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Abstract

Chemical composition of metal-poor stars are crucial to develop an understanding of
the nature of the earliest stars formed in the universe, the nucleosynthesis events associ-
ated with them, as well as, to redefine the models of galaxy formation. Elements heavier
than the iron peak are made via two principal processes: the rapid neutron-capture process
(r-process) and the slow neutron-capture process (s-process). Insight into the astrophys-
ical sites and the production mechanisms of neutron-capture elements can be obtained
by studying chemical composition of stars that exhibit large enhancement of neutron-
capture elements such as the Carbon-Enhanced Metal-Poor (CEMP) stars. Among the
CEMP stars, CEMP-s stars exhibit the presence of strongly enhanced s-process elements
and CEMP-r stars are with strong enhancement of r-process elements. A number of
CEMP stars are also known to exhibit enhancement of both r- and s-process elements,
the CEMP-1/s stars (Hill et al. 2000, Goswami et al. 2006, Jonsell et al. 2006 etc.). Till
now, the upper limit in the metallicity of stars showing double enhancement is [Fe/H] <
-2 (HE 1305+0007 with [Fe/H] = -2.0, (Goswami et al. 2006)). In spite of several ef-
forts, a physical explanation for the observed double enhancement is still lacking (Qian
& Wasserburg 2003; Wanajo et al. 2006). A few CEMP stars are known that show no
enhancement of neutron-capture elements, the CEMP-no stars.

Identification of an explicit stellar site for s-process nucleosynthesis started with the
works of Weigert (1966) and Schwarzschild & Héarm (1967) on the thermal pulse calcu-
lations. Slow neutron-capture elements are now believed to be produced due to partial
mixing of protons into the radiative C-rich layers during thermal pulses that initiate the
chain of reactions '>C(p,y) BN(B) *C(a,n)'°0 in a narrow mass region of the He in-
tershell during the inter-pulse phases of a low-mass AGB stars. Rapid neutron-capture
process elements are thought to be produced during SN explosions or accretion induced
collapse.

High resolution spectroscopic analyses of CEMP stars have established that the largest
group of CEMP stars are s-process rich (CEMP-s) stars and accounts for about 80 per cent
of all CEMP stars (Aoki et al. 2007). Chemical composition studies of CEMP stars (Bar-
buy et al. 2005; Norris et al. 1997a,b, 2002; Aoki et al. 2001, 2002; Goswami et al. 2006,
2010a) also have suggested that a variety of production mechanisms are needed to ex-
plain the observed range of elemental abundance patterns in them; however, the binary
scenario of CH star formation is currently considered as the most likely formation mech-
anism also for CEMP-s stars. This idea has gained further support with the demonstration
by Lucatello et al. (2005), that the fraction of CEMP-s stars with detected radial velocity
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variations is consistent with the hypothesis of all being members of binary systems.

CH stars characterized by iron deficiency, enhanced carbon and s-process elements
are known to be post-mass-transfer binaries (McClure & Woodsworth 1990) in which
the companion (primary) has evolved to white dwarf passing through an AGB stage of
evolution. The chemical composition of CH stars (secondaries) bear the signature of
the nucleosynthesis processes occurring in the companion AGB stars due to mass trans-
fer. Roche-Lobe Overflow (RLOF) and wind accretion are among the suggested mass
transfer mechanisms. Recent hydrodynamical simulations have shown in the case of the
slow and dense winds, typical of AGB stars, that efficient wind mass transfer is pos-
sible through a mechanism called Wind Roche-Lobe Overflow (WRLOF) Mohamed &
Podsiadlowski 2007; Abate et al. 2013. CH stars (secondaries) thus form ideal targets
for studying the operation of s-process occurring in AGB stars. Chemical abundances
of key elements such as Ba, Eu etc. and their abundance ratios could provide insight in
this regard. In our studies along this line we have considered a sample of eighty nine
faint high latitude carbon stars from the Hamburg/ESO survey (Christlieb et al. 2001) and
based on medium resolution spectroscopy found about 33% of the objects to be poten-
tial CH star candidates (Chapter 3). Inspite of their usefulness, literature survey shows
that detailed chemical composition studies of many of the objects belonging to the CH
star catalogue of Bartkevicius (1996) are currently not available. A few studies that ex-
ist are either limited by resolution or the wavelength range. The CH star catalogue of
Bartkevicius (1996) lists about 261 objects, 17 of which belong to w Cen globular cluster.
Many of the objects listed in this catalogue have no information on binary status. It is
worthwhile to compare and examine the abundance patterns of elements observed in the
confirmed binaries with their counterparts in objects that have no information on binary
status. While long-term radial velocity monitoring are expected to throw light on the bi-
nary status, detailed chemical composition studies could also reflect on the binary origin.
We have therefore undertaken to carry out chemical composition studies for a selected
sample of CH stars from this catalogue using high resolution spectra. Towards this end,
we have considered twenty two objects from the catalogue of Bartkevicius (1996) for a
detailed chemical composition study (Chapter 4 and Chapter 5). Detailed high resolution
spectroscopic analyses for this sample of objects are either not available in the literature
or limited by resolution or wavelength range. The sample includes five confirmed bina-
ries, six objects that are known to show radial velocity variability, and for the rest eleven
objects, none of these two information is available. In the following text, for convenience,

we will refer the objects that are confirmed binaries as group I objects, those with limited
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radial velocity information as group II objects and the objects for which none of these in-
formation are available as group III objects. One of our primary objectives is to estimate
the abundances of heavy elements in all the stars of these three groups of objects and crit-
ically examine the abundance patterns and abundance ratios if they exhibit characteristic
abundance patterns of CH stars.

Polarimetric studies of carbon stars by Goswami & Karinkuzhi (2013) include six ob-
jects from this sample. Among these, three objects show percentage V-band polarization
at a level ~ 0.2% (HD 55496 (p,% ~ 0.18), HD 111721 (p,% ~ 0.22, and HD 164922
(py% ~ 0.28)) indicating presence of circumstellar dust distribution in non-spherically
symmetric envelopes. The other three objects, HD 92545, HD 107574 and HD 126681,
show V-band percentage polarization at a level < 0.1%.

Among CEMP stars, the group of CEMP-1/s stars show enhancement of both r- and
s-process elements (0 < [Ba/Eu] < 0.5, (Beers & Christlieb 2005)). [Ba/Eu] ratio for
our programme stars are not falling in this range. The two neutron-capture processes,
the s-process and the r-process require entirely different astrophysical environments, dif-
ferent time-scales and neutron flux for their occurrence. While slow neutron-capture
elements are believed to be produced in the inter pulse phases of low mass AGB stars,
the rapid neutron-capture process requires very high temperatures and neutron flux and
are expected to be produced during supernova explosions. To understand the contribution
of these two processes to the chemical abundance of the neutron-capture elements we
have conducted a parametric model based study. Our study indicates seven objects in our
sample to have abundances of heavy elements with major contributions coming from the

S-process.

