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Abstract

The study of magnetic fluxtubes is a very important aspect as it plays an important

role in several astrophysical phenomena in the solar atmosphere. Thus, it is very

important to understand the properties and structures of the magnetic configuration

and thermodynamic quantities of the fluxtubes. In this Thesis, we construct two

different classes of fluxtube models with twisted magnetic fields by solving the Grad-

Shafranov equation (GSE) semi-analytically. We also calculate the energy distribution

of a braided system of magnetic field lines using the Self-Organized Criticality (SOC)

model.

The fluxtube models we build are in magnetohydrostatic (MHS) equilibria for an ax-

isymmetric geometry, spanning from the photosphere to the lower part of the transition

region within a realistic stratified solar atmosphere subject to solar gravity. We as-

sume a general quadratic expression of the magnetic flux function for the gas pressure

and poloidal current and solve the GSE analytically. One solution is a combination

of a homogeneous and a particular part where the former is separable by a Coulomb

function in r and exponential in z, while the particular part is an open configura-

tion that has no z dependence. The other fluxtube model can be branched out into

open and closed field solutions by using a self-similar formulation with different profile

functions and incorporating stratified solar gravity to maintain the magnetohydrostatic

equilibria, which is a modification of earlier self-similar models by a twist. We study

the admitted parameter space that is consistent with the conditions in the solar at-

mosphere and derive magnetic and the thermodynamic structures inside the fluxtubes

that are reasonably consistent with the photospheric magnetic bright points (MBPs)

for both open and closed field Coulomb function and self-similar models as estimated

from observations and simulations. The obtained open fluxtube solutions can be used

as the background conditions for the numerical simulations for the study of the wave

i



propagation through the fluxtubes. The closed field solutions can be used to construct

realistic magnetic canopies in the solar atmosphere.

We estimate winding number distributions of braided topologies. We also calculate the

power-law index of the energy distribution for the solar radio flare events on 14 February

2011, and 11 March 2011, captured by Gauribidanur Radio Telescope, and compare

the theoretical prediction of the power-law index with the observational estimate.
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Chapter 1

Introduction
Image source: www.thesuntoday.org

The light that we see by our naked eyes from the Sun is due to the optical radi-

ation coming from its surface. The optical emission is produced by the Thomson

scattering in the upper atmosphere of the Sun, which is many orders of magnitude

less intense and therefore can only be seen when it is obstructed at the time of

the solar eclipse. The surface of the Sun, the photosphere, is the best region to

obtain information about the solar magnetic features. Several advanced ground

and space observations have revealed many details of solar magnetism which play

an important role in various phenomena in the solar atmosphere.

1

www.thesuntoday.org
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1.1 Solar interior and its atmosphere

Sun is the nearest star in our galaxy, having a radius of R� ∼ 700 Mm and a mass

of M� ∼ 1033 g. The importance of study about the Sun is not only as an object

of fascination but also is the ultimate source of energy in our entire solar system.

Another advantage of the study of the Sun is that it is the closest laboratory to

study various astrophysical phenomena in great detail. The basic structure of the

solar interior and its outer atmosphere is shown by the cartoon in Figure 1.1.

Figure 1.1: Structure of the solar interior and its atmosphere. Figure courtesy:
https://en.wikipedia.org/wiki/Sun.

The formation of the Sun was due to the contraction of a rotating interstellar

cloud. Due to the gravitational collapse, the central part of the interstellar cloud

started contracting, and the core became hot enough to initiate the thermonuclear

reactions which made the Sun a hot ball of plasma. The size of the solar core is

∼ 0.2 solar radius which is made of highly dense gas of density ∼ 160 g cm−3, and

the temperature is ∼ 15 million K. The radiative zone is the next layer of the solar

https://en.wikipedia.org/wiki/Sun
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interior which extends from the core to ∼ 0.7 solar radii. The energy transport in

this layer is mainly due to the radiative diffusion process, where the H and He ions

emit X-ray photons, which get scattered, absorbed and then re-emitted by other

ions. During this process of random walk, the photons take around 106 years to

reach the end of the radiative zone. From the end of the radiative zone to the solar

surface, the temperature drops down and therefore the radiation process becomes

less effective. In this layer, the thermal convection becomes the dominant mode of

energy transportation. This layer is called the convective zone. The gas which is

in the interior part of the convective zone heats up and expands, and rises to the

solar surface, where it releases energy in the surface, cools off, becomes dense and

again sinks back to the base of the convective zone. This cool gas again heats up

due to the top layer of the radiative zone, continuing a convective cycle, like the

roiling of the water bubbles in a pan of boiling water. These convective motions

of the hot plasma make the imprint of solar granulations and super granulations

on the solar surface. The next layer of the solar interior is the solar surface,

photosphere, where the temperature drops down to ∼ 6000 K. Most photons

that leave the photosphere are in the optical wavelength, which is observed in

the white light. The atmosphere of the Sun starts above the photosphere with

the chromosphere which is an irregular layer above the photosphere that has a

thickness of around 3000 km, the temperature in this region rises from 6000 K to

20000 K. The Hydrogen starts to emit light in this high temperature, which gives

a reddish color (Hα line). The next part of the solar atmosphere starts at 2000

km height above the photosphere, called the transition region. This is a very thin

and irregular layer where the temperature rises very rapidly from 20000 to 106 K.

The emission lines from this layer are the C IV, O IV, and Si IV in the ultraviolet

region of the solar spectrum which can be observed from space telescopes. The

outer atmosphere of the Sun is called the corona, which starts above the transition

region and extends up to the interplanetary region. The brightness of the solar

corona is small compared to the photospheric brightness so that the corona can

only be seen at the time of the total solar eclipse. The temperature of the corona
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is of the order of a few million K. Due to the high temperature, the corona shines

brightly in the X-rays.

1.1.1 The magnetic surface of Sun

With the recent advancement of the ground and space observations, many details

on the solar surface have been revealed. The surface of the Sun, the photosphere

is the best source for understanding the evolution of the magnetic field and the

related phenomena. The photosphere is covered with large numbers of uneven

magnetic ensembles of various spatial sizes, strength, shapes and lifetimes. The

different magnetic regions in the photosphere are shown in Figure 1.2. The spatial

distribution of the magnetic surface can be described by the filling factor, which

is defined as fm = Sm/S, where Sm and S are the surface area occupied by the

magnetic field and the total area of interest respectively. The different regions in

the solar surface can be categorized in terms of different filling factor values as

follows.

1.1.2 The quiet Sun

This is the largest region in the solar surface with the filling factor, fm � 1.

Almost 90% of this region is covered with the small scale magnetic elements or

magnetic fluxtubes. These fluxtubes trace the convective cell boundaries. The

smallest part of the convective cell is the granulation network, whose size ranges

from a few hundred km to a few thousand km. The image of the quiet sun region is

shown in Figure 1.3, where the bright and the dark patches represent the positive

and negative polarities of fluxtubes respectively. The lifetime of these individual

fluxtubes of this region ranges from a few minutes to a couple of hours.
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Figure 1.2: Full disk magnetogram image taken by AIA/HMI of SDO on 18
October 2012. The white and black patches show the different magnetic re-
gions in the solar photosphere with positive and negative polarities respectively
(Figure courtesy: https://www.solarmonitor.org).

1.1.3 Sunspots and active regions

Sunspots are the regions of huge magnetic flux concentrations in the photosphere,

seen as dark spots of sizes ∼ 5 − 25 Mm, whose filling factor, fm ' 1. The

temperature within the sunspots is ' 4000 K, which is lower than the average

temperature of the solar surface, ' 6000 K. An image of a sunspot in the AR

https://www.solarmonitor.org
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Figure 1.3: Full disk image of quiet sun taken taken by Coronado Solarmax
90 Hα telescope. The bright and the dark patches represent the positive and
negative polarities of magnetic fields respectively. Figure source: http://cs.

astronomy.com/asy/m/sunandmoon/490622.aspx

10030 is shown in Figure 1.4. The detailed structure of the sunspots is extremely

complex. The center of a sunspot contains a strong and almost vertical magnetic

field which is called the umbra. Umbra is surrounded by the penumbra. The

magnetic field gradually becomes horizontal along the periphery of the penumbra

forming thin magnetic filaments. The field intensity across the penumbra is very

inhomogeneous, and the inclination of the magnetic field changes from 45◦ to 90◦

with the line of sight direction from inner to the outer part of the penumbra (Title

et al. 1993). Unsteady plasma flow is observed from the inner to the outer part

http://cs.astronomy.com/asy/m/sunandmoon/490622.aspx
http://cs.astronomy.com/asy/m/sunandmoon/490622.aspx
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Figure 1.4: Image of AR 10030, observed by the Swedish Solar Telescope
(SST). Image courtesy: https://www.britannica.com/science/sunspot.

of the sunspot penumbra with a velocity of ∼ 1 Km s−1, in the photospheric

level, which is called the “Evershed effect” (Evershed 1909). The alignments of

the bright filaments in the penumbra and the plasma flow due to the Evershed

effect makes an angle. A detailed study by Livingston (1991) reveals that the

umbra region also consists of filamentary structures that exhibit the presence of

horizontal, vertical, and diverging filaments. Newly formed or young sunspots that

do not develop penumbra are called pores. The typical sizes of the pores are ∼ 3−6

Mm, and the lifetimes are ∼ few hours. The gradual process and the formation

of a sunspot and its appearance in the visible surface require ∼ a few days. Due

to the presence of the opposite polarity sunspots in a close neighborhood in the

active region, several electro-magnetic phenomena occur which shape the overlying

atmospheres: chromosphere, transition region, and corona.

https://www.britannica.com/science/sunspot
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1.1.4 Plages

Plages are the magnetic flux concentrated regions present in the photosphere with

filling factor, fm ∼ 0.2 − 0.3. Figure 1.5 shows the plage region observed by

HMI/SDO instrument, where the white and the black patches represent the posi-

tive and negative magnetic polarities respectively.

Figure 1.5: Image of a plage region taken by HMI/SDO instrument. The white
and black patches represent the positive and negative polarities respectively.
Image courtesy: Ryutova (2015).

The plage regions are mainly distinguished into two categories: mixed polarity

plages, and the plages which are dominated by one magnetic polarity. The plages

are originated mainly due to decay of the active regions, or they may form due

to magnetic subsurface activities which elevate the emergence of the small scale

magnetic fluxtubes. The typical field strength of these regions is about 100 G.

The plages that are formed from the remnant active regions are bipolar, and those
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which are formed from the decaying sunspots are unipolar. However, these unipo-

lar plages may form a mixed polarity region by overlapping with the neighboring

plages of opposite polarities. The dynamics and the activities of the plages are

very complex. Some common effects that are shown by both the unipolar and

mixed polarity plages, although the study of the properties of both types of plages

are equally important as they have unique features of their own.

1.1.5 High latitudes and polar regions

At the end of each 11 years solar cycle, the sunspots and the sunspot groups mi-

grate towards the equator region, whereas the remnants of the older cycle migrate

towards polar regions. At the start of a new solar cycle, the sunspot with opposite

polarities start emerging at the latitude of about ±40◦, and the newly emerged

sunspots or the sunspot groups migrate towards the polar region. That is why the

merging of the magnetic network elements of opposite polarities of the previous

cycle and those of the new cycle can be observed in the first half of a solar cycle.

Figure 1.6 shows the polar region of the North pole. The white and black spots

represent the positive and negative polarity network elements respectively. The

negative polarity elements appear due to the previous cycle, whereas the posi-

tive polarity network elements are from the new solar cycle. The white dashed

line shown in this picture is the line that demarcates between these two polarity

network regions. The filling factor near the demarcation line is important to the

study of the formation and evolution of polar plumes and quiescent prominences.
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Figure 1.6: Magnetogram image of the high altitude solar region near the Norh
pole taken by HMI on 15 May 2010. The white and black spots represent the
positive and negative polarity network elements respectively. Image courtesy:
Ryutova (2015).

1.2 Solar fluxtubes

Magnetic concentrations are observed in the solar surface in the form of fluxtubes,

whose spatial scale varies from a few hundred km to few tens of Mm. A magnetic

fluxtube is a cylindrical magnetic region with concentrated magnetic flux. The

magnetic field lines are parallel to the surface of the cylindrical fluxtubes. This

is an aid for visualizing the magnetic fields in the vicinity of the magnetic flux

concentrated area. Figure 1.7 shows a cartoon diagram of magnetic fluxtube,

where the same number of field lines are passing through two different cross-

sectional areas, S1 and S2. Magnetic flux cannot either enter or leave the surface

of a magnetic fluxtube, and the flux at each cross-sectional area of a fluxtube is

equal. Hence, the field strength inside a fluxtube may vary along its length which

depends on the cross-sectional area of that fluxtube, although the total flux inside
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a fluxtube always remains constant with time.

Figure 1.7: A cartoon diagram of a magnetic fluxtube. The number of field
lines entering the surface S1 and crossing S2 are same (Figure courtesy: https:
//en.wikipedia.org/wiki/Flux_tube).

1.2.1 Importance of the study of solar fluxtubes

After the discovery of the million-kelvin temperature of the solar corona, which is

at ≈ 10R� (see Figure 1.8), there was a need to explore the heating mechanisms

of the corona. There are two schools of thought for explaining the coronal heating

mechanism: one is due to the dissipation of magnetically driven waves in the solar

atmosphere, and the other one is due to the reconnection events. The magnetic

footpoints in the solar surface are in random motion. If the photospheric motion

changes on a time scale faster than what the coronal loop can adjust to, then the

waves generated from the photosphere propagate through the magnetic fluxtubes

and dissipate in the higher atmosphere in the form of kinetic or thermal energy.

On the other hand, if the random displacements of the magnetic footpoints in the

photosphere are much slower than the Alfvén transit time along a coronal loop,

then the magnetic field lines, and its larger counterparts, the fluxtubes get twisted

and wrapped to each other. This twisting and wrapping generate magnetic stress

at the surface boundary of the fluxtubes. When the stress reaches a threshold

https://en.wikipedia.org/wiki/Flux_tube
https://en.wikipedia.org/wiki/Flux_tube
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value, then the field lines explosively snap releasing kinetic and thermal energy. So

we see that for both the wave dissipation and braiding mechanisms, the magnetic

fluxtubes play a very crucial role. Hence the study of the fluxtubes is an important

aspect of solar physics. The size and the magnetic field strength of the fluxtubes

seen in various forms in the solar atmosphere are listed in Table 1.1.

Figure 1.8: Variation of temperature, T and density, ρ with vertical height, z
from solar surface to corona obtained by Vernazza et al. (1981) model. Figure
courtesy: Fedun et al. (2009).

Fluxtubes in various forms in the solar atmosphere Size Magnetic field strength

Sunspots ∼ 10 Mm 3− 5 kG

Faculae ∼ 400 km 1− 2 kG

Photospheric magnetic bright points 100− 1000 km 0.1− 1 kG

Coronal loops 10− 10000 km ∼ 1 kG

Coronal bright points ∼ 10 Mm ∼ 100 G

Spicules ∼ 500 km 30− 80 G

Table 1.1: Magnetic field strength and size of the fluxtubes in various forms
observed in the solar atmosphere.

1.2.2 Brief historical overview of various fluxtube models

Several attempts have been made earlier to construct the model of fluxtubes

for both twisted and untwisted magnetic fields. Schlüter and Temesváry (1958)
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studied a two dimensional (2D) axisymmetric fluxtube model without twist for

sunspots using a self–similar structure, where a self-similar parameter was defined

as a separable combination of r and z, and the relative vertical magnetic field

strength at the axis is scaled with a Gaussian profile function of the self-similar

parameter. This model is valid for open field lines where the magnetic lines of

force rise from a horizontal plane and do not return in the model domain. Yun

(1971) implemented a twist in the self–similar structure to model the sunspots.

In this model, an empirical form of the azimuthal magnetic field strength Bφ(r, z)

was taken from the data obtained from observations (Stepanov 1965). By solving

for the variation of the pitch angle and gradient of the pitch angle, the thermody-

namic quantities with the depth were calculated. Motivated by the model and the

self–similar structure proposed by Schlüter and Temesváry (1958), Osherovitch

(1982) assumed a quadratic form of gas pressure in terms of the flux function to

model a closed field fluxtube where the magnetic lines of force rise and return

to the same horizontal plane. The linear force free field (FFF) solution for the

magnetic configuration is obtained by Chandrasekhar (1956) and carried forward

by Low and Lou (1990) for the non-linear case. Prasad et al. (2014) obtained the

complete analytic solutions for both linear and non-linear force free fields with the

twisted magnetic configuration which was applied to the active region for estimat-

ing coronal magnetic structures. Steiner et al. (1986) have numerically studied a

2D model of open single fluxtube with a twist using the standard boundary con-

ditions including a sheet current to study the magnetic field line structure within

and outside the fluxtube. The magnetic and thermodynamic structure for both

single and multiple fluxtubes which span from the photosphere to corona have been

studied for the case of untwisted magnetic field (Gent et al. 2013, 2014), where

an empirical form of the magnetic field components is motivated by a self-similar

construction. A numerical model of fluxtubes has been studied by Murawski et al.

(2015b), where an empirical form of magnetic flux function has been assumed; this

was followed by a model to study the propagation of the MHD waves through the

fluxtubes with an azimuthal velocity perturbation. The steady structure of the 2D
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fluxtube was used as a background initial condition to study the propagation of the

MHD waves. For example, Vigeesh et al. (2009) assumed an empirical form of gas

pressure for investigating the wave propagation and energy transport through the

fluxtube. Other interesting results of wave behavior in the solar atmosphere have

been presented by several authors. Fedun et al. (2009) have studied the propaga-

tion of the acoustic wave through the solar atmosphere due to the periodic drivers

at the photosphere, and Shelyag et al. (2010) have modeled the wave propagation

through the photospheric magnetic bright points (MBPs). A flowchart of a brief

historical overview of various fluxtube solutions is shown in Figure 1.9.

1.3 Aims of this Thesis

The main aims of this Thesis are listed below:

• To construct two different fluxtube models, one of which is of the separable

form, and another is in a self-similar form, by solving the Grad-Shfranov

equation semi-analytically and incorporating the twist in the magnetic field

configuration.

• To obtain an open and closed magnetic structure of fluxtubes that span from

the photosphere to the transition region, incorporating the twist, and solving

GSE semi-analytically.

• To estimate the magnetic and thermodynamic structures inside the fluxtubes

using realistic inputs of the solar atmosphere, and to compare our mod-

els with other pre-existing observations and simulations of magnetic bright

points (MBPs).
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• To estimate the winding number distribution of braided magnetic fields using

Self-Organized Criticality (SOC) model, and to calculate the energy distri-

bution, and power-law indices of solar flare events.

• To compare the theoretical predictions of power-law indices of energy distri-

bution for the solar flares with the observations of radio flare events.

This thesis aims at finding new and distinct twisted magnetic fluxtube solutions

solving GSE semi-analytically. We have constructed open and closed field mag-

netic configurations for two different models: Coulomb function, and self-similar

models. The solution of the Coulomb function model is the combination of a

homogeneous part and a particular part. The homogeneous part with closed ge-

ometry is separable with a Coulomb function in r whereas the z part decreases

exponentially with height, and the particular part with open geometry is a power

series of r which is independent of z. On the other hand, we have improved the

self-similar model by incorporating twist and modifying the pressure profile, which

maintains the hydrostatic pressure balance under the influence of stratified solar

gravity. We compare the estimated value of the power-law indices for the solar

flare events obtained by the SOC model with the observations of the radio flare

events taken by Gauribidanur Radio Telescope (GBRT).

1.4 Thesis constituents

The structure of this Thesis is arranged into eight chapters in total. In Chapter 1,

we present a brief overview of the magnetic surface of the Sun, and the motivation

to study the magnetic elements with a brief historical overview of various magnetic

fluxtube models. Chapter 2 outlines the basic concepts of MHD and applications

in the astrophysical domain. We also derive the Grad-Shafranov equation (GSE)

which is key to our fluxtube models. Chapter 3 presents a historical overview
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of the discovery and observations of fluxtubes in the Sun. We also discuss the

physical properties of the fluxtubes, the governing equations to solve fluxtube

models, and a brief historical overview for various fluxtube models. In Chapter

4, we present a new and distinct fluxtube model with a twisted magnetic field

by solving GSE analytically. The magnetic structure obtained in this model is

closed, which means the field lines rise and fall back in the same horizontal plane.

This is called the Coulomb function closed field model. In Chapter 5, we extend

the Coulomb function model described in Chapter 4 for constructing open field

magnetic configuration, where the field lines rise from a horizontal plane but do not

come back to the same plane [or come back outside the domain of computation].

We discuss another class of fluxtube models, called the self-similar model, for

obtaining the open and closed field fluxtube structures. Incorporating boundary

conditions in those fluxtube solutions, and taking realistic inputs of the solar

atmosphere we estimate the magnetic and thermodynamic structure inside the

fluxtube and compare with observations and other simulation results of MBPs.

Chapter 6 describes the mechanism of magnetic reconnections and various flare

models. In Chapter 7, we discuss the winding number distribution of braided

magnetic fields to estimate the power-law index of energy distribution for the

solar flares. We compare this theoretical prediction with the observations of solar

flare events taken by the GBRT. Chapter 8 then presents a summary of the results

from all chapters, highlight the novel aspects of this Thesis with its impact. Then,

we discuss future work which includes papers under preparation. The chapter-wise

concept flowchart of the Thesis is shown in Fig. 1.10.

1.5 Resource summary

In this chapter, we have discussed a brief overview of the solar interior and its

atmosphere, and the importance of the study of the twisted fluxtubes in the solar
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Figure 1.10: Flowchart of the connections between the chapters of the Thesis.

atmosphere. We have also presented a brief historical overview of various im-

portant fluxtube models. The main references and the text for this chapter are

[Ryutova (2015); Fedun et al. (2009); Gent et al. (2013)].



Chapter 2

Basics of MHD and GSE

Image source: www.astronomy.com

2.1 Introduction

In this chapter, we have discussed the general properties of MHD plasmas and the

corresponding equations. Before going into the details of the MHD properties, it

is important to note that the validation of the MHD equations is satisfied only if

there is a sufficient number of collisions between the plasma particles. To estimate

the collision rate, let us consider a unit cube of energy and momentum. We con-

sider the spatial scale of such a cube is L, which is comparable (or smaller) with

the length scale of the variation of the plasma quantities, pressure, p, density, ρ,

and plasma velocity, U. If the particles inside the cube escape out in a shorter

time than the time of the variation of the plasma quantities, τ , then the cube

cannot be regarded as a unit cube, and the MHD equations fail (Kulsrud 2010).

19

www.astronomy.com
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Let the mean free path, thermal velocity, collision rate, and collision time for the

particles within the cube are, λm, vT , νc and τc respectively. Then in a time τ , the

particles will go through a random walk of distance l, which is given by

l2 =
τ

τc
λ2
m ≈ τvTλm, (2.1)

where we use the facts that, τc = 1/νc, λm = vT τc, and the the collisional steps

are uncorrelated.

Thus, the treatment of the plasma will be justified if l2 << L2, which can be

written from eqn (2.1) as,

vTλm <<
L2

τ
. (2.2)

Condition (2.2) satisfies if

λm << L and τc >> τ, (2.3)

which implies, that the MHD equations are valid if the mean free path of the

collisions is much smaller than the spatial variation of the plasma quantities, and

the collision time of the plasma particles is much larger than the time scale of the

temporal variation of the plasma quantities.

In addition, the MHD equations are valid if the resistivity of the plasma is neg-

ligible so that the entropy is conserved, and the viscosity of the medium is very

small, such that the pressure is isotropic throughout the medium.
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2.2 General principles

A sufficiently collisional plasma can be described macroscopically by the basic

state of magnetohydrodynamics, specifying the local mass density ρ, momentum

density ρU, gas pressure p, electric field E and the magnetic field strength B as

the functions of position r and time t. For a strong collisional plasma, the heat

flow is small and the pressure due to ions and electrons is isotropic. If ηm is the

magnetic diffusivity and U is the plasma velocity then the magnetic Reynold’s

number is defined as RM =
UL

ηm
. For a strong collisional plasma system, RM is

large, which is true for a large length scale L, such as astrophysical systems, the

resistivity can be neglected (Cowling 1972). In this scenario, the system can be

described by “ideal MHD equations”.

In ideal MHD, each of the quantities ρ, U, p, and B require time dependent

equations. These are usually the hydrodynamic and electromagnetic equations,

modified by taking into account the magnetic field and the interaction between

the motions. If j is the current density, then from Maxwell’s equations (in SI

units), we have,

∇×B = µ0j (2.4a)

∇ · j = 0 (2.4b)

∇× E = −∂B

∂t
(2.4c)

∇ ·B = 0, (2.4d)

where µ0 is the magnetic permeability. If the plasma moves with a velocity U, it

experiences the total electric field of E + U×B due to Lorentz force. Thus if σ
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is the electrical conductivity,

j = σ(E + U×B). (2.5)

The eqn (2.5) is the differential form of the Ohm’s law. For mass balance, the

continuity equation is

∂ρ

∂t
+∇ · (ρU) = 0. (2.6)

For momentum, the Euler equation in the presence of the acceleration due to

gravity g is,

ρ

(
∂U

∂t
+ U · ∇U

)
= −∇p+ j×B + ρg + Fvis, (2.7)

where the relation between the Lagrangian derivative
d

dt
, and Eulerian derivative

∂

∂t
is given by

d

dt
=

∂

∂t
+ U · ∇, (2.8)

and Fvis is the viscous force per unit volume is given by

Fvis = ρν∇2U, (2.9)

where ν is the kinematic viscosity. The equation for constant entropy is given by,

∂

∂t

(
p

ργ

)
+ U · ∇

(
p

ργ

)
= 0, (2.10)

where γ is the adiabatic index of the plasma medium.

Now rearranging the eqn (2.5), we obtain the following form for the electric field,

E =
j

σ
−U×B. (2.11)
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Taking the curl of equation (2.11) and using eqn (2.4a) we obtain the following

equation,

∇× E = −∇× (U×B) +
1

µ0σ
∇× (∇×B). (2.12)

Combining the equations (2.12, 2.4c, 2.4d), we find

∂B

∂t
= ∇× (U×B) + ηm∇2B, (2.13)

where, ηm = (µ0σ)−1 is the magnetic diffusivity. Equation (2.13) is called the

induction equation. For a material at rest (U = 0), the induction equation reduces

to the diffusion equation:

∂B

∂t
= ηm∇2B. (2.14)

The diffusion eqn (2.14) indicates that the field leaks with time from point to

point. From the dimensional analysis of eqn (2.14), we notice that the diffusion

time scale τd, for a length scale L is, τd ∼
L2

ηm
, which means the diffusion time is

faster for a small length scale. For example, a copper sphere of radius 1 m, τd ∼ 1

s, whereas for the Sun, τd ∼ 109 years. For astrophysical systems, the length scale

is large, therefore the magnetic Reynold’s number, which is given by

Rm =
vB/L

ηmB/L2
=
Lv

ηm
, (2.15)

is very high. This implies that the transport effects are weak i.e. ηm << vL.

Therefore, the induction eqn (2.13) reduces to

∂B

∂t
= ∇× (U×B). (2.16)
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In the §2.3 we will see that the eqn (2.16) leads to the flux freezing condition. We

now summarize the ideal MHD equations below (Priest 2014).

Continuty equation:
∂ρ

∂t
+∇ · (ρU) = 0, (2.17)

Euler equation of motion: ρ

(
∂U

∂t
+ U · ∇U

)
= −∇p+ j×B + ρg + Fvis,

(2.18)

Entropy equation:
∂

∂t

(
p

ργ

)
+ U · ∇

(
p

ργ

)
= 0, (2.19)

Induction equation:
∂B

∂t
= ∇× (U×B) + ηm∇2B. (2.20)

2.3 Freezing of magnetic fields

For the astrophysical domain the conductivity of a medium, σ = ∞, hence the

eqn (2.11) reduces to

E + U×B = 0. (2.21)

The evolution of the magnetic field along the magnetic lines of force is given by

dB

dt
=
∂B

∂t
+ (U · ∇)B. (2.22)
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If we consider a simple closed loop C which encloses an area S, then the rate of

change of the magnetic flux associated with the loop is

d

dt

∫∫
S

B · dS =

∫∫
S

B · ∂S

∂t
+

∫∫
S

∂B

∂t
· dS

=

∫∫
S

B · ∂
∂t

(Udt× dl) +

∫∫
∂B

∂t
dS

= −
∮
C

(U×B) · dl +

∫∫
S

∂B

∂t
· dS

= −
∫∫
S

∇× (U×B) · dS +

∫∫
S

∂B

∂t
· dS

=

∫∫
S

(
∂B

∂t
−∇× (U×B)

)
· dS. (2.23)

Plugging eqn (2.16) into eqn (2.23) we obtain
d

dt

∫∫
S

B · dS = 0, which implies

that the the magnetic flux through the loop C is constant with time as it moves

with the plasma. In other words, the flux is frozen in the medium. Conservation

of the magnetic lines of force in a plasma medium [Lundquist (1951), Roberts

(1967)] can also be proved from eqn (2.22), which gives

d

dt

(
B

ρ

)
=

∂

∂t

(
B

ρ

)
+ (U · ∇)

B

ρ

= −B

ρ2

∂ρ

∂t
+

1

ρ
∇× (U×B) +

1

ρ
(U · ∇)B + B(U · ∇)

1

ρ

=
B

ρ2
∇ · (ρU) +

1

ρ
(B · ∇)U− 1

ρ
(U · ∇)B +

U

ρ
(∇ ·B)

− B

ρ
(∇ ·U) +

1

ρ
(U · ∇)B + B(U · ∇)

1

ρ

=
B

ρ2
U · ∇ρ+ B(U · ∇)

1

ρ
+

1

ρ
(B · ∇)U

⇒ d

dt

(
B

ρ

)
=

1

ρ
(B · ∇)U. (2.24)

To see the physical implication of the eqn (2.24), we consider a line element δl

moving in a plasma medium. If U and U+δU are the velocities of two end points
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lying in the field line, then the difference in the velocity of these two points is

δU = (δl · ∇)U. The rate of change of length of the line segment dl during the

time interval dt is,

d(δl)

dt
= δU = (δl · ∇)U. (2.25)

Since eqn (2.25) has the exact form like eqn (2.24), this implies that, if dl and B/ρ

are initially parallel to each other, they will remain parallel for all time. Therefore,

if there are two points lying in a magnetic field line, they will remain on that line

forever. In other words, the field lines are frozen in the plasma medium. This

implies that the plasma can move freely along the field lines, but, if the motion is

perpendicular to the field lines, then the field lines are either dragged or pushed

by the plasma.

2.4 Magnetic field lines

In this section, we will focus on the mathematical representation of the magnetic

field lines (Goosens 2003). In the previous section, we see that the magnetic field

lines are glued to the plasma and dragged along in its motion. So, from the

magnetic configuration in a plasma medium, we can guess the associated thermo-

dynamic structure.

