w1|)2 = 4ccrit|w1| − 4w2

1. (7.10)

We assume w1 � wcrit so the term 4w2
1 can be neglected. If the second

sequence has a larger crossing number, i.e., |w2| > |w1|, then the probability

of obtaining E is

F (E) = 2

∫ ∞
0

∫ −w1

−∞
f(w1)f(w2)δ(E − 4w1ccrit)dw2dw1. (7.11)

Assuming distribution of coherence lengths follows the power-law, f(w1) =

b|w1|−β with β > 1, we get

F (E) = 2b2

∫ ∞
0

w−β1

w1−β
1

1− β
δ(E − 4w1ccrit)dw1

=

(
2b2

β − 1

(
1

4ccrit

)2−2β
)
E1−2β. (7.12)
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Using α for the energy slope. we find

F (E) ∝ E−α → α = 2β − 1. (7.13)

If β = 2 (as in our analytic model), then the distribution of flares with energy

E decreases as the third power of E, i.e., F (E) ∝ E−3. The model thus

demonstrates that braid patterns can organize themselves so that coherence

lengths and flare energies obey power-law energy distributions.

7.3 Results

In this section we present the result of our analysis of free energy content and

distribution of flare energies based on the nonlinear force-free field (NLFFF)

solutions previously presented in Prasad, Mangalam, and Ravindra (2014).

We start by taking the NLFFF configuration obtained for the Active Region

(AR) 10930 as observed on UT 2000, December 12, 2006 and choose a sample

of 50 points along the Polarity Inversion Line (PIL) (as shown in Fig. 7.2).

The sample points were chosen along the PIL because this region was

found to be most stressed in the analysis which initiated an X 3.4 class flare

(He et al., 2014). The amount of braiding was calculated for all possible

pairs using the crossing number formula given in equation (4.14). We then

calculated the free energy content of the system using equation (4.17).

Ef ≥
(

8k2LΦ
2
)−1

C2 (7.14)

where k2=13.6 and C = Φ
2
c. Here Φ represents the flux contribution from

a single sample point. We then calculate the mean flux over an area ∆A

covered by the sample points and then scale the result by a factor A/∆A

to obtain a free-energy estimate for the entire region. Here A represents the

area on the photospheric surface covered by the entire magnetogram. Thus
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Figure 7.2: The points are sampled along the neutral line of the simulated active

region (shown in red dots).

the free energy for the entire region, arising from the braided topology of the

magnetic field is given by

Ef =
c2B2

zA∆A

8k2L
= 1.9× 1032ergs (7.15)

which roughly agrees with the value of the free energy content of 6.9 ×

1032 ergs, previously reported in Prasad, Mangalam, and Ravindra (2014)

from the exact calculations using nonlinear force-free fields. We then used

the model of self-organized braiding presented in Berger and Asgari-Targhi

(2009) to study the number distribution of braid sequence lengths and the

flare energy distribution. A discussion regarding evolution of self-organized

critical states in braided magnetic fields maintained by a balance of topolog-

ical structure input (following a Poisson distribution) and loss through re-
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connection process is presented in §s:berg. It is seen that an initially random

braid can become highly ordered, with coherence lengths obeying power-law

distributions. We carry out this analysis to obtain the distribution for co-

herent length sequences f(w) for the NLFFF solution obtained from vector

magnetograms of AR 10930 on 12th and 14th December, 2006. We find that

the distribution of coherent length sequences is having an asymptotic slope,

−β = −2 for f(w) (see Fig. 7.3), which in reasonable agreement with the an-

alytical distribution (equation 7.8) given in Berger and Asgari-Targhi (2009).

The energy released during reconnection is known to follow a power law with

an index between 2.7 < α < 1.5 (see Fig. 4.3). The energy distribution is

then given by F (E) ∝ E−α with α = 2β − 1 (Berger and Asgari-Targhi,

2009). For β = 2, as obtained from our analysis, we obtain the slope of

energy distribution of flares as −α = −3. We also repeated this analysis

numerically with the Gaussian, pG(w) and Lorentzian distribution, pL(w) as

choices for input functions, p(w) in equation (7.6). The functional form of

these distributions are given below:

pG(w) =
exp(−(x− µ)2/2σ2)√

2πλ
(7.16)

pL(w) =
λ

π (λ2 + w2)
(7.17)

A comparison of distribution of coherent length sequences obtained for SOC

models with different input functions and the NLFFF solutions is shown in

Fig. 7.4. We find that the model with Poisson distribution as the input

function fits best with the NLFFF solutions.
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Figure 7.3: Distribution f(w) where w is the braid sequence length for magne-

tograms simulated for December 12 (top) and 14 (bottom), 2006.

7.4 Summary and future directions

The 3D geometry of active regions from vector magnetogram observations

was obtained in Prasad, Mangalam, and Ravindra (2014) by solving nonlin-

ear force-free field equation semi-analytically. We use these solutions here, to
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Figure 7.4: Comparison of the distribution of coherent length sequences f(w) for

the choice of Poisson (black), Gaussian (red) and Lorentzian (blue) distribution

as input function with the distribution from NLFF fields (green curve).

evaluate the topology of the field lines using the crossing numbers (Berger,

1993) as measures. We use the crossing number of the braided field to esti-

mate the free energy of AR 10930 (observed between 12-15 December 2006),

which is found to be in agreement to those previously obtained in (Prasad,

Mangalam, and Ravindra, 2014) using exact integration of these NLFF fields.

We also calculate the power-law distribution for the length of the coherent

braid sequence and the peak-flare energy distribution using the NLFF fields.

We find that our estimates for these distributions are in good agreement

with the SOC model presented in (Berger and Asgari-Targhi, 2009). We also

extend the SOC model of Berger and Asgari-Targhi (2009) by including the

cases of Gaussian and Lorentzian as input distributions.

In future, we plan to get an semi-analytical expression of free energy for

the force-free solutions obtained in Prasad, Mangalam, and Ravindra (2014),
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in terms of the crossing number and estimate the total energy released in the

corona from these braided structures. We then plan to explore the energy

content braided magnetic structures and its significance with regards to the

energy budget for the active Sun. We would also like to find out how the

energy released through small scale reconnection events can be correlated to

the energy content in these force-free fields. We also plan to incorporate the

semi analytic force-free model for the 3 braided magnetic field presented in

Wilmot-Smith, Hornig, and Pontin (2009).



Chapter 8

Galactic dynamo with helicity

and coronal fields

8.1 Introduction

Large-scale magnetic fields with strength of the order of 1-10 µG have been

observed in disc galaxies (e.g. Beck et al., 1996; Fletcher, 2010; Beck, 2012;

Beck and Wielebinski, 2013; Van Eck et al., 2014). The origin of these fields

can be explained through mean-field dynamo theory (Ruzmaikin, Sokolov,

and Shukurov, 1988; Beck et al., 1996; Brandenburg and Subramanian, 2005a;

Kulsrud and Zweibel, 2008). The conservation of magnetic helicity is one

of the key constraints in these models, which also leads to suppression of

the α-effect. The operation of the mean field dynamo automatically leads

to the growth of helicity of opposite signs between the large scale and small

scale fields (Pouquet, Frisch, and Leorat, 1976; Gruzinov and Diamond, 1994;

Blackman and Field, 2002). To avoid the catastrophic suppression of the dy-

The work presented in this chapter has been submitted to the Astrophysical Journal

and is currently under review.
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namo action, the magnetic helicity due to the small-scale field should be

removed from the system (Blackman and Field, 2000, 2001; Kleeorin et al.,

2000). Mechanisms suggested to produce these small-scale helicity fluxes

are: advection of magnetic fields by an outflow from the disc through the

galactic fountain or wind (Shukurov et al., 2006; Sur, Shukurov, and Subra-

manian, 2007; Chamandy et al., 2014), helicity flux from anisotropy of the

turbulence produced by differential rotation (Vishniac and Cho, 2001; Sub-

ramanian and Brandenburg, 2004, 2006; Sur, Shukurov, and Subramanian,

2007; Vishniac and Shapovalov, 2014) and through diffusive flux (Kleeorin

et al., 2000, 2002; Brandenburg, Candelaresi, and Chatterjee, 2009; Mitra

et al., 2010; Chamandy et al., 2014). The outflow of magnetic helicity from

the disc through dynamo operation leads to formation of a corona (Blackman

and Field, 2000). According to Taylor’s hypothesis, an infinitely conducting

corona would resistively relax to force-free field configurations under the con-

straint of global helicity conservation (Woltjer, 1960; Taylor, 1974; Finn and

Antonsen, 1983; Berger and Field, 1984; Mangalam and Krishan, 2000). In

this chapter, we include advective and diffusive fluxes in a simple analytic

model of galactic dynamo which transfers helicity outside the disc and con-

sequently builds up a corona in course of time. The magnetic helicity of

the mean field in the disc and corona is calculated using the gauge invari-

ant prescription given in Low (2006, 2011). We develop a formalism for the

3D axisymmetric time-dependent dynamo problem by first solving for the

steady-state solutions and then using them as a basis for a expansion of the

time-dependent solutions. We then investigate the dependence of the satu-

rated mean field strength and it’s geometry on the helicity fluxes within the

disc and corresponding evolution of the force-free field in the corona.

The organization of the chapter is as follows. In §2 & 3, we present the
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theoretical formulation of the nonlinear mean-field dynamo and magnetic

helicity transport. The steady state and time dependent dynamo solutions

are discussed in §4. In §5, we set up the equations for time dependence of

α and evolution of the coronal field. The results of the chapter are pre-

sented in §6, where we discuss the strength and geometry of the saturated

mean field and its dependence on the helicity fluxes. The conclusions of the

chapter are discussed in §7. In addition, the detailed equations for magnetic

helicity dynamics, derivations of various equations referred in the main text

and a discussion on the gauge invariant of of absolute magnetic helicity for

cylindrical geometry are presented in Appendices 8.A - 8.F.

8.2 Non-linear mean-field dynamo and helic-

ity dynamics

The magnetic and velocity fields under the mean-field magnetohydrodynam-

ics (Krause and Rädler, 1980) can be written as the sum of their mean and

fluctuating parts

B = B + b; U = U + u (8.1)

with u = 0 and b = 0. The overbar formally denotes ensemble averaging,

but for all practical purposes can be thought of as spatial averaging over

scales greater than the turbulent scale and less than the scale of the system

(Germano, 1992; Gent et al., 2013). The mean magnetic field generated from

small-scale turbulent motion is then described by the mean-field induction

equation (Moffatt, 1978; Krause and Rädler, 1980):

∂B

∂t
= ∇×

(
U×B− η∇×B + E

)
. (8.2)
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Here E ≡ u× b = αB − ηtJ, is the mean turbulent emf with turbulent

transport coefficients α and ηt. The Ohmic magnetic diffusivity is given by

η, while J =
∇×B

µ0

is the current density with µ0 being the permeability of

free space (hereafter we assume µ0 = 1). Following the closure models, such

as EDQNM (Pouquet, Frisch, and Leorat, 1976) and τ -approximation (Black-

man and Field, 2002; Rädler, Kleeorin, and Rogachevskii, 2003; Brandenburg

and Subramanian, 2005b), we represent the effect of the small-scale magnetic

field on the α-effect as, α = αk+αm (e.g. Gruzinov and Diamond, 1994; Bran-

denburg and Subramanian, 2005a), where αk = −1

3
τu · ∇ × u represents the

kinetic α-effect related to the mean helicity of the random flow u · ∇ × u,

and αm =
1

3ρ
τ j · b is the magnetic contribution to the α-effect. The fluid

density is given by ρ and τ is the correlation time of the turbulent flow u.

