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Chapter 1

Introduction

1.1 A brief history of the universe

Cosmology is the study of the universe as a whole, in particular its physical origin and
evolution. According to the current understanding, the universe came into existence some
13.7 billion years ago in a Big Bang (a very hot and very dense state) and has expanded
and cooled since then. After about 380,000 years, ions and electrons combined to form the
first atoms. At the end of this recombination epoch, the universe became transparent to the
photons that could then travel freely. The photons released after recombination formed a
thermal radiation that is still observed today in the Cosmic Microwave Background (CMB),
with a current temperature of 2.73 K and discovered by Penzias & Wilson (1965) . Mat-
ter then slowly assembled in the expanding universe. The first stars, galaxies and active
galactic nuclei were formed and started to radiate photons, and thereby re-ionizing the
universe. The large structures observed today were finally progressively created. There
are three major observations that support the Big Bang theory, namely, CMB, primordial
nucleosynthesis and the expansion of the universe.

In the current cosmological paradigm, only a handful of parameters seem necessary to
describe the universe on the largest scales and its evolution over time. Testing this cos-
mological model requires a range of experiments, characterized by different sensitivities to
these parameters. These experiments, or cosmological probes, are all affected by statistical
and systematic errors and none of them on its own can uniquely constrain the cosmological
models. This is due to the degeneracies inherent in each specific probe, implying that the
probes become truly effective in constraining cosmology only when used in combination.
The latest cosmology results by the Planck consortium beautifully illustrate this (Planck
Collaboration 2013). In particular, the constraints obtained by Planck on the Hubble con-
stant H0, on the curvature Ωk, and on the dark energy equation of state parameter w rely

1
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mostly on the combination of measurements of the baryonic acoustic oscillations (BAO)
with the observations of CMB.

1.2 The Hubble constant

In 1929, Edwin Hubble discovered that the universe was expanding. He noted that the
recessional velocity v of a galaxy was roughly proportional to its distance d,

v = H0 d. (1.1)

Although he interpreted the redshifts of galaxies as due to Doppler effect, now they are
understood to be arising from the expansion of space itself. Both interpretations lead to
the same equation for the nearby universe and the equation stated above holds only for the
nearby universe. The Hubble constant at the present epoch (H0), the current expansion rate
of the universe, is an important cosmological parameter. All extragalactic distances, age
and size of the universe depend on H0. It is also an important parameter in constraining the
dark energy equation of state as well as used as input in many cosmological simulations
(Freedman & Madore 2010; Planck Collaboration 2013). Therefore, precise estimation of
H0 is of utmost importance in cosmology.

Edwin Hubble initially estimated H0 to be∼500 km s−1 Mpc−1, much higher than cur-
rent estimates, due to errors in distance calibrations of the galaxies in his sample. Estimates
of H0 available in literature cover a wide range of uncertainties from ∼2% to ∼10% and
the value ranges between 60 and 75 km s−1 Mpc−1. We give below a brief summary of
some of the most reliable measurements of H0 that are known to date.

1.2.1 HST Key project

Following the launch of the Hubble Space Telescope (HST) in 1990, and the subsequent
repair mission, substantial amounts of HST time were dedicated to measuring Cepheids in
galaxies out to distances of 20 Mpc (Rowan-Robinson 2008), to try to measure the Hubble
constant accurately and to give the different distance methods a secure and consistent cali-
bration. One of the primary goals of the HST key project was to measure H0 to an accuracy
of ± 10%. Subsequently, they have measured Cepheid distances to 18 nearby spiral galax-
ies. Calibrating five secondary methods with the revised Cepheid distances, Freedman et al.
(2001) found H0 = 72 ± 3 (random) ± 7 (systematic) km s−1 Mpc−1 or H0 = 72 ± 8 km
s−1 Mpc−1, by combining the systematic and random errors in quadrature.
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1.2.2 Supernovae and H0 for the Equation of State (SH0ES) program

The Supernovae and H0 for the Equation of State (SH0ES) program was developed to im-
prove upon the calibration of the luminosity of Type Ia Supernovae (SNe Ia) in order to
better measure the Hubble constant. To achieve this, Cepheid variables in the host galax-
ies of a sample of SNe Ia were observed for few cycles of HST to calibrate the supernova
magnitude-redshift relation. By improving upon the precision of the measurement of H0

from Riess et al. (2009), the recent analysis by this program gives H0 = 73.8 ± 2.4 km s−1

Mpc−1, which includes systematic errors (Riess et al. 2011).

1.2.3 Wilkinson Microwave Anisotropy Probe and Planck

The prediction of acoustic oscillations in CMB radiation by Sunyaev & Zeldovich (1970)
and the subsequent measurements of these peaks by Wilkinson Microwave Anisotropy
Probe (WMAP) is one of the successes of modern cosmology. Although measurements
from the CMB power spectrum can be made to very high statistical precision, there are
degeneracies which can limit the accuracy of the determination of the cosmological param-
eters such as the Hubble constant (Efstathiou & Bond 1999). From WMAP-9 year data,
Hinshaw et al. (2013) report a value of H0 = 70.0 ± 2.2 km s−1 Mpc−1. The subsequently
launched Planck mission to study the CMB in more exquisite detail finds a value of H0 =
67.3 ± 1.2 km s−1 Mpc−1 (Planck Collaboration 2013). The value reported by Planck is
highly model dependent. The data only measures the acoustic scale accurately, and the re-
lation to underlying expansion parameters depends on the assumed cosmology. Even small
changes in the model assumption can change H0 noticeably.

1.2.4 Megamaser Cosmology Project (MCP)

Direct geometric distance measurements (that do not require a complex and uncertain lad-
der of calibration of “standard candles”) to water masers in nuclear regions of galaxies
provide a promising new and independent method for refining the value of H0. The Mega-
maser Cosmology Project (MCP) is a systematic effort in this direction aimed at discover-
ing suitable H2O megamasers and determining their distances, and thereby measuring H0

accurate to a few percent . From observations of H2O maser in the galaxy UGC 3789, Reid
et al. (2013) find H0 = 68.9 ± 7.1 km s−1 Mpc−1. The project in the future will be able to
observe more megamaser galaxies with the upcoming Square Kilometer Array (SKA).

Although the values of H0 obtained from different methods are consistent with each
other within 2σ given the current level of precision, all of the above methods of determina-
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tion of H0 suffer from systematic uncertainties and therefore as the measurements increase
in precision, multiple approaches based on different physical principles need to be pur-
sued to measure its value so as to be able to identify unknown systematic errors present
in any given approach. Apart from the methods discussed above for the determination of
H0, there is yet another independent method, which is based on the phenomenon of gravi-
tational lensing.

1.3 Gravitational lensing

Gravitational lensing refers to the deflection of light in a gravitational field. As a conse-
quence of Einstein’s General Theory of Relativity, it follows that light passing at a distance
r from a point mass M gets deflected by an angle θ given by

θ =
4GM
r c2 , (1.2)

where G is the gravitational constant and c is the speed of light. One of the first confir-
mations of General Relativity was the measurement of displacement of stars observed near
the solar limb from their true positions during a total solar eclipse in 1919 by a team led
by Arthur Eddington. Orest Chwolson in 1924 was the first to consider the formation of
two images of a background star due to gravitational lensing by a foreground star. In 1936,
Albert Einstein working on the same problem concluded that there is very little chance of
observing this phenomenon since the angular seperation of images resulting from stellar-
mass lenses is too small to be resolved by optical telescopes. Fritz Zwicky in 1937 pointed
out that in case of galaxies acting as gravitational lenses, the angular seperation of the im-
ages of a background source will be large enough so that the images can be resolved by
optical telescopes. The phenomenon of formation of multiple distorted and magnified im-
ages of a background luminous source by a foreground galaxy or galaxy cluster is known
as strong gravitational lensing. The first case of strong gravitational lensing was observed
by Walsh et al. (1979). They found the quasar QSO 0957+561 to be lensed into two images
A and B seperated by 5.7′′ by a foreground galaxy, which resides in a cluster.

The two other regimes of gravitational lensing are

– weak gravitational lensing, wherein a distorted image of a background source is seen but
not multiple imaging and

– microlensing, which happens in case of a stellar-mass lens when the resulting image
separations are of the order of microarcseconds and hence the individual images are
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Figure 1.1: A schematic illustration of a quasar lensed into two images by a foreground
galaxy. By measuring the time delay between the images, it is possible to infer the scale of
the universe and thus H0. (Figure credit: Tewes et al. 2012)

not resolvable, but the relative motion of the source and the lens causes the observed
brightness of the background source to vary in time.

For a detailed introduction on gravitational lensing, the reader is referred to Narayan &
Bartelmann (1996).

1.4 The time delay method

Strong gravitational lensing offers a valuable yet inexpensive complementary probe to in-
dependently constrain some of the cosmological parameters, through the measurement of
the so-called time delays in quasars strongly lensed by a foreground galaxy (Refsdal 1964).
The principle of the method is the following. The travel times of photons along the distinct
optical paths forming the multiple images are not identical. This situation is illustrated in
Fig. 1.1. These travel-time differences, called the time delays, depend on the geometrical
differences between the optical paths, which contain the cosmological information, and on
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the potential well of the lensing galaxy(ies). In practice, time delays can be measured from
photometric light curves of the multiple images of lensed quasar: if the quasar shows pho-
tometric variations, these are seen in the individual light curves at epochs separated by the
time delay.

The light travel time along the ray of a lensed image differs from that along an un-
perturbed ray from the source to the observer. This time delay has two components -
geometrical and gravitational.

τ(~θ ,~β ) =
(1+ zL)

c
DLDS

DLS

(
1
2
(~θ −~β )2−ψ(~θ)

)
, (1.3)

where ~β is the true angular position of the source and ~θ is the apparent angular position of
the source (Wambsganss 1998). DL, DS, and DLS are the angular diameter distances to the
lensing mass, to the source, and between the lensing mass and the source respectively. zL is
the lens redshift and ψ(~θ) is the effective lensing potential (Narayan & Bartelmann 1996).
The effective time delay between a pair of lensed images can be expressed in a simple form
as

∆t =
1

H0
F(zL,zS)G(lens mass pro f ile) (1.4)

The factors F and G are both dimensionless. F depends on the redshifts of the lens and the
source and is very well constrained. F also depends on Ωm and ΩΛ but only at the level of
a few percent. G depends on the mass distribution of the lens and is the only non-negligible
systematic uncertainty (Courbin et al. 2002). The above equation clearly shows that the
two major sources of uncertainty in the determination of H0 using lensed quasars are the
uncertainty of the time delay and the uncertainty of the lens mass profile.

A precise and accurate measurement of such a time delay, in combination with a well-
constrained model for the lensing galaxy, can be used to constrain cosmology in a way
which is very complementary to other cosmological probes (see, e.g., Linder 2011). A
recent and remarkable implementation of this approach can be found in Suyu et al. (2013a)
that uses the time-delay measurements from Tewes et al. (2013b). We note, however, that to
obtain a robust cosmological inference from this time-delay technique, particular attention
must be paid to any possible lens model degeneracies (Schneider & Sluse 2013a; Suyu
et al. 2013b; Schneider & Sluse 2013b). Also, precise measurement of time delays is quite
non-trivial, requiring several years of regular telescope monitoring.
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1.4.1 Advantages of finding H0 using the time delay method

1. The time delay method is based on simple geometry and the well-established physics
of General Relativity. It does not involve any complex astrophysics such as exploding
stars.

2. The technique allows a one-step distance determination free from calibrations asso-
ciated with standard candles. Also, the time delays are primarily sensitive to H0 and
less sensitive to other cosmological parameters.

3. Measuring H0 from gravitational lens time delays is very cheap compared to other
H0 estimation programmes. With improvements in image processing and time delay
estimation techniques, accurate time delay values can be obtained by carrying out
regular monitoring using 1-m class telescopes on the ground. Only for follow-up
observations to constrain the lens model, like determining the redshift of the lensing
galaxy, accurate measurement of astrometry, etc., we need large telescopes, that too
for a small amount of time.

4. Apart from providing time delays, the monitoring light curves can be used for a va-
riety of other studies as well, for example, probing the structure of the background
quasar. The monitoring light curves have a high “legacy” value for quasar microlens-
ing studies.

5. This method measures H0 at truly cosmological distances.

1.4.2 H0 from lensed quasars

Some of the recent estimates of H0 using the time delay method are discussed below.

– An extensive analysis of the quadruple lens system B1608+656 has been carried out
by Suyu et al. (2010). They have used deep HST/ACS imaging in F606W and
F814W filters, accurate measurement of the stellar velocity dispersion using the Low-
Resolution Imaging Spectrometer (LRIS) on Keck, and a more detailed treatment of
the lens environment using a combination of ray tracing through cosmological N-
body simulations along with number counts in the field of the quasar to help break
the mass-sheet degeneracy. Fixing the cosmological parameters to Ωm = 0.3, ΩΛ =
0.7 and w = −1, they find H0 = 70.6+3.1

−3.1 km s−1 Mpc−1.

