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Abstract

The study of ultracold atoms is one of the frontier research areas of modern physics.

The ability to control precisely the interactions between the ultracold atoms in optical

lattices has led to the prediction and in some cases observation of different phases of matter

at ultracold temperatures. Further investigations in this area could lead to the realization

of quantum computers and a better understanding of high temperature superconductivity.

The applications of ultracold atoms are not restricted to the field of condensed matter

physics. These systems can be used to simulate the physics of the early universe and also

some astrophysical phenomena.

This thesis reports on certain specific theoretical studies of ultracold atoms in optical

lattices and superlattices. Ultracold atoms can exhibit different kinds of phases depending

on the strengths of various interactions, densities and geometry of the system. We inves-

tigate some of these phases primarily using the mean-field theory and the density matrix

renormalization group (DMRG) method. In Chapter 1, we give a brief introduction to the

field of ultracold atoms. In Chapter 2, we give a description of the theoretical tools used to

obtain quantitative results for the problems studied in this thesis work. In Chapter 3, we

focus on the well known superfluid to Mott-insulator phase transition of ultracold atoms

in optical lattices. We obtained the transition critical points as well as the phase diagram

using perturbation theory first and then mean-field theory, to compare the two methods.

We then present our results for ultracold atoms in optical superlattices. Chapters 4 and

5 are based on the study of ultracold atoms in optical lattices and superlattices with the

vi



on-site three body interaction, using mean-field and DMRG methods, respectively. In

Chapter 6, we report our findings on the quantum phases of attractive bosons in two

coupled one -dimensional optical lattices. In Chapter 7, we discuss our results obtained

for a non-equilibrium study of ultracold atoms in optical lattices within the frame work

of the extended Bose-Hubbard model. Finally, in Chapter 8 we summarize our findings

for the above mentioned problems and suggest scope for future work in this field.
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Chapter 1

Introduction

1.1 Ultracold atoms

The field of ultracold atoms is an area at the cutting edge of modern physics. The

study of these systems can be used for providing insights into a large range of condensed

matter phenomena. Ultracold atomic and molecular gases are much larger than nanoscale

systems. In Bose-Einstein condensation (BEC), for example, thousands of atoms collapse

into a single one millimeter wave that is large enough for observations in the laboratory.

Degenerate Fermi quantum gases have also been observed using a high-resolution optical

microscope [1, 2]. A gas of ultracold atoms can be modeled in a manner similar to

electrons in a crystal [3]. Atom lasers have been demonstrated using Bose-Einstein

condensates [4, 5]. As a result of these properties ultracold atoms provide unique insights

into the microscopic quantum world.

The inception of the field of the ultracold atoms dates back to 1925, when Albert

Einstein completed his seminal work on the theory of the phenomenon that we know as

BEC [6]. This work was based on the novel ideas on photon statistics from Satyendra

Nath Bose, who had sought Einstein’s advice. Today, we know that BEC is based on
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quantum statistics and is intimately connected to the wave nature of particles. Einstein

predicted the phenomenon of BEC without the knowledge of any quantum mechanics,

which was in fact just being discovered during that time.

An atom has certain energy levels. The distribution of atoms (for bosons) in these

energy levels is governed by the Bose-Einstein distribution:

〈ni〉 =
1

exp[(εi − µ)/kBT ]− 1
(1.1)

where ni is the number of particles in state i, εi is the energy of the ith state, µ is the

chemical potential, kB is the Boltzmann constant, and T is absolute temperature. Based

on this statistics Einstein showed that with the onset of ultracold temperatures ( 10−9K),

a very large fraction of atoms will occupy the lowest energy state. This phenomenon is

called BEC, which corresponds to a state of matter in which all the atoms are in the same

quantum state. The remarkable property of a BEC is that all the atoms which make it

up exhibit identical quantum behavior, i.e. they are all in the same phase below a critical

temperature.

After the seminal work of Einstein, BEC was first observed by Eric Cornell and Carl

Wieman in 1995 at the University of Colorado at Boulder NIST-JILA lab, using a gas of

rubidium atoms cooled to 170 nanokelvin (nK) (1.7×10−7K). They used the technique of

laser cooling followed by evaporative cooling and magnetic confinement to trap the atoms

at such low temperatures [7]. The 1997 Nobel prize in Physics was awarded to Chu,

Cohen-Tannoudji and Phillips for their pioneering work on laser cooling of atoms [8] and

subsequently the 2001 Nobel prize in Physics was awarded to Eric Cornell, Carl Wieman,

and Wolfgang Ketterle of MIT [9] for the experimental realization and elucidating the

properties of BECs. There has been rapid progress in the field of ultracold atoms since

that time. Remarkable advances has been made in this field in a very short time. As

of today, Bose-Einstein Condensates are readily available in the leading laboratories and

more than 30 research groups around the world are carrying out experiments with this

new form of quantum matter. BEC has been subsequently achieved in several atomic
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species, some of them are: 1H,4He,7 Li,23Na,39K,41K,52Cr,85Rb,87Rb,

133Cs,170 Y b and 174Y b.

Bose-Einstein Condensates can be moved, shaken and rotated without instanta-

neously destroying their quantum properties. Therefore Bose-Einstein Condensates are

ideal for performing experiments in the context of a number of different physical situations

[10]. In ultracold quantum gases (at ∼ 10−9K temperatures), particles interact mainly

by s-wave scattering. In this case one can express the long distance interaction such as

the van der Waals interaction in terms of a pseudo potential which is short range and

isotropic in nature:

Uint(r) =
4π~2as
m

δ(r) = gδ(r) (1.2)

where as is the s-wave scattering length and m is the mass of atom. The magnitude

and also the sign of as can be varied between a large range of values using the method

of Feshbach resonance [11, 12]. In this method, the internal states of the particles and

hence the scattering lengths are modified. For example in the case of 85Rb, the scattering

length was tuned over several orders of magnitude [13, 14]. The weakly interacting gas

can be well understood in the framework of the well known Gross-Pitaevski equation and

the Bogoliubov theory [10, 15, 16]. The gas is said to be weakly interacting when the

ratio between the interaction energy of uncorrelated atoms (Eint) and the quantum kinetic

energy (Ekin) needed to correlate the atoms within a distance of the order of inter-particle

separation is small. For a three dimensional system the interaction energy is given as:

Eint = n
4π~2as
m

(1.3)

and the kinetic energy is given as:

Ekin =
~2

m
n2/3 (1.4)

where n is the atomic density and as is the scattering length. The ratio between the two

quantities turns out to be nas. In dilute alkali vapors this ratio is typically of the order of
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0.02. In order to achieve the strongly correlated regime, either the density of atoms or the

scattering length as must be increased. But in this regime, the lifetime of the condensate

decreases due to naturally occurring three body losses [17]. To overcome this problem, an

optical lattice is considered to be the ideal tool to realize the strongly correlated regime.

In an optical lattice, the ratio between the potential energy and the kinetic energy can

be changed by increasing the depth of the lattice without changing either the density or

the scattering length [3]. The ability to precisely control the interaction parameters by

tuning the laser intensity and wavelength, makes optical lattice systems an ideal tool to

study strongly correlated atomic systems.

1.2 Applications

Ultracold atoms in optical lattices have offered a fresh and new approach to some of the

long standing questions in condensed matter and other fields of physics. The merit of

these investigations using ultracold atoms in optical lattices is that almost all relevant

parameters such as the lattice potential depth, the lattice geometry and the interaction

strength between the particles can be tuned over a wide range, while one is also able

to observe the dynamical response of the system [18]. Furthermore, the crucial effect

of dimensionality can be investigated and has been at the heart of a series of recent

fundamental studies of, e.g., one-dimensional quantum gases [19]. The wavelength of

atoms can be orders of magnitude smaller than that of light and so an interferometer

based on atoms has the potential to be very sensitive.

Atoms interact quite differently with their environment as compared to photons. For

example, atoms couple directly to the gravitational field and so can be a sensitive measure

of gravity. Gravity has been intensively studied on large length scales, but the situation

at short length scales, below about a millimeter, is comparatively unknown. Atomic

interferometers hold out the possibility of making exquisitely sensitive measurements of
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the gravitational field at very small distances from an object. Such measurements might

have far-reaching consequences since string theory, the current most fundamental but as

yet untested theory of ‘everything’, predicts extra dimensions which can soak up gravitons

and thus weaken gravity on small scales [20].

Ultracold atoms can be used to understand some astrophysical phenomena too, for

example, stellar superfluidity. Based on the observed cooling rate of the star Cassiopeia

A in the Cassiopeia constellation, astrophysicists believe that the neutrons in its core to

be in a superfluid state. Neutron stars are the compact remnants of certain supernova

explosions. They are born from the catastrophic gravitational collapse of the iron core of

massive stars at the end point of their evolution. Their masses are ∼ 1 to 2 times mass

of the Sun but constrained in a radius of ∼ 10 km. The average density of a neutron

star is thus ∼1017 kg/m3 at the core, which is comparable to the density of atomic nuclei.

Nucleons are fermions, and due to the Pauli exclusion principle, they generally tend to

avoid themselves. This individualistic behavior of nucleons, together with the strong

repulsive nucleon-nucleon interaction at short distance, provide the necessary pressure to

counterbalance the huge gravitational pull in a neutron star, thereby preventing it from

collapsing. However, at low enough temperatures (∼ 109 K), nucleons may form pairs.

These pairs are bosons that can behave coherently on a very large scale and the nucleon

condensate can flow without any viscosity, analogous to a superfluid. Neutron matter and

ultracold atomic gases are separated by 17 orders of magnitude in temperature: however,

in terms of their corresponding Fermi temperatures, their critical temperatures are very

large, essentially of comparable magnitude. This is the reason both these systems can be

viewed as “high-temperature superfluids” [21].

Ultracold atoms in optical lattices can help us design better superconductors, which

are materials that conduct electricity with little or no resistance. Currently superconduc-

tivity is achievable only at very low temperatures (< 100K or −173°C). High-temperature

superconductors are desirable for a range of applications, from transferring electricity in a
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city, to medical applications, etc. Ultracold atoms in optical lattices are very clean systems

and can be easily manipulated. It is possible to make a lattice loaded with ultracold atoms

so that it has the same structure as that of a high-temperature superconductor. Then

we can move and deform that pattern in such a way that we can see which patterns are

suitable for superconductivity. This way it is possible to design better high-temperature

superconductors.

In addition to the fascinating physics of strongly correlated quantum matter, ultra-

cold atoms in optical lattices also offer many new possibilities for quantum information

processing, especially due to the large size of the quantum registers that can be realized.

At National Institute of Standards and Technology (NIST, Colarado, U.S.) Rey et al have

figured out how a Sr-based quantum computer could store qubits and have come up with

a plan for communicating with individual atoms. They have also worked out a scheme

for selecting a single atom, moving it to another location in an optical lattice to interact

with another qubit, and then moving it back, all under coherent control. These solutions

required two specially engineered optical lattices that specifically address the interactions

of the Sr atoms with the trapping laser light. The computer’s optical lattices would be

created from two separate wavelengths of red light. One wavelength (689.2 nm) has no net

effect on Sr atoms in their ground state, while the other (627 nm) has no net effect on Sr

atoms in their electronically excited, but metastable, state. The 689.2 nm lattice would

be the qubit ”transport” lattice, and the 627 nm lattice would be the qubit ”storage”

lattice. The storage lattice would hold the qubits in their ground state. When a specific

qubit (i.e., atom) needs to be transported, it could be excited with laser light into its

metastable state and loaded into the 689.2 nm transport lattice, where its motion could

be precisely controlled (again with laser light) [22, 23].

Coherent matter-wave optics based on BECs (where all the atomic de Broglie waves

are in phase) is just starting out, but is rapidly becoming a very active research area.
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1.3 Laser cooling

Atoms can be slowed down by shining a laser on them. The idea of laser cooling seems

very counterintuitive because lasers are source of high intensity, heat and a lot of energy.

But then we can control light so well with lasers, both its frequency and intensity, that we

can direct the light to slow atoms down. Normally, atoms don’t interact with light. But

if the lasers are calibrated to just the right wavelength, the photons and atoms interact.

The photons carry momentum and if we can bounce the ‘right’ photons off of an atom

then we can make the atom recoil and slow down. This is equivalent to cooling it. This

allows us to cool atoms down to some millionths of a degree above absolute zero, they

can then be held in atom traps made from electromagnetic fields and/or ‘optical lattices’

made from the interference of two or more laser beams. The complete process can be

summarized in the steps given below:

1. A stationary atom sees the laser neither red- nor blue-shifted and does not absorb

the photon.

2. An atom moving away from the laser sees it red- shifted and does not absorb the

photon.

3. An atom moving towards the laser sees it blue- shifted and absorbs the photon,

slowing the atom. The photon excites the atom, moving an electron to a higher

quantum state.

4. The above atom re-emits a photon in a random direction. Because of this random-

ness there is no net change in momentum over many absorption-emission cycles.

But the final momentum of atom now reduces in the direction opposite to the laser

beam.
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1.4 Optical lattices

Optical lattices are potential wells created by the interference patterns of counter prop-

agating laser beams. These potential wells can trap neutral atoms, creating a system

that resembles a crystal, with the atoms in optical lattices being analogous to electrons

in solid-state crystals. Unlike naturally occurring crystals, however, these ”artificial light

crystals” are completely regular, without flaws. As such, they are an ideal quantum sys-

tem where all parameters can be manipulated experimentally. They can be used to study

effects that are difficult to observe in real crystals or other condensed matter systems. Op-

tical lattices each contain a single large ultracold atom or molecule, with spacing between

lattice sites of the order of 500–1000 nm.

Neutral atoms interact with a light field in both a dissipative and a conservative

way. The dissipative component of the interaction arises due to the absorption of photons

followed by subsequent spontaneous emission. It results in a dissipative force on the

atoms caused by the momentum transfer of the absorbed and spontaneously emitted

photons. This light force is widely used for laser cooling and magneto-optical traps [24].

The atom–light interaction arises due to the interaction of the light field with the light-

induced dipole moment of the atom. This interaction causes a shift in the potential energy,

called the ac-Stark shift. For large detuning of the light versus the atomic resonances,

spontaneous emission processes can be neglected and the energy shift can be used to create

a conservative trapping potential for neutral atoms. By shining a spatially modulated light

field onto a cloud of atoms an energy landscape can be formed, where the local potential

energy is proportional to the local light intensity [25].

When an atom is placed into a laser light field, the electric field E, oscillating

with the complex amplitude E at a frequency ω = 2πν, induces an oscillating atomic

dipole moment d. The dipole moment oscillates at the same frequency with the complex

amplitude d given by d = α(ω)E. Here, α(ω) is the complex polarizability which depends

on the laser frequency ω. The resulting dipole potential is determined by time averaging
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over d.E,

Vdip(r) = −1

2
< dE(r) >= − 1

2ε0c
Re(α)I(r), (1.5)

with the laser field intensity given by

I =
1

2
ε0c|E|2. (1.6)

Relating the dipole moment to the decay rate Γ of the excited state in a two-level

system, one then finds for the optical dipole potential:

Vdip(r) ≈
3πc2

2ω0
3

Γ

∆
I(r) (1.7)

where ∆ = ω−ω0 denotes the detuning of the laser light relative to the atomic transition

frequency ω0. For a blue detuning ω > ω0, a repulsive potential is created; whereas for a

red detuning ω < ω0 an attractive potential is realized.

By interfering two counter propagating laser beams a periodic potential of the form

V (x) = V0sin
2(kx) can be created. Here, k = 2π/λ with λ being the wavelength of the

laser light used and V0 denotes the potential depth of the lattice. This lattice depth is

usually expressed in natural units of the recoil energy Er = ~2k2/2m.

For a one-dimensional standing wave the atoms are confined in pancake-like discs.

If two such standing waves are overlapped, one can create an array of tightly confining

potential tubes and for the case of three overlapping standing waves one creates a three-

dimensional simple cubic lattice potential. The Gaussian beam profile of the laser beams

typically leads to an additional harmonic confinement, resulting in a total optical potential

of the form:

Vlat(x, y, z) ≈ Vxsin
2(kx) + Vysin

2(ky) + Vzsin
2(kz) +

1

2
m(ωx

2x2 +ωy
2y2 +ωz

2z2). (1.8)

A one-dimensional and a two-dimensional optical lattice sketches are shown in Fig. 1.1

and Fig. 1.2, respectively.
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Figure 1.1: A one dimensional optical lattice. Arrows represent laser beams, blue lines

represent trapping potential and red dots represent trapped atoms.