The parametric form of a 3D curve is given by,

x1 = f1(u), x2 = f2(u), x3 = f3(u), (2.26)
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in terms of the parameter u, and the three arbitrary functions, f1(u), f2(u), and

f3(u). The tangent vector, t, of the curve of eqn (2.26) can be written as,

t =
dx(u)

du
≡
[

dx1(u)

du
,
dx2(u)

du
,
dx3(u)

du

]>
, (2.27)

where the superscript > represents the transpose of the row matrix. Magnetic

field lines are the 3D curve which are parallel to the tangent vector t, hence the

magnectic field components for

B = [B1, B2, B3]>, (2.28)

can be written as,

dx1(u)

du
= λB1,

dx2(u)

du
= λB2,

dx3(u)

du
= λB3, (2.29)

where, λ is a proprtionality constant, which varies for different field lines of the

same family. It is straight forward to show that,

λ =
1

|B|
ds

du
, (2.30)

where, s is the arc length of an arbitrary curve, with the following two conditions,

(
ds

du

)2

=
3∑
i=1

(
dxi(u)

du

)2

, (2.31a)

B =

( 3∑
i=1

B2
i

)1/2

. (2.31b)

Hence, the differential equations for the magnetic field lines are,

dx1(s)

ds
=
B1

|B| ,
dx2(s)

ds
=
B2

|B| ,
dx3(s)

ds
=
B3

|B| , (2.32)
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or,

dxi(s)

ds
=

Bi

|B| ; (i = 1, 2, 3). (2.33)

For the cylindrical geometry (r, φ, z) with axisymmetric condition, i.e.
∂

∂φ
≡ 0,

the poloidal component of the magnetic field is

Bp = Br(r, z)r̂ +Bz(r, z)ẑ. (2.34)

For the invariance of the toroidal component Bφ, and due to the solenoidal con-

dition of the magnetic field, i.e., ∇ ·B = 0, we can take the form,

Bp = ∇×
(

Ψ(r, z)

r
φ̂

)
(2.35)

= −1

r

∂Ψ

∂z
r̂ +

1

r

∂Ψ

∂r
ẑ, (2.36)

without the loss of any generality, where Ψ is called the magnetic flux function.

Hence, it is straight forward that, (Bp · ∇)Ψ = 0, which implies that, Ψ is constant

along the poloidal field. That is why Ψ is called the magnetic stream function of

the poloidal magnetic field. The equation of the poloidal field line is

Ψ(r, z) = constant. (2.37)

Due to the axisymmetric condition, eqn (2.37) represents the equation of a mag-

netic surface.
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2.5 Lorentz force

For a magnetic medium of field strength B and current j, the Ampere’s law is

given by

j =
1

4π
(∇×B). (2.38)

The Lorentz force is defined as the vector product

j×B =
1

4π
(∇×B)×B. (2.39)

Using the vector identity, eqn (2.39) can be written as

j×B =
1

4π
(B · ∇)B−∇

(
B2

8π

)
. (2.40)

We denote the unit vector along the tangent of the field line as, b =
B

|B| . The first

term on the RHS of the eqn (2.40) represents the directional derivative along the

magnetic field line, and we represent the term (B · ∇) = B
d

ds
, where s is the arc

length along the field line (Goosens 2003). Therefore from eqn (2.40), we obtain

j×B =
d

ds

(
B2

8π

)
b +

B2

4π

db

ds
−∇

(
B2

8π

)
. (2.41)

For a curve of arc length s and local radius of curvature Rc, the variation of the

direction of the tangent along the arc is given by

db

ds
=

bn
Rc

, (2.42)

where, bn is the unit normal vector along the local radius of curvature directed

towards the center of the curvature. The third term on the RHS of eqn (2.41) can
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be decomposed as

−∇
(
B2

8π

)
= − d

ds

(
B2

8π

)
b−∇⊥

(
B2

8π

)
, (2.43)

where ∇⊥ is the gradient along the normal to the magnetic field line. Using eqns

(2.41), (2.42) and (2.43), we obtain

j×B = −∇⊥
(
B2

8π

)
+

B2

4πRc

bn. (2.44)

The first term on the RHS of eqn (2.44) is called the the magnetic pressure force

which acts isotropically along the plane perpendicular to the field line and in the

direction towards the lower strength analogous to the gas pressure. This term

arises due to the inhomogenity of the field strength in the medium.

The second term on the RHS of the eqn (2.44) is called the magnetic tension

force, which acts along the direction towards the center of the curvature. This

term arises due to the curvature of the field line and is inversely proportional to

Rc, which implies that the tension force is higher for a curvature. Magnetic tension

force is analogous to the mechanical tension force which arises due to the bending

of a rubber band.

2.6 Magnetic energy and stress

In a medium of field strength B, the magnetic energy density is given by B2/8π,

and the total magnetic energy, Wm, enclosed within the volume V is

Wm =

∫
V

B2

8π
dV ′, (2.45)
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where the integration is carried over the enclosed volume V .

The rate of change of the magnetic energy is,

dWm

dt
=

1

8π

∫
V

∂

∂t
(B2)dV ′ =

1

4π

∫
V

B · ∂B

∂t
dV ′. (2.46)

Following the induction eqn (2.13), we obtain from eqn (2.46)

dWm

dt
=

1

4π

∫
V

B · [∇× (U×B) + ηm∇2B]dV ′. (2.47)

Using the Ampere’s law, eqn (2.38), and the solenoidal condition of magnetic field,

∇ ·B = 0, the second term on the RHS of the eqn (2.47) reduces to,

1

4π

∫
V

ηmB · ∇2BdV ′ = −
∫
V

ηmB · (∇× j)dV ′

= −
∫
V

ηm[∇ · (j×B) + j · (∇×B)]dV ′

= −ηm
∮
S

(j×B) · dS′ − ηm
∫
V

j · (∇×B)dV ′, (2.48)

where, S is the closed surface which encloses the volume V . If the volume V is

taken to be infinite where j vanishes at the surface of the boundary then we see

that the first term on the RHS of the eqn (2.51) vanishes, and hence the eqn (2.51)

reduces to

1

4π

∫
V

ηmB · ∇2BdV ′ = −4π

∫
V

j2

σ
dV ′. (2.49)

The negative sign on the RHS of eqn (2.49) represents the loss of energy due to

the Joule heating at a rate 4πj2/σ, which is a consequence of energy conservation.
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The first term on the RHS of the eqn (2.47) is given by

1

4π

∫
V

B · [∇× (U×B)]dV ′

=
1

4π

∫
V

[∇ · [(U×B)×B)] + (U×B)× (∇×B)]dV ′

=
1

4π

∮
S

[(U×B)×B] · dS′ +
1

4π

∫
V

(U×B) · (∇×B)dV ′

= −
∫
V

U · (j×B)dV ′. (2.50)

This term represents the loss of magnetic energy due to the work done by the

Lorentz force, and it is called the magnetic stress. As the work can be done on a

hydrostatic system only if there is a density change in the system, similarly the

work can be done on a magnetic system only if there is any extension or contraction

in the magnetic field lines. Collectively, we can write eqn (2.47) as

dWm

dt
= −

∫
U · (j×B)dV − 4π

∫
j2

σ
dV. (2.51)

2.7 Grad-Shafranov equation

The fundamental condition for equilibrium at all points in a magnetized plasma

is given by

j×B = ∇p, (2.52)

subjected to the toroidal symmetry (Priest 2014). Taking the dot products of B

with eqn (2.52), we obtain

B · ∇p = 0, (2.53)
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which states that the surfaces of the constant pressure are the magnetic surfaces.

Taking the dot products of j with eqn (2.52), we obtain

j · ∇p = 0, (2.54)

which represents that the current lies on the magnetic surfaces. Similarly, if we in-

troduce a function, ψ which specifies a magnetic surface (constant on that surface),

we see that

B · ∇ψ = 0. (2.55)

For the validity of the solenoidal condition of magnetic field i.e. ∇ ·B = 0, we can

express the field components in cylindrical geometry as,

Br = −1

r

∂ψ

∂z
; Bz =

1

r

∂ψ

∂r
. (2.56)

Due to axisymmetric condition, we can introduce a function Ip which obeys the

relations

jr = −1

r

∂Ip
∂z

, jz =
1

r

∂Ip
∂r

. (2.57)

Comparing the forms in eqn (2.57) with the Ampere’s eqn,

jr = −∂Bφ

∂z
, jz =

1

r

∂(rBφ)

∂r
, (2.58)

we obtain the function,

Ip = rBφ, (2.59)

which is called the poloidal current. From eqns (2.54, 2.58) we obtain

∇Ip ×∇p = 0, (2.60)
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which implies that Ip = Ip(p), and as p = p(ψ), it follows that, Ip = Ip(ψ). In

equilibrium, eqn (2.52) can be written in the axisymmetric cylindrical geometric

form as

jp × φ̂ Bφ + jφφ̂×Bp = ∇p, (2.61)

where jp, and Bp are the poloidal current density and magnetic field strength

respectively. Using eqns (2.56, 2.58) associated with eqn (2.61), we obtain

Bp =
1

r
(∇ψ × φ̂), (2.62)

and

jp =
1

r
(∇Ip × φ̂). (2.63)

Using eqns (2.62, 2.63) into eqn (2.61), and noting the conditions φ̂ · ∇ψ =

φ̂ · ∇Ip = 0, we obtain

−Bφ

r
∇Ip +

jφ
r
∇ψ = ∇p. (2.64)

Using the relations ∇Ip(ψ) = I ′p(ψ)∇ψ, ∇p(ψ) = p′(ψ)∇ψ, and Ip = Bφr in eqn

(2.64), we obtain

jφ = r
∂p

∂ψ
+Bφ

∂Ip
∂ψ

. (2.65)

To write jφ in terms of ψ we take the azimuthal component of the equation j =

∇×B, which gives

rjφ = r
d

dr

(
1

r

)
dψ

dr
+

d2ψ

dz2
. (2.66)
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Substituting the form of jφ given by eqn (2.66) into eqn (2.65) we finally obtain

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= −r2p′(ψ)− Ip(ψ)I ′p(ψ), (2.67)

which is a non-linear, inhomogeneous, and second order differential equation, called

the Grad-Shafranov equation (Grad and Rubin 1958; Shafranov 1958). This is a

useful and important equation for fluxtube models that we have developed in our

work which is discussed in the Chapters 4 and 5. For a given set of the functions

p(ψ), and Ip(ψ), the eqn (2.67) represents an equilibrium condition of a torus. In

principle, given the functions p(ψ) and Ip(ψ), along with the boundary conditions,

eqn (2.67) can be solved in the form of ψ(r, z), and it gives an equilibrium flux

distribution. On the other hand, depending on the non-linear forms of p(ψ) and

Ip(ψ), the solutions can be a non existent, unique, or many that satisfies both the

GSE and the BCs.

2.8 Resource summary

This chapter is a primer for Chapter 3, where we have discussed the magnetic

properties of the fluxtubes, and Chapter 6, where magnetic reconnections and

some of the important solar flare models are described. The main references and

texts for this chapter are [Kulsrud (2010); Priest (2014); Goosens (2003)]. This

chapter is mainly devoted to the basics of MHD. We also present the derivation of

the Grad-Shafranov equation, which is the key to our fluxtube models (Sen and

Mangalam 2018a,b, 2019), that is presented in Chapters 4 and 5.





Chapter 3

Magnetic configurations of

fluxtubes

Image source: www.spaceweather.com

3.1 Introduction

In this chapter, we present various fluxtube models and the status of the related

observations of the magnetic and thermodynamic structures. The existence of the

small scale magnetic fluxtubes has been known since the late 1950s. Soon after its

discovery, the study of the fluxtube enormously increased within a decade due to its

interesting aspects of this key magnetic structure in the Sun. it is now accepted

that the entire magnetic structure in the Sun starting from the photosphere to

the corona including sunspots and coronal loops have a filamentary structure.

Hence, the study of the small scale magnetic fluxtubes is a very important step to

understanding the magnetic configuration of the solar atmosphere.
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3.2 Observational implications of fluxtubes

From early studies of solar physics, it was known that the magnetic fields are asso-

ciated with sunspots. Later on, in the late phase of 1950, Howard (1959) observed

that there are small scale magnetic features, of a field strength ∼ 100 Gauss exist

in the quiet sun region. Exploring the correspondence between the photospheric

magnetic fields, and Ca bright points, which are seen in the chromospheric tem-

peratures studied by Babcock and Babcock (1955), Howard concluded that there

is a close correspondence between the Ca plages and the photospheric magnetic

fields, and the structure of the small scale magnetic fields in the photosphere and

chromosphere are more or less like vertical columns. At the same time, Leighton

(1959) reported that the magnetic concentrations of 100− 200 G are found in the

plage regions, and the field patterns are in good agreement with the pattern of

the Ca II emission. This was followed by Severnyi (1959) who reported obser-

vational evidence for the fine structures of the sunspots. The study of the small

scale fluxtubes is important due to the following two phenomena: One is the direct

correlation with the chromospheric heating, and the other is the formation of the

magnetic shear due to the interaction of the two small scale magnetic columns of

opposite polarities.

A few years before the direct observations of fluxtubes, Pikel’Ner (1963) gave an

intuitive idea about the existence of the fluxtubes. He proposed that, due to

the convective motions, the magnetic lines of forces get squeezed and assemble

towards the granule periphery, and the field lines get concentrated into a network

on the solar surface in the form of magnetic fluxtubes. He also predicted that

with the enhancement of the convection, the chromospheric emission increases,

and the network becomes observable through the Ca II and Hα lines. Moreover,

he proposed that the motion of the plasma associated with the field lines are

responsible for the observed mottling of the granular elements that stream towards
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the periphery from the center. Still, the direct observations of these suggestions

are yet to be confirmed through observations.

3.2.1 Observational evidence of small scale fluxtubes

Using the high spatial resolution measurements of magnetic fields in the photo-

sphere, Sheeley (1966, 1967) studied the time evolution of the magnetic flux over

the larger area and the development of the magnetic bipolar region. The study

also finds that there is no smooth fall of the flux density over time, rather it

fragments into smaller sizes gradually. Sheeley found the field strength in this

magnetic structure to be 200 to 700 G and concluded that magnetic fields of a

few hundred gauss occur in the tiny areas easily as 500 km in regions of the solar

surface, sometimes removed from the sunspot activity. This remarkable observa-

tion became the turning point, which is a fact of the discovery of the small scale

fluxtube. Almost at the same time, Steshenko (1967) estimated that the field

strength of the pores of size ∼ 1′′ is about 1400 G, whereas, in the larger pores,

the field strength is found to be 5350 G, which is much higher than the average field

strength of the sunspot itself. On the other hand, he observed the field strength

in the isolated places outside the sunspots, of up to 1000 G. Beckers and Schröter

(1968) made a detailed study of the small scale magnetic configuration both in-

side and around the sunspot, and concluded that all the photospheric magnetic

features around the unipolar sunspots are concentrated over a small region, which

is around 1000 km, and the field strength is strong, which is up to 1400 G. With

this further progress, it was soon understood that most of the solar surface outside

the sunspots are covered with the small scale magnetic features. Later on, using

the data of 17′′ × 17′′ aperture of Mount Wilson magnetogram during 26 days,

Howard and Stenflo (1972) reported that around 90% of the total flux is present

in the small scale fluxtubes in plages and at the supergranular cell boundaries.

Frazier and Stenflo (1972) described the structure of the field lines for the small
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scale magnetic elements as “mushroom effect” as it spreads out vertically with

decreasing magnetic field strength.

3.2.2 The sunspot dilemma

Well before the high-resolution observations of the filamentary structure of the

solar magnetic field outside the sunspot, Papathanasoglou (1971) along with the

earlier findings by Severnyi (1959) reported fine structures in the sunspot umbra.

The study showed that the size of umbral filaments is < 1′′, and the spaces be-

tween the dark patches are about 0.6′′. After two decades of this amazing result,

Livingston (1991) also reported direct observational evidence of the filamentary

structures in the sunspot umbral region.

However, for many years after the discovery of the filamentary structure of the solar

umbral region, the study of the sunspot as a whole became more fascinating and

thus overshadowed the study of the filament structures. The stability analysis of

the sunspots became very challenging as it requires so many complex processes to

be considered, and the exploration of the search of the process became an uphill

battle. Though this problem is still not yet solved entirely, the most revealing

solution of this problem was proposed by Piddington (1978), where he developed

a model that differed with most of the popular diffuse-field models of that time.

Figure 3.1 shows the Piddington’s sunspot model that consists of individual twisted

fluxtubes, which are separated by magnetic free regions of plasma. The width and

the separation between the fluxtubes increase with the distance from the sunspot

axis that accounts for the penumbral filaments. The direction inside and outside

Evershed flow, ue, of the fluxtubes are different. Meyer et al. (1977) based on

the Piddington’s model proposed that the stability of sunspot is related to the

potential energy associated with the Wilson depth. However, from the plasma

theory, supported by laboratory plasma experiments, it was understood that the
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Figure 3.1: A cartoon diagram of a sunspot magnetic structure with the
helical flux ropes given by Piddington (1978).

long plasma magnetic columns are unstable due to screw-pitch instability (Kruskal

and Kulsrud 1958; Kadomtsev 1966). The condition of the inevitable twist in the

fluxtube, called Kruskul-Shafranov condition, is given by

q =
2πRBz

LBφ

< 1, (3.1)

where, q is called the safety factor, and the magnetic field inside the fluxtube is

B(0, Bφ, Bz), radius and length of the fluxtube are R and L respectively. This

implies that R has to be sufficiently smaller than L for the fluxtube to be twisted.

High-resolution observations show that there is a presence of an intrinsic twist

in the sunspots, flux ropes, and loops. It is to be noted that, the screw-pitch

instability plays a very important role in the dynamics in the various region of the

solar atmosphere. Figure 3.2 shows a detailed picture of the magnetic structure of

the sunspot given by Piddington (1978). Here, the flux rope looks like a tree-like

structure, where the main branches are the flux strands, which are frayed into

flux fibers. These elements are driven along the supergranular boundaries, A, and

are observed from the cell interior, B. The loop in section C is due to the kink

instability, and, section D is called the flux threads, which are formed due to the

fraying of the flux fibers. Almost all the features of Figure 3.2 are confirmed by
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Ryutova et al. (2008), Su et al. (2010), and Stenflo (2013).

Figure 3.2: A schematic diagram of the different elements of the flux rope
present in the filamentary structure of the sunspot (Piddington 1978).

3.3 Elements of the theory for the fluxtubes

A magnetic fluxtube is considered to be an assembly of magnetic field lines in a

volume, which is enclosed by a simple closed curve. Figure 3.3 shows a cartoon

diagram of a magnetic fluxtube, which is bounded by the S1 and S2 surfaces with

fluxes F1 and F2 respectively. In a given magnetic configuration, one has complete

freedom of choosing a particular closed curve as a fluxtube among the infinite

number of possible curves in that magnetic configuration. The strength, FM of a

fluxtube is defined as,

FM =

∫
S

B · dS, (3.2)
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where, the direction of dS is taken as same as B, such that FM is always a positive

quantity. A fluxtube having the twisted field is called the magnetic flux rope. An

isolated magnetic fluxtube is one, which has a magnetic free medium outside it.

However, fluxtubes are the building blocks of a magnetic configuration, and they

must not be thought of as an isolated structure.

Figure 3.3: A cartoon diagram of a magnetic fluxtube, which is enclosed by
the surface S. The arrows represent the direction of the magnetic field lines
[Figure courtesy: Priest (2014)].

3.3.1 Some basic properties of magnetic fluxtubes

1. Strength of a magnetic fluxtube remains same along its length.

The direction of the magnetic field lines are normal to the surface vector on

the curved surface of the fluxtube (see Figure 3.3), so the contribution of the

strength due to the curved surface vanishes. Hence,

∫
S

B · dS =

∫
S1

B1 · dS +

∫
S2

B2 · dS. (3.3)

From the divergence theorem,

∫
S

B · dS =

∫
V

(∇ ·B) dV , which vanishes due

to the solenoidal condition of B. Hence, from equation (3.3), we obtain,

F1 ≡
∫
S1

B1 · dS = −
∫
S2

B2 · dS ≡ F2. In other words, the strength of the

fluxtube remains same along the length of the fluxtube.
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2. The average field strength of a fluxtube increases when it gets thinner, and

the field strength decreases when it gets thicker.

From eqn (3.2), we can write that, FM = B̄A, where B̄, and A are the

average field strength and cross-section area of the fluxtube. As the strength,

FM , of the fluxtube remains same along the length of it, so B̄ is inversely

proportional to A, which implies that the field lines are closed for a thinner

region of the fluxtube, and the field lines stay apart in a wider region.

3. In the ideal MHD, the compression of fluxtubes, without changing its length,

lead to a change of B and ρ in the same proportion.

Let us consider two fluxtubes of having same length L, but the radius changes

from R0 to λR0, where λ is a proportionality constant. If the initial density

and field strength of the tube is ρ0 and B0, and final density and field strength

are ρ and B respectively, then according to the mass conservation of the

plasma inside the fluxtube we have, ρ0πR
2
0L = ρπλ2R2

0L. So the final density

is,

ρ =
ρ0

λ2
. (3.4)

Again, from the flux conservation theorem, we have, B0πR
2
0L = Bπλ2R2

0L.

So the final field strength is,

B =
B0

λ2
. (3.5)

Thus, using eqns (3.4, 3.5) we obtain,

B

ρ
=
B0

ρ0

. (3.6)
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A more general result can be been obtained by the Lundquist’s identity

(Lundquist 1951; Roberts 1967), given by

B

ρ
=
B0

ρ0

∂r(r0, t)

∂r0
, (3.7)

where r0, and r are the position of the fluid element at initial and arbitrary

time respectively. In this case we have
∂r(r0, t)

∂r0
= 1, hence we obtain eqn

(3.6). In other words, change of B and ρ is in the same proportion inside the

fluxtube. However, this relation does not hold for the coronal loops, as the

plasma can flow in or out from the loop, which violates the mass conservation

relation.

4. Increasing the length of a fluxtube by keeping the width to be the same in-

creases the field strength.

If the width of the fluxtube remains the same, i.e. there is no compression of

the fluxtube, then the density, ρ remains constant. If we consider that, there

is an increment of the length of the fluxtube by a factor λ′, then by applying

the mass and magnetic flux conservation law, we obtain, B = B0 λ
′. For the

elongation of the fluxtube, λ′ > 1, which means B > B0.

5. Magnetic field strength, B and plasma pressure, p play a role for the mag-

netohydrostatic equilibrium of a fluxtube.

For a magnetic field strength B, the magnetohydrostatic equilibrium equa-

tion of a fluxtube is given by

−∇p+ j×B− ρgz = 0. (3.8)
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For a magnetic field strength B(0, Bφ, Bz), the current densities are

jr = 0 (3.9)

jφ = − 1

µ

∂Bz

∂r
(3.10)

jz =
1

µr

∂

∂r
(rBφ). (3.11)

The radial component of j×B is given by,

(j×B)r = − 1

2µ

∂

∂r
(B2

φ +B2
z )−

B2
φ

µr
(3.12)

Taking the radial component of eqn (3.8), and using cylindrical symmetry

without gravity, we obtain

dp

dr
+

d

dr

(
B2
φ +B2

z

2µ

)
+
B2
φ

µr
= 0, (3.13)

where, r is the radial coordinate of the fluxtube geometry. Here, the second

term represents the magnetic pressure, which acts along the outward direc-

tion, if B2/2µ decreases with r. The third term represents the magnetic

tension force, which acts along the inward direction of the fluxtube. The

twist in the field line is defined by,

χ(r) =
LBφ(r)

rBz(r)
, (3.14)

whereas, the average twist of a field line for a fluxtube of radius R is given

by,

χ̄ =
1

R

∫ R

0

χ(r)dr. (3.15)

Another related measurement of twist is called the pitch,

lp =
L

n
, (3.16)
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where n is the number of turns per unit length. Hence,

lp =
2πL

χ
, (3.17)

which is measured as the travelled length of the field line for a complete

rotation about the axis.

3.3.2 Governing equations for fluxtube solution

The theoretical study of the MHD of the small scale fluxtubes had started in

the mid 1970s. Parker (1974a) proposed that, due to the turbulent pumping of

the plasma at the supergranular boundary, the region inside the fluxtube becomes

vacuous. The maximum field strength of this mechanism is restricted by the energy

equipartition law, B2/(8π) ≈ ρv2/2, which gives a maximum value of B to be small

≈ 500 G. Due to this small B value, obtained from the model, Parker (1974b)

included the Bernoulli effect, but it increased the value of the magnetic field only

by a small fraction. The structures of the fluxtube due to the turbulent pumping

mechanism are shown in Figure 3.4. However, the origin and the properties of the

small scale fluxtubes that appear at the solar surface is still an open question.

Later on, the study was carried forward by several authors [e.g. Cram and Wilson

(1975); Defouw (1976); Roberts and Webb (1978)]. The basic governing equations

for the study of the dynamics of the fluxtubes are the Maxwell’s equations with
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(a) (b)

Figure 3.4: Cartoon of the fluxtubes rising up through the solar photosphere,
which shows the fluxtube structures due to the turbulent pumping mechanism
(a) without and (b) with taking the Bernoulli’s effect into account respectively
(Parker 1974a,b).

the MHD approximation, which are summarized below:

∇ ·B = 0, (3.18)

∂B

∂t
= ∇× (v ×B) + ηd∇2B, (3.19)

ρ
dv

dt
= −∇p+

1

4π
(∇×B)×B + ρg, (3.20)

dρ

dt
+ ρ∇ ·v = 0, (3.21)

∂(ρ−γp)

∂t
+ v∇(ρ−γp) = 0, (3.22)

where, ηd is the magnetic diffusivity. The magnetohydrostatic equilibrium of the

fluxtube can be represented by eqn (3.20), for v = 0, to be

−∇p+
1

4π
(∇×B)×B + ρg = 0. (3.23)
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In the presence of the magnetic field B(0, 0, Bz(r)), taking the radial component

of eqn (3.23), the equilibrium condition of the fluxtube is given by

pi(r) +
B2
zi

8π
= pe(r) +

B2
ze

8π
, (3.24)

where the suffices ‘i’ and ‘e’ represent quantities internal and external to the

fluxtube, respectively. However, for an isolated fluxtube, which is embedded in a

magnetic free medium, Bze = 0.

As g acts vertically downward, the z component of eqn (3.23), gives the density

relation,

dp

dz
+ ρg(z) = 0, (3.25)

which upon using the ideal gas law condition, ρ = mp/kT , we obtain

p = p0 exp

(
−
∫ z

0

1

Λ(z)
dz

)
, (3.26)

where, Λ(z) =
kT (z)

mg
, is the pressure scale height and k is the Boltzman constant.

Hence,

ρ = ρ0
T0

T (z)
exp

(
−
∫ z

0

1

Λ(z)
dz

)
. (3.27)

Thus, knowing the temperature profile, T (z), inside the fluxtube, we can obtain

the pressure, and density distribution (Vernazza et al. 1981; Avrett and Loeser

2008).
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3.4 Historical overview of various fluxtube mod-

els

The fluxtube models can be broadly divided into two classes of models, which are

the self-similar and the non-self-similar models. The main difference between these

two models is the magnetic structure of the fluxtubes. In the self-similar model,

the fluxtubes are considered to be present in a continuous magnetic medium, where

the field strength of the fluxtube is maximum at the center of the fluxtube and

decreases asymptotically along the radial direction. In principle, the radius of a

self-similar fluxtube extends up to infinity, but in practice, the effective radius

of the fluxtube is the radial distance from the axis, which encloses a significant

fraction of the total flux (which is usually taken to be 90%). On the other hand,

the non-self-similar fluxtube is embedded in a magnetic free medium and has a

sharp boundary. As a result, there is a sharp drop in the magnetic field strength

at the boundary of the fluxtube, where a current sheet exists, unlike the case for

the self-similar fluxtubes. These magnetic fluxtubes are called magnetic fibrils.

We will now discuss the models in some detail.

3.4.1 Self-similar fluxtube models

The basic formulation of the self-similar (SS hereafter) model was pioneered by

Schlüter and Temesváry (1958) for an untwisted stationary single sunspot. This

model is based on some assumptions listed below:

• The structure of the sunspot has cylindrical symmetry. The z−axis is per-

pendicular to the sunspot surface and the positive z direction is pointed

towards the center of the Sun. On the axis, i.e. at r = 0, there is no current,
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which means the radial component of the field, Br = 0, and the vertical

component of the field strength, Bz is maximum.

• The sunspot is assumed to be in a quasi-static equilibrium, which implies

that the time derivative of all the quantities are zero. This approximation

is valid for a sunspot with a long lifetime.

• The magnetic field strength and its derivative vanish at infinity.

• The motions of the plasma are neglected.

• The magnetic field has no twist, i.e. the azimuthal component of the mag-

netic field, Bφ = 0.

• The relative magnetic flux distribution in a horizontal cross-section of the

sunspot is geometrically similar.

Here, all the assumptions above make for a simple picture of a sunspot, where the

last three assumptions are necessarily not true.

The SS model states that, the ratio of the vertical component, Bz(r, z) and the

central intensity, Bz(0, z), at the same depth, depends only on a scale factor ζ(z),

i.e.

Bz(r, z) = Bz(0, z)
D(ξ)

D0

, (3.28)

where, D(ξ) is called the shape function, D0 ≡ D(ξ = 0), and ξ is the self-similar

parameter defined by

ξ = ζ(z) r. (3.29)

Due to the continuity of the lines of force, the strength of Bz(0, z) increases where

the fluxtube is more squeezed. So, the appropriate normalization for Bz(0, z) is
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given by

Bz(0, z) = ζ2(z)D0. (3.30)

From eqns (3.28, 3.30), we obtain the general form

Bz(r, z) = ζ2(z)D(ξ). (3.31)

Using the solenoidal condition of the magnetic field i.e. ∇ ·B = 0, we obtain

Br(r, z) = −dζ(z)

dz
ξD(ξ). (3.32)

Taking the r−component of the eqn (3.23) in the cylindrical geometry we find

Bz

(
∂Br

∂z
− ∂Bz

∂r

)
= 4π

∂p

∂r
. (3.33)

Using the prime notation (′) to denote the derivative with respect to the depth z,

we obtain the following form eqn (3.33)

ξD2(ξ)ζζ ′′ +
1

2

d

dξ
(ξD(ξ))2ζ ′2 +

1

2

d

dξ
(D2(ξ))ζ4 = −4π

dp

dξ
. (3.34)

Integrating eqn (3.34) over ξ from 0 to ∞ at a fixed z and using the condition

D(ξ =∞) = 0, we have

ζζ ′′
∫ ∞

0

ξD2(ξ)dξ − 1

2
ζ4D2

0 = −4π∆p, (3.35)

where,

∆p = p(∞, z)− p(0, z). (3.36)
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Using the forms

y(z) = Bz(0, z)
1/2 = (2f)1/2ζ(z) (3.37a)

f =
2

D0

∫ ∞
0

ξD(ξ)dξ, (3.37b)

we obtain

fyy′′ − y4 + 8π∆p = 0. (3.38)

After specifying the forms of ∆p and D(ξ), eqn (3.38) can be solved. The magnetic

and thermodynamic structure of the fluxtube can then be obtained after solving

this equation. The z−component of eqn (3.23), gives the density relation,

∆ρ =
1

g

d

dz
(∆p), (3.39)

where ∆ρ = ρ(∞, 0)−ρ(0, z) represents the density difference between the fluxtube

axis and infinity. Yun (1971) extended the SS model by incorporating twist, i.e.