– Suyu et al. (2013a) have done a blind analysis of the quadruple gravitational lens
RXJ1131−1231. This quasar discovered by Sluse et al. (2003) has a redshift of z
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= 0.658. The lens has a spectroscopic redshift of z = 0.295 (Sluse et al. 2003). Us-
ing accurate time delay measurements from COSMOGRAIL collaboration Tewes
et al. (2013b), imaging observations from HST, velocity dispersion measurements
of the lens galaxy using the LRIS on Keck and characterization of the line-of-sight
structures via observations of the lens environment and ray tracing through the Mil-
lennium Simulation, Suyu et al. (2013a) obtain a value of H0 = 78.7+4.3

−4.5 km s−1

Mpc−1.

– Saha et al. (2006) have used a sample of 10 lenses. They simulatenously modelled them
with the additional requirement of a shared value of the Hubble parameter across all
lenses using the PixeLens code of Saha & Williams (2004). They found H0 = 72+8

−11

km s−1 Mpc−1.

– Paraficz & Hjorth (2010) did a simultaneous analysis of 18 gravitational lenses for
which time delays were reported that time. For each of these lenses using the
non-parametric pixellated simultaneous modelling using PixeLens (Saha & Williams
2004), with shared Hubble constant they find H0 = 66+6

−4 km s−1 Mpc−1, for a flat
universe with Ωm = 0.3 and ΩΛ = 0.7.

1.5 The main goals of the present research work

From the above brief overview of the status of this subject, it is evident that the desire to find
an independent estimate of H0 from lensed quasar monitoring is achievable. Any progress
in this direction will be contingent upon carrying out photometric monitoring campaign
with good time resolution for a large sample of lensed quasars and improvement in the lens
models. High precision time delays are now achievable through regular monitoring using
1-m class telescopes and good lens models too can now be constructed, thereby bringing
down the error in H0. The key objectives of this present thesis work are

1. to get accurate estimates of time delays for more gravitational lens systems by
systematic and long term optical monitoring observations, careful analysis using a
proper time delay estimator that takes into account the various systematics involved
and

2. to get an independent estimate of H0 using a large sample of lensed systems through
a homogeneous analysis procedure.

These questions will be addressed in the remainder of this thesis.



Chapter 2

Observations and Reductions

The starting point of the present research program was the ongoing Indian participation in
the COSMOGRAIL1 (COSmological MOnitoring of GRAvItational Lenses) project, which
aims to measure time delays for most known lensed quasars. So far, only a few quasar
time delays have been measured convincingly, from long and well-sampled light curves.
The international COSMOGRAIL collaboration is changing this situation by measuring
accurate time delays for a large number of gravitationally lensed quasars, from optical light
curves obtained with telescopes in both the hemispheres (Tewes et al. 2012). The goal of
COSMOGRAIL is to reach an accuracy of less than 3%, including systematics, for most of
its targets.

The strategy followed in this present work was to carry out densely sampled R-band
monitoring of a sample of gravitationally lensed quasars using charge coupled devices
(CCDs) as the detector.

2.1 Selection of the sample

Sample selection is crucial for photometric monitoring observations of gravitationally
lensed quasars. For observations of this kind, the accuracy of the photometry will de-
pend on the brightness of the quasars, as well as the separation of the lensed quasar images.
Image separation is given important consideration here, because it is difficult to get good
photometry if the seeing of the site is larger compared to the image separation. Thus, con-
sidering (i) brightness of the quasar (ii) image separation and (iii) suitability of getting long
term observations spreading over 5 years, we have selected two doubly imaged gravitation-
ally lensed quasars for this thesis, namely SDSS J0806+2006 and SDSS J1001+5027.

1http://www.cosmograil.org/

9
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Table 2.1: Details of the lensed quasars monitored in this research study.

Object name RA. (2000) Dec. (2000) Redshifts R mag Separation
SDSS J0806+2006 08:06:23.70 +20:06:31.90 zs = 1.537(a) ∼19 1.40′′

zl = 0.573(b)

SDSS J1001+5027 10:01:28.61 +50:27:56.90 zs = 1.838(c) ∼18 2.86′′

zl = 0.415(d)

References. (a) Inada et al. (2006); (b) Eigenbrod et al. (2007); (c) Oguri et al. (2005); (d)

Inada et al. (2012).

2.1.1 SDSS J0806+2006

SDSS J0806+2006 was discovered as a doubly imaged gravitational lens system by Inada
et al. (2006). This was initially selected from the SDSS spectroscopic quasar catalog as a
lens candidate and was confirmed by detailed optical and IR imaging observations. High
resolution spectroscopic observations, using the Keck II telescope, confirmed the gravita-
tionally lensed nature of the source. SDSS J0806+2006 has a source redshift of zs = 1.540,
and the two quasar images are separated by 1.40′′. This source is lensed by a galaxy at
zl = 0.573, as evident from its magnitude, colors and the presence of a Mg II absorption
in its spectrum. This quasar is found in a denser galactic environment, suggesting that the
lensing galaxy is part of a small group.

2.1.2 SDSS J1001+5027

SDSS J1001+5027 was discovered as a gravitational lens system by Oguri et al. (2005).This
was discovered in a lens search programme using SDSS data. This quasar at a source
redshift of zs = 1.838 has two lensed images separated by 2.86′′. Two extended objects,
namely G1 and G2 are found in the vicinity of the lensed images, and these objects have
colors consistent with early type galaxies with redshift 0.2 < z < 0.5. As the galaxy G1
is nearly co-linear with the two quasar images, it is likely to be the main contributor to the
lens potential. Using the GMOS instrument on Gemini North telescope, Inada et al. (2012)
find a spectroscopic redshift of zl = 0.415 for the lensing galaxy. The details of these two
lens systems are summarised in Table 2.1.
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Figure 2.1: The 1.2-m Mercator Telescope. (Photo courtesy: Tyl Dermine http://www.
astro.uni-bonn.de/˜dermine/Mercator Telescope.html)

Figure 2.2: The 2.0-m Liverpool Robotic Telescope (LRT). (Photo courtesy: COSMO-
GRAIL http://obswww.unige.ch/˜tewes/cosmograil/public/telescopes.php)

http://www.astro.uni-bonn.de/~dermine/Mercator
http://www.astro.uni-bonn.de/~dermine/Mercator
Telescope.html
http://obswww.unige.ch/~tewes/cosmograil/public/telescopes.php
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Figure 2.3: The 1.5-m telescope of the Maidanak Observatory. (Photo courtesy: COSMO-
GRAIL http://obswww.unige.ch/˜tewes/cosmograil/public/telescopes.php)

Figure 2.4: The 2.0-m Himalayan Chandra Telescope (HCT). (Photo courtesy: In-
dian Institute of Astrophysics http://www.iiap.res.in/files/uploads/brochure/
brochure_2006.html)

http://obswww.unige.ch/~tewes/cosmograil/public/telescopes.php
http://www.iiap.res.in/files/uploads/brochure/brochure_2006.html
http://www.iiap.res.in/files/uploads/brochure/brochure_2006.html
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2.2 Observations

The imaging observations reported in this work come from four different telescopes. In
order to be able to accurately assess the photometric errors, three or more dithered images
were obtained during each epoch of observation. The size of the dithering box used was
10′′ - 20′′. All observations were carried out in R-band considering the maximal response
of CCD in that waveband.

2.2.1 Himalayan Chandra Telescope (HCT), India

Most of the data supporting this thesis derives from observations made using the 2-m Hi-
malayan Chandra Telescope (HCT) (Fig. 2.4), which is a Ritchey-Chretien system with an
f/9 beam. The telescope is located at the Indian Astronomical Observatory (IAO), Hanle
(India) at an altitude of 4500 metres, and remotely operated via a dedicated satellite link
from the Centre for Research in Education Science and Technology (CREST), Hosakote,
which is a field-station of the Indian Institute of Astrophysics (IIA), Bangalore. The de-
tector used was the Himalayan Faint Object Spectrograph and Camera (HFOSC). For the
observations reported here, the central 2048 × 2048 pixel2 region of the CCD in HFOSC
was used. Each pixel of size 15 microns corresponds to 0.296′′ on the sky. The CCD covers
about 10′×10′ region on the sky. The readout noise and gain are 4.8 e− and 1.22 e−/ADU

respectively. An exposure time of 300 seconds was used to obtain each dithered image.

2.2.2 Mercator telescope, Spain

This is a 1.2-m telescope (Fig. 2.1) located at the Roque de los Muchachos Observatory
in La Palma, Canary Islands, Spain. It was built by the Observatory of the Geneva Uni-
versity, but is operated by the Instituut voor Sterrenkunde, Katholieke Universiteit Leuven,
Belgium. Mercator is equipped with a 2048 × 2048 CCD camera, which has a 6.5′ × 6.5′

field of view and 0.19′′ pixels. The read out noise and gain of the CCD are 4.5 e− and 0.93
e−/ADU respectively. Each dithered image was obtained with 360 seconds of integration.

2.2.3 Liverpool Robotic Telescope (LRT), Spain

This is a 2-m Cassegrain telescope with Ritchey-Cretien hyperbolic optics on an alt-
azimuth mount. This telescope is fully robotic and is operated by the Astrophysics Re-
search Institute of Liverpool John Moores University in England. The observations re-
ported here were carried out using the RATCam camera consisting of 2048 × 2048 pixel2
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Table 2.2: Summary of COSMOGRAIL observations of SDSS J1001+5027.

Telescope Camera Monitoring period Epochs Exp. time(a) Sampling(b)

Diameter FoV
Pixel scale

Mercator MEROPE 2005 Mar – 2008 Dec 239 5 × 360 s 3.8 (2.0) d
1.2 m 6.5′×6.5′

0.190′′

HCT HFOSC 2005 Oct – 2011 Jul 143 4 × 300 s 9.5 (6.1) d
2.0 m 10′×10′

0.296′′

Maidanak SITE 2005 Dec – 2008 Jul 41 7 × 180 s 5.9 (4.1) d
1.5 m 8.9′×3.5′

0.266′′

Maidanak SI 2006 Nov – 2008 Oct 20 6 × 600 s 12.6 (9.5) d
1.5 m 18.1′×18.1′

0.266′′

Combined 2005 Mar – 2011 Jul 443 201.5 h 3.8 (1.9) d

Notes. (a) The exposure time is given by the number of dithered exposures per epoch and
their individual exposure times. (b) The sampling is given as the mean (median) number of
days between two consecutive epochs, excluding the seasonal gaps.

CCD covering 4.6′× 4.6′ of the sky. Each dithered image was obtained with an exposure
time of 300 seconds.

2.2.4 Maidanak Observatory, Uzbekistan

We have also used the 1.5 telescope of the Maidanak Observatory in Pamir Alai, Uzbek-
istan, and operated by the Uzbekistan Academy of Science in Tashkent. We have used two
CCDs for observations. During the period 2005 December to 2008 July we used the SITE
CCD camera which has a pixel scale of 0.266′′ and covers a total area in the sky of 8.9′

× 3.5′. Simlarly, during the period 2006 November − 2008 October, the SI CCD camera
was used, which has a pixel scale of 0.266′′ and covers an area of 18.1′ × 18.1′ in the sky.
When using the SITE chip, the dithered image was obtained with an exposure time of 180
seconds, but for the SI chip, each dithered image was acquired with an integration time of
600 seconds.
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Figure 2.5: Distribution of the average observed FWHM and elongation ε of field stars in
the images used to build the light curves of SDSS J1001+5027.

2.2.5 Observations of SDSS J1001+5027

We monitored SDSS J1001+5027 in the R band for more than six years, from March 2005
to July 2011, with three different telescopes: the 1.2-m Mercator Telescope, the 1.5-m
telescope of the Maidanak Observatory and the 2-m HCT. Table 2.2 details our monitoring
observations. In total we obtained photometric measurements for 443 independent epochs,
with a mean sampling interval below four days. Each epoch consists of at least three, but
mostly four or more, dithered exposures. Figure 2.5 summarizes the image quality of our
data. The COSMOGRAIL collaboration has now ceased the monitoring of this target.

2.2.6 Observations of SDSS J0806+2006

We have been monitoring SDSS J0806+2006 in the R band for more than six years, since
September 2007, with two different telescopes: the 2.0-m LRT and the 2.0-m HCT. Al-
though the 1.5-m telescope of the Maidanak Observatory was involved in the monitoring
in the beginning, the epochs of observation obtained were too few to be useful. In this
thesis, we present the light curves using data obtained till April 2012. Table 2.3 details our
monitoring observations. In total we obtained photometric measurements for 153 indepen-
dent epochs, with a mean sampling interval of about a week. Each epoch consists of at
least three, but mostly four or more, dithered exposures. Figure 2.6 summarizes the image
quality of our data. We are continuing observations of this target using HCT.
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Table 2.3: Summary of COSMOGRAIL observations of SDSS J0806+2006 used in this
thesis.

Telescope Camera Monitoring period Epochs Exp. time(a) Sampling(b)

Diameter FoV
Pixel scale

HCT HFOSC 2007 Oct – 2012 Apr 120 4 × 300 s 9.2 (7.0) d
2.0 m 10′×10′

0.296′′

LRT RATCam 2007 Sep – 2008 Nov 33 5 × 300 s 9.6 (6.9) d
2.0 m 4.6′×4.6′

0.135′′

Combined 2007 Sep – 2012 Apr 153 58.8 h 7.4 (5.1) d

Notes. (a) The exposure time is given by the number of dithered exposures per epoch and
their individual exposure times. (b) The sampling is given as the mean (median) number of
days between two consecutive epochs, excluding the seasonal gaps.