The primary objectives of this study are:

e Determination of chemical compositions of a selected sample of metal-poor objects
with special emphasis on the production and distribution of carbon and neutron-capture
elements.

e To determine the contribution of s- and r-process to the elemental abundances in the
framework of a parametric model and hence the origin of neutron-capture elements.

e To complement our spectroscopic studies with photometric as well as other studies

available in literature.
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5.14 Abundance ratios of heavy elements observed in the program stars with

5.15

respect to [Fe/H]. The confirmed binaries are shown with solid circles,
the objects with limited radial velocity information are shown with open
circles, and the rest of the objects are indicated with solid triangles. The
abundance ratios show a large scatter with respect to metallicity. . . . . .
Same as figure 5.14. But the estimated abundance ratios of Ba, La, Ce and
Eu with respect to Fe plotted in this figure are compared with the abun-
dance ratios observed in CEMP stars (solid pentagons) from Masseron
et al. (2010) and Ba stars (solid squares) from Allen & Barbuy (2006a).
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CHAPTER 1

INTRODUCTION

1.1 Carbon-Enhanced Metal-Poor (CEMP) stars

Carbon stars are an important class of chemically peculiar stars; a large fraction of them
show enhancement of carbon and heavy elements. They are known to populate the halo
of the Galaxy (Wallerstein & Knapp 1998; Evans 2010). In the past 20 years, abundance
studies using solid state detectors and echelle spectrograph revealed a wealth of new
information about these objects leading to an understanding of their role in the much
more complicated and multifaceted picture of stellar evolution. This in turn helps us to
constrain the formation and evolution of the Galaxy. An interesting phenomenon is that
the number of stars showing carbon enhancement increases with decreasing metallicity
(Norris et al. 1997a; Rossi et al. 1999). The objects that show enhancement of carbon
and metallicity ([Fe/H]) * < —1 are called Carbon-Enhanced Metal-Poor (CEMP) stars.
They are found in different evolutionary states and include Asymptotic Giant Branch
(AGB) stars, giant stars, subgiant stars and also dwarf carbon stars. Since carbon plays
an important role in the post main-sequence evolution of the stars it is important to study
these objects in detail for understanding the origin of carbon and heavy elements. CEMP
stars may also be considered as a fossil record’ of the early Universe. However, most
of these stars are faint and rare and thus the number of these stars for which detailed
chemical abundances have been measured is small. The surface chemical composition
of a star can be altered by different mechanisms which include internal nucleosynthesis
and the mixing of these materials to the stellar surface, mass transfer in a binary system

and compositional differences in the gas from which they form. The detailed chemical

*[Fe/H] = loglo(%—’;)* - loglo(?\’,—’:)@, where Ny, and Ny are number densities of iron and hydrogen
atoms respectively.
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analysis of stars help to understand the origin of these elemental abundance patterns in
them. CEMP stars in the Galactic halo have been known as CH stars (Keenan 1942). They
are metal-deficient high velocity carbon stars with enhanced abundances of the neutron-
capture elements and are called classical CH stars. These stars are generally divided into
two groups; intrinsic and extrinsic. In intrinsic carbon stars, carbon enrichment results
from a deep mixing process that pollute the envelop with carbon produced by internal
nucleosynthesis. In case of extrinsic carbon stars, carbon enrichment results from transfer
of carbon rich material in a binary system. The main goal of this thesis is to conduct
detailed chemical composition study of a large sample of CEMP stars including CH stars

to understand the nucleosynthetic origin of the observed abundance patterns.

1.2 Stellar evolution and Nucleosynthetic processes lead-

ing to a carbon star

Before going to the discussion on carbon stars it is necessary to understand the evolution-
ary stages and nucleosynthetic processes a star passes through to become a carbon star.
Many review articles are available in literature with detailed discussions on the evolution
and nucleosynthesis taking place at different evolutionary states of low and high-mass
stars to AGB stage (Iben 1991; Busso et al. 1999; Karakas 2010); here we briefly discuss
the same that is relevent to our proposed work. Properties of stars are generally discussed
on the basis of its position in the Hertzsprung-Russel (H-R) diagram. Most of the stars
when plotted in H-R diagram (Figure 1.1) are found to be in a diagonal line called main-
sequence, where the hydrogen is burning to form helium, producing the necessary energy
to maintain a stable equilibrium. This hydrogen burning takes place, depending on the
mass of the stars, either by proton-proton chain (M < 2M) or by CNO cycle (M > 2M,).
Most of the stars spend about 90 per cent of the lifetime in main-sequence. When the star
uses up the core hydrogen the post main-sequence evolution starts that depends entirely
on the star’s mass. For the low-mass stars, after the hydrogen has been exhausted the core
must contract to balance the deficit of energy since there is no energy generation in the
core. Due to the contraction, core heats itself as well as the layers just above it. Hence the
temperature increases making the hydrogen to burn in a shell just outside the hydrogen
exhausted core. The energy produced in the core is not enough to burn the helium. The
core continues to contract. To balance the increase in surface gravity at the border of
the core the pressure has to increase either by increasing the density or by increasing the

temperature. Due to this increase star expands and there by increasing the total radius R.
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>

Figure 1.1: H-R diagram

The luminosity has to be constant thus effective temperature decreases according to the

relation
L =4nR*0T*

This immediate post main-sequence evolution of the star therefore moves the stars po-
sition more or less horizontally to the right in the H-R diagram turning the star into a
subgiant. As the star expands the effective temperature cannot fall below a particular
value. This temperature barrier causes the evolutionary track of the low-mass stars to
move vertically upwards turning the subgiant into a red giant star. At this stage the entire
envelop becomes convective. As the star expands, the convective layer penetrates into the
regions which has already experienced partial CN processing during main sequence evo-
lution and this dredges up the material into the surface which in turn changes the surface
chemical composition of the star. This is called the First Dredge-Up (FDU) and is marked
in Figures 1.2 and 1.3.
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Figure 1.2: Schematic evolution in the H-R diagram of a 1 MO stellar model and solar
metallicity. All of the major evolutionary phases discussed in the section 1.2 are indicated
(Busso et al. 1999).
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Figure 1.4: Schematic structure of an AGB star (Karakas 2010)

The core continues to contract which makes the free electrons in the core tightly
packed and they became degenerate. Due to the very large border gravity associated
at this stage, the hydrogen burning in the shell becomes furious making the star to move

to the tip of red-giant branch. At this stage temperature of the core reaches 108 K which

is enough to burn helium into carbon via triple alpha process.

Since the helium burning occurs at the degeneracy conditions, a slight increase in
temperature causes an increase in pressure. Hence, the increase in core temperature lead
to overproduction of nuclear energy without compensating the pressure increase and ex-
pansion. This helium burning occurs in a star as a thermal flash which occurs in some
intervals. This causes the removal of the degeneracy in the shell. After the helium flash is
completed the core contains ordinary helium plasma fusing helium into carbon and sur-
rounded by a hydrogen burning shell. This state is called Horizontal Branch (HB) and
also called as the helium main-sequence.

When the helium in the core of the horizontal branch star is exhausted, the core must
contract similar to the case of hydrogen exhaustion in a main-sequence star. At this stage
helium ignites in a shell outside the core and hydrogen burns in a shell above the helium
burning shell. This double shell burning stage is called AGB stage (Figure 1.4). The
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luminosity of the star increases very high at this stage. The core continues to contract
making the free electrons degenerate and the envelop becomes convective. If the star is
not very massive, its core temperature never gets hot enough for carbon to burn. At this
stage the convective envelop penetrate through hydrogen burning shell transferring the
products of helium burning material to the surface. This process is called Third Dredge
Up (TDU). After the TDU we could find the carbon at the stellar photosphere and the C/O
ratio of the object slowly increases. After many TDU episodes the star becomes a carbon

star with C/O ratio greater than unity.