Bφ 6= 0. In this case, the r−component of eqn (3.23) becomes

Bz

(
∂Br

∂z
− ∂Bz

∂r

)
− Bφ

r

∂

∂r
(rBφ) = 4π

∂p

∂r
. (3.40)

Following the observations of Stepanov (1965), of the radial variation Bφ from the

axis of the sunspot (see Figure 3.5), Yun (1971) assumed the the form of

Bφ(r, z) = γ(z)
r

R(z)
Bz(r, z), (3.41)

where, γ(z) and R(z) are the proportionality factor and the sunspot radius re-

spectively at the depth z. Assuming the ratio γ(z)/R(z) = K to be a constant,

and using the SS model, eqn (3.41) reduces into

Bφ(r, z) = KξD(ξ)ζ(z). (3.42)
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Figure 3.5: Radial variation of Bz, Br and Bφ from the sunspot center ob-
tained by Stepanov (1965).

Using a particular choice of the shape function, D(ξ) = D0 exp(−ξ2), and applying

eqn (3.37b),

f = D0/2 ≡ Φ/(2π) (3.43)

is obtained, where Φ is the total flux of the sunspot. From eqns (3.29, 3.37a, 3.43),

the total radius R(z) can be derived to be

R(z) = ξp

(
Φp

πBz(0, z)

)1/2

, (3.44)

where, Φp is the observed total flux value and ξp = 1.63 refers the self-similar

parameter value at the sunspot penumbra obtained by Yun (1970). After finding

the radius of the sunspot at a particular depth the value of K can be approximated

from eqn (3.41) by the relation

K =
Bφ(R(z), z)

R(z)Bz(R(z), z)
, (3.45)
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where the value of
Bφ(R(z), z)

Bz(R(z), z)
is known from the observation of Stepanov (1965).

However, Beckers and Schröter (1969) and Wittmann (1974) analyzed the inclina-

tion angle of the magnetic field lines and reported that there is a radial increment

of the angle of inclination which saturates to 90◦ at the sunspot penumbra, which

can’t be explained by [Schlüter and Temesváry (1958), Yun (1971)]. Osherovitch

(1982) considered p as a quadratic function of the flux function, ψ. This model

gives a closed structure of the magnetic field lines, where the field lines rise and fall

back into the same horizontal plane at the boundary of the fluxtube (see Figure

3.6). Figure 3.7 shows the radial variation of the field line from the axis to the

fluxtube boundary, which is reasonably consistent with the observations.

Figure 3.6: Geometry of the magnetic field lines inside the sunspot boundary
(Osherovitch 1982).

More recently, Gent et al. (2013) have done a numerical study of the magneto-

hydrostatic equilibrium state of a single open fluxtube without a twist. Taking

the surrounding of the fluxtube as a quiet Sun atmosphere into account, the mag-

netohydrostatic equilibrium condition for the pressure balance is derived. The

simulation consists of the magnetic footpoints of 1 kG, which is the free parame-

ter of the model and is used to obtain a realistic structure of the fluxtube. Figure

3.8 shows the geometry of the magnetic field lines inside of the fluxtube.
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Figure 3.7: Comparison of the inclination angle of the field line obtained by
Osherovitch (1982) with the existing observations, where Rp is the radius of the
sunspot penumbra.

Figure 3.8: The figure on the left shows the 3D geometry of the magnetic
field lines inside the fluxtube obtained by Gent et al. (2013). The color bar
represents the value of the thermal pressure. A 2D vertical slice of the fluxtube
is shown in the middle panel. The right image is the zoomed version of the box
enclosing in the image in the middle panel.

3.4.2 Non-self-similar fluxtube models

One of the first self-consistent numerical models of a magnetohydrodynamic flux-

tube was constructed by Deinzer et al. (1984a,b). The MHD equations for a
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compressible medium and the associated energy equations are taken into account

for obtaining the fluxtube structure and its dynamics. The pressure equilibrium

condition of the fluxtube with the external atmosphere is also applied in the 2D

fluxtube model.

Figure 3.9 shows the numerical simulations for the density, magnetic field struc-

ture, and velocity field at an evolutionary time from the stationary state. Followed

Figure 3.9: Results obtained from Deinzer et al. (1984a,b). The left figure
shows the contour plot of density normalized to ρ0 = 1.6 × 10−6 g cm−3. The
middle figure shows the magnetic lines of forces and the figure at the right shows
the velocity field, where the maximum velocity is 200 m s−1.

by that, Steiner et al. (1986) obtained a MHS numerical fluxtube model. For ob-

taining the magnetic structure of the fluxtube, the following set of equations

B · [∇p− ρg] = 0, (3.46)

j =
1

B2
B× [∇p− ρg], (3.47)

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
= −4πj, (3.48)

need to be solved in an iterative scheme. For carrying out the iteration, the

following steps are processed:

1. An initial arbitrary magnetic configuration is specified. The closer, the initial

guess is to the final solution, the faster the convergence.
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2. The pressure distribution is calculated by integrating the eqn (3.46) along

the magnetic lines of force. The integral can be written in the form

p = p∗ exp

(
−
∫ z

z′=0

dz′

h(T (ψ, z′))

)
, (3.49)

where, p∗ is the pressure at z = 0, and h is the scale height.

3. Using the eqns (3.49, 3.47), the current density j can be found in the form

of

j =
1

B2

[
Bz
∂p

∂r
−Br

(
∂p

∂z
+
p

h

)]
. (3.50)

4. Calculating the current from eqn (3.50), eqn (3.48) can be integrated along

with the appropriate boundary conditions to obtain ψ, which provides the

magnetic structure. Then the procedure is returned to step 1. Then steps

2-4 are successively repeated until it convergences.

Figure 3.10 shows the magnetic lines of force inside the fluxtube. The radial

variations of Br and Bz are also shown by the dashed and solid lines respectively

at different heights.

An analytical solution of a stationary magnetodydrodynamic sunspot was modeled

by Solov’ev and Kirichek (2016). The magnetic structure of the sunspot model

is given by three distinct flux functions, where the magnetic field lines approach

to the photosphere at the edge of the sunspot boundary. The radial and vertical

variations of the thermodynamic quantities like pressure, density and temperature

are also calculated in the visible layers. The flux function, A1 is represented by

the potential field, which is vertically straight and expands like a diverging fan

from the axis of the fluxtube. The flux function, A1 is given by

A1(r, z) =
B0,1

B0

w(z)

[
1−

(
1 +

r2

w(z)

)−1/2]
, (3.51)
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Figure 3.10: 2D geometry of the magnetic field lines inside the fluxtube ob-
tained by Steiner et al. (1986) model.

where, w(z) determines the cross-sectional shape of the fluxtube, and
B0,1

B0

is the

relative field strength with respect to the field strength at center, B0. The second

flux function, A2 which is confined to a certain height describes both the umbra

and penumbra of the sunspot is given by,

A2(r, z) =
B0,2

B0k
rJ1(kr)[exp(−kz)−G(lz)], (3.52)

where, k is the inverse scale height,
B0,2

B0

is the contribution from the second flux

function, J1(kr) is the Bessel’s function of first kind, and

G(z) = − ck

a2k0

exp[−ak0z(1 + bk0z + hk3
0z

3)], (3.53)

is a non-dimensional function where, a, b, c, and h are the positive dimensionless
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Figure 3.11: The magnetic structure inside a fluxtube for a typical sunspot
model obtained from Solov’ev and Kirichek (2016).

factors, and k0 = 1 Mm−1 is a constant. The A2, which is represented by eqn

(3.52) is limited up to the first root of J1(kr). Moving farther out along the radial

direction, another flux function,

A3(r) = B0,3
(r − r1)2

2
, (3.54)

is defined which has the same polarity as A1, where r1 = 3.83 is the first root

of J1(r1). Figure 3.11 shows that the structure of the magnetic field lines inside

the fluxtube for a sunspot model. The flux function A1 extends upwards into the

corona, while flux function, A2 forms a loop that rise and returns into the photo-

sphere at the edge of the fluxtube, and A3 is the external field of the penumbra.
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3.5 Summary

This chapter is premier to understand the Chapters 4, and 5, where we have

discussed the fluxtube models we have developed. In this chapter, we presented

a brief historical background for the discovery of the solar fluxtubes, and their

observational implications. Then we present the theoretical aspects of the physics

of the fluxtubes and some important basic properties of it. We also discussed the

governing equations to obtain fluxtube solutions.

The main texts and references for this chapter are Ryutova (2015), Priest (1982),

Schlüter and Temesváry (1958), Steiner et al. (1986), Gent et al. (2013), and

Solov’ev and Kirichek (2016). The magnetic configuration for the fluxtube models

given by Schlüter and Temesváry (1958), Deinzer et al. (1984a,b), and Gent et al.

(2013) are untwisted, whereas the twist is implemented in the numerical model

obtained by Steiner et al. (1986) for an open field magnetic configuration. Solov’ev

and Kirichek (2016) have obtained a fluxtube solution for sunspots for open and

closed field configuration but without the twist. The fluxtube models (Sen and

Mangalam 2018a, 2019) we develop has the twisted magnetic configuration, and

branch out into open and closed field magnetic structures. We discuss these models

in more details in the Chapters 4, and 5.





Chapter 4

Closed field twisted magnetic

fluxtubes in the solar atmosphere

Image source: www.vofoundation.org

4.1 Introduction

The study of small scale magnetic structures in the solar photosphere is important

because they play a crucial role in the evolution of active regions and sunspots

(Muller and Mena 1987; Centeno et al. 2007). Magnetic bright points (MBPs) are

likely to be the fluxtubes observed in the photosphere (Berger et al. 1995; Centeno

et al. 2007; Lagg et al. 2010). The topological rearrangement of these magnetic

fluxtubes due to the motion of the photospheric footpoints or magnetic recon-

nections, contribute to the coronal heating (Muller et al. 1994; van Ballegooijen

The work presented in this chapter is partly published in:
Sen and Mangalam (2018a)
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1986). A three dimensional (3D) single fluxtube model with the untwisted mag-

netic field has been studied by solving linear elliptic partial differential equation by

numerical iterative process (Steiner et al. 1986). Schlüter and Temesváry (1958)

and Osherovich (1984) studied a 3D fluxtube for sunspots using a self–similar

model. The magnetic and thermodynamic structure inside fluxtube with an un-

twisted magnetic field that spans from the photosphere to the lower part of the

solar corona is studied by Gent et al. (2013). Both 2D and 3D numerical models

of fluxtubes with the energy propagation through the torsional Alfven waves have

been studied by Murawski et al. (2015a,b), where an empirical form of magnetic

flux function was assumed. Vigeesh et al. (2009) assumed an empirical form of

gas pressure to investigate the wave propagation and energy transport through a

fluxtube. Several interesting results of wave behavior in the solar photosphere and

chromosphere have been presented by several authors (Bogdan et al. 2003; Fedun

et al. 2009; Shelyag et al. 2010).

In this work, we construct a 3D single cylindrical vertical straight magnetic flux-

tube semi-analytically with a twisted magnetic field by obtaining a new solution

of poloidal flux function by solving Grad–Shafranov equation (GSE; Grad and

Rubin (1958); Shafranov (1958)). We assume a specific form of gas pressure and

poloidal current, which has been used to study the equilibrium solution of terres-

trial plasma (Atanasiu et al. 2004). An equilibrium solution near the magnetic

axis of the plasma torus has been reported previously, using a plasma pressure and

poloidal current profile that varies linearly with the poloidal flux function (Solov’ev

1968). We obtain an analytic solution by assuming a form that is quadratic in the

poloidal flux function and derive the magnetic field structure and thermodynamic

quantities inside the fluxtube using the solution that represents an ideal MHS

equilibrium. In the future, we will look to explore fully the profile functions that

will improve the solution set.

The overview of the work is as follows. In §2, the GSE has been derived assuming

a specific form of the profile function of gas pressure and poloidal current and the

solution of the equation is presented. In §3, we discuss the boundary condition
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that is physically acceptable and can be used for realistic modeling of a fluxtube.

In §4, the mode wise variation of the profile functions is presented and in §5, we

compare the model with the observations. Finally, we conclude with a comparison

with other existing models.

4.2 Solution of Grad-Shafranov equation

We assume an axisymmetric cylindrical geometry, with gas pressure p and take the

poloidal current Ip constant along a magnetic field line. We express p(Ψ, z) and

Ip(Ψ) in terms of the poloidal flux function Ψ(r, z) and z and consider a straight

vertical axisymmetric fluxtube that spans the altitude from photosphere (z = 0)

to the transition region (z = 2.15 Mm) that is in equilibrium with the atmosphere

outside with the uniform gravity g(= −gẑ) acting vertically downward. The force

balance equation in MHS equilibrium takes the form

−∇p+
1

4π
(∇×B)×B + ρg = 0, (4.1)

where ρ denotes the mass density and B is the magnetic field associated with the

poloidal flux function Ψ(r, z) =

∫ r

0

Bz(r
′, z)r′dr′ (scaled by the factor 1

2π
) in the

following form

Br = −1

r

∂Ψ

∂z
; Bz =

1

r

∂Ψ

∂r
; Bφ =

Ip
r
. (4.2)

This form of Br, Bφ and Bz ensures the solenoidal condition of magnetic field.

Now splitting the MHS force balance equation (4.1) into r and z directions, we
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find two different scalar partial differential equations

− ∂p

∂r
+

1

4π

(
Br
∂Br

∂r
+Bz

∂Br

∂z
− 1

2

∂B2

∂r

)
= 0 (4.3a)

− ∂p

∂z
+

1

4π

[
1

r

∂Ψ

∂z

(
1

r2

∂Ψ

∂r
− 1

r

∂2Ψ

∂r2

)
− 1

r2

∂Ψ

∂z

∂2Ψ

∂z2
− 1

2r2

∂

∂z
(I2
p )

]
− ρg = 0.

(4.3b)

If the gas pressure and poloidal current are functions of Ψ alone i.e., p1(Ψ) and

Ip(Ψ) respectively, then from the eqns (4.3a, 4.2) it follows that

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
= −1

2

∂I2
p (Ψ)

∂Ψ
− 4πr2∂p1(Ψ)

∂Ψ
. (4.4)

Plugging in p1 and I2
p in eqn (4.3b), we find

−∂p1(Ψ)

∂z
+

1

4π

[
1

r2

∂Ψ

∂z

(
1

r

∂Ψ

∂r
− ∂2Ψ

∂r2

)
− 1

r2

∂Ψ

∂z

∂2Ψ

∂z2
− 1

2r2

∂I2
p (Ψ)

∂z

]
− ρg = 0.

(4.5)

By multiplying both sides of eqn (4.5) by 4πr2 ∂z

∂Ψ
and using eqn (4.4), we obtain

gρ
∂z

∂Ψ
= 0 which implies that ρ is zero, which means that the vertical hydrostatic

pressure balance will not be maintained. Therefore, to balance the vertical hy-

drostatic pressure inside the fluxtube, we introduce a new function, p2(z) such

that,

p(r, z) = p1(Ψ) + p2(z).

We assume p1(Ψ) and I2
p (Ψ) to be second order polynomials of Ψ

p(r, z) = p1(Ψ) + p2(z) (4.6a)

I2
p (r, z) = α̃Ψ2 + β̃Ψ + I2

0 (4.6b)

where

p1(Ψ) = ãΨ2 + b̃Ψ,
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and the parameters ã, b̃, α̃, β̃ and I2
0 are to be determined by appropriate boundary

conditions. The function p2(z) is to be evaluated later. The substitution of p given

by eqn (4.6a) in eqn (4.3a) gives eqn (4.4) and we obtain the following second order

scalar partial linear inhomogeneous differential equation

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
= −(ar2 + α)Ψ− (br2 + β), (4.7)

with the rescaled parameters, a = 8πã;α = α̃; b = 4πb̃; β = β̃/2. To solve eqn

(4.7), we split Ψ in two parts: a homogeneous part, Ψh(r, z) and an inhomo-

geneous part Ψp(r), i.e. Ψ(r, z) = Ψh(r, z) + Ψp(r). Using this form in eqn (4.7),

we separate the homogeneous and the inhomogeneous parts to obtain the following

expressions:

∂2Ψh

∂r2
− 1

r

∂Ψh

∂r
+
∂2Ψh

∂z2
= −(ar2 + α)Ψh (4.8a)

∂2Ψp

∂r2
− 1

r

∂Ψp

∂r
= −(ar2 + α)Ψp − (br2 + β). (4.8b)

To solve the homogeneous part, we seek a solution of the form Ψh(r, z) = S(r)Z(z).

Then we separate out the r and z part in eqn (4.8a) as follows

S ′′

S
− 1

r

S ′

S
+ ar2 + α = −Z

′′

Z
= −k2, (4.9)

where k is an arbitrary real constant. Motivated by the fact that the poloidal flux

function Ψ(r, z) decreases with z, we assume that the solution of the z-part of eqn

(4.9) takes the form

Z(z) = Ce−kz, (4.10)

where C is an arbitrary constant. To solve the r–part of eqn (4.9), we substitute

x =
√
ar2

2
(where a > 0) and insert it in eqn (4.9) to find

d2S

dx2
+

(
1 +

2η

x

)
S = 0, (4.11)
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whose solutions are given by Coulomb wave functions FL(−η, x) and GL(−η, x)

(Abramowitz and Stegun 1972) (page 537−544) with L = 0 and η =
α + k2

4
√
a

. The

solution of eqn (4.11) takes the following form

S(r) = C1F0

(
− η,

√
ar2

2

)
+ C2G0

(
− η,

√
ar2

2

)
. (4.12)

Here F0

(
−η,

√
ar2

2

)
and G0

(
−η,

√
ar2

2

)
are called the regular and irregular Coulomb

wave functions respectively which are complex quantities with real arguments

(Boersma 1968), given by

F0(−η,
√
ar2

2
) = C0(η)M−iη,1/2(i

√
ar2), (4.13)

G0(−η,
√
ar2

2
) = iC0(η)M−iη,1/2(i

√
ar2) +D0(η)W−iη,1/2(i

√
ar2), (4.14)

whereM−iη,1/2(i
√
ar2) andW−iη,1/2(i

√
ar2) are called the Whittaker-M and Whittaker-

W function (see Figure 4.3) and the constants C0(η) and D0(η) are defined by

C0(η) =
1

2
|Γ(1− iη)|e−π2 (i−η) (4.15)

and

D0(η) =
Γ(1− iη)

|Γ(1− iη)|e
−πη

2 . (4.16)

The Whittaker function has been used by several authors in their models of the

solar atmosphere albeit in different physical problems (eg. Tsinganos (1979) in

the context of inviscid flows, and also in the context of MHD waves by Hindman

and Jain (2008) and Erdélyi and Fedun (2010)). Now Bz(r, z) has to be a finite

quantity that varies linearly with the term
1

r

dS

dr
but

1

r

d

dr
[G0(−η,

√
ar2

2
)] blows up

at r = 0; therefore for Bz to be finite on the axis of the fluxtube C2 in eqn (4.12)

must vanish. As a result S(r) takes the form

S(r) = C1F0

(
− η,

√
ar2

2

)
, (4.17)
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and the homogeneous part of the solution is given by

Ψh(r, z) = Ce−kzF0

(
− η,

√
ar2

2

)
. (4.18)

A similar but a different solution, which is oscillatory in z is used for laboratory

plasma for both a D-shaped plasma and toroidally diverted plasma (Atanasiu

et al. 2004). The general solution of eqn (4.7) is given by the sum of the ho-

mogeneous part Ψh(r, z) given above and an inhomogeneous part Ψp(r) which

is presented in Sen and Mangalam (2019). We have found that the presence of

Ψp(r) term in the poloidal flux function Ψ(r, z), implies that p and I2
p cannot be

simultaneously positive for any combination of b and β in the physical parameter

domain space for all r and z. For avoiding these unphysical effects we present

the case of Ψ = Ψh and an exploration of the general solution Ψ = Ψh + Ψp will

be studied later. Since Ψ(r, z) and its complex conjugate function, Ψ∗(r, z) are

the valid solutions of eqn (4.7), we construct a solution of eqn (4.7) by redefining
Ψ(r, z) + Ψ∗(r, z)

2
→ Ψ(r, z) ≡ ς(r)Z(z).

4.3 Boundary conditions and the reduced form

of p and Ip

The ideal magnetic fluxtube is embedded in a magnetic field free region with no

current outside the fluxtube boundary. We make the following standard assump-

tions Br(r = R, z) = 0 and Bφ(r = R, z) = 0 to ensure that there is no net current

Ip at the fluxtube boundary. The pressure at the photosphere (z = 0) outside the

fluxtube is p0 = 1.228 × 105 dyne cm−2 and at the transition region (ztr = 2.15

Mm) is ptr = 0.1058 dyne cm−2 and is taken from Avrett-Loeser model (Avrett
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and Loeser 2008). We summarize the boundary conditions below

Br(R, z) = 0 (4.19a)

Bφ(R, z) = 0 (4.19b)

p(R, 0) = p0 (4.19c)

pt(R, ztr) = ptr (4.19d)

Assuming that pressure decreases exponentially from photosphere to transition

region, we use the following expression for the external pressure

pex(z) = p0 exp(−2kz), (4.20)

where k =
1

2× 2.15
ln

(
p0

ptr

)
Mm−1 = 3.248 Mm−1. Matching the pressure scale

heights, we see that p2(z) eqn (4.6a) also decreases exponentially with z as

p2(z) = p20 exp(−2kz), (4.21)

where p20 will need to be calculated. Taking Ψ(r, z) = Ψh(r, z), the reduced forms

of p and I2
p are given by

p(Ψ, z) =
a

8π
Ψ2 + p2(z) (a > 0) (4.22)

and

I2
p (Ψ) = αΨ2 (α > 0). (4.23)

Taking the radial component of the MHS force balance equation (4.1) and adding

the contribution of the radial force due to the presence of sheet current jφ at the
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Bz(R, z)

jφs

L

R− ǫ R + ǫ

Figure 4.1: Fluxtube geometry at the boundary showing the sheet current.

boundary we write the force balance equation

−∂p
∂r

∣∣∣∣
r=R

+
1

4π

(
Br
∂Br

∂r
+Bz

∂Br

∂z

)∣∣∣∣
r=R

− ∂

∂r

(
B2

8π

)∣∣∣∣
r=R

+ jφ(r)Bz(r)

∣∣∣∣
r=R

= 0.

(4.24)

Now the sheet current jφ can be expressed as a delta function jφ(r) = jφsδ(r−R)

which is non zero only at the boundary. Integrating eqn (4.24) w.r.t. r from

r = R− ε to r = R + ε where ε is an infinitesimal positive quantity we obtain

−
∫ R+ε

R−ε

∂p

∂r
dr +

1

4π

(∫ R+ε

R−ε
Br
∂Br

∂r
dr +

∫ R+ε

R−ε
Bz
∂Br

∂z
dr

)
(4.25)

−
∫ R+ε

R−ε

∂

∂r

(
B2

8π

)
dr +

∫ R+ε

R−ε
jφ(r)Bz(r)dr = 0,

which leads to the MHS force balance at the boundary to be given by

pin − pex + jφsBz(R) +
1

4π

[
Br
∂Br

∂r
+Bz

∂Br

∂z

]
R

+
B2
i −B2

e

8π
= 0, (4.26)

where [...]R denotes the jump condition at the boundary and Bi and Be are the

magnetic fields inside and outside the fluxtube boundary. This is an improved

boundary pressure condition for a magnetic fluxtube, as previous studies have

ignored the sheet current. Now to calculate jφs, we assume an infinitesimal current
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loop at the boundary which has a vertical height of length L and radial extent

from R− ε to R+ ε. Using Stokes line integral theorem along the closed loop (see

Fig.4.1), we see that

BzL = 4πL

∫ R+ε

R−ε
jφsδ(r −R)dr, (4.27)

which implies jφs =
Bz

4π
. Since Br(R) = Bφ(R) = Be(R) = 0 for any height z and

pin(R, z) = p2(z), from eqn (4.26), the total pressure at the boundary inside the

fluxtube is p2(z) +
3B2

z (R)

8π
and matching the pressures gives

p2(z) = pex(z)− 3B2
z (R, z)

8π
. (4.28)

The mass density inside the fluxtube obtained from eqn (4.3b) is

ρ(z) = −1

g

dp2(z)

dz
, (4.29)

and the density inside the fluxtube varies only with z and at the transition region

(ztr = 2.15 Mm), which should match with the external density which is typically

ρtr = 2.77 × 10−14 g cm−3 (Avrett and Loeser 2008). From eqn (4.28) and eqn

(4.20) we see that

p20 =
g

2k
e2kztrρtr. (4.30)

In our model g is assumed not to vary much from photosphere to the transition

region and its value is taken to be g = 274 m s−2, the value at the solar surface

and that determines p20 = 1.36× 104 dyne cm−2. Using the forms of Bz(r, z) from

eqn (4.2, 4.18) we obtain Bz(0, 0) = 4
√
aC ≡ Bz0, and the relation between C,Bz0

and a is derived in the following.

The real component of Ψ is given by,

Re(Ψ) =
Ψ + Ψ∗

2
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and by using eqn (4.13) and eqn (4.18) we can express the flux function in the

form of Whittaker–M functions as

Ψ(r, z) = Ce−kz
[
M−iη,1/2(i

√
ar2) +Miη,1/2(−i√ar2)

]
. (4.31)

Whittaker–M function can be expressed in terms of hypergeometric function by

the standard relation (Dixit and Moll 2015)

Mt,m(z) = e−z/2zm+1/2F 1
1 (1/2 +m− t, 1 + 2m, z). (4.32)

Here F 1
1 represents the hypergeometric functions with the parameters t,m and

argument z. Therefore eqn (4.31) takes the form

Ψ(r, z) = Ce−kz
√
ar2

[
e−i
√
ar2/2F 1

1 (1 + iη, 2, i
√
ar2) + ei

√
ar2/2F 1

1 (1− iη, 2,−i√ar2)

]
.

(4.33)

It follows from eqn (4.2) that Bz takes the form

Bz(r, z) =

√
aC

2
e−kze−i

√
ar2/2

[
(8 + 4i

√
ar2)F 1

1

(
4
√
a+ i(k2 + α)

4
√
a

, 2, i
√
ar2

)
−

(4.34)

r2(4i
√
a+ k2 + α)F 1

1

(
4
√
a+ i(k2 + α)

4
√
a

, 3, i
√
ar2

)]
.

So, Bz(r, z) at r = z = 0 is by definition Bz0 takes the form from eqn (4.34) as,

Bz0 = 4
√
aCF 1

1

(
4
√
a+ i(k2 + α)

4
√
a

, 2, 0

)
. (4.35)

But F 1
1

(
4
√
a+i(k2+α)

4
√
a

, 2, 0

)
= 1 is an identity and therefore we finally have

C =
Bz0

4
√
a
. (4.36)
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We define a physical observable B0 which is the average magnetic field strength

at the base within the fluxtube as

B0 =
1

R

∫ R

0

√
B2
r (r, 0) +B2

z (r, 0) +B2
φ(r, 0)dr (4.37)

where R is the radius of the fluxtube. Therefore we have two free parameters R

and B0 that we can tune to fit our model with the observations. At z = 0, from

eqn (4.28), we get

3B2
z (R, 0)

8π
= p0 − p20. (4.38)

Therefore, from eqns (4.19a, 4.19b, 4.19c) we determine a, α and C in terms of

the free parameters R and B0 and hence the thermodynamic quantities within

fluxtube. The temperature within the fluxtube is calculated by the ideal gas law

according to the following form

T (r, z) =
µ̄p(r, z)

ρ(z)Rg

, (4.39)

where Rg = 8.314 J mol−1 K−1 is the universal gas constant and

µ̄ =
1

zmax

∫ zmax

0

µeff (z)dz = 1.116,

is the average value of the mean effective molar mass from photosphere to tran-

sition region given by an empirical formula µeff (z) = 1.288
[
1− 0.535

( z

2.152

)3]
(Solov’ev and Kirichek 2015) in the domain of 0 < z < 2.152 Mm. A formulary of

the different quantities are listed in Table 4.1.
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Functions r–part z–part

Ψ(r, z) ς(r) Z(z)

Br(r, z) 3.248×10−8

r
ς(r) Z(z)

Bφ(r, z)
√
α ς(r)

r
Z(z)

Bz(r, z) ς′(r)
r

Z(z)

p(r, z) a
8π
ς2(r) + p20 Z2(z)

ρ(r, z) 1 (3.22× 10−8)Z2(z)

T (r, z) 0.0416
(
a

8π
ς2(r) + p20

)
1

Table 4.1: A formulary of the derived functions obtained from the solution of

GSE. Here, ς(r) = C
[
F0

(
− η,

√
ar2

2

)
+ F ∗0

(
− η,

√
ar2

2

)]
and Z(z) = e−kz. The

value of the constants are µ̄ = 1.116, g = 2.74 × 104 cm s−2, k = 3.248 × 10−8

cm−1, p20 = 1.36 × 104 dyne cm−2. All the quantities in the table are in cgs
units.

4.4 Mode analysis of different profile functions

The quantities a, α and C are functions of the free parameters R, B0 and the

mode number n whose values are given in Table 4.2 for a sample set of the free

parameters. The solutions to Ψ, B, p and T are shown for different mode numbers,

R (km) B0 (kG) mode no. C (1017 Mx) α (10−14 cm−2) a (10−28 cm−4)

100 1 1 0.335061 7.50448 20.0417

100 1 2 0.144828 15.6546 107.27

100 1 3 0.0915463 24.0161 268.473

Table 4.2: Values of the quantities a, α and C for R = 100 km and B0 = 1
kG for three different modes.

in Figs. 4.2–4.5 respectively.
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Figure 4.2: The vertical cross–sections of normalized poloidal flux function
for three different modes n for R = 100 km and B0 = 1 kG are shown. The
contours represent the magnetic lines of force in the r−z plane. The amplitude
of the flux function, normalized to the peak value, is represented by a colour
bar. The horizontal axis is scaled to the radius of the fluxtube R and the vertical
axis is scaled with the pressure scale height, h = 162 km.