2.3 Data Reduction

The following sections briefly describe the steps involved in the generation of lightcurves
of the quasar images starting from the raw telescope data frames.

2.3.1 Preprocessing

Preprocessing is a set of steps carried out in order to remove the signatures of the instrument
present in the observed data frames. This was carried out using standard tasks in IRAF.2

In the following, we briefly outline the preprocessing steps needed for data frames from
HFOSC instrument in the 2.0-m HCT. Similar procedures were used for data from other
telescopes as well.

Bias subtraction

Bias in the context of CCDs is the term for the signal added before digitization, in order
to avoid the noise creating negative values at the readout of a pixel. This bias has, in prin-
ciple an absolutely constant value which gets added to all pixels. In practice, however, it

2IRAF is the Image Reduction and Analysis Facility, a general purpose software system for the reduction
and analysis of astronomical data. IRAF is written and supported by the IRAF programming group at the
National Optical Astronomy Observatories (NOAO) in Tucson, Arizona. NOAO is operated by the Associa-
tion of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National
Science Foundation.
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Figure 2.6: Distribution of the average observed FWHM and elongation ε of field stars in
the images used to build the light curves of SDSS J0806+2006.

is affected by noise and also, the level varies due to temperature and other effects on the
electronics and it may not be necessarily uniform across the chip. For our observations,
we adopted the following procedure. The bias images in and around a given night were
median-combined to create the master-bias for that night. This master-bias is used to es-
timate the bias level which is subtracted from all the image frames i.e. both target frames
and flat field frames in that night.

Dark subtraction

This is the second step needed in any CCD image reduction. This is also an additive
signal present in any CCD image. However, as the CCDs used in our observations are
cryogenically cooled, the rate of accumulation of thermal charge is negligible and thus
dark subtraction is not carried out for the observations reported here.

Flat fielding

This is the third and crucial step of image processing. This needs to be done with great care
as the final sensitivity of the measurements critically depends on it. One of the important
characteristics of CCDs is that each pixel generally behaves as a linear device, but with
somewhat different quantum efficiency for different pixels. Thus, to treat the whole array
of pixels as a single entity, the various pixel gains need to be normalised relative to one
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another. To accomplish this, several image frames of the flat sky were taken during twilight.
The bias-subtracted flats in and around a given night are median-combined to create the
master-flat for that night. The bias-subtracted object frames in a night are then divided by
the normalised master-flat for that night. This will remove the pixel to pixel sensitivity
variations in the object frames, and produce clean object frames devoid of any instrumental
signatures.

Cosmic ray removal

The final step in preprocessing is identifying and removing the cosmic rays in the images.
The cosmic rays can be differentiated from the objects due to the following reason. A
cosmic ray is a single pixel event, whereas an object is spread over many pixels, according
to the seeing. However we do not remove the cosmic rays in the preprocessing stage itself.
They are identified and masked later in the processing stage.

2.3.2 Sky subtraction

When acquiring an image of the field containing the target of interest, the CCD, apart from
collecting photons from the target, they also collect photons from the background sky. It is
therefore necessary to estimate and remove the background counts from the image frame
before determining the flux from the source. The background sky can vary from frame to
frame, as it depends on the exposure time, the transparency of the sky, presence and phase
of the moon, etc. Thus to effectively remove the photons coming from sky background, a
map of the background is created using SExtractor (Bertin & Arnouts 1996), which is then
subtracted from each image data frame.

2.3.3 Geometric Alignment

Before doing photometry on the data frames, they need to be aligned together. For this pur-
pose, a reference data frame is chosen from among the best seeing data frames after making
sure that it does not have any problem. Stars are then chosen from all over the field and
their positions in the reference frame are noted down. Their corresponding positions in a
given data frame are used to compute the geometric shift and rotation which is to be applied
to the data frame in order to align it with the reference data frame. Geometric alignment of
all the data frames was accomplished using the Python package ‘alipy’3, which makes use
of SExtractor and IRAF.

3http://obswww.unige.ch/˜tewes/alipy/

http://obswww.unige.ch/~tewes/alipy/
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2.3.4 Photometry

Performing photometry of lensed quasars is a challenging task because lensed quasars are
faint and also because the typical angular separation between the images is comparable
to typical values of seeing obtained at ground-based telescopes, hence light from the dif-
ferent quasar images are blended with each other and also with light from the lensing
galaxy, and thus conventional photometry will not work well on these images. Therefore,
specialised procedures are needed to perform accurate photometry of lensed quasars. To
perform photometry of the lensed quasar images, we have used the MCS deconvolution
algorithm (Magain et al. 1998).

MCS deconvolution

The resolution of a point source as observed through a telescope is inversely proportional
to the diameter of the telescope. However, if the observations are carried out using ground
based telescopes, the image is degraded by the turbulent atmosphere, thereby limiting the
image resolution to the seeing of the site. The image is also blurred by the telescope and the
detector having a finite resolving power. However, it is possible to improve the resolution of
the images off-line by subsequent numerical processing of the images using the technique
of deconvolution.

The observed light distribution of a point source, can be mathematically expressed as
a convolution of the original light distribution with the total instrumental profile which
includes the atmospheric seeing. This total blurring function is called the point spread
function (PSF) of the image. This is written as

d(~x) = t(~x)∗ f (~x)+n(~x), (2.1)

where d(~x) is the observed light distribution, f (~x) is the original light distribution, t(~x) is
the total PSF, and n(~x) is the measurement error or noise affecting the data. Also, on ob-
servations carried out using CCDs, the observed light distribution is not continuous and is
known only at regularly spaced pixels. The imaging equation for a sampled light distribu-
tion is

di =
N

∑
j=1

ti j f j +ni, (2.2)

where N is the total number of pixels. d j, f j, and n j are the sampled values of d(~x), f (~x),
and n(~x) at the pixel j. ti j is the value at pixel j of the PSF centered at pixel i. Given an
observed image d(~x) and the PSF t(~x), the aim of deconvolution is to recover the origi-
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nal light distribution f (~x). Deconvolution methods such as the maximum entropy method
(Skilling & Bryan 1984; Narayan & Nityananda 1986) and the Richardson-Lucy algorithm
( Richardson 1972; Lucy 1974) are available, however they suffer from certain weaknesses
(Magain et al. 1998). Therefore for this work we have used the MCS deconvolution tech-
nique (Magain et al. 1998), named after the authors of the paper. In this procedure, the
point spread function (PSF) is modelled for each exposure using bright stars in the vicinity
of the target of interest. Since the light distribution observed at a telescope gets spatially
sampled by the pixels of the CCD, MCS deconvolution algorithm performs the deconvolu-
tion using a PSF which is narrower than the total PSF so that the deconvolved image has a
residual PSF which is compatible with the pixel size of the CCD, thus avoiding violation
of the sampling theorem. For our work, we perform simultaneous deconvolution of all the
exposures, modelling the quasar images as point sources, whose fluxes are allowed to vary
from one exposure to the other, and the lensing galaxy as extended light distribution, which
is held the same for all the exposures, yielding the light curves of the individual quasar
images.

2.3.5 Normalisation

The data frames are typically obtained under differing sky-conditions and varying air-
masses. To correct for these effects, a normalisation coefficient needs to be calculated
for each individual data frame in order to bring all the data frames to the same photometric
level. For this purpose, a set of bright and isolated stars, at least three in number, in the field
are chosen. Simultaneous MCS deconvolution of each of the chosen stars is carried out.
The fluxes of the stars in each individual data frame are compared to the their respective
median fluxes to calculate the ratios. The median value of the ratios in a given data frame
is taken to be its normalisation coefficient. The standard deviation of the ratios divided by
the square root of the number of stars used gives the calibration error. In the above process,
it is important to ensure that the stars used are not significantly variable, by inspecting their
light curves.

2.3.6 Estimation of photometric error

The magnitude of an object of interest measured from a given data frame has photomet-
ric error, which is estimated by adding the photon shot noise and the calibration error in
quadrature. The photon shot noise is calculated according to the denominator term in the
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equation for the S/N of a measurement made with a CCD (Howell 2006).

S
N

=
N∗√

N∗+npix(NS +ND +N2
R)

(2.3)

Here N∗ is the total number of photons collected from the object of interest, npix is the
number of pixels over which the profile of the object is spread out, NS is the number of
counts per pixel from the background, ND is the number of counts per pixel resulting from
dark current (which is negligibly small for the case of the CCD in HFOSC, since it is
cryogenically cooled using liquid nitrogen), NR is the readout noise (4.8 e− for the CCD in
HFOSC).

2.3.7 Combination of magnitudes in an epoch

As noted above, during each night we obtain 3 to 6 dithered exposures. Hence it remains
to estimate the magnitude of the object of interest for a given epoch from the magnitudes
resulting from the individual exposures. The magnitude for each epoch is taken to be the
median value of the magnitudes from the individual data frames in the night and its uncer-
tainty is computed as follows. For each epoch of observation, we compute a theoretical
error bar based on the median value of the individual error bars from the data frames ob-
tained in that epoch and also an empirical error bar based on the spread of the magnitudes
from the individual data frames. Whichever of the two estimates is larger is adopted to
be the photometric uncertainty for that epoch. For details, see Sect. 3.5 of Tewes et al.
(2013b).

2.4 Light curves of SDSS J1001+5027

The image reduction and photometry closely follows the procedure described in Tewes
et al. (2013b). We performed the flat-field correction and bias subtraction for each ex-
posure using custom software pipelines, which address the particularities of the different
telescopes and instruments.

Figure 2.7 shows part of the field around SDSS J1001+5027, obtained by stacking the
best monitoring exposures from the Mercator telescope to reach an integrated exposure
time of 21 hours. The relative flux measurements of the quasar images and reference stars
for each individual epoch were obtained through our COSMOGRAIL photometry pipeline,
which is based on the simultaneous MCS deconvolution algorithm. The stars labeled 1, 2,
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Figure 2.7: R-band image centered on SDSS J1001+5027. The image is the combination of
the 210 best exposures from the Mercator telescope, for a total exposure time of 21 hours.
We use the stars labeled 1, 2, and 3 to model the PSF and to cross-calibrate the photometry
of each exposure. The position of the two lensing galaxies G1 and G2 are indicated in the
zoomed image in the upper left. They are most clearly seen in the deconvolved images
presented in Fig. 2.8.
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Figure 2.8: Two ways of modeling the light distribution for extended objects during the
deconvolution process. On the left is shown a single 360-second exposure of SDSS
J1001+5027 obtained with the Mercator telescope in typical atmospheric conditions. The
other panels show the parametric (top row) and pixelized light models (bottom row) for
the lens galaxies as described in the text. The residual image for the single exposure is
also shown in each case, as well as the average residuals over the 120 best exposures. The
residual maps are normalized by the shot noise amplitude. The dark areas indicate excess
flux in the data with respect to the model. Gray scales are linear.
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Figure 2.9: R-band light curves of the quasar images A and B in SDSS J1001+5027 from
March 2005 to July 2011. The 1σ photometric error bars are also shown. For display pur-
pose, the curve of quasar image B is shown shifted in time by the measured time delay (see
text). The light curves are available in tabular form from the CDS and the COSMOGRAIL
website.
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and 3 in Fig. 2.7 are used to characterize the point spread function (PSF) and relative
magnitude zero-point of each exposure.

The two quasar images A and B of SDSS J1001+5027 are separated by 2.86′′, which is
significantly larger than the typical separation in strongly lensed quasars. In principle, this
makes SDSS J1001+5027 a relatively easy target to monitor, as the quasar images are only
slightly blended in most of our images. However, image B lies close to the primary lensing
galaxy G1. Minimizing the additive contamination by G1 to the flux measurements of B
therefore requires a model for the light distribution of G1. In Fig. 2.8, we show two different
ways of modeling these galaxies. Our standard approach, shown in the bottom panels,
consists in representing all extended objects, such as the lens galaxies, by a regularized
pixel grid. The values of these pixels get iteratively updated during the deconvolution
photometry procedure. Because of obvious degeneracies, this approach may fail when
a relatively small extended object (lens galaxy) is strongly blended with a bright point
source (quasar), leading to unphysical light distributions. To explore the sensitivity of
our results to a possible bias of this kind, we have adopted an alternative approach of
representing G1 and G2 by two simply parametrized elliptical Sersic profiles, as shown in
the top row of Fig. 2.8. For both cases, the residuals from single exposures are convincingly
homogeneous. Only when averaging the residuals of many exposures to decrease the noise
can the simply parametrized models be seen to yield a less good overall fit to the data, since
they cannot represent additional background sources nor compensate for small systematic
errors in the shape of the PSF.

We find that the difference between these approaches in terms of the resulting quasar
flux photometry is marginal; it is insignificant regarding the measurement of the time delay.
In all the following we will use the quasar photometry obtained using the parametrized
model (top row of Fig. 2.8) which is likely to be closer to reality than our pixelized model
in the immediate surroundings of image B.