1.3 Intrinsic properties of carbon stars

A carbon star is a late type giant with strong bands of carbon compounds and no metallic
oxide bands. Thus very intense bands of CH, CN, C, are visible. The interstellar medium
is oxygen rich so the overwhelming majority of stars are formed with C/O ratio < 1. In
case of carbon stars C/O ratio is found to be > 1. The luminosity of the nearby carbon
stars can be found from the Hipparcos parallax measurements and the values are found to
be comparable with the luminosity values for giants. The masses of the carbon stars are

generally observed between 1 - 3 M (Wallerstein & Knapp 1998)

1.3.1 Spectral classification of carbon stars

Secchi (1868) classified the carbon stars as a group for the first time in his R—N system
according to some spectral criteria, in which stars with relatively week C, and CN bands
are put in the subclass from Ry, — R; and the stars with strong C, and CN bands are put
in the classes Rs — Rg. The stars in the R groups have well defined continuum at least
down to 3900 A. For the stars in the N class, even though they are showing strong carbon
bands, continuum is very week in the regions below 4000 A. Later Shane (1928) also did
a detailed study on these R and N group stars. They revealed that temperature variations
among these groups are very less and the branching is caused by the abundance varia-
tions in C and O. The modern system of classification of carbon stars was established
by Keenan (1993), who subdivided them into three sequences C—R, C—N and CH corre-
sponding to the old RN and CH star classifications. To indicate the temperature sequence,
Keenan used the numerals from 1 - 9 e.g. from C-N1 to C—N9. Keenan described the
spectra with the strengths of the C,, CN and Merrill-Sanford bands as well as the '2C/"*C
ratio and the Li line strength. Wallerstein & Knapp (1998) had given a detailed descrip-

tion of their spectral characteristics. The next section describes the important spectral
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characteristics of different groups of carbon stars.

1.3.2 C-R stars

C—R stars are the warmest of carbon stars. For them the blue part of the spectrum have
appreciable flux and can be used for analysis. They have carbon rich atmospheres similar
to CH stars. C-R stars show 2C/'3C ratio between 4 to 9. The s-process elements
are nearly solar in C—R stars (Dominy 1984) and they are not observed to be in binary

systems.

1.3.3 C-N stars

Among the carbon stars, C—N stars have lowest temperatures and strong molecular bands.
The C—N stars are easily detected in infrared surveys from their characteristic infrared
colors. The majority of C—N stars show '2C/!3C ratio of more than 30, ranging to nearly
100. The C—N stars show a weakening continuum below 4300 A; the reason for this is

assumed to be scattering by particulate matter.

1.3.4 C-]J stars

The group of C—J stars show a very high '*C abundance with '2C/"3C value < 13 (Lambert
et al. 1986). C—J stars are not intrinsic. Abia & Isern (2000) showed that C—J type stars
are less evolved objects than other types of carbon stars. They constitute about 10 - 15
per cent of the carbon stars in both our Galaxy and Magellanic clouds. There are many
studies devoted to the understanding of the origin of these peculiar type of carbon stars
(Ohnaka et al. 2008; Izumiura et al. 2008).

1.3.5 CH stars

CH stars were first described as a class of warm carbon stars by Keenan (1942). They have
equivalent spectral types of G and K giants but show weak metallic lines. But features
due to CH, C, and s-process elements are enriched relative to normal giants. In addition
to being metal-poor they show large radial velocities indicating that they are halo objects.
All these stars have relatively low effective temperatures (4000—4750 K) and high carbon
abundances. CH stars are generally found in Galactic halo. A few are observed in globular

clusters also.
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Subgiant-CH stars

Bond (1974) discovered a class of stars with the enhancement of carbon and s-process
elements but with a luminosity which place them near or above the main sequence. These
class of objects were named as subgiant-CH stars. Many studies (Luck & Bond 1982;
Sneden 1983; Sneden et al. 1985; Smith & Lambert 1986; Smith et al. 1993) indicated that
most of them are moderately metal-deficient with [Fe/H] = —0.1 to —0.8. The atmospheric
parameters of subgiant-CH stars are found to be typical of F- and G-type main-sequence
stars (Luck & Bond 1991). They also show enhancement of s-process elements similar to
Barium stars. Moderate velocities of subgiant-CH stars indicated their old disk behaviour
rather than the halo. These objects are generally considered as the progenitors of metal-
deficient Ba stars. Similar to CH and Ba stars most subgiant-CH stars are also found in a
binary system. Smith & Demarque (1980) first suggested the mass transfer mechanisms
to explain the anomalous abundance behaviour of these objects. Later in 1996, McClure

confirmed the binary nature of subgiant-CH stars with radial velocity variations.

1.3.6 CH-like stars

Yamashita (1975) had given a detailed description of a group of stars whose spectra show
close resemblance to those of CH stars, but their radial velocities and proper motions
show no indication of high velocity and named these objects as CH-like stars. These stars
also show a close similarity with the spectra of Ba II stars with enhanced carbon features.
The spectra of CH-like stars show enhanced features of carbon and heavy elements. Even
though the carbon is enhanced in CH like stars, C, bands are weakly detected. But the

12C/13C ratio is found similar to CH stars.

1.4 Metal-poor stars and carbon-enhancements

Metal-poor stars (whose metal contents are less compared to sun) in the Galactic halo are
population II objects which are formed from the ejecta of the more massive population
III objects and they provide an evidence of the chemical nature of the early universe.
For the same reason, they are considered as the ’fossil record’ of the early universe.
The chemical abundance patterns in these objects help us to understand the formation
and evolution of the elements and associated nucleosynthetic processes. Although the
frequency of the metal-poor stars in the halo is high, due to the difficulties in detection

these stars are found to be extremely rare in the solar neighborhood, only about 0.1 per
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Figure 1.5: [C/Fe] versus [Fe/H] for a literature sample (open squares) including the
metal-poor stars (solid circles) from Beers et al. (1992). Figure is from Rossi et al. (1999)

cent of stars within a kilo parsecs of the sun have [Fe/H] < —2.0 . Despite the difficulty
involved in finding the metal-poor stars much effort has been expended in search of them.
Hamburg /ESO survey (Christlieb et al. 2001) and HK survey (Beers et al. 1992) are the
two important ones among them. The most interesting results that came out from these
surveys are, among the most metal-deficient stars there appears to be a high incidence
of objects with enhanced carbon and neutron-capture elements (Rossi et al. 1999; Beers
& Christlieb 2005; Frebel et al. 2006; Lucatello et al. 2006) called CEMP stars. The
fraction of metal-poor stars that are also carbon-enhanced is much higher than the fraction
of solar-metallicity stars exhibiting carbon enhancement. Approximately 20 per cent of
metal-poor stars with [Fe/H] < —2.0 are carbon-enhanced. The fraction increases with
decreasing metallicity (Figure 1.5, Ref : Rossi et al. (1999)). This is further confirmed

by different authors by the analysis of large number of metal-poor stars (Cohen et al.
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2005; Lucatello et al. 2006). Frebel et al. (2006) show that the number of metal-poor
stars increases with the distance from the Galactic plane. CEMP stars are not yet been
understood fully and deserve more detailed analysis. As of now, two stars with [Fe/H] <
—5.0 called hyper metal-poor stars are detected (Christlieb et al. 2002; Frebel et al. 2005).
The details about the origin and enhancement of the neutron-capture elements in CEMP

stars are discussed in the next section.