The magnetic helicity dynamics using the above construction can be

represented by equations for the evolution of the large scale helicity H =∫
A · BdV and the mean small scale helicity H ′ =

∫
a · bdV . These equa-

tions including all the interaction terms can be written as (cf. Mangalam,

2008, also see Appendix 8.A for a derivation)

dH

dt
= 2

∫
E ·BdV − 2

∫
ηJ ·BdV −

∮
F · n̂dS (8.3)

dH ′

dt
= −2

∫
E ·BdV − 2

∫
ηj · bdV −

∮
f · n̂dS, (8.4)

where n̂ represents the normal to the surface S enclosing volume V . The

surface fluxes for H and H ′ are given by F and f respectively which can be

written as

F = (ηJ−U×B− E −∇ϕ1)×A− 2ϕ1B (8.5)

f = (a ·B)u− (a · u)B− (a ·U)b + (a · b)U− (a · u)b + (a · b)u

+E × a + ηj× a−∇ϕ2 × a− 2ϕ2b (8.6)
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where ϕ1 and ϕ2 are scalar functions representing the gauge freedom for the

large and small scale vector potentials respectively. Below, we discuss some

terms in the surface fluxes that have been identified and found to be signif-

icant in simulations and we leave the investigation of the remaining terms

in (8.5) and (8.6) for the future studies aided by simulations. The relative

contribution from each term to the small-scale helicity transport equation

has been explored through numerical simulations (Vishniac and Shapovalov,

2014; Ebrahimi and Bhattacharjee, 2014). Vishniac and Shapovalov (2014)

find that the advective flux, (a · b)U is the most dominant term in equation

(8.4), contributing to about 80% of the helicity flux. The next dominant

term be related to (a · u)B is from the Vishniac-Cho flux (Vishniac and

Cho, 2001), which is driven through the anisotropy of the turbulence. Apart

from this, a term relating to a Fickian diffusion, ∼ κ∇αm (Kleeorin et al.,

2002; Brandenburg, Candelaresi, and Chatterjee, 2009) has been argued to

exist on physical and phenomenological grounds. It has been found in direct

numerical simulations that κ ≈ 0.3ηt (Mitra et al., 2010; Hubbard, Rhein-

hardt, and Brandenburg, 2011; Candelaresi et al., 2011). In this chapter, we

consider only the advective and diffusive flux terms. The effect of inclusion

of the other terms from equation (8.4) will be taken up in later studies.

Usually, αm is amplified in the dynamo action with opposite sign to αk

which balances the kinetic α-effect leading to saturation of the mean mag-

netic field. To constraint αm, we write the transport equation for small-scale

helicity density χ using the helicity conservation equation given by (Subra-

manian and Brandenburg, 2006; Shukurov et al., 2006; Sur, Shukurov, and

Subramanian, 2007; Chamandy et al., 2014):

∂χ

∂t
= −2E ·B− 2ηj · b−∇ · f , (8.7)

where χ is approximately equal to a · b; a being the vector potential for
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b in the Coulomb gauge. The small-scale flux density is given by f and

j = ∇×b. The small-scale helicity density χ can be related to αm by arguing

that αm is mainly contributed from the integral scale of turbulence, l0 =
2π

k0

(Shukurov et al., 2006; Sur, Shukurov, and Subramanian, 2007), which gives

j · b ' l−2
0 a · b and αm '

1

3
τ
χ

ρl20
. Introducing a reference (equipartition)

magnetic field B2
eq ≡ ρu2 and the magnetic Reynolds number as Rm =

ηt
η

,

gives αm '
ηt

l20B
2
eq

χ, where ηt '
1

3
τu2. We can rewrite equation (8.7) in terms

of αm (Sur, Shukurov, and Subramanian, 2007) as

∂αm
∂t

= −2ηt
l20

(
E ·B
B2
eq

+
αm
Rm

)
−∇ · F . (8.8)

Here F is flux density of αm taken as (Chamandy et al., 2014):

F = Fa + Fd, (8.9)

where Fa is the advective flux density given by (Shukurov et al., 2006; Sur,

Shukurov, and Subramanian, 2007; Heald, 2012)

Fa = Uαm, (8.10)

and Fd is the diffusive flux density given by (Kleeorin et al., 2002; Branden-

burg, Candelaresi, and Chatterjee, 2009)

Fd = −κ∇αm, κ ≈ 0.3ηt. (8.11)

As the dynamo operates within the disc, we allow for the large-scale flux

to be redistributed by advection in the disc but not escape; the small-scale

magnetic helicity flux on the other hand escapes through the vertical efflux.

As the adjustment timescale in the corona is much small due to high con-

ductivity, the corona is expected to be in a relaxed force-free state according

to Taylor’s hypothesis (Taylor, 1974; Mangalam and Subramanian, 1994).
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This is also motivated by the corona of the Sun where the magnetic field

structure is dominated by nonlinear force-free fields. The strength of field in

the corona is much smaller compared to the disc and the precise prescription

of the coronal field does not affect the overall results for the disc. We thus

adopt an ansatz, that the coronal magnetic field can be described by a linear

force-free field with a dynamic force-free parameter µ(t). A global conser-

vation of magnetic helicity then implies that the mean magnetic helicity in

the corona, Hc, grows at the same rate as the loss of magnetic helicity in the

disc through helicity fluxes. So, we write the equation for the rate of change

of the mean magnetic helicity in the corona as

dHc

dt
=

∫
(∇ · f) dV =

∫ (
l20B

2
eq

ηt
∇ · F

)
dV (8.12)

where V represents the volume of the corona.

8.3 The dynamo equations

We represent the axisymmetric magnetic field B in terms of their poloidal

BP and toroidal BT components using the stream functions ψ and T in the

cylindrical coordinates as :

BP = Brr̂ +Bz ẑ =
1

r
∇ψ × φ̂ =

(
−1

r

∂

∂z
r̂ +

1

r

∂

∂r
ẑ

)
ψ ≡ P̂ψ (8.13)

and

Bφ =
T

r
φ̂. (8.14)
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Upon substituting equation equations (8.13) and (8.14) in equation (8.2), we

get (Mangalam and Subramanian, 1994)(
∂

∂t
+ UP · ∇ − ηtΛ

)
ψ = αT (8.15)(

∂

∂t
+ UP · ∇ − ηtΛ

)
T = −αΛψ −∇α · ∇ψ + r∇

(
1

r
Uφ

)
×∇ψ

− r2T∇ ·
(
UP

r2

)
+∇ηt · ∇T (8.16)

where the operator Λ is defined as

Λ = r2∇ ·
(
∇
r2

)
= r

∂

∂r

(
1

r

∂

∂r

)
+

∂2

∂z2
(8.17)

and UP , Uφ are the poloidal and toroidal components of velocity. The right

hand side of equation (8.15) represents the generation of poloidal fields from

toroidal fields and the right hand side of equation (8.16) contains terms

representing generation of toroidal fields from poloidal fields through α-effect,

shear, compression, transport and advection of T due to varying ηt. The term

representing field transport is on the left hand side of both the equations. We

consider a mean-flow consisting of differential rotation and vertical advection

given as U = (0,Uφ,Uz), where

Uφ = rΩ(r); Ω(r) =
r0Ω0

r
. (8.18)

This gives Uφ = 250 km s−1 = constant, for the values r0 = 4 kpc and

Ω0=62.5 km s−1 kpc−1. Since, there is no radial component of velocity, we

get ∇ ·
(
UP

r2

)
=

∂

∂z

(
Uz
r2

)
. We neglect the first and second term in the

right hand side (RHS) of equation (8.16) as they are much smaller compared

to the shear term, i.e., we take the dynamo to be of the α − ω type. For

mathematical simplification, we also neglect the last term in RHS of equation

(8.16) as it is of the order (z/r)2 smaller than the z diffusion terms. Thus
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keeping only the dominant terms in the RHS of equations (8.15) and (8.16),

we get a simplified set of equations as(
∂

∂t
+ U z

∂

∂z
− ηtΛ

)
ψ = αT (8.19)(

∂

∂t
+ U z

∂

∂z
− ηtΛ

)
T = −rdΩ

dr

∂ψ

∂z
− T ∂Uz

∂z
. (8.20)

In order to estimate the turbulence parameters α and ηt, we investigate two

possible scenarios for turbulence in the disc: Magneto-rotational Instabil-

ity (MRI) driven turbulence and supernovae (SNe) driven turbulence. The

details for these cases are given below.

1. MRI driven turbulence: Weak magnetic fields can generate turbulence

in a differentially rotating disc (Velikhov, 1959; Chandrasekhar, 1960;

Balbus and Hawley, 1991). Such a MRI driven turbulence can be re-

sponsible for the amplification of magnetic field in the outer parts of

the galaxy (Sellwood and Balbus, 1999). The turbulence parameters

in this case can then be defined as (Arlt and Rüdiger, 1999)

ηt =
M2h2

τMRI

, α0 =
M2h

τMRI

, (8.21)

where τMRI = 2π/Ω(r) =
2πr

r0Ω0

is the rotational time period at radius

r. Here, the Mach number, M is calculated as M =
u

c
∼ u

hΩ(r = h)
(Pudritz, 1981; Mangalam and Subramanian, 1994), with u and c being

the velocity of turbulence and sound respectively. The half-width of the

galactic disc is given by h. Thus, both the turbulence parameters ηt

and α0 vary as 1/r over the disc. A similar treatment of turbulence

parameters for the case of accretion discs was presented in Pudritz

(1981).
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2. SNe driven turbulence: In this case we adopt the form for ηt and α as

ηt =
M2h2

τSN
, α0 =

l2

hτSN
, (8.22)

where the correlation time τSN is taken as the time interval between

supernova shocks (McKee and Ostriker, 1977; Cox, 1990; Shukurov,

2004). In order to estimate the spatial dependence of τSN , we proceed

as follows. The locations of the SN stars tend to cluster in the regions

of intense star formation (known as OB associations). The SNe occur-

rence is thus related to the star formation rate (SFR), (Shukurov, 2004;

Rodrigues et al., 2015). The SFR depends on the density and the dy-

namics of the interstellar gas, which is represented by a Schmidt power-

law relation R = aΣp
g with the index p = 1.3 ± 0.3 (Schmidt, 1959;

Kennicutt, 1989). The mean gas surface density, Σg is related to the

threshold surface density for gravitational stability, Σc, as Σg/Σc ∼ 0.7

(Kennicutt, 1989). For a flat rotation curve, the stability condition

gives Σc ∝
r0Ω0

r
(Toomre, 1964; Cowie, 1981). This implies both Σg

and SFR can be expected to vary as 1/rp, with p ∼ 1 over the galactic

disc. We represent this dependence as

1/τSN = νSN(r) =
r0νSN0

r
(8.23)

where νSN0=150 km s−1kpc−1 is the corresponding frequency at r0=4

kpc. Substituting equation (8.23) in equation (8.22), we again find

(similar to the case for MRI driven turbulence) that both the turbulence

parameters ηt and α0 vary as 1/r across the disc.

The energy input from the SNe produces a hot super bubble that can break

away from the galactic disc (Tenorio-Tagle, Bodenheimer, and Franco, 1988).

This gives rise to the vertical outflow of gas, known as the galactic fountain
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(Shapiro and Field, 1976; Shukurov, 2004). The radial variation of this ad-

vective flow is dependent on the SNe distribution and thus ∝ SFR (Rodrigues

et al., 2015). As discussed above, the SFR has a radial dependence of rp with

p = 1.3±0.3. Here for mathematical simplification, we take this variation as

1/r, which is true for most of the galaxies that fall under 1σ range of this dis-

tribution. The vertical advection is taken have the same radial dependence

given as

Uz =
U0r0

r
, (8.24)

where U0= 0-2 km s−1. Note that the last term in the RHS of equation (8.20)

goes to zero for this choice of Uz. We now write

α(z, t) = [αk(t) + αm(t)][θ(z) + θ(−z)] (8.25)

in the most general case, where θ(z) is the step function. In the steady state,

the time dependent part is a constant and we can write α = αsat. The kinetic

α term can be split into r and z dependent parts as αk = α0(r)α̃(z). It is

then convenient to define the following dimensionless parameters

Rα =
α0h

ηt
, Rω =

h2Ω

ηt
, RU =

U zh

ηt
. (8.26)

Since the quantities α0, ηt, Ω and Uz have the similar 1/r radial dependence;

all the parameters defined in equation (8.26) are nearly independent of r.

This greatly simplifies our formulation. We now rewrite equations (8.19)

and (8.20) in dimensionless form through the following substitutions

r̃ =
r

h
, z̃ =

z

h
, τ = t

r0

htd
, α̃ =

α

α0

T̃ =
hT

ψ0

, Λ̃ = h2Λ, ψ̃ =
ψ

ψ0

, (8.27)

where ψ0 = Beqh
2 and td =

h2

ηt(r0)
is the diffusion timescale calculated at

radius r = r0. Here h = 400 pc is the half-width of the disc; r0 = 4 kpc is
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the radius at which parameters are calculated and R0 = 16 kpc is the radius

of the galactic disc. The equipartition field strength is taken as Beq = 5 µG

and the amplitude of α effect is set by α0 given in Table 8.1. Dropping the

tilde for the sake of clarity, we get the dynamo equations in dimensionless

form as (see Appendix 8.B for a detailed derivation)

(
r
∂

∂τ
+RU

∂

∂z
− Λ

)
ψ = Rαα(z)T (8.28a)(

r
∂

∂τ
+RU

∂

∂z
− Λ

)
T = Rω

∂ψ

∂z
. (8.28b)

A comparison of timescales of operation and the dynamo parameters for

both MRI and SNe driven turbulence scenarios is presented in Table 8.1. As

the turbulent parameters in both the cases have similar r dependence, both

the processes can be contributing towards the dynamo operation simultane-

ously. The combined treatment however is beyond the scope of this chapter.