Following Tewes et al. (2013b), we empirically corrected for small magnitude and flux
shifts between the light curve contributions from different telescopes/cameras to obtain
minimal dispersion in each of the combined light curves. In the present case we chose the
photometry from the Mercator telescope as a reference, and for the data from the Maidanak
and HCT telescopes, we optimized a common magnitude shift and individual flux shifts for
A and B.

Figure 2.9 shows the combined 6.5-season long light curves, from which we measure
a time delay of ∆tAB = −119.3 days (see Sect. 3.4). In this figure, light curve B has been
shifted by this time delay to highlight the correspondence and temporal overlap of the
data. We observe strong intrinsic quasar variability, common to images A and B. In the
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period 2006 to 2007, the variability in image A is as large as 0.25 magnitudes over a single
year. In addition to this large scale correspondence, several small and short scale intrinsic
variability features are common to both curves, for instance around December 2005 and
January 2010. Our data unambiguously reveal, already to the eye, an approximate time
delay of ∆tAB ≈−120 days, with A leading B.

2.4.1 An apparent mismatch between the light curves of the quasar
images

The apparent flux ratio between the quasar images, as inferred from the time-shifted light
curves shown in Fig. 2.9, stays roughly in the range from 0.40 to 0.44 mag over the length
of our monitoring. Strong gravitational lens models readily explain different magnifica-
tions of the quasar images, yielding stationary flux ratios or magnitude shifts between the
light curves. Figure 2.9 hints, however, at a moderate correlation between some variable
flux ratio and the intrinsic quasar variability. In particular, the amplitude of the quasar
variability, in units of magnitudes, appears to be smaller in B than in A. Potential reasons
for this mismatch include the effects of microlensing by stars of the lens galaxy, or a con-
tamination of the photometry of B by some additive external flux. We find that one has to
subtract from curve B about 20% of its median flux to obtain an almost stationary mag-
nitude shift of about 0.66 mag between the light curves. As this contamination would be
several times larger than the entire flux of galaxy G1, we conclude that plausible errors of
our light models for G1 cannot be responsible for the observed discrepancy between the
light curves.

2.5 Light curves of SDSS J0806+2006

The image reduction and photometry follows almost the same procedure as for SDSS
J1001+5027 as described in the previous section. Figure 2.10 shows part of the field around
SDSS J0806+2006, obtained by stacking the best monitoring exposures from the HCT to
reach an integrated exposure time of 5 hours. The stars labeled 1, 2, and 3 in Fig. 2.10
are used to characterize the relative magnitude zero-point of each exposure and the stars
1 and 2 are used to characterize the point spread function (PSF). In Fig. 2.11, we show
the results of simultaneous MCS deconvolution of HCT data frames. The lensing galaxy
was modelled following the standard approach, wherein all extended objects, including the
lensing galaxy, are represented by a regularized pixel grid and the values of these pixels get
iteratively updated during the deconvolution photometry procedure. To combine the data
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Figure 2.10: R-band image centered on SDSS J0806+2006. The image is the combination
of the 58 best exposures from the HCT, for a total exposure time of 5 hours. We use the
stars labeled 1, 2, and 3 to cross-calibrate the photometry of each exposure and the stars 1
and 2 to model the PSF.
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Figure 2.11: On the top left is shown a single 300-second exposure of SDSS J0806+2006
obtained with the HCT in best seeing conditions. The other panels show the deconvolved
image consisting of pixelized light model (top right) for the lens galaxy, the residual image
for the single exposure (bottom left) and the average residual image (bottom right) for all
the exposures. The residual maps are normalized by the shot noise amplitude. The dark
areas indicate excess flux in the data with respect to the model. Gray scales are linear.
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Figure 2.12: R-band light curves of the quasar images A and B in SDSS J0806+2006 from
September 2007 to April 2012. The 1σ photometric error bars are also shown. For display
purpose, the curve of quasar image B is shown shifted in time by the measured time delay
(see text).
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points from HCT and LRT, we empirically determined magnitude shifts between the light
curve contributions from the two telescopes, to obtain minimal dispersion in each of the
combined light curves. In the present case we chose the photometry from HCT as a refer-
ence, and for the data from LRT, we optimized magnitude shifts individually for A and B.
Figure 2.12 shows the combined 5-season long light curves, from which we measure a time
delay of ∆tAB = −54.2 days (see Sect. 3.5), with A leading B. In this figure, light curve B
has been shifted by this time delay to highlight the correspondence and temporal overlap
of the data. We observe strong intrinsic quasar variability, common to images A and B.



Chapter 3

Determination of time delays of SDSS
J1001+5027 and SDSS J0806+2006

3.1 Background

Long before the discovery of the first gravitational lens Q0957+561 by Walsh et al. (1979),
Refsdal (1964) had suggested that there will be time delays between flux variations of
multiply imaged variable background source such as a quasar. These time delays are due
to different times taken for light to travel along the different paths corresponding to the
lensed images. These delays can be of the order of days and therefore to measure such time
delays one needs to frequently observe the source over long periods of time. This is not so
easy to achieve in practice, due to the difficulties in getting telescope time allocated over
a long period of time and acquiring good data. Even when telescope time gets allocated,
observations will always have hindrance from cloudy sky conditions. Therefore, the data
acquired in monitoring observations of this kind are not regularly sampled, and often will
have large gaps in the time series. Generally, data could also be obtained from a wide
variety of instruments having different sensitivities, and thereby having different levels of
errors in the data. Since the use of time delays in constraining H0 requires these delays
to be measured to high precision, it is important that good time delay estimators are used
to obtain robust time delay values. A good time delay estimator should effectively take
into account the gaps in the time series, heterogeneity of the data, with varied errors and
the presence of uncorrelated signal due to microlensing by stars in the intervening lensing
galaxy. If not effectively distinguished from the intrinsic variations of the quasar images,
these microlensing events in the lensed images remain an unwanted noise for time delay
measurements. During the course of the thesis work, I have come up with a novel approach

29
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of determining time delays in the time series data from lensed quasars with measurements
at irregular intervals over several years from different telescopes with varied sensitivities
as well as being affected from uncorrelated microlensing variations.

3.2 Methods of estimating time delays

There are various techniques available in the literature to estimate time delays from ob-
served quasar light curves. However, two methods are widely used in the literature.

3.2.1 Cross-correlation method

One can deduce a value of the time delay by observing fluctuations in one light curve that
are repeated at a later time in the other light curve. Such a comparison suggests a correlation
analysis between the observed light curves. In the literature, there are three versions of
the cross-correlation method available, namely the Discrete Correlation Function (DCF;
Edelson & Krolik 1988), the Locally Normalised Discrete Correlation Function (LNDCF;
Lehar et al. 1992) and the z-transformed Discrete Correlation Function (zDCF; Alexander
1997). These are the fastest and simplest time delay estimation methods and they can
handle time series that are not uniformly sampled.

Discrete Correlation Function

The discrete correlation function (DCF) was introduced by Edelson & Krolik (1988). For
two discrete data sets XA(ti) and XB(t j), the set of unbinned discrete correlation function
(UDCF) is given as

UDCFi j =
(XA(ti)− ā)(XB(t j)− b̄)

σaσb
(3.1)

for all measured pairs (XA(ti),XB(t j)). Here, ā and b̄ are the mean values of the observed
data fluxes XA(ti) and XB(t j) respectively and σa and σb are their variances. Each of these
values of UDCFs is associated with the pairwise lag ∆ti j = t j− ti. Binning these lags in τ

gives the DCF(τ). By averaging over all M number of pairs for which τ − δτ/2 ≤ ∆ti j ≤
τ +δτ/2 gives

DCF(τ) =
1
M ∑

i, j
UDCFi j. (3.2)

The time delay ∆t is that value of τ which maximises DCF(τ).
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Locally Normalized Discrete Correlation Function

This is a variant of the DCF and introduced by Lehar et al. (1992). In the DCF relation
given in Eq. 3.1 the ā and σa are replaced by ā(τ) and σa(τ), which are the mean and
standard deviation of the data points in each lag (τ) bin. As discussed above for DCF, the
set of unbinned ULNDCF is given as

ULNDCFi j =
(XA(ti)− ā(τ))(XB(t j)− b̄(τ))

σa(τ)σb(τ)
(3.3)

for all measured pairs (XA(ti),XB(t j)). By averaging over all M number of pairs for which
τ−δτ/2≤ ∆ti j ≤ τ +δτ/2 gives

LNDCF(τ) =
1
M ∑

i, j
ULNDCFi j. (3.4)

The time delay ∆t is that value of τ which maximises LNDCF(τ).

z-transformed Discrete Correlation Function

The z-transformed discrete correlation function (zDCF) is a variant of the DCF method for
estimating the cross correlation function of sparse, unevenly sampled light curves. The
zDCF method (Alexander 1997) corrects various biases of the DCF method of Edelson &
Krolik (1988), by using equal population binning and Fisher’s z-transform.

Dispersion method

The Dispersion method is a non-parametric form of calculating time delays in lensed quasar
light curves and was introduced by Pelt et al. (1996). Given two time series XA(ti) and
XB(t j), dispersion is nothing but a weighted sum of the squared differences between XA(ti)

and XB(t j) (for a given time lag (τ) and flux ratio (l)). This method is similar to that of the
DCF, however, it models the time series of the two light curves in a different way, in which
a combined light curve Ck is generated by combining both the time series, where k = 1, 2,
... , N, where N is the total number of data points in the combined light curve. The simplest
form of the dispersion function is given as

D2
l = minl

∑
N−1
k=1 Wk(Ck+1−Ck)

2

2∑
N−1
k=1 Wk

, (3.5)
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where the Wk are the statistical weights of the combined light curve,

Wk =Wi, j =
WiWj

Wi +Wj
. (3.6)

The time delay in this method is found by minimizing D2 over a range of trial time delays.
In general, we found the dispersion method to perform better compared to the DCF method.
Whereas the DCF method cannot allow for the presence of uncorrelated variations between
the light curves, the dispersion method allows for uncorrelated variations to be modelled as
lower-order polynomials, which is adequate if the uncorrelated variations are slow occuring
over several years. It is of interest to develop techniques which can cope with uncorrelated
variations happening over much smaller timescales. During the course of this thesis work,
I have developed a new time delay estimation method called the “difference-smoothing
technique”, which can model small duration microlensing variations. This technique is
based on minimizing the residuals of a high-pass filtered difference light curve between the
quasar images.

3.3 Difference-smoothing technique

This technique is a point estimator that determines both an optimal time delay and an
optimal shift in flux between two light curves, while also allowing for smooth extrinsic
variability. These extrinsic variations could arise due to microlensing by stars in the lensing
galaxy which affect the brightnesses of different quasar images differently due to their
different paths (Chang & Refsdal 1979). The correction for a flux shift between the light
curves explicitly addresses the mismatch described in Sect. 2.4.1, whatever its physical
explanation. This flux shift may be due to a contamination of light curve B by residual light
from the lensing galaxy, from the lensed quasar host galaxy, or by microlensing resolving
the quasar structure.

We consider two light curves A and B sampled at epochs ti, where Ai and Bi are the
observed magnitudes at epochs ti, (i = 1,2,3, ...,N). We select A as the reference curve.
Light curve B is shifted in time with respect to A by some amount τ , and in flux by some
amount ∆ f . Formally, this shifted version B′ of B is given by

B′i = −2.5log
(
10−0.4Bi +∆ f

)
, (3.7)

t ′i = ti + τ. (3.8)

For any estimate of the time delay τ and of the flux shift ∆ f , we form a difference light
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Figure 3.1: Difference light curves of SDSS J1001+5027 as obtained by the new difference-
smoothing technique introduced in Rathna Kumar et al. (2013). The curves are shown for
the best time-delay estimate found with this technique (top panel, ∆tAB = −118.6 days),
and for a wrong time-delay value (bottom panel, ∆tAB = −100.0 days). The difference
light curves di are shown as colored points. They are smoothed using a kernel of width
s = 100 days to compute the fi (black points). The error bars on the black points show
the uncertainty coefficients σ fi . The points in the difference light curve di are color-coded
according to the absolute factors of their uncertainties σdi by which they deviate from fi.
In both panels, light curve A is used as reference, and light curve B is shifted in flux by the
same amount.

curve, with points di at epochs ti,

di(τ,∆t) = Ai−
∑

N
j=1 wi jB′j

∑
N
j=1 wi j

, (3.9)

where the weights wi j are given by

wi j =
1

σ2
B j

e−(t
′
j−ti)2/2δ 2

. (3.10)

The parameter δ is the decorrelation length, as in Pelt et al. (1996), and σB j denotes the
photometric error of the magnitude B j. This decorrelation length should typically be of the
order of the sampling period, small enough to not smooth out any intrinsic quasar variability
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features from the light curve B. The uncertainties on each di are then calculated as

σdi =

√
σ2

Ai
+

1

∑
N
j=1 wi j

, (3.11)

where wi j are given by Eq. 3.10. To summarize, at this point we have a discrete difference
light curve, sampled at the epochs of curve A, built by subtracting from light curve A a
smoothed and shifted version of B. We now smooth this difference curve di, again using a
Gaussian kernel, to obtain a model fi for the differential extrinsic variability

fi =
∑

N
j=1 νi j d j

∑
N
j=1 νi j

, (3.12)

where the weights νi j are given by

νi j =
1

σ2
d j

e−(t j−ti)2/2s2
. (3.13)

The smoothing time scale s is a second free parameter of this method. Its value must be
chosen to be significantly larger than δ . For each fi, we compute an uncertainty coefficient

σ fi =

√
1

∑
N
j=1 νi j

. (3.14)

The idea of the present method is now to optimize the time-delay estimate τ and flux
shift ∆ f to minimize residuals between the difference curve di and the much smoother
fi. Any incorrect value for τ introduces relatively fast structures that originate from the
quasar variability into di, and these structures will not be well represented by fi. Figure 3.1
illustrates this phenomenon in the case of SDSS J1001+5027 by showing di and fi for an
optimal and an arbitrarily chosen wrong time-delay estimate. In both panels of Fig. 3.1,
the largest deviations between di and fi are due to poorly constrained points with very high
σdi , and are therefore not significant. However, for the incorrect time-delay estimate, a
larger number of well-constrained points of di significantly deviate from fi (yellow and red
points). To quantify this match between di and fi we define a cost function in the form of a
normalized χ2,

χ
2 =

[
N

∑
i=1

(di− fi)
2

σ2
di
+σ2

fi

]
/

[
N

∑
i=1

1
σ2

di
+σ2

fi

]
, (3.15)

and minimize this χ
2(τ,∆ f ) using a global optimization.
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In the above description, light curves A and B are not interchangeable, thus introducing
an asymmetry into the time-delay measurement process. To avoid this arbitrary choice of
the reference curve, we systematically perform all computations for both permutations of
A and B, and minimize the sum of the two resulting values of χ

2.