Figure 1.2: A two dimensional optical lattice. Red spheres represent the trapped atoms.
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In an optical lattice the atoms are analogous to electrons in a crystal lattice like

those found in a metal, but with some differences:

1. Atoms in traps and lattices are extremely idealized systems with almost no imper-

fections or impurities and minimal interactions with the environment. They are

therefore simple to describe theoretically and maintain their quantum coherence for

long times in comparison to the relevant timescales of the dynamics.

2. In atomic systems almost all of the parameters are under our control. For example,

the dimension and symmetry of the lattice, the strength and even the sign of the

inter-atomic interactions, can be chosen at will.

3. The measurement schemes are radically different from traditional condensed matter

schemes, e.g. single atoms can now be non-destructively imaged, allowing us to

track (and address) individual atoms in real time.

Therefore, ultracold atoms in optical lattices can used to investigate single- and

many-particle quantum mechanics in a system that can be stripped down to the bare

essentials. They can provide important insights into a wide variety of physical phenomena

which cannot be easily dealt with in conventional condensed matter systems. By suitably

controlling the laser intensity, it is possible to manipulate different parameters of a system.

It is this feature which makes ultracold atoms in optical lattices ideal for the study of

quantum phase transitions. For example, the superfluid to Mott insulator transition was

observed in atoms in an optical lattice in 2002 [3].

Optical lattices have allowed us to go beyond the physics of a weakly interacting

Bose gas and in fact bring the system into a regime where several intriguing phenomena of

strongly correlated systems of condensed matter physics can be observed. Such strongly

correlated systems lie at the forefront of research in modern condensed matter physics.
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1.5 Optical superlattices

An optical superlattice is formed by the superposition of two optical lattices with different

wavelengths and a relative phase shift with respect to each other. We consider an optical

superlattice made up of two optical lattices with a periodicity of two sites. The relative

shift in energy between any two consecutive sites resulting from the superposition is

denoted by λ (superlattice potential). Any two consecutive sites are together treated as

a single unit cell. Such a system can be studied by extending the simple optical lattice

model. The added features in an optical superlattice being periodicity of unit cells (not

single sites) and the relative energy shifts of the potential minima. One such superlattice

is shown in the figure below. For a periodic optical superlattice as shown in Fig. 1.3 two

neighboring sites constitute the unit cell.

Figure 1.3: A one-dimensional optical superlattice. Red dots represent the trapped atoms

and λ denotes the superlattice potential.

1.6 Quantum Phase Transitions

Phase transitions are ubiquitous in nature. Examples are the conversion of water to steam,

melting of ice to water, transition from a normal to a superconducting solid, transition

from a metal to an insulator etc. The above mentioned phase transitions occur due

to changes in temperature (e.g. the long range crystalline order is lost due to thermal

fluctuations etc). However, there is a special class of phase transitions which occur even
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in the absence of temperature. They are known as quantum phase transitions (QPTs)

[2, 7]. Quantum phase transitions are rather rare as they occur at the absolute zero

temperature. Non-thermal parameters such as pressure, magnetic field, Coulomb and van

der Waals interactions play a crucial role in bringing about these phase transitions which

are characterized by a Heisenberg like uncertainty principle. The quantum fluctuations

associated with these phase transitions determine the quantum critical points (QCPs). At

a particular ratio between the lattice depth and the interaction strength the atoms undergo

an abrupt change from being in a superfluid state, with the atoms delocalized across the

lattice, to suddenly having exactly one atom (at density 1) per site with highly suppressed

fluctuations. This is an example of a so-called quantum phase transition between different

ground states of a many-particle system, in this case between a coherent state, where each

atom is in a superposition of being on many different sites, and a Fock state of exactly

one per site.

1.6.1 Superfluid to Mott-insulator transition

As the intensity of the laser beams is increased, the peak height of the standing waves

increases. Eventually, the atoms do not have enough energy to overcome those energy

barriers and are trapped in their position. This situation is identical to a similar situation

for electrons in a crystal. If the barrier for electrons to jump from one position in the

crystal to another is too high, they cannot move. Consequently, no electrical current

flows. In condensed matter physics, this state is known as a Mott insulator [28]. In

the MI phase, since the atoms are localized to the individual lattice sites, the number

fluctuation is zero and hence the number of atoms on each site is a fixed number and can

be exactly determined.

A Mott insulator provides an ideal environment for quantum information processing.

When the relevant parameters such as density and the external harmonic confinement are

tuned to the right values, a large region of the Mott insulator in the optical lattice can
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Figure 1.4: The superfluid-to-Mott insulator experiment by Greiner et al, Nature 415, 39

(2002). a) In the superfluid state the atoms are free to hop around the lattice. There

is thus coherence between sites and upon release and expansion of the atomic cloud an

atomic matter-wave interference pattern is observed. b) In the Mott insulator state there

is exactly one atom per site (Fock state) with no coherence between wells so that upon

release and expansion no interference is observed.

be filled with exactly one atom per lattice site. The Mott transition can therefore be

employed to initialize a quantum register, where each qubit is formed by a single neutral

atom on a lattice site with up to a hundred thousand sites being occupied. Condensates

and superfluids are inextricably linked, yet many questions surround their relationship.

The main difference between atomic gas condensates and superfluid helium lies in the

strength of the particle interactions, which are much weaker in the former system. This

simplifying feature of ultracold atoms makes them extremely attractive for theoretical

studies. A source of coherent atoms also provides a wonderful practical tool. Just as the
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development of the laser revolutionized optics, so the ability to generate coherent matter

waves opens exciting research possibilities.
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(2002).

[4] W. Ketterle et al, Phys. Rev. Lett. 78, 582 (1997).

[5] A. G. Manning, S. S. Hodgman, R. G. Dall, M. T. Johnsson, and A. G. Truscott,

Optics Express, Vol. 18 (18), 18712 (2010).

[6] A. Einstein, Sitzungsberichte der Preussichen Akademie der Wissenschaften

Physikalisch—Mathematische Klasse, 261 (1924).

[7] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science

269, 198 (1995).

[8] C. Cohen-Tannoudji, Phys. Rep. 219, 153 (1992).

[9] K. B. Davis, M.-O.Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle, Phys. Rev.

Lett., 74, 5202 (1995).

26



BIBLIOGRAPHY BIBLIOGRAPHY

[10] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463

(1999).

[11] T. Kohler, K. Goral and P. S. Julienne, Rev. Mod. Phys. 78, 1311 (2006).

[12] C. Chin, R. Grimm, P. Julienne and E Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

[13] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys.

Rev. Lett. 85, 1795 (2000).

[14] E. A. Donley, N. R. Claussen, S. L. Cornish, Jacob L. Roberts, Eric A. Cornell, Carl

E. Wieman, Nature 412, 295 (2001).

[15] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

[16] C. J. Pethick and H. Smith, Bose-Einstein condensation in Dilute Gases, Cambridge

University Press (2002).

[17] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Phys. Rev. Lett. 77, 2921

(1996).

[18] S. Sachdev, Quantum Phase Transitions, Cambridge University Press (2000).
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Chapter 2

Theoretical methods for the

determination of Quantum Phase

Transitions

2.1 Introduction

This chapter gives a description of all the numerical methods that have been used in this

research work. The methods used are:

1. Mean-field (MFT),

2. Cluster mean-field (CMFT),

3. Density Matrix Renormalization Group (DMRG), and,

4. Matrix Product States method.
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The details of each method are given in the following sections.

All the research problems taken up for this thesis work are well described by the Bose-

Hubbard model (BHM) on optical lattices with some suitable modifications and exten-

sions. Each of the methods mentioned above is aimed towards obtaining the ground state

energy and the wave function of a system. To obtain the ground state wave-function

and energy, the Hamiltonian matrix is constructed for the model under consideration

and diagonalized to obtain the smallest eigen-value and the corresponding eigen-vector.

These quantities are the ground state energy and wave-function respectively. Once these

quantities are obtained, the signatures of quantum phases and other interesting features

of a system can easily be extracted. It turns out that the occupation number n̂, is a good

quantum number as it commutes with the Bose-Hubbard Hamiltonian and its extensions

we have considered. Therefore we work in the occupation number basis or Fock space to

construct the Hamiltonian matrices and the wave-functions.

2.2 Mean-field Theory

The system of bosons in a general optical lattice can be best described by the Bose-

Hubbard model as follows:-

H = −t
∑
〈i,j〉

(â†i âj + h.c) +
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i (2.1)

In the above equation, 〈i, j〉 denotes pair of nearest neighbor sites i and j. t denotes

the hopping amplitude between adjacent sites and is responsible for the kinetic energy, U

represents the on-site inter-atomic interaction or the potential energy term, â†i (âi) is the

creation (annihilation) operator which creates (destroys) an atom at site i and n̂i = â†i âi

is the number operator. µi represents the on-site chemical potential. We can change

the number of particles in a system by varying µ and it is similar to working in the

grand-canonical ensemble.
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In the mean-field theory we treat the complete system at a single site level by

decoupling the multi-site terms like â†i âj under certain approximations. We also assume

that the system is homogeneous and the sites are identical. We can make the following

substitution in the Eq.(2.1):

ai = φi + ãi; a†i = φ∗i + ã†i (2.2)

Here φi = 〈ai〉 is the mean value and ã is the small fluctuation over the mean value.

Further φi is termed as the superfluid (SF) order parameter and is used as a signature of

the SF phase. We assume φi to be real, hence, φi = φ∗i ∀ i. After some simplifications

and rearrangements the kinetic energy term of the Eq.(2.1) can be rewritten as,

−t
∑
〈i,j〉

(a†iaj +H.c.) = −t
∑
〈i,j〉

(ã†i ãj + ãiã
†
j)

= −t
∑
〈i,j〉

(ã†iφj + ãjφi + ãiφj + ãjφi + 2φiφj) (2.3)

Neglecting the first term, since it is second order in the fluctuations, and defining φ̄i =

1
z

∑
δ φi+δ, δ is summed over z. Also, z(= 2d) is the co-ordination number of a site where,

d(= 1, 2, . . . ) is the dimensionality of the system. On simplifying further we get the

following mean-field Hamiltonian,

HMF = −tz
∑
i

[φ̄i(ã
†
i + ãi)− φ̄iφi] +

U

2

∑
i

ni(ni − 1)−
∑
i

µini (2.4)

Once again, using the relation ãi = ai − φi, we get the following mean-field Hamiltonian,

HMF = −tz
∑
i

[φ̄i(a
†
i + ai) + φ̄iφi] +

U

2

∑
i

ni(ni − 1)−
∑
i

µini (2.5)

This Hamiltonian can be expressed as a sum of the single-site Hamiltonians,

HMF =
∑
i

HMF
i

where,

HMF
i = −φ̄i(a†i + ai) + φ̄iφi +

U ′

2
ni(ni − 1)− µ′ini. (2.6)
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Here, U ′ = U/zt and µ′ = µi/zt indicate a scaling by zt to make the Hamiltonian and

other terms dimensionless.

Then the Hamiltonian HMF
i can be diagonalized in the following manner. Assuming

an initial superfluid order parameter φ, first construct the matrix elements of the mean-

field Hamiltonian in the number occupation basis | n 〉, where n = 0, 1, 2, . . . , nmax where

nmax is the maximum number of bosons allowed per site. The Hamiltonian matrix is then

diagonalized to obtain the lowest eigenstate and obtain the new value for the φ. Using

this new value of φ, the calculation is repeated till the convergence is reached that is to

say |φold − φnew| becomes sufficiently small and meets our accuracy criteria.

2.3 Cluster Mean-field Theory

As the name suggest this method employs the idea of building up of clusters and solve

the problem using mean-field theory. A big system consisting of hundreds of lattice sites

can be divided into small clusters each containing a few sites. The bonds between the

sites within a cluster are treated exactly but the bonds between any two adjacent sites

belonging to different clusters are decoupled via decoupling approximation as mentioned

in the previous section. The Hamiltonian then changes accordingly. CMFT has its own

advantages over the MFT and other exact numerical methods. Unlike the MFT, (i) it

can account for non-local effects and correlations (ii) the number of decoupled bonds (and

hence approximations) reduces with increase in the size of the cluster and compared to

exact numerical methods it is computationally less expensive yet giving reasonably good

results.

The CMFT for a homogeneous one-dimensional chain with nearest-neighbour hop-

ping can be easily formulated. In the first step we divide a system of N -lattice sites into

n-clusters of L-sites each as shown in Fig.2.1. Therefore,

N = nL. (2.7)
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1 12 3 LL 2L−1L−1 L−2’ ’ ’ ’’ ’

Figure 2.1: A one-dimensional clusters of length L. The system is divided into n such

clusters. The notations . . . L − 1′ L′ and 1′′ 2′′ . . . represent the sites of the adjacent

clusters.

Therefore, the hopping part of the Hamiltonian for the complete system can be

written as,

Hhop = −t
n−1∑
j=0

L−1∑
l=1

(a†Lj+laLj+l+1 +H.c.)− t
n−1∑
j=0

(a†Lj+LaLj+L+1 +H.c.) (2.8)

where we have isolated the terms which have contribution from l = Lth sites, in the second

sum. This term will be denoted by Hd as it contains the contribution from the sites which

have to be decoupled. We assume periodic boundary conditions so that aLn+1 ≡ a1.

The bonds between the end sites can be decoupled like discussed in previous section.

In general we can assume the existence of a homogeneous superfluid order parameter,

φ = 〈ai〉 and make the substitution as in Eq.(2.2) in Hd, followed by the back substitution

ãi = ai − φi. On simplifying and rearranging the terms we get,

Hd ' −t
n−1∑
j=0

[
(a†Lj+L + a†L(j+1)+1)φ+

(
aLj+L + aL(j+1)+1

)
φ∗
]

+ 2tn|φ|2 (2.9)

We thus arrive at the cluster-decoupled Hamiltonian

Hcd =
n−1∑
j=0

HMF
j , (2.10)

where HMF
j only depends on the site operators within the j-th cluster. Taking j = 0, we

have

HMF
0 = H0

L +KMF
L , (2.11)
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where

H0
L = −t

L−1∑
l=1

(a†lal+1 + a†l+1al) +
U

2

L∑
l=1

nl(nl − 1)− µ
L∑
l=1

nl (2.12)

and

KMF
L = −t

[
φ(â†1 + a†L) + φ∗ (a1 + aL)

]
+ 2t|φ|2. (2.13)

The φ-independent operator H0
L is the Hamiltonian of a one-dimensional chain of length L

with open ends. The different clusters are independent physical systems but are effectively

coupled by means of the order parameter appearing in the mean-field perturbation KMF
L .

Following the same procedure we can derive the effective CMFT equations for sys-

tems in higher dimensions.

2.4 Density Matrix Renormalization Group Theory

The Density Matrix Renormalization Group (DMRG) is a very powerful numerical method

to study many-body systems. It’s predecessor, the Numerical Renormalization Group

theory, suffered from improper treatment of boundary conditions and made it very difficult

to obtain accurate results for most of the problems. To overcome this, the DMRG theory

was developed in 1992 by Steven R. White which made it possible to study quantum

lattice many-body systems such as the Hubbard model with a very high accuracy.

The complete information about a system can be extracted from the wave function

describing it. As stated earlier, we use Fock space as the basis to represent the wave

function for the systems we have considered. Ideally we can put any number of bosons at

a given site in an optical lattice but then it will be impossible to handle such a system.

So, in general we fix the single-site multiplicity to small number ∼ 5. Now, as the size of

the system increases the Hilbert space also expands. But because of it’s tensor nature, the

size of the Hilbert space increases exponentially with the number of sites. For a moderate

system of 100-sites, with single-site multiplicity as 4, the size of the Hilbert space will

be 4 × 4 × · · · × 4 (100 − times) = 4100. Therefore, even for a small multiplicity and a
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limited number of sites the Hilbert space is extremely large. DMRG method allows us

to truncate the size of such a Hilbert space systematically and iteratively, yet giving us

numerical results with accuracies of the order of 10−10. This is done by keeping only the

most probable states (limited in number) describing a wave-function (e.g. the ground

state) and discarding states with small probabilities in each iteration.