1.4.1 Neutron-capture nucleosynthesis and production scenarios

With very high proton numbers, heavy elements with atomic numbers > 56 inhibits the
charged particle reactions (proton and a-capture) because of the electrostatic repulsion.
Hence, the elements heavier than the iron peak are made through neutron addition on
to the abundant Fe peak elements via two principal processes: the rapid neutron-capture
process (r-process) and the slow neutron-capture process (s-process). The fundamen-
tal studies on these processes started with the work of Burbidge et al. (1957) (hereafter
B?FH). Production mechanisms of s- and r-process require not only two widely differ-
ent astrophysical sites but also very different time scales and neutron flux. The s-process
occurs at relatively low neutron densities (N, = 10" neutrons/cm?) and the time scale for
neutron-capture by iron-seed elements for s-process is much longer than the time required
for their S-decay. Hence the s-process produces elements along the valley of S-stability
which include Sr, Y, Zr, Nb, Ba and La. Identification of an explicit stellar site for s-
process nucleosynthesis started with the works of Weigert (1966) and Schwarzschild &
Hérm (1967) on the thermal pulse calculations. The free neutrons for the slow neutron-

capture elements are produced mainly by two reactions,

2C(p,y)PNB)PCla,n'°0
“N(a, ) F(B,v)"* O(a, y)**Ne(a, n)* Mg

Since very high temperature is required for the operation of > Ne(a, n)> Mg reaction to
occur, it is an efficient neutron source in massive AGB stars with initial masses > 4 M.
The main source of neutrons in the low-mass AGB stars is *C(a, n)'°0. The 3 C(a, n)'°0
reaction requires the operation of both proton and a-capture to occur in He shell, a region
free of protons. During CNO cycle, there is some '*C left over in the He intershell,
which is not enough for the occurence of s-process in AGB stars (Gallino et al. 1998).
Hence some mixing of protons from the convective envelop into the top layers of the
He-intershell is required. The 3C(a,n)'°0 reactions occur at low temperature T > 90

x10°K, hence the '>C burns under radiative conditions (Straniero et al. 1995). The s-
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Figure 1.6: s-process peaks (Karakas 2010)

process occurs in the same layers where the '*C was produced. The time scale for the
neutron production during the interpulse are very long (> 10°years). This results a much
lower neutron densities than the 2’ Ne(a, n)* Mg reaction.

Clayton & Ward (1974) explained three components of s-process namely, weak, main
and strong responsible for the production of heavy elements (see Figure 1.6 for different
s-process peaks). The weak component of s-process is responsible for the production of
elements with mass number upto 88. The main component is responsible for the produc-
tion of elements with 88 < A <208. The strong component of s-process is responsible for
the production of 50 per cent of Ph**®. Busso et al. (1999) explained the various sites for
the occurrence of these three components. The double shell burning phase of the AGB
star is the preferred site for the main component of the s-process. While strong s-process
occurs in very low metallicity AGB stars, the weak component occurs during He and C
burning in massive stars with M > 12 M. Prantzos et al. (1990) show that massive stars

produce Zn to Zr.
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For r-process a very high neutron density of the order of 10®neutrons/cm? is required
and the time scale is much shorter than the S-decay time scale. Due to the extreme condi-
tions required for the r-process, it is expected to occur during supernova explosions. The
elements Eu, Er, Hf, Th etc are mainly produced by r-process.

Insight into the astrophysical sites and the production mechanisms of neutron-capture
processes can be obtained by studying chemical composition of stars that exhibit large

enhancement of neutron-capture elements.

1.4.2 CEMP- sub-groups and origin of abundance patterns

The initial classification of Beers & Christlieb (2005) defined CEMP stars as stars with
[C/Fe] ratio > 1.0. Later many authors (Ryan et al. 2005; Aoki et al. 2007; Carollo et al.
2012) revised this definition suggesting that a classification is possible even with a low
value of [C/Fe] (i.e., [C/Fe] > 0.5). CEMP stars are classified as CEMP-s stars which
exhibit the presence of strongly enhanced s-process elements and CEMP-r stars that ex-
hibit strong enhancement of r-process elements. CEMP stars that show enhancement
of both r- and s-process elements are called CEMP 1/s stars and CEMP stars that does
not show enhancement of any neutron-capture elements are called CEMP-no stars. Tak-
ing Ba as the representative s-process element and Eu, the r-process element, Beers &
Christlieb (2005) have given the classification criteria for these objects as given in Table

1.1. The trend of [Ba/Fe] values with respect to [Eu/Fe] for a large number of stars in dif-

Table 1.1: Definition of sub-classes of CEMP stars

Neutron-capture-rich stars

r-1 0.3 < [Eu/Fe] < +1.0 and [Ba/Eu] <0
r-11 [Eu/Fe]> 1.0 and [Ba/Eu] < 0

S [Ba/Fe] > 1.0 and [Ba/Eu] > 0.5

r/s 0.0 < [Ba/Eu] < +0.5

Carbon-enhanced metal-poor stars

CEMP [C/Fe] > +1.0

CEMP-r [C/Fe] = +1.0 and [Eu/Fe] > +1.0

CEMP-s [C/Fe] = +1.0, [Ba/Fe] > +1.0, and [Ba/Eu] > +0.5
CEMP-1/s [C/Fe] = +1.0 and 0.0< [Ba/Eu] < +0.5

CEMP-no [C/Fe] >+1.0 and [Ba/Fe]< 0
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Figure 1.7: [Ba/Fe] versus [Eu/Fe] for the different group of CEMP classes mentioned in
Table 1.1, where low-s stars are defined as CEMP stars with [Ba/Fe] < 1.0 and [Ba/Eu]
> 0.0. Tiny black dots and tiny red triangles indicate Classical Ba stars and black crosses
represents CEMP-no stars. Other classes are marked in the figure itself. Figure is taken
from Masseron et al. (2010).

ferent CEMP- sub-groups are shown in Figure 1.7 (Masseron et al. 2010). The peculiar
abundance patterns in CEMP-s star can be attributed to the mass transfer from an AGB
companion since most of them are identified as binaries (Lucatello et al. 2005). Jonsell
et al. (2006) presented various hypotheses to explain the anomalous abundance patterns
in CEMP-1/s stars. There have been many discussions in the literature regarding the ori-
gin of CEMP-s and 1/s stars. Tsangarides (2005) noted the similarity in [Ba/Eu] values
for a few CEMP-s stars with that of some CEMP-r/s stars. This observations made him
suggest that progenitors of both these classes may be thermally pulsing AGB stars. In the
case of CEMP-r stars many studies (Preston & Sneden 2001; Hansen et al. 2011) suggest
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that r-process enhancement is not coupled with the presence of a binary companion and
it must have originated in separate pollution events of the molecular clouds from which
they are formed. CEMP-no stars are very difficult to explain and Masseron et al. (2010)
showed that number of CEMP-no stars are more in low metallicity but the carbon abun-
dance in these objects is found to be decreasing with the decrease in metallicity of these

objects. This trend could not be explained by any of the present theoretical models.

1.5 Abundance trends with metallicity in CEMP stars

Detailed abundance analysis of a large sample of CEMP stars is required to understand
the behaviour of abundances of both lighter (Z < 30) and heavier (Z > 56) elements with
metallicity. McWilliam et al. (1995) analysed thirty three stars with metallicity between
—4.0 and -2.0. They have found that the a-elements (Mg, Ca, Si and Ti) which are
produced by a-capture during various burning stages of late stellar evolution, show an
enhancement of ~ 0.4 dex with Fe. Ivans et al. (2003) found a few objects with poor a-
elements. The abundance ratios of Cr and Mn are found to be decreasing with metallicity.
[Sc/Fe] and [Ni/Fe] are found to be solar even at very low metallicity ([Fe/H] = —4).
Heavy elements show larger scatter compared to light elements at low metallicities. Aoki
et al. (2007) analysed a group of CEMP stars and confirmed the scatter in the abundances
of heavy elements at lower metallicities. Sr shows large scatter compared to other heavy
elements. Ba has less but still significant scatter at lowest metallicities (Ryan et al. 1996).
These authors also proposed that the chemical yield of the early interstellar medium is
primarily due to the explosion energies of the first supernovae (Frebel 2008). Allen et al.
(2012) also described the anomalous abundance patterns in CEMP stars. They could see
an increasing trend of [Ba/Fe] with [C/Fe] for their programme stars. For a-elements the
observed trend is found to be similar to McWilliam et al. (1995).