We note that the MRI driven dynamo operates at a much slower rate as

compared to SNe driven dynamo, and thus the SNe driven dynamo is likely

to be the dominant source of magnetic field generation within the galactic

disc.

8.4 Solutions to the dynamo equations

8.4.1 Steady-state solutions

In this section, we first analytically solve the global dynamo equations for

the steady-state. The full time-dependent solutions are presented in the next

subsection.
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Source of τMRI or τSN u c M l0 ηt α0 Rα Rω RU td

turbulence (Myr) (km/s) (km/s) (pc) (1026cm2/s) (km/s) (Myr)

MRI 98 10 40 0.25 100 0.3 0.25 1 16 0-8 155

SN 6.5 10 60 0.167 100 2.05 3.75 2.25 36 0-1.2 23.5

Table 8.1: A comparison of parameters for MRI and SNe driven turbulence with

the corresponding timescales. The characteristic time scale for MRI and SNe are

given by τMRI and τSN respectively. The turbulent velocity and sound speed are

denoted by u and c respectively whileM gives the Mach number. The length scale

of turbulence and turbulent diffusivity are given by l0 and ηt respectively while the

strength of α effect is set by α0. The dimensionless dynamo parameters defined in

equation (8.26) are given by Rα, Rω and RU . The diffusion time scale is given by

td.

The steady-state solutions are written assuming a separable form such

that

ψs(r, z) = Q(r)as(z), T s(r, z) = Q(r)bs(z) (8.29)

where we have used the superscript s to denote steady-state solutions. Sub-

stituting equation (8.29) in equations (8.28a) & (8.28b) with the time deriva-

tive term dropped (as we are looking for steady-state solutions), we get the

following equations[
r

d

dr

(
1

r

dQ

dr

)]
as(z) +

[
d2as(z)

dz2
−RU

das(z)

dz
+Rα [1 + αm(z)] bs(z)

]
Q = 0

(8.30)[
r

d

dr

(
1

r

dQ(r)

dr

)]
bs(z) +

[
d2bs(z)

dz2
−RU

dbs(z)

dz
+Rω

das(z)

dz

]
Q(r) = 0

(8.31)

We divide equation (8.30) by Q(r)as(z) and equation (8.31) by Q(r)bs(z),
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and combine the resulting equations to get

r

Q(r)

d

dr

(
1

r

dQ(r)

dr

)
=
−1

as(z)

[
d2as(z)

dz2
−RU

das(z)

dz
+Rα [1 + αm(z)] bs(z)

]
= − 1

bs(z)

[
d2bs(z)

dz2
−RU

dbs(z)

dz
+Rω

das(z)

dz

]
= −γs. (8.32)

Since the left-hand side (LHS) of equation (8.32) is a function of only variable

r while its right-hand side (RHS) is function of only variable z, the equality

can hold only when both the sides are actually equal to a constant (taken to

be −γs). Rearranging the terms in equation (8.32), we get the following set

of equations (cf. Mangalam and Subramanian, 1994)

d2Qn(r)

dr2
− 1

r

dQn(r)

dr
= −γsnQn(r) (8.33)

d2asn(z)

dz2
−RU

dasn(z)

dz
+Rα[1 + αm(z)]bsn(z) = γsna

s
n(z) (8.34)

d2bsn(z)

dz2
−RU

dbsn(z)

dz
+Rω

dasn(z)

dz
= γsnb

s
n(z) (8.35)

where we have introduced the subscript n to represent a set of solutions

{Qn(r), an(z), bn(z)} for a given value of local growth rate γsn which satisfy

the radial and vertical boundary conditions. Upon substituting Qn(r) =

rfn(r), equation (8.33) becomes

d2fn
dr2

+
1

r

dfn
dr

+

(
γsn −

1

r2

)
fn = 0, (8.36)

which is the well known Bessel’s equation and the general solution for γsn > 0

is given by

Qn(r) = rJ1

(√
γsnr
)
≡ rJsn(r). (8.37)

From equation (8.35), we obtain

bsn(z) = −
(

d2

dz2
−RU

d

dz
− γsn

)−1

Rω
dasn
dz

, (8.38)
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which is substituted into equation (8.34) to get the following differential

equation for asn(z) (cf. Mangalam and Subramanian, 1994)

d4asn
dz4
−2RU

d3asn
dz3

+(R2
U−2γsn)

d2asn
dz2

+[2RUγ
s
n − (1 + αm)RαRω]

dasn
dz

+(γsn)2asn = 0.

(8.39)

The above fourth-order differential equation can be solved by expanding asn

in terms of four eigenfunctions with eigenvalues λnj, given as

asn(z) =
4∑
j=1

cnj exp(λnjz). (8.40)

Substituting equation (8.40) in equation (8.39), we get a fourth-order equa-

tion for λnj given by

λ4
nj − 2RUλ

3
nj + (R2

U − 2γsn)λ2
nj + [2RUγ

s
n − (1 + αm)RαRω]λnj + (γsn)2 = 0.

(8.41)

The solutions to dynamo equations within the galactic disc critically

depend on the boundary conditions and the eigenfunctions present in the

corona. Here, we are consider a scenario in which a corona continuously

forms around the galactic disc during the course of dynamo action due to

the contributions from the small-scale magnetic helicity fluxes as given in

equations (8.10) and (8.11). We assume that the magnetic field topology in

the infinitely conducting corona quickly relaxes into a force-free field, which

minimizes the energy while conserving the global magnetic helicity (Wolt-

jer, 1960; Taylor, 1974; Finn and Antonsen, 1983; Berger and Field, 1984;

Mangalam and Krishan, 2000). Following the treatment in (Mangalam and

Subramanian, 1994), we consider that the coronal magnetic field follows the

linear force-free field configuration with a parameter µ (which has no spa-

tial dependence). Thus, we write the following equations for the coronal

magnetic field

∇×B = µB, ∇ ·B = 0. (8.42)
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Here µ = 0 corresponds to the vacuum field outside the disc, which is a likely

initial condition. In the course of dynamo action, as the corona builds up

, we expect |µ| to take higher non-zero values. Taking the curl of equation

(8.42), we get

∇2B = −µ2B. (8.43)

Splitting the above equation into poloidal (ψc) and toroidal (Tc) components

using the definitions given in equations (8.13) & (8.14), we can write

Λψc = −µ2ψc (8.44)

ΛTc = −µ2Tc, (8.45)

where Λ is defined in equation (8.17). We have added a subscript c to distin-

guish the coronal fields from the fields generated in the disc. The derivations

for equations (8.44) & (8.45) are given in Appendix A of Mangalam and

Subramanian (1994). The general solutions to these equations are given in

§3.3.1 (Mangalam and Subramanian, 1994)

ψc(r, z) =

∫
a(p) exp(−

√
p2 − µ2|z|)rJ1(pr)dp, (8.46)

Tc(r, z) =

∫
b(q) exp(−

√
q2 − µ2|z|)rJ1(qr)dq, (8.47)

where the amplitudes are related by b(k) = µa(k), which follows from the

force-free condition given in equation (8.42). For a finite disc of radius R0,

and under the condition that the solution goes to zero at r = R0, the func-

tions ψc and Tc can be written in discrete form given by (Mangalam and

Subramanian, 1994)

ψc(r, z) =
N∑
n=1

enrJ1(knr) exp
(
−
√
k2
n − µ2|z|

)
, Tc(r, z) = µψc(r, z),

(8.48)

where en are the coefficients to be evaluated from the boundary conditions

and knr0 are the zeros of Bessel J1. Due to the symmetry of the solutions
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about the mid-plane of the disc, we solve the equation only for the upper half

of the disc and use the symmetry for the lower half solution. A description

of the boundary conditions written for the upper disc surface is given below.

The continuity of the radial component of the magnetic field, Br = −1

r

∂ψ

∂z
,

at the top boundary would mean that both ψ and
∂ψ

∂z
are continuous at

z = 1. This is written as

[ψ] (1) = 0 (8.49a)[
∂ψ

∂z

]
(1) = 0 (8.49b)

where the square bracket indicates continuity of the function across the

boundary. Since the field generated in the disc connect to the linear force-

free at the surface, the amplitudes of an and bn satisfy the same conditions

(given in equations 8.46 & 8.47) at the boundary. Thus

bn(1) = µan(1). (8.50)

The equatorial boundary conditions specify the symmetry of the solution.

For the quadrupolar mode, we write

ψ(0) = 0 (8.51a)

∂T

∂z
(0) = 0. (8.51b)

and for the dipolar mode we write

∂ψ

∂z
(0) = 0 (8.52a)

T (0) = 0 (8.52b)

From equations (8.37) & (8.48), we find that the radial part of ψ has the

same functional form for both the disc and the corona. The requirement

of continuity of ψ at the boundary (equation 8.49a), which is valid even
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as r → 0, implies that only one term survives in the summation given in

equation (8.48), which satisfies the condition kn =
√
γsn. Thus, equation

(8.48) can now takes the form

ψc(r, z) =
N∑
n=1

enrJ1

(√
γsnr
)

exp
(
−
√
γsn − µ2|z|

)
, Tc(r, z) = µψc(r, z),

(8.53)

Upon substituting the expressions for ψ and T in the disc (equations 8.29,

8.37, 8.40) and the corona (equation 8.53) in the boundary conditions for

quadrupolar symmetry (equations 8.49-8.51), we find that the radial part

cancels out and the following equations are obtained for the four eigenfunc-

tions of asn (see Appendix 8.C for details)

4∑
j=1

(
λnj +

√
γsn − µ2

)
cnj exp(λnj) = 0 (8.54a)

4∑
j=1

µ
[
Rα(1 + αm) + λ2

nj −RUλnj − γsn
]
cnj exp(λnj) = 0 (8.54b)

4∑
j=1

cnj = 0 (8.54c)

4∑
j=1

(
γsnλnj +RUλ

2
nj − λ3

nj

)
cnj = 0. (8.54d)

The above set of equations can be written in a compact form as ÕC̃ = 0,

where Õ is a 4×4 matrix comprising of the coefficients cnj in equation (8.54)

and C̃ is a 4 × 1 column vector comprising of cnj. The condition for non-

trivial solutions demand that the determinant of Õ vanishes, Det Õ = 0 (cf.

Appendix B in Mangalam and Subramanian, 1994). This condition is used

to evaluate γsn as a function of inputs αm and µ. Since the scale of coefficients

is arbitrary, we can set cn4 = 1, without loss of generality and solve for the

other coefficients using the first three equations in (8.54).



199 8.4 Solutions to the dynamo equations

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

z/h

ψ
(z
)

n

1 2 3 4

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

z/h

T
(z
) n

1 2 3 4

(b)

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

r/h

z/
h

ψ(r,z), n = 1

0.18

0.36

0.54

0.72

0.90

(c)

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

r/h

z/
h

ψ(r,z), n = 2

-0.70

-0.42

-0.14

0.14

0.42

(d)

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

r/h

z/
h

T(r,z), n = 1

0.18

0.36

0.54

0.72

0.90

(e)

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

r/h

z/
h

T(r,z), n = 2

-0.70

-0.42

-0.14

0.14

0.42

(f)

Figure 8.1: Normalized vertical cross sections of the stream functions ψ and T

for different values of n and advective flux RU = 0.3 at a radius of 4 kpc are shown

in panel (a) and (b). Panels (c) and (d) represent the meridional contour plots of

ψ for n= 1 & 2 respectively whereas panels (e) and (f) represent the same for T .