We start with a system of small size, say l sites (typically = 4 or 6) with a basis size

Ms, represented by |µs〉. Let the basis size for a single site be ms, represented by |νs〉.

Adding a site to our system of l sites increases the basis size to Msms and the states are

then given as |µs νs〉 = |µs〉 ⊗ |νs〉. Similarly for the environment basis size is given by

Meme and the states by |µe νe〉 = |µe〉 ⊗ |νe〉. The key idea behind this is to embed the

system into the environment so that it can mimic a larger system. We can now join the

two blocks to form a superblock which will then have 2l+ 2 sites. In general, the ground

state of the superblock can be represented as,

|Ψ〉 =
Ms∑
µs=1

ms∑
νs=1

me∑
νe=1

Me∑
µe=1

ψµsνsµeνe|µsνs〉 |µeνe〉

=

Ns,Ne∑
i,j=1

ψi,j|i〉 ⊗ |j〉. (2.14)

In the following section, subscripts s and e are used for system and environment, re-

spectively. Index i,i’ are used for the system and j for the environment. We now want

to obtain another wave-function |ψ0〉 which matches |Ψ〉 very closely and has been con-

structed using a truncated basis for the system. This truncated basis consists of highest

weights only. Let the size of this truncated basis be t and is represented by |τ〉. Now in

the truncated Hilbert space |ψ0〉 can be written as,

|ψ0〉 =
t∑

τ=1

Ne∑
j=1

aτj|τ〉|j〉. (2.15)

For |ψ0〉 to be close to |Ψ〉 we need to minimize,∣∣∣|Ψ〉 − |ψ0〉
∣∣∣2 (2.16)
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with respect to aτj.

On taking partial trace (over the environment),

Tre|Ψ〉〈Ψ| =
∑
j

〈ij|Ψ〉〈Ψ|i′j〉. (2.17)

The reduced density matrix of system is defined as,

Tre|Ψ〉〈Ψ| = (ρs)ii′ (2.18)

Hence,

(ρs)ii′ =
∑
j

ψijψ
∗
i′j (2.19)

The eigenvectors of the reduced density matrix are |τ〉 with the eigen values ωτ .

Substituting Eq.(2.14) and Eq.(2.15) in Eq.(2.16) we get,∣∣∣|Ψ〉 − |ψ0〉
∣∣∣2 = 1 +

∑
τj

a2τj − 2
∑
ijτ

ψijaτjuτi. (2.20)

Minimizing this with respect to aτj we get the condition,

aτj =
∑
i

ψijuτi (2.21)

On substituting this back in Eq.(2.20) gives,∣∣∣|Ψ〉 − |ψ0〉
∣∣∣2 = 1− 2

∑
τij

ψij

(∑
i′

ψi′juτi′
)
uτi +

∑
τ,j

(∑
i

ψijuτi

)2
= 1−

∑
τii′j

uτiψijψi′juτi′

= 1−
∑
τii′

uτi(ρs)ii′uτi′

= 1−
t∑

τ=1

ωτ . (2.22)

Therefore we can choose ωτ (s) such that (1−
∑
ωτ ) is minimized and meets our truncation

error criteria. The eigenvectors corresponding to these ωτ are kept and used as the new

basis for next iteration.
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2.4.1 Infinite DMRG algorithm:

Under this scheme the size of the system is virtually infinite but in practice the size of the

system is limited by the availability of the computational resources and desired accuracy.

The procedure of constructing a system in DMRG method is outlined in Fig.(2.2).

Figure 2.2: Procedure to construct a system in DMRG.

The main steps involved in the DMRG method are outlined below:

1. Construct two blocks, say block S and block E, of length (sites) l each (in general

lengths of the two blocks can be different). Let the basis size of these blocks be

MS(= m) and ME(= m) respectively. Now add two sites between these blocks and

let the basis size of each site be ms(= n). Block S and Block E with two added sites

constitute what we call as superblock.
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2. The total size of the superblock is (2l + 2) and of the Hilbert space is (mn)2. Let

the Hamiltonian for the superblock be labelled as HSE.

3. Diagonalize HSE to obtain the ground state Ψ (or any other required target state)

using a suitable eigenvalue solver like Jacobi-Davidson or Lanczos method.

4. Obtain the density matrix for the system block using this wave-function |Ψ〉,

(ρs)ii′ =
∑
j

ψijψi′j

and diagonalize it. The basis is now truncated and the eigenstates corresponding to

the �t� highest eigenvalues only are retained. The limit on t is fixed using Eq.(2.22)

to meet our accuracy criteria.

5. We now construct a transformation matrix O using these �t� states and transform

all the operators including the Hamiltonian into this new basis.

6. Steps (4) and (5) are repeated for the environment block also.

7. By following the steps (1)-(6) we have increased the size of our system from 2l to

2l+2 sites. We repeat these steps for the newly formed block thereby adding 2 sites

in each iteration. Once the desired length is achieved iteration is stopped and we

can calculate the physical quantities of interest.

2.4.2 Finite DMRG algorithm:

The accuracy of Infinite DMRG is limited by the fact that the initial truncations are

carried out even for the small superblocks. These truncations may not result in a very

good approximation as the case would have been when the small blocks are embedded in

the final system of length L. The other problem with infinite DMRG algorithm is that

it can not account properly for the effects of impurities or randomness in the system.

The reason being obvious that the total Hamiltonian is not known at the intermediate
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steps. As we will see, Finite DMRG algorithm allows us to take care of these problems

and reduces the errors due to truncations, etc.

1. After reaching the critical length L which was pre-decided in the Infinite DMRG, we

start increasing the sites in the system block at the cost of sites in the environment

block, one at a time.

2. At each step or with each increase(decrease) of a site in the system(environment)

block, we do a basis transformation on the system (growing) block. For the envi-

ronment (shrinking) block we can use previously stored basis.

3. The process stops when the sizes of the system and environment blocks become

L− 2 and 2, respectively.

4. The process starts again, but now with the role of the system and environment

blocks interchanged. The environment block starts growing and the system block

starts shrinking.

5. This process is called sweeping and a sweep is said to be complete when the both

the blocks return to their original size for the first time after each of them has grown

and shrunk once. This is illustrated in Fig.(2.3).

6. Sweeping process is continued till the desired convergence is achieved.

2.5 Matrix Product States method

The Matrix Product States (MPS) method is a relatively new method for determining the

wave-function and hence properties of a system. Although new, we can see it connected

to the DMRG method.
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Figure 2.3: One sweeping cycle for Finite size DMRG.

Expressing the wave-functions in MPS form

Consider a system of L lattice sites in which each site is spanned by a local Hilbert space

of size d and denoted by {σi}, where i = 1, 2, ...L. Any state for such a lattice can be

expressed as

|ψ〉 =
∑

σ1,...σL

cσ1,...σL|σ1, ...σL〉. (2.23)

Like in DMRG, here again the size of total Hilbert space (and coefficients cσ1,...σL) will

be extremely large, dL. To handle this we first try to write the wave-function in a more

compact form and express the dL coefficients in the form of a matrix of dimensions d×dL−1,
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with the components related as :

Ψσ1,(σ2...σL) = cσ1...σL . (2.24)

We can now use Singular Value Decomposition (SVD) on the matrix Ψ to express it in

terms of the local site bases but still keeping non-local information of the system as well.

SVD allows us to decompose Ψ and write it as,

cσ1,...σL = Ψσ1,(σ2...σL) =

r1∑
a1,b1

Uσ1,a1Sa1,b1(V
†)b1,(σ2...σL)

=

r1∑
a1

Uσ1,a1ca1σ2...σL (2.25)

S and V † have been multiplied and the resulting matrix has been reshaped into a vector.

The rank r1 ≤ d. Further we decompose the matrix U into d a collection of row vectors,

Aσ1 , where Aσ1a1 = Uσ1,a1 . We also reshape the vector ca1σ2...σL to represent it in a matrix

form as Ψ(a1σ2),(σ3...σL) of dimension r1d× dL−2 as follows :

cσ1σ2...σL =

r1∑
a1

Aσ1a1Ψ(a1σ2),(σ3...σL) (2.26)

Once again we use SVD on Ψ and decompose it as shown below:

Ψ(a1σ2),(σ3...σL) =

r2∑
a2,b2

U(a1σ2),a2Sa2,b2V
†
b2,(σ3...σL)

(2.27)

Like before, S and V are multiplied, and reshaped back into a row vector, ca2σ3...σL , such

that

cσ1σ2...σL =

r1,r2∑
a1,a2

Aσ1a1U(a1σ2),a2ca2σ3...σL (2.28)

but now we replace U by a set of ’d’ matrices, Aσ2a1,a2 of dimensions r1 × r2, given by

Aσ2a1,a2 = U(a1σ2),a2 (2.29)
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Therefore we get,

cσ1σ2...σL =

r1,r2∑
a1,a2

Aσ1a1A
σ2
a1,a2

ca2,(σ3...σL) (2.30)

We repeat the above procedure till we reach the L-th site. At the last site, we replace

UaL−1,σL by a set of column vectors AaσLL−1
. Thus we have arrived to a stage where we can

write the coefficients as a product of matrices :

cσ1...σL =

r1,r2...∑
a1,a2,...aL−1

Aσ1a1A
σ2
a1,a2

...AσL−1
aL−2,aL−1

AσLaL−1
(2.31)

Hence we can now write the general wave-function of the system in the MPS form as :

|ψ〉 =
∑

a1,a2,...aL−1
σ1,σ2...σL

Aσ1a1A
σ2
a1,a2

...AσL−1
aL−2,aL−1

AσLaL−1
|σ1σ2...σL〉 (2.32)

which can be more compactly written as

|ψ〉 =
∑

σ1,σ2...σL

Aσ1Aσ2 ...AσL−1AσL|σ1σ2...σL〉 (2.33)

2.5.1 Comparison between DMRG and MPS representations

As seen earlier (in DMRG section), the size of the Hilbert space expands exponentially

with the number of lattice sites and to keep it manageable we truncate our basis at

several steps. Now, consider one such truncation where the system of L − 1-sites can

be represented by a small basis |β〉L−1 of size m, with m ≤ dL−1. Adding a single site

to the chain will increase the system size to L and basis size to d × m, where d is the

single-site basis. The basis states are then given as, {|sL〉⊗|β〉L−1}, where |sL〉 represents

the basis for newly added site. Like before, we would like to truncate our basis to keep it

within manageable limit, say m, with the highest weights. To do this we use a projection

operator AL. The basis of L − 1 and L sites are related by a recursion relation of the

following form :

42



CHAPTER 2. THEORETICAL . . . 2.5. MATRIX PRODUCT STATES . . .

|αL〉 =
∑
β,sL

A
α,(β,sL)
L |sL〉 ⊗ |β〉L−1 (2.34)

It is assumed that the initial state, |β〉0 is already known. The matrices AL are

the variational parameters of MPS method which we need to determine, similar to what

we saw in the MPS section. In DMRG method this is done by by keeping the largest

eigenvalues of the density matrix.

We now perform a simple change in notation Aα,βL [sL] ≡ A
α,(β,sL)
L and write the

m× (md) matrix as a set of d m×m matrices. We repeat the renormalisation procedure

to obtain the following state of the chain of L sites,

|αL〉 =
∑

sL,...,s1

(A[sL]A[sL−1]...A[s1])
α,β|sLsL−1...s1〉 ⊗ |β〉0 (2.35)

Thus obtaining a wave-function in the matrix-product form.
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[9] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
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Chapter 3

Study of Quantum Phase Transitions

in optical lattices and superlattices

using Mean-field Theory

3.1 Introduction

In this chapter we present our study of quantum phase transitions (QPTs) in optical

lattices and superlattices using Mean-field theory (MFT) method. In the first part we

discuss the QPTs in an optical lattice within the frame work of Bose-Hubbard model using

MFT. We first obtain the phase diagram for this model using the numerical technique

and then compare our results by using perturbation theory as an analytical method. In

the second part of this chapter we extend our study of QPTs in optical lattices to QPTs

in optical superlattices using the MFT.
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3.2 Model and method

3.2.1 QPTs in an Optical Lattice (MF theory)

As discussed in Section 2.1, a system of bosons in a general optical lattice can be best

described by the Bose-Hubbard model as follows:

H = −t
∑
〈i,j〉

(â†i âj + h.c) +
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i (3.1)

which, in decoupling approximation reduces to,

HMF
i = −φ̄i(a†i + ai) + φ̄iφi +

U ′

2
ni(ni − 1)− µ′ini. (3.2)

Here, U ′ = U/zt and µ′ = µi/zt indicate a scaling by zt to make the Hamiltonian and

other terms dimensionless. z = 2d where d is the dimensionality of the system. As

described earlier, we construct the Hamiltonian matrix for the above in the occupation

number basis and diagonalize it self-consistently to obtain the ground state energy and

wave function of the system. Once the ground state wave-function is obtained we can

calculate various expectation values to get more information of the system.

The occupation number density ρ, is given by the expectation value of the number

operator n̂ and is defined as,

ρ = 〈n̂〉 = 〈ψ0|â†â|ψ0〉 (3.3)

Similarly, the superfluid density ρs is given by the square of the superfluid order parameter

φ, which is the expectation value of annihilation (â) or creation (â†) operator. It is defined

as,

ρs = φ2 = 〈ψ0|â|ψ0〉2 = 〈ψ0|â|ψ0〉2. (3.4)

|ψ0〉 is the ground state of the system obtained after diagonalizing the H-matrix self-

consistently. Below we present our results for the superfluid to Mott-insulator transition

obtained using the MFT. First we obtain the ρ, ρs vs. µ plots for several values of the
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on-site interaction U . One such plot for U = 15.0 is shown in the Fig.(3.1). In this plot
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Figure 3.1: ρ, ρs vs. µ plot for an optical lattice obtained using the MFT at U = 15.0

we can see the plateaus corresponding to the integer densities ρ = 1.0, 2.0 and 3.0. At

these plateaus the value of ρs is simultaneously 0. This is an indicator of the insulator or

gapped phase. In between the constant density (ρ) plateaus, we can see that ρ increases

in a continuous manner as µ is increased. From these ρ−µ plots for different values of U ,

we extract the beginning and the end points of each plateau in the units of µ/zt. These

values are then plotted in the U/zt−µ/zt plane to obtain the phase diagram as shown in

the Fig.(3.2). The area inside the lobes represents the constant density parameter space.

The superfluid density ρs is 0 in this region. These lobes are known as Mott-lobes and the

density of each Mott-lobe is represented by the corresponding ρ value. The area outside

the lobes lies in the superfluid region. In this region ρs 6= 0 and ρ 6= 0 simultaneously.
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Figure 3.2: Phase diagram for an optical lattice obtained using the MFT (numerical

results)

3.2.2 QPTs in an Optical lattice (Perturbation theory)

For a Mott-insulator ground state, the on-site interaction U is much larger than the

hopping term t. Therefore in this limit the hopping term can be treated as a perturbation.

The hopping term is given by:

Hhop = −t
∑
〈i,j〉

(â†i âj + h.c). (3.5)

After applying the standard decoupling approximation reduces to,

Hhop =
∑
i

(Hhop)i ≈ −zt
∑
i

[φ(ai
† + ai)− φ2]. (3.6)

Here i is the site index and z is the co-ordination number. We start by looking at

a single-site. Let us denote the unperturbed state with n-atoms by |n〉 and ground state

with |g〉 having n0-atoms. For zeroth-order the contribution is just,

E(0)
g = −ztφ2. (3.7)
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The contribution to the energy from the first-order corrections is zero because the

average of an annihilation or creation operator between |n〉 and |g〉 is zero. The second-

order correction to the energy is given by the expression:

E(2)
g =

∑
n6=g

|〈g|Hhop|n〉|2

E
(0)
g − E(0)

n

. (3.8)

Therefore,

E(2)
g = z2t2φ2

[
|〈n0| − [φ(a† + a)]|n〉|2

U
2

[n0(n0 − 1)− n(n− 1)]− µ(n0 − n)]

]
(3.9)

E(2)
g = z2t2φ2

[
(n+ 1)δn0,n+1 + nδn0,n−1

U
2

[n0(n0 − 1)− n(n− 1)]− µ(n0 − n)]

]
(3.10)

E(2)
g = z2t2φ2

[
n0

U
2

[n0(n0 − 1)− (n0 − 1)(n0 − 2)]− µ
+

n0 + 1
U
2

[n0(n0 − 1)− (n0 + 1)n0] + µ

]
(3.11)

E(2)
g = z2t2φ2

[
n0

U(n0 − 1)− µ
+

n0 + 1

−Un0 + µ

]
(3.12)

In the Mott-state the hopping process should not contribute towards the free-energy.