All the profile functions are normalized to their peak values and the radial distance

to the total radius of the fluxtube R. As per the boundary conditions, the flux

function, Ψ vanishes both at the axis and at the boundary of the fluxtube, where

the total gas pressure is p2(z). The solutions of higher modes have, the profile

functions with higher frequency along the radial direction and realistically we

may not have such reversible fields, as they are unstable. Therefore, we use the

fundamental mode (n = 1) for further analysis. The 3D topology of the magnetic
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Figure 4.3: The radial variations of the normalized poloidal flux function for
three different modes for R = 100 km and B0 = 1 kG are shown.

Figure 4.4: The radial variations of the normalized Br, Bφ and Bz fields for
different modes for R = 100 km and B0 = 1 kG are shown.
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Figure 4.5: Left: The radial variations of normalized gas pressure within the
fluxtube are shown for three different modes n, Right: The radial variations of
normalized temperature profile inside the fluxtube are shown for three different
modes n. Both the plots are for R = 100 km and B0 = 1 kG.

field lines inside the fluxtube for the fundamental mode is shown in Fig. 4.9.

4.5 Comparing the model with observations

Now we compare our model with the observations reported from high resolution

and high cadence instruments. Small scale magnetic structures, i.e., MBPs, are the

best candidates for comparison because such structures can be assumed to consist

of fluxtubes. MBPs are seen in G-band filtergrams or are identified by making

spectro-polarimetric measurements (Utz et al. 2009, 2013; Yang et al. 2016). The

radial variation of the profile functions p, ρ and T and the magnetic components

Br, Bφ and Bz are independent of z, but the amplitude decreases exponentially

with z except for T . In the following, we validate the model by comparing the

observed magnetic field strengths and radius of MBPs with those calculated in our

model and estimate the magnetic field strength and thermodynamic quantities at

the transition region which may be verified by future observations.

The MBPs number distribution, magnetic field strength, and size distribution have

been reported by Utz et al. (2009, 2013) at the photosphere. The size distribution

of MBPs peaks around 200 km and 160 km for low and high spatial sampling rates,
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respectively (Utz et al. 2009). The magnetic field strength distribution is bimodal

with two peaks at ∼ 1400 G and ∼ 200 G (Utz et al. 2013). Since MBPs are

observed as the region of unipolar flux concentrations, we construct a cylindrical

boundary inside the simulation domain where the vertical magnetic field Bz is

positive. We call this cut–off radius as r0, where the line of sight magnetic field

Bz vanishes. The value of Bz after this grid line becomes negative. In Fig. 4.6,

the vertical grid line denotes the boundary radius r0. We study two different

cases for r0 = 80 and 100 km which corresponds to the peak values for the MBP

size distribution, for which R is found to be 127 and 159 km respectively. For

both cases, we calculate B0 and the mean value of Bz, B̄z in the radial direction

up to r0 and find that for realistic values of the thermodynamic quantities inside

the fluxtube, the upper limit of the vertical magnetic field strength Bz0 is 2.37

kG. Beyond this value of Bz0, the viable solutions will shift to the higher modes.

The temperature inside the fluxtube increases as the value of Bz0 decreases and

temperature inside the fluxtube becomes greater than the typical photospheric

temperature when Bz0 < 2.31 kG. Thus it can be considered as the lower cut off

limit of the magnetic field strength. The B̄z value is only sensitive to Bz0 but not

on r0, and the thermodynamic quantities inside the fluxtube remain the same for

both r0 = 80 and 100 km. We found B̄z = 1.42 and 1.4 kG for Bz0 = 2.37 and 2.31

kG respectively. The radial and vertical variations of the vertical magnetic field

strength, gas pressure, density and temperature inside the fluxtube are shown in

Figs. 4.7 and 4.8. We see that the vertical magnetic field strength decreases from

2.37 kG (on the axis at z = 0) to zero at the MBP boundary (r0, see Fig. 4.6).

The variation of gas pressure and temperature from axis to the MBP boundary is

very small; at the photosphere, the gas pressure changes 1.358× 104 (on the axis

at z = 0) to 1.373 × 104 dyne cm−2 (at MBP boundary) and it decreases with

z to 3.12 × 10−2 dyne cm−2 (at MBP boundary) at the transition region (z = 2

Mm). The temperature changes from 5656 K (on the axis) to 5718 K (at MBP

boundary) which is small compared to the outside photosphere temperature (6583

K) (Avrett and Loeser 2008). The average temperature inside fluxtube has been
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Figure 4.6: The radial variations of the magnetic field strength at the photo-
sphere (z = 0) within the fluxtube for R = 127 km (top) and 159 km (bottom)
are shown. The vertical grid line denotes the radius (r0) beyond which Bz be-
comes negative. The values of r0 are 80 km and 100 km for the top and bottom
panels respectively. The horizontal axes are scaled in units of 100 km and the
vertical axes are scaled in units of kG for both top and bottom panels. The
mean value of Bz up to r0 is 1.42 kG in both panels.
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Figure 4.7: From top to bottom: Predicted radial variation of vertical mag-
netic field strength, gas pressure, density and temperature from the axis to the
boundary of the fluxtube for two different sizes of MBPs (80 km radius in the
left panel and 100 km radius in the right panel). The horizontal axis is scaled
in units of 100 km and the vertical axes of Bz, p, ρ, T are scaled in units of kG,
104 dyne cm−2, 10−8 g cm−3 and 103 K respectively.

calculated by integrating the temperature from axis to the MBP boundary and is

found to be 5679 K. The density distribution is constant along the radius of the

fluxtube at a given height which decreases with height from 3.22 × 10−8 g cm−3

at the photosphere to 7.33× 10−14 g cm−3 at the transition region. The values of

the quantities estimated from our model are summarized in Table 4.3.
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Figure 4.8: The figure shows the variation of gas pressure, density and tem-
perature at the BP boundary along z. The horizontal axis represents the height
from the photosphere scaled with the pressure scale height h = 162 km, and the
vertical axes represents pressure, density and temperature from top to bottom
respectively.

4.6 Conclusions and discussion

In this work, we constructed a single fluxtube with the twisted magnetic field by

solving GSE analytically. We summarize our results below:

1. We have an improved boundary condition by incorporating the sheet current

as compared to the previous studies e.g. Solov’ev and Kirichek (2016).

2. Our model depends on the form of the external pressure distribution which is

assumed as an exponentially decreasing function with z. Future observations
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Figure 4.9: The figure shows the 3D topology of the magnetic field lines inside
the fluxtube. The scales are in arbitrary units.

r z (Mm) Bz (G) p (dyne cm−2) ρ (g cm−3) T (K)

0 0 2370 1.358× 104 3.22× 10−8 5656

0 2 2.19 3.09× 10−2 7.33× 10−14 5656

r0 0 0 1.373× 104 3.22× 10−8 5718

r0 2 0 3.12× 10−2 7.33× 10−14 5718

Table 4.3: Table of the results obtained from our model for r0 = 80 and 100
km

leading to a more accurate form of pressure distribution from the photosphere

to the transition region can be used to improve our model. The plasma β

parameter inside the fluxtube remains constant with z but it varies along r;

β < 1 is obeyed from the chromosphere to the transition region but not in

the photosphere and lower atmosphere. Therefore the magnetic effects will

dominate the gas dynamics throughout the simulation domain.
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3. In our model, the temperature varies along the radial direction, but it is

constant along the vertical direction z. In other models e.g. Gent et al.

(2013) the temperature rises with the height from the photosphere to the

transition region and in Vigeesh et al. (2011) the temperature decreases

from 6300 K at the surface to 4000 K (at z = 600 km) and then it remains

the same up to 1200 km.

4. The effects of shock wave dissipation and magnetic reconnection start to

dominate in the corona which causes the coronal heating. We have not con-

sidered these mechanisms in our model and therefore, we have not modeled

the region in the corona or higher and have restricted our simulation domain

to end at the transition region.

5. Recently Hewitt et al. (2014); Uitenbroek and Criscuoli (2013); Riethmüller

and Solanki (2016), have simulated bright points using MuRAM and Copenhagen-

Stagger code. We find that the magnitude of magnetic field strengths, pres-

sure, and densities reported in these studies are in fair agreement with our

predictions but the temperature distribution along z is in variance with the

results of the numerical simulations.
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Open and closed magnetic

configurations of twisted

fluxtubes

Image source: www.greatlakesledger.com

5.1 Introduction

The small scale magnetic structure in the solar photosphere plays an important

role in several phenomena like the evolution of active regions (Muller and Mena

1987; Aschwanden et al. 2000; Centeno et al. 2007), heating of corona through the

The work presented in this chapter is the part of the following papers:
(i) Sen and Mangalam (2018b)
(ii) Sen and Mangalam (2019)
(iii) Sen and Mangalam (in preparation)
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dissipation of waves (Ruzmaikin and Berger 1998; Srivastava et al. 2017) and recon-

nection between fluxtubes (van Ballegooijen 1986; Muller et al. 1994). Magnetic

fluxtubes span from the photosphere to the higher atmosphere and are observed

in the form of small scale magnetic structures. The topological rearrangement of

these fluxtubes due to the motion of the photospheric footpoints gives rise to the

magnetic reconnection leading to the energy release in the solar corona (Parker

1988; Peter et al. 2005; Thalmann et al. 2013). Therefore, the modeling of the

proverbial fluxtube is one of the key aspects to understand various phenomena on

the solar surface and its outer atmosphere.

Several attempts have been made earlier to construct the model of fluxtubes

for both twisted and untwisted magnetic fields. Schlüter and Temesváry (1958)

studied a two dimensional (2D) axisymmetric fluxtube model without twist for

sunspots using self–similar structure, where a self-similar parameter was defined

as a combination of r and z, and the relative vertical magnetic field strength at

any arbitrary point with respect to the magnetic field strength at the axis is scaled

with a Gaussian profile function of the self-similar parameter. This model is valid

for open field lines where the magnetic lines of force rise from a horizontal plane

and do not return in the model domain. Yun (1971) implemented a twist in the

self–similar structure to model the sunspots. In this model, an empirical form of

the azimuthal magnetic field strength Bφ(r, z) was taken from the data obtained

from observations (Stepanov 1965). By solving for the variation of the pitch angle

and gradient of the pitch angle, the thermodynamic quantities with the depth

were calculated. Motivated by the model and the self–similar structure proposed

by Schlüter and Temesváry (1958), Osherovitch (1982) assumed a quadratic form

of the flux function for the gas pressure to model a closed field fluxtube, where

the magnetic lines of force rise and return to the same horizontal plane.

Steiner et al. (1986) have numerically studied a 2D model of open single fluxtube

with a twist using the standard boundary conditions including sheet current to
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study the magnetic field line structure within and outside the fluxtube. The mag-

netic and thermodynamic structure for both single and multiple fluxtubes which

span from the photosphere to corona have been studied for the case of untwisted

magnetic field (Gent et al. 2013, 2014), where an empirical form of the magnetic

field components is motivated by a self-similar construction. A numerical model

of fluxtubes has been studied by Murawski et al. (2015b), where an empirical

form of magnetic flux function has been assumed; this was followed by a model

to study the propagation of the MHD waves through the fluxtubes with an az-

imuthal velocity perturbation. The steady structure of the 2D fluxtube was used

as a background initial condition to study the propagation of the MHD waves.

For example, Vigeesh et al. (2009) assumed an empirical form of gas pressure for

investigating the wave propagation and energy transport through the fluxtube.

Other interesting results of wave behavior in the solar atmosphere have been pre-

sented by several authors. Fedun et al. (2009) have studied the propagation of

the acoustic wave through the solar atmosphere due to the periodic drivers at

the photosphere, and Shelyag et al. (2010) have modeled the wave propagation

through the photospheric magnetic bright points (MBPs).

In this work, we have constructed two different models of fluxtubes with twisted

magnetic field for open and closed field lines by solving Grad–Shafranov equa-

tion (GSE) (Grad and Rubin 1958; Shafranov 1958). Here, we have assumed a

quadratic form of the flux function for the gas pressure and poloidal current which

has been used to study the equilibrium solution of terrestrial plasma (Atanasiu

et al. 2004), and we extend it to solar fluxtubes. As the MHD waves follow the

magnetic field lines, it is important to model fluxtubes with open field lines, so

that MHD waves propagate through the fluxtube and dissipate in the upper atmo-

sphere, which is a key aspect of the coronal heating. A key aspect of this work is

to show that the closed field model, reported in Sen and Mangalam (2018a) (SM18

hereafter), is a special case of the open field model with a twisted field line. The

fluxtube we build is axisymmetric in structure and spans vertically upward from

the photosphere to the transition region. In the case of a linear form of the flux
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function for the gas pressure and poloidal current, an equilibrium solution near the

magnetic axis of a plasma torus has been reported by Solov’ev (1968). SM18 have

studied the homogeneous solution of GSE which is a special case of the general

solution of the quadratic case to model a fluxtube with closed field lines with a

twist. Here, we present the full solution of the GSE including both homogeneous

and the particular parts to model a twisted open field fluxtube. The other model

we have built is a self–similar magnetic structure with a twist, with a generalized

Gaussian (or power law) incorporated into the magnetic shape functions; the gas

pressure and poloidal current are taken to be quadratic functions of the flux func-

tion. The self–similar fluxtube model expands with height which spans from the

photosphere to transition region. After building the solutions semi–analytically

and applying appropriate boundary conditions (BCs), we calculate the magnetic

field structure and thermodynamic quantities inside the fluxtube. As magnetic

bright points (MBPs) observed in the photosphere (Muller and Mena 1987; Cen-

teno et al. 2007; Lagg et al. 2010; Shelyag et al. 2010) are likely to be fluxtubes,

we compare our model with the existing observations and simulations of MBPs.

The work is organized as follows. In §5.2, we apply the GSE to the cylindrical

fluxtube case and describe the common BCs which are physically realistic and used

in modeling of our fluxtubes. In §5.3, we present the Coulomb function model for

open and closed fields, the appropriate BCs, and show how the open field Coulomb

model generalizes the Coulomb field closed model. The solution of the self-similar

model and the appropriate BCs are presented in §5.4. In §5.5, the results of our

simulations and the variation of the magnetic and thermodynamic profile functions

are presented for Coulomb function and self-similar models, and in §5.6, the results

obtained from the models are applied to the existing observations of MBPs and

the simulations for other solar fluxtubes. In §5.7, we have compared between

the Coulomb function and self-similar models and find the regime of the validity;

we have also discussed the advancement made and how the models for open and

closed field fluxtubes are useful for building realistic structures. Finally, in §5.8,
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we summarize and highlight the major points of the work and conclude how the

work may be useful for future numerical studies.

5.2 Grad–Shafranov equation for the cylindrical

fluxtube

In a magnetic medium of field strength B, with gas (or plasma) pressure p and

mass density ρ, the magnetohydrostatic (MHS) pressure balance equation is given

by

−∇p+
1

4π
(∇×B)×B + ρg = 0, (5.1)

where g denotes the acceleration due to gravity at the solar surface. The individual

components of B can be expressed in terms of the poloidal flux function, Ψ(r, z) =∫ r
0
r′Bz(r

′, z)dr′, in the following way

Br = −1

r

∂Ψ

∂z
; Bz =

1

r

∂Ψ

∂r
; Bφ =

Ip
r
, (5.2)

where Ip represents the poloidal current. These forms of Br, Bφ and Bz automati-

cally ensure the solenoidal condition for B. Using the axisymmetric condition we

split the MHS equilibrium eqn (5.1) into r and z direction and plug in the forms

of magnetic field components from eqn (5.2), to find two scalar partial differential

equations

∂Ψ

∂r

∂2Ψ

∂z2
+
∂Ψ

∂r

∂2Ψ

∂r2
− 1

r

(
∂Ψ

∂r

)2

+
1

2

∂I2
p

∂r
= −4πr2∂p

∂r
(5.3a)

−∂p
∂z

+
1

4π

[
1

r

∂Ψ

∂z

(
1

r2

∂Ψ

∂r
− 1

r

∂2Ψ

∂r2

)
− 1

r2

∂Ψ

∂z

∂2Ψ

∂z2
− 1

2r2

∂I2
p

∂z

]
− ρg = 0, (5.3b)
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where we assume the form of the gas pressure to be

p(r, z) = p1(Ψ) + p2(z); (5.4)

this form is required in order to have a non-zero density (see SM18). The φ part

of eqn (5.1) gives ∇Ψ×∇Ip = 0, which implies Ip = Ip(Ψ). We have the following

form from eqns (5.3a, 5.4) for the GSE to be given by

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
= −1

2

∂I2
p (Ψ)

∂Ψ
− 4πr2∂p1(Ψ)

∂Ψ
. (5.5)

From eqns (5.3b, 5.4) we find

−∂p2

∂z
− ∂p1(Ψ)

∂z
+

1

4π

[
1

r2

∂Ψ

∂z

(
1

r

∂Ψ

∂r
− ∂2Ψ

∂r2

)
− 1

r2

∂Ψ

∂z

∂2Ψ

∂z2
− 1

2r2

∂I2
p (Ψ)

∂z

]
= ρg.

(5.6)

Following SM18, by multiplying 4πr2 ∂z

∂Ψ
on both sides of eqn (5.6) and using eqn

(5.5), we obtain

ρ(z) = −1

g

dp2(z)

dz
. (5.7)

We will see later that the prescription of p2(z) will lead ρ to be a positive quantity,

and hence the density within the fluxtube is independent of the radial distance r

but varies with height z. The temperature, T , inside the fluxtube is calculated by

the ideal gas law according to the following form

T (r, z) =
µ̄ p(r, z)

Rg ρ(z)
, (5.8)

where, Rg = 8.314 J mol−1 K−1 represents the gas constant and

µ̄ =
1

zt

∫ zt

0

µe(z)dz = 1.12 (5.9)
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is the mean effective molar mass from photosphere to transition region given by

the empirical relation, µe(z) = 1.288

[
1 − 0.535( z

2.152
)3

]
(Solov’ev and Kirichek

2015) in the domain of 0 < z < 2.152 Mm. The formulary of the derived functions

for the Coulomb function helical fluxtube model are summarized in the Table 5.6.

In §5.3 and §5.4, we reduce the GSE for different models of fluxtubes having open

or closed field line structures. A flowchart of the solutions of the two different

fluxtube models obtained is shown in Fig. 5.1.

Before we solve for the various cylindrical structures, we discuss the boundary

conditions below that are crucial to the models, applicable to both open and

closed field fluxtubes. The magnetic field lines that rise from a horizontal plane

and do not return to the same plane within the domain of interest, are called open

field lines (see Figs. [5.6, 5.12, 5.13]). On the other hand, the field lines that rise

and return to the same horizontal plane are called the closed field lines (see Fig.

5.7). We take an idealized case in which the fluxtube is embedded in a magnetic

field free region where there is no current outside the fluxtube. We apply the

following standard BCs which are used by several authors [e.g. Mangalam and

Krishan (2000); Solov’ev and Kirichek (2015); Sen and Mangalam (2018a)], that

[Br(r = 0, z) = 0, Bφ(r = 0, z) = 0] which implies that the magnetic field line

is vertical at the axis of the fluxtube. At the boundary, the radial component

vanishes i.e. Br(r = R, z) = 0. We also use the BCs that the total pressure at

the boundary of the fluxtube matches with the external pressure and the radial

average of the internal gas pressure at the transition region (z = zt) is equal to

pt, where the pressure at the photosphere (z = 0) outside the fluxtube is taken

to be p0 = 1.228 × 105 dyne cm−2 and at the transition region (zt = 2 Mm), it

is pt = 0.1488 dyne cm−2; these are taken from Avrett-Loeser model (Avrett and

Loeser 2008). We specify the appropriate BCs to model both open and closed field

fluxtubes below:
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BC 1: Br(r = 0, z) = 0 (5.10a)

BC 2: Bφ(r = 0, z) = 0 (5.10b)

BC 3: Br(R, z) = 0 (5.10c)

BC 4: pT (R, z) = pe(z) (5.10d)

BC 5:
1

R

∫ R

0

p(r, zt)dr = pt. (5.10e)

The BCs that distinguishes between the closed and open field fluxtubes is the

following

Bφ(R, z)

= 0; closed field

6= 0; open field,

(5.11)

which reduces to the condition,

Ψ(R, z) = Ψb

= 0; closed field

6= 0; open field,

(5.12)

which is derived in §5.3. The open (general) solution is obtained in §5.3 and it is

reduced to the special case of the closed solution by taking Ψb = 0 is presented in

§5.3.
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5.3 Coulomb function solution of helical flux-

tube model

For the magnetohydrostatic equilibria with uniform solar gravity and axisymmetric

condition, we have split p(r, z) = p1(Ψ(r, z)) + p2(z) in order to have a non-zero

density (SM18a). If we take the form of p1(Ψ) as a linear function of Ψ, we found

that the BCs 1–5 [eqn (5.10a)–(5.10e)], which are crucial for our model, will not be

satisfied for arbitrary R values. On the other hand, the quadratic function of Ψ,

which is more general than the linear form, is the simplest allowed form for p1 and

Ip, satisfies all the BCs [eqns (5.10a)–(5.10e)], where R becomes a free parameter,

and can be chosen any value within the domain of our interest. Therefore, we

assume p1(Ψ) and I2
p (Ψ) to be polynomials of Ψ upto second order (Atanasiu

et al. 2004),

p1(Ψ) =
1

4π

(
a′

2
Ψ2 + b′Ψ

)
, (5.13a)

I2
p (Ψ) = α′Ψ2 + 2β′Ψ + I2

0 , (5.13b)

where the parameters a′, b′, α′, β′, I0 are to be determined by appropriate bound-

ary conditions (BCs) and the function p2(z) will be evaluated later. Plugging

eqns (5.13a, 5.13b) into eqn (5.5) we obtain a second order scalar linear partial

differential equation

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
= −(a′r2 + α′)Ψ− (b′r2 + β′). (5.14)

We define the dimensionless parameters (in the LHS) by introducing the scaling

relations,

$ = r/R, τ = R/z0, ψb =
Ψb

√
a′

B0

, a =
a′R4

4
,

α =
α′

4
√
a′
, b =

b′

B0

√
a′
, β =

R2β′

Ψb

, (5.15)
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where Ψb, R, B0 are the boundary flux, radius and the magnetic field strength at

the center of the fluxtube respectively, and z̄ = z/z0, where z0 is a constant. To

solve this equation, we split ψ = Ψ/Ψb into homogeneous ψh and particular part

ψp, i.e. ψ = ψh+ψp. We plug ψ into eqn (5.14) and separate out the homogeneous

and particular parts to obtain the following dimensionless equations

∂2ψh
∂$2

− 1

$

∂ψh
∂$

+ τ 2∂
2ψh
∂z̄2

= −4
√
a(
√
a$2 + 2α)ψh, (5.16)

∂2ψp
∂$2

− 1

$

∂ψp
∂$

= −(4a$2 + 8
√
aα)ψp −

(
4ab

ψb
$2 + β

)
. (5.17)

The solution of eqn (5.16) is separable and given by ψh($, z̄) = s($)Z(z̄) which

has been shown in SM18 to be given by

s($) = cF0(−α− κ2,
√
a$2) (with a > 0), (5.18)

where F0(−α− κ2,
√
a$2) represents the Coulomb function (Abramowitz and Ste-

gun 1972) and κ =
kR

2
√

2a1/4
, where the value of k is evaluated later. The z–part

solution of eqn (5.16) is given by

Z(z̄) = exp

(
− 2
√

2κa1/4z̄

τ

)
. (5.19)

The homogeneous solution takes the following form

ψh($, z̄) = c exp

(
− 2
√

2κa1/4z̄

τ

)
F0(−α− κ2,

√
a$2). (5.20)

The solution of the inhomogeneous eqn (5.17) is given by a power series solution

ψp($) = − β

8α
+
i
√
a$2

2
e−i
√
a$2

(
β

8α
− b

ψb

) ∞∑
n=0

F 1
2

(
n+ 2, 1;n+ 2 + iα; 1

2

)
(i
√
a$2)n

(n+ 1 + iα)n!
.

(5.21)

A similar but different homogeneous solution which is oscillatory along z−direction

has been used for the cases of both D−shaped and toroidally diverted laboratory
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plasma (Atanasiu et al. 2004). The general solution of the GS eqn (5.14) is given

by ψ = ψh + ψp. Since ψ($, z̄) and ψ∗($, z̄), its complex conjugate, are the valid

solutions of eqn (5.14), we construct a real solution of eqn (5.14) by redefining
ψh($, z̄) + ψ∗h($, z̄)

2
→ ψh($, z̄) and

ψp($) + ψ∗p($)

2
→ ψp($) which leads to

ψ($, z̄) + ψ∗($, z̄)

2
→ ψ($, z̄) = ψXC =

ψ
C
C = ψh (closed field)

ψOC = ψh + ψp (open field)

.

The solution ψh alone gives the closed field structure of fluxtube (SM18), which

we denote as ψCC ; the general solution is a combination of ψh and ψp and we denote

the open field fluxtube structure as ψOC .

The total flux function ψXC ($, z̄) is given by

ψXC ($, z̄) = s($)Z(z̄) + ψp($), (5.22)

where s($) and ψp($) are given by eqns (5.18) and (5.21) respectively. Now,

ψXC ($, z̄) has to be zero at the axis (i.e. $ = 0) for all z̄, to keep the field finite

at the origin. Since s(0) = 0, which satisfies the BC 1 [eqn (5.10a)], we obtain

from eqn (5.22), ψp($ = 0) = 0. From eqn (5.21), we have ψp($ = 0) = − β

8α
.

Therefore, we obtain β = 0. From eqn (5.21), ψp($) reduces to

ψp($) =
i
√
ab$2

4ψb

[
ei
√
a$2

∞∑
n=0

F 1
2

(
n+ 2, 1;n+ 2− iα; 1

2

)
(−i√a$2)n

(n+ 1− iα)n!
(5.23)

−e−i
√
a$2

∞∑
n=0

F 1
2

(
n+ 2, 1;n+ 2 + iα; 1

2

)
(i
√
a$2)n

(n+ 1 + iα)n!

]
.

From eqns (5.2) and (5.22) we have

Bz($, z̄) =
B0ψb

2
√
a$

(
∂ψh
∂$

+
∂ψp
∂$

)
. (5.24)

The homogeneous solution s($) which is given by the eqn (5.18), can be repre-

sented in terms of the Whittaker–M function (SM18), where the Whittaker–M
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function can be expressed in terms of hypergeometric function by the standard

relation (Dixit and Moll 2015)

Mt,m(ν) = e−ν/2νm+ 1
2F 1

1

(
1

2
+m− t, 1 + 2m, ν

)
, (5.25)

where F 1
1 represents the hypergeometric function with the arguments t,m and ν.

Taking the real part of ψh($, z̄) from eqn (5.20) and ψp($) from (5.23), and using

eqns [(5.24), (5.25)] we obtain

Bz($, z̄) =B0ψbc exp

(
− 2
√

2κa1/4z̄

τ

)[
8(1 + i

√
a$2)F 1

1 (1 + iα, 2, 2i
√
a$2)−

(5.26)

8
√
a$2F 1

1 (1 + iα, 3, 2i
√
a$2)

]
+
B0ψb
2
√
a

(
ψ′p($) + ψ

′∗
p ($)

2$

)

where, B0 ≡ Bz(0, 0), and from eqn (5.26) we obtain,

1 = 8ψbc+
ψb

2
√
a

[
ψ′p($) + ψ

′∗
p ($)

2$

]
$=0

, (5.27)

where the identity F 1
1 (1 + iα, 2, 0) = 1 is applied. By expanding the last term on

the RHS of eqn (5.27), we obtain

1 = 8ψbc+
ib

2

[
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 + iα

]
(5.28)

and the expression for c is given by

c =
1

8ψb

[
1− ib

2

(
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 + iα

)]
. (5.29)



Chapter 5: Open and closed magnetic configurations of fluxtubes 98

Hence, we obtain the explicit form for

Bz($, z̄) =
B0

8$

[{
1− ib

2

(
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 + iα

)}
(5.30)

· exp

(
− 2
√

2κa1/4z̄

τ

)
d

d$
[F0(−α− κ2,

√
a$2) + F ∗0 (−α− κ2,

√
a$2)]

+ ib
d

d$

{
$2ei

√
a$2

∞∑
n=0

F 1
2 (n+ 2, 1, n+ 2− iα, 1/2)(−i√a$2)n

(n+ 1− iα)n!

−$2e−i
√
a$2

∞∑
n=0

F 1
2 (n+ 2, 1, n+ 2 + iα, 1/2)(−i√a$2)n

(n+ 1 + iα)n!

}]
.

From eqns (5.2, 5.22) we have

Br($, z̄) = −B0ψbτ

2
√
a
s($)Z ′(z̄), (5.31)

whose explicit form is given by

Br($, z̄) =
B0κ

2
√

2a1/4$
exp

(−2
√

2κa1/4z̄

τ

)
(5.32)

· [F0(−α− κ2,
√
a$2) + F ∗0 (−α− κ2,

√
a$2)]

·
[
1− ib

2

(
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 + iα

)]
.

From eqn (5.2) we obtain the toroidal component

Bφ($, z̄) =

√
2B0α

1/2ψb
a1/4$

(ψh + ψp), (5.33)
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whose explicit form is given by

Bφ($, z̄) =
B0α

1/2a−1/4

4
√

2

[
1

$
(5.34)

·
{

1− ib

2

(
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 + iα

)}
· exp

(
− −2

√
2κz̄

τ

)
[F0(−α− κ2,

√
a$2) + F ∗0 (−α− κ2,

√
a$2)]

+ ib$

{
ei
√
a$2

∞∑
n=0

F 1
2 (n+ 2, 1, n+ 2− iα, 1/2)(−i√a$2)n

(n+ 1− iα)n!

− e−i
√
a$2

∞∑
n=0

F 1
2 (n+ 2, 1, n+ 2 + iα, 1/2)(−i√a$2)n

(n+ 1 + iα)n!

}]
.