1.6 [hs/ls]: An indicator to s-process efficiency

The ratio of the abundances of the heavy s-process elements (Ba, La, Ce, Pr, Nd, Sm) to
the abundances of the light s-process elements (St, Y, Zr) can be used as an indicator of
s-process efficiency. [hs/Is] ratio is a function of neutron irradiation and neutron-exposure
(Luck & Bond 1991). As the metallicity decreases the number of seed nuclei decreases
and more number of neutrons/seed nuclei is available. That favours the production of

heavy s-process elements, increasing the [hs/Is] ratio with decreasing metallicity (Luck
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& Bond 1991; Vanture 1992c). The [hs/Is] values for the extrinsic stars are expected
to be lower compared to intrinsic stars. For the intrinsic stars, both ratios increase with
the number of TDUs, but the [hs/ls] ratio after a relatively few TDUs approaches an
asymptotic value. In the case of the extrinsic stars, [ls/Fe] and [hs/Fe] ratios are dependent
on the values of these ratios in the AGB envelope during mass transfer and on the degree
of dilution occurring in the extrinsic star on receipt of the mass or subsequently (Busso
et al. 2001). A list of [hs/lIs] values for stars in different evolutionary states are available
in Busso et al. (2001). As the mass transfer from an AGB star to the companion is not
expected to change the [hs/Is] ratios, many authors have suggested the possibility of an

extra mixing and which could be the reason for the change in [hs/lIs] ratios.

1.7 '2C/'3C ratio as a probe of stellar evolution

Isotopic ratio of carbon is an important tool to understand the evolutionary status of the
objects. When a star ascends Red Giant Branch (RGB), the '>C/!3C ratio and the total
carbon abundance decrease due to the convection which dredges up (FDU) the product of
internal CNO cycle to the stellar atmosphere. A star in RGB has not yet reached the CNO
equilibrium, hence '3C is the main product in that region. After that if it reaches AGB
stage, '>C may be supplied from the internal He burning to stellar surface and the star may
become a carbon star and '>C/"*C ratio increases again. Which means intrinsic carbon
stars (since they are in AGB stage) show very high >C/!3C value while extrinsic carbon
stars show low ratios. Standard theoretical models predict that when an object ascends
the giant branch '>C/!3C ratio should decrease up to 20 to 30 (Vanture 1992a). This is in
rough agreement with the observation for objects with masses above 2.5 Mg (Lambert &
Ries 1981; Luck & Bond 1982). There are objects mainly low—mass objects (population
I giants) with this ratio as low as 10. Gilroy (1989) shows that some additional mixing
from the bottom of the stellar envelop to the H-burning shell called the Hot Bottom
Burning (HBB) which produces additional '*C to lower the ratios to the observed level.
Vanture (1992a) had explained the isotopic ratios found in a group of CH stars. They
noticed a group of carbon stars with a '>C/!3C ratio ~ 3 near the equilibrium value of CN
cycle (early-type) and a second group with '2C/!*C ratio > 25 (late-type) similar to the
value found for Population II giants and globular cluster stars. In extrinsic carbon stars,
both mass transfer and internal mixing alters the surface abundances and hence, '2C/!*C
ratio for this objects could be used to study the nature of the observed star as well as the

invisible companion.
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1.8 Binary nature and mass transfer mechanisms

Various enrichment scenarios have been put forward to explain the observed chemical
abundances of different types of carbon stars mainly the extrinsic carbon stars. CEMP-s
stars are the most common and perhaps the most well-studied of the CEMP sub-classes;
about 80 per cent of CEMP stars are s-process enhanced. They are believed to be low-
mass members of a binary system that were polluted by mass transfer from a companion
AGB star. In such a binary system, the more massive companion star undergoes AGB
evolution and synthesize s-process elements in its core. Subsequently, material from the
core (including carbon) was dredged up to the surface and blown off in stellar winds.
A typical AGB star with mass 0.6 to 6 M with radius of about 430 Ry has a very low
surface gravity of about 10 cm s™2. This reults a small escape velocity of about 40 km
s~!, which makes it easier to escape the outer layers . This material which is lost from
the AGB star was accreted by the smaller binary companion and polluted the surface
composition with the excess carbon and heavy elements. The AGB companion has since
evolved into a faint white dwarf. This theory supported radial velocity measurements
confirming binary membership. 68 per cent of CEMP-s stars are confirmed binaries,
which is statistically compatible with a binary frequency of 100 per cent after correcting
for factors such as inclination and long periods (Lucatello et al. 2005). CH stars, the
high metallicity counterparts of CEMP-s, are also the result of a binary mass transfer
scenario. McClure & Woodsworth (1990) and McClure (1997) confirmed the binary
membership of a large number of CH stars and subgiant-CH stars by continous radial
velocity monitoring. Hence binary mass transfer is the widely accepted reason for the
enhancement of carbon and heavy elements in these objects. Most of the stars appear as
binaries have periods ranging from 11 minutes to 10° yrs. Among these a large fraction
of binary systems is close enough (with periods < 10 yrs) to transfer mass from one star
to the other. Binary stars surveys suggest around 30 - 50 per cent of the binary system to
be close binaries. The mass transfer in these binary systems takes place either by Roche-
Lobe Overflow (RLOF) or by wind mass transfer; depending on the orbital properties of

the binary system.

TVassiliadis & Wood (1993) derived an empirical relation which connects the period and mass-loss rate
for AGB stars.

log (44)=-11.4+0.0123 x P
log (44) = —11.4+0.0123 x P - 100 (3 =25 forM>2.5Mo

Where mass-loss rate is in M/yr and period, P in days. They have also found that % increases exponen-
tially with P until it reaches a very high value of 10™* My/yr.
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Figure 1.8: A contour plot of the effective potential due to gravity and the centrifugal
force of a two-body system in a rotating frame of reference. The arrows indicate the
gradients of the potential around the five Lagrange points. (http://pages.uoregon.edu)