Therefore the contributions from energy corrections are zero. Using this condition we can

determine the phase boundary as follows:

E(0)
g + E(2)

g = z2t2φ2

[
n0

U(n0 − 1)− µ
+

n0 + 1

−Un0 + µ

]
+ tzφ2 = 0 (3.13)

1 + tz

[
n0

U(n0 − 1)− µ
+

n0 + 1

−Un0 + µ

]
= 0 (3.14)

This equation is quadratic in µ the roots of which come out to be,

µ± =
1

2

[
U(2n0 − 1)− tz ± {U2 − 2Utz(2n0 + 1) + (tz)2}

1
2

]
= 0 (3.15)
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The critical point for SF-Mott insulator transition occurs when µ+ = µ−. On equating

µ+ and µ− we obtain,

U2 − 2Utz(2n0 + 1) + (tz)2 = 0. (3.16)

On solving further we obtain,

U = (2n0 + 1) + 2
√
n0(n0 + 1) (3.17)

where U = U/zt.

For MI phase at ρ = 1.0, n0 = 1. On substituting n0 = 1 in the above equation

we get U = 5.83 = Uc. This value is in very good agreement with our numerical results.

Similarly we can find the critical points for ρ = 2.0 and higher densities. For ρ = 2.0 and

3.0, Uc = 9.89 and 13.93 which are also in a good agreement with the numerical results.

3.2.3 QPTs in an Optical superlattice (MF theory)

For an optical superlattices we need to make some modifications to the original Hamilto-

nian as following. We start with the general Bose-Hubbard model,

H = −t
∑
〈i,j〉

(â†i âj + h.c) +
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i (3.18)

but then while decoupling we take into account the explicit dependence of µi on the lattice

site i which in turn depends on the structure of the superlattice. An optical superlattice is

formed by the superposition of two optical lattices with different wavelengths and a relative

phase shift with respect to each other. We consider a superlattice with a periodicity of

two sites, thus each unit cell consists of 2d sites with alternate sites having an energy shift

λi. We take into account this relative energy shift in the Bose-Hubbard Hamiltonian while

using the decoupling approximation. This energy shifts the potential energy minima such

that µi = µ−λi. For such a system, our unit cell consists of two sites, unlike the previous

case where we had periodicity at the single site level and unit cell consisted of one-site.
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We consider the system to be homogeneous in all the directions and label the sites in our

unit cell by 1 and 2. The mean-field Hamiltonian for such a unit cell can be written as

HMF
uc = −φ̄2(a

†
1 + a1)− φ̄1(a

†
2 + a2) + 2φ̄1φ2

+
Ũ

2
[n1(n1 − 1) + n2(n2 − 1)]

−µ̃[n1 + n2] + λ̃1n1 + λ̃2n2 (3.19)

We can label the quantity |λ1− λ2| as the superlattice potential λ. Rest of the procedure

remains the same and we obtain the ground state energy and wave function as before.

As in this case we have two sites per unit cell, ρ, ρs represent the average density and

superfluid density of the unit cell i.e. ρ = (ρ1 + ρ2)/2, ρs = (φ2
1 + φ2

2)/2.

3.3 Results and discussions

Without any loss of generalisation, we can assume λ1 = 0 and λ2 = λ for a unit cell and

then vary λ to see how it affects the phases.

In this case also we can plot the ρ, ρs vs. µ and later on obtain a phase diagram

using these plots. But in this case we need to plot the average ρ, ρs in a unit cell which

we label them as ρavg, ρs avg. One such ρ, ρs avg vs. µ plot is shown in the Fig.(3.3).

It can be seen in Fig.(3.3) that we obtain plateaus not only at integer densities but

also at half-integer densities 0.5, 1.5, etc. Also, the average superfluid density is simul-

taneously 0 in these plateau regions. Like before this a signature of gapped / insulating

phase. But this insulator phase is different from the standard Mott insulator phase aris-

ing due to the on-site interaction. The reason for the formation of an insulator phase

here is due to the superlattice potential which breaks the translational symmetry of the

system. To distinguish this insulator from the regular Mott insulator phase, we call it as

superlattice induced Mott insulator (SLMI) [58]. Now if we look at density 0.5 plateau, it

implies that there is 1 atom per unit cell. In such a scenario, the individual site number
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Figure 3.3: Variation of average densities (ρavg, ρs avg) as a function of the chemical

potential µ for U=10, at the superlattice potential λ = 6.

densities are ρ1 = 1, ρ2 = 0 and the superfluid densities are ρs1 = 0, ρs2 = 0. Therefore

within a unit cell one site is occupied and the other site is empty. The distribution of

bosons on the lattice then follows a pattern [1 0 1 0 1 0 · · · ]. Similarly for the density

1.5 plateau there are 3 atoms in each unit cell. The arrangement of atoms then can be

[2 1 2 1 2 1 · · · ] or [3 0 3 0 3 0 · · · ], depending on the value of on-site interaction

strength and the superlattice potential as we will see later.

To obtain the phase diagram in this case we start with a relatively small value of

U(= 2.0) and plot the average density ρ and the superfluid density ρs as a function of the

chemical potential µ, as shown in the Figs. 3.4 and 3.5. We vary λ starting from 0.5 to

5.5 at an interval of 1.0. At low values of the on-site interaction is not strong enough to

drive the system into an insulating phase. Therefore at U = 2.0, λ = 0, the system is in

the superfluid phase. We keep U fixed and vary λ. The system remains in the superfluid

phase as long as λ remains less than a critical value λc(∼ 4.5). Beyond this value we

observe a plateau at ρ = 1/2 for a certain range of µ. This plateau(s) can be seen in
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Figure 3.4: ρavg vs. µ plot for U=2, for different values of λ starting from 0.5 (red solid

curve) to 5.5 (magenta double dash dot curve) at the intervals of 1.0.

Fig. 3.4 at λ = 5.5. We also plot the ρs vs. µ plot for the same set of parameters. It was

seen that the superfluid density goes to 0 in the same µ range for which ρ = 1/2 plateau

is obtained, see Fig. 3.5. This is the signature of a gapped phase. For all other densities

the superfluid density remains finite.

Therefore, at U = 2.0 and λ > λc, the system is in the SLMI phase only at ρ = 1/2

and a range of µ values. As the value of U in increased to 5.0, we obtain the ρ, ρs vs.

µ plots which are qualitatively same as for the case of U = 2.0. In Figs. 3.6 and 3.7 we

can see such plots. Here again the system remains in the superfluid phase for low values

of λ at any commensurate densities. But for λ ≥ λc( 2.6) a plateau appears in the ρ vs.

µ plot at ρ = 1/2 with the superfluid density being simultaneously 0 for the same range

of µ, see Fig.3.7. The system thus enters a gapped phase. The region of this gapped

phase increases as the λ is increased. However, the system still remains in the SF phase

at ρ = 1.

We further increase the value of U and fix it to 10.0. For an optical lattice without
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Figure 3.5: ρs avg vs. µ plot for U=2. λ varies from 0.5 (red solid curve) to 5.5 (magenta

double dash dot curve) at the intervals of 1.0.
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Figure 3.6: ρavg vs. µ plot for U=5, but for different values of λ starting from 0.2 (red

solid curve) to 7.2 (orange dashed curve) at intervals of 1.0.

a superlattice potential the critical value of SF-MI transition at ρ = 1, has been predicted

to be Uc ∼ 5.8 [54]. Therefore, our system is already in the ρ = 1 Mott insulator phase
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Figure 3.7: ρs avg vs. µ plot for U=5. λ varies from 0.2 (red solid curve) to 7.2 (orange

dashed curve) in the intervals of 1.0.

at U = 10.0. The ρ vs. µ, ρs vs. µ for this case are given in the Figs. 3.8 and 3.9

respectively. It can be seen that these plots are very different from those obtained for

U = 2.0 and 5.0. We observe that in this case the system remains in the MI phase for

small values of λ. But as the value of λ becomes sufficiently high, ρ = 1 plateau shrinks

and disappears signifying the destruction of the MI phase. On further increase in λ, ρ = 1

plateau reappears along with two new plateaus at ρ = 0.5 and 1.5. From the number

density calculations for the individual sites in the unit cell it is found that these densities

correspond to [0 1 0 1 · · · ], [0 2 0 2 · · · ], and [2 1 2 1 · · · ] configuration for densities

ρ = 0.5, 1.0, and 1.5, respectively. Once again, the SF density is 0 in these plateau regions.

Therefore we obtain the SLMI phases with an increase in λ while keeping U fixed at 10.0.

We present another test case by fixing U = 15.0 and varying λ. The results are

given in the Figs. 3.10 and 3.11. From the plots we can see that the results are not very

different form U = 10 case. It can be seen that, with an increase in λ the extent of various

insulating phases also increases.
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Figure 3.8: ρavg vs. µ plot for U=10, but for different values of λ, varying from 0.2 (red

solid curve) to 14.2 (orange large dashed curve) at intervals of 2.0.
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Figure 3.9: ρs avg vs. µ plot for the same set of parameters as in Fig. 3.8 and for the same

range of λ.

3.4 Conclusions

We now summarize our results of our work for optical lattice and superlattice. We found

that the phase diagram obtained for the BH model using our numerical technique of
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Figure 3.10: ρavg vs. µ plot for U=15, but for different values of λ, varying from 0.2 (red

solid curve) to 18.2 (violet large dot dashed curve) at intervals of 3.0.

self-consistent MFT are in a very good agreement with that found from the analytical
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Figure 3.11: ρs avg vs. µ plot for the same set of parameters as in Fig. 3.10 and for the

same range of λ.
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method. At relatively low values of U and (or) at incommensurate densities there is no

Mott-insulating phase. As U increases, the system undergoes a phase transition from the

SF to MI phase at integer densities. The SF-MI transition critical points found from our

calculations are as follows: (i) at ρ = 1.0, U 5.8, (ii) at ρ = 2.0, U 9.9, (iii) at ρ = 3.0,

U 14.0, and (iv) at ρ = 4.0, U 18.1.

Introducing a superlattice potential in the lattice system breaks the translational

symmetry which results in the SLMI phases. These phases, like MI phases are gapped

but arise not because of any change in the interaction between the atoms but because of

change in the geometry of the potential wells. Moreover these phases arise at half-integer

densities and can be seen below Uc for the SF-MI transition. The regular MI phases are

also affected by the superlattice potential λ. For small values of λ the system remains

unaffected but for sufficiently high λ the regular MI phase (e.g. ρ = 1, [...1 1 1 1...])

undergoes a transition to a SLMI phase (ρ = 1, [...0 2 0 2...]) via a SF phase at λ ≈ U .
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Chapter 4

Mean-field study of ultracold bosonic

atoms in an optical lattice and

superlattice with the three body

on-site interaction

4.1 Introduction

In Chapter 3 we discussed the superfluid to Mott insulator transition of the ultracold

bosonic atoms in an optical lattice and superlattice using the MFT approach. In that

case we considered only the two-body on-site interaction. In this chapter we extend our

study of ultracold bosonic atoms in optical lattices and superlattices by including the

on-site three-body interaction as well.

The extension of the insulating lobes in the presence of the on-site three-body in-

teractions has been studied earlier, using the decoupling mean-field theory [16]. The gen-

eration of effective three- and higher-body interactions by two-body collisions of atoms
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confined in the lowest vibrational states of a three-dimensional optical lattice has been

reported by Johnson et al. [10]. The effect of three-body interactions on the insulating

lobes in an optical lattice has been considered using the mean-field and functional integral

approaches in the Bose-Hubbard approximation for optical lattices [7, 11].

Will et al. [14] have detected and precisely measured the on-site three and higher

body interaction strengths experimentally by observing the collapse and revival of the

superfluid matter waves in a deep optical lattice. Nägerl et al [15] have been able to

precisely determine the on-site interaction energies including multi-body interaction shifts.

In another work, Greiner et al. [16] have determined the three-body interaction strengths

by using occupation- sensitive photon-assisted tunnelling.

In this chapter we first discuss the effect of the three body on-site interaction on

ultracold atoms in an optical lattice and then we see how it affects the phases in an optical

superlattice also.

4.2 Model and method

The system of bosons in an optical superlattice with three-body interaction can be de-

scribed by the modified Bose-Hubbard model as follows:-

H = −t
∑
〈i,j〉

(â†i âj + H.c) +
U

2

∑
i

n̂i(n̂i − 1)

+
W

6

∑
i

n̂i(n̂i − 1)(n̂i − 2)− µ
∑
i

n̂i +
∑
i

λin̂i (4.1)

Here W represents the on-site inter-atomic three-body interaction and λ is the superlattice

potential. We consider a bipartite lattice with sub-lattices A and B with a periodicity of

two sites. We apply standard decoupling approximation [54, 66, 13] to the hopping term
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in Eq. (7.1) to obtain the mean-field Hamiltonian given by

HMF
i

zt
= −φi(â†i + âi) + φiψi +

U

2
n̂i(n̂i − 1)

+
W

6
n̂i(n̂i − 1)(n̂i − 2)− µn̂i + λin̂i (4.2)

where the superfluid order parameter ψi =< âi > is taken to be real [54], φi = 1
z

∑
δ ψi+δ,

the summation over δ is taken over z nearest neighbouring sites, U = U/zt, W = W/zt,

µ = µ/zt and λi = λi/zt are dimensionless parameters. For an optical lattice, λi = 0 for

all i, thus ψi = ψ. For our optical superlattice, λi = 0 for sub-lattice A and λi = λ for

sub-lattice B, thus ψi = ψA(ψB) if i belongs to sub-lattice A (B). The mean-field eigen

value equation is solved self-consistently to obtain the local superfluid density ρsi = ψ2
i

and density ρi = 〈n̂i〉 of the ground state of the system.

4.3 Results and discussion

To study the effect of W on MI phases in an optical lattice, we first present the mean-

field phase diagram for an optical lattice (Fig. 4.1), in the U - µ plane obtained from the

density ρ and the superfluid density ρs, for various values of W . Figure 4.2 shows the µ

- ρ, ρs plot for different W .

For an optical superlattice we show the effect of W on MI and SLMI phases in the

phase diagram plotted in the µ - λ plane (Figs. 4.3 and 4.4). In Fig. 4.3 we present the

phase diagram for U = 10 and W = 0.0. Fig. 4.4 is the phase diagram for U = 10 and

W = 5.0. Lobes Lρ represent the MI phase with density ρ. Lobes R1 to R6 represent

SLMI phases with density in sub-lattices A (B) respectively given by 1(0), 2(0), 2(1),

3(1), 3(2) and 4(2).

From the mean field results (Figs. 4.1 and 4.2) for the optical lattice, we find that

the ρ = 1 MI lobe remains unaltered in the presence of W . However, for higher densities,

the critical value UC(W ) for SF-MI transition decreases as W increases (e.g. UC for
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Figure 4.1: Phase diagram of Eq. (7.2) for different W for optical lattice. The lobes

represent Mott insulator phases for densities ρ = 1, 2, 3, 4.

ρ = 2 lobe decreases from ∼ 10 to ∼ 7 when W increases from 0.0 to 4.0) and this is more

prominent as the density increases, as shown in Fig. 4.1. Also, the MI lobes get enlarged

as the W increases.

The reason for this behaviour at higher densities is that there is a greater probability

of having three or more atoms at a site, which enhances the three-body interaction and

suppresses atom hopping from one site to another.