The contour plots are normalized with respect to the corresponding value of n=1

so as to compare their relative strengths of the quantities.
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The steady state solutions for advective flux RU = 0.3 and µ(∼
√
γs1) =

−0.01 are presented in Figure 8.1 for illustration. A detailed study of the

parametric dependence of time-dependent dynamo solutions constructed us-

ing these steady-state solution is presented in a later section. The vertical

distribution of ψ and T for different values of parameter n at a radius, r = 4

kpc are shown in Fig. 8.1a & 8.1b. The plots are scaled with respect to the

maximum value of ψ and T at n = 2 so as to compare the relative strengths

of the different modes. The field lines are evidently continuous across the

vertical boundary (z = 1). For all the cases in Fig. 8.1a, the stream function

ψ peaks around z = 0.4h and then falls off with increase in height. The

strengths of the different radial modes are comparable with n = 2 being the

most dominant mode at r = 4 kpc. The poloidal current T , shown in Fig.

8.1b starts with its maximum strength at the mid plane which then falls off

sharply with increase in height. The value of T is negligible outside the disc

as the force-free parameter µ is very small. Thus the force-free fields in the

halo are very close to potential fields. The variation of ψ and T with both r

and z, for n =1 & 2 are shown in Figs. 8.1c - 8.1f. The contour plots have

been normalized with respect to its corresponding maximum value for n = 1

so as to compare the strength of the two modes. The mode n corresponds

to the number of oscillations in the radial direction. In both the cases the

strength of the n = 1 mode is higher than n = 2. The quadrupolar nature

of the fields are quite evident from the contour plots.

8.4.2 Time-dependent formulation

It is easy to see that, under the closure principle offered by the Sturm-

Liouville theory and the no-z approximation, the radial behavior will be a

linear combination of the various radial modes obtained for the steady case.
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Retaining the time-dependence in the z part of the solutions, We express the

time-dependent ψ and T as

ψ(r, z, τ ;α, µ) =
N∑
n=1

wn(τ)Qn(r)an(z;α, µ) (8.55a)

T (r, z, τ ;α, µ) =
N∑
n=1

wn(τ)Qn(r)bn(z;α, µ) (8.55b)

whereQn(r) represents the radial part of the steady-state solutions; an(z;α, µ)

and bn(z;α, µ) explicitly depend on z and implicitly on time through α and

µ. Upon substituting equation (8.55) in equation (8.28a), we get

N∑
n=1

[
rẇnQnan + rwnQn

{(
∂an
∂α

)
α̇ +

(
∂an
∂µ

)
µ̇

}
+RUwnQna

′
n

−wn(ΛrQn)an − wnQn(Λzan)−Rα(1 + αm)wnQnbn
]

= 0. (8.56)

where ẇn =
dwn
dτ

, α̇ =
dα

dτ
, µ̇ =

dµ

dτ
, a′n(z) =

dan
dz

; Λr and Λz are the r and

z dependent parts of operator Λ defined in equation (8.17). We neglect the

terms containing partial derivatives of an with respect to α and µ as they are

small compared to the derivatives with respect to z. We have checked this

by evaluating these terms numerically and thus these assumptions have been

justified a posteriori. Dividing equation (8.56) throughout with wnQnan, we

get upon rearranging[
N∑
n=1

[Λzan(z, τ)]

an(z, τ)
− RUa

′
n(z, τ)

an(z, τ)
+Rα(1 + αm)

bn(z, τ)

an(z, τ)

]

=

[
N∑
n=1

rẇn(τ)

wn(τ)
− [ΛrQn(r)]

Qn(r)

]
=

N∑
n=1

γn(τ). (8.57)

Since the left-hand side is function of (r, τ) and the right-hand side is func-

tion of (z, τ), the equality is satisfied only if both are equal to γn(τ), which

depends only on τ . Following similar steps with equations (8.28b) & (8.55),
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we obtain [
N∑
n=1

[Λzbn(z, τ)]

bn(z, τ)
− RUb

′
n(z, τ)

bn(z, τ)
+Rω

a′n(z, τ)

bn(z, τ)

]

=

[
N∑
n=1

rẇn(τ)

wn(τ)
− [ΛrQn(r)]

Qn(r)

]
=

N∑
n=1

γn(τ). (8.58)

Combining equations (8.57) & (8.58), we obtain the following set of equations

N∑
n=1

rẇn(τ)

wn(τ)
− [ΛrQn(r)]

Qn(r)
− γn(τ) = 0 (8.59a)

N∑
n=1

[Λzan(z, τ)]

an(z, τ)
−RU

a′n(z, τ)

an(z, τ)
+Rα(1 + αm)

bn(z, τ)

an(z, τ)
− γn(τ) = 0 (8.59b)

N∑
n=1

[Λzbn(z, τ)]

bn(z, τ)
−RU

b′n(z, τ)

bn(z, τ)
+Rω

a′n(z, τ)

bn(z, τ)
− γn(τ) = 0 (8.59c)

The last two equations in equation (8.59) are same as that in equations

(8.34) and (8.35), except that γn now changes with time. Hence an(z, τ) and

bn(z, τ) can be calculated using the same steps as followed in §8.4.1 for the

instantaneous value of γn. Multiplying equation (8.59a) by wnQn, we get

N∑
n=1

[rẇnQn − wn(ΛrQn)− γn(τ)wnQn] = 0. (8.60)

Substituting ΛrQn = −γsnQn from equation (8.33) in equation (8.60), we get

N∑
n=1

[rẇn + [γsn − γn(τ)]wn]Qn = 0. (8.61)

Now substituting for Qn(r) in the previous equation using equation (8.37)

we get
N∑
n=1

[rJsnẇn + [γsn − γn(τ)]Jsnwn] = 0. (8.62)
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Multiplying both sides with Jsm and using the orthogonality property of Bessel

functions, we get the following equation after integrating over r

N∑
n=1

〈Jsm|rJsn〉ẇn + 〈Jsm|Jsn〉[γsn − γn(τ)]wn = 0, (8.63)

where the orthogonality of Bessel functions give

〈Jsm|rJsn〉 =

∫ R0

0

rJsmJ
s
ndr = δn,m

R2
0

2
J2

2 (
√
γsnR0) (8.64)

and 〈Jsm|Jsn〉 =

∫ R0

0

JsmJ
s
ndr. Here R0 represents the radius of the disc in

units of h.

8.5 Time dependence of α and coronal helic-

ity

To obtain an equation for the evolution of αm with time, we first calculate

the divergence of the small-scale helicity fluxes given in equations (8.10) &

(8.11). The divergence of the advective flux density obtained using equations

(8.10), (8.18) & (8.24) is given by

∇ · Fa = ∇ · (Uαm) =
∂

r∂φ
(rωαm) +

∂

∂z
(U0αm). (8.65)

The first term in the RHS of the equation (8.65) goes to zero due to axisym-

metry and since U0 is assumed to be independent of z, we get

∇ · Fa = U0
∂αm
∂z

. (8.66)

From equation (8.11), we can write

∇ · Fκ = −∇ · (κ∇αm) = −0.3∇ · (ηt∇αm). (8.67)
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Evaluating ∇ · (ηt∇αm) separately, we write

∇ · (ηt∇αm) = ηt∇2αm +∇αm · ∇ηt. (8.68)

Since the z derivatives dominate over the r derivatives, we can write ηt∇2αm ≈

ηt
∂2αm
∂z2

. Also, the second term in the right-hand side of equation (8.68),

∇αm · ∇ηt
(
∼ αmηt

hR0

)
is small compared to the first term, ηt∇2αm

(
∼ αmηt

h2

)
and can be neglected. Thus equation (8.67) can now be written as

∇ · Fκ = −0.3ηt
∂2αm
∂z2

= −κ∂
2αm
∂z2

. (8.69)

The helicity transport equation along with the flux terms can now be written

by combining equations (8.8), (8.66) & (8.69) as

∂αm
∂t

=
−2ηt
l20

(
αB2 − ηtJ ·B

B2
eq

+
αm
Rm

)
− U0

∂αm
∂z

+ κ
∂2αm
∂z2

. (8.70)

Rescaling equation (8.70) using the relations given in equation (8.27), we

write

r0ηt(r0)α0

h3

∂α̃m
∂τ

= −2ηt
l20

(
α0α̃B̃2 − ηt(r)

h
J̃ · B̃ +

α0α̃m
Rm

)
− U0α0α̃m

h
− κα0α̃m

h2

(8.71)

where B̃ =
B

Beq

and J̃ =
hJ

Beq

. We have also used the ‘no-z’ approximation

(Subramanian and Mestel, 1993; Moss, 1995; Chamandy et al., 2014) for the

z derivatives of α, setting
∂

∂z
→ 1

h
and

∂2

∂z2
→ −1

h2
. Multiplying equation

(8.71) by the factor
h2

α0ηt(r)
, we obtain

r0

h

[
ηt(r0)

ηt(r)

]
∂α̃m
∂τ

= −2

(
h

l0

)2 [
α̃B̃2 −

(
ηt
α0h

)
J̃ · B̃ +

α̃m
Rm

]
−
(
U0h

ηt
− κ

ηt

)
α̃m.

(8.72)

Using α̃ = 1 + α̃m, equation (8.108) and the definitions given in equation

(8.26), we write equation (8.72) as

r
dαm
dτ

= −C
[
(1 + αm)B2 −R−1

α J ·B
]
− (RU +Rκ)αm, (8.73)



205 8.5 Time dependence of α and coronal helicity

where

C = 2

(
h

l0

)2

, Rκ =
κ

ηt
. (8.74)

We have dropped the tildes for clarity and also neglected the
αm
Rm

term in the

above equation as it is very small, ∼ 10−5 times compared to the other terms

(Sur, Shukurov, and Subramanian, 2007). In order to get an equation for

dynamical evolution of αm, we take a spatial average equation (8.73) over the

entire volume of the disc, which removes the r dependence from the equation.

The resulting equation can now be written as

〈r〉dαm
dτ

= −C
[
(1 + αm)〈B2〉 −R−1

α 〈J ·B〉
]
− (RU +Rκ)αm, (8.75)

where the angular brackets represent volume averaging. Now

〈r〉 =
2

R2
0

∫ R0

0

r2dr =
2R0

3
, (8.76)

and the expressions for 〈B2〉 and 〈J ·B〉 are given by (see Appendix 8.D for

details)

〈B2〉 =
[
J2

2 (
√
γsnR0)〈a′2

n + b2
n〉+ γsnJ

2
0 (
√
γsnR0)〈a2

n〉
]
w2
n (8.77)

〈J ·B〉 =
[
J2

2 (
√
γsnR0)〈a′nb′n + a′′nbn − γsnanbn〉+ γsnJ

2
0 (
√
γsnR0)〈anbn〉

]
w2
n.

(8.78)

Thus we write equation (8.73) in compact form as

dαm
dτ

= − 3C

2R0

[
(1 + αm)〈B2〉 −R−1

α 〈J ·B〉
]
− 3

2R0

(RU +Rκ)αm. (8.79)

As discussed in §8.2, the small-scale dynamo operation builds up a corona

around the disc by releasing small-scale helicity flux across the boundary.

The expression for coronal field (equation 8.48) along with the boundary

condition given in equation (8.49) can be written as

N∑
n=1

wnrJ1

(√
γsnr
)
an(1) =

N∑
n=1

enrJ1

(√
γsnr
)

exp
(
−
√
γsn − µ2

)
. (8.80)
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Comparing coefficients of J1 (
√
γsnr) on both sides, we get

en(t) = wn(t)an(1) exp
(√

γsn − µ(t)2
)
, (8.81)

which gives the dynamical evolution of the coronal field with time. In order

to compare the helicity of the coronal field, we use the prescription given in

Low (2006, 2011) which gives the measure of helicity as (see Appendix 8.E

for details)

Hc =

∫
2ψcTc
r2

dV =

∫
2µψ2

c

r2
dV. (8.82)

Substituting equations (8.53) & (8.81) in equation (8.82), we obtain

Hc =
N∑

n,m=1

4πµenem

∫ R0

0

J1(
√
γsnr)J1(

√
γsmr)rdr∫ ∞

1

exp(−
√
γsn − µ2z) exp(−

√
γsm − µ2z)dz (8.83)

Substituting Using the orthogonality property of Bessel functions given in

equation (8.64), we can simplify equation (8.83) as

Hc =
N∑
n=1

2πµe2
nR

2
0J

2
2 (
√
γsnR0)

∫ ∞
1

exp(−2
√
γsn − µ2z)dz. (8.84)

The z integral in equation (8.84) can easily be solved as∫ ∞
1

exp(−2
√
γsn − µ2z)dz =

exp(−2
√
γsn − µ2z)

−2
√
γsn − µ2

∣∣∣∣∣
∞

1

=
exp(−2

√
γsn − µ2)

2
√
γsn − µ2

(8.85)

Thus combining equations (8.84) & (8.85), we get

Hc(t) =
N∑
n=1

πµ(t)e2
n(t)R2

0J
2
2 (
√
γsnR0)

exp(−2
√
γsn − µ2(t))√

γsn − µ2(t)
. (8.86)

Combining equation (8.81) with equation (8.86), we get

Hc(t) =
N∑
n=1

πµ(t)w2
n(t)a2

n(1)R2
0

J2
2 (
√
γsnR0)√

γsn − µ2(t)
. (8.87)
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The equation for coronal helicity is given by equation (8.12) as

dHc

dt
=

∫ (
l20B

2
eq

ηt
∇ · F

)
dV. (8.88)

Combining equations (8.9), (8.66) & (8.69) with the above equation, and

reducing the above equation in dimensionless form using the transformations

given in equation (8.27), we get (see Appendix 8.F for details)

dHc

dτ
=

2πR2
0

rC
Rα(RU −Rκ)αm. (8.89)

Now volume averaging equation (8.89) and noting〈
1

r

〉
=

2

R0

∫ R0

0

dr = 2, (8.90)

we get the final equation as

dHc

dτ
=

4πR2
0

C
(RURα +RκRα)αm (8.91)

The above equation gives the dynamical evolution of the coronal helicity Hc.