Applying the BC 3 [eqn (5.10c)] and using eqn (5.31), we find s($ = 1) = 0. From

BC 2 [eqn (5.10b)] and eqn (5.13b) we find I0 = 0. We assume that the external

pressure from photosphere to transition region decreases exponentially as

pe(z) = p0 exp(−2kz), (5.35)

where k is the pressure scale height, which is determined by the relation,

k =
1

2zt
ln

(
p0

pt

)
= 3.405 Mm−1, where p0 = 1.22 × 105 dyne cm−2, pt = 0.148

dyne cm−2, and zt = 2 Mm. By matching the pressure scale heights inside and

outside the fluxtube, we see that p2(z) follows

p2(z) = p20 exp(−2kz), (5.36)

where p20 is evaluated later. Finally, we have the expression of p(r, z) from eqns

(5.4, 5.13a) to be given by

p(r, z) =
1

4π

(
a′

2
Ψ2 + b′Ψ

)
+ p20 exp(−2kz), (5.37)
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whose explicit form is given by

p($, z̄) =B2
0

[(
ψ2
bs

2($)

8π
+ p̄20

)
Z2(z̄) (5.38)

+

(
ψ2
bs($)ψp($)

4π
+
bψbs($)

2
√

2a

)
Z(z̄) +

(
ψ2
bψ

2
p

8π
+
bψbψp

2
√

2a

)]
,

where p̄20 = p20/B
2
0 , and s($), Z(z̄), ψp($) are given by eqns (5.18, 5.19, 5.23)

respectively. We now calculate the total pressure at the boundary of the fluxtube

that includes the contribution due to gas pressure and the magnetic forces due

to the presence of the sheet currents jφ (SM18) and jz. The pressure and radial

component of the MHS force balance eqn (5.1) yields

−∂p
∂r

∣∣∣∣
r=R

+
1

4π

(
Br
∂Br

∂r
+Bz

∂Br

∂z

)∣∣∣∣
r=R

− ∂

∂r

(
B2

8π

)∣∣∣∣
r=R

+jφ(R)Bz(R)− jz(R)Bφ(R) = 0. (5.39)

The sheet currents jφ and jz take the forms

jφ(r) = jφs δ(r −R), (5.40a)

jz(r) = jzs δ(r −R). (5.40b)

Integrating eqn (5.39) with respect to r from r = R− ε to r = R+ ε where ε is an

infinitesimal positive quantity we obtain

−
∫ R+ε

R−ε

∂p

∂r
dr +

1

4π

(∫ R+ε

R−ε
Br
∂Br

∂r
dr +

∫ R+ε

R−ε
Bz
∂Br

∂z
dr

)
−
∫ R+ε

R−ε

∂

∂r

(
B2

8π

)
dr +

∫ R+ε

R−ε
jφ(r)Bz(r)dr −

∫ R+ε

R−ε
jz(r)Bφ(r)dr = 0, (5.41)

which leads to

pi(R, z)− pe(z) + jφs Bz(R)− jzs Bφ(R)

+
1

4π

[
Br
∂Br

∂r
+Bz

∂Br

∂z

]
R

+
B2
i (R, z)−B2

e (R, z)

8π
= 0, (5.42)
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B  (R,z)z

jφs

L

R - ε R + ε

B  (R,z)φL

R - ε R + ε

jzs

Figure 5.2: Geometry of the fluxtube at the boundary showing sheet currents.

where [...]R denotes the jump condition at the boundary and {Bi, pi} and {Be, pe}
are the internal and external magnetic fields and gas pressures in the fluxtube

respectively. To calculate jφs and jzs, we assume an infinitesimal current loop of

vertical height L and radial extent R − ε to R + ε placed at the boundary of the

fluxtube (see Fig. 5.2) and by applying the line integral along the loop, we obtain

Bz(R)L = 4πL

∫ R+ε

R−ε
jφsδ(r −R)dr (5.43a)

−Bφ(R)L = 4πL

∫ R+ε

R−ε
jzsδ(r −R)dr, (5.43b)

which implies

jφs =
Bz(R)

4π
(5.44a)

jzs = −Bφ(R)

4π
. (5.44b)
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The total internal magnetic field is given by, B2
i = B2

r +B2
φ +B2

z . Applying the

BC 3 [eqn (5.10c)] and Be = 0, we have from eqn (5.42),

pi(R, z)− pe(z) +
3B2

z (R, z)

8π
+

3B2
φ(R, z)

8π
= 0. (5.45)

By expanding eqn (5.45) we obtain

ψ2
b

3

(
1 +

6α√
a

)
+

2

3
bψb +

ψ2
b

4a

[
1

$2

(
s′($) exp

(
− 2
√

2κa1/4z̄

τ

)
+ ψ′p($)

)2]
$=1

(5.46)

= p̄ exp

(
− 4
√

2κa1/4z̄

τ

)
,

where ψb = ψp($ = 1) and p̄ =
8π(p0 − p20)

3B2
0

. By equating the coefficients of

exp

(
− 2
√

2κa1/4z̄

τ

)
, exp

(
− 4
√

2κa1/4z̄

τ

)
and the constant quantity between

both sides of eqn (5.46), we obtain

(
1

$2
s′($)ψ′p($)

)
$=1

= 0, (5.47a)

ψ2
b

4a

(
s′2($)

$2

)
$=1

= p̄, (5.47b)

ψ2
b

3

(
1 +

6α√
a

)
+

2bψb
3

+
ψ2
b

4a

[
ψ
′2
p ($)

$2

]
$=1

= 0. (5.47c)

From eqns (5.47a, 5.47b) we find that

(
ψ′p($)

$

)
$=1

= 0, as p̄ 6= 0 and hence from

eqn (5.47c)

b = −ψb
2

(
1 +

6α√
a

)
. (5.48)
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We now summarize the set of equations we need to solve numerically for the open

field model to be given by

s($ = 1) = 0, (5.49a)(
ψ′p($)

$

)
$=1

= 0, (5.49b)(
s′2($)

$2

)
$=1

=
4ap̄

ψ2
b

, (5.49c)

b = −ψb
2

(
1 +

6α√
a

)
, (5.49d)∫ 1

0

p($, z̄t)d$ = pt. (5.49e)

The explicit forms of the eqns (5.49a–5.49e) are

F0(−α− κ2,
√
a) + F ∗0 (−α− κ2,

√
a) = 0, (5.50)[

1

$2

d

d$

(
$2ei

√
a$2

∞∑
n=0

F 1
2 (n+ 2, 1, n+ 2− iα, 1/2)(−i√a$2)n

(n+ 1− iα)n!

−$2e−i
√
a$2

∞∑
n=0

F 1
2 (n+ 2, 1, n+ 2 + iα, 1/2)(i

√
a$2)n

(n+ 1 + iα)n!

)]
$=1

= 0, (5.51)[
1− ib

2

(
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 = iα

)]2

·
(

d

d$

[
F0(α− κ2,

√
a$2) + F ∗0 (α− κ2,

√
a$2)

]
$=1

)2

= p̄a, (5.52)

b = −ψb
2

(
1 +

6α√
a

)
, (5.53)∫ 1

0

[
e−2κt

(
1− ib

2

[
F 1

2 (1,−iα, 2− iα,−1)

1− iα − F 1
2 (1, iα, 2 + iα,−1)

1 + iα

])2

·
(
F0(−α− κ2,

√
a$2) + F ∗0 (−α− κ2,

√
a$2)

)2

+ 8e−κtψb
(
ψp + ψ∗p +

2b

ψb

)
·
(

1− ib

2

[
F 1

2 (1,−iα, 2− iα,−1)

1− α − F 1
2 (1, iα, 2 + iα,−1)

1 + α

])2

·
(
F0(−α− κ2,

√
a$2) + F ∗0 (−α− κ2,

√
a$2)

)
(5.54)

+
ψ2
b

4

(
ψp + ψ∗p

)2
+ bψb(ψp + ψ∗p)

]
d$ = p̄ (5.55)
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respectively, where, ψp($) is given by eqn (5.23), κt = kzt, and ψp($ = 1) = ψb.

The five eqns (5.50–5.54) consists of seven unknown variables, {a, α, b, ψb, p̄, R,B0};
so there is a unique solution to the Coulomb function open field model for a given

pair of the unknown variables. The eqns (5.50) and (5.51) contain three variables

a, α and R, and we use these two equations to obtain a(R) and α(R). From eqn

(5.54), we calculate ψb(R,B0, b) and then find b(R,B0) from eqn (5.53), and hence

ψb(R,B0) and then evaluate p̄(R,B0) from eqn (5.52). As a result, the complete

solution for the open field fluxtube depends only on R and B0 which are the free

parameters of the model. As per BC1–BC5 [eqns (5.10a–5.10e)], which are used

for the open field fluxtube model, the magnetic field component at the boundary

of the fluxtube is given by

Bφ($ = 1, z̄) =

√
2αB0ψ

2
b

a1/4
. (5.56)

If we demand additionally, that Bφ($ = 1, z̄) = 0, then, from eqn (5.56), ψb = 0;

also eqn (5.49d) gives b = 0. Therefore from eqn (5.23), we obtain

ψp($) = 0. (5.57)

This represents the solution of the homogeneous part ψh of GSE, which has been

discussed in SM18, that is applicable for closed field fluxtube model. Therefore we

need to solve eqns (5.49a, 5.49c, 5.49e), which are given by the explicit forms by

eqns (5.50, 5.52, 5.54) [with b = ψb = 0], numerically to find the parameters a, α

and p̄ in terms of {R,B0}, which are the free parameters of the closed field model.

The formulary of the derived functions for the Coulomb function helical fluxtube

model are summarized in the Table 5.6. We discuss the various configurations of

Coulomb function open and closed field structure of fluxtubes in §5.5.1.
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5.4 Self-similar models

The basic formulation of self-similar model of a fluxtube is based on Schlüter and

Temesváry (1958) (ST58 hereafter). For an axially symmetric cylindrical geometry

(r, φ, z), where φ is ignorable, the magnetic field components are given by eqn (5.2).

The coordinates r and z are combined together into a new dimensionless variable

ξ which is called the self-similar parameter and as a consequence, the flux function

Ψ can be expressed only as a function of ξ i.e., Ψ(r, z) = Ψ(ξ) (ST58). We define

the dimensionless parameters (in the LHS) by introducing the scaling relations,

$ = r/R, τ = R/z0, ψ = Ψ/Ψb, ψb =
Ψb

B0z2
0

,

p̄1 = p1/B
2
0 , Īp =

Ip
B0R

, χ̄ = χz2
0 , (5.58)

where, Ψb, R, B0 are the boundary flux, radius and the magnetic field strength

at the center of the fluxtube respectively, and z̄ = z/z0, where z0 is a constant

length. From ST58, the self-similar parameter ξ is defined by

ξ = ζ(z̄)$, (5.59)

which describes the radial size distribution of the fluxtube with height from the

base. Plugging in eqn (5.59), we can rewrite the GS eqn (5.5) in the following

form

ψ2
b

2τ 2

d

dξ

(
dψ

dξ

)2

ζ ′2(z̄) +
ψ2
b

τ 2

1

ξ

(
dψ

dξ

)2

ζ ′(z̄)ζ ′′(z̄) (5.60)

+
ψ2
b

2τ 4

d

dξ

(
1

ξ

dψ

dξ

)2

ζ4(z̄) +
1

2ξ2

dĪ2
p

dξ
ζ2 = −4π

∂p̄1

∂ξ
,

and the z−part of GS eqn (5.3b), gives the expression of ρ, eqn (5.7), which is

self consistent for both the Coulomb function and self-similar models. We define
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a quantity which is called the magnetic shape function given by

DX(ξ) =
1

ξ

dψ

dξ
. (5.61)

Plugging eqn (5.61) into eqn (5.60) we obtain

ψ2
b

τ 2
ξD2

X(ξ)ζζ ′′ +
ψ2
b

2τ 2

d

dξ
[ξ2D2

X(ξ)]ζ ′2 +
ψ2
b

2τ 4

d

dξ

(
D2
X(ξ)

)
ζ4 +

1

2ξ2

dĪ2
p

dξ
ζ2 = −4π

∂p̄1

∂ξ
,

(5.62)

and integrating eqn (5.62) with respect to ξ from 0 to ∞ we write

ψ2
b

τ 2
ζζ ′′

∫ ∞
0

ξD2
X(ξ)dξ +

ψ2
b ζ
′2

2τ 2

[
ξ2D2

X(ξ)
]∞
ξ=0

+
ψ2
b ζ

4

2τ 4
[D2

X(∞)−D2
X(0)]

+
ζ2

2

∫ ∞
0

1

ξ2

dĪ2
p

dξ
dξ = −4π

∫ ∞
0

∂p̄1

∂ξ
dξ. (5.63)

Following ST58, we define

y2(z̄) =
ψbD0

τ
ζ2(z̄), (5.64)

where, y(z̄) ≡
(
Bz(0, z̄)

B0

)1/2

, B0 ≡ Bz(0, 0) and D0 ≡ DX(ξ = 0). Next, using

eqns (5.63) and (5.64) we obtain

ψb
τ

yy′′

D0

∫ ∞
0

ξD2
X(ξ)dξ +

ψb
τ

y′2

2D0

[
ξ2D2

X(ξ)
]∞
ξ=0

+
y4

2D2
0τ

2
[D2

X(∞)−D2
0]

+
τ

ψb

y2

2D0

∫ ∞
0

1

ξ2

dĪ2
p

dξ
dξ = −4π

∫ ∞
0

∂p̄1

∂ξ
dξ. (5.65)

To solve the eqn (5.65), we need to specify the functional form of p1, Ip and

DX(ξ) to study the fluxtube model with twisted magnetic field under the similarity

assumption. The functional form of p1 = f
2
Ψ2 is taken from Osherovitch (1982),

where f is the shape function parameter, and the poloidal current, Ip defined

by Yun (1971) and Osherovitch (1979), and motivated from the observations of

Stepanov (1965). Hence the form of gas pressure p and poloidal current Ip are
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taken to be

p = pc exp(−2kz) +
f

2
Ψ2 (5.66)

I2
p = Ψ2

bχξ
4D2

X(ξ), (5.67)

for the positivity of ρ(z) at all z which is given by eqn (5.7). Here, p2(z) =

pc exp(−2kz) denotes the gas pressure at the fluxtube axis, with pc is the pressure

at the center of the fluxtube, and χ =

(
Bφ

rBz

)2

, is a constant pitch angle param-

eter. We deviate from [Osherovitch (1982); Yun (1971)] by employing the extra

term, pc exp(−2kz) with p1 in eqn (5.66), to maintain the hydrostatic vertical

pressure balance condition under the influence of solar gravity.

5.4.1 Self-similar open field model

To obtain the open field structure of the fluxtubes we have employed two options

for the shape function DX(ξ) specified by

DX(ξ) =

DG(ξ) = DG0 exp(−ξnG); (nG > 0) : Generalized Gaussian

DP (ξ) = DP0(1 + ξ)−nP ; (nP > 2) : Power law

(5.68)

where

DG0 =
nG

Γ(2/nG)
, (5.69a)

DP0 = (nP − 1)(nP − 2), (5.69b)



Chapter 5: Open and closed magnetic configurations of fluxtubes 108

We see that both the shape functions, eqn (5.68) vanish asymptotically at ξ →∞;

hence from eqn (5.65) we obtain

ψb
τ

yy′′

D0

∫ ∞
0

ξD2
X(ξ)dξ − y4

2τ 2
+

τ

ψb

y2

D0

∫ ∞
0

1

2ξ2

dĪ2
p

dξ
dξ = −4π

∫ ∞
0

∂p̄1

∂ξ
dξ. (5.70)

Next, we evaluate the integrals of the eqn (5.70) for both generalized Gaussian

and power law shape functions. We will see later that, from eqn (5.77), that the

flux function ψP (ξ) varies as ξ2−nP , in the domain 0 < ξ < ∞; therefore ψP (ξ)

will converge to a finite value at ξ →∞, if np > 2. The results of the integrals are

provided in Table 5.1.

Functions Shape function DG(ξ) (nG > 0) Shape function DP (ξ) (nP > 2)

∫ ∞
0

ξD2
X(ξ)dξ

nG
Γ(2/nG)22/nG

(nP − 1)(nP − 2)2

2(2nP − 1)

∫ ∞
0

1

2ξ2

dĪ2
p

dξ
dξ

χ̄ψ2
bnG

22/nGτ 2Γ(2/nG)

χ̄ψ2
b (nP − 2)2(nP − 1)

2τ 2(2nP − 1)

∫ ∞
0

∂p̄1

∂ξ
dξ f̄ψ2

b/2 f̄ψ2
b/2

λX(n) 22/nG−1 2nP − 1

nP − 2

Table 5.1: Expression of the integrals in eqn (5.70) and λX in eqn (5.71), for
generalized Gaussian (X = G), and power law (X = P ) shape function, eqn
(5.68).

Using the values of the integrals from Table 5.1 and redefining, y′(z̄ = 0) ≡ y′0, we

reduce eqn (5.70) to the following form

dy

dz̄
=

[
λX(n)

2ψbτ
(y4 − 1)− 2χ̄(y2 − 1)− 8πψbf̄λX(n)τ ln(y) +

B̄′
2
z0

4

]1/2

, (5.71)
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where, B̄′z0 =
B′z0z0

B0

, χ̄ = χz2
0 and f̄ = fz4

0 . The form of eqn (5.71) is common

for both generalized Gaussian (X = G) and power law (X = P ) shape functions,

where the functions λX(n) for both shape functions are defined in Table 5.1. Here

we have used the notation B′z0 = B′z(0, 0), which represents the vertical gradient

of Bz(0, z) at the center. From eqn (5.71), we have the following integral relation

z̄(y) =

∫ y

1

dy′

G(y′)
, (5.72)

where the function G(y) is given by

G(y) =

[
λX(n)

2ψbτ
(y4 − 1)− 2χ̄(y2 − 1)− 8πψbf̄λX(n)τ ln(y) +

B̄′
2
z0

4

]1/2

. (5.73)

We evaluate the integral (5.72) numerically which gives z̄ = z̄(y). Thereafter,

inverting the function between z̄ and y, we evaluate y = y(z̄). From eqns (5.59,

5.64) we obtain

ξ =

√
τ

ψbD0

$y(z̄). (5.74)

Using the similarity assumption, Bz(r, z) =
B0ψb
τ

ζ2(z)DX(ξ) (ST58), and eqns

(5.2, 5.59, 5.74) we calculate the magnetic field components, representing the

most general self-similar solution, to be

Bz($, z̄) =
B0

D0

y2(z̄)DX(ξ) (5.75a)

Br($, z̄) = −B0$

D0

y(z̄)y′(z̄)DX(ξ) (5.75b)

Bφ($, z̄) =

√
χ̄B0

D0

$y2(z̄)DX(ξ). (5.75c)

The flux function for the self-similar model is obtained by integrating the shape

function

ψOS (ξ) =

∫ ξ

0

ξ′DX(ξ′)dξ′. (5.76)
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Employing eqns (5.61, 5.68), we obtain the open flux function for generalized

Gaussian, ψG, and power law, ψP , models to be given by

ψOS (ξ) =

ψG(ξ) = 1− Γ(2/nG,ξ
nG )

Γ(2/nG)
; (nG > 0) : Generalized Gaussian

ψP (ξ) = 1− (1 + ξ)1−nP
(
1 + ξ(nP − 1)

)
; (nP > 2) : Power law.

(5.77)

From eqn (5.77), it is seen that, ψG(ξ) and ψP (ξ) converges to unity for ξ →
∞. The structure of the self-similar model of a fluxtube is that the magnetic

field decreases asymptotically in the radial direction to zero at infinity. The flux

tube does not have any sharp boundary which can make a partition with the

external solar atmosphere. In other words, the self-similar fluxtube is embedded

in a continuous magnetic medium which has the maximum field strength at the

base of the axis of the fluxtube and radius of the fluxtube is infinity. We take the

effective radius of the fluxtube as the distance from the axis on the z = 0 plane,

which makes a circular area where 90% of the total flux is enclosed. We call this

radius as R90. The total flux is zero at the axis and it increases asymptotically

with r. The explicit forms of the magnetic field components, obtained from the

eqns (5.75a, 5.75b, 5.75c) by using eqns (5.68, 5.69a, 5.69b, 5.74) are:

Bz($, z̄) =


B0y

2(z̄) exp

[
−
(√

τΓ(2/nG)
nGψb

y(z̄)$

)nG]
, (nG > 0) : Generalized Gaussian

B0y
2(z̄)

[
1 +

√
τ

(nP−1)(nP−2)ψb
y(z̄)$

]−nP
, (nP > 2) : Power law

(5.78)
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Br($, z̄) =


−B0y(z̄)y′(z̄)$ exp

[
−
(√

τΓ(2/nG)
nGψb

y(z̄)$

)nG]
, (nG > 0) : Generalized Gaussian

−B0y(z̄)y′(z̄)$

[
1 +

√
τ

(nP−1)(nP−2)ψb
y(z̄)$

]−nP
, (nP > 2) : Power law

(5.79)

Bφ($, z̄) =


B0

√
χ̄y2(z̄)$ exp

[
−
(√

τΓ(2/nG)
nGψb

y(z̄)$

)nG]
, (nG > 0) : Generalized Gaussian

B0

√
χ̄y2(z̄)$

[
1 +

√
τ

(nP−1)(nP−2)ψb
y(z̄)$

]−nP
, (nP > 2) : Power law.

(5.80)

The magnetic field components Br($, z̄) and Bφ($, z̄) for the self-similar model

follow the BCs (1, 2, 3) [eqns (5.10a, 5.10b, 5.10c)] for R =∞. Bz($, z̄) decreases

monotonically with $ and converges to zero at infinity. The total pressure far from

the fluxtube axis is only due to the gas pressure p. We use BC 4 [eqn (5.10d)] at

z = 0, for r →∞, so that

p(r →∞, 0) = p0. (5.81)

From eqn (5.77), we see that the flux function for both generalized Gaussian and

power law, converges to unity at $ →∞, i.e.

ψOS ($ →∞) = 1. (5.82)

Using eqns (5.66, 5.81), we obtain

f̄ = 2(p̄0 − p̄c), (5.83)
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and the explicit form of p($, z̄) for both the generalized Gaussian and the power

law models is given by

p($, z̄) = B2
0

(
f̄

2
ψ2 + p̄ce

−2k̄z̄

)
, (5.84)

where p̄0 = p0/B
2
0 and p̄c = pc/B

2
0 . The formulary of the derived functions for the

self-similar fluxtube model are summarized in the Table 5.6. The flowchart of the

solutions to the Coulomb function and self-similar models are shown in the Fig.

5.1.

5.4.2 Self-similar closed field model

We have also obtained the closed field structure of the fluxtubes by employing the

form of the shape function given by

DQ(ξ) ≡ Ψm(a0 + a1ξ + a2ξ
2), (5.85)

where Ψm is the maximum flux function and a0, a1, a2 are the dimensionless pa-

rameters which are to be determined by the same boundary conditions summarized

below:

BC1 : Br(r = 0, z) = 0 (5.86a)

BC2 : Bφ(r = 0, z) = 0 (5.86b)

BC3 : Ψ(R, z) = 0 (5.86c)

BC4 : Br(R, z) = 0 (5.86d)

BC5 : pT (R, z) = pe(z). (5.86e)

The specific form of DQ(ξ) [eqn (5.85)] is chosen as a second order polynomial of

ξ, to obtain a simple field configuration of the fluxtube called closed, where the
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flux function, Ψ vanishes at the boundary and the magnetic field lines rise and

return to the same horizontal plane [see Figure 5.21]. Plugging eqn (5.85) in eqn

(5.76), we obtain

Ψ(ξ) = Ψm

(
a0

2
ξ2 +

a1

3
ξ3 +

a2

4
ξ4

)
, (5.87)

and using the similarity assumption of ST58, Bz and Br are then given by

Bz =
ζ2(z̄)

R2
D(ξ) (5.88a)

Br = −ζ
′(z̄)

Rz0

ξD(ξ). (5.88b)

Using eqns [5.85, 5.87] with BCs 3 and 4 [eqns (5.86c), (5.86d)] we obtain

a0 + a1 + a2 = 0 (5.89a)

6a0 + 4a1 + 3a2 = 0, (5.89b)

where 0 ≤ ξ ≤ 1, and ξ = 1 is the radius of the boundary of the fluxtube. From

eqns (5.89a, 5.89b) we obtain

a1 = −3a0; a2 = 2a0. (5.90)

To find the extrema of Ψ(ξ), we use the relation,
dΨ

∂ξ
= 0, and using eqns [5.87,

5.90] we obtain

ξ =
1

2
or 1, (5.91)

and the condition for maxima is
d2|Ψ|
dξ2

< 0. We see that, |Ψ
(
ξ = 1/2

)
| is a maxima

while |Ψ
(
ξ = 1

)
| = 0 is a minima, hence Ψm ≡ |Ψ(ξ = 1/2)|. We study the a0 > 0

solution and the field reversed solution of a0 < 0 can be obtained by taking

B = −B. Now, for a0 > 0, taking ξ =
1

2
from eqn (5.91), and using eqns [5.87,

5.90], we obtain, a0 = 32, so that from eqns [5.87, 5.90] the form of Ψ(ξ) reduces
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to

Ψ(ξ) = 16Ψm

(
ξ2 − 2ξ3 + ξ4

)
. (5.92)

From BC 4 [eqn (5.86d)] and eqn (5.88b), we obtain D(ξ = 1) = 0; therefore

integrating eqn (5.62) from ξ = 0 to 1 we obtain

ζζ ′′
∫ 1

0

ξD2(ξ)dξ − ζ4

2

(
z0

R

)2

D2
0 + ζ2z2

0

∫ 1

0

1

2ξ2

∂I2
p (ξ)

∂ξ
dξ = 0, (5.93)

where D0 ≡ D(ξ = 0) = 32Ψm, and the integrals appearing in eqn (5.93) are:

∫ 1

0

ξD2(ξ)dξ =
256Ψ2

m

15
and

∫ 1

0

1

2ξ2

∂I2
p

dξ
∂ξ =

256χΨ2
m

15
. (5.94)

Following ST58, we define

ζ(z̄) =

√
B0

D0

Ry(z̄), (5.95)

where B0 ≡ Bz(0, 0), is the magnetic field strength at the center of the fluxtube,

and y(z̄) is a dimensionless parameter which is defined as

y(z̄) =

√
Bz(0, z̄)

B0

. (5.96)

Thus eqn (5.93) reduces into

dy

dz̄
=

[
15

32ψm
(y4 − 1)− χ̄(y2 − 1) +

B′2z0z
2
0

4B2
0

]1/2

, (5.97)

where ψm =
Ψm

B0z2
0

, χ̄ = χz2
0 , f̄ = fz4

0 are dimensionless parameters, and B′z0 is the

vertical gradient of the field strength at z = 0. Eqn (5.97) can be rewritten as

dy

dz̄
=

√
15

32ψm

[
y4 − A1y

2 + A2

]1/2
, (5.98)
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where, A1 =
32ψmχ̄

15
and A2 =

8ψmB
′2
z0z

2
0

15B2
0

+
32ψmχ̄

15
− 1. From eqn (5.98), we ob-

tain √
15

32ψm

∫ z̄

0

dz′ =

∫ y

1

dy′

[(y′2 − a2)(y′2 − b2)]1/2
, (5.99)

where, a =

(
A1 −

√
A2

1 − 4A2

2

)1/2

and b =

(
A1 +

√
A2

1 − 4A2

2

)1/2

. To obtain

the integral on the RHS of eqn (5.99), we first find the integral without the limits

is given by

∫
dy′√

(y′2 − a2)(y′2 − b2)
. (5.100)

Substituting y′ = a sin θ, eqn (5.100) reduces to

∫
dy′√

(y′2 − a2)(y′2 − b2)
=
κ

a

∫
dθ√

1− κ2 sin2 θ
, (5.101)

where κ = a/b. The integral appeared in eqn (5.101) is called the normal Elliptic–F

function of first kind (Byrd and Friedman 1971), which is defined as,

F (θ, κ) ≡
∫

dθ√
1− κ2 sin2 θ

. (5.102)

Hence, the explicit form of the integral (5.100) is given by

∫
dy′√

(y′2 − a2)(y′2 − b2)
=

1

b
F

[
arcsin

(
y′

a

)
,
a

b

]
. (5.103)

From eqn (5.99), we obtain√
15

32ψm
z̄ =

1

b

(
F

[
arcsin

(
w

a

)
,
a

b

]
− F

[
arcsin

(
1

a

)
,
a

b

])
, (5.104)

which can be rewritten as,

arcsin(y/a) = am

[
F

[
arcsin

(
1

a

)
,
a

b

]
+ bz̄

√
15

32ψm

)
,
a

b

]
, (5.105)
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where, am(u, κ) ≡ F−1(u, κ), is the inverse of the Elliptic–F function, is called the

Jacobi amplitude (Byrd and Friedman 1971). Hence from eqn (5.105), we obtain

y(z̄) = a sn

[
F

[
arcsin

(
1

a

)
,
a

b

]
+ bz̄

√
15

32ψm

)
,
a

b

]
, (5.106)

where, sn(u, κ) ≡ sin(am(u, κ)) is called the Jacobian elliptic function. From eqns

[5.59, 5.95] we obtain

R(z̄) =

√
32ψm
y(z̄)

, (5.107)

which expresses the variation of the radius of the fluxtube with height z. Thus we

finally obtain the general form of the magnetic field components from eqns [5.2,

5.13b, 5.88a, 5.88b] to be

Bz($, z̄) = B0y
2(z̄)

D(ξ)

D0

, (5.108a)

Br($, z̄) = −B0
R

z0

$y(z̄)y′(z̄)
D(ξ)

D0

, (5.108b)

Bφ($, z̄) = B0
R

z0

√
χ̄$y2(z̄)

D(ξ)

D0

. (5.108c)

5.5 Results obtained from the models

5.5.1 Coulomb function helical fluxtube model

This magnetohydrostatic Coulomb function helical fluxtube model consists of the

free parameters R and B0 and its functional dependence through a(R), α(R),

κ(R), b(R,B0), ψb(R,B0) and p̄(R,B0). We choose the parameter range, 1 kG

≤ B0 ≤ 1.5 kG and 100 km ≤ R ≤ 180 km, consistent with the observations of

MBP size and field strength distributions (Utz et al. 2009, 2013). In Table 5.2,

we show the solutions for combinations of the free parameters {R,B0}, where we

notice the following trends:
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• The boundary flux ψb decreases with R for same B0, and with B0 for same

R within the parameter space of runs C1− C21.

• Due to the pressure balance at the boundary of the fluxtube, p̄ increases

with R for same B0, but there is no fixed trend with B0 for same R within

the parameter space of runs C1− C21.

As example, we show the solution of ψOC , and the magnetic and thermodynamic

structure of the fluxtube for run C4. The radial variation of the solution of ψOC ,

magnetic components and pressure inside the fluxtube are shown in the Figs. 5.3,

5.4 and 5.5 respectively. Examples of 3D configuration of the magnetic field lines

for open and closed field are shown in the Figs. 5.6 and 5.7 for runs C4 and C10.

2D vertical projection of the magnetic field lines for ψOC inside the fluxtube along

r − z plane is shown in the Fig. 5.8. The density inside the fluxtube is constant

along the radial direction but it decreases along z whereas the temperature varies

along r direction and is nearly constant along z direction at the axis. The vertical

variation of Bz, p and ρ are shown in the Fig. 5.9. Conclusions from figures and

tables are discussed in §5.7.