From the mean field results for the optical superlattice (Figs. 4.3 and 4.4), we see

that the lobes L1, R1 and R2 remain unaffected in the presence of a finite W . This

is expected because in such configurations, no two adjacent sites have more than two

atoms, and for an atom to hop two sites is a second order process, which is of much less

probability. However, the SLMI phase R3, which has sub-lattice atomic densities ρA = 2

and ρB = 1 (and thus has average density ρ = 3/2) gets enlarged in the presence of

W . This is understood from the following reason. When W = 0.0 and as we increase λ,
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lattice. Top to bottom, the first four curves represent density ρ and the next four curves

represent superfluid density ρs. The plateaus in the ρ plots represent MI phases with

vanishing ρs.
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Figure 4.3: λ - µ phase diagram for U = 10, W = 0.0, for optical superlattice.
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Figure 4.4: λ - µ phase diagram for U = 10, W = 5.0, for optical superlattice

keeping the average density ρ = 3/2, the ground state goes from the superfluid to the

SLMI phase R3. With a further increase of λ > 15, the ground state is again a superfluid

which has 2 < ρA < 3 and 0 < ρB < 1. However, when W is finite, the system does not

prefer to have sub-lattice densities above 2. Thus SLMI phase R3 has a lower energy than

superfluid with sub-lattice densities 2 < ρA < 3 and 0 < ρB < 1.

The phase diagram for the system with a filling factor ρ = 2, shows a marked

difference in the presence of W . Comparing Figs. 4.3 and 4.4, we find that the MI lobe

L2 becomes large and its tip shifts from λ ∼ 1 to λ ∼ 9. Also as λ increases to ∼ 17.5

(Fig. 4.3), the MI lobe L2 goes to the SLMI phase R4. However, in the presence of W

(Fig. 4.4), the tip of the R4 lobe gets shifted to ∼ 20.5. As we have considered the

maximum value of λ till 18.0, SLMI phase R4 does not appear in Fig. 4.4.

4.4 Conclusions

The three-body interaction strength scales with the two-body interaction strength as

follows: W ∝ ln(Cη2)(V0/Er)
3/4 e−2

√
V0/Era2sk

2U
2

[16, 22, 23, 24]. The typical range of
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a2sk
2 is 10−8 to 10−2 which supports the fact that the three-body interaction is weaker than

the two-body interaction [25]. Also it can be seen that three-body interaction is tunable

and can be adjusted by varying (V0/Er). The three-body effects have been experimentally

observed before through various methods as mentioned earlier [14, 15, 16]. We propose

an alternate method to observe these effects in an optical lattice and superlattice that

we have considered in our present work. The effect of W is very small compared to the

two-body interaction in the system of bosons in an optical lattice. This is of course true

when the filling factor of the system is unity. From Eq( 7.1) it is clear that the three-body

energy scales as n3. Therefore, in order to observe the effect of the three-body interaction

in the experiment it is important to study the SF-MI transition at higher densities. In

the seminal work of Greiner et al. [4], the SF-MI transition was observed by probing

the excitation spectrum resulting from a particle-hole excitation. Such an excitation was

created by applying a potential gradient to the system in the MI phase. By plotting the

excitation probability versus an applied vertical potential gradient, two narrow resonance

peaks were seen. The first peak was at the potential gradient equal to the single particle

excitation gap, and this corresponds to the MI shell at density equal to one. One of the

possible reasons for the appearance of the second peak was the particle-hole excitation

created in the MI shell at a density equal to two. In the MI shell at a density equal to

two, the particle-hole excitation at a given site would populate one of the neighbouring

sites with three-atoms. In principle, when there are three or more atoms in a lattice site,

the atoms will experience the effect of W along with that of U . In general when there are

n (> 1) atoms in each site the system is in the MI phase with a density equal to n, the

excitation gap is ∆ = U + (n− 1)W for the optical lattice and ∆ = U + (n− 1)W +λ for

the optical superlattice. Therefore, by measuring the values of the potential gradients for

the higher order peaks, and taking the difference between them for different densities, it

would be possible to determine the value of W .

In the optical lattice, and the superlattice as well, we find that the Mott insulator
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lobes get enlarged as the value of W increases. When the density ρ = 1, the effect of W is

not significant. However, as the density of the system increases the effect of W becomes

significantly large which changes the SF-MI critical point drastically. We obtain the phase

diagrams for different combinations of densities, strengths of the three-body interaction

and the superlattice potential. Finally, we have also suggested a possible experimental

scenario by which it may be possible to observe a signature of the three-body interaction.
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Chapter 5

Density Matrix Renormalization

Group study of the Bose-Hubbard

model with on-site 3-body

interaction in Optical Lattices and

Optical superlattices

5.1 Introduction

In the previous sections we have discussed the superfluid-Mott insulator (SF-MI) transi-

tion for the simple Bose-Hubbard model within the framework of the mean-field theory.

However, because of the decoupling approximation we loose the contribution made by

the higher order terms. Also, because of the small system size in the mean-field theory

correlation functions are not taken into account properly. As a result we over-estimate

the value of SF-MI transition critical point. DMRG on the other hand is more sophis-
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ticated method and gives better results. In this chapter we first discuss the results for

the SF-MI transition obtained using the DMRG method in 1D and compare it with those

obtained from the MFT. Later on we discuss our findings for the Bose-Hubbard model in

the presence of the on-site three-body interaction in an optical lattice and superlattice.

5.2 Model and method

As before, system of bosons in an optical lattice can be described by the following Hamil-

tonian:

H = −t
∑
〈i,j〉

(â†i âj + H.c) +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i (5.1)

The first DMRG study of this model was done by Monien and Kühner [1]. The infinite-

Figure 5.1: Phase diagram for the SF-MI transition obtained using DMRG method [1].

size density-matrix renormalization group method with periodic boundary conditions was

used to estimate the SF-MI critical point. Maximum number of particles allowed per

site was fixed to 5. The maximum size of the system considered was of 76-sites and the
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number of DMRG states in each iteration was 128. The energy gap obtained for various

system sizes was then extrapolated to obtain it’s actual value in the thermodynamic limit.

By repeating the calculations for several values of t phase boundaries were obtained as

shown in the Fig. 5.1. Using this method the SF-MI critical point was estimated to be at

tc ∼ 0.277± .01. The value of U was fixed at 1.0, therefore (U/t)c for the SF-MI transition

in 1D was found to be ∼ 3.6. Similar calculations in the recent past with hundreds of

sites and higher number of DMRG states estimate this critical point to be close to 3.4.

Whereas the single-site mean-field theory in the decoupling approximation estimates SF-

MI (U/t)c ∼ 11.7 in 1D. Therefore DMRG method is better than the conventional single-

site MFT in 1D. MFT results improve as the dimensionality increases. Theoretically MFT

gives accurate results in infinite dimensions.

The system of bosons in an optical superlattice with three-body interaction can be

described by the modified Bose-Hubbard model as follows:-

H = −t
∑
〈i,j〉

(â†i âj + H.c) +
U

2

∑
i

n̂i(n̂i − 1)

+
W

6

∑
i

n̂i(n̂i − 1)(n̂i − 2)− µ
∑
i

n̂i +
∑
i

λin̂i (5.2)

Here W represents the on-site inter-atomic three-body interaction and λ is the superlattice

potential. We consider a bipartite lattice with sub-lattices A and B with a periodicity of

two sites.

5.3 Results and discussions

In this section first we present our results for the BHM describing an optical lattice with

the three-body on-site interaction which is then followed by the results for an optical

superlattice with three-body on-site interaction. We use finite size-DMRG method to

perform calculations and obtain phase diagram for both the cases. For the calculations

using the FS-DMRG method, we fix the hopping matrix element t = 1 to fix the energy
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scale (so all the quantities plotted, are in units of t) and to estimate the critical points

UC , we perform finite-size scaling of the single particle gap GL (defined by the difference

between the energies needed to add an atom and remove an atom from the system). The

plots of LGL for different system sizes L (see Fig.( 5.2)), assuming that the SF to MI

transitions belong to the Berezinskii-Kosterlitz-Thouless (BKT) type [19, 20], coalesce

in the superfluid phase below the UC . The value of UC is then estimated within an error

bar of 0.1 if the values of LGL, say for L = 140 and 200, differ by less than 4 %. At the

BKT transition the gap closes satisfying the relation, GL ∼ exp[−a/|U −UC |1/2], where a

is a constant. The correlation length ξ, is finite in the gapped phase and diverges at the

critical point as (1/GL) = exp [a/|U − UC |1/2]. Near UC , the finite-size-scaling relation

LGL[1 + {1/(2 ln L+C)}] = F (ξ/L), is used to estimate the transition point as done in

Ref. [21].

5 6 7

U

5

10

15

20

25

30

35

L
G

L

L=100

L=150

L=200

Figure 5.2: Scaling of gap LGL plotted as function of U for ρ = 2 and W = 0.0.

Therefore, if we plot ln(L/ξ) vs. LGL (1 + (1/(2 ln L+ C)) then the curves for

different lengths collapse in the vicinity of UC(scaled) (see Fig.( 5.3), main panel). Com-

bining the scaling method described above and DMRG results, we give an approximate

76



CHAPTER 5. DENSITY . . . 5.3. RESULTS AND DISCUSSIONS

-10 -5 0

scaled U

10

15

20

25

30

35

40

s
c
a
le

d
 G

L=100

L=150

L=200

5.4 5.6 5.8 6 6.2

U

6

8

10

12

s
c
a
le

d
 G

L=100

L=150

L=200

Figure 5.3: Scaled gap GL plotted as a function of scaled U for ρ = 2 and W = 0.0.

The curves for different lengths collapse in the vicinity of UC as the correlation length ξ

diverges exponentially near UC . (Inset) Scaled gap GL plotted as a function of U. The

curves for different lengths cross at UC (∼ 5.8) showing the critical point for SF-MI

transition.

value of UC in various configurations.

The DMRG results obtained for the optical lattice are given in Figs. 5.4 and 5.5,

for ρ = 2 and 3 respectively. Figures 9(a) and 9(b) are the phase diagrams for the optical

superlattice for ρ = 3/2 and 2 respectively, with two values of W (= 0.0, 5.0). DMRG

results (Fig.5.6(a)) show a trend similar to what is seen in the MF analysis for the same

model. When W = 0.0, the system undergoes a phase transition from the SF phase to

the SLMI phase R3 at a value of λ ∼ 0.3. However, in the presence of a finite W , the

transition occurs at a lower λ(∼ 0.15), signifying the enlargement of the insulating lobes.

The trend is the same for both the densities, ρ = 2 and 3, but the effect of W is more

when the density is large. For ρ = 2, UC(W = 4.0) ≈ 1.6 compared to UC(W = 0.0) ≈ 5.7.

For ρ = 3, UC decreases steadily as W increases; UC(W = 0.0) ≈ 8.6, UC(W = 1.0) ≈ 6.6,
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Figure 5.4: Phase diagram for ρ = 2 for various values of W , for optical lattice.
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Figure 5.5: Phase diagram for ρ = 3 for various values of W , for optical lattice.

UC(W = 2.0) ≈ 4.6, for UC(W = 3.0) ≈ 2.6 and UC(W = 4.0) ≈ 0.8. Similar results are

obtained for the superlattice also (Fig.5(b)). For finite W = 5.0, the critical superlattice

potential λC for transition from the MI phase L2 to SF phase shifts from 9.4 to 14.8 and
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Figure 5.6: (a) Phase diagram for ρ = 3/2 and (b) phase diagram for ρ = 2, in an optical

superlattice with W = 0.0 and 5.0.

that for the SF phase to SLMI phase R4 shifts from 10.6 to 15.2. In the absence of W

and for lower values of λ, the superlattice initially stays in the MI phase L2, for U = 10.0.

As λ becomes comparable to U , the system goes from the MI phase to the SF phase at

λ ∼ 9.4. As λ is further increased, the system goes from the SF phase to the SLMI phase

R4, at a value of λ ∼ 10.6. For W = 5.0, the system initially is in the MI phase, L2. Now,

due to the presence of W , the SF window is shifted to a λ value which is comparable to

U +W as shown in Fig.5.6(b). The MI to SF transition takes place at λ ∼ 14.8, and the

second transition from SF to SLMI (R4) takes place at λ ∼ 15.2. The SF window not only

shifts for W = 5.0 but also shrinks when compared to that of W = 0.0. This shifting of

the R4 lobe can be understood as follows: in the R4 phase there are three atoms at every

alternate site. As W increases, it becomes difficult to confine three or more atoms at a

single site. Hence to suppress this effect due to the increase in W , we need to increase λ.
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5.4 Conclusions

In conclusion, we have studied the effects of the on-site three-body interactions in a system

of neutral bosons in an optical lattice and superlattice. We have used the FS-DMRG

method to obtain the phase diagram for these systems. The DMRG results confirm the

results obtained using the mean-field theory and are in a good qualitative agreement.
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Chapter 6

Quantum phases of attractive bosons

on a Bose-Hubbard ladder with

three-body constraint

6.1 Introduction

We obtain the complete quantum phase diagram of bosons on a two-leg ladder in the

presence of attractive onsite and repulsive interchain nearest-neighbor interactions by

imposing the onsite three-body constraint. We find three distinct phases; namely, the

atomic superfluid (ASF), dimer superfluid (DSF), and the dimer rung insulator (DRI). In

the absence of the interchain nearest-neighbor repulsion, the system exhibits a transition

from the ASF to the DSF phase with increasing onsite attraction. However, the presence of

the interchain nearest-neighbor repulsion stabilizes a gapped DRI phase, which is flanked

by the DSF phase. We also obtain the phase diagram of the system for different values

of the interchain nearest-neighbor interaction. By evaluating different order parameters,

we obtain the complete phase diagram and the properties of the phase transitions using
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the self-consistent cluster mean-field theory.

Low-dimensional systems have been studied widely in the past few decades. In

particular 1D or quasi-1D systems are of very special interest because interactions play a

crucial role in realizing novel phases [21, 20]. Quasi-1D systems such as ladders have been

of special interest to understand the phenomenon of high-temperature superconductivity,

spin-gapped metallic state [22, 23, 24] etc. The extra coupling between the legs of the

ladder makes these systems unique, as a result of which, the quantum phase transitions are

influenced substantially even in a simple model like the Bose-Hubbard ladder [25, 26, 27].

Earlier studies have shown that an ultracold bosonic gas in a lattice with attractive

interactions undergoes a transition from an atomic superfluid (ASF) to the dimer super-

fluid (DSF) phase when the atoms are subjected to the onsite three body constraint [7].

This phenomenon was first predicted in the context of an atomic Bose gas in the contin-

uum with Feshbach resonance [45]. This prediction suggests that the bosons can pair up

to form the DSF phase when the attraction between them is sufficiently large. This tran-

sition was predicted to be Ising like at the commensurate filling and first order at other

fillings. Detailed investigations on this model have been made on a square lattice in the

recent past [8, 9] to obtain the ground state phase diagram. The effect of nearest neigh-

bor interaction on a square lattice has predicted a dimer checker board solid phase [10].

Bosons with two-body onsite attractive interactions in optical lattices that are subjected

to the onsite three- or four-body constraint can form dimer and density wave phases as

well [11, 7, 12].

In this chapter, we focus on a system of ultracold bosonic atoms possessing long-

range interactions along the rungs of a two leg ladder as shown in Fig. 6.1. This system

can be realised by using dipolar bosons and polarizing them at the magic angle φ with

reference to the plane of the ladder, and perpendicular to the rungs of the ladder. The

dipole-dipole interaction energy is proportional too (1 − 3cos2φ). Therefore if the angle

φ is chosen such that the condition cos2φ = 1/3 is satisfied, the dipole-dipole interaction
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Figure 6.1: A small section of the ladder model is shown and the cluster contains six sites.

Dashed lines represent bonds between decoupled sites, circles represent lattice sites.

energy along the leg becomes zero but remains finite along the rungs. Taking the on-site

interactions to be attractive for such a system and imposing the three body constraint,

we study its ground state phase diagram. In addition, we also study the quantum phases

of this model in the case of hard core bosons to validate our predictions. We use the self

consistent cluster mean-field theory (CMFT) to determine the various order parameters

to obtain the different quantum phase transitions in this model.

The remaining part of this chapter is organized as follows. In Sec. II we give details

of the model and the method used in our calculation. Section III is devoted to our results.

Sec. IV contains concluding remarks.

6.2 Model and method

The effective many-body lattice model which describes the problem mentioned above is

given by

H = −t
∑
α,i

(a†α,iaα,i+1 +H.c.)− t⊥
∑
i

(a†p,iaq,i +H.c.)