We now list out equations (8.63), (8.79) and (8.91) together, which are

to be solved simultaneously to study the non-linear time evolution of the

dynamo:

N∑
n=1

〈Jsm|rJsn〉ẇn + 〈Jsm|Jsn〉(γsn − γn)wn = 0

dαm
dτ

= − 3C

2R0

[
(1 + αm)〈B2〉 −R−1

α 〈J ·B〉
]
− 3

2R0

(RU +Rκ)αm

dHc

dτ
=

4πR2
0

C
Rα(RU −Rκ)αm (8.92)

8.6 Solutions of time-dependent dynamo equa-

tions

In this section, we present a summary of our simulations for the global nonlin-

ear dynamo using the turbulence parameters are taken from the SNe driven
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scenario presented in Table 8.1.

8.6.1 Evolution and saturation of the dynamo with

time

To study the effect of advective and diffusive flux on the saturated field

strength Bsat, we vary the vertical advection velocity, U0 in the range 0-

2 kms−1 and the diffusive flux Rκ is taken to be (= 0, 0.15 or 0.3). The

quantities Bsat, αm,sat presented here refer to their volume averaged values.

The following are the key results:

1. We find that in all the cases, there is an initial brief phase of rapid

growth (t =0-5, in units of td) when the magnetic field grows exponen-

tially with time (see, Fig. 8.2a & 8.2a). This represents the kinematic

regime of dynamo operation where αm = 0 (see, Fig. 8.2c & 8.2d). As

αm decreases rapidly from zero in the range t = 5-20 (as compared to

the constant αk = 1), hence the total α effect also initially decreases

with time. The dynamo starts getting quenched and reaches satura-

tion around t=40, when the field strength is in equipartition with the

turbulent kinetic energy (∼ Beq). This is in agreement with the results

from numerical simulations presented in Gressel, Bendre, and Elstner

(2013) & Chamandy et al. (2014). The final saturation value of αm is

around −0.9 which corresponds to a net α = 0.1 (10% of the initial

value).

2. Due to the transport of the small-scale helicity from the disc to the

corona, the helicity of the corona grows with time carrying the same

sign as that of the small scale fields. As seen from Fig. 8.2e & 8.2f, in

the kinematic phase, when αm = 0, there is no helicity flux and hence



209 8.6 Solutions of time-dependent dynamo equations

helicity of the coronal field is zero. It then grows rapidly for non-zero

αm between t = 5 − 20. When αm saturates (around t ≥ 20), the

helicity in the corona grows at a constant rate which is proportional to

the net flux (RU +Rκ).

3. In the absence of the fluxes (RU = Rκ = 0), we find that the field

initially grows in the kinematic regime to a strength of ∼ 0.2Beq (Sur,

Shukurov, and Subramanian, 2007), but once the α-quenching becomes

operative, it catastrophically decays to nearly zero field strength (see

Fig. 8.2a). As expected, the helicity in corona remains zero throughout

for this case. In all other cases, the saturated value of the field propor-

tional to the net flux, i.e. the saturated mean field strength is higher

for higher values of RU and Rκ (the field is assumed to be saturated at

t = tsat when it reaches 95% of its values t = 100).

4. For the plausible case of U0 = 0.5 − 1 kms−1 (RU = 0.3 − 0.6), we

obtain a saturated field strength of ∼ 1-1.6 Beq depending upon of

value of Rκ used (see Table 8.2 for details of saturated values of B and

αm for different parameters and the corresponding timescales). This

is in good agreement with the field strengths reported in observations

(Beck, 2012; Van Eck et al., 2014) The timescale needed for saturation

in this case is from a seed field of 10−3 µG to the equipartition field

strength is about 1 Gyr.

5. The seed field taken here is d1 = d2 = d3 = d4 = 10−3Beq at t = 0

(equation 8.55). We have also explored different choices of seed fields,

like taking pure n = 1 and pure n = 2 field. The different choices of

seed field do not affect the results as all cases show a similar behavior

after the initial exponential growth phase. The relative field strengths
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of the different modes for the case of RU = 0.3 and Rκ = 0 are shown

in Fig. 8.3. Here we find that the most contribution is coming from

the second and third radial mode, while the highest mode (n = 4)

contributes the least. We have also checked the solutions with higher

values of n (till n = 6 for a smaller range in RU and Rκ), and the results

are qualitatively similar as the higher orders do not contribute much.

Since we are computationally constrained, we have thus used solutions

till n = 4 for most of the analysis.

6. We also find in Fig. 8.2a that the growth rate, γ of the magnetic field

is directly proportional to RU (for a given Rκ). This is true even in the

kinematic regime. To illustrate the dependence of γ on the advective

flux RU , we use the kinematic solutions of the dynamo equation (ob-

tained by solving only equations 8.33-8.35 with αm = 0) for a larger

range of RU (till RU=20). This is shown in Fig. 8.4. We find that

the growth rate increases with RU for smaller values (RU= 0-5) till a

maximum value of RU = 5 is reached and then it decreases monoton-

ically for higher values of RU . Since, we have used only low values of

RU between 0-1.2, we find that in our cases that the flux term helps

the dynamo to operate faster. Brandenburg et al. (1992, 1993) have

also reported similar results in their numerical simulations where the

dynamo action is enhanced by the aid of galactic winds.

8.6.2 Distribution of the field across the disc

Here we discuss the structure of the saturated magnetic field and its distri-

bution across the disc and the halo.

1. The distribution of the poloidal component of the field can be inferred
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Figure 8.2: The evolution of the magnetic field (normalized with respect to the

equipartition field strength), αm and helicity of the corona Hc with time are shown

in the first, second and third row respectively for different values of RU . The left

and the right panel are evaluated for Rκ = 0 and 0.3 respectively. The time t is

in units of the diffusion timescale td (=23.5 Myr).



Galactic dynamo with helicity and coronal fields 212

d1

d2

d3

d4

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

t/td

d

RU=0.3, Rκ=0

Figure 8.3: Relative strengths of the different expansion coefficients d in equation

(8.55) for the case of RU = 0.3 and Rκ = 0 are shown as a function of time. The

initial condition for the simulation was taken as d1 = d2 = d3 = d4 = 10−3Beq at

t = 0
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Figure 8.4: The variation of the local growth rate γ shown as a function of the

advective flux RU . The range for RU in our simulations is 0-1.2, where γ increases

linearly with RU . However, after RU = 5 (shown by the red dot), this behavior

changes and γ decreases with increase in RU .
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RU Rκ tsat(Gyr) Bsat(Beq) αm,sat(α0)

0.00 0.00 2.347 0.00 -0.93

0.00 0.15 1.016 0.54 -0.90

0.00 0.30 1.052 0.76 -0.90

0.30 0.00 1.044 0.85 -0.91

0.30 0.15 1.058 1.03 -0.91

0.30 0.30 1.067 1.19 -0.91

0.60 0.00 1.112 1.33 -0.92

0.60 0.15 1.117 1.49 -0.92

0.60 0.30 1.121 1.63 -0.92

0.90 0.00 1.194 1.84 -0.93

0.90 0.15 1.197 1.99 -0.93

0.90 0.30 1.200 2.13 -0.93

1.20 0.00 .879 2.25 -0.93

1.20 0.15 .881 2.38 -0.93

1.20 0.30 .883 2.51 -0.93

Table 8.2: The saturated timescales tsat with corresponding values of B2 and α

listed for different input values for RU and Rκ. The quantities mentioned in the

table refer to their global averages over the volume of the disc.

from the plots of the magnetic stream function ψ, as shown in Fig. 8.5.

Here, we discuss first discuss the one dimensional (1-D) cross-section

for comparison with results presented in previous 1-D calculations and

also present the complete 3-D axisymmetric solutions using contour

plots. In Fig. 8.5a & 8.5b we show the dependence of ψ on z for

different values of RU and Rκ at r=4 kpc. The continuity of the field

lines across the boundary is clearly seen. We find that the strength of ψ

increases with advection and diffusion. The complete variation of ψ for
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two cases RU = 0.3, Rκ = 0 and RU = 1.2, Rκ = 0.3 are shown in Fig.

8.5c & 8.5d. These plots can be inferred as the shape of the poloidal

component of the magnetic field. We also see oscillations in the radial

field as contributions from higher values of n in equation (8.55). The

effect of advection is also clearly evident in the stretching of field line

in the vertical direction.

2. The variation of poloidal current, T with disc height z at a radius of

4 kpc is shown in Fig. 8.6a & 8.6b. The poloidal current decreases in

strength as we move away from the disc center. The poloidal current

becomes negligibly small outside disc (z > 1). The radial variation of T

within the disc can be seen from the contour plots in Fig. 8.6c & 8.6d.

The contour plots are shown only till z = 1, since the fields outside the

disc are negligibly small. We again find oscillations in the field due to

contribution from higher modes in the radial function (as seen in case

of ψ). We also find that the contribution from higher modes is more

pronounced in Fig. 8.6d where the fluxes are greater as compared to

Fig. 8.6c.

3. The variation of all three components of the magnetic field, Br, Bφ and

Bz with disc height z is explicitly shown in Fig. 8.7 for different values

of advective and diffusive fluxes. Fig. 8.7a & 8.7b depict the radial

component of the field. The radial component of the field changes sign

near the disc, which is necessary condition for the dynamo to operate

(Ruzmaikin, Sokolov, and Shukurov, 1988), so that the sign of the flux

leaving through the surface is opposite to that of the flux in the mid

plane. The strength of Br increases with the amount of flux leaving

the surface, but the height at which Br changes sign is almost same
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Figure 8.5: Vertical cross sections of the magnetic stream function ψ for different

values of the advective flux RU and diffusive flux Rκ at a radius of 4 kpc are shown

in panel (a) and (b). z = 1 represents the height of the disc. Panel (a) and (b) have

been scaled with respect to the maximum value of ψ for RU = 1.2, Rκ = 0. Panel

(c) and (d) represent the meridional contour plots of ψ for different advective fluxes;

panel (c) corresponds to RU = 0.3 and Rκ = 0 where as panel (d) corresponds

to RU = 1.2 and Rκ = 0. The contour plots are normalized with respect to the

maximum value of the field in panel (c) so as to compare their relative strengths.
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Figure 8.6: Vertical cross sections of the stream function T for different values

of the advective flux RU and diffusive flux Rκ at a radius of 4 kpc are shown in

panel (a) and (b). The height of the disc is represented by z = 1. Panel (a)

and (b) have been scaled with respect to the maximum value of ψ for RU = 1.2,

Rκ = 0. Panel (c) and (d) represent the meridional contour plots of T for different

advective fluxes; panel (c) corresponds to RU = 0.3 and Rκ = 0 where as panel

(d) corresponds to RU = 1.2 and Rκ = 0. The contour plots are normalized with

respect to the maximum value of the field in panel (c) so as to compare their

relative strengths.
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in all the cases. The azimuthal component is depicted is Fig. 8.7c &

8.7d. The ratio of strength of the azimuthal and the radial component

is in general of the order ∼ [Rω/Rα(1 + αm)]1/2 (as seen in the plots).