1.8.1 Roche-lobe overflow and Wind mass transfer

A roche-lobe is defined as an effective potential in a co-rotating frame that includes the
gravitational potential of the two stars and the centrifugal force. Also for this, the orbit
of the binary is assumed as circular and coriolis force is neglected. This potential has five
points, (as shown in Figure 1.8) called Lagrangian points where gradient of the effective
potential is zero or in other words there exist no force in those points. Among these,
L, the inner Lagrangian point is the most important one since the equipotential surface
that passes through this point connects the gravitational spheres of the two star. If one
star starts to fill its own roche-lobe (the part of the potential around the object), then
matter can flow through the point L; to the other star (refer Figure 1.9). This is called
RLOF. This depends on the orbital separation and mass ratio of the binary system. If
the radii of the two stars are less compared to the individual roche-lobes, then RLOF
does not happen. Another important mass transfer method is wind mass transfer. In this
case one star has a very strong stellar wind and this matter can be accreted by the other
object. Many studies (Mohamed & Podsiadlowski 2007; Abate et al. 2013) are devoted
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Figure 1.9: Roche-lobe overflow. (http://www.daviddarling.info/encyclopedia/R/Roche-
lobe.html)

to understand the mass transfer mechanism taking place in CEMP or CH-binary systems.
A star with convective envelop tends to expand rather than shrink when it loses mass very
rapidly and also, due to mass transfer, the roche-lobe radius shrinks. The mass transfer
becomes unstable if the accretor could not accrete all of the material transferred from the
donor star. This leads to a common envelop evolution since the accretor expands due
to the piled up mass and finally it overflows its roche-lobe (Paczynski 1965). In case
of CEMP or CH-binary systems the companions are known as AGB stars and thus the
mass transfer via RLOF may lead to common envelop evolution. In the case of binary
system with wind velocity < orbital velocity of accreting star, the wind mass transfer
does not take place (Bondi & Hoyle 1944). For AGB stars, observed results indicate
that the wind velocity is lower compared to the orbital velocity. Detailed description of
wind mass transfer scenarios are given in Hofner (2009) and Bladh & Hoéfner (2012) .
Recent hydro dynamical simulations by Mohamed & Podsiadlowski (2007) suggested a
new mode of mass transfer called Wind Roche-Lobe Overflow (WRLOF). Abate et al.
(2013) had found out the CEMP/VMP ratio from the population synthesis by considering
WRLOF as an effective mode of mass transfer and the results are found to be consistent
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with the ratio obtained by Lucatello et al. (2006).

1.9 Evolutionary link between CH and Ba stars

CH and Ba stars are known to show enhanced abundances of carbon and heavy elements.
Barium stars are generally believed to be the metal-rich population I analogues of CH
stars and also have the s-process signatures of AGB stars similar to CH stars (Allen &
Barbuy 2006a,b). Abundances of heavy elements observed in barium stars are the result
of a mass transfer process and can be explained with the help of a binary picture includ-
ing low-mass AGB stars (Jorissen & van Eck 2000). The '2C/"*C ratios of Ba stars are
generally found to be in the range of 15 to 20, a value typical of population I giants. This
also supports the Ba stars as the population I counter part of CH stars. Luck & Bond
(1991) and Smith et al. (1993) have identified subgiant-CH stars as the progenitors of Ba
stars. The isotopic ratios of subgiant-CH stars are found to be lower compared to Ba stars
(Smith et al. 1993). From our analysis, even though the number of subgiant-CH stars
are small, we could see a similar abundance trends in subgiant-CH stars and Ba stars.
The studies on the evolutionary connection between CH and Ba stars by Luck & Bond
(1991) suggest that Ba stars are a part of the evolutionary link; subgiant CH — Ba stars —
CH giants. The degree of s-process enhancements and s-process neutron-exposure show
similar ranges in these objects (Luck & Bond 1991). Moreover, most of the subgiant-CH
stars, Ba stars and CH stars are identified as binaries with white dwarf companions, this

also strongly support the evolutionary connection between these objects.

1.10 Outline of the thesis

The thesis consists of the following chapters

CHAPTER 1: Introduction

This chapter gives a brief introduction of the thesis work and its importance.

CHAPTER 2: Data and Methodology

This chapter describes the source of data and the methodology used for this study. The
observation and data reduction techniques are described. The specifications and the prop-
erties of the instruments used are also explained.

CHAPTER 3: Low-resolution spectroscopic analysis of CEMP (CH) stars

In this chapter we have discussed the low-resolution spectroscopic analysis of eighty nine

objects observed with 2 meter Himalayan Chandra Telescope at the Indian Astronomical
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Observatory (IAO), Hanle. The objects are classified into different groups of carbon stars,
i.e., CH, C-R, C—-N, C-J etc. based on spectral criteria discussed in Goswami (2005).
The primary spectral characteristics considered are:

1. The strength (band depth) of the CH band around 4300 A.

2. Prominance of the secondary P-branch head near 4342 A.

3. Strength/weakness of the Ca I feature at 4226 A.

4. TIsotopic band depths of C, and CN, in particular the Swan bands of 2C'*C and '*C'3C
near 4700 A.

5. Strengths of the other C, bands in the 6000 — 6200 A region.

6. The '*CN band near 6360 A, and the other CN bands across the wavelength range.

7. Presence/absence of the Merrill-Sandford bands around 4900 — 4977 A region.

8. Strength of the Ba II features at 4554 A, and 6496 A.

Along with these objects, the low resolution spectral analysis of twenty two CH stars
from the CH star catalogue of Bartkevicius (1996) are also presented.

CHAPTER 4: Spectroscopic analysis of CH stars I: basic observational properties

In this chapter we have presented the detailed high resolution spectroscopic analysis of
twenty two CH stars for which the low resolution analysis are already finished and pre-
sented in chapter 2. The basic data for the program stars along with the radial velocities
and photometric temperatures are presented. The objects are classified in to group I (con-
firmed binaries), group II (objects for which radial velocity variations exist) and group
III (no informations on radial velocity variations). The details of the linelist used for the
calculation of stellar atmospheric stellar parameters and chemical abundances are also
presented .

CHAPTER 5: Spectroscopic analysis of CH stars II: Atmospheric parameters and el-
emental abundances

In this chapter we have presented the atmospheric parameters and chemical abundances of
the objects presented in chapter 4. The abundance patterns and abundance ratios observed
in group I, group II and group III are critically analysed for the characteristic abundance
patterns of CH stars.

CHAPTER 6: Summary and Conclusions:

This chapter gives the summary of the research work highlighting the important results.
A brief description of the future work and a direction to proceed further is also discussed.
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CHAPTER 2

DATA AND ANALYSIS

2.1 Introduction

Spectroscopy is an important tool to understand the properties of distant stars and Galax-
ies, such as their chemical composition, temperature, density, mass, distance, luminosity,
and relative motion. Stars emit radiations at different wavelengths in the electromagnetic
spectrum. Based on the wavelength coverage, astronomical spectroscopy can be devided
into different branches; ultra violet, optical, infrared, radio and X-ray spectroscopy. Dif-
ferent characteristics properties of the astronomical objects can be studied using different
branch of astronomical spectroscopy. The study in this thesis is mainly based on optical
stellar spectroscopic observations and techniques. In this chapter, we describe low and
high resolution spectroscopic observations and reduction procedures. We also discuss in

brief the computational methods and analysis techniques involved in the study of spectra.

2.2 Astronomical techniques

Spectra of the distant objects are the only tool to study the behaviour of these objects.
The main instrument used for the collection of electromagnetic radiations from the dis-
tant objects are telescopes. Based on the character of light gathering element used in
the telescope they are classified as refracting telescopes which uses lenses and reflecting
telescopes which uses mirrors. All the new generation telescopes are of reflecting type in
which the light gathering element is a mirror. The gathered light is further studied using
different astronomical instruments like imagers, photometers and spectrographs. Imagers
are used to study the spatial distribution of photons from the source; the photometers will

measure the brightness by measuring the number of photons collected from the source.
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Spectrogragh helps us to understand the wavelength distribution of light. Since our anal-
ysis is mainly based on the wavelength distribution of light, we have to understand the

functions of a spectrograph in detail.