+
U

2

∑
α,i

nα,i(nα,i − 1) + V
∑
i

np,inq,i −
∑
i

µα,inα,i (6.1)

where aα,i
†(aα,i) is the bosonic creation (annihilation) operator at the site i of leg -

α(= p, q). t is the hopping amplitude between the nearest neighbour sites along the
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legs of the ladder and t⊥ is the hopping along the rungs of the ladder. nα,i = a†α,iaα,i is

the number operator at site (α, i). U and V represent the on-site inter-atomic two-body

and nearest-neighbour interactions respectively. The chemical potential is represented by

µ. In this work we assume the three body constraint, i.e. (a†)3|0〉 = 0 and the value of

U is negative. We also assume that the ladder is arranged in such a way that the nearest

neighbour repulsion V is only present along the rungs of the ladder.

The ground state properties of this model can be studied quite accurately by using

powerful numerical methods such as the density matrix renormalization group method

(DMRG) [51, 52] or the quantum monte carlo (QMC) methods. However, in order to

qualitatively understand the quantum phase transitions exhibited in this model, we use the

self consistent CMFT method. This method is capable of capturing the relevant physics

that arises due to quantum correlations, which was not always possible to achieve in the

conventional single site mean-field theory decoupling approximation [53, 54, 55, 6, 57, 58].

The CMFT can account for non-local interaction more accurately by retaining them in the

exact form. For the regular SF-MI transition the estimation of the critical point improves

when CMFT is used and approaches the value obtained by the methods like QMC and

DMRG [60]. In this method a cluster of sites is treated exactly and the mean-field

approximation is for the coupling which connects the cluster with rest of the lattice. The

accuracy of the calculation depends on the size of the cluster considered. As the cluster

size increases, the number of decoupled bond reduces and the Hamiltonian approaches

the exact form. In one of its very first applications this method was used to study the

phase diagram of a one-dimensional optical superlattice [59]. In recent years it has been

used to study various other models where the results are found to be in good agreement

with those obtained using exact numerical methods [61, 60, 62, 63].

We consider six sites cluster as shown in Fig. 6.1. Then the model given in Eq. (6.1)

can be written as

H =
∑
k

Hk
c (6.2)
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where summation over k is over all the clusters and Hk
c is the Hamiltonian for kth cluster

which can be written as (dropping k since all the clusters are identical)

Hc = He +Hd, (6.3)

where He is the exact Hamiltonian of the cluster and Hd is the decoupled hopping term

to the nearest neighbour cluster. Using the mean-field decoupling approximation one can

make the following substitution since i and j are adjacent sites in the nearest neighbour

clusters,

a†iaj ' 〈a
†
i〉aj + ai

†〈aj〉 − 〈ai†〉〈aj〉 (6.4)

in the hopping term in Eq.(1) and introduce the superfluid order parameter

φi ≡ 〈a†i〉 ≡ 〈ai〉 (6.5)

to obtain the following Hamiltonian for the decoupled part,

Hd = −t
∑

α={p,q}

∑
i,i′=1,3
i 6=i′

[
φα,i(aα,i′

† + aα,i′) + φα,iφα,i′
]

(6.6)

The exact Hamiltonian, He is given by

He = −t
∑

α={p,q}
i={1,2}

(a†α,iaα,i+1 +H.c.)

−t⊥
∑

i={1,2,3}

(a†p,iaq,i +H.c.)

+
∑

α={p,q}
i={1,2,3}

[
U

2
nα,i(nα,i − 1) + V np,inq,i − µα,inα,i

]
(6.7)

We set the energy scale by choosing t = 1, as a result, all the physical parameters

considered are dimensionless. We choose to work in the occupation number basis and

88



CHAPTER 6. QUANTUM . . . 6.3. RESULTS AND DISCUSSION

construct the Hamiltonian matrix using the expression given by Hc. This matrix is then

diagonalized self-consistently to obtain the ground state of the system. The ground state

so obtained can then be used to calculate the necessary expectation values.

6.3 Results and discussion
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µ/t

0

1

2

3
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5

6

t ⊥
/t

4-ites
6-sites
8-sites
10 sites

SF MI (1)MI (0)

RMI (1/2)

Scaled critical
point (t

⊥
/t) = 2.087

Figure 6.2: Phase diagram for hard-core bosons in absence of V for different cluster sizes.

The cluster sizes are indicated in the legend. The scaled critical point for RMI(1/2)-SF

transition is represented by a black dot.

In this section we report our findings and analyse the results of our work. Before

presenting the main results, we validate our method; i.e. the CMFT by studying an

already known phase diagram using other exact methods. It has been predicted that

in the case of hardcore bosons (U = ∞) on a ladder, the system exhibits a rung Mott
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insulator (RMI) phase due to the competition between the intra-chain and inter-chain

couplings, t and t⊥ respectively [64, 65]. When the value of t⊥ is large compared to t,

the atoms can only hop within the rungs of the ladder, which results in the system being

gapped. We have investigated this model using our CMFT approach and obtain the phase

diagram shown in Fig.6.2. This phase diagram is in a very good qualitative agreement

with the results presented in Ref. [65]. We have done the calculations using 4−, 6−, 8−

and 10−sites clusters. The RMI(1/2)-SF critical transition point found from each of

these calculations are then scaled to the thermodynamic limit. This gives an estimate of

(t⊥/t)c ∼ 2.087.
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ρ
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U=-8.0 U=-12.0 U=-15.0

(b)(a) (c)

Figure 6.3: ρ, ρs − µ plot for (a)U = −8.0, (b)U = −12.0 and (c)U = −15.0 for V = 0.0.

Solid (red) curves represent average density ρ and circles (green curves) represent average

superfluid density ρs in the cluster.

We now turn to the results of our work. Recent numerical and analytical works on

the model given in Eq.(6.1), in the absence of the nearest neighbour interactions, have

predicted the existence of a transition from the ASF phase to the DSF phase in one and

two dimensions [7, 12, 8, 9, 10]. Apart from this, two trivial gapped (insulating) phases,

MI(0) at ρ = 0 and MI(2) at ρ = 2, are also present. It has been predicted for a two

dimensional square lattice that (i) the MI to DSF transition is always continuous, (ii)

there exists a first order transition from the MI(0) to ASF phase and (iii) there exists
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Figure 6.4: Phase diagram for U < 0 and V = 0.0. Green (dashed) line and blue (dotted)

line indicate first and second-order transitions, respectively. The first- to second-order

change on the phase boundary is marked by a red circle.

a tricritical point along the ASF-MI(2) transition boundary [8]. In the presence of the

nearest neighbour interaction V , the region of the first order phase boundary shrinks as

V is increased. A dimer checker board solid (DCS) appears when V 6= 0 [10].

As stated earlier, the system we consider here is a two leg ladder and the nearest

neighbour interaction is allowed only along the rungs of the ladder. We have considered

three different cases: V = 0.0, 0.5 and 1.0 to demonstrate the salient features of phase

diagrams for these three cases. When V = 0.0, the system exhibits a phase diagram

qualitatively similar to that obtained for the square lattice case as shown in Fig.6.4. This

phase diagram consists of four phases, the MI(0), MI(2), ASF and DSF phases. To obtain

this in our CMFT approach, we use the superfluid order parameter φ and the density ρ as

the order parameters. In the ASF phase, the atomic superfluid density ρs = φ2 = 〈(a†)〉2
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is finite and is zero for the MI phases. In other words the ASF phase is gapless and

compressible and the MI phases are gapped. In order to obtain the phase boundary

between different phases we plot the density ρ (solid line (red curve)) and superfluid

density ρs (circles (green curve)) as a function of the chemical potential µ for different

values of U in Fig.6.3 where it can be seen that the ρ versus µ plot (solid (red) curves) has

two plateaus corresponding to the gapped MI(0) and MI(2) phases at ρ = 0 and ρ = 2

respectively. However, at intermediate densities the ASF and DSF phases appear. When

U is small, say −8.0, a region exists where ρs is finite, circles(green curve) in Fig.6.3(a)

and the value of ρ (solid(red) curves) increases suddenly from zero to some finite value and

then increases continuously till it saturates at two. This region in the parameter space

is the ASF phase since the superfluid density ρs remains finite. The sudden jump in the

values of ρ and ρs from zero to finite value suggests that the transition from the MI(0) to

ASF phase is first order which will be discussed in more detail later. When U becomes

more negative and the value of µ is small, the attraction between particles favours dimer

formation which hop around to form the DSF phase.

In the framework of our CMFT approach, it is difficult to predict the dimer phases

directly from the calculation of the DSF order parameter. However, if on increasing the

value of the chemical potential, the system density increases in steps of two atoms, then

we conclude that it has entered the DSF phase. This shows that the system consists of

only dimers and they behave as single entities. When the chemical potential is increased,

for small values of µ as seen in the Fig.6.3(b) for U = −12.0, the density of the system

increases only if the chemical potential increases to accommodate two bosons or one

dimer. However, for higher values of the chemical potential, the density increases in a

continuous manner with the chemical potential, because the kinetic energy dominates in

this situation and the system behaves like an atomic superfluid. At this value of U , a first

order type transition from the ASF to the MI(2) phase takes place, which can be seen

from the sharp jump in the density at the chemical potential close to the MI(2) plateau.

92



CHAPTER 6. QUANTUM . . . 6.3. RESULTS AND DISCUSSION

When U is highly attractive, say U = −15.0, all the particles form dimers and the system

is fully in the DSF phase. The particle density then increases in steps of two particles

till it reaches the MI(2) state. This behaviour can be seen in the Fig.6.3(c). Since in

this calculation we have considered a cluster consisting of 6 sites, we get jumps in the

density when it reaches the values 1/3, 2/3, 4/3, 5/3 and 2 i.e. when the total number

of bosons in the cluster is equal to, respectively, 2, 4, 6, 8, 10 and 12. By locating the

transition points from the ρ − µ curves we obtain various phases and the phase diagram

as shown in Fig.6.4. Although the DSF to ASF phase transition shows a first-order type

behaviour in the ρ, ρs − µ plots, it is actually predicted to be of Ising type at unit filling

in other models in earlier works[7]. In our CMFT approach it is difficult to predict the

nature of this transition. The small plateaus we obtain in ρ−µ curves in the DSF region
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Figure 6.5: U = −11.0, V = 0.0. (a)ρ, ρs − µ plot (b)single-particle tunnelling and,

(c)pair tunnelling amplitude between sites.

are artefacts of the finite size of the system we have used in our work. We expect these
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Figure 6.6: U = −25.0, V = 0.0. (a)ρ, ρs − µ plot (b)single-particle tunnelling and,

(c)pair tunnelling amplitude between sites.

plateaus to become smaller and gradually disappear as the system size is increased. In

fact, the disappearance of such plateaus has been shown in a comparative study of a

system of hard-core bosons using the exact-diagonalization and quantum Monte Carlo

methods [44].

Another signature of the dimer formation can be inferred by comparing the single-

particle tunnelling and the paired-tunnelling amplitudes. As an example we have plotted

the above quantities for U = −11.0 and U = −25.0 in Fig.6.5 and Fig.6.6 respectively.

The quantity 〈ai†aj〉 is the tunnelling amplitude for a single boson and 〈ai†
2
aj

2〉 is the

tunnelling amplitude for a pair of bosons between the sites i and j. The pair of sites i, j

between which tunnellings are considered are given in the legends of the respective plots.

For U = −11.0, DSF exists only for a small region of µ values, around µ = −5.9, while the

ASF phase dominates the rest of the region, as shown in Fig.6.5. The paired-tunnelling
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Figure 6.7: (E(φ)-E(0) versus order parameter (φ) plot for U = −9.0, V = 0.0. From

top to bottom, µ = −6.0,−5.21,−5.114 (µc),−5.05 and −4.95 for MI(0)-ASF transition

across the left most boundary in Fig.6.4.

amplitude dominates over the single boson tunnelling in the DSF phase and as expected

both have finite values in the ASF phase. When the DSF phase dominates, as in the

case for U = −25.0, paired-tunnelling amplitude remains constant as |i − j| increases

while the single boson tunnelling decreases to zero, as shown in Fig. 6.6. These features

confirm our earlier conclusion that we do not have the ASF phase for higher values of |U |

as shown in Fig.6.4. The order of the phase transition between MI(0) to ASF and ASF

to MI(2) can be obtained by observing the ground state energy of the system around the

critical point on the common phase boundary. We plot E(φ) − E(φ = 0) as a function

of the superfluid order parameter φ for the µ values at and around the critical point.

One such plot for U = −9.0, V = 0.0 is given in Fig.6.7. This point lies on the phase
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Figure 6.8: E(φ)-E(0) vs. order parameter (φ) plot for U = −5.0. From top to bottom,

µ = 1.21, 1.11, 1.01(µc), 0.91 and 0.81 for ASF-MI(2) transition across the right most

boundary in Fig.6.4.

boundary between MI(0) and the ASF phases (Fig.6.4). When µ < −5.114 the system is

in the MI(0) phase and we obtain a single minimum, but as µ increases and approaches

the critical point (µc = −5.114), two more minima start appearing. At the exact critical

point all the three minima become degenerate. A single minimum indicates a unique

solution which corresponds to the MI phase and the three degenerate minima indicate the

three of the possible solutions of the infinitely degenerate SF phase. This is an indicator

of a first-order transition.

We pick one other point at U = −5.0, V = 0.0 on the phase boundary between

ASF and MI(2) phases and repeat the above procedure to find out the order of transition.

The corresponding plot is shown in Fig.6.8. We can see that there are only two minima

merging into a single minimum at this point. Therefore this is a second-order transition.
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We repeat these calculations for several values of U around which there are sudden jumps

in ρ, ρs−µ plots. For V = 0.0 we find that the nature of the SF-MI(2) transition changes

from first-order to second-order at U ∼ −9.4. This point is marked by a red circle in

Fig.6.4, which is a tricritical point.

Now we discuss our findings by considering the effect of the nearest neighbour inter-

action V . As mentioned before, we consider the nearest neighbour interaction only along

the rungs of the ladder such that the system does not break any translational symmetry

by forming a density wave order. In such a situation, the effect of a small value of V is

dramatic when U is highly attractive. We investigate the system for two different values

of V equal to 0.5 and 1.0. In both the cases we study the phase diagram by increasing the

magnitude of U and making it more attractive. When U is slightly negative the system

exhibits the ASF phase for densities intermediate between 0 and 2. However, when the

value of U is sufficient to form dimers and at ρ = 1, the small
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Figure 6.9: ρ, ρs−µ plot for (a)U = −8.0, (b)U = −10.5 and (c)U = −15.0 for V = 0.5 .

Solid (red) curves represent average density, solid-circle (green) curves represent average

superfluid density in the cluster.

value of V tries to prevent two dimers to sit on a single rung. However, it cannot

restrict the dimer to hop within the sites of a rung which is governed by the kinetic

term t⊥. Hence the dimers are localized on the rungs of the ladder creating a singlet on
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Figure 6.10: Phase diagram for U < 0 and V = 0.5 showing different phases. Green

(dashed) line and blue (dotted) line indicate first and second-order transitions, respec-

tively. The first- to second-order change on the phase boundary is marked by a red dot.

each rung. This phase exhibits a finite single particle gap, and vanishing superfluid order

parameter. This phase can be called as the dimer rung insulator (DRI). However, for

the density range 0 < ρ < 1 and 1 < ρ < 2, the system remains in the DSF phase. In

order to obtain the phase diagram we analyse the plots of ρ and ρs as a function of µ

and is given for V = 0.5 in Fig.6.9. It is evident that when U = −8.0, the effect of V is

not visible as shown in Fig.6.9(a). However, Fig.6.9(b) shows that for U = −10.5 there

appears a plateau at ρ = 1/3 and ρ = 1. The length of the ρ = 1/3 plateau increases

slightly but ρ = 1 plateau increases considerably as |U | increases, as shown in Fig.6.9(c).

At the ρ = 1 plateau region the value of ρs is zero which reflects that the DRI phase is

gapped. By picking the boundary points from the ρ versus µ curve we obtain the phase

diagram as shown in Fig.6.10. When the value of V = 1.0, the DRI phase gets enlarged as
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Figure 6.11: Phase diagram for U < 0 and V = 1.0 showing different phases. Green

(dashed) line and blue (dotted) line indicate first and second-order transitions, respec-

tively. The first- to second-order change on the phase boundary is marked by a red dot.