The strength of the azimuthal field decreases with height and tends to

zero near the disc surface (as also inferred from Fig. 8.6). Finally, the

vertical component of the magnetic field is shown in Fig. 8.7e & 8.7f.

The strength of Bz component is found to be much weaker compared

to Br and Bφ.

4. The magnetic pitch angle, defined as

p = tan−1 (Br/Bφ) =
−
∑4

n=1 wn(t)Qs
n(r)a′n(z)∑4

n=1wn(t)Qs
n(r)bn(z)

, (8.93)

and the variation with height for different values of RU and Rκ are

shown in Fig. 8.8a & 8.8b. The pitch angle is found to be around

−7◦ at the mid plane where as the observed values are close to −20◦

(Fletcher, 2010). It might be possible to obtain higher values for the

pitch angle by incorporating mean radial flows (Moss, Shukurov, and

Sokoloff, 2000) or by invoking spiral shocks (Van Eck et al., 2014). We

plan to investigate these effects in future attempts. Since Br and Bφ

have opposite sign at the mid plane (see Fig. 8.7), the pitch angle

is negative at the mid plane, decreases in magnitude with height and

becomes positive near the surface (when Br changes sign). This means

that the magnetic spiral which is trailing within the disc starts leading

near the surface. This is in agreement with what has been previously

reported in Chamandy et al. (2014) and is expected in a model with

outflows and corona (Ruzmaikin et al., 1979; Ji et al., 2014).
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Figure 8.7: Magnetic field Br, Bφ and Bz are shown as a function of z for

different values of RU and Rκ at a radius of 4 kpc. The values are normalized with

respect to the maximum value of Br for the case of RU = 1.2, Rκ = 0. The sign

of Br, Bφ and Bz is arbitrary but their relatives sign are fixed in accordance with

equations (8.28a) & (8.28b).
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Figure 8.8: The variation of the pitch angle, p = tan−1 (Br/Bφ) is shown as a

function of disc height z at a radius of 4 kpc. The galactic mid plane and disc

surface are given by z = 0 and z = 1 respectively. The left and the right panels

represent Rκ = 0 & 0.3 respectively. The different values of the advective flux RU

are given in the figure legend.

8.7 Summary and conclusions

We have developed a global semi-analytic 3D model for the dynamo opera-

tion in a galaxy with a corona. The model includes small-scale (advective

and diffusive) helicity fluxes that transfer magnetic helicity from the disc

to the corona and prevent the catastrophic quenching of the dynamo. The

effect of these helicity fluxes on the nonlinear saturation of the dynamo is

also demonstrated from the strength and structure of the global saturated

magnetic field. Here we summarize and highlight the novel features of this

work

1. We have incorporated the radial dependence in the SNe (and MRI)

driven turbulence parameters and have shown that all these param-

eters, α, Ω, ηt and Uz have similar radial variation (∝ 1/r). Thus

the dynamo parameters Rα, Rω and RU defined in equation (8.26) are
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nearly independent of r. This leads to a great simplification in our for-

mulation and the dynamo equations (8.28a) & (8.28b) take the same

dimensionless form for both SNe and MRI driven turbulence.

2. A comparison of the timescales of dynamo operation for SNe and MRI

driven turbulence is presented in Table 8.1. We find that the SNe

driven dynamo operates at a much faster rate than the MRI driven

dynamo and hence the magnetic field generation in the disc is likely to

be dominated by SNe driven turbulence. As the combined treatment

of both SNe and MRI driven turbulence is beyond the scope of this

treatment, we have used only the SNe driven turbulence parameters

for our analysis.

3. We solve the dynamo equations in the disc for the global steady-state

solutions which are matched to a linear force-free field in the corona

(§8.4.1). These global analytic solutions allow us to calculate the global

relative helicity for both the disc and the corona.

4. We have presented an analysis of the relative helicity flux terms in

Appendix 8.A. We include the advective and diffusive fluxes for the

work presented in this chapter and plan to explore the contribution

from other terms in future.

5. We solve the full time-dependent problem in §8.4.2 by expanding the

time-dependent magnetic field in a basis obtained from the steady-state

solutions. We obtain quadrupolar solutions for the saturated magnetic

field strength, B(∼ Beq), which is proportional to the advective and

diffusive fluxes leaving the surface, see Table 8.2. For the plausible

values of vertical outflow Uz = 0.5-1 kms−1 at a radius of 4 kpc, we

obtain a mean field strength of Bsat = 5−7µG, which is close to what is
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reported in numerical simulations (Gressel, Bendre, and Elstner, 2013;

Chamandy et al., 2014) and in observations (Beck, 2012; Van Eck et al.,

2014). The timescale for the dynamo saturation is found to be around

1 Gyr, which is comparable to galactic lifetime.

6. Through the dynamo operates the small-scale helicity fluxes slowly

build up the corona with a helicity that carries the same sign as that

of the small-scale helicity fluxes, see Fig. 8.2e & 8.2f. In absence of the

flux terms (RU = Rκ = 0), we find that the mean field initially grows

to a maximum value of ∼ 0.2Beq in the kinematic phase and then is

catastrophically quenched (see Fig. 8.2a). This confirms the crucial

role of the helicity fluxes for the dynamo operation (Sur, Shukurov,

and Subramanian, 2007).

7. The radial and vertical distribution of the field across the disc are shows

there is a reversal sign as we move radially outward from the disc center

(Fig. 8.5 & 8.6). Br changes sign with variation in z towards the surface

(Fig. 8.7) which leads to the magnetic pitch angle also changing sign

near the surface (starting from a value of −7◦ at the mid plane) as

shown in Fig. 8.8. This feature was previously reported in Chamandy

et al. (2014) and is expected in a model with outflows and corona

(Ruzmaikin et al., 1979; Ji et al., 2014).

In future, we plan to work on a hybrid model for the dynamo with a simul-

taneous treatment of both SNe and MRI driven turbulence. We also plan to

include a more realistic model for the coronal field that involves details of the

helicity dissipation by reconnection in the corona. The contribution from the

remaining small- and large- scale helicity flux terms (apart from advective

and diffusive fluxes) in equations (8.3) and (8.4) need to be explored in order
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to study its effect on the saturation of the dynamo.



Appendix

8.A Magnetic helicity dynamics

The induction equation is given by

∂B

∂t
= ∇× (U×B− η∇×B) . (8.94)

The mean-field component of the induction equation is given by:

∂B

∂t
= ∇×

(
U×B− η∇×B + E

)
. (8.95)

Uncurling equation (8.95), we get

∂A

∂t
= U×B− η∇×B + E +∇ϕ1 (8.96)

where ϕ1 is a scalar function. In order to calculate the temporal evolution

of large-scale helicity H =
∫

A ·BdV , we first take the time-derivative of its

density

∂t(A·B) = 2∂tA·B+∇·(∂tA×A) = 2E ·B−2ηJ·B+2∇·(ϕ1B)+∇·(∂tA×A)

(8.97)

where ∂tA × A =
(
U×B− ηJ + E +∇ϕ1

)
× A. The volume average of

equation (8.97) now gives the equation for the evolution of large scale helicity,

H (Mangalam, 2008)

dH

dt
= 2

∫
E ·BdV − 2

∫
ηJ ·BdV −

∮
F · n̂dS, (8.98)
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where n̂ represents the normal to the surface S enclosing volume V and

F = (ηJ−U×B− E −∇ϕ1)×A− 2ϕ1B, (8.99)

is the large-scale helicity flux. Similarly, for the evolution of the mean small-

scale helicity H ′ =
∫

a · bdV , we first note that the time derivative of small-

scale magnetic field obtained from subtracting equation (8.95) from equation

(8.94) is given by

∂tb = ∇× (u×B + U× b + u× b− E − ηj) (8.100)

Uncurling equation (8.100), we get

∂ta = u×B + U× b + u× b− E − ηj +∇ϕ2. (8.101)

The time derivative of the small-scale helicity density χ = a · b is then given

by

∂t(a · b) = 2∂ta · b +∇ · ∂ta× a. (8.102)

Using equation (8.101), we get

∂t(a · b) = −2E ·B− 2ηj · b + 2∇ · (ϕ2b) +∇ · (∂ta× a). (8.103)

The volume average of equation (8.103), now gives us the equation for the

evolution of the mean small scale helicity, H ′ as

dH ′

dt
= −2

∫
E ·BdV − 2

∫
ηj · bdV −

∮
f · n̂dS, (8.104)

where the f = −∂ta× a− 2ϕ2b represents the surface flux terms which can

be expanded in detail as

f = (a ·B)u− (a · u)B− (a ·U)b + (a · b)U− (a · u)b + (a · b)u

+E × a + ηj× a−∇ϕ2 × a− 2ϕ2b. (8.105)
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8.B Derivation of equation (8.26)

We start with equation (8.19) given by(
∂

∂t
+ U z

∂

∂z
− ηt(r)Λ

)
ψ = αT (8.106)

where we have explicitly mentioned the r dependence of ηt. Now substituting

the variables using the transformations given in equation (8.27), we get(
r0ηt(r0)

h3

∂

∂τ
+
U z

h

∂

∂z̃
− ηt(r)

h2
Λ̃

)
ψ0ψ̃ = α̃α0

ψ0T̃

h
, (8.107)

where we have used td = h2/ηt(r0). Dividing the above equation throughout

with
ψ0ηt(r)

h2
, we get[

r0

h

(
ηt(r0)

ηt(r)

)
∂

∂τ
+

(
U zh

ηt(r)

)
∂

∂z̃
− Λ̃

]
ψ̃ =

(
α0h

ηt(r)

)
α̃T̃ . (8.108)

Since ηt(r) ∝ 1/r (from equations 8.22 & 8.23), we can write(
ηt(r0)

ηt(r)

)
=

r

r0

. (8.109)

Using definitions of RU and Rα from equation (8.26) and r̃ = r/h, we write

equation (8.108) as (
r̃
∂

∂τ
+RU

∂

∂z̃
− Λ̃

)
ψ̃ = Rαα̃T̃ . (8.110)

Similarly, we rewrite equation (8.20) as(
∂

∂t
+ U z

∂

∂z
− ηtΛ

)
T = Ω

∂ψ

∂z
(8.111)

where we have used Ω(r) =
r0Ω0

r
. Substituting the dimensionless variables

from equation (8.27) in the above equation, we get(
r0ηt(r0)

h3

∂

∂τ
+
U z

h

∂

∂z̃
− ηt(r)

h2
Λ̃

)
ψ0T̃

h
=

Ωψ0

h

∂ψ̃

∂z̃
. (8.112)

Following the same steps as taken after equation (8.107), we get the final

form as (
r̃
∂

∂τ
+RU

∂

∂z̃
− Λ̃

)
T̃ = Rω

∂ψ̃

∂z̃
. (8.113)
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8.C Derivation of quadrupolar boundary con-

ditions given in equation (8.54)

The functions ψ and T have the same radial dependence both outside and

inside the disc, given by equation (8.37). Thus in writing the boundary

conditions for quadrupolar symmetry (equations 8.49-8.51), the radial part

cancels out and we obtain a set of four equations relating the eigenvalues and

eigenfunctions of asn. Substituting equation (8.40) and the z part of ψc from

equation (8.53) in equations (8.49a) & (8.49b), we get

4∑
j=1

cnj exp(λnj) = en exp(−
√
γsn − µ2) (8.114)

4∑
j=1

cnjλnj exp(λnj) = en(−
√
γsn − µ2) exp(−

√
γsn − µ2) (8.115)

Multiplying equation (8.123) with
√
γsn − µ2 and adding with equation (8.124),

we obtain
4∑
j=1

(
λj +

√
γsn − µ2

)
cnj exp(λnj) = 0. (8.116)

We rewrite equation (8.34) as

bsn =
1

Rα(1 + αm)

(
γsna

s
n +RU

dasn
dz
− dasn

dz2

)
(8.117)

Combining equations (8.40), (8.117) & (8.50), we get

4∑
j=1

[
γsn +RUλnj − λ2

nj

]
cnj exp(λnj) =

4∑
j=1

µRα(1 + αm)cnj exp(λnj).