3.3.1 The uncertainty estimation procedure

As a point estimator, the technique described above does not provide information on the
uncertainty of its result. We stress that simple statistical techniques such as variants of
bootstrapping or resampling cannot be used to quantify the uncertainty of such highly non-
linear time-delay estimators (Tewes et al. 2013a). These approaches are not able to discredit
“lethargic” estimators, which favor a particular solution (or a small set of solutions) while
being relatively insensitive to the actual shape of the light curves. Furthermore, they are
not sensitive to plain systematic biases of the techniques.

Consequently, to quantify the random and systematic errors of this estimator, for each
dataset to be analyzed and as a function of its free parameters, we follow the Monte Carlo
analysis described in Tewes et al. (2013a). It consists in applying the point estimator to
a large number of fully synthetic light curves, which closely mimic the properties of the
observed data, but have known true time delays. It is particularly important that these
synthetic curves cover a range of true time delays around a plausible solution, instead of
all having the same true time delay. Only this feature enables the method to adequately
penalize estimators with lethargic tendencies.

3.3.2 Application to SDSS J1001+5027

The decorrelation length δ and the width of the smoothing kernel s are the two free param-
eters of the described technique. In Rathna Kumar et al. (2013), we choose δ to be equal
to the mean sampling of the light curves (δ = 5.2 days) and s = 100 days, yielding a point
estimate of ∆tAB =−118.6 days for the time delay. The corresponding di and fi difference
light curves are shown in the top panel of Fig. 3.1. Results of the uncertainty analysis will
be presented in the next section, together with the performance of other point estimators.

We have explored a range of alternative values for the free parameters (s =

50,100,150,200 and δ = 2.6,5.2,10.4 days), and find that neither the time-delay point
estimate from the observed data, nor the error analysis is significantly affected. The time-
delay estimates resulting from these experiments stay within 1.2 days around the reference
value obtained for δ = 5.2 and s = 100 days. Regarding the uncertainty analysis, we ob-
serve that increasing the smoothing length scale s beyond 100 days decreases the random
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Figure 3.2: Error analysis of the four time-delay measurement techniques, based on delay
estimations on 1000 synthetic curves that mimic our SDSS J1001+5027 data. The hor-
izontal axis corresponds to the value of the true time delay used in these synthetic light
curves. The gray vertical lines delimit bins of true time delay. In each of these bins, the
colored rods and 1σ error bars show the systematic biases and random errors, respectively,
as committed by the different techniques.

error, but at the cost of an increasing bias, which is not surprising.

3.4 Time-delay measurement of SDSS J1001+5027

The details of the observations are summarised in Table 2.2 and the light curves are dis-
played in Fig. 2.9. Although an unambiguous approximation of the time delay of SDSS
J1001+5027 can be made by eye, accurately measuring its value is not trivial, and is made
more difficult by the extrinsic variability between the light curves. Even more obvious
features of the data, such as the sampling gaps due to non-visibility periods of the targets,
could easily bias the results from a time-delay measurement technique. The impact of these
effects on the quality of the time-delay inference clearly differs for each individual quasar
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Table 3.1: Time-delay measurements for SDSS J1001+5027. The total 1σ error bars are
given. Whenever possible, we give in parenthesis the breakdown of the error budget: (ran-
dom, systematic).

Method ∆tAB [day]
Dispersion-like technique -120.5 +/- 6.2 (3.6, 5.0)
Difference-smoothing technique -118.6 +/- 3.7 (3.4, 1.4)
Regression difference technique -121.1 +/- 3.8 (3.7, 1.0)
Free-knot spline technique -119.7 +/- 2.6 (2.4, 0.8)
GP by Hojjati et al. (2013) -117.8 +/- 3.2
Combined estimate (see text) -119.3 +/- 3.3

lensing system and dataset. To check for potential systematic errors, a wise approach is to
employ several numerical methods based on different fundamental principles.

In Rathna Kumar et al. (2013), we use five different methods to measure the time delay
of SDSS J1001+5027 from the data shown in Fig. 2.9. All these methods have been devel-
oped to address light curves affected by extrinsic variability, resulting from microlensing
by stars in the lensing galaxy (Chang & Refsdal 1979) or flux contamination. Three of the
techniques, namely the dispersion-like technique, the regression difference technique, and
the free-knot spline technique are described in length in Tewes et al. (2013a) and were used
to measure the time delays in the four-image quasar RX J1131−1231 (Tewes et al. 2013b).

In the the previous section, we presented our fourth method, the difference-smoothing
technique. These first four methods are point estimators: they provide best estimates, with-
out information on the uncertainty of their results. We proceed by quantifying the accuracy
and precision of these estimators by applying them to a set of 1000 fully synthetic light
curves, produced and adjusted following Tewes et al. (2013a). These simulations include
the intrinsic variations of the quasar source, mimicking the observed variability of SDSS
J1001+5027, as well as extrinsic variability on a range of time scales from a few days to
several years. They share the same sampling and scatter properties as the real observations.

Figure 3.2 shows the results of this analysis, depicting the delay measurement error as
a function of the true delay used to generate the synthetic light curves. As always, this
analysis naturally takes into account the intrinsic variances of the techniques, that are due
to the limited ability of the employed global optimizers to find the absolute minima of the
cost functions.

As can be seen in Fig. 3.2, the dispersion-like technique is strongly biased for this
particular dataset. This could be a consequence of the simplistic polynomial correction for
extrinsic variability linked to this technique. For the other techniques, the bias remains
smaller than the random error, and no strong dependence on the true time delay is detected.
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Difference-smoothing technique : −118.6±3.7

Regression difference technique : −121.1±3.8

Free-knot spline technique : −119.7±2.6

GP by Hojjati et al. (2013) : −117.8±3.2

Combined estimate : −119.3±3.3

Figure 3.3: Time-delay measurements of SDSS J1001+5027, following five different meth-
ods. The total error bar shown here includes systematic and random errors.

The final systematic error bar for each of these four techniques is taken as the worst
measured systematic error on the simulated light curves (biggest colored rod in Fig. 3.2).
The final random error is taken as the largest random error across the range of tested time
delays. Finally, the total error bar for each technique is obtained by summing the systematic
and random components in quadrature.

In the writing process of Rathna Kumar et al. (2013), Hojjati et al. (2013) proposed
a new independent method to measure time delays that is also able to address extrinsic
variability. Their method is based on Gaussian process modeling, and does not rely on
point estimation. It provides its own standalone estimate of the total uncertainty. We have
provided these authors with the COSMOGRAIL data of SDSS J1001+5027, without letting
them know our measured values. They find ∆tAB =−117.8±3.2 days.

We include this measurement by Hojjati et al. (2013) as a fifth measurement in our
result summary, presented in Table 3.1 and in a more graphical form in Fig. 3.3. Not only
do their time-delay values agree with our four estimates, but also their error bars agree well
with ours, in spite of the totally different way of estimating them.

We have five time-delay estimates from five very different methods, and all these esti-
mates are compatible with each other. We now need to combine these results. In doing this,
we exclude the delay from the dispersion-like technique that, as we show, is dominated by
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Figure 3.4: Difference light curve of SDSS J0806+2006 as obtained by the difference-
smoothing technique. The curve is shown for the best time-delay estimate found with this
technique (∆tAB =−54.2 days). The difference light curves di are shown as colored points.
They are smoothed using a kernel of width s = ∞ to compute the fi (black points). The error
bars on the black points show the uncertainty coefficients σ fi . The points in the difference
light curve di are color-coded according to the absolute factors of their uncertainties σdi by
which they deviate from fi. Light curve A is used as reference.

systematic errors. While the estimates from the four remaining techniques are obtained
with very different methods, they are still not independent, as they all make use of the
same data. We therefore simply average the four time-delay measurements to obtain our
combined estimate, and we use the average of the total uncertainties as the corresponding
uncertainty. This leads to ∆tAB =−119.3±3.3 days, shown in black in Fig. 3.3.

Further, as our new difference-smoothing technique gives results that are similar to
other independent methods, we use this technique only to get the time delay for the second
lensed quasar observed in this study, namely SDSS J0806+2006.

3.5 Time-delay measurement of SDSS J0806+2006

The details of the observations are summarised in Table 2.3 and the light curves are dis-
played in Fig. 2.12. In Sect. 4.1, we present a modification to the difference-smoothing
technique and introduce a recipe for creating simulated light curves having known time
delays in a plausible range around the measured delay. Further in Sect. 4.1, we present a
method to tune the free parameters of the difference-smoothing technique for a given pair
of light curves. Following this approach, we set δ = 11.1 days and s = ∞ (since we do
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Figure 3.5: Error analysis of the time-delay measurement using difference-smoothing
technique, based on delay estimations on simulated light curves that mimic our SDSS
J0806+2006 data. The horizontal axis corresponds to the value of the true time delay
used in these simulated light curves. The gray colored rods and 1σ error bars show the sys-
tematic biases and random errors, respectively, as committed by the difference-smoothing
technique.
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not detect any statistically significant uncorrelated variation between the two light curves),
and measured a time delay of ∆tAB =−54.2 ± 6.8 days (1σ uncertainty, 12.5% precision),
with image A leading image B. The difference light curve for the measured delay is plotted
in Fig. 3.4. The uncertainty of the measured time delay was estimated following the pro-
cedure outlined in Sect. 4.1.4. Figure 3.5 shows the results of this analysis, depicting the
delay measurement error as a function of the true delay used to generate the simulated light
curves.

Further, the large error in the time delay measured for SDSS J0806+2006 is due to the
quality of the light curves, with large gaps, low S/N and lack of large amplitude variability
of the quasar. Accumulation of more high S/N ratio data frames with better temporal
sampling on this source will surely bring down the error in the time delay measured for this
source.



Chapter 4

Homogeneous estimation of time delays
of 24 gravitationally lensed quasars

Till date, time delays have been reported for 24 gravitationally lensed quasars among the
hundreds of such strongly lensed quasars known. However the quality of the light curves
and the techniques used to infer these time delays vary from one system to the other. In this
chapter, we apply the difference-smoothing technique, presented in Chapter 3, to the pub-
licly available light curves of the 24 systems in a homogeneous manner, firstly to identify
systems having robust time delay measurements and then select a sub-sample of suitable
lens systems to determine H0 in Chapter 5.

The chapter is organized as follows. Section 4.1 describes the technique used for time
delay determination and introduces a recipe for creating realistic simulated light curves
having known time delays, which is used in this chapter to estimate the uncertainty of
each measured delay. In Sect. 4.2, the application of the curve-shifting procedure to the 24
systems is described.

4.1 Time delay determination

In this section, we discuss one modification to the original version of the difference-
smoothing technique reported in Rathna Kumar et al. (2013) (see Sect. 3.3 for the rest of
the details). We then introduce a recipe for simulating realistic light curves having known
time delays in a plausible range around the measured delay in order to estimate its uncer-
tainty. We also present an approach to tune the free parameters of the difference-smoothing
technique for a given dataset.

42
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4.1.1 Modification to the difference-smoothing technique

Ai and Bi are the observed magnitudes constituting light curves A and B sampled at epochs
ti (i = 1,2,3, ...,N). Light curve A is selected as the reference. We shift the light curve B
in time with respect to the light curve A by some amount τ . This shifted version B′ of B is
given by

B′i = Bi, (4.1)

t ′i = ti + τ. (4.2)

We note here that we do not apply any flux shift to light curve B as in Rathna Kumar et al.
(2013), since we have found that doing so considerably increases the computational time
without significantly changing the results.