5.5.2 Self-similar open and closed field models

The self-similar model we developed consists of the dimensionless parameters

ψb, B̄′z0, f̄ and χ̄ which are the functions of the input parameter set {Ψb, B0, B
′
z0, pc,

χ}. The self-similar fluxtube solutions are spanned by these parameters but the

structures remain similar. We use the values of these input parameters in the

range, Ψb = 1017–1018 Mx (Zhang et al. 1998; Hagenaar et al. 1999; Guglielmino

et al. 2011), B0 = 1–2 kG (Zhang et al. 1998), B′z0 in the range 1–2 G-km−1

(Wittmann 1974; Pahlke and Wiehr 1990; Balthasar and Schmidt 1993), pc < p0

[Shelyag et al. (2010) and SM18], which are observed for small scale magnetic
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Figure 5.3: The radial variation of the flux function, normalized with respect
to the maximum value, obtained from Coulomb function open field model for
run C4 in Table 5.2. The horizontal axis is scaled with respect to the total
radius R.
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Figure 5.4: The radial variation of Br, Bφ and Bz, normalized with respect
to the maximum values of |Br|, |Bφ| and |Bz| respectively, obtained from the
Coulomb function open field model, for run C4 in Table 5.2. The horizontal
axis is scaled with respect to the total radius R.
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Run # B0 [kG] R [km] ψb [10−3] a α [10−2] κ [106] b [10−3] p̄

C1 1 100 2.57 9.390 2.74 4.85 −1.350 0.109

C2 1.2 100 2.22 9.390 2.74 4.85 −1.170 0.105

C3 1.5 100 1.80 9.390 2.74 4.85 −0.949 0.104

C4 1 120 1.92 9.388 2.54 6.99 −1.008 0.159

C5 1.2 120 1.62 9.388 2.54 6.99 −0.849 0.165

C6 1.5 120 1.31 9.388 2.54 6.99 −0.692 0.163

C7 1 130 1.69 9.389 2.43 8.21 −0.880 0.184

C8 1.2 130 1.42 9.389 2.43 8.21 −0.744 0.181

C9 1.5 130 1.15 9.389 2.43 8.21 −0.603 0.182

C10 1 140 1.50 9.383 2.31 9.52 −0.783 0.205

C11 1.2 140 1.25 9.383 2.31 9.52 −0.661 0.204

C12 1.5 140 1.00 9.383 2.31 9.52 −0.535 0.208

C13 1 150 1.38 9.378 2.18 10.93 −0.723 0.233

C14 1.2 150 1.16 9.378 2.18 10.93 −0.606 0.235

C15 1.5 150 0.94 9.378 2.18 10.93 −0.492 0.237

C16 1 160 1.31 9.388 1.98 12.43 −0.665 0.276

C17 1.2 160 1.11 9.388 1.98 12.43 −0.577 0.276

C18 1.5 160 0.89 9.388 1.98 12.43 −0.465 0.279

C19 1 180 1.14 9.395 1.72 15.73 −0.587 0.402

C20 1.2 180 0.96 9.395 1.72 15.73 −0.497 0.407

C21 1.5 180 0.78 9.395 1.72 15.73 −0.405 0.409

Table 5.2: Numerical values of the different parameters obtained from the
Coulomb function open field fluxtube model for different combinations of R and
B0 are shown; the units of the various quantities are in the square brackets at
the top.

structures in the photosphere. The generalized Gaussian profile reduces to the

Gaussian profile for nG = 2, and it has been shown in §5.4 that, for the power

law profile, the flux function converges to finite value, at infinite radius, only for

nP > 2. We study the different cases for nG = 2–3, nP = 3–4 and χ̄ = 0.01–100 for

different combinations of the other parameter sets {Ψ̄b, B̄′z0, f̄}, which are shown
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Figure 5.5: The radial variation of p normalized with the value at the center
of the fluxtube p20, obtained from Coulomb function open field model, for run
C4 in Table 5.2. The horizontal axis is scaled with the total radius R.

in runs S1–S19 of Table 5.3. For the parameter set of runs S1–S19, we find the

following results:

• For same Ψb and B0, with the increase of nG and nP , RG and RP decrease

respectively.

• For same nG, nP and Ψb, with the increase of B0, RG and RP decrease;

whereas for same nG, nP and B0; RG and RP increase with the increasing of

Ψb.

• For a fixed parameter set {ψb, B̄′z0 f̄ , χ̄}, we notice that RG > RP for

nG = 2 and nP = 3, but for values nG ≥ 2.5 and nP ≥ 3.5, RG < RP ; this

means that the radii of the fluxtubes for the power law profiles falls off more

quickly than those of the generalized Gaussian profiles for higher values of

nG and nP .

As an example, we show the solution of ψOS and the magnetic and thermodynamic

structures for run S1 of Table 5.3. The values of the magnetic and thermodynamic
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Figure 5.6: The 3D configuration of 50 different magnetic field lines for open
field fluxtube obtained from the Coulomb function helical fluxtube model. The
left and right columns show the side and top view of the configuration. The
domain of the simulation box is −7 ≤ x ≤ 7, −7 ≤ y ≤ 7 where the x and y
axes are scaled in units of 20 km. The vertical domain is 0 ≤ z ≤ 14 where
the z axis is scaled in units of 150 km. The field line configurations for the
bottom and the top rows are simulated for the parameter sets of runs C4 and
C10 respectively in Table 5.2.

quantities obtained from the self-similar model are reported in Table 5.5, for both

the Gaussian and power law shape function profiles. The radial variation of the

generalized Gaussian and power law flux function are shown in the Fig. 5.10

for different values of nG and nP , and the variation along the r − z plane is

shown in Fig. 5.11. The 3D configuration of the field lines for the generalized

Gaussian and power law self-similar models are shown in the Figs. 5.12 and 5.13

for the parameter sets for runs S1 and S2 given in Table 5.3. The radial and
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Figure 5.7: The 3D configuration of 50 different magnetic field lines for closed
field fluxtube obtained from the Coulomb function helical fluxtube model. The
left and right columns show the side and top view of the configuration. The
domain of the simulation box is −14 ≤ x ≤ 14, −14 ≤ y ≤ 14 where the x
and y axes are scaled in units of 10 km. The vertical domain is 0 ≤ z ≤ 15
where the z axis is scaled in units of 150 km. The field line configurations for
the bottom and the top rows are simulated for the parameter sets of runs C4
and C10 respectively in Table 5.2.

vertical distribution of the magnetic field components are shown in Figs. 5.14

and 5.15 respectively for both the Gaussian and power law models, whereas the

density inside the fluxtube does not vary along r−direction but decreases along

the z−direction which is shown in the Fig. 5.16. The variation of p and T in the

r− z plane obtained from the self-similar open field model are shown in Figs. 5.25

and 5.26 for Gaussian and power law shape function profiles. Conclusions drawn

from Figures [5.6, 5.7, 5.9, 5.12, 5.13, 5.16, 5.24, 5.25, 5.26, 5.28] and Tables [5.2,
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Figure 5.8: A contour plot of the flux function corresponding to run C4
in Table 5.2, obtained from the Coulomb function open fluxtube model. The
horizontal axis is scaled to the radius R and the vertical axis is scaled to the
pressure scale height h = 162 km. The contours have been normalized with
respect to the maximum value of the flux function.
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Figure 5.9: The vertical distribution of Bz, p and ρ, normalized with respect
to the values at the fluxtube center, B0, p20 and ρ0 respectively, obtained from
Coulomb function open field model for the parameter set of run C4 in Table
5.2. The horizontal axis is scaled in the units of Mm. The values of the scale
factors are B0 = 1 kG, p20 = 1.03 × 105 dyne cm−2 and ρ0 = 2.44 × 10−7 g
cm−3.
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to the maximum values for different values of n for generalized Gaussian (left)
and power law (right) shape functions for the parameter set of run S1 in Table
5.3. The horizontal axes are scaled with the total radius R.
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Figure 5.11: Contour plots of the flux functions for Gaussian (left) and power
law (right) profiles for nP = 3 for the parameter set of run S1 in Table 5.3.
The horizontal axes are scaled with the total radii RG = 214 and RP = 261
km, and the vertical axes are scaled with the pressure scale height h = 162 km.
The contours are normalized with respect to the maximum value of the flux
function.

5.3, 5.5] are discussed in §5.7.

For the self-similar closed field model, we study the allowed parameter range with

χ̄ = 0.01 − 10 and f̄ = 0.01 − 1 for the different combinations of the parameter

set {Ψm, B0, B
′
z0}, which are shown in the Table 5.4 for runs S1− S19. For these

runs, we find the following results:
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Run # Ψb B0 pc B′z0 χ f nG nP ψb f̄ B̄′z0 χ̄ RG RP

[1017 Mx] [kG] [105 dyne cm−2] [G km−1] [cm−2] [10−30 cm−4] [km] [km]

S1 1 1 1 1 10−16 4.56 2 3 0.01 456 1 1 214 261

S2 1 1 1 1 10−14 4.56 2 3 0.01 456 1 100 214 261

S3 1 1 0.8 1.5 10−18 8.56 2.5 3.5 0.01 856 1.5 0.01 196 138

S4 1 1 0.5 2 10−16 14.56 3 4 1 1456 2 1 186 100

S5 1 2 1 1 10−14 4.56 2 3 0.005 456 0.5 100 151 184

S6 1 2 0.8 1.5 10−18 8.56 2.5 3.5 0.005 856 0.75 0.01 139 98

S7 1 2 0.5 2 10−16 14.56 3 4 0.005 1456 0.25 1 131 71

S8 5 1 1 1 10−14 0.182 2 3 0.005 18.2 1 100 479 584

S9 5 1 0.8 1.5 10−18 0.342 2.5 3.5 0.005 34.2 1.5 0.01 439 308

S10 5 1 0.5 2 10−16 0.582 3 4 0.005 58.2 2 1 416 225

S11 5 2 1 1 10−14 0.182 2 3 0.025 18.2 0.5 100 339 413

S12 5 2 0.8 1.5 10−18 0.342 2.5 3.5 0.025 34.2 0.75 0.01 310 218

S13 5 2 0.5 2 10−16 0.582 3 4 0.025 58.2 0.25 1 294 159

S14 10 1 1 1 10−14 0.0456 2 3 0.1 4.56 1 100 678 826

S15 10 1 0.8 1.5 10−18 0.0856 2.5 3.5 0.1 8.56 1.5 0.01 621 436

S16 10 1 0.5 2 10−16 0.145 3 4 0.1 14.56 2 1 589 318

S17 10 2 1 1 10−14 0.0456 2 3 0.05 4.56 0.5 100 479 584

S18 10 2 0.8 1.5 10−18 0.0856 2.5 3.5 0.05 8.56 0.75 0.01 439 308

S19 10 2 2 0.5 10−16 0.145 3 4 0.05 14.56 0.25 1 416 225

Table 5.3: Different combinations of the input parameters and the dimension-
less parameters for the self-similar model where RG and RP represents the radii
of the fluxtubes for generalized Gaussian and power law profiles respectively.

1. The radius of the fluxtube at the transition region (Rt) is more than the

radius at the photosphere (R0), which implies that the fluxtube is expanding

with height, as expected.

2. For the same Ψm, with the increase of B0, both R0 and Rt increase, while

for same B0, with the increase of Ψm, both R0 and Rt increase.

As an example, we show the solution of the fluxtube, including the magnetic and

thermodynamic structures for the parameter set for run S1 in Table 5.4. The

radial variation of the flux function is shown in Figure 5.17, and the variation

along the r − z plane is shown in Figure 5.18.
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Figure 5.12: The 3D configuration of 50 different open field lines inside the
fluxtube obtained from self-similar model for Gaussian profile. The left and the
right columns show the side and the top view of the configurations. The domain
of the simulation box is −10 ≤ x ≤ 10, −10 ≤ y ≤ 10 and 0 ≤ z ≤ 20 where the
x, y and z axes are scaled in units of 100 km. The field line configurations for
the bottom and the top rows are simulated for the parameter values of Table
5.3 corresponding to runs S1 and S2 respectively.

The radial variation of the magnetic field components Bz, Br, Bφ are shown in

Figure 5.19, and the variation along r − z plane is shown in Figure 5.20, where

all the components Bz, Br, Bφ go to zero at the boundary. The 3D geometry of

the field lines inside the fluxtube is shown in Figure 5.21, which indicates a closed

field configuration. The radius of the fluxtube increases with the vertical height,

z, as seen in Figure 5.22.
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Figure 5.13: The 3D configuration of 50 different open field lines inside the
fluxtube obtained from self-similar model for power law profile with nP = 3. The
left and the right columns show the side and the top view of the configurations.
The domain of the simulation box is −10 ≤ x ≤ 10, −10 ≤ y ≤ 10 and
0 ≤ z ≤ 20 where the x, y and z axes are scaled in units of 100 km. The
field line configurations for the bottom and the top rows are simulated for the
parameter sets of runs S1 and S2 respectively corresponding to Table 5.3.

The magnetic and thermodynamic quantities obtained from the model are given

in Table 5.5, and we observe the following:

1. The vertical magnetic field strength decreases from the axis (r = 0) to the

boundary Rc.

2. There is no radial variation of the gas pressure at the photosphere (z = 0),

whereas at the transition region (z = 2 Mm), p increases with r from the axis
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Figure 5.14: The radial distribution of the magnetic field components Bz, Br,
Bφ and gas pressure p normalized with respect to the values at the fluxtube
center, B0, pc, for Gaussian and power law shape functions for the parameter
set of run S1 in Table 5.3. The horizontal axes are scaled with the total radius
of the fluxtube R and the values of the scale factors are B0 = 1 kG and pc = 105

dyne cm−2.
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Figure 5.15: The vertical distribution of Bz at the axis of the fluxtube, ob-
tained from the self-similar model for the Gaussian and power law profiles for
the parameter set of run S1 in Table 5.3.

to the boundary and p decreases with vertical height, z, from the photosphere

to the transition region.
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Figure 5.16: The vertical distribution of density, ρ(z) obtained from the self-
similar model for the parameter set of run S1 in Table 5.3, which is normalized
with respect to z = 0 value, ρc, for both Gaussian and power law profiles. The
horizontal axis is scaled in units of Mm. The value of scale factor ρc = 2.37×10−7

g cm−3.
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Figure 5.17: The radial variation of the normalized flux function, Ψ, for the
parameter set of run S1 in Table 5.4 is shown. The horizontal axis is scaled
with the fluxtube radius R0.

3. The density, ρ has no variation with r, but it decreases with z, from the

photosphere to the transition region.

4. The temperature, T has no radial variation at z = 0, but it increases with

height at the boundary.

This implies that the fluxtube has a nearly plane-parallel atmosphere and is non-

isothermal.
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Run # Ψm B0 B′z0 χ̄ f̄ ψm R0 Rt

[1017 Mx] [kG] [G km−1] [10−2] [Mm] [Mm]

S1 1 1 1 0.01 0.01 1 0.565 22.70

S2 1 1 1 0.1 0.01 1 0.565 22.70

S3 1 1.5 1.2 0.1 0.1 0.67 0.461 18.53

S4 1 2 1.5 1 1 0.5 0.40 16.05

S5 1 1 1 10 0.01 1 0.565 22.70

S6 1 1.5 1.2 0.01 1 0.67 0.461 18.53

S7 1 2 1.5 0.1 1 0.5 0.40 16.05

S8 5 1 1 1 0.01 5 1.26 50.77

S9 5 1.5 1.2 10 0.1 3.33 1.03 41.45

S10 5 2 1.5 0.01 1 2.50 0.89 35.90

S11 5 1 1 0.1 0.01 5 1.26 50.77

S12 5 1.5 1.2 1 0.1 3.33 1.03 41.45

S13 5 2 1.5 10 1 2.5 0.89 35.90

S14 10 1 1 0.01 0.01 10 1.78 71.80

S15 10 1.5 1.2 0.1 0.1 6.67 1.46 58.67

S15 10 2 1.5 1 1 5 1.26 50.77

S17 10 1 1 10 0.01 10 1.78 71.80

S18 10 1.5 1.2 0.01 0.1 6.67 1.46 58.67

S19 10 2 1.5 0.1 1 5 1.26 50.77

Table 5.4: The different combinations of the input parameters for the self-
similar closed field model are shown where R0 and Rt represent the radii of the
fluxtube at z = 0 and z = zt respectively.

5.6 Comparing our models with observations

We compare our models with the observations reported by the high resolution

and high cadence instruments. The small scale magnetic structures in the solar
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z0 = 1 Mm. The contours are normalized with respect to the maximum value
Ψm.
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Figure 5.19: The radial variation of the magnetic field components Bz, Br,
Bφ for the parameter set of run S1 in Table 5.4 is shown. The horizontal axis
is scaled with the fluxtube radius R0.

photosphere are often found in the forms of the magnetic bright points (MBPs)

which are small scale magnetic fluxtubes with open field lines (Berger et al. 1995;
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Figure 5.20: The 2D variation of Bz, Br, Bφ along r− z plane, corresponding
to run S1 in Table 5.4 is shown above. The horizontal axes are scaled with the
radius of the fluxtube, R, and the vertical axes are scaled to a constant z0 = 1
Mm. The contours are normalized with respect to B0.

Centeno et al. 2007; Lagg et al. 2010). Therefore the MBPs are the best candidates

to compare our open field fluxtube models with the observations. MBPs can be

identified by spectropolarimetric measurements or they can be seen by the G-

band filtergrams (Utz et al. 2009, 2013; Yang et al. 2016). Next, we compare the

observed magnetic field strength, size and the thermodynamic quantities of the

MBPs with that obtained from our models. The MBPs are observed as a region

of the unipolar flux concentration, therefore, in the Coulomb function model, we

construct a cylindrical boundary of cut-off radius rb inside the total simulation

domain, where the line of sight magnetic field Bz vanishes. The magnetic field

strength inside the cylinder of the cut-off radius is always positive. From the
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Figure 5.21: The 3D geometry of 10 different magnetic field lines for self-
similar closed field fluxtube model. The left and right columns show the side
and top view of the configuration. The domain of the simulation box is −0.5 ≤
x ≤ 0.5, −0.5 ≤ y ≤ 0.5, where the x and y axes are scaled in units of 500 km.
The vertical domain is 0 ≤ z ≤ 1 where the z axis is scaled in units of 2 Mm.
The field line configurations for the bottom and the top rows are simulated for
the parameter sets of runs S1 and S2 respectively in Table 5.4.

recent observations by Utz et al. (2009, 2013), it has been reported that the MBPs

number distribution for the size, peaks in the range 160-200 km and the magnetic

field strength is at ∼ 1.4 kG. From the Fig. 5.4 we see that the Bz vanishes

at rb = 84 km, where R = 120 km is the entire radial simulation domain. We

choose the parameter range, 1 kG ≤ B0 ≤ 1.5 kG and 100 km ≤ R ≤ 180 km, for
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Figure 5.22: The vertical variation of the fluxtube radius corresponding to
run S1 in Table 5.4 is shown.

which the magnetic and thermodynamic quantities obtained from our model is in

reasonable agreement with the solar atmosphere (Vernazza et al. 1981), and the

selection of the {R,B0} parameter space is also consistent with the observations

of MBP size and field strength distributions (Utz et al. 2009, 2013). The values of

the magnetic and thermodynamic quantities obtained from the Coulomb function

open field model are reported in Table 5.5. For the self-similar model, the choice

of the parameter space is consistent with the MBPs. We take the flux value in the

range of 1017–1018 Mx which is the typical flux value for MBPs (Zhang et al. 1998;

Hagenaar et al. 1999; Guglielmino et al. 2011). According to the previous studies

by Shelyag et al. (2010) and SM18, the gas pressure at the axis of MBP is lesser

than its boundary gas pressure, so we have chosen the parameter pc < p0. The

field strength of the magnetic footpoints observed in the photosphere for MBPs

are ∼ 1 kG with a distribution peak at 1.3 kG (Utz et al. 2013). Thus, we use

the value of B0 in the typical range of 1–2 kG (Zhang et al. 1998) in our model.

The vertical gradient of the magnetic field strength at the photosphere is ∼ 1

G-km−1 (Wittmann 1974; Pahlke and Wiehr 1990; Balthasar and Schmidt 1993).

Hence we use the value of B′z0 in the range of 1–2 G-km−1 in our model. We have

reported the combinations of the free parameters and the corresponding input

parameters in Table 5.3. Within the parameter sets of runs S1–S19 in Table 5.3
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Models r z Bz p ρ T

[Mm] [G] [dyne cm−2] [g cm−3] [K]

0 0 2370 1.358× 104 3.22× 10−8 5656

Coulomb function closed field 0 2 2.19 3.09× 10−2 7.33× 10−14 5656

(SM18) r0 0 0 1.373× 104 3.22× 10−8 5718

r0 2 0 3.12× 10−2 7.33× 10−14 5718

0 0 1000 1.03× 105 2.44× 10−7 5656

Coulomb function open field 0 2 2.61 0.234 5.56× 10−13 5656

(SM19) r0 0 0 1.04× 105 2.44× 10−7 5690

r0 2 0 0.2445 5.56× 10−13 5890

0 0 1000 1.0× 105 2.37× 10−7 5630

Generalized Gaussian 0 2 3.44 0.227 5.44× 10−13 5630

(SM19) RG 0 6.73 1.17× 105 2.37× 10−7 6620

RG 2 2.2 1.54 5.44× 10−13 38000

0 0 1000 1.0× 105 2.37× 10−7 5630

Power-law 0 2 75 0.227 5.44× 10−13 5630

(SM19) RP 0 50 1.17× 105 2.37× 10−7 6620

RP 2 19 1.75 5.44× 10−13 43000

0 0 1000 1.22× 105 2.91× 10−7 5631

Self-similar closed field 0 2 0.62 0.277 6.63× 10−13 5631

(in preparation) Rc 0 0 1.22× 105 2.91× 10−7 5631

Rc 2 0 0.778 6.63× 10−13 15760

Table 5.5: The values of magnetic field strength and thermodynamic quanti-
ties obtained from the various fluxtube models, where r0 = 84 km, RG = 214
km, RP = 261 km, and Rc = 282 km.

and 5.4, we notice that the minimum and maximum radii of the fluxtubes are 151

and 678 km respectively for Gaussian model, 71 and 826 km respectively for the

power-law model, and 400 and 1780 km for the closed field model, which are in the

reasonable agreement with the observations of MBP size distributions (Utz et al.

2009). The values of the magnetic and thermodynamic quantities obtained from
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Figure 5.23: The vertical distribution of Bz, p and T , normalized with respect
to the value at the center of the fluxtube, B0, p20 and T0 respectively from the
axis of the fluxtube to the MBP boundary for rb = 84 km at z = 0, obtained
from the Coulomb function open fluxtube model for the parameter set of run
C4 in Table 5.2. The horizontal axis is scaled in the units of 100 km and the
values of the scale factors are B0 = 1 kG, p20 = 1.03 × 105 dyne cm−2 and
T0 = 5656 K.

the self-similar open and closed field models are reported in Table 5.5 respectively,

which are also in reasonable agreement with the solar atmosphere reported by

Vernazza et al. (1981).
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Functions Formulae for the Coulomb function model
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Functions Formulae for the self-similar model

ξ($, z̄)

√
τ

ψbD0

$y(z̄)

ψG($, z̄) 1− Γ(2/nG, ξ
nG)

Γ(2/nG)
; (nG > 0)

ψP ($, z̄) 1− (1 + ξ)1−nP
(
1 + ξ(nP − 1)

)
; (nP > 2)

ψQ($, z̄) 16(ξ4 − 2ξ3 + ξ2)

Br($, z̄) −B0$

D0

y(z̄)y′(z̄)DX(ξ)

Bz(r, z)
B0

D0

y2(z)DX(ξ)

Bφ($, z̄)

√
χ̄B0

D0

$y2(z̄)DX(ξ)

p($, z̄) B2
0

[
f̄

2
ψ2 + p̄ce

−2k̄z̄

]

ρ(z̄)
2k̄z̄p̄cB

2
0

gz0

e−2k̄z̄

T ($, z̄)
µ̄gz0

2Rgk̄z̄p̄c

(
f̄

2
ψ2e2k̄z̄ + p̄c

)

Table 5.6: A formulary of different functions obtained for the Coulomb func-
tion helical fluxtube and self-similar model. Here, s($), Z(z̄) and ψp($) are
given by eqns (5.18, 5.19, 5.23), and p̄20 = p20/B

2
0 . ξ is the self-similar param-

eter where y(z̄) is obtained by solving eqn (5.71) and p̄0 = p0/B
2
0 , p̄c = pc/B

2
0 ,

k̄ = kz0. The value of the constants are µ̄ = 1.12, g = 2.74 × 104 cm s−2,
k = 3.4× 10−8 cm−1 and z0 = 108 cm.
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Figure 5.24: The 2D variation of p (left) and T (right) in the r − z plane for
rb = 84 km obtained from the Coulomb function model for the parameter set
of run C4 in Table 5.2. The horizontal axes are scaled in the units of 100 km
and the vertical axes are scaled in the units of Mm.
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Figure 5.25: The 2D variation of p in the r − z plane obtained from the self-
similar model for Gaussian (left) and power law (right) profiles with nP = 3, for
the parameter set of run S1 in Table 5.3. The horizontal axes are scaled with
the total radii RG = 150 and RP = 130 km, and the vertical axes are scaled
with the pressure scale height, h = 162 km.

5.7 Discussion of the models

We discuss the findings of our simulations below:
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Figure 5.26: The 2D variation of T in the r− z plane for Gaussian (left) and
power law (right) profiles with nP = 3 obtained from the self-similar model for
the parameter set S1 in Table 5.3. The horizontal axes are scaled with the total
radii RG = 150 km and RP = 130 km, and the vertical axes are scaled with the
pressure scale height, h = 162 km.
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Figure 5.27: The 2D variation of p (left) and T (right) in the r − z plane
obtained from the self-similar closed field model for the parameter set of run S1
in Table 5.4. The horizontal axes are scaled with respect to Rc = 282 km, and
the vertical axes are scaled with z0 = 1 Mm.

1. The Coulomb function model is easier to implement for the numerical studies

as it consists of two free parameters (R, B0); on the other hand, the self-

similar model consists of five free parameters (Ψb, B0, pc, B
′
z0 and χ). From

Table 5.5, we see that the rise of the gas pressure along the radial direction

from the axis to the boundary is higher for the self-similar model than the
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Figure 5.28: A cartoon diagram of magnetic canopy structure is shown, where
the closed field lines (red), which is obtained by the Coulomb function closed
field solution, ΨC

C , rise and fall back in the photosphere, present between two
open field fluxtubes. The open field lines (blue), obtained by Coulomb function
open field and self-similar solution, ΨO

Y (Y = C, for Coulomb function and
Y = S for self-similar models), of two neighboring fluxtubes merge together to
form magnetic canopy structure [An improvised version of the illustration in
Judge (2006)].

Coulomb function model at higher z. The density within the fluxtube does

not vary with r; hence, the rise of the temperature from axis to the boundary

at higher z is also higher for the self-similar model relative to the Coulomb

function model. For the Coulomb function model, the radial boundary of the

fluxtube is defined where Bz vanishes; on the other hand, for the self-similar

model, Bz(R) 6= 0, whereas Bz reduces along the radial direction from axis

to the boundary for the Gaussian model faster than the Power-law model.

2. The radial size and the magnetic field strength at the center of the fluxtube

are the free parameters in the Coulomb function model. The magnetic and

thermodynamic structure of the fluxtube remains similar for different values

of the free parameters, whereas the magnitude of the magnetic and thermo-

dynamic quantities vary. We have explored the parameter space and notice

that in the domain of 100 km ≤ R ≤ 180 km, and 1 kG ≤ B0 ≤ 1.5 kG,

the magnetic and thermodynamic quantities are in reasonable agreement

with the solar atmosphere (Vernazza et al. 1981), which also validate the

MBP size and magnetic field strength distribution (Utz et al. 2009, 2013).

For the self-similar model, the radial sizes of the fluxtubes depend on the

choice of the dimensionless input parameters {ψb, f̄ , B̄′z0, χ̄}. In the domain
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of the selected parameter space (see Table 5.3 and 5.3), the maximum and

minimum radii of the fluxtubes are 678 and 151 km respectively obtained

from the Gaussian model, 826 and 184 km respectively for power-law model

and 1780 and 400 km respectively for the self-similar closed field model. All

these quantities are in reasonable agreement with the observation of MBP

size distribution by Utz et al. (2009).

3. For the Coulomb function model, we notice that the value of α decreases

with R (see Table 5.2), which lowers the poloidal current Ip and the twist

of the field lines. The 3D geometry of the field lines for different twists are

shown in the Figs. 5.6 and 5.7 for open and closed field Coulomb function

models respectively. In the self-similar model, the twist of the field lines

increases with χ̄ and are shown in Figs. 5.12 and 5.13 for Gaussian and

power-law profiles respectively, which follows from eqn (5.77).

4. The gas pressure for both Coulomb function and self-similar models increases

along radial direction from axis to the boundary, whereas it decreases along

the vertical height from photosphere to the transition region (see Figs. 5.24,

5.25, and 5.27) which is similar to the result obtained by Shelyag et al. (2010)

for MBPs, where the gas pressure inside the MBPs increases radially though

the change is not significant, and decreases vertically. Gent et al. (2013,

2014) have studied for the cases of single and multiple fluxtubes, where the

internal gas pressure is nearly same along the radial distance but decreases

with height. The density within the fluxtube does not change radially but

it decreases along z, for both Coulomb function and self-similar models (see

Figs. 5.9 and 5.16). Our model predicts that the atmosphere inside the

fluxtube is nearly plane parallel which is comparable to the model obtained

for MBPs by Shelyag et al. (2010).

5. In the solar atmosphere, the temperature in the transition region rises per-

haps because the shock dissipation of waves plays a dominant role, which is

not included in our model. We have also not implemented the temperature



Chapter 5: Open and closed magnetic configurations of fluxtubes 142

profile by Vernazza et al. (1981) (VAL model); however, our model is self-

consistent, obtained by solving the GSE without shock heating. Therefore,

we do not see the drastic rise of the temperature with height. Our vertical

simulation domain is restricted from the photosphere to the transition re-

gion where our input external atmosphere model is valid. Both the fluxtube

models we built are non-isothermal where the temperature increases along

the radial direction for both Coulomb function open field and self-similar

models. The vertical variation of the temperature is constant at the axis but

it increases with height away from the axis for the Coulomb function open

field and self-similar models (see Figs. 5.24 and 5.26).

6. Hewitt et al. (2014), Uitenbroek and Criscuoli (2013), Riethmüller and Solanki

(2016) have reported the simulation results of MBPs by using MuRAM

and Copenhagen-Stagger code where the obtained values of magnetic field

strength, pressure, density and temperature inside the fluxtube are in rea-

sonable agreement with our predictions.