(8.118)

Rearranging terms in the above equation, we get

4∑
j=1

[
µRα(1 + αm) + λ2

nj −RUλnj − γsn
]
cnj exp(λnj) = 0. (8.119)



227 8.D Derivation of 〈B2〉 and 〈J ·B〉

For quadrupolar boundary conditions, we substitute equation (8.40) in equa-

tion (8.51a) to get
4∑
j=1

cnj = 0. (8.120)

Differentiating equation (8.117) with respect to z, we get

dbsn
dz

=
1

Rα(1 + αm)

(
γsn

dasn
dz

+ 2RU
d2asn
dz2

− d3asn
dz3

)
. (8.121)

Substituting equation (8.121) in equation (8.51b), we get

4∑
j=1

(
γsnλnj +RUλ

2
nj − λ3

nj

)
cnj = 0. (8.122)

8.D Derivation of 〈B2〉 and 〈J ·B〉

Using equations (8.13) & (8.14), we can write

B = BP + Bφ = P̂ψ; Bφ =
T

r
φ̂. (8.123)

The expression for the energy of the mean field can be written as

B2 =
1

r2

[
(∂zψ)2 + (∂rψ)2 + T 2

]
(8.124)

where ∂z =
∂

∂z
, ∂r =

∂

∂r
. From equation (8.55), we can write

∂zψ =
N∑
n=1

Qna
′
nwn; ∂rψ =

N∑
n=1

Q′nanwn (8.125)

where a′n =
dan
dz

andQ′n =
dQn

dr
. Thus substituting equation (8.125) in (8.124),

we obtain

B2 =
N∑

n,m=1

1

r2
[QnQm (a′na

′
m + bnbm) +Q′nQ

′
manam]wnwm. (8.126)
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For the current density, we can write

J = ∇×B = ∇× P̂ψ +∇
(

1

r
T

)
= −

(
1

r
Λψ

)
φ̂+ P̂ T. (8.127)

Combining equations (8.123) & (8.127), we get

J ·B = P̂ T · P̂ψ − 1

r2
(Λψ)T. (8.128)

The first term in the right-hand side (RHS) of equation (8.128) is given by

P̂ T ·P̂ψ =
1

r2
(∂zT∂zψ + ∂rT∂rψ) =

N∑
n,m=1

1

r2
(QnQma

′
na
′
m +Q′nQ

′
manam)wnwm

(8.129)

The second term in the RHS of equation (8.128) is given by

− 1

r2
(Λψ)T =

1

r2

[
r∂r

(
1

r
∂rQn

)
+ ∂2

zψ

]
T. (8.130)

The first term in the RHS of equation (8.130) can be written as

r∂r

(
1

r
∂rψ

)
=

N∑
n=1

r∂r

(
1

r
∂rQn

)
anwn =

N∑
n=1

−γsnQnanwn, (8.131)

where we have used equation (8.33). Noting that ∂2
zψ =

N∑
n=1

Qna
′′
nwn and

substituting equation (8.131) in equation (8.130), we get

− 1

r2
(Λψ)T =

N∑
n,m=1

1

r2
[QnQmwnwmbm(a′′n − γsnan)] . (8.132)

Substituting equations (8.129) & (8.132) in equation (8.128), we obtain

J ·B =
1

r2
[QnQm (a′nb

′
m + a′′nbm − γsnanbm) +Q′nQ

′
manbm]wnwm. (8.133)

In order to obtain the volume averaged quantities 〈B2〉 and 〈J ·B〉, we note

that, since the quantities in equations (8.126) & (8.133) are separable in

variables r and z, we can split the volume average as radial averages on
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functions related to Qn multiplied by vertical averages on functions of an and

bn. Using the above relations, we can write the volume averaged quantities

as

〈B2〉 =
N∑
n=1

[〈
1

r2
Q2
n

〉
〈a′2
n + b2

n〉+

〈
1

r2
Q

′2
n

〉
〈a2
n〉
]
w2
n

=
[
J2

2 (
√
γsnR0)〈a′2

n + b2
n〉+ γsnJ

2
0 (
√
γsnR0)〈a2

n〉
]
w2
n (8.134)

〈J ·B〉 =
N∑
n=1

[〈
1

r2
Q2
n

〉
〈a′nb′n + a′′nbn − γsnanbn〉+

〈
1

r2
Q

′2
n

〉
〈anbn〉

]
w2
n

=
[
J2

2 (
√
γsnR0)〈a′nb′n + a′′nbn − γsnanbn〉+ γsnJ

2
0 (
√
γsnR0)〈anbn〉

]
w2
n

(8.135)

where we have used the properties of Bessel functions and equation (8.37) to

write 〈
1

r2
Q2
n

〉
=

2

R2
0

∫ R0

0

QnQm

r2
rdr = δn,mJ

2
2 (
√
γsnR0) (8.136)〈

1

r2
Q

′2
n

〉
=

2

R2
0

∫ R0

0

Q′nQ
′
m

r2
rdr = δn,mγ

s
nJ

2
0 (
√
γsnR0). (8.137)

8.E A gauge invariant description of helicity

in cylindrical geometry

The Chandrasekhar-Kendall representation of magnetic fields in cylindrical

geometry is given by (Low, 2006, 2011)

B = Bψ + Bφ (8.138)

Bφ = ∇× φẑ; Bψ = ∇× (∇× ψẑ). (8.139)

Then the absolute magnetic helicity density, defined as

habs(ψ, φ) = (∇× ψẑ) · [∇× (∇× ψẑ) + 2(∇× φẑ)] (8.140)
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is a gauge invariant measure of helicity density. The magnetic vector po-

tential given as A = ∇ × ψẑ + φẑ is also well defined. For the case of

axisymmetry, ∇× ψẑ = −∂ψ
∂r
φ̂. Thus, we can write

Aφ = ∇× ψẑ (8.141)

and rewrite equation (8.140) as

habs = Aφ ·
(
Bψ + 2Bφ

)
. (8.142)

Also under axisymmetry, equation (8.139) can be rewritten as

Bφ = −∂φ
∂r
φ̂, Bψ =

∂2ψ

∂r∂z
r̂ − 1

r

∂

∂r

(
r
∂ψ

∂r

)
ẑ. (8.143)

Thus combining equations (8.141), (8.142) & (8.143), we get

Aφ ·Bψ = 0; Aφ ·Bφ = AφBφ. (8.144)

So, we get the final expression for absolute helicity density for axisymmetric

field in cylindrical geometry as

habs = 2AφBφ. (8.145)

Comparing the definition for the field in equation (8.139) with our definition

in equations (8.13) & (8.14), we get Aφ =
ψ

r
φ̂ and Bφ =

T

r
φ̂. Thus equation

(8.145) in our notation takes the following form

habs =
2ψT

r2
. (8.146)

The mean magnetic helicity of the corona can then be defined as

Hc

∫
2ψcTc
r2

dV. (8.147)
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8.F Equation for evolution of coronal helicity

The rate of change of the mean magnetic helicity in the corona is given by

equation (8.12)
dHc

dt
=

∫ (
l20B

2
eq

ηt
∇ · F

)
dV. (8.148)

Now we can write

1

ηt
∇ · F = ∇ ·

(
F
ηt

)
−F · ∇

(
1

ηt

)
= ∇ ·

(
F
ηt

)
(8.149)

where we have neglected the radial derivative of 1/ηt. Now we can write

equation (8.148) as

dHc

dt
= l20B

2
eq

∫
∇ ·
(
F
ηt

)
dV = l20B

2
eq

∫ (
F
ηt

)
· ẑdS (8.150)

where S represents the top surface of the disc. Using equations (8.9), (8.10)

& (8.11), we can write

F · ẑ = Uzαm − κ∂zαm. (8.151)

Also under the no-z approximation, we write ∂zαm = αm/h; (8.150) now

becomes

dHc

dt
= l20B

2
eq

∫ (
Uzαm
ηt
− κ∂zαm

ηt

)
dS =

l20B
2
eqαm

h

∫ [(
Uzh

ηt

)
−
(
κ

ηt

)]
dS

(8.152)

where we have used ∂zαm = αm/h; (8.152) can now be rewritten using equa-

tions (8.26) & (8.74) as

dHc

dt
=
l20B

2
eqαm

h
πR2

0 (8.153)

since both RU and Rκ are independent of radius. Rescaling equation (8.153),

we write

r0ηt(r0)

h3
Beq2h4 dH̃c

dτ
=
l20B

2
eqηt(r)

h2

(
α0h

ηt

)
α̃m(RU −Rκ)πR̃0

2
h2 (8.154)
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Rearranging the terms in equation (8.154), we get the following equations

dH̃c

dτ
=

l20
h

ηt(r)

ηt(r0)r0

Rα(RU −Rκ)α̃mπR̃0
2

=
l20
h

(
r0

r0

)(
h

r

)
Rα(RU −Rκ)α̃mπR̃0

2
(8.155)

Simplifying equation (8.155) using equation (8.74) and dropping the tilde for

simplicity we get the final equation for large scale magnetic helicity in the

corona as
dHc

dτ
=

2πR2
0

rC
Rα(RU −Rκ)αm. (8.156)



Chapter 9

Conclusions

9.1 Summary

In Chapters 1-5, the background material to understand the physics of the ob-

jects of study have been given, which include an overview of solar and galactic

magnetic fields, basics of MHD and topological properties of magnetic fields,

properties of force-free fields, overview of coronal heating mechanisms and

an introduction to turbulent dynamos. In Chapter 2, we have calculated

the relative helicity in an arbitrary geometry that can be described by the

toroidal-poloidal representation and applied it to special case of spherical

and planar geometry. This is a useful formulation which we plan to extend

to other cases and provide a geometric construction and constraints for exis-

tence of gauge free helicity that does not involve a calculation over an external

volume. In Chapter 6, we present a systematic study of the force-free field

equation for simple axisymmetric configurations in spherical geometry and

apply it to the solar active regions. The condition of separability of solutions

in the radial and angular variables leads to two classes of solutions: linear

and nonlinear force-free fields (NLFF). We have studied these linear solu-
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tions and extended the nonlinear solutions for the radial power law index to

the irreducible rational form n = p/q, which is allowed for all cases of odd

p and cases of q > p for even p, where the poloidal flux ψ ∝ 1/rn and the

field B ∝ 1/rn+2. We apply these solutions to simulate photospheric vec-

tor magnetograms obtained using the spectro-polarimeter on board Hinode.

The effectiveness of our search strategy is first demonstrated on test inputs

of dipolar, axisymmetric, and non axisymmetric linear force-free fields. Us-

ing the best fit, we build three- dimensional axisymmetric field configurations

and calculate the energy and relative helicity with two independent methods,

which are in agreement. We have analyzed five magnetograms for AR 10930

spanning a period of three days during which two X-class flares occurred and

found the free energy and relative helicity of the active region before and

after the flare; our analysis indicates a peak in these quantities before the

flare events, which is consistent with the other results. We also analyzed

single-polarity regions AR 10923 and 10933, which showed very good fits to

potential fields. This method provides useful reconstruction of NLFF and

input fields for other numerical techniques.

In Chapter 7, we use the simple axisymmetric nonlinear force-free (NLFF)

fields (derived in Chapter 6), and apply them to estimate the amount of

braiding and free energy content in solar active regions using the concept of

mean crossing number. We find that the estimates of free energy content in

braiding obtained using crossing numbers is in good agreement with those

obtained by exact calculations NLFF fields. We then apply the model of self-

organized criticality (SOC) to these structures and calculate the distribution

of coherent braid sequences and flare energies. We find find good agreement

in the flare energy distributions obtained using SOC model and NLFFF ex-

trapolation of AR 10930 (observed on 12-14 December 2006). These results
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provide useful information on the coronal loop structure and also imply that

the coronal heating can be supplied by the braiding in the case of the active

sun.

In Chapter 8, we present a global semi-analytic axisymmetric model for a

turbulent dynamo operating in a galaxy with a corona. We show that the su-

pernovae (SNe) and magneto-rotational instability (MRI) driven turbulence

parameters have nearly the same radial dependence and can be treated in a

common formalism; however we assume the main contribution from SNe. The

general toroidal-poloidal representation is used to calculate the global gauge

invariant relative magnetic helicity in cylindrical geometry. We present the

analytic steady-state solutions within the disc that are matched to force-free

fields in the corona. A dynamical solution for the dynamo is then obtained

by expanding the time-dependent field in the basis of the steady-state so-

lutions. The non-linear quenching of the dynamo is alleviated by inclusion

of small-scale advective and diffusive magnetic helicity fluxes, which allow

the helicity to be transferred outside the disc and consequently build up a

corona during the course of dynamo action. We find quadrupolar solutions

for in the galactic disc that extend out into the corona and show oscillations

radially. The mean field is found to reach saturation within a timescale of 1

Gyr with a strength which is of the order of equipartition magnetic energy

(∼ Beq ). The magnetic pitch angle is −7° at mid plane and changes sign

near the disc surface.