4.1.2 Simulation of light curves

In Rathna Kumar et al. (2013), in order to estimate the uncertainty of the time delay mea-
sured using the difference-smoothing technique, we made use of realistic simulated light
curves, which were created following the procedure introduced in Tewes et al. (2013a). In
this work, we introduce an independent recipe for creating simulated light curves. Here we
follow the same notation as in Sect. 3.3.

We infer the underlying variation A(t) of the light curve A at the epoch ti based on the
magnitudes A j for the remaining epochs as

A(ti) =
∑

N
j=1

j,i 1
σ2

A j

e−(t j−ti)2/2m2
A j

∑
N
j=1

j,i 1
σ2

A j

e−(t j−ti)2/2m2
, (4.3)

where the value of m is set to equal the mean sampling of the light curves. For those
points having the nearest neighbour separated by less than m, we compute the values of
(Ai−A(ti))/σAi , the standard deviation of which is multiplied to the error bars σAi to
obtain the rescaled error bars σ̂Ai . Similarly for the B light curves the rescaled error bars
σ̂Bi are obtained. This rescaling is done since the magnitudes of the original error bars may
suffer from systematic under-estimation or over-estimation.

We merge the light curves A and B by shifting the B light curve by the time delay found
(∆t) and subtracting the differential extrinsic variability fi corresponding to the delay from
the A light curve. This merged light curve Mi, whose errors we denote σMi , consists of the
magnitudes Ai− fi at times ti and having errors σ̂Ai and the magnitudes Bi at times ti +∆t
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and having errors σ̂Bi . We now model the quasar brightness variation M(t) as

M(t) =
∑

2N
j=1

1
σ2

M j

e−(t j−t)2/2m2
M j

∑
2N
j=1

1
σ2

M j

e−(t j−t)2/2m2 . (4.4)

We then model the quasar brightness variation using only the A points in Mi as

MA(t) =
∑

N
j=1

1
σ̂2

A j

e−(t j−t)2/2m2
(A j− f j)

∑
N
j=1

1
σ̂2

A j

e−(t j−t)2/2m2 (4.5)

and only the B points in Mi as

MB(t) =
∑

N
j=1

1
σ̂2

B j

e−(t j+∆t−t)2/2m2
B j

∑
N
j=1

1
σ̂2

B j

e−(t j+∆t−t)2/2m2 . (4.6)

The residual extrinsic variations present in the A and B light curves can now be calculated
as

fAi = MA(ti)−M(ti) (4.7)

and
fBi = MB(ti)−M(ti). (4.8)

We can now simulate light curves Asimu
i and Bsimu

i having a time delay of ∆t + dt be-
tween them by sampling M(t) at appropriate epochs and adding terms for extrinsic varia-
tions and noise,

Asimu
i = M

(
ti−

dt
2

)
+ fi + fAi +N∗(0,1)σ̂Ai (4.9)

and
Bsimu

i = M
(

ti +∆t +
dt
2

)
+ fBi +N∗(0,1)σ̂Bi, (4.10)

where N∗(0,1) is a random variate drawn from a normal distribution having mean 0 and
variance 1. These simulated light curves are then assigned the times ti and the error bars
σAi and σBi for the A and B light curves respectively. Including the terms fAi and fBi in the
calculation of Asimu

i and Bsimu
i respectively ensures that our simulated light curves contain

extrinsic variability on all timescales, just as in the real light curves.

Here again in the above description, since light curves A and B are not interchangeable,
we systematically perform all computations for both permutations of A and B, and average
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the corresponding values of Asimu
i and Bsimu

i , before adding the noise terms.

4.1.3 Choice of free parameters

The value of the decorrelation length δ needs to be chosen to be of the order of the temporal
sampling of the light curves. In our present work, as in Rathna Kumar et al. (2013), we set
δ equal to m, the mean sampling of the light curves.

The smoothing time scale s needs to be chosen to be significantly larger than δ . In our
present work, its value is set to the largest integer multiple of δ for which the maximum
absolute values of both

fAi
σ̂Ai

and
fBi
σ̂Bi

, which quantify the residual extrinsic variations in
units of photometric noise for the A and B light curves respectively, are smaller than 3.
This choice ensures that the value of s is small enough to adequately model the extrinsic
variations, so that the extreme values of residual extrinsic variations are not significantly
larger than the noise in the data.

Again as in the above description, as light curves A and B are not interchangeable, we
systematically perform all the computations for both permutations of A and B, and average
the corresponding maximum absolute values.

4.1.4 Estimation of uncertainty

We create 100 simulated light curves having a true delay of ∆t between them. The
difference-smoothing technique is applied on each of them to obtain 100 delay values.
The standard deviation of the 100 delay values gives us the random error and the system-
atic error is obtained by the difference between the mean of the 100 delay values and the
true delay. The total error ∆τ0 is obtained by adding the random error and the systematic
error in quadrature.

However, as noted by Tewes et al. (2013a), it is important to simulate light curves
having not only the time delay ∆t found, but also other time delays in a plausible range
around ∆t, so as to obtain a reliable estimate of the uncertainty (see also Sect. 3.2 in
Rathna Kumar et al. 2013). To this end, we also simulate 100 light cuves for each true delay
which differs from ∆t by ±∆τ0,±(∆τ0 +∆τ1), ... ,±(∆τ0 +∆τ1 + ...+∆τn−1), in each step
updating the total error ∆τn by adding the maximum obtained value of the random error and
the maximum obtained absolute value of the systematic error in quadrature. n is chosen to
be the smallest integer for which

∆τ0 +∆τ1 + ...+∆τn−1 ≥ 2∆τn. (4.11)
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This ensures that we have simulated light curves over a range of delay values which is at
least as wide or wider than the 95.4% confidence interval implied by the stated final error
∆τn.

The application of the procedures outlined in this section to the light curves of SDSS
J0806+2006 is discussed in Sect. 3.5

4.2 Time delays of 24 gravitationally lensed quasars

Till date, time delays have been reported for 24 gravitationally lensed quasars. However,
the quality of the data and the curve-shifting procedure followed differs from system to
system. In this section, we present a homogeneous analysis of their publicly available light
cuves following the procedure described in the previous section, with the aim of identifying
those systems having reliable time delay measurements. In case of systems with more than
two images, we measured the time delays between all pairs of light curves.

The results are summarised in Table 4.1, wherein a negative value of time delay implies
that the arrival-time order is reverse of what is implied in the subscript to ∆t. All quoted
uncertainties are 1σ error bars, unless stated otherwise. Additional information on some
systems listed in Table 4.1 are given below.

– Q0142−100 (UM673): We were unable to make a reliable time delay measurement
using the light curves presented in Koptelova et al. (2012).

– JVAS B0218+357: From 8 GHz and 15 GHz VLA observations reported by Cohen
et al. (2000), we measured time delays of 10.1 ± 2.0 days and 11.4 ± 2.4 days
respectively. Taking the weighted average of the two results, we find the time delay
to be 10.6 ± 1.5 days.

– SBS 0909+532: We were unable to make a reliable time delay measurement using the
light curves presented in Goicoechea et al. (2008) and Hainline et al. (2013).

– RX J0911.4+0551: We used the light curves presented in Hjorth et al. (2002), which
were made publicly available by Paraficz et al. (2006).
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– FBQ 0951+2635: We used the light curves presented in Jakobsson et al. (2005), which
were made publicly available by Paraficz et al. (2006).

– Q0957+561: From the r-band and g-band light curves presented in Shalyapin et al.
(2012), we measured time delays of 418.8 ± 2.5 days and 418.6 ± 1.9 days
respectively. Taking the weighted average of the two results, we find the time delay
to be 418.7 ± 1.5 days. The reported delay listed is the weighted average of the two
delays found by Shalyapin et al. (2012).

– RX J1131−1231: Tewes et al. (2013b) measured time delays between all pairs of light
curves using three different numerical techniques. The time delay value listed in the
table for each pair of light curves is for that technique which resulted in the smallest
uncertainty.

– CLASS B1600+434: From the optical light curves presented in Burud et al. (2000)
(and made publicly available by Paraficz et al. (2006)), we measure a time delay
in agreement with the reported value, however our estimate of uncertainty is much
larger than the reported uncertainty. From the radio light curves presented in
Koopmans et al. (2000), we were unable to make a reliable time delay measurement.

– HE 2149−2745: We used the light curves presented in Burud et al. (2002a), which were
made publicly available by Paraficz et al. (2006).

In Figs. 4.1 – 4.27, we have plotted the analyzed light curves. For each dataset, those
light curves whose time delays with respect to the A light curve could be measured to a
precision of better than 33.3% are shown shifted in time by the measured time delays. Also
the mean values have been subtracted from all the displayed light curves to enable better
comparison between their variability features. The photometric error bars are also shown.
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Table 4.1: Time delay measurements of 24 gravitationally
lensed quasars.

Object (Observational waveband(s)) Time delay Reported value Our measurement
[day] [day]

(a) Q0142−100 (R) ∆tAB 89 ± 11 ?

(b) JVAS B0218+357 (8 & 15 GHz) ∆tAB 10.1+1.5
−1.6 (95% CI) 10.6 ± 1.5

(c) HE 0435−1223 (R) ∆tAB 8.4 ± 2.1 9.3 ± 1.3
∆tAC 0.6 ± 2.3 0.7 ± 1.9
∆tAD 14.9 ± 2.1 13.5 ± 1.6
∆tBC −7.8 ± 0.8 −7.3 ± 2.2
∆tBD 6.5 ± 0.7 6.1 ± 1.2
∆tCD 14.3 ± 0.8 12.4 ± 1.6

(d) SBS 0909+532 (r) ∆tAB −50+2
−4 ?

(e) RX J0911.4+0551 (I) ∆t(A1+A2+A3)B −146 ± 8 (2σ ) −143.2 ± 10.1

(f) FBQ 0951+2635 (R) ∆tAB 16 ± 2 −5.0 ± 22.9

(g) Q0957+561 (r & g) ∆tAB 417.4 ± 0.9 418.7 ± 1.5

(h) SDSS J1001+5027 (R) ∆tAB 119.3 ± 3.3 121.2 ± 2.2

(i) SDSS J1004+4112 (R & r) ∆tAB −40.6 ± 1.8 −35.5 ± 2.5
∆tAC −821.6 ± 2.1 −821.9 ± 12.7
∆tBC −777.9 ± 12.8

(j) SDSS J1029+2623 (r) ∆tA(B+C) 744 ± 10 (90% CI) 743.5 ± 8.9

(k) HE 1104−1805 (R & V ) ∆tAB −152.2+2.8
−3.0 −158.4 ± 6.2

(l) PG 1115+080 (R) ∆t(A1+A2)B −8.9 ± 8.4
∆t(A1+A2)C −12 −18.3 ± 4.4

∆tBC −16.4 −13.2 ± 9.0

(m) RX J1131−1231 (R) ∆tAB 0.7 ± 1.0 0.9 ± 1.7
∆tAC 0.0 ± 1.3 −1.0 ± 1.5
∆tAD 90.6 ± 1.4 92.9 ± 1.5
∆tBC −0.7 ± 1.5 0.7 ± 1.3
∆tBD 91.4 ± 1.2 91.6 ± 1.6
∆tCD 91.7 ± 1.5 90.7 ± 2.4

(n) SDSS J1206+4332 (R) ∆tAB 111.3 ± 3 111.5 ± 2.0

(o) H1413+117 (r) ∆tAB −17 ± 3 −16.1 ± 14.0
∆tAC −20 ± 4 −21.9 ± 12.1

Continued on next page
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Table 4.1 – continued from previous page

Object (Observational waveband(s)) Time delay Reported value Our measurement
[day] [day]

∆tAD 23 ± 4 22.6 ± 8.5
∆tBC −47.7 ± 23.1
∆tBD 20.7 ± 18.9
∆tCD 29.7 ± 11.7

(p) B1422+231 (15 GHz) ∆tAB −1.5 ± 1.4 1.1 ± 3.9
∆tAC 7.6 ± 2.5 −0.3 ± 5.1
∆tBC 8.2 ± 2.0 −0.4 ± 6.6

(q) SBS 1520+530 (R) ∆tAB 130 ± 3 125.8 ± 20.1

(r) CLASS B1600+434 (I) ∆tAB 51 ± 4 (95% CI) 48.9 ± 30.4
(s) CLASS B1600+434 (8.5 GHz) ∆tAB 47+5

−6 ?