2.2.1 Spectrograph

An astronomical spectrograph splits the light from a source into its component wave-
lengths. Prisms were used in old spectrograph as a dispersing element. If we use a prism
as a dispersive element, light of different wavelengths get refracted by different amounts,
with blue light being refracted more than red light; and thus, the dispersion is non-linear.
In recent days, prisms are replaced by diffraction gratings as dispersing element. It con-
sist of a large number of parallel lines marked on a transparent glass plate so that light
can pass between the lines. This is called transmission grating. If the glass plate used
is of reflective type the grating is called a reflection grating. Most of the spectrographs
have the same design. Basic spectrograph design is shown in Figure 2.1. The five basic
components of an astronomical spectrograph are the slit, collimator, grating, camera and
detector.

Slit

The slit is a narrow rectangular aperture to select the region of interest we need to observe
in the sky. Light falling only on the slit can enter the spectrograph. Slit helps to reduce
the contamination in the target spectrum by allowing to enter only useful light. They also
help us to get a stable spectral resolution.

Collimator

The collimator in an astronomical spectrograph is used to collimate the diverged light
from the slit towards the grating. If the beam is not collimated, the incident angle of the
diverged light on the grating is different which in turn makes the diffracted angle also
different. Hence, the diffracted beams get imaged on to different positions in the detec-
tor, which will blurr the resulting spectrum. With a collimator, however, all angles of
incidence on the grating are equal and no such blurring would result. Collimators can
be either lenses or mirrors and must have the same focal ratio as the telescope and be
positioned at a distance equal to its focal length from the telescope focal plane.

Grating

The diffraction grating is used as the dispersive element in the spectrograph, which splits
the light into its component wavelengths and can be of either transmission or reflection
type. The grating is usually positioned in the collimated beam from the collimator, which

in turn helps to use a minimum-sized grating to collect light from all angles incident on
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Figure 2.1: schematic of an astronomical spectrograph incorporating a transmission grat-
ing (http://www.vikdhillon.staff.shef.ac.uk/teaching)

the primary mirror. As per the grating equation,
nA = d(sinf + sing) (2.1)

(where n is the order, d is the grating spacing, 6 is the angle between the wavefront and the
plane of the slits, ¢ is the angle between the incident beam and grating) changing the angle
of the grating with respect to the incident beam, changes the angle of the diffracted beam.
Hence most spectrographs have gratings that can be tilted in order to adjust the start and
end wavelengths of the spectrum at desired order which in turn determines the wavelength

coverage. These types of gratings are called blazed grating or echelle grating which
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also allows most of the light to fall into the desired order. Echelle gratings are mostly
manufactured with larger line spacing but are optimized for higher diffraction orders.
For high resolution spectrographs, normal gratings are replaced by echelle gratings. The

resolution of the spectrograph is given by

R=Nn-= % (2.2)

where N is the total number of lines in the grating and W is the width of the grating.
Hence to increase the resolution, only possible and cheapest method is to increase n by
increasing the angle of incidence and diffraction.

Camera

The camera is used to collect the spectrally dispersed beams from the grating. The camera
can be either a lens, mirror, or catadioptric system.

Detector

The light collected by the camera is collimated and focussed to a detector. Then the
spectrum gets imaged on the detector. We can define the direction along the slit as the
spatial axis, and the direction along the spectrum (i.e. the horizontal direction) as the
dispersion axis. In order to record the amount of light at each wavelength, a detector
composed of an array of pixels is used. Mainly in all the spectrogrpahs, a two-dimensional

ccd detector is used.

2.2.2 Factors affecting the quality of a spectrum

The light collected from the astronomical objects has to travel long distance through the
atmosphere. Hence there are some changes from the light emitted by the objects and that
collected by a detector. The reasons for this are mainly

Sky background: Due to the presence of scattered light in the sky, it acts as a noisy
background to the light received from astronomical objects, making the detection of faint
targets particularly difficult.

Atmospheric extinction: Dust and molecules in the atmosphere scatter and absorb the
light from astronomical objects, dimming the images obtained by astronomical tele-
scopes. The amount of dimming depends on the angle of the object above the horizon
and the local conditions in the atmosphere at the time of observation.

Transparency variations: Similar to atmospheric extinction, clouds (i.e. water droplets)
can absorb and scatter the light from astronomical objects. The amount of absorption

tends to be much more variable than that due to extinction, as the clouds are blown across
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the field of view of the telescope by the wind. The resulting variations in the amount
of light received from an astronomical object range from partial attenuation due to thin
cloud, or complete loss by thick cloud.

Seeing: Blurring of images caused by the turbulence in the atmosphere are referred as
atmospheric seeing. The turbulence causes the refractive index to vary from layers to lay-
ers. Hence some rays of light bend more compared to others and the images are blurred.

The brightness of the stars also fluctuate due to this.

2.3 Observations and Data

2.3.1 Low resolution spectroscopy

The Hamburg/ESO survey (Christlieb et al. 2001) and HK survey (Beers, Preston and
Shectman) are two important surveys for the identification of CEMP stars in the halo of
the Galaxy. We have carried out low resolution spectroscopy on some selected objects
from these surveys to identify potential CH stars according to some specified spectral
criteria. Programme stars are mainly chosen from the Hamburg/ESO survey which covers
6400 degree? limited by the declination, 6 < +2.5° and the Galactic longitude, |b| > 30°.
The magnitude limit of the sample is V ~ 16.5. The wavelength range of these spectra is
3200 to 5200 A, at a resolution of 15 A, at H,. Christlieb et al. found a total of 403 FHLC
stars in this survey by application of an automated procedure to the digitized spectra.
The identification of these objects as FHLC stars was based on a measure of line
indices - i.e. ratios of the mean photographic densities in the carbon molecular absorption
features and the continuum band passes. The primary consideration is the presence of
strong C, and CN molecular bands shortward of 5200 A; CH bands were not considered.
We have carried out observations of the selected stars using the 2m Himalayan Chandra
Telescope, Hanle. The camera and Grism combinations used for the observation provided

a spectral resolution of 1330 and a wavelength coverage of 3800 - 6800 A.

Himalayan Chandra Telescope

The 2 meter Himalayan Chandra telescope is located at Indian astronomical observatory,
Digpa-ratsa Ri, Hanle. The latitude, longitude and altitude of the location are respec-
tively 32d46m46s N, 78d57m51s E and 4500. Hanle Faint Object Spectrograph Camera
(HFOSC), an optical imager cum spectrograph is used for the low and medium resolution

spectroscopy. A collimator with same F number as that of the telescope and a camera are
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used so that the focal length of the telescope can be reduced there by increasing the field
coverage for a given CCD detector. Also it allows low resolution grism spectroscopy by
inserting a dispersion element between the collimator and the camera. Using different
slits (67 u - 1340 p) and grism combinations we can obtain a wavelength coverage from
3300 - 10500 A and a resolution from 200 - 4500.

2.3.2 High resolution spectroscopy

The objects are selected from the CH star catalog of (Bartkevicius 1996) and the spectra
are taken from the ELODIE archive. The details are given in the next section. CH95 cata-
logue of (Bartkevicius 1996) consist of 244 field stars and 17 globular cluster objects. We
have considered only those CH stars for which high resolution spectra are available with
S/N ratio > 20. Optimal extraction and wavelength calibration of data are automatically
performed by the online reduction software TACOS. The spectra recorded in a single ex-
posure as 67 orders on a 1K CCD have a resolution of R ~ 42000. The wavelength range
spans from 3900 to 6800 A.