7. The 2D simulations of the propagation of linear and non-linear magneto

acoustic waves through an open magnetic fluxtube, embedded in the solar

atmosphere from the photosphere to corona were carried out by Fedun et al.

(2011). We can incorporate our solutions as the background condition for

such numerical studies of waves and their kinematic properties taking real-

istic inputs of field strength and pressure distribution observed in the solar

atmosphere.

8. The Coulomb function model gives both open and closed field fluxtube so-

lutions, which can be co-added to build the canopy structure. A cartoon

diagram of the magnetic canopy is shown in Fig. 5.28, where the closed field

lines (red), ΨC
C , are present between the open field fluxtubes and obtained

from the Coulomb function, where the open field lines (blue), ΨO
C and ΨO

S , of

the neighboring fluxtubes merge to each other to form a canopy structure.

This is similar to structures assumed in the numerical simulations by Gent
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et al. (2014), constructed by a different self-similar fluxtube solution. We can

use our solutions for inputs to simulations to build such canopy structures.

The self-similar fluxtube model gives an open field structure of the fluxtube

which is embedded in a continuous magnetic medium and spans up to infin-

ity in the radial direction. The magnetic and thermodynamic quantities we

estimated from both Coulomb function and self-similar models are nearly

similar, whereas there are some differences in the structures of the magnetic

and thermodynamic profiles.

Future advancement of the observations of magnetic and thermodynamic struc-

tures of the MBPs will provide a better selection of the parameter inputs and

discriminate between our models.

5.8 Summary and Conclusions

We have constructed two different models of fluxtubes with twisted magnetic fields

which are the Coulomb function helical fluxtube model and self-similar model

by solving GSE semi-analytically. We tabulate the expressions of magnetic and

thermodynamic functions for Coulomb and self-similar models in Table 5.6 and

highlight the novel features of this work below.

1. By incorporating the form of gas pressure and poloidal current we have

solved GSE to obtain the flux function for the Coulomb function model. The

solution of the Coulomb function model is the combination of a homogeneous

part and a particular part. The homogeneous part with closed geometry

is separable with a Coulomb function in r whereas the z part decreases

exponentially with height, and the particular part with open geometry is a

power series of r which is independent of z.
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2. Using appropriate BCs and employing the presence of the sheet current at the

boundary of the fluxtube, we have determined the parameters a(R), α(R),

κ(R), b(R,B0) , ψb(R,B0) and p̄(R,B0) in terms of the input parameters

{R,B0}, which are the free parameters in the model, and k is calculated

from the pressure values at photosphere and transition region obtained from

Avrett and Loeser (2008) model. The values of the parameters for Coulomb

function model are listed in Table 5.2.

3. In the Coulomb function model, the solution consisting of homogeneous and

particular parts together represents an open field fluxtube solution, where

the field lines rise from the photosphere. The homogeneous solution depicts

a closed field fluxtube model which is discussed in SM18. The values of the

magnetic field strength and thermodynamic quantities inside the fluxtube

are calculated and are summarized in Table 5.5. The 3D visualization of

both open and closed field lines are shown in the Figs. 5.6 and 5.7 for the

parameter set of run no. C4 and C10 corresponding to Table 5.2.

4. In the self-similar model, we have employed an extra term pc exp(−2kz)

with p1 in eqn (5.66), to maintain the hydrostatic pressure balance under

the influence of stratified solar gravity, and taken two options for the shape

functions, DX(ξ) from eqn (5.68), which is the extension of previous models

by ST58; Yun (1971); Osherovitch (1979, 1982). We have incorporated the

resulting two different shape functions, generalized Gaussian and power-law

profiles, to obtain open field fluxtube solutions. We have taken a range of

the parameters Ψb, B0, pc, B
′
z0 and χ (see Table 5.3 and 5.4), that are con-

sistent with the solar atmosphere to study the structure and the properties

of the fluxtubes. The size of the fluxtubes and the magnitude of the ther-

modynamic and magnetic field strengths depend on the choice of the input

parameters, but the magnetic and thermodynamic structures remain simi-

lar. We have calculated the magnetic field strength and the thermodynamic
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quantities inside the fluxtube which are given in Table 5.5, for the parameter

set of run no. S1 corresponding to Table 5.3 and 5.4.

5. Preliminary calculations using the constraint of relative helicity based on the

formulations given in (Prasad et al. 2014; Prasad and Mangalam 2016) and

applying the constrained energy minimization principle (Mangalam and Kr-

ishan 2000; Finn and Antonsen 1983; Taylor 1974) indicate that stable con-

figurations are possible for some regions in the parameter space of {B0, R}.
We plan a complete solution of this allowed region and test it with numerical

simulations in a paper in preparation.

The fluxtube models presented here give useful estimates of the magnitude

and the distribution of the magnetic field strength and thermodynamic quan-

tities from the photosphere to the transition region which can be verified by

future observations. Work on self-similar closed and twisted field structure is

in progress. The solutions we obtained for different fluxtubes can be used for

the dynamical simulation of wave propagation through the fluxtubes, which

is important for studying the coronal heating by waves.
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Magnetic reconnection and flares
Image source: https://now.uiowa.edu

6.1 Introduction

All plasmas, whether it is in the laboratory, solar atmosphere, or in the distant

universe, can generate magnetic fields. Simultaneously the magnetic field can

also be destroyed by a process called magnetic reconnections in nearly all plasma

settings in the universe. This process occurs due to the topological reconstruction

of the magnetic field caused by the change of the field line connectivity and allows

the release of stored magnetic free energy in the form of thermal energy, which is

a source of the free energy (and also radiation, kinetic energy, etc.).

The creation of a reconnection event in the terrestrial laboratory is a very chal-

lenging task as the Reynolds number of the terrestrial plasma is very low. In

contrast, plenty of reconnection events have been seen in the solar atmosphere for
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the presence of plasma with high Reynolds numbers. Several phenomena in the

solar atmosphere such as the motion of the chromospheric ribbons, dynamics of

the coronal loops, and the solar flares are the consequences of the magnetic recon-

nection. It has been proposed that reconnection is partly responsible for heating

the solar corona up to a million Kelvin (Cargill 2014; Klimchuk 2015), which is

addressed as the coronal heating problem. The study of magnetic reconnection is

an important topic in solar physics.

6.2 Null points and current sheet

Before surveying several reconnection models, we will first focus on the two impor-

tant aspects of the reconnection theory, which are called the null points, and the

current sheet (Priest and Forbes 2000). Null points, neutral points, or X-points

are locations where the magnetic field vanishes. Null points can be generated due

to the presence of multiple sources containing magnetic fields, e.g. the field formed

by the presence of two bar magnets. A current sheet is a thin current-carrying

layer, where the magnitude and/or the direction of the magnetic field changes

across the layer. It can be present only in a conducting medium such as a plasma.

The presence of the null points typically gives rise to the current sheets in the

plasma. In the next two sections, we have discussed a two-dimensional scenario of

null points and current sheet respectively.

6.2.1 Two-dimensional null points

A two dimensional magnetic field (BX , BY ) near a neutral point can be expanded in

a Taylor series form, and keeping only the first order, linear terms, the components
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have the form

BX = bX + 2cY (6.1)

BY = −2aX + dY, (6.2)

where a, b, c, d are the arbitrary constants. Using the condition ∇ ·B = 0, we

can write b = −d from eqns (6.1, 6.2). The field components are related to the

magnetic flux function, Ψ as follows

BX =
∂Ψ

∂Y
, BY = − ∂Ψ

∂X
, (6.3)

and by using eqns (6.1) and (6.2), we obtain the flux function as

Ψ = aX2 + bXY + cY 2 + C, (6.4)

where, C is a constant of integration, which vanishes due to the condition that Ψ

is zero at the origin i.e. Ψ(X = Y = 0) = 0.

Rotating the XY -axes through an angle θ to obtain a new xy-axes, we use the

relation

X = x cos θ − y sin θ, Y = x sin θ + y cos θ. (6.5)

Substituting this into eqn (6.4) gives

Ψ =
1

2
[(a+ c) + b sin 2θ + (a− c) cos 2θ]x2

+ [(c− a) sin 2θ + b cos 2θ]xy

+
1

2
[(a+ c)− b sin 2θ − (a− c) cos 2θ]y2. (6.6)
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The angle of rotation θ is arbitrary, so we choose it in such a way that the second

term in the RHS of eqn (6.6) vanishes, which implies

tan 2θ =
b

a− c, (6.7)

and the form of the flux function turns out to be

Ψ =
B0

2L
(y2 − β2x2), (6.8)

where,

B0

L
= (a+ c)−

√
b2 + (a− c)2, β2 =

√
b2 + (a− c)2 + (a+ c)

b2 + (a− c)2 − (a+ c)
, (6.9)

and L is the length scale over which the magnetic field is varying. The field

components in the new reference frame are

Bx = B0
y

L
, By = B0β

2 x

L
, (6.10)

so the Bx and By vanish at the x and y axes respectively. The field lines are given

by the contours of Ψ = const. For β2 < 0, the field lines of eqn (6.8) become

elliptical and the origin is referred to as the O-type neutral points. On the other

hand, for β2 > 0, the field lines become hyperbolic and we call them as the X-type

neutral points. Fig. 6.1 shows the structure of the null points for both O and X

type.

6.2.2 Current sheets

The current sheets that are formed at the null points are due to the discontinuity

of the field strengths and/or the direction. When the discontinuity across a current

sheet is tangential, then the plasma flow along the sheet is zero. In an equilibrium
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Figure 6.1: Two dimensional neutral points. The figure on the left shows
the O-type neutral points for β2 = −0.5, and the figure on the right shows the
X-type neutral point for β2 = 0.5.

condition, the total pressure balance across the current sheet is given by

p2 +
B2

2

8π
= p0 +

B2
0

8π
= p1 +

B2
1

8π
, (6.11)

where the subscripts {2, 0, 1} denote the values on one side, sheet centre, and the

other side. In particular, if the central field, B0 vanishes, then we get a neutral

sheet. If the ambient pressures p1 and p2 also vanish, then eqn (6.11) reduces to

B2
2

8π
= p0 =

B2
1

8π
. (6.12)

If a magnetic field in a current sheet varies along x and directed along the y

direction, i.e. B = By(x)ŷ, then from Ampére’s law we obtain

jz =
1

4π

∂By

∂x
, (6.13)

which implies that a steep gradient of By along x produces a current along the

sheet and normal to the field lines.

Instabilities can occur in a current sheet due to the tangential discontinuities.

Consider a current sheet with uniform flows v1 and v2, and field strengths B1 and
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B2, on either side of the sheet. For an ideal, incompressible plasma, an instability,

which is called the Kelvin-Helmohltz instability (Priest 1982) may occur in such

a current sheet if one of the following conditions are satisfied:

ρ|(v2 − v1)|2 > |B1|2 + |B2|2 (6.14)

ρ
[
|B1 × (v2 − v1)|2 + |B2 × (v2 − v1)|2

]
> |B1 ×B2|2. (6.15)

Eqn (6.14) implies that the current sheet becomes unstable if the kinetic energy

due to the tangential velocity difference (v2 − v1) exceeds the magnetic energy

density. The fluid has to work to distort the field lines, therefore the magnetic fields

try to stabilize the current sheet. Eqn (6.15) is the instability condition due to the

relative orientation of the plasma flows and the field lines. This condition arises

because the plasma flows that are normal to the field are more susceptible towards

the instability. As these conditions are valid for the ideal and incompressible

fluids, in a non-ideal plasma, a current sheet may remain be unstable even if the

conditions (6.14) and (6.15) are not satisfied.

6.3 Reconnection models

In astrophysical settings, the magnetic Reynolds number is very high, so the mag-

netic field lines are glued to the plasma medium. But, if there exists a very thin

region, the magnetic field gradient inside that region becomes sufficiently high,

and the field lines can slip through this and reconnect. For example, in Figure

6.2, a field line initially joining A to B in the plasma medium [see Figure 6.2 (a)]

carries out and reconnects to an oppositely field line to form a new field line AC

[see Figure 6.2 (c)]. In this process, a narrow region of a current sheet with high

magnetic gradient is formed [see Figure 6.2 (b)] containing a null point of X-type.
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Figure 6.2: Reconnection of field lines: (a) Before reconnection, A is joined to
B; (b) During reconnection, a thin current sheet is formed between the opposite
field lines; (c) After reconnection, A is connected to C. Image courtesy: Priest
and Forbes (2000).

The two important aspects of the reconnection are the nature of the reconnec-

tion and the field line breaking at the time of steady-state occurrence, and the

speed of the line breaking event towards the reconnecting site. Sweet (1958a,b)

and Parker (1957, 1963) developed a model where, a magnetic diffusive layer is

present, and showed that the reconnection rate is related with the speed of the

incoming field lines into the diffusion region. Later on, Petschek (1964) extended

the model by proposing that the diffusion region is restricted to a small portion

between the oppositely directed field lines, so that the effective size of the diffusion

region is shorter, which makes the reconnection process faster. Magnetic energy

is converted into the Ohmic heating at a slow rate during magnetic diffusion; this

depends on the thickness of the current sheet and the diffusivity of the plasma.

The diffusion can drive resistive instabilities which leads to fast reconnection.

6.3.1 Sweet-Parker model

In this model it is considered that the two flux system of oppositely directed

magnetic field meet at a particular zone, say at x = 0, where the field B = 0 (Sweet

1958a; Parker 1957). The flux systems are pushed together by some external means
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Figure 6.3: The geometry of the Sweet-Parker model of reconnection.

with velocity u0, i.e. vx(|x| → ∞) → |u0|. As the flux system comes closer, the

current density jz will intensify around x = 0, and an extended current sheet

is produced in ±y-direction. Suppose the length of the current sheet is 2∆. In

order to conserve the mass of the plasma, the mass flux of the plasma is forced

out along the ±y-direction have to be same as the mass flux of the plasma that

are coming from the ±x-direction. The reconnection process occurs in some small

region of length 2δ and the velocity of the outgoing plasma along the ±y-direction

is v0. The situation is sketched in Figure 6.3. Uzdensky and Kulsrud (2000) have

improved the Sweet-Parker model to calculate the reconnection rate. In the steady

state, the plasma enters in the current sheet at velocity u0 and the resistivity holds

the magnetic field for some time in the fluid to reconnect, and flow out along the

current sheet. No more plasma can enter in that layer until the previous bit of

fluid leaves the sheet. The ratio of the inward to the outward velocity u0/v0 gives

the rate at which the flux is destroyed by reconnection. This ratio is called the

reconnection rate. If we assume incompressibility, ∇.v = 0, then from Figure 6.3

we see that

u0∆ = v0δ. (6.16)
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Away from the inner layer the field is governed by the ideal MHD, so

Ez =
u0

c
B0. (6.17)

Within the inner layer the resistivity dominates, so

Ez =
η

c
jz = η

B0

4πcδ
. (6.18)

From eqns (6.17) and (6.18), we have

u0 =
ηc

4πδ
. (6.19)

The outer region in the x component is force balanced, hence,

∂

∂x

(
p+

B2

8π

)
= 0. (6.20)

As B(x = 0) = 0, and we take p(x = 0) = pm, so that

B2
0

8π
= pm − p0, (6.21)

where p0 and B0 are the upstream pressure and magnetic field at infinity respec-

tively. Using the force balance equation, ρ(v.∇)v = −∇p along the y direction

we obtain,
∂

∂y

(
ρv2

y

2

)
= −∂p

∂y
, (6.22)

and integrating eqn (6.22) from y = 0 to y = ∆, we find

ρv2
0

2
= pm − p0. (6.23)

The eqns (6.21) and (6.23), yield

v0 =
B0√
4πρ
≡ vA, (6.24)
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where vA is called the Alfvén velocity. So the outflow velocity is equal to the

upstream Alfvén velocity. Using eqns (6.16), (6.19), and (6.24) we obtain

(
∆

δ

)2

=
4πvA∆

ηc
≡ S0, (6.25)

where S0 is called the Lundquist number. Hence from eqns (6.16) and (6.25) the

reconnection rate is calculated to be,

u0/v0 =
δ

∆
=

1√
S0

. (6.26)

In astrophysical settings, S0 � 1, so that reconnection rate according to this

model is very slow. If the field lines are pushed harder from the outside, i.e. u0

increases, then the outflow velocity will also be increased to keep the recnnection

rate same and this is set by the resistivity. Therefore pushing harder at fixed S0,

just compresses the magnetic field but does not increase the rate of reconnection.

For a typical value of S0 ∼ 1010 in astronomical settings, the reconnection rate is

∼ 10−5 which is very slow that is not inferred for the cases of solar flares, CME and

other astrophysical phenomena. It has been observed that the “fast reconnection”

can occur if the effects outside resisitive MHD are accounted by the Ohm’s law.

From eqn (6.26), we can say that for a large S0 value, the reconnection layer δ can

become so small that the ideal MHD assumption breaks down, and other physics

dominates the reconnection process. However mechanisms based on this theory

are quite complicated and difficult to analyze for a general geometry.

For comparing the Sweet-Parker model with the solar observation, we take some

typical observational values for solar flares given in Table 6.1. The obtained value

for S0 =
∆vA
ηc/4π

= 2.7× 1012. This gives an Alfvén time scale, τA = ∆/vA = 37 s,

which is much shorter than the Sweet-Parker model time scale, τsp =
∆
√
S0

vA
= 6× 107

s. Therefore we can see that the Sweet-Parker model cannot produce the expected

reconnection rate for the flare event.
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Reconnection models Time scale, τ B (G) ρ (g cm−3) vA (cm s−1) Te (eV) ∆ (km) S0 τA (s) τ (s)

Sweet-Parker
∆
√
S0

vA
300 10−15 2.7× 107 100 104 2.7× 1012 37 6× 107

Petschek
8τA lnS0

π
300 10−15 2.7× 107 100 104 2.7× 1012 37 30

Table 6.1: Time scales for various reconnection models for a typical solar flare
event.

6.3.2 Petschek model

We have seen in the previous section, that the reconnection rate from the Sweet-

Parker model is not in agreement with the observations. Petschek (1964) suggested

that the Sweet-Parker diffusion region is limited to a small segment (of length

L << Le) of the boundary between opposing fields. The diffusion region is thinner

and therefore the reconnection can take place faster. He suggested that slow-mode

MHD shock waves propagate from the diffusion region, which acts as a kind of

an obstacle in the flow, which is supersonic relative to the slow-mode wave speed

across the magnetic field. To distinguish the outer region from the Sweet-Parker

diffusion region, we denote the flow velocity and the magnetic field at large distance

(Le) by ve and Be respectively. The properties of the fast reconnection depends on

two parameters namely, external reconnection rate Me(= ve/vAe) and the magnetic

Reynolds number, Rme = LevAe/η ≡ S0, where S0 is called the Lundquist number.

The steady state magnetic field, Bi is carried into the diffusion layer at the same

speed vi as it trying to diffuse outward. Hence,

vi = η/l. (6.27)

The conservation of mass of the plasma implies that

4ρLvi = 4ρlv0,

which gives

vi =
lv0

L
=

√
ηv0

L
. (6.28)
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The internal reconnection ratio, Mi =
vi
vAi

is given by,

Mi =
1√
Rmi

,

where v0 = vAi =
Bi√
4πρ

=
ηRmi

L
is the Alfvén speed in the diffusion region. The

magnetic Reynolds number inside the diffusion region is given by

Rmi ≡
LvAi
η

, (6.29)

and the flux conservation condition says that,

viBi = veBe, (6.30)

which leads to,
Mi

Me

=
vi/vAi
ve/vAe

=
B2
e

B2
i

. (6.31)

So from the definition of Rme(=
LevAe
η

) and eqn (6.29) we obtain,

L

Le
=

1

RmeM
1/2
e M

3/2
i

. (6.32)

The magnetic field decreases substantially from a uniform value Be at large dis-

tance to Bi, which is the value near the diffusion region. So according to eqn

(6.30), the velocity near the diffusion region will be increased from ve to vi. The

effect of the shock is to provide a normal field component BN , which is associated

with a small distortion in the inflow field of the uniform value Be at large distance

so that the field lines gets curved [see Figure 6.4]. The magnetic field in the upper

inflow region is the uniform horizontal field Bex̂ plus the normal component which

vanishes at the diffusion region. Neglecting the inclination of the field lines, the

y-component field on the x-axis is −2BN from −Le to −L and 2BN from L to Le.

Here the normal component on the x-axis can be treated as the series of poles.

Each pole produces m/r field at r distance, and the flux produced in the upper
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Figure 6.4: (a) Petschek model, in which the central shaded region is the
diffusion region and the other two shaded regions represent plasma that is heated
and accelerated by the shocks. (b) Notation for the analysis of the upper inflow
region [picture courtesy: Priest (1982)].

half-plane by that pole is πr
m

r
= πm. If the pole occupies a distance dx, then the

value of the field is 2BN dx.

Integrating along the x-axis from x = −Le to x = Le, we find,

Be −Bi =
1

π

∫ −L
−Le
−2BN

dx

x
+

1

π

∫ Le

L

2BN
dx

x

⇒ Be −Bi =
2BN

π

[ ∫ −L
−Le

dx

x
+

∫ Le

L

dx

x

]
=

4BN

π
ln

(
Le
L

)
⇒ Bi = Be

(
1− 4Me

π
ln
Le
L

)
. (6.33)

As, Me =
ve
vAe

=
BN

Be

, the magnetic fields are comparable in the diffusion region

i.e. Bi ≈ Be. Hence, we can simplify (6.31) to find

L

Le
=

1

RmeM2
e

. (6.34)



Chapter 6: Magnetic reconnection and flares 160

Petschek proposed that this process will choke when Bi becomes very small. So,

if we put Bi ≈ 1
2
Be then we have from (6.33)

Me =
π

8 ln Le
L

=
π

8(lnRme + 2 lnMe)
(6.35)

As, Me << 1, so, the maximum rate that can be obtained from eqn (6.35) is

Me,max =
π

8 lnRme

=
π

8 lnS0

. (6.36)

So, we see that the Petschek model reconnection rate is faster than the Sweet-

Parker model rate. For the same set of solar flare parameters discussed earlier (see

Table 6.1), the time scale for the Petschek model reconnection is τP =
8τA lnS0

π
= 30

s, which is in a good agreement with the Alfvén time scale, τA = 37 s. Therefore,

we see that the reconnection rate obtained from the Petschek model is in better

agreement with the observations of the solar flare events.

6.4 Application of magnetic reconnection: Flares

A solar flare is a massive explosion that occurs when the stored magnetic energy is

released in the form of kinetic and thermal energy, causing the emission of the elec-

tromagnetic radiation including radio, x-ray and gamma rays. Giovanelli (1946)

first suggested that the chromospheric solar flare event is based on reconnection.

Sweet (1958a) and Parker (1957) used the Giovanelli’s X-point reconnection model

to explain the snapping of the stored magnetic energy into the kinetic and ther-

mal energy which is observed in the solar flares. Various ground and space-based

telescopes have been used to observe the solar corona, where the magnetic struc-

tures reconfigure in a very dynamic manner by magnetic reconnection. In fact,
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reconnection is one of the key phenomena for the existence of the hot solar corona.

The flares can be classified as the small scale and large scale flares, according to

the amount of mass and energy that they eject. We will now discuss these flares

briefly, and the models associated with them.

6.4.1 Large scale flares: 2D flux rope model

Large scale flares are usually associated with the coronal mass ejections (CMEs),

which are the large scale eruptions of mass and the magnetic flux from the lower

part of the corona into the interplanetary medium. The magnetic field lines are

opened due to the CMEs that lead to the formation of the flux ribbons and loops

which are due to the release of the stored magnetic energy from reconnection of

the open field lines that close.

A 2D flux rope model has been developed by Priest and Forbes (1990), Forbes

and Priest (1995). A flux rope is a magnetic fluxtube with twisted magnetic

fields. This model explains the basic phenomena of eruptive flares based on the

reconnection theory. According to the model, when the flux ropes approach each

other in the photosphere, they lose their equilibrium. The configuration is given

by the Grad-Shafranov equation

∇2Ψ +
1

2

dB2
z

dΨ
= 0, (6.37)

in the xy plane of y ≥ 0, |x| < ∞, where y = 0 corresponds to the photosphere.

The field component Bz is perpendicular to xy plane, and the flux function, Ψ

is defined by (Bx, By, Bz) =

[
∂Ψ

∂y
,−∂Ψ

∂x
,Bz(Ψ)

]
. The boundary condition of the

flux function at the photosphere is given by

Ψ(0, y) = Ψ0H(λ− |x|), (6.38)
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where, H is the heavyside step function, and x = ±λ are the locations of the two

sources of opposite polarities. If these two sources move towards each other, a

vertical current sheet forms, and then distribution of the flux function becomes,

Ψ(x, y) = Re

[
µI

2π
ln

(√
ζ2 + b2 + i

√
h2 − b2√

ζ2 + b2 − i
√
h2 − b2

)
+ i

Ψ0

π
ln

(√
ζ2 + b2 +

√
b2 + λ2√

ζ2 + b2 −
√
b2 + λ2

)]
,

(6.39)

for |ζ − ih| > a, where ζ = x+ iy, h is the rope height, a is the flux rope radius, b

is the height of the current sheet, and I is the flux rope current. For |ζ − ih| ≤ a,

the flux function, Ψ has the form

Ψ(x, y) = f(r, I), (6.40)

where, r =
√
x2 + (y − h)2, and the f(r, I) is the solution for the isolated flux

rope in the absence of the current sources given by Parker (1974c). The vertical

field strength, Bz inside the flux rope (r < a) can be obtained by using the form

(6.40) in eqn (6.37), whereas Bz = 0 at r > a as Ψ(x, y) becomes a potential field.

The equilibrium value of h = λξ is given by

λ =


1+ξ2

4ξ2
a0 exp

[(
π
4

+ ln 2λ0
a0
− arctan 1

ξ

)(
1+ξ2

2ξ

)]
; for ξ ≤

√
3

(3ξ2−1)
√

2(ξ2−1)

4ξ2(ξ2+1)
a0 exp

[(
π
4

+ ln 2λ0
a0
− arctan

√
ξ2−1
2ξ2

)(√
2(ξ2−1)

ξ

)]
; for ξ ≥

√
3

(6.41)

where, ξ is a parametric variable, a0 and λ0 are the values of a and λ respectively

at the point where the current has the maximum value of I0 =
4Ψ0

µ
. The current

at an arbitrary point is given by
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I =


I0

2ξ
ξ2+1

; for ξ ≤
√

3

I0
ξ√

2(ξ2−1)
; for ξ ≥

√
3

(6.42)

while the radius is a = a0
I0

I
, and the height of the current sheet is b = ξλ

√
ξ2 − 3

3ξ2 − 1
.

In this model an assumption made is that the radius of the flux rope, a is suffi-

ciently smaller than the flux rope height, h.

Figure 6.5(a) shows the height of the flux ropes which is in the equilibrium where

the sources are separated by 2λ and a0 = 0.1λ0. If the source points start to move

towards each other [see Figure 6.5(b)] then a catastrophe occurs at the time when

λ reaches the point where the middle and the lower branch of the equilibrium

curve meet. In Figure 6.5(c) the magnetic configuration loses equilibrium and

the flux ropes are snapped out. After losing equilibrium state, and if there is

no reconnection, then the flux ropes settle in a new equilibrium that contains a

current sheet. On the other hand, if the reconnection occurs then the flux ropes

continue to move in the upward direction indefinitely [see Figure 6.5(d)], though

the velocity of the erupted flux ropes slow down as they cross the upper equilibrium

height.

6.4.2 Small scale flares: emerging flux model

Small scale flares or the compact flares are more localized [Priest (1982); Zirin

(1988)] which appear to form simple loops (Svestka 1976). This type of flare

releases energy in an impulsive way, and show evidence of small scale rather than

with the large scale flares. The small scale flares have a compositional signature

which shows the existence of the He3 and Fe elements.
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Figure 6.5: The flux rope model given by Forbes and Priest (1995). (a)
Evolution of the 2D arcade containing flux ropes with the poles separated by
2λ. (b), (c) The poles moves towards each other in the photosphere, and the
flux ropes move upward. (d) In the absence of the magnetic reconnection, the
flux ropes settle in a new equilibrium that contain a current sheet, or the flux
ropes are thrown out in the medium after the reconnection.

Heyvaerts et al. (1977) proposed the emerging flux model to explain the compact

flares. According to the model, the magnetic loops emerge from the convection

region and push up the pre-existing fields which lead to the formation of the

coronal current sheet as shown in Figure 6.6. The resistivity of the plasma within

the current sheet is very low, and when the ratio of the current to the mass density

exceeds a threshold value of instability, the current sheet is thrown up which leads
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Figure 6.6: The emerging flux model by Heyvaerts et al. (1977) for small scale
flares: (a) The pre-flare phase when the emerging flux and the pre-existing fields
form a current sheet. (b) The impulsive phase, when the reconnection happens.
(c) The quasi-static reconnection, which leads to the heating.

to a rapid energy release. If the emerging flux comes near the region of the closed

magnetic loops, then all the footpoints of the separatrices stay in the photosphere

[see Figure 6.6(b)]. This allows the reconnection to occur with four ribbons instead

of two as shown in Figure 6.6(c). Such multiple ribbon reconnection events have

been observed by Machado et al. (1988).

Observationally, there is a distinction between the large, two ribbon and compact

flares, though the mechanism for all the events is magnetic reconnection. For both

the large and small scale flares, the distribution of the events follow the power-law

form:

dN

dE
∼ E−α, (6.43)
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(a) (b) (c)

Figure 6.7: Topological states of the magnetic fluxtubes given by Parker
(1983) model: (a) Magnetic fluxtubes in the uniform magnetic field. (b) Some
fluxtubes after being braided to each other. (c) Twisted fluxtubes formed by
the cellular rotaion of the plasma.

where, dN is the number of events within the energy range E and E+dE, and α is

the power-law index. Lu et al. (1993) proposed that this continuous distribution of

the power law is due to the cascade of small and elementary reconnection events.

Parker (1972) suggested that for a complicated topology of the field lines of two

or more, the equilibrium of the system is violated, which causes the dissipation

and merging of the field lines. Such a system in a turbulent medium gives rise

to the small scale magnetic fields. Parker (1983) proposed that these small scale

twisted field lines in a packed bundle give rise to the dynamical non-equilibrium

(see Fig. 6.7) which is responsible for the nanoflare events observed in the solar

corona. Parker (1988) proposed that the extremely small flares which are known

as microflares and nanoflares are the contributing factors for the heating of the

solar corona. On the other hand [Rosner and Vaiana (1978); Litvinenko (1994);

Vlahos et al. (1995)] have suggested that the power-law distribution of the flare

events is due to a stochastic trigger mechanism. Recent observations of Ramesh

et al. (2013), Kishore et al. (2016), Kumari et al. (2017) (and references therein)

have reported that the energy distribution of the radio flare events follows the

power-law distribution.
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6.5 Summary

This chapter is premier for understanding solar flares, and the energy distribution

of the flare events which is presented in Chapter 7. The main references and texts

for this chapter are [Priest and Forbes (2000); Parker (1983); Heyvaerts et al.