9.2 Novel aspects and their impact

The Thesis aimed at applying novel techniques and formulae for Helicity and

NLFF field using a semi-analytic approach to two different astrophysical set-
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tings. The solutions obtained in the solar case provide alternate and verifiable

means to calculate the structure and energetics of active regions. Further the

topological methods provide a deeper understanding of the sources of coronal

heating. In the case of the galactic dynamo, our analytic treatment provided

a transparent and powerful use of eigen functions that yielded a full global

solution to the magnetic field and its route to saturation.

By complementing the solutions thus obtained with future numerical

models can give further insight and drive us to better models in both cases.

The theoretical attempt of new Helicity formulae for arbitrary geometry holds

promise of utility in several applications.

The specific points are listed below.

1. We provide a new formulation for relative helicity in arbitrary geome-

tries using the toroidal-poloidal representation of the magnetic field in

§2.5 and discuss the special cases of planar and spherical geometry.

In a general astrophysical application, the fields penetrate the gener-

ation region and extend to a surrounding corona. It is important to

develop gauge-free form for Helicity that can be readily used in differ-

ent geometries without involving integrals over external volumes. The

further extension of the ideas here can be formalized through use of

differential geometry.

2. For the case of coronal magnetic fields, we were able to extend the so-

lution set of the nonlinear force-free field equation previously obtained

in Low and Lou (1990), from n = 1 to the irreducible rational form

n = p/q, which is allowed for all cases of odd p and to cases of q > p for

even p. While several papers have dealt with individual cases of odd n,

we have provided solutions to arbitrary n = p/q which can be realized

through a precise choice of p and q.
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3. We calculated the potential fields consistent with these force-free fields

inside a shell and the corresponding vector potentials which allowed us

to calculated the relative helicity in the region using the Finn-Antonsen

formula (Finn and Antonsen, 1983) and the potential field independent

Berger formula (Berger, 1985). This is the first published example of

the confirmation of the equivalence of the two forms.

4. All the field configurations analyzed were found to be negatively twisted

as seen from the α for the C modes and the helicity of the LL modes.

The fits with non-linear LL modes seem to be better than the linear C

modes. This is a first clear demonstration of the result.

5. This method provides good exact input fields for testing other numeri-

cal codes used in reconstruction on the non-linear force-free fields. The

existing NLFF numerical reconstructions suffer from fundamental in-

consistencies and limitations mentioned in Schrijver et al. (2006).

6. In the case of AR 10930, there was a X3.4 class flare on December

13, 2006 and we confirm in both models a substantial decrease in free

energy and relative helicity after the flare. The relative helicity and

free energy in the C mode increased and in the LL mode decreased

marginally after the X1.5 class flare on December 14, 2006.

7. The two ARs 10923, 10933 with single polarity show very high corre-

lation (> 90%) with potential fields.

8. We use these solutions to evaluate the topology of the field lines using

the crossing numbers as measures.

9. The crossing number of the braided field is used to estimate the free

energy of AR 10930 which is in agreement to those obtained in Prasad,
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Mangalam, and Ravindra (2014).

10. We have calculated the power-law distribution for flare energies for

AR 10930. We find that our estimates using the nonlinear force-free

fields are in good agreement with those obtained using self-organized

criticality models (Berger and Asgari-Targhi, 2009).

11. We have incorporated the radial dependence in the SNe (and MRI)

driven turbulence parameters and have shown that all these param-

eters, α, Ω, ηt and Uz have similar radial variation (∝ 1/r). Thus

the dynamo parameters Rα, Rω and RU defined in equation (8.26) are

nearly independent of r. This leads to a great simplification in our for-

mulation and the dynamo equations (8.28a) & (8.28b) take the same

dimensionless form for both SNe and MRI driven turbulence.

12. We solve the dynamo equations in the disc for the global steady-state

solutions which are matched to a linear force-free field in the corona

(§8.4.1). These global analytic solutions allow us to calculate the global

relative helicity for both the disc and the corona.

13. We solve the full time-dependent problem in §8.4.2 by expanding the

time-dependent magnetic field in a basis obtained from the steady-state

solutions. We obtain quadrupolar solutions for the saturated magnetic

field strength, B(∼ Beq), which is proportional to the advective and

diffusive fluxes leaving the surface. For the plausible values of vertical

outflow Uz = 0.5-1 kms−1 at a radius of 4 kpc, we obtain a mean

field strength of Bsat = 5− 7µG, which is close to what is reported in

numerical simulations (Gressel, Bendre, and Elstner, 2013; Chamandy

et al., 2014) and in observations (Beck, 2012; Van Eck et al., 2014).
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The timescale for the dynamo saturation is found to be around 1 Gyr,

which is comparable to galactic lifetime.

14. Through the dynamo operates the small-scale helicity fluxes slowly

build up the corona with a helicity that carries the same sign as that

of the small-scale helicity fluxes. In absence of the flux terms (RU =

Rκ = 0), we find that the mean field initially grows to a maximum

value of ∼ 0.2Beq in the kinematic phase and then is catastrophically

quenched. This confirms the crucial role of the helicity fluxes for the

dynamo operation.

15. The radial and vertical distribution of the field across the disc are shows

there is a reversal sign as we move radially outward from the disc center.

Br changes sign with variation in z towards the surface which leads to

the magnetic pitch angle also changing sign near the surface (starting

from a value of −7◦ at the mid plane). This feature was previously

reported in Chamandy et al. (2014) and is expected in a model with

outflows and corona (Ruzmaikin et al., 1979; Ji et al., 2014).

9.3 Future directions

In each of the problems taken up, there are several promising avenues for

future study. To improve upon the models it is planned to compare and

complement the semi-analytics with more comprehensive numerical models.

For the reconstruction of NLFF fields we plan to use the boundary integral

methods developed by Yan (1995); Yan and Sakurai (2000). In the case of

the Galactic dynamo we plan to supplement our calculations with the use

of pencil code of Brandenburg et al. (1992); Brandenburg, Candelaresi, and

Chatterjee (2009). These and other plans specifically include:
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1. We were not able to explore the full parameter space for the simulations

presented in Chapter 6 due to computational constraints. The runs

took about 8 hrs to complete for each mode search of the solutions

upon parallel computation on a 24 node cluster with Intel i7 processors.

We plan to improve on these solutions and get more accurate results

in future.

2. The NLFFF solutions in Chapter 6 suffer from the problem of singu-

larity at the origin which render them unphysical. We are planning to

come up next with more physically viable solutions.

3. In future, using the spherical solutions, we plan to get an semi-analytical

expression of free energy for the force-free solutions obtained in Prasad,

Mangalam, and Ravindra (2014), in terms of the crossing number and

estimate the total energy released in the corona for the braided struc-

tures presented in Chapter 7.

4. To estimate the total energy released in the corona from these braided

structures and their significance with regards to the energy budget for

the active Sun.

5. Calculate the energy released through small scale reconnection events

and correlate them to the energy content in the force-free fields.

6. We also plan to incorporate the semi analytic force-free model for the

3 braided magnetic field (Wilmot-Smith, Hornig, and Pontin, 2009) in

the model for SOC presented in Chapter 7.

7. We plan to improve the galactic dynamo model presented in 8 by devel-

oping a theory that involves simultaneous treatment of both SNe and

MRI driven turbulence.
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8. We also plan to include a more realistic model for the galactic coronal

field that involves details of the helicity dissipation by reconnection in

the corona.

9. We plan to include the contribution from the remaining small- and

large- scale helicity flux terms (apart from advective and diffusive fluxes)

in equations (8.3) and (8.4) need to be explored in order to study its

effect on the saturation of the galactic dynamo.

In conclusion, the essence of the findings of the Thesis are in agreement

in spirit with the following words :

“The argument in the past has frequently been a process of elimina-

tion. One observed a certain phenomena and one investigated what

part could be explained; the unexplained part was taken to be the

effect of the magnetic field. It is clear in this case that, the larger

one’s ignorance, the stronger the magnetic field.”

- L. Woltjer
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Arlt, R., Rüdiger, G.: 1999, Accretion-disk dynamo models with dynamo-

induced alpha-effect. Astron. Astrophys. 349, 334 – 338. 189

Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction. 12,

71, 73

http://dx.doi.org/10.1007/BF00145734
http://dx.doi.org/10.1051/0004-6361:20054076
http://dx.doi.org/10.1023/A:1004966830232


243 BIBLIOGRAPHY

Aschwanden, M.J., Parnell, C.E.: 2002, Nanoflare Statistics from First Prin-

ciples: Fractal Geometry and Temperature Synthesis. ApJ 572, 1048 –

1071. doi:10.1086/340385. 75

Aschwanden, M.J., Tarbell, T.D., Nightingale, R.W., Schrijver, C.J., Title,

A., Kankelborg, C.C., Martens, P., Warren, H.P.: 2000, Time Variabil-

ity of the “Quiet” Sun Observed with TRACE. II. Physical Parameters,

Temperature Evolution, and Energetics of Extreme-Ultraviolet Nanoflares.

ApJ 535, 1047 – 1065. doi:10.1086/308867. 75, 76

Babcock, H.W.: 1947, Zeeman Effect in Stellar Spectra. ApJ 105, 105.

doi:10.1086/144887. 1

Balbus, S.A., Hawley, J.F.: 1991, A powerful local shear instability in weakly

magnetized disks. I - Linear analysis. II - Nonlinear evolution. ApJ 376,

214 – 233. doi:10.1086/170270. 189

Ballai, I., Erdelyi, R.: 1998, Resonant Absorption of Nonlinear Slow MHD

Waves in Isotropic Steady Plasmas - I. Theory. Solar Phys. 180, 65 – 79.

doi:10.1023/A:1005068127935. 69

Baryshnikova, I., Shukurov, A., Ruzmaikin, A., Sokoloff, D.D.: 1987, Gener-

ation of large-scale magnetic fields in spiral galaxies. Astron. Astrophys.

177, 27 – 41. 95

Beck, R.: 2002, Observations of galactic magnetic fields. Highlights of As-

tronomy 12, 712 – 715. 14

Beck, R.: 2007, Magnetism in the spiral galaxy NGC 6946: magnetic arms,

depolarization rings, dynamo modes, and helical fields. Astron. Astrophys.

470, 539 – 556. doi:10.1051/0004-6361:20066988. 18

http://dx.doi.org/10.1086/340385
http://dx.doi.org/10.1086/308867
http://dx.doi.org/10.1086/144887
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1023/A:1005068127935
http://dx.doi.org/10.1051/0004-6361:20066988


BIBLIOGRAPHY 244

Beck, R.: 2012, Magnetic Fields in Galaxies. Space Sci. Rev. 166, 215 – 230.

doi:10.1007/s11214-011-9782-z. 181, 209, 221, 238

Beck, R., Hoernes, P.: 1996, Magnetic spiral arms in the galaxy NGC6946.

Nature 379, 47 – 49. doi:10.1038/379047a0. 18

Beck, R., Wielebinski, R.: 2013, In: Oswalt, T.D., Gilmore, G. (eds.) Mag-

netic Fields in Galaxies, 641. doi:10.1007/978-94-007-5612-0 13. 181

Beck, R., Brandenburg, A., Moss, D., Shukurov, A., Sokoloff, D.: 1996,

Galactic Magnetism: Recent Developments and Perspectives. Ann.Rev.

Astron. Astrophys. 34, 155 – 206. doi:10.1146/annurev.astro.34.1.155. 16,

181
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Riley, P., Linker, J.A., Mikič, Z.: 2013, Ensemble modeling of the ambient

solar wind. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer,

S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius,

E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) American Institute

of Physics Conference Series, American Institute of Physics Conference

Series 1539, 259 – 262. doi:10.1063/1.4811037. 51

Rodrigues, L.F.S., Shukurov, A., Fletcher, A., Baugh, C.: 2015, Galactic

magnetic fields and hierarchical galaxy formation. ArXiv e-prints. 190,

191

Roumeliotis, G.: 1996, The “Stress-and-Relax” Method for Reconstructing

the Coronal Magnetic Field from Vector Magnetograph Data. ApJ 473,

1095. doi:10.1086/178219. 64, 110
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