Observatoire de Haute Provence (OHP)

The Observatoire de Haute-Provence (OHP) is situated in southeast France at an altitude
of 650 meters and at +44 latitude and 5.7 East longitude. ELODIE is a cross-dispersed
echelle spectrograph used at the 1.93 m telescope of OHP. Details about the spectro-
graph and reduction procedures are given in Baranne et al. (1996). This spectrograph was
mainly used for extra solar planet detection and also for the high resolution spectroscopy
of comparatively bright objects. In one single exposure a spectrum at a resolution of
42000 (£) ranging from 3906 A to 6811 A is recorded on a 1024 x 1024 CCD. This
performance is achieved by using a tan 6 = 4 echelle grating and a combination of a prism
and a grism as cross-disperser. An automatic on-line data reduction techniques called
TACOS reduces the ELODIE echelle spectra just after the exposures. Due to the use of
fibres to feed the spectrograph, the shape of the orders are relatively stable on the CCD.
All the images coming from the spectrograph are saved on a disk for security purposes.
The CCD frames are then processed for correction of bad pixels, offset and dark current
subtraction etc. After the extraction Wavelength calibrations are done using Thorium

lamps. The ELODIE archive contains all the data taken with Elodie spectrograph.
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2.3.3 Data reduction

This section describes the standard procedures for the extraction of CCD data with IRAF
(Image Reduction and Analysis Facility). IRAF is a general image reduction and anal-
ysis facility providing a wide range of image processing tools for the users to process
the raw two dimensional data into a one dimensional data for further analysis. IRAF is
owned by the National Optical Astronomy Observatories (NOAO). The main steps for
reducing the data are same in both low resolution and high resolution spectroscopy. The
basic procedures to start with the reduction of the CCD data are zero correction and flat
field correction. These steps are done using CCDPROC task in CCDRED package. Be-
fore doing these corrections we have to trim the section into an area which contains only
useful data. Bias frames or zero frames, which are taken with zero exposure time for
correcting the zero of the CCD are then combined to a master bias. This is done using
ZERO COMBINE task in IRAF. We have to substract this master bias from all the other
frames for zero correction. The next error which have to be removed from the data is the
dark current which is due to heat. This is also additive to the useful data. The removal
of the dark current is done using the dark exposures i.e., long integrations with shutter
closed. Dark correction is not always needed. Some CCDs are cryogenically cooled to
liquid nitrogen temperature (=77 K). They are not affected by dark current. CCDs which
are cooled but not up to this temperature need to be corrected for dark currents. There
are some multiplicative errors that also exist in CCD data. This is caused by the pixel to
pixel variations of the light sensitivity of the CCDs. These types of errors are removed
by taking calibration frames with a uniform source like halogen lamps called flat frames.
For improving the quality we have to take many flat frames and then combine them in
to a master flat. Master flat is then normalised and by dividing the object frames by the
normalised master flat helps to reduce the multiplicative error in the data. These steps
are done using the tasks FLAT COMBINE and RESPONSE in IRAF. Next step is the
extraction of data using APALL in apextract. The extracted spectra contain counts vs pix-
els. The pixels have to be converted to wavelengths by using an arc spectrum for which
the rest wavelengths are known. Bias subtracted arc frame is also extracted using task
APALL. The spectral lines in the arc spectrum are identified using the task IDENTIFY
(for single order spectra) or ECIDENTIFY (for echelle spectra) with the help of available
identification charts. Then these arc frames are given as the reference to the object frames
for the wavelength calibration using the task REFSPEC. The wavelength calibrated im-
ages are then corrected for dispersion using the task DISPCOR and continuum fitted for

the further analysis.
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2.4 Data analysis

The stellar atmospheric parameters like effective temperature (7, ¢) and surface gravity
(log g) are the pre-requisites to any detailed abundance analysis as well as defining the
physical conditions in the stellar atmosphere. They are directly related to the physical
properties of the star; mass (M), radius (R) and luminosity (L). The following sections
give the details of the important terms involved in the calculation of stellar atmospheric

parameters.

2.4.1 Bolometric magnitudes

Bolometric magnitude is the collective measure of all the radiations emitted by the objects
at all the wavelengths. The corrections required to reduce visual magnitudes to bolometric
magnitudes are large for very cool stars and very hot ones but are relatively small for
stars such as the Sun. We measure the energy radiated by a star from earth using a
detector. But the detectors are made such that it can measure only some part of the
radiation. Very cool and very hot objects emit radiations at far infrared and ultraviolet
regions of the electro magnetic spectrum, which can not be detected from earth. Hence
we have to apply corrections to the absolute magnitudes of the stellar objects to find the
bolometric magnitudes. The absolute magnitude and Bolometric magnitude are related
by the following expression

My, = M, + BC (2.3)

where M, = V — Slogd + 5 and d (distance)= 7_lr where 7 is the parallax, V = absolute

visual magnitude, BC is the bolometric corrections.

2.4.2 Luminosity

The luminosity L is the total energy output of a star per unit time. Bolometric magnitudes

and luminosities are related by Pogson’s equation as

Moo — Mo = 2.5l0g(L/ L) (2.4)

2.4.3 Effective temperature

The effective temperature (T, ;7) of an object is related to the total radiant power/unit area
at stellar surface. It is also defined as the temperature of an equivalent black body that
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gives the same total power per unit area, and is directly given by stellar luminosity and

radius. By Steffan’s law
L

4 _ —
O-Teff = fFVdV = m (25)
Radius (R) is taken as the depth of formation of the continuum, which in the visible region

1s approximately constant for most stars (Gray 1992).

2.4.4 Surface gravity

Surface gravity (g) of the object at its surface is the acceleration due to gravity on the
surface. The pressure in a stellar surface is controlled by the surface gravity and are

2/3

related with the gas pressure as, P, = Const.g~> and with the electron pressure as P, =

Const.g'®. The surface gravity is related to mass M and radius R of the object as
log g =log M —2log R + 4.437 (2.6)

From this equation it is clear that a star with higher mass but lower radius will be denser
and also have higher pressure. This leads to larger number of atoms per unit area leading
to a stronger spectral line, which implies an ionic line decreases in strength with increase
in surface gravity since more and more free electrons will get chance to combine with

ions since the density is very high.

2.4.5 Micro-turbulence

Micro-turbulence is the small scale motions of particles with its characteristic dimension
less compared to unit optical depth. It has a high effect on the shape of a spectral line,
because increase in the motion of atoms broadens line profiles without affecting the chem-
ical abundance. This implies that strength of the line or equivalent width does not have
any correlation with the abundances. This fact is used to determine the micro-turbulent

velocity (£).

2.4.6 Equiwalent width

The equivalent width (W) of a spectral line is a measure of the area of the line on a
plot of intensity versus wavelength (Figure 2.2). It is found by considering a rectangle
with a height equal to that of continuum, and finding the width such that the area of the

rectangle is equal to the area in the spectral line. Equivalent width measures the strength
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Figure 2.2: Equivalent width (W) of an absorption line is the total area inside the ab-
sorption line, if we create a rectangular box of the same area, extending from the con-
tinuum to the O flux line, the width of this box is the equivalent width. This measure-
ment is used to describe the strength of the line (the higher the value, the stronger the
line)(http://www.bdnyc.org/2012/03/02)

of a spectral feature and it is given by the equation

ch_F/I
W =
F.

where F, is the radiant flux and F. is the continuum flux. The equivalent width is used as

(2.7)

a quantitative measure of the strength of spectral features because the shapes of spectral
features can vary depending upon the configuration of the system which is producing the
lines. Another measure of width of spectral line is full width at half maximum and it is
given by

0172 = % (2.8)
We have measured the equivalent width of absorption lines in our programme stars spectra

by fitting a Gaussian