(1977); Priest and Forbes (1990)]. We summarize the key points of this chapter

in the following:

1. The importance of studying magnetic reconnection for understanding several

magnetic phenomena in the solar atmosphere like flares. We also discussed

the formation of the null points and the current sheets in a magnetic medium,

which leads to the magnetic reconnection.

2. We presented several reconnection models, and compared the reconnection

time scales for a typical flare event (see Table 6.1), and saw that the Petschek

model gives a better agreement with the observational values for flare time

scale.

3. We discussed several models for the large (Priest and Forbes 1990; Forbes

and Priest 1995), and small scale flares (Heyvaerts et al. 1977; Parker 1983),

and deducted that the energy distribution for both types of the flares is of

the power-law form.

4. The small scale flares, which are called the micro, nano, or pico-flares occur

due to the emerging flux mechanism and show the power-law energy distri-

bution is seen for the radio bursts. This type of flares mainly occur due to

the snapping out of the braided and wrapped fluxtubes. We will discuss this

in Chapter 7 in more detail.





Chapter 7

Energy distribution of solar flare

events

Image source: https://en.wikipedia.org

7.1 Introduction

In this chapter, we discuss the winding number distribution of a braided magnetic

system using the “self-organized criticality” (SOC) model (Berger and Asgari-

Targhi 2009). If two field lines are stretched between two planes z = 0 to z = L,

then the winding number, w is defined as

w =
1

π

∫ L

0

∣∣∣∣dφ12

dz

∣∣∣∣dz, (7.1)

The work presented in this chapter is published in Sen et al. (2018).

169

https://en.wikipedia.org


Chapter 7: Energy distribution of solar flare events 170

Figure 7.1: A cartoon diagram for explaining the self-organized criticality
(SOC) model given by Berger and Asgari-Targhi (2009). Left: A three-braid
configuration with two coherent sequences separated by an interchange. Middle:
The interchange is removed by reconnection. Right: The final relax configura-
tion with the crossings canceled out.

where φ12 is the twist angle between the field lines (Mangalam and Prasad 2018).

This model of braided magnetic fields can release stored magnetic energy in the

form of kinetic and thermal energy into the solar atmosphere. It has been ob-

served that the energy distribution of such events follows the power-law distribu-

tion (Kishore et al. 2016; Ramesh et al. 2013; Sasikumar Raja et al. 2014) (and

references therein). We have calculated the power-law index of the energy distri-

bution theoretically for different cases, and compare these results with the flare

observations taken by the Gauribidanur Radio telescope (Sen et al. 2018).

The sections where the two field lines braid with each other is called a coherent

sequence. In Fig. 7.1 (left image) the blue and the green tubes in the left are

braided by the winding number w = +3, whereas the red and the blue tubes

are braided by the winding number w = −3. The +ve and -ve signs represent

the anticlockwise and clockwise twist respectively. In Fig. 7.1 (middle image) a

swapping occurs between the red and the green tubes which are called interchange,

and the right image shows the relaxed condition of the tubes after the crossings

are canceled out.
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The braiding of the magnetic field lines or the fluxtubes in the solar atmosphere

can occur through several mechanisms listed below.

• Due to the random motions of the photospheric magnetic footpoints, the

field lines that are linked with the footpoints braid.

• Sometimes, large fluxtube fragments at its photospheric footpoints and the

individual fragmented pieces of the flux elements disperse. These fragmented

elements flow with the granular motion and coalesce with other elements

forming a new flux element. This process increases the complexity of the

braiding structure (Berger 1994).

• The fragmented magnetic footpoints of a coronal loop interact with the small

scale loops, and these small loops reconnect with the larger loops which gives

an effective motion of the magnetic footpoints of the field lines (Schrijver

et al. 1998; Priest et al. 2002).

7.2 The SOC Model

In order to model the self-organized criticality, some arbitrary initial braid having

m number of sequences and m−1 number of interchanges are considered. At each

step one new coherence sequence is added with one interchange, and one of the

existing interchanges get eliminated through a reconnection event simultaneously.

If n(w) is the sequence having crossing number w then,

m =
∞∑

w=−∞

n(w), (7.2)
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and the total number of crossings is given by,

c̄tot =
∞∑

w=−∞

| w | n(w). (7.3)

The probability distribution function of sequence length w is defined as f(w),

i.e. it has the probability of having a sequence in the winding number range w to

w+δw. At each time step the f(w) is changed by δw by the following contribution:

1. The probability p(w), that the new sequence adds to f(w)

2. A sequence will disappear if the left sequence of the reconnection region has

winding number w. So there is a probability f(w) that n(w) of sequences

having w winding number will decrease by one.

3. The sequence at the right of the reconnection has the probability of f(w) of

removing of a w sequence.

4. If the left has w1 winding number, and in the right part having w2 = w−w1

winding number, then a new w sequence will be created.

Therefore the change in n(w) is given by,

δn(w) = p(w)− 2f(w) +

∫ ∞
−∞

f(w1)dw1

∫ ∞
−∞

f(w2)δ(w − (w1 + w2))dw2

= p(w)− 2f(w) +

∫ ∞
−∞

f(w1)dw1f(w − w1). (7.4)

For steady state δn(w) = 0, hence from eqn (7.4) we obtain,

p(w)− 2f(w) +

∫ ∞
−∞

f(w1)f(w − w1)dw1 = 0

⇒ p(w)− 2f(w) + (f ∗ f)(w) = 0, (7.5)
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where (f ∗ f)(w) denotes the convolution. Taking the Fourier transformation of

eqn (7.5) we obtain,

p̃(k)− 2f̃(k) + f̃ 2(k) = 0

⇒f̃(k) = 1−
√

1− p̃(k) (7.6)

If we consider the sequence follows the Poisson distribution,

pP (w) =
λ

2
exp(−λc|w|), (7.7)

where λc is the correlation length, then the Fourier transformation of pP (w) is

given by,

p̃P (k) =
λ2
c

λ2
c + k2

. (7.8)

Therefore from eqn (7.8), we get

f̃(k) = 1− |k|√
λ2
c + k2

. (7.9)

The inverse Fourier transformation of eqn (7.9) gives

f(w) =
λc
2

[L−1(λcw)− I1(λcw)], (7.10)

where L−1(λcw) is the Struve L-function and I1(λcw) is the Bessel function (Abramowitz

and Stegun 1972). Expanding eqn (7.10), we obtain, f(w) ∝ w−2.

The photospheric footpoints undergoes random motions, so the probability distri-

bution function of the winding number, p(w) is assumed as the Poisson distribution

by Berger and Asgari-Targhi (2009). We have extended the model by incorporat-

ing two different profile functions which follows the Gaussian distribution,

pG(w) =
1

λc
√

2π
exp

(−w2

2λ2
c

)
(7.11)
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Figure 7.2: Distribution of winding number for Poisson, Gaussian and Lorentz
profiles.

and the Lorentz distribution,

pL(w) =
λc

π(λ2
c + w2)

. (7.12)

The f(w) distribution for Gaussian and Lorentz profiles are obtained numerically,

which are shown in Fig. 7.2. This represents that the distribution of f(w) for all

the three profiles are having likely the same nature, but with different slopes.

7.2.1 Energy calculation

The free energy due to the braided magnetic field lines is given by Ef = ac̄2 where,

a depends on the length and the diameter of the magnetic fluxtubes. The flare

energy omitting the a term is:

E = ∆Ef/a = c̄2
i − c̄2

f , (7.13)
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where, c̄i, and c̄f are the initial and final crossing numbers of the braiding system

respectively. The reconnection occurs when the number of crossing reaches up to a

certain critical limit say, c̄crit. If two oppositely sequences of w1 and w2 (w2 > w1)

merge together then the length becomes |w2| − |w1| from the initial total length,

w1 + w2. This gives the change in the length to be 2w1, hence,

E = c̄2
crit − (c̄crit − 2w1)2

= 4c̄crit|w1| − 4w2
1 (7.14)

but as w1 << wcrit,

E ' 4c̄crit|w1|

Therefore the probability distribution of E is given by

F (E) = 2

∫ ∞
0

∫ −w1

−∞
f(w1)f(w2)δ(E − 4c̄critw1)dw2. (7.15)

Assuming the distribution of the coherence length follows the power-law, we con-

sider

f(w1) = b|w1|β, (β > 1). (7.16)
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Hence,

F (E) = 2

∫ ∞
0

f(w1)δ(E − 4c̄critw1)dw1

∫ −w1

−∞
b|w2|−βdw2

= 2b

∫ ∞
0

f(w1)

δ

(
w1 − E

4c̄crit

)
4c̄crit

w1−β
1

1− βdw1

=
2b2

β − 1

∫ ∞
0

w1−2β
1

4c̄crit
δ

(
w1 −

E

4c̄crit

)
dw1

=
2b2

β − 1

(
1

4c̄crit

)2−2β

E1−2β

⇒ F (E) =
2b2

β − 1

(
1

4c̄crit

)2−2β

E1−2β. (7.17)

Therefore, if we define α = 2β − 1 then the energy E follows the power law from

eqn (7.17) as,

F (E) ∝ E−α. (7.18)

We have seen earlier that for Poisson distribution, β = 2, hence the value of α

is 3. The values of β for Gaussian, and Lorentz profiles are obtained numerically

by taking the average values of
d ln f(w)

d ln(w)
over w; the values of α are found to

be 2.5, and 0.94 for the Gaussian and Lorentz profiles respectively. The model

thus demonstrates that, braid patterns can organize themselves so that coherence

lengths and flare energies obey power-law energy distributions.

Mangalam and Prasad (2018) have formulated the energy for the two twisted field

lines and calculated the lower bound of the twist energy, Et in terms of global

winding numbers,

W =
1

2π

∫ L

0

∫ ∫
B1zB2zd

2x1d2x2dz, (7.19)
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where B1z, and B2z are the longitudinal components, and L is the vertical span of

the field lines. The lower bound of the twist energy, Et for the system is given by

Et ≥
W 2

8R4B2
0g

2
, (7.20)

where R is the radius of the cylindrical cross section of the flux, B0 is the field

strength at z = 0, and g ≈ 4.

7.3 Radio observations of solar flare events

Radio observation is a very useful and complementary tool for weak energy sig-

natures in the solar atmosphere. Ramesh et al. (2010) presented evidence from

low-frequency radio observations for the existence of weak, transient events whose

energies were compatible with that of nanoflares (energy ∼ 1024 erg) postulated

by Parker (1988). The estimated mean energy bursts (∼ 1021ergs) is about ∼ 1012

times lesser than the observed largest flare (∼ 1033 erg) and are called picoflares

(Ramesh et al. 2013). Our interest is to investigate these flare events using ob-

servations of type-I radio bursts which is known as radio noise storms. The noise

storms are very short-lived (∼ 0.1−1s) and narrowband radio enhancement which

is superimposed with the background broad-band, long-lasting (∼ few hours-days)

signals which are of type-I or noise storm continuum. The bursts are the cause of

the successive emission of the electrons which are unlike the transient acceleration

associated with the flares.

It is now accepted that this radiation is the plasma emission due to the coupling

of Langmuir and low-frequency waves and the circular polarization is the cause

of the propagation of the wave in the vicinity of the magnetic field. The type-I

radio bursts are considered to be the signatures of many small steps in coronal

evolution, whose cumulative effect is the gradual evolution of the corona.
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7.3.1 Observations

The observations of the radio data, are taken by the “Gauribidanur Radio Helio-

graph” or GBRH on March 12, 2011, at 65 MHz frequency, which is maintained

by Indian Institute Astrophysics (IIA), Bangalore, India. The co-ordinates of

the GBRH array are longitude 77027′7′′ E, and latitude 13036′12′′ N. GBRH is a

T-shaped radio interferometer array which produces the 2D radio image of the

corona of the sun with the angular resolution 10’×15’ (RA×Dec). The tilting of

the antenna and the arrays are operated electronically. The polarimeter array is

extended along East-West direction. The temporal data recorded by the polarime-

ter is essentially the E-W beam of the array whose amplitude is proportional to the

strength of the emission from the whole Sun at the observing frequency weighted

by the antenna gain in that direction.

7.3.2 Data and Analysis

The radio data that we obtain from the GBRH is essentially the temporal vari-

ation of the sine and cosine visibilities of the solar corona, which was taken on

12/09/2011 at 65 MHz frequency. These visibilities are the cause due to the su-

perposition of radio burst of type-I and the background noises. Hence, we have

to eliminate the noise from the raw data for further analysis. To remove it, we

subtract the offset counts of 1.437 × 104, which is the value where the sine and

cosine visibility almost overlaps. The visibility amplitude is obtained by taking

the square root of the squares of the sine, and cosine visibilities, i.e. if Vc and Vs

are the cosine and sine visibilities, then the visibility amplitude, V is given by,

V =
√
V 2
c + V 2

s . (7.21)
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Figure 7.3: The blue curve is the energy flux density value which is the
superposition of the radio burst-I with the background broadband continuum,
where t0 = 500 ms. The red curve is the fit of the lower background envelope
which is the background broadband continuum.

The temporal variation of the energy distribution is due to the superposition of

the type-I radio or noise storm burst with the background broadband continuum

of type-I, which is shown by the blue curve in Fig. 7.3. So, for analyzing the flare

energy distribution, we have to eliminate the background broadband continuum

from visibility amplitude. To do this, we fit the lower envelope of the visibility

curve by the estimated background method using the “Statistic-sensitive Nonlinear

Iterative Peak clipping” (SNIP) algorithm (Tomoyori et al. 2015), which is shown

by the red curve in Fig. 7.3. The temporal distribution of the flux response

without the noise is obtained by subtracting the background envelope value from

the noise storm visibility, which is shown in Fig. 7.4 where the spikes represent

the radio bursts.

To find the flux density distribution function F (S), which is the number of radio

bursts in the flux density range S to S + dS, we construct a histogram of the
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Figure 7.4: Temporal variation of flux density eliminating background noise,
where t0 = 500 ms.

Figure 7.5: Histogram plot of the number of radio bursts with respect to
flux density, where F0 = 2000 Jy. The blue curve shows the energy power-law
distribution curve.
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Figure 7.6: Logarithimic scale plot of S vs F (S). The value of the slope ≈ 2.5.

number of radio bursts with the flux density shown in Fig. 7.5. To estimate

the index of the power-law of flux density distribution we fit a curve which goes

through the peaks of every bar of the histogram and plot the number distribution

of bursts in a particular flux density bin with its corresponding flux density in the

Log-Log scale, shown in Fig. 7.6. The blue points in Fig. 7.6 represent the peaks

of the histogram bars. We fit a straight line (red) that follows the blue points, to

estimate the index of the power-law. The slope is found to be ≈ 2.5. The results

for other flare events on different dates and frequencies are listed in Table 7.1.

Date Frequency (MHz) Power-law index

12/03/2011 65 -2.51

14/02/2011 65 -2.05

12/03/2011 80 -2.41

14/02/2011 80 -2.15

Table 7.1: Radio observations of type-I bursts and estimated power-law index
for energy distribution for different flare events and frequencies obtained from
GBRH.
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7.3.3 Results

The values of the power-law indices for the energy distribution are 3, 2.5, and 0.94

for Poisson, Gaussian, and Lorentz profiles respectively, obtained from the SOC

model. We have also reported the observation for the weak (∼ 1021erg) circularly

polarized, type-I radio burst. The distribution of the number of bursts in the flux

density range S to S+ dS follows the power-law distribution i.e. F (S)dS ∝ SαdS

with α ≈ -2.2 to -2.7 has been reported by Ramesh et al. (2013), which is in

a reasonable agreement with our observations, where the α varies from 2.05 to

2.51. This implies that the energy distribution power-law index obtained from

the SOC model are in good agreement for the Poisson and Gaussian profiles for

the winding number distribution, whereas the assumption is not suitable for the

Lorentz distribution. Fig. 7.5 represents that the number of bursts occurs more

towards the lower flux density. It is to be noted that the spikes that appeared

in Fig. 7.4 are due to the radio flares. These weak-energy releases belong to the

picoflare category and can contribute to the coronal heating. Evidence has been

presented to the effect that the emerging magnetic flux may provide enough energy

to heat the corona by the release of magnetic energy (Schrijver et al. 1997). These

results suggest a possible connection with the type-I noise storms since newly

emerging flux has been reported to be one of the causes for the onset of the

former. Present observation says the power emitted in the type-I burst (∼ 1021

erg s−1) is smaller than the energy required (∼ 1027−1028 erg s−1) for the heating

of the corona. So type-I radio burst is one of the weak energy releases and coronal

heating is contributed by all these bursts in total.
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7.4 Summary and Discussions

This chapter is devoted to calculating the winding number, and energy distribution

of a two-braided system of the magnetic field lines, obtained from the SOC model

Berger and Asgari-Targhi (2009), and the energy bounds for such a system has

been calculated in terms of the global winding numbers by Mangalam and Prasad

(2018). We have estimated the power-law index of the energy distribution for the

solar flare events by radio data obtained from the GBRT. A part of this chapter

is published in Sen et al. (2018). The SOC model gives an well understanding

of how the new random inputs of the braided structure is in balance by the loss

of the braiding due to reconnections. Berger et al. (2015) have used a forest-fire

model to explain the braiding to be self-organized due to the reconnections. The

magnetic fields in the photosphere are in discrete flux elements. This discreteness

can enhance the braiding complexities or the amount of the braided structure that

can be hold by the corona. The braiding of the field lines is more efficient for a

smoothly distributed field lines across the boundary. In this model, the braiding

is associated along the loop axis. This model can be improved by including the

braiding along the transverse direction by implementing the internal twists, and

for a multi-braid system.
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Summary and Conclusions

Image source: www.arstechnica.com

8.1 Summary

In Chapter 1, a brief overview of the solar interior, its atmosphere, and the mag-

netic structure are discussed. A brief historical overview of the magnetic fluxtube

models and its importance of the study is also discussed in this Chapter. Chap-

ter 2 is focused on the basics of MHD. The derivation of GSE was presented

which is a key ingredient for building the fluxtube models that we use in our

work. In Chapter 3, we discuss the magnetic configurations of fluxtubes. Here

we discussed observational implications of fluxtubes in the solar atmosphere, the

magnetic properties of the fluxtubes, the governing equations to solve fluxtube

models, and a historical overview of various fluxtube models. This chapter formed

the background material for studying solar fluxtubes.

185
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In Chapter 4, we constructed a fluxtube model in the axisymmetry with a twisted

magnetic field. Incorporating realistic boundary conditions (BCs) for solar at-

mosphere, we found a magnetohydrostatic equilibrium solution for fluxtubes by

solving GSE analytically, which is a combination of the Coulomb function in r, and

an exponential function along z. The magnetic configuration of the fluxtube ob-

tained from this model is closed. We calculate the magnetic and thermodynamic

structure of the fluxtube and see that the findings are in reasonable agreement

with the observations of MBPs. This has been published in Sen and Mangalam

(2018a).

In Chapter 5, we have extended the closed field model discussed in Chapter 4 by

incorporating an inhomogeneous part with the homogeneous Coulomb function so-

lution. The inhomogeneous part is a power series solution of the hypergeometric

function and independent of z. Using this new solution, and incorporating BCs

appropriate for the solar atmosphere, we obtained the magnetic and thermody-

namic structure of the fluxtube. We also constructed another class of fluxtube

models based on the self-similar formulation. We have extended the model by

implementing two different magnetic shape functions which are the generalized

Gaussian, and power-law functions, and obtain the magnetohydrostatic equilib-

rium solution by taking the stratified solar gravity. The magnetic configuration

of the fluxtube obtained from both these models is open, which means the field

lines do not come back within the comparable domain. We compared the esti-

mated value of the magnetic and thermodynamic structure with the observations

and other simulations of MBPs and saw that the estimations are in reasonable

agreement. This has been published in Sen and Mangalam (2019). We have also

discussed the self-similar closed field twisted magnetic fluxtube model, where we

have incorporated a quadratic magnetic shape function and found an analytical

fluxtube solution. This work is in preparation.

Chapter 6 is devoted to the discussions about magnetic reconnections, and various
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solar flare models. This chapter is the background material for understanding

the next chapter. In Chapter 7, we discuss the winding number distribution for

the braided magnetic field lines using the SOC model and estimate the power-

law indices for the energy distribution of the braided system. We also calculate

the power-law indices from the observational study of the radio flare events on

12 March 2011, and 14 February 2011, from the data obtained by GBRT. We see

that the theoretical estimations are in reasonable agreement with the observations.

This is partly published in Sen et al. (2018)

Finally, here, we discuss the summary and conclusions of the Thesis, highlight the

novel aspects and their impact, and the future directions.

8.2 Novel aspects and their impact

The Thesis aimed to construct magnetohydrostatic equilibrium models of magnetic

fluxtubes with twisted magnetic fields. The fluxtube solutions obtained from these

models are useful to estimate the magnetic and thermodynamic structures of the

fluxtubes in the stratified solar atmosphere. The models are also the verifiable

means to calculate the magnetic structure of the MBPs observed in the solar

atmosphere. In the case of topological aspects of magnetic braiding of the field

lines, the theoretical prediction of the energy distribution gives a useful estimate

of the power-law index for the solar flares. This estimation is compared with the

observations of the radio flare events. The novel points of the work are listed

below.

1. We provide a new and distinct magnetohydrostatic equilibrium fluxtube so-

lution with the twisted magnetic field in the stratified solar atmosphere,
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called as the Coulomb function helical fluxtube model. The fluxtube solu-

tion of the Coulomb function model has two parts, which are homogeneous,

and the particular. The homogeneous part is a combination of the Coulomb

function in r and an exponential function in z, and the particular part is

a power series solution of the hypergeometric function in r with no z de-

pendence. The homogeneous solution gives a closed field magnetic structure

of the fluxtube, whereas the particular part gives the open field magnetic

configuration.

2. We constructed another class of fluxtube solution based on the self-similar

formulation. We have implemented a twist in it, and obtain the magneto-

hydrostatic equilibrium model in the solar atmosphere taking into account

gravity. Using two different magnetic shape functions, which are the gener-

alized Gaussian, and power-law functions, we built the open field magnetic

configuration of the fluxtubes. While specifying the shape function in the

quadratic form, the magnetic field line configuration of the fluxtube becomes

closed.

3. Incorporating appropriate BCs for a realistic solar atmosphere in both mod-

els, we found fluxtube solutions for the open and closed field models that

are used to calculate the magnetic and thermodynamic structures inside the

fluxtubes. This is in a reasonable agreement with the MBPs.

4. The open field fluxtube solutions are the useful inputs for the numerical

simulation models for studying the propagation of the MHD waves through

the solar atmosphere.

5. The closed field fluxtube models can be used as the building blocks for

making realistic structures like magnetic canopies, or coronal loops.

6. We calculated the winding number distribution for a braided system of mag-

netic field lines using the SOC model and used this model to calculate the

energy distribution of a two braid system.
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7. This theoretical prediction of the power-law index for the energy distribu-

tion of the braided system gives a useful comparison with the observational

studies for the solar flare events. The data was obtained from GBRT for the

radio flare events on March 12, 2011, and February 14, 2011.

8.3 Caveats

We list some of the caveats below:

1. With the further advancement of the spatial and temporal resolution of

the telescopes, the observations for the small scale fluxtubes in the solar

atmosphere can be compared with the theoretical predictions of the models.

2. The fluxtube models we have developed span from the photosphere to the

transition region. With the more realistic inputs of the solar parameters,

e.g. magnetic field strengths and thermodynamic quantities, we can extend

the models up to the corona.

3. The radial span of the fluxtube models (Sen and Mangalam 2019, 2018a,b)

are of the order of a few hundred km. These small scale structures are com-

parable with MBPs. On the other hand, the large scale fluxtubes, sunspots

have the radial size of a few tens of Mm, and the radial variation of the

pressure profiles is not similar to our models. So the fluxtube models that

we have developed can not explain the sunspots structure fully.

4. With the radio data set obtained from the GBRT, a large statistical study

for the solar flare events can be made to confirm the winding number and

(Sen et al. 2018; Mangalam and Prasad 2018) power-law indices of the energy

distribution.
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8.4 Future directions

There are several promising future aspects of all the problems discussed in the

Thesis. With further improvements in the observations of small scale fluxtubes

in the solar atmosphere, we can improve the fluxtube models accordingly. For

the reconstruction of the magnetic field line topology for a multi-braid system, we

can extend the Mangalam and Prasad (2018) model to incorporate comprehensive

Monte-Carlo simulations (Berger and Asgari-Targhi 2009). The other plans are in

the following.

1. Preliminary calculations using the constraint of relative helicity based on

the formulations given in (Prasad et al. 2014; Prasad and Mangalam 2016)

and applying the constrained energy minimization principle (Mangalam and

Krishan 2000; Finn and Antonsen 1983; Taylor 1974) indicate that stable

configurations of the fluxtubes are possible for some regions in the parameter

space of the models. We plan a complete solution of this allowed regions and

test it with numerical simulations in a paper in preparation.

2. The semi-analytical fluxtube solutions discussed above of the variation of

magnetic field strength with the depth is used to derive the run of plasma

density and pressure. The aim is to apply the models as the background

condition for numerical studies of waves and their kinematic properties tak-

ing realistic inputs of field strength and pressure distribution observed in the

lower solar atmosphere. We plan to calculate the energy transport from the

photosphere to corona which plays a key role in the heating of solar corona,

through wave heating in the context of the twisted self-similar field models.

(Solov’ev 1997) extended the self-similar sunspot models by introducing a

current sheet at the sunspot boundary. In addition, we plan to include un-

der typical coronal conditions, the Ohmic heating, due to phase mixing, that
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can provide magnetic energy on a time scale comparable with the coronal

radiative time.

3. We plan to further explore the energy released through the small scale re-

connection events arising from braiding and correlate them to the energy

content in the force-free fields. The fraction of energy budget available can

be dissipated by reconnections; so we need to complement braiding theory

with the reconnection models. We also plan to compare our model with

the radio data from the GBRT and analyze using the Statistic Sensitive

non-linear iterative peak clipping (SNIP) algorithm (Tomoyori et al. 2015).

4. We plan to extend the study of topological and statistical properties of the

braiding of the magnetic field lines (Mangalam and Prasad 2018). We plan

on building detailed braiding topologies and evaluating energy distribution

through estimates of crossing numbers of multiple braids. As we explore more

analytic solutions, we can use this method to verify them and apply them

to more active regions. As an example, we have calculated the power-law

distribution for the braiding and resulting energy distributions. We find that

our estimates using the nonlinear force-free fields are in good agreement with

the SOC model. We have studied the effect of different input distributions

like Gaussian and Lorentzian for the SOC model and found that the Poisson

distribution fits best with our NLFFF solutions. The energy released from

these braided structures can be significant.

“I am busy just now again on electro-magnetism, and I think I have got hold of

a good thing, but can’t say. It may be a weed instead of a fish that, after all my

labor, I may at last pull up.”

– Michael Faraday
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Figure source: www.independent.co.uk

The End!

www.independent.co.uk
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Nordlund, Å., 2003, “Waves in the Magnetized Solar Atmosphere. II. Waves

from Localized Sources in Magnetic Flux Concentrations”, Astrophys. J., 599,

626–660. [DOI], [ADS]

Byrd, P. and Friedman, D., 1971, Handbook of Elliptic Integrals for Engineers and

Scientists , Springer-Verlag Berlin Heidelberg GmbH, 1971

http://dx.doi.org/10.1007/BF00148076
https://ui.adsabs.harvard.edu/abs/1968SoPh....4..142B
http://dx.doi.org/10.1007/BF00145526
https://ui.adsabs.harvard.edu/abs/1969SoPh...10..384B
http://dx.doi.org/10.1017/S0022377815000483
https://ui.adsabs.harvard.edu/abs/2015JPlPh..81d3904B
http://dx.doi.org/10.1007/BF00749112
https://ui.adsabs.harvard.edu/abs/1994SSRv...68....3B
http://dx.doi.org/10.1088/0004-637X/705/1/347
https://ui.adsabs.harvard.edu/abs/2009ApJ...705..347B
http://dx.doi.org/10.1086/176504
http://adsabs.harvard.edu/abs/1995ApJ...454..531B
http://dx.doi.org/10.1086/378512
http://adsabs.harvard.edu/abs/2003ApJ...599..626B


Bibliography 195

Cargill, P. J., 2014, “Active Region Emission Measure Distributions and Implica-

tions for Nanoflare Heating”, Astrophys. J., 784(1), 49. [DOI], [ADS]

Centeno, R., Socas-Navarro, H., Lites, B., Kubo, M., Frank, Z., Shine, R., Tarbell,

T., Title, A., Ichimoto, K., Tsuneta, S., Katsukawa, Y., Suematsu, Y., Shimizu,

T. and Nagata, S., 2007, “Emergence of Small-Scale Magnetic Loops in the

Quiet-Sun Internetwork”, Astrophys. J. Lett., 666, L137–L140. [DOI], [ADS],

[arXiv:0708.0844]

Chandrasekhar, S., 1956, “On Force-Free Magnetic Fields”, Proceedings of the

National Academy of Science, 42(1), 1–5. [DOI], [ADS]

Cowling, T. G., 1972, Magnetohydrodynamics, Monographs in Astronomical sub-

jects 2 , Adam Hilger, Bristol, UK.

Cram, L. E. and Wilson, P. R., 1975, “Hydromagnetic Waves in Structured Mag-

netic Fields”, Solar Phys., 41(2), 313–327. [DOI], [ADS]

Defouw, R. J., 1976, “Wave propagation along a magnetic tube.”, Astrophys. J.,

209, 266–269. [DOI], [ADS]

Deinzer, W., Hensler, G., Schuessler, M. and Weisshaar, E., 1984a, “Model calcu-

lations of magnetic flux tubes. I - Equations and method. II - Stationary results

for solar magnetic elements”, Astron. Astrophys., 139(2), 426–449. [ADS]

Deinzer, W., Hensler, G., Schussler, M. and Weisshaar, E., 1984b, “Model Cal-

culations of Magnetic Flux Tubes - Part Two - Stationary Results for Solar

Magnetic Elements”, Astron. Astrophys., 139, 435. [ADS]

Dixit, A. and Moll, V., 2015, “The confluent hypergeometric function and Whit-

taker functions”, Scientia Series A, 26, 49–61
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Fedun, V., Erdélyi, R. and Shelyag, S., 2009, “Oscillatory Response of the 3D

Solar Atmosphere to the Leakage of Photospheric Motion”, Solar Phys., 258,

219–241. [DOI], [ADS]

Fedun, V., Verth, G., Jess, D. B. and Erdélyi, R., 2011, “Frequency Filtering of
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