The change in phase boundaries with cluster size is also indicated at U = −9.0,−10.0

and −15.0. For the 4-sites cluster, the DRI lobe does not extend beyond U = −9.12.

shown in Fig.6.11. Changes in the phase boundaries with a change in cluster size are also

indicated in Fig.6.11. A scaling of ASF-DRI critical point with 4-,6- and 8-sites clusters

gives an estimate of Uc ∼ −7.92 in the thermodynamic limit. The order of the phase

transitions, like before, are also obtained by simultaneously observing the sharp jump in

the corresponding ρ−µ plots and the quantity E(φ)−E(0). The position of the tricritical

point shifts to the higher values of µ/|U | as the value of V increases. This phenomena

was also predicted before in a similar model for a square lattice [10].

The plateau at ρ = 1 also appears in the DSF phase. In order to distinguish between

the DSF and DRI phases, we plot the single dimer correlation function (paired-tunnelling

99



CHAPTER 6. QUANTUM . . . 6.3. RESULTS AND DISCUSSION

0

1

2

ρ
, 

ρ
s

ρ
ρ

s

0

0.25

0.5

<
a i+

a j> (p,1),(p,2)

(p,1),(p,3)

(p,1),(q,1)

-13 -12.5 -12 -11.5 -11 -10.5 -10
µ

0

0.5

1

<
(a

i+
)2

(a
j)2

>

(p,1),(p,2)

(p,1),(p,3)

(p,1),(q,1)

(a)

(b)

(c)

Figure 6.12: U = −25.0, V = 1.0. (a)ρ, ρs−µ plot (b)single particle tunnelling amplitude

between sites (c)pair tunnelling amplitude between sites.

amplitudes) along the rung and the leg of the ladder. When the system is in the DSF

phase, this correlation function is finite both along the rungs and the legs. However, in the

DRI phase, it is large on the rungs compared to the legs. As the value of V increases, they

tend to zero along the legs whereas they tend to one along the rungs as shown in Fig.6.12.

In Fig.6.12(a) we plot the ρ, ρs − µ plot for U = −25.0 and V = 1.0 for comparison. In

Fig.6.12(b) and (c) we plot the single particle and dimer correlations, respectively. At

this density each rung has one dimer and is in a superposition of |0, D〉 and |D, 0〉 states,

where D stands for a dimer. It becomes energetically unfavourable for a dimer to hop

from one rung to the another as the presence of V will tend to increase the energy. As a

result dimers get confined to their respective rungs. Therefore, we argue that the phase

which appears at ρ = 1 in the presence of V is the DRI phase. The stability of the

DRI phase in the thermodynamic limit is difficult to predict using the CMFT, as it takes
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Figure 6.13: ρ, ρs − µ plot for HC bosons for (a)V = 0.0 (b)V = 10.0 and (c)V = 20.0.
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Figure 6.14: Phase diagram for hard-core bosons in the presence of inter-chain nearest

neighbour interaction V .

into account only a limited number of sites in a cluster. One needs to perform rigorous

numerical calculations to understand this phase in more detail.

In order to further clarify the existence of the DRI phase, we study a model of
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Figure 6.15: Single particle tunnelling amplitudes for hardcore bosons at (a)V = 0.0 and,

(b)V = 20.0.

hardcore bosons on a two leg ladder with the nearest neighbour interactions acting along

the rungs. This model at half filling is similar to the model discussed above in the

limit of large attractive U at unit filling when all the atoms have formed dimers. In

the previous case, because of the three body constraint the dimers behaved like hardcore

bosons. Therefore, it is indeed possible to get the rung insulator (RI) phase in a similar

model of hardcore bosons. The phase-diagram for hard-core bosons at V = 0.0 is trivial

and there are only SF and MI phases. For low values of µ the system is in the ρ = 0.0

MI phase. As µ is increased, the density of the system increases continuously, it enters

the SF phase and finally ends up in the ρ = 1.0 MI phase. However, by switching on

the value of V , we obtain a plateau at ρ = 0.5 which gets enlarged as the value of V

increases, as shown in Fig.6.13. The argument here is that, at ρ = 0.5 and at finite V the

favourable ground state is when each rung of the ladder has only one hardcore boson. In
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such a situation a singlet of hardcore bosons is formed along the rungs, which is a rung

Mott insulator phase as discussed before. We obtain the phase diagram for this model

which is shown in Fig.6.14. The presence of the RI phase can be further confirmed by

comparing Fig.6.15(a) and Fig. 6.15(b). We can see that in the former case when V = 0,

the tunnelling amplitudes between all the sites are almost the same for all values of µ but

in the latter cases when V 6= 0 they become different. For V 6= 0, at ρ = 0.5 the tunnelling

amplitude of bosons within the same leg decreases and within a rung it increases.

6.4 Conclusions

We have studied the phases and the phase transitions in an attractive Bose-Hubbard

model on a two leg ladder in the presence of the three body constraint. We obtain the

ground state phase diagram of this model by using the self consistent cluster mean-field

theory. By calculating various physical parameters of interest, we find that there exists a

transition from the ASF to the DSF phases when the density of the system varies from

zero to two. When the density is zero and two we obtain two gapped phases such as MI(0)

and MI(2). By introducing nearest neighbour interactions between the particles sitting

in the two sites of a rung, we obtain the dimer rung insulator(DRI) phase at unit filling.

The DRI phase is gapped in which the particle motion is confined within the rungs of the

ladder. This phase appears in the middle of the DSF phase which gets enhanced as the

value of the nearest neighbour interaction increases. We also find that the MI(0)-ASF

transition boundary is first order. However, the ASF-MI(2) phase boundary is continuous

for small values of |U | and becomes first order when |U | is large through a tricritical point.

This point shifts towards the smaller values of |U | as the value of V increases. We also

complement our prediction of the DRI phase by studying a system of hardcore bosons

on a two leg ladder with nearest neighbour repulsions only along the rung. To check the

stability of the phases and scaling of the critical points we have done the calculations
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using 4, 6, 8 and 10 site clusters for the hardcore bosons. For the soft-core bosons with

the three-body constraint we have done calculations up to 8-sites keeping V fixed at 1.0.

In the case of hard-core bosons on a ladder we find that phase diagram improves with

the increase in cluster size and the RI-SF critical point approaches the value as obtained

from DMRG and QMC calculations. In the case of soft-core bosons with the three-body

constraint we find that overall the phase diagram remains the same qualitatively and

there are only small changes in the phase boundaries with the change in cluster size.
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Chapter 7

Dynamics of ultracold bosonic atoms

in optical lattices with

nearest-neighbour interaction

7.1 Introduction

Ultracold bosonic atoms in optical lattices with nearest-neighbour interaction can be

described well by using the extended Bose-Hubbard model. In this chapter first we give

a brief introduction to the Extended Bose-Hubbard EBH) model and it’s phase diagram

for various boundary conditions. After discussing the EBH model for the static case we

focus on it’s dynamics.

The Bose-Hubbard (BH) model for ultracold atoms is the simplest model for de-

scribing a system of ultracold atoms in optical lattices. For sufficiently large interaction

strengths and integer densities the well known superfluid to Mott insulator transition can

be observed. However, the Bose-Hubbard model takes into account only the two-body

on-site interaction and tunnelling of atoms to the nearest neighbouring sites. But as seen
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in Chapter 6, in addition to the on-site (local) interaction, it is possible to have nearest-

neighbour (non-local) interactions also which account for the interactions between two

particles present in adjacent sites. This situation in which the Bose-Hubbard model is

augmented by nearest neighbour two body interactions is referred to as the Extended

Bose-Hubbard (EBH) model [1, 2, 3].

During a continuous quantum phase transition a system passes through a critical

point located on the boundary separating the phases. The study of the time evolution of

the system when it is quenched by the application of a time dependent potential, would

enable the study of the behaviour of the excitations produced during this process [4].

There have been studies on the quenching in the BH model from the SF to the MI phase

and vice-versa. In these and similar works, time evolution of various quantities such as

coherence length, particle number density, etc. has been studied numerically [5-27]. There

have been some experimental studies as well [28, 29, 30]. The number of defects generated

then exhibits a power-law behaviour with respect to the rate of quench. This phenomenon

is analogous to the Kibble-Zurek (KZ) mechanism for defect generation in non-equilibrium

classical phase transitions. This mechanism was first proposed in the context of early-

universe where the phase transitions took place because of the thermal fluctuations [4, 5, 6]

but recently the quantum analogue has also been demonstrated [31, 32]. It was shown that

the number of excitations generated in a quench scales with the adiabaticity parameter

as a power related to the critical exponents characterizing the phase transition. The KZ

mechanism divides and approximates a phase transition in three regimes: (i) adiabatic

(far from the critical region, before crossing the critical point), (ii) impulse (very close

to the critical point), and (iii) adiabatic (far from the critical region, after crossing the

critical point). Near the critical point the system does not respond to the change in the

external parameters sharply. If the critical region is gapless it results in a finite correlation

length (ξ) in the final state. The correlation length is then given by ξ ∼ τ
[ ν
1+νz

]

Q , where τQ

is the characteristic time for the adiabatic transition and ν, z are the critcal exponents.
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The density of excitations is proportional to τ−kQ , where |k| > 0 [33].

Although the system can be quenched in a number of ways we have considered only

a linear quench. The KZ mechanism then predicts that the density of the defects and the

quench velocity are connected via a power law behaviour. As stated earlier, here also the

power law exponent is given in the terms of the critical exponents of the transition. We

chose the EBH model for our work because the phase diagram for this model at equlibirum

is well known and the phase diagram is rich enough to study quenches for different types

of phase transitions.

7.2 Model and method

7.2.1 EBH model

We have discussed the simple Bose-Hubbard model in the previous chapters and shown

that it exhibits only the superfluid-Mott insulator transition for integer densities. Also in

Chapter 6 we show that apart from the usual on-site interaction if the nearest-neighbour

interaction is introduced it can give rise to new phases. Here we consider a system of

bosons in a 1D optical lattice with on-site and nearest-neighbour interactions. Such a

system can be described by the following Hamiltonian:

H = −t
∑
〈i,j〉

(â†i âj + H.c) +
U

2

∑
i

n̂i(n̂i − 1) + V
∑
〈i,j〉

n̂in̂j (7.1)

Here, â†i (âi) is the creation (annihilation) operator which creates (destroys) an atom at

site i, n̂i = â†i âi is the number operator, t is the hopping amplitude between the adjacent

sites 〈i, j〉, U represents the on-site inter-atomic two-body interaction and V is the non-

local nearest-neighbour interaction. We use time adaptive DMRG in MPS formalism to

obtain the time evolved wave-function and energy.

The EBH model given in Eq. 7.1 has been studied earlier using different methods

[2, 3, 34, 35] including DMRG [4, 6, 37, 38] and MPS [5] methods. The inclusion of the
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nearest-neighbour interactions gives rise to the density wave (DW) phase apart from the

regular superfluid and MI phases. Also, depending on the different boundary conditions

(BCs), the position of the various phase boundaries may shift giving rise to a different

phase diagram. The phase diagram for the EBH model for different boundary conditions

is given in Fig. 7.1.

Figure 7.1: Phase diagrams in the (U, V ) plane for the 1D EBHM with the following

constraints (a) BC1 (N = L), (b) BC2 (N = L + 1), and (c) BC3 (N = L) and µr = −µl = 2

showing Mott-insulator (MI ochre), superfluid (SF purple), Haldane-insulator (HI red),

and density wave (DW green) phases and the phase boundaries between them; in this

range of U and V all transitions are continuous; at larger values of U and V the MI-DW

and HI-DW transitions become first-order. N and L are no. of bosons and lattice sites

respectively [6].

The appearance of the different phases can be summarized as follows: in an optical

lattice if V = 0 and U is sufficiently larger than t then we get the Mott insulator (MI)

phase at integer densities but if U and t are comparable, then we get the superfluid (SF)

phase at all densities. When V 6= 0 and is sufficiently large then we have a density wave

phase at commensurate densities. This phase is characterized by integer filling of alternate

lattice sites. So, if the system has a density of 1/2 then we have [· · · 1 0 1 0 · · · ] type of

arrangement and for density 1 we have [· · · 2 0 2 0 · · · ] type of arrangement of bosons
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in the lattice. When U and V are comparable and BC2 (or BC3) is satisfied, we obtain

the Haldane insulator (HI) phase. This phase is characterized by an underlying hidden

order, that is a non-trivial ordering of the fluctuations which appear in alternating order

separated by strings of equally populated sites of arbitrary length. For our work we make

use of the phase diagram given in Fig. 7.1(a),(c).

7.2.2 Dynamics of ultracold atoms in the EBH model

The quantum phase transitions of ultracold atoms in optical lattices in Extended Bose-

Hubbard model with nearest neighbour interaction have been studied extensively using

different methods [4, 5, 40, 41, 42, 43]. However, these studies have been performed for

the equilibrium case, where all the parameters are fixed with respect to time. In this work

we study the effects of time varying on-site (U) and nearest neighbour interaction (V)

in a one-dimensional optical lattice. The system is linearly quenched across the different

phase boundaries thereby crossing a single quantum critical point. Quenching the system

from one phase to another generates excitations (defects). We intent to explore whether

the number of defects generated has a power law dependence on the rate of quench. In

our present work we use a time dependent MPS formalism to numerically investigate how

well this power law behaviour matches with the well known Kibble-Zurek scaling relation

for defect generation in different scenarios for the quenching in EBH model. To do so,

we vary U (or V) with time while keeping all the other parameters fixed. To study the

dynamics of the system we make the following choices:

for superfluid to Mott insulator transition U → U(τ),

H(τ) = −t
∑
〈i,j〉

(â†i âj + H.c) +
U(τ)

2

∑
i

n̂i(n̂i − 1) + V
∑
〈i,j〉

n̂in̂j (7.2)

and for superfluid to density wave, Mott insulator to density wave transitions V → V (t),

H(τ) = −t
∑
〈i,j〉

(â†i âj + H.c) +
U

2

∑
i

n̂i(n̂i − 1) + V (τ)
∑
〈i,j〉

n̂in̂j (7.3)
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The time-evolved wave function |Ψ(t)〉 is given by the solution of Schrödinger equation

for the time-dependent Hamiltonian Ĥ(t′) as

|Ψ(t)〉 = exp(−i
∫ t

0

Ĥ(t′)dt′)|Ψ(0)〉 (7.4)

where |Ψ(0)〉 is the ground state wave function at t = 0, and in our case it can be the

wave-function corresponding to the superfluid or the Mott insulator phase depending on

the regime under study. As mentioned earlier, during a quench excitations are generated.

As a result the final state of the system at the end of quench is not a perfect ground state

corresponding to any particular phase as it would have been if there were no quenching.

The final state so obtained has the contribution from higher excited states also. If E0 be

the ground state for a particular set of parameters and Ef be the energy at the end of

quench for the same set of parameters, then we define ‘residual energy’ as Eres = Ef−E0.

We can find an expression for residual energy and explicitly show that it is equal to

the weighted sum of the various excitation energies by the following argument. The

normalized wave-function |Ψ〉 can be written as,

|Ψ〉 =
∑
n

cn|ψn〉 (7.5)

where |ψn〉 are the eigen states or eigen vectors of form the orthonormal basis for |Ψ〉.