(t) CLASS B1608+656 (8.5 GHz) ∆tAB −31.5+2.0
−1.0 −30.0 ± 2.6

∆tAC 5.0 ± 3.0
∆tAD 46.1 ± 2.4
∆tBC 36.0+1.5

−1.5 37.2 ± 3.8
∆tBD 77.0+2.0

−1.0 77.5 ± 2.8
∆tCD 41.4 ± 3.3

(u) SDSS J1650+4251 (R) ∆tAB 49.5 ± 1.9 63.8 ± 16.1

(v) PKS 1830−211 (8.6 GHz) ∆tAB 26+4
−5 32.9 ± 5.8

(w) WFI J2033−4723 (R) ∆tAB −35.5 ± 1.4 −36.0 ± 1.6
∆tAC 25.1 ± 3.8
∆tBC 62.6+4.1

−2.3 66.0 ± 3.5

(x) HE 2149−2745 (V ) ∆tAB 103 ± 12 84.3 ± 19.4

(y) HS 2209+1914 (R) ∆tAB −20.0 ± 5 −23.5 ± 7.3

References for data. (a) Koptelova et al. (2012); (b) Cohen et al. (2000); (c) Courbin
et al. (2011); (d) Goicoechea et al. (2008), Hainline et al. (2013); (e) Hjorth et al. (2002);
(f) Jakobsson et al. (2005); (g) Shalyapin et al. (2012); (h) Rathna Kumar et al. (2013);
(i) Fohlmeister et al. (2007), Fohlmeister et al. (2008); (j) Fohlmeister et al. (2013); (k)
Poindexter et al. (2007); (l) Tsvetkova et al. (2010); (m) Tewes et al. (2013b); (n) Eulaers
et al. (2013); (o) Goicoechea & Shalyapin (2010); (p) Patnaik & Narasimha (2001); (q)
Burud et al. (2002b); (r) Burud et al. (2000); (s) Koopmans et al. (2000); (t) Fassnacht
et al. (1999), Fassnacht et al. (2002); (u) Vuissoz et al. (2007); (v) Lovell et al. (1998); (w)
Vuissoz et al. (2008); (x) Burud et al. (2002a); (y) Eulaers et al. (2013).



CHAPTER 4. HOMOGENEOUS CURVE-SHIFTING ANALYSIS OF 24 LENSES 50

0 500 1000 1500

−0.1

−0.05

0

0.05

0.1

Time since first epoch [days]

M
a

g
n

it
u

d
e

 (
re

la
ti
v
e

)

A

B

Figure 4.1: R-band light curves of Q0142−100 using data from Koptelova et al. (2012).
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Figure 4.2: 8 GHz light curves of JVAS B0218+357 using data from Cohen et al. (2000).
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Figure 4.3: 15 GHz light curves of JVAS B0218+357 using data from Cohen et al. (2000).
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Figure 4.4: R-band light curves of HE 0435−1223 using data from Courbin et al. (2011).
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Figure 4.5: r-band light curves of SBS 0909+532 using data from Goicoechea et al. (2008)
and Hainline et al. (2013).
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Figure 4.6: I-band light curves of RX J0911.4+0551 using data from Hjorth et al. (2002).
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Figure 4.7: R-band light curves of FBQ 0951+2635 using data from Jakobsson et al. (2005).
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Figure 4.8: r-band light curves of Q0957+561 using data from Shalyapin et al. (2012).
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Figure 4.9: g-band light curves of Q0957+561 using data from Shalyapin et al. (2012).
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Figure 4.10: R-band light curves of SDSS J1001+5027 using data from Rathna Kumar et al.
(2013).
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Figure 4.11: Light curves, comprising observations in R-band and r-band, of images A and
B of SDSS J1004+4112 using data from Fohlmeister et al. (2007) and Fohlmeister et al.
(2008).
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Figure 4.12: r-band light curves of SDSS J1029+2623 using data from Fohlmeister et al.
(2013).
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Figure 4.13: Light curves, comprising observations in R-band and V -band, of HE
1104−1805 using data from Poindexter et al. (2007).
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Figure 4.14: R-band light curves of PG 1115+080 using data from Tsvetkova et al. (2010).
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Figure 4.15: R-band light curves of RX J1131−1231 using data from Tewes et al. (2013b).
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Figure 4.16: R-band light curves of SDSS J1206+4332 using data from Eulaers et al.
(2013).
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Figure 4.17: r-band light curves of H1413+117 using data from Goicoechea & Shalyapin
(2010).
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Figure 4.18: 15 GHz light curves of B1422+231 using data from Patnaik & Narasimha
(2001).
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Figure 4.19: R-band light curves of SBS 1520+530 using data from Burud et al. (2002b).
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Figure 4.20: I-band light curves of CLASS B1600+434 using data from Burud et al. (2000).
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Figure 4.21: 8.5 GHz light curves of CLASS B1600+434 using data from Koopmans et al.
(2000).
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Figure 4.22: 8.5 GHz light curves of CLASS B1608+656 using data from Fassnacht et al.
(1999) and Fassnacht et al. (2002).
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Figure 4.23: R-band light curves of SDSS J1650+4251 using data from Vuissoz et al.
(2007).
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Figure 4.24: 8.6 GHz light curves of PKS 1830−211 using data from Lovell et al. (1998).
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Figure 4.25: R-band light curves of WFI J2033−4723 using data from Vuissoz et al. (2008).
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Figure 4.26: V -band light curves of HE 2149−2745 using data from Burud et al. (2002a).
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Figure 4.27: R-band light curves of HS 2209+1914 using data from Eulaers et al. (2013).



Chapter 5

The Hubble constant from
well-measured time-delay lenses

In the previous chapter, we have presented a homogeneous analysis of the published light
curves of 24 gravitationally lensed quasars. This analysis used the “difference-smoothing
technique” developed during the course of the thesis (Rathna Kumar et al. 2013) and de-
scribed in Chapter 5. This homogeneous analysis also gives the errors associated with the
measured time delays, the details of which are given in the previous chapter. In this chapter,
we use a subsample of the 24 systems, that have at least one time delay between the images
adjacent to each other in terms of arrival-time order measured to a precision of better than
33.3% including systematic errors. We use here such a carefully selected sub-sample of
sources to infer H0.

5.1 Sample selection

Of the 24 systems analysed in the last chapter, 18 of them had light curves of sufficiently
good quality to enable the measurement of at least one time delay between the images,
adjacent to each other in terms of arrival-time order, to a precision of better than 33.3%
(which corresponds to a 3σ detection of time delay). The six systems which did not satisfy
this criterion are Q0142−100 (UM673), SBS 0909+532, FBQ 0951+2635, H1413+117,
JVAS B1422+231 and CLASS B1600+434. In addition to these 18 systems, we also have
SDSS J0806+2006, the unpublished time delay for which was presented in Sect. 3.5. We
thus have a total of 19 systems.

Of the 19 systems, we did not model the mass distribution for 7 systems for the follow-
ing reasons. HS 2209+1914 does not have known lens redshift. SDSS J1001+5027, SDSS

64



CHAPTER 5. HUBBLE CONSTANT FROM WELL-MEASURED LENSES 65

Figure 5.1: Left: HST image of JVAS B0218+357. Right: Deconvolved image. (Image
courtesy: Sluse et al. 2012)

J1206+4332 and SDSS J1650+4251 do not have accurate astrometric data measured from
Hubble Space Telescope (HST) images or ground-based imaging with adaptive optics. Al-
though the astrometry of JVAS B0218+357, having a small image separation of 0.33′′, has
been measured from HST images by Sluse et al. (2012), the authors warn about possibly
large systematic errors in the published astrometry. Meylan et al. (2005) through adap-
tive optics imaging confirm the presence of a second extended object of unknown redshift
along the line of sight to PKS 1830−211, in addition to the known lensing spiral galaxy.
SDSS J1029+2623 is a three-image cluster lens with highly complex mass distribution
(see, Oguri et al. 2013) and hence not amenable to lens-modelling following the simplistic
approach described below. We are thus left with a final sample of 12 lens systems.

5.2 H0 from pixellated modelling of 12 gravitational lenses

To perform mass-modelling of the remaining 12 systems to infer H0, we used the publicly
available PixeLens1 code (Saha & Williams 2004), which builds an ensemble of pixellated
mass maps compatible with the input data for a given system, which is comprised of the
redshifts of the quasar and the lensing galaxy, the arrival-time order of the images, their
astrometry relative to the center of the main lensing galaxy and the known time delays be-
tween the images adjacent to each other in terms of arrival-time order. In case of quadruple
lenses in which only some of the time delays are known, it is still possible to guess the

1http://www.qgd.uzh.ch/projects/pixelens/

http://www.qgd.uzh.ch/projects/pixelens/
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Figure 5.2: The H0 estimates and their 1σ uncertainties for the 12 gravitational lenses –
(1) HE 0435−1223, (2) RX J0911.4+0551, (3) Q0957+561, (4) SDSS J1004+4112, (5)
HE 1104−1805, (6) PG 1115+080, (7) RX J1131−1231, (8) SBS 1520+530, (9) CLASS
B1608+656, (10) WFI J2033−4723, (11) HE 2149−2745 and (12) SDSS J0806+2006.
The best estimate of H0 and its 1σ confidence interval, inferred through maximum-
likelihood analysis, are represented by the horizontal line and the gray shaded region re-
spectively.

arrival-time order of the images by following certain simple rules (see, Saha & Williams
2003).

We model all lenses, except SDSS J1004+4112, such that their mass profiles have in-
version symmetry about the lens center, including any companion galaxy to the main lens-
ing galaxy as a point mass. The lensing cluster in SDSS J1004+4112 consists of several
galaxies besides the main lensing galaxy (see, Inada et al. 2005) and hence was modelled
without assuming inversion symmetry about the lens center.

PixeLens builds models such that their projected density profiles are steeper than
|θ |−γmin , the default value of γmin being 0.5. In this work, we relax this restriction and
set γmin = 0, for those lenses in our sample in which the largest angular separation between
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the images is greater than 3′′. The lenses in our sample which satisfy this criterion are RX
J0911.4+0551, Q0957+561, SDSS J1004+4112, HE 1104−1805 and RX J1131−1231. A
large image separation implies that there is significant lensing action from the cluster of
which the main lensing galaxy is part of, in which case the projected density profile can be
shallower than |θ |−0.5.

For each system, we build an ensemble of 100 models, corresponding to 100 values of
H0. The mean of the 100 values gives the best estimate of H0, the uncertainty of which is
the standard deviation of the 100 values. This uncertainty includes only the uncertainty in
the mass model. PixeLens assumes that the uncertainty in the input priors to be negligi-
bly small, which is a reasonable assumption for the redshifts, if they are spectroscopically
measured and astrometry, if measured from HST or ground-based adaptive optics imaging.
However the measured time delays have finite uncertainties, which need to be propagated
into the uncertainty of the estimated H0. We achieve this by summing the fractional un-
certainty arising from mass modelling and the fractional uncertainty in the measured time
delay in quadrature. In case of quadruple lenses having more than one known time delay,
the fractional uncertainty component arising from time delay measurement for the system
is computed by averaging the fractional uncertainties of the independent time delays in
quadrature.

In order to include the effects of external shear, an approximate direction of the shear
axis needs to be specified and PixeLens will search for solutions within 45◦ of the specified
direction. Since there exists no simple rule to guess the direction of the external shear
for a given system, for each system, we repeat the modelling, specifying the approximate
direction of the shear axis as 90◦, 45◦, 0◦ and −45◦. (Note that, in this instance, specifying
θ and θ+180◦ are equivalent.) We thus obtain four estimates of H0 and their uncertainties.
The final estimate of H0 and its uncertainty are found using maximum likelihood analysis,
optimising their values such as to maximise the joint posterior probability of these two
parameters for the sample consisting of the four H0 values and their uncertainties (as in,
Barnabè et al. 2011, Eq. 7). In optimising the value of the uncertainty, we choose the
minimum limit to be the smallest of the four uncertainties. For each system, we found that
the H0 estimates for the various shear directions are consistent with each other within 2σ

and hence the uncertainty of the final estimate of H0 turns out to be the smallest uncertainty.

The input priors for each system and the resulting H0 estimates are summarised in
Table 5.1, wherein

– the QSO images are listed in arrival-time order,

– ‘P.M.’ is abbreviation for point mass,
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– the astrometry of the QSO images and point masses are specified with respect to the
center of the main lensing galaxy and

– the time delay of a given image is listed (if measured to a precision of better than 33.3%)
with respect to the previous image in terms of arrival-time order.

In Fig. 5.2, we plot the H0 estimates from the 12 lenses, all of which are seen to agree with
each other within 2σ . To combine the 12 independent estimates into a best estimate of H0,
we again employ maximum likelihood analysis, as described above. However, in this case,
in optimising the value of the uncertainty of the best estimate of H0, the minimum limit is
chosen to be the uncertainty of the weighted average of the 12 values. We infer a value of H0

of 72.1 ± 5.7 km s−1 Mpc−1 (1σ uncertainty, 7.9% precision) for a spatially flat universe
having Ωm = 0.3 and ΩΛ = 0.7. The reason for employing maximum likelihood analysis
in this case, rather than taking a simple weighted average is to detect the presence of any
unmodelled uncertainties. However as can be seen from Fig. 5.2, the H0 estimates from
the individual systems all agree with each other within 2σ and hence the H0 value inferred
above through maximum likelihood analysis is only marginally different compared to the
weighted average.

As an instructive exercise, we modelled all the lenses without allowing for external
shear and found a H0 value of 67.0± 5.6 km s−1 Mpc−1, which agrees with the value found
above within the error bar, presumably because the biases resulting from not accounting
for external shear for the different lenses in the sample tend to average out. For the source
and lens redshifts of the current sample, we find the H0 estimate to decrease by 6.6% for
Einstein-de Sitter universe (Ωm = 1.0 and ΩΛ = 0.0) and increase by 2.1% for an open
universe having Ωm = 0.3 and ΩΛ = 0.0, thus illustrating the low level of dependence of the
inferred value of H0 on the precise values of Ωm and ΩΛ.