Therefore, residual energy,

Eres = 〈Ψf |H(τf )|Ψf〉 − 〈ψgf |H(τf )|ψgf〉 (7.6)

where τf is the time elapsed during the quench, |Ψf〉 is the time evolved wave-function

and |ψgf〉 is time independent wave-function, superscript g denotes the ground state. Sub-

stituting Eq.(7.5) in Eq.(7.6) gives,

Eres =
∑
m

∑
n

c∗mcn〈ψmf |H(τf )|ψnf 〉 − 〈ψ
g
f |H(τf )|ψgf〉

=
∑
m

∑
n

c∗mcnEn〈ψmf |ψnf 〉 − E0

=
∑
n

c∗ncnEn − E0. (7.7)
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Here E0 is the ground state energy corresponding to |ψgf〉 and En is the energy of nth

excited state. Also,

〈ψf |ψf〉 = 1

L.H.S. =
∑
m

∑
n

c∗mcn〈ψmf |ψnf 〉

=
∑
n

c∗ncnδmn

=
∑
n 6=0

c∗ncn + c∗0c0 = 1. (7.8)

Rearranging Eq.(7.8) and substituting in Eq.(7.7) gives,

Eres =
∑
n6=0

c∗ncnEn + (c∗0c0 − 1)E0

=
∑
n 6=0

c∗ncnEn −
∑
n6=0

c∗ncnE0

=
∑
n6=0

c∗ncn(En − E0). (7.9)

We study the dynamics for the three cases: (i)SF-MI, (ii)SF-DW and (iii)MI-DW tran-

sition. For the SF-MI transition U is varied with respect to time at different rates

α(∝ (1/τ)), keeping V fixed. We repeat the calculations for four different values of

V . For each value of V , the starting value of U is chosen such that the system is in the

SF phase and the end value of U is such that the system is in the MI phase. Both the

U values are symmetrically located about the phase boundary. The points on the phase

boundary (about which U values are symmetrically located) are taken from the Fig. 7.1.

Corresponding to each α, we obtain the residual energy and plot log (1/τ) vs. log Eres

on X- and Y-axis respectively. Theory predicts the relationship between Eres and τ as:

log Eres = −k log(τ) + const. (k > 0) (7.10)

We perform the best linear fit to the points obtained for each V value and find the slope,

k. The negative of the slope of the line gives the KZ coefficient. For the SF-DW (and
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MI-DW) dynamics the procedure is same as above except the fact that in these two cases

we vary V at different rates α while keeping U fixed. We repeat the calculations for four

different values of U . The starting and the ending values of V are symmetrically located

about the phase boundaries. The points on the phase boundaries are found as mentioned

in the previous sections.

7.3 Results and discussion

We have done systematic studies of quenching by dividing the EBH phase diagram into

three regions covering three different types of phase transitions:

(i) Superfluid to Mott-insulator transition,

(ii) Superfluid to Density wave transition, and

(iii) Mott-insulator to Density wave transition.

In all the three cases we choose four sets of quantum critical points on each of the three

phase boundaries. We quench our system by keeping V fixed and varying U with time in

the first case and for the last two cases we keep U fixed and vary V with time.
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7.3.1 Quenching from the superfluid to Mott-insulator phase

For the quench from the SF to MI phase, the range of parameters for U and V is given

in Table 7.1. Ui is the initial value of the on-site interaction strength U, at the beginning

of the quench and Uf if the final value, at the end of quench. The nearest-neighbour

interaction remains unchanged, therefore Vi =Vf .

No. Ui Uf Vi Vf

1 2.00 4.00 0.25 0.25

2 1.80 3.80 0.50 0.50

3 1.50 3.50 0.75 0.75

4 1.30 3.30 1.00 1.00

Table 7.1: Table summarizing the values of the interaction parameters for the superfluid

to Mott-insulator phase quench.

The values of interaction parameters are chosen such that the system starts from the

superfluid phase, far from the superfluid-Mott insulator phase boundary and ends up in

the Mott-insulator phase. The interval between Ui and Uf is 2 units.
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Figure 7.2: Quenching from SF to MI phase for different values of U and V, as indicated in

each of the plots. Black dots indicate the data obtained from our numerical calculations

and red-dashed line indicates the linear fit for these data points.

The results for the superfluid-Mott insulator quench are presented in Fig. 7.2. The

value of the Kibble-Zurek coefficient found for the superfluid to Mott-insulator quench

ranges from 1.42630 to 1.56243 in our calculations.
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7.3.2 Quenching from the superfluid to density wave phase

For the quench from the superfluid to the density wave phase, the range of parameters for

U and V is given in Table 7.2. The on-site interaction remains unchanged for this quench

and therefore the initial and final values of the on-site interaction strength U, that is Ui

and Uf , are the same. The nearest-neighbour interaction changes from Vi to Vf .

No. Ui Uf Vi Vf

1 1.50 1.50 0.10 6.10

2 2.00 2.00 0.70 6.70

3 2.50 2.50 0.70 6.70

4 3.00 3.00 0.00 6.00

Table 7.2: Table summarizing the values of the interaction parameters for the superfluid

to density-wave phase quench.

The values of the interaction parameters are chosen such that the system starts from the

superfluid phase, far from the superfluid-density wave phase boundary, and ends up in

the density wave phase. The interval between Vi and Vf is 6 units. The results for the

superfluid-density wave phase quench are presented in Fig. 7.3. It can be seen in this

figure that all the data points can not be fitted with a single linear fit. Therefore, we

divide the quench region into three parts: (i) slow, (ii) intermediate and (iii) fast quench.

We present our results for these regions accordingly.
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Figure 7.3: Quenching from the SF to the DW phase for different values of U and V,

as indicated in each of the plots. Dots indicate the data obtained from our numerical

calculations and solid lines indicates the linear fits for these data points.

The values of the Kibble-Zurek coefficients found for the superfluid to density

wave quench range from 0.653873 to 1.05712 for the slow quench. For the intermedi-

ate quench rates the Kibble-Zurek coefficients vary from 0.614114 to 0.672161 and for the

fast quenches they lie between 1.07720 and 1.47741.
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7.3.3 Quenching from the Mott insulator to density wave phase

For large values of U( & 9), there is no superfluid phase, so we choose U to be greater than

or equal to 9. For this case, the range of parameters for U and V is given in Table 7.3. Like

in the previous case, the on-site interaction remains unchanged for this quench also and

the nearest-neighbour interaction changes from Vi to Vf . The values of the interaction

parameters are chosen such that the system starts in the Mott insulator phase, far from

the Mott insulator-density wave phase boundary, and ends up in the density wave phase.

The interval between Vi and Vf is 6 units. The results for Mott-insulator to density

wave phase quench are presented in Fig. 7.4. Superfluid to Mott insulator and superfluid

to density wave phase transitions are second-order transitions, but the Mott insulator to

density wave transition is a first-order transition. Unlike the former two cases, in the

latter case the energy gap does not change smoothly, instead there is a sudden jump in

the gap at the critical point. Therefore, we expect the Kibble-Zurek coefficient to vary

significantly from what it was found to be in the other two cases.

No. Ui Uf Vi Vf

1 9.00 9.00 1.90 7.90

2 9.50 9.50 2.10 8.10

3 10.00 10.00 2.40 8.40

4 10.50 10.50 2.60 8.60

Table 7.3: Table summarizing the values of the interaction parameters for the Mott

insulator to density wave phase quench.
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Figure 7.4: Quenching from MI to DW phase for different values of U and V, as indicated

in each of the plots. Dots indicate the data obtained from our numerical calculations and

solid lines indicates the linear fits for these data points.

Here again the complete data could not be fit using a single linear fit therefore

we divide quench region into two convenient parts: (i) slow and (ii) fast to get good

linear fits. As can be seen from Fig. 7.4, Kibble-Zurek coefficients for the slow quenches

vary from 0.855561 to 0.963654 and for the fast quench they lie between 0.419006 and

0.501339. Unlike the previous two cases of gapless to gapped transitions, where the

Kibble-Zurek coefficient was obtained as ∼1.4, for the present case which is a gapped to
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gapped transition involving the MI and DW phases this coefficient is found to be ∼0.5.
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7.4 Conclusions

In conclusion, we have studied the effects of the linear quench on a system of ultracold

cold atoms in optical lattices within the framework of the extended Bose-Hubbard model.

The system was quenched by varying the interactions with respect to time at different

rates across the, (i) superfluid-Mott insulator, (ii) superfluid-density wave, and (iii) Mott

insulator-density wave phase boundaries. In each case we obtain a power-law behaviour

of the residual energy (hence, the generation of defects) with the quench rate. We find

that the Kibble-Zurek (power-law) coefficient in each case largely depends on the type of

transition.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

We now summarize the findings of this PhD thesis work. Our goal was to study the

behaviour of ultracold atoms loaded in optical lattices and superlattices, interacting via

several kinds of interactions, local as well as non-local. Owing to different strengths of

interaction parameters, lattice geometries we observe novel quantum phases that have not

been studied before. The thesis work has been carried out by using quantum many-body

theories and state-of-the art numerical methods.

We started by introducing the theoretical methods used for this PhD thesis work.

Mean-field method, cluster mean-field method, Density Matrix Renormalization Group

theory and Matrix Product States are elaborated with sufficient details. We follow it

up by study of ultracold atoms in optical lattices, within the framework of the Bose-

Hubbard model, using mean-field and perturbation theory methods. We show that the

results obtained from our mean-field theory are in agreement with those obtained from

the perturbation theory. The value of critical point for the superfluid to Mott insulator

transition is found to be the same from both the methods. This is followed by the study
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of quantum phase transitions in optical superlattices. In the latter case we found that

when a superlattice potential is introduced, we get a new type of insulator phase which

we call as superlattice induced Mott-insulator phase (SLMI) and it is different from the

regular Mott-insulator phase. Turning on the superlattice potential breaks the transla-

tional symmetry of the system which is responsible for the SLMI phases. These phases,

like MI phases are gapped but arise not because of any change in the interaction between

the atoms but because of change in the geometry of the potential wells. Moreover these

phases arise at half-integer densities and can be seen below Uc for the SF-MI transition.

The regular MI phases are also affected by the superlattice potential λ. For small values

of λ the system remains unaffected but for sufficiently high λ the regular MI phase (e.g.

ρ = 1, [...1 1 1 1...]) undergoes a transition to a SLMI phase (ρ = 1, [...0 2 0 2...]) via a

SF phase at λ ≈ U .

In Chapter 4, we have shown our findings on how the on-site three-body interaction

(W ) effects the quantum phase transitions and changes the phase diagrams obtained

obtained in previous chapters. We found from our calculations that the effect of W is

very small compared to the two-body interaction in the system of bosons in an optical

lattice when the filling factor of the system is unity. But as we go on increasing the

density the three-body effects become significant and dominating. The introduction of

the three-body on-site interaction in the above scenario significantly modifies the phase

diagram. The insulating lobes get bigger in the phase diagram. Also the location of the

presence of the intermediate superfluid phase gets displaced in the presence of three-body

interaction [?]. All the results in this chapter were obtained using mean-field theory. In the

next chapter we do a follow-up study using the finite size DMRG method and obtain more

accurate phase diagrams of the systems mentioned above. The DMRG results confirm

the results obtained using the mean-field theory and are in a good qualitative agreement.

Chapter 6 deals with the quantum phases of attractive bosons on a Bose-Hubbard

ladder with three-body constraint. The model we considered was that of a two leg ladder,
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but with nearest-neighbour interaction present along the rungs only. We find that there

exists a transition from the atomic superfluid to the dimer superfluid phase when the

density of the system varies from zero to two and interaction is attractive. When the

density is two we obtain a gapped phases, MI(2). By introducing nearest neighbour

interactions between the particles sitting in the two sites of a rung, we obtain the dimer

rung insulator(DRI) phase at unit filling. The DRI phase is gapped in which the particle

motion is confined within the rungs of the ladder. This phase appears in the middle of

the DSF phase which gets enhanced as the value of the nearest neighbour interaction

increases. We also find that the MI(0)-ASF transition boundary is first order. However,

the ASF-MI(2) phase boundary is continuous for small values of |U | and becomes first

order when |U | is large through a tricritical point. This point shifts towards the smaller

values of |U | as the value of V increases. We also complement our prediction of the

DRI phase by studying a system of hardcore bosons on a two leg ladder with nearest

neighbour repulsions only along the rung. To check the stability of the phases and scaling

of the critical points we have done the calculations using 4, 6, 8 and 10 site clusters for

the hardcore bosons. For the soft-core bosons with the three-body constraint we have

done calculations upto 8-sites keeping V fixed at 1.0. In the case of hard-core bosons on

a ladder we find that phase diagram improves with the increase in cluster size and the

RI-SF critical point approaches the value as obtained from DMRG and Quantum Monte

Carlo calculations. In the case of softcore bosons with the three-body constraint we find

that overall the phase diagram remains the same qualitatively and there are only small

changes in the phase boundaries with the change in cluster size.

In the last part of the thesis work, we have studied the system of ultracold atoms

in optical lattices out of equilibrium within the framework of the extended Bose-Hubbard

(EBH) model. We have studied the effects of linear quenches for various phase transi-

tions within the framework of the extended Bose-Hubbard model. The phase transitions

considered were, (i) SF-MI, (ii) SF-DW, and (iii) MI-DW. In each case we try to es-
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tablish a power-law behaviour of the residual energy (hence, the generation of defects)

with the quench rate. We find that the Kibble-Zurek (power-law) coefficient in each case

largely depends on the type of transition under consideration. Also we see that the KZ

mechanism type of behaviour holds only for intermediate values of quenching rates.

8.2 Future Directions

The field of ultracold atoms is now a rapidly expanding area of research and can be used

to study a wire range of important problems. Some of them are listed below:

� To study quantum phase transitions in a system of ultracold atoms in an optical

lattice with nearest-neighbour interactions in the presence of the three-body on-site inter-

actions. In our studies we have looked at the phase transitions of ultracold bosonic atoms

in the presence of the two-body and three-body on-site interactions [1]. The extended

Bose-Hubbard model also has been studied extensively [2, 3, 4, 5, 6]. But a combined

study involving on-site two-, three-body and non-local nearest-neighbour interaction has

not been investigated to the best of our knowledge. So, it will be instructive to study such

a system and search for novel quantum phases by varying the densities and the strengths

of the interactions. This will definitely modify the existing phase diagrams and in ad-

dition to that we may obtain new phases. The study can be first carried out using the

cluster mean-field method and then by the DMRG method in order to verify and obtain

more accurate results. In continuation with this, the effect of the superlattice potential

can also be investigated.

� To study novel quantum phases of hard-core bosons in 2D optical lattices. The

dimensionality of the system also plays a crucial role in determining the phases a system

can exhibit. In of our recent studies we found that the attractive bosons with a maxi-
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mum occupation of 2 per site, loaded in two coupled 1D optical lattices give rise to dimer

phases [7], like dimer superfluid and dimer rung-insulator [13]. Bosons in coupled 1D

lattices and square lattices have been extensively studied [7, 8, 9, 10, 11, 12]. Therefore,

another interesting problem to study will be the phases of two- and three-body hardcore

bosons in a 2D optical lattice with identical as well as different tunnelling strengths in

the two planar directions. As an extension of this, the hopping or tunnelling strengths

can be made to vary in alternate fashion along one of the directions while keeping it fixed

to some other value along the other direction. In both the cases we expect new phases.

� The dynamics of ultracold atoms and molecules remains a relatively unexplored

area. It will be worthwhile to investigate the dynamics for the supersolid phase and

quenching of systems through multicritical points. In most of these scenarios analytical

studies are either not possible or can be performed with support from numerical cal-

culations. Investigating the validity of the Kibble-Zurek mechanism in such evolution

scenarios will be interesting.

� Ultracold atoms can be used for mimicking spin-orbit interactions. Engineered

spin-orbit coupling in ultracold atoms can be achieved by dressing two atomic spin states

with a pair of lasers. In the presence of laser coupling the two dressed atomic states

are modified, driving a quantum phase transition from a spatially mixed state (laser off)

to a phase separated state (above a critical laser intensity). Such systems can exhibit

novel quantum phases like quantum Hall liquids, topological insulators and superfluids.

Also, they can improve our understanding of phenomena that have recently been pre-

dicted for electron systems in external magnetic fields or with strong spin-orbit interac-

tion [14, 15, 16].

� Development and application of the coupled cluster method to study ultracold
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bosonic atoms in optical lattices. The coupled cluster method is a very powerful and

versatile quantum many-body theory [17]. This theory has been very successful in deter-

mining atomic and molecular properties to a very high degree of accuracy [18, 19]. At

first, the coupled cluster method can be applied to study the properties of atoms and

molecules in general and compare with known results. After that it can applied to study

ultracold bosonic and fermionic atoms in optical lattices for determining novel quantum

phase transitions.

The problems proposed above as future directions are extremely relevant in the

current scenario and and are worth pursuing. This pursuit will not only improve our

understanding of phases of matter at ultracold temperatures but also many condensed

matter phenomena. The knowledge gained by the studying these problems will surely be

a significant contribution to the scientific community.
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