In Figs. 5.3 – 5.14, we have displayed the high-resolution images for the modelled
systems from which their astrometry were derived.
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Table 5.1: Summary of input data to PixeLens and resulting
H0 estimates.

Object, zl , zs Image ∆RA ∆Dec Time delay H0

/ P.M. [′′] [′′] [day] [km s−1 Mpc−1]

HE 0435−1223(1) A 1.1706 0.5665 91.9 ± 17.1
zl = 0.4546(2) C −1.2958 −0.0357
zs = 1.689(3) B −0.3037 1.1183 7.3 ± 2.2

D 0.2328 −1.0495 6.1 ± 1.2

RX J0911.4+0551(4) B −2.2662 0.2904 79.6 ± 32.6
zl = 0.769(5) A2 0.9630 −0.0951 143.2 ± 10.1
zs = 2.800(6) A1 0.7019 −0.5020

A3 0.6861 0.4555
P.M. −0.7582 0.6658

Q0957+561(7) A 1.408 5.034 97.2 ± 31.4
zl = 0.361(8) B 0.182 −1.018 418.7 ± 1.5
zs = 1.41(8)

SDSS J1004+4112(9) C 3.925 −8.901 91.8 ± 30.1
zl = 0.68(10) B −8.431 −0.877 777.9 ± 12.8
zs = 1.734(11) A −7.114 −4.409 35.5 ± 2.5

D 1.285 5.298

HE 1104−1805(4) B 1.9289 −0.8242 103.5 ± 52.7
zl = 0.729(12) A −0.9731 0.5120 158.4 ± 6.2
zs = 2.319(13)

PG 1115+080(4) C −0.3813 1.3442 61.5 ± 19.5
zl = 0.3098(14) A1 0.9473 −0.6896 18.3 ± 4.4
zs = 1.722(15) A2 1.0959 −0.2315

B −0.7218 −0.6156

RX J1131−1231(16) B −2.076 0.662 71.6 ± 25.4
zl = 0.295(17) C −1.460 −1.632
zs = 0.658(17) A −2.037 −0.520

D 1.074 0.356 92.9 ± 1.5
P.M. −0.097 0.614

SBS 1520+530(4) A −1.1395 0.3834 58.3 ± 17.3
zl = 0.761(18) B 0.2879 −0.2691 125.8 ± 20.1

Continued on next page
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Table 5.1 – continued from previous page

Object, zl , zs Image ∆RA ∆Dec Delay H0

/ P.M. [′′] [′′] [day] [km s−1 Mpc−1]

zs = 1.855(19)

CLASS B1608+656(4) B 1.2025 −0.8931 60.3 ± 11.2
zl = 0.6304(20) A 0.4561 1.0647 30.0 ± 2.6
zs = 1.394(21) C 1.2044 0.6182

D −0.6620 −0.1880 41.4 ± 3.3
P.M. 0.7382 0.1288

WFI J2033−4723(22) B 1.4388 −0.3113 71.5 ± 12.2
zl = 0.661(23) A1 −0.7558 0.9488 36.0 ± 1.6
zs = 1.66(24) A2 −0.0421 1.0643

C −0.6740 −0.5891 25.1 ± 3.8

HE 2149−2745(4) A −0.7198 −1.1498 86.8 ± 33.5
zl = 0.603(25) B 0.1703 0.2963 84.3 ± 19.4
zs = 2.033(26)

SDSS J0806+2006(27) A 0.918 0.514 80.0 ± 30.2
zl = 0.573(25) B −0.398 −0.187 54.2 ± 6.8
zs = 1.540(28)

Combined 72.1 ± 5.7

References for astrometry, lens redshift and source redshift. (1) Courbin et al. (2011);
(2) Morgan et al. (2005); (3) Wisotzki et al. (2002); (4) Sluse et al. (2012); (5) Kneib et al.
(2000); (6) Bade et al. (1997); (7) Fadely et al. (2010); (8) Walsh et al. (1979); (9) Inada
et al. (2005); (10) Oguri et al. (2004); (11) Inada et al. (2003); (12) Lidman et al. (2000); (13)

Smette et al. (1995); (14) Tonry (1998); (15) Weymann et al. (1980); (16) Suyu et al. (2013a);
(17) Sluse et al. (2003); (18) Auger et al. (2008); (19) Chavushyan et al. (1997); (20) Myers
et al. (1995); (21) Fassnacht et al. (1996); (22) Vuissoz et al. (2008); (23) Eigenbrod et al.
(2006); (24) Morgan et al. (2004); (25) Eigenbrod et al. (2007); (26) Wisotzki et al. (1996);
(27) Sluse et al. (2008); (28) Inada et al. (2006).
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Figure 5.3: Left: HST image of HE 0435−1223. Right: Deconvolved image. (Image
courtesy: Courbin et al. 2011)

Figure 5.4: Left: HST image of RX J0911.4+0551. Right: Deconvolved image. (Image
courtesy: Sluse et al. 2012)
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Figure 5.5: Left: HST image of Q0957+561. Right: Central region after the quasar images
and the main lensing galaxy have been subtracted. (Image courtesy: Fadely et al. 2010)
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Figure 5.6: HST image of SDSS J1004+4112. (Image courtesy: Inada et al. 2005)
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Figure 5.7: Left: HST image of HE 1104−1805. Right: Deconvolved image. (Image
courtesy: Sluse et al. 2012)

Figure 5.8: Left: HST image of PG 1115+080. Right: Deconvolved image. (Image cour-
tesy: Sluse et al. 2012)
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Figure 5.9: HST image of RX J1131−1231. (Image courtesy: Suyu et al. 2013a)

Figure 5.10: Left: HST image of SBS 1520+530. Right: Deconvolved image. (Image
courtesy: Sluse et al. 2012)
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Figure 5.11: Left: HST image of CLASS B1608+656. Right: Deconvolved image. (Image
courtesy: Sluse et al. 2012)

Figure 5.12: Left: HST image of WFI J2033−4723. Right: Deconvolved image. (Image
courtesy: Vuissoz et al. 2008)
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Figure 5.13: Left: HST image of HE 2149−2745. Right: Deconvolved image. (Image
courtesy: Sluse et al. 2012)

Figure 5.14: Left: VLT image of SDSS J0806+2006 taken with adaptive optics. Right:
Deconvolved image. (Image courtesy: Sluse et al. 2008)



Chapter 6

Conclusion and Future prospects

Estimates of H0, the current expansion rate of the universe, now available in literature cover
a wide range of uncertainties from ∼2% to ∼10% and the values range between 60 and 75
km s−1 Mpc−1. These are estimates found using different methods as outlined in Chapter
1. It has emerged recently (Suyu et al. 2012) that a measurement of H0 to 1% precision
and accuracy, which can provide good constraints on dark energy, spatial curvature of the
universe, neutrino physics, etc., with proper accounting of random and systematic errors is
within reach for several methods. It has recently been demonstrated that it is possible to
measure the time-delay distance to ∼5% for a single lens system (Suyu et al. 2010) and
that in future it is possible to bring down this error by studying more number of time delay
lenses (Suyu et al. 2012). The main motivation of the present work is to (i) measure accurate
time delays for a sample of lenses and (ii) consequently estimate H0 using improved time
delay estimates.

The observational strategy followed in this work is to get good quality lightcurves with
dense temporal sampling for two gravitationally lensed quasars. The observations used in
this work come from four different telescopes, however, all the observations were analysed
following a uniform procedure. The major findings of this work are given in the sections
below.

6.1 Time delay of SDSS J1001+5027

In Rathna Kumar et al. (2013), we presented the full COSMOGRAIL light curves for the
two images of the gravitationally lensed quasar SDSS J1001+5027. The final data, all taken
in the R band, totalize 443 observing epochs, with a mean temporal sampling of 3.8 days,
from the end of 2004 to mid-2011. The COSMOGRAIL monitoring campaign for SDSS
J1001+5027 is no longer in progress. It involved three different telescopes with diameters
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from 1.2 m to 2 m, hence illustrating the effectiveness of small telescopes in conducting
long-term projects with potentially high impact on cosmology.

We analyzed our light curves with five different numerical techniques, including the
three methods described in Tewes et al. (2013a). In addition, we introduced and described
a new additional method, based on representing the extrinsic variability by a smoothed
version of the difference light curve between the quasar images. Finally, we also presented
results obtained via the technique of Hojjati et al. (2013), based on modeling of the quasar
and microlensing variations using Gaussian processes. The technique was blindly applied
to the data by the authors of Hojjati et al. (2013), without any prior knowledge of the results
obtained with the other four methods.

Aside from the dispersion-like technique, dominated by systematic errors, we find that
the four other methods yield similar time-delay values and similar random and systematic
error bars. Our final estimate of the time delay is taken as the mean of these four best
results, together with the mean of their uncertainties: ∆tAB = −119.3± 3.3 days, with
image A leading image B. This is a relative uncertainty of 2.8%, including systematic
errors.

The present time-delay measurement can be used in combination with lens models to
constrain cosmological parameters, in particular the Hubble parameter H0 and the curvature
Ωk (e.g., Suyu et al. 2013a). The accuracy reached on cosmology with SDSS J1001+5027
alone or in combination with other lenses, will rely on the availability of follow-up observa-
tions to measure: (1) the lens velocity dispersion, (2) the mass contribution of intervening
objects along the line of sight, and (3) the detailed structure of the lensed host galaxy of the
quasar.

6.2 Time delay of SDSS J0806+2006

In Chapter 3, we present the light curves of SDSS J0806+2006 using data obtained from
September 2007 till April 2012 using two different telescopes: the 2.0-m LRT and the
2.0-m HCT. These measurements are available for this source for the first time. The light
curves constitute 153 independent epochs, with a mean sampling interval of about a week.
Using the difference-smoothing technique, we measured a time delay of ∆tAB = −54.2 ±
6.8 days (1σ uncertainty, 12.5% precision), with image A leading image B. The uncertainty
was estimated using simulated light curves having known time delays in a plausible range
around the measured time delay. A new recipe for creating such simulated light curves is
also presented in this thesis.
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6.3 H0 from well measured time-delay lenses

We have presented a homogeneous curve-shifting analysis of the light curves of 24 gravita-
tionally lensed quasars for which time delays have been reported in the literature till date.
Time delays were measured using the difference-smoothing technique and their uncertain-
ties were estimated using realistic simulated light curves, a recipe for creating which was
introduced in this thesis, having known time delays in a plausible range around the mea-
sured delay. We identified 18 systems to be having light curves of sufficiently good quality
to enable the measurement of at least one time delay between the images, adjacent to each
other in terms of arrival-time order, to a precision of better than 33.3% (including system-
atic errors). In addition to these 18 systems, we have SDSS J0806+2006 for which a new
time delay measurement is presented in this thesis.

Of those 19 systems in total, we performed pixellated mass modelling using the
publicly-available PixeLens software for 12 of them, which have known lens redshifts,
accurate astrometric information and sufficiently simple mass distribution. We infer the
value of H0 to be 72.1 ± 5.7 km s−1 Mpc−1 (1σ uncertainty, 7.9% precision) for a spa-
tially flat universe having Ωm = 0.3 and ΩΛ = 0.7. This matches well with a recent estimate
of H0 = 69.0± 6 (stat.) ± 4 (syst.) km s−1 Mpc−1 found by (Sereno & Paraficz 2014) using
a method based on free-form modelling of 18 gravitational lens systems. Our value is also
consistent with the recent measurements of H0 by Riess et al. (2011) and Freedman et al.
(2012), however it has lower precision. Increasing the number of lensed systems with good
quality light curves from the current 12 used in this study, can bring down the uncertainty
in H0.

In future such high precision time delays will become available from COSMOGRAIL
and the International Liquid Mirror Telescope (ILMT; Sagar et al. 2012; Poels et al. 2012)
project. Also, next generation cosmic surveys such as the Dark Energy Survey (DES), the
Large Synoptic Survey Telescope (LSST; Ivezic et al. 2008) and the Euclid mission will
detect a large sample of lenses and time delays might be available for a large fraction of
them and consequently enabling measurement of H0 to an accuracy better than 2%. Further,
detection of gravitational wave signal from short gamma-ray bursts associated with neutron
star binary mergers in the coming decade could constrain H0 to better than 1% (Nissanke
et al. 2013).
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6.4 Future prospects

It is clear from this work that estimate of H0 based on strong lensing time delays is currently
limited by the small sample of lensed quasars with accurate delays. However, by the end
of this decade, the situation is expected to change with both the availability of a large
sample of gravitationally lensed quasars with time delays from the Large Synoptic Survey
Telescope (LSST) (Treu et al. 2013) and improvements in mass modelling techniques. The
availability of good time series data on a large number of lensed sytems in the future is also
going to be complemented by good time delay estimation techniques. There is already an
initiative in this direction as can be seen in “Strong lens time delay challenge” Dobler et al.
(2013). I plan to contribute to the above initiative in addition to continuing the monitoring
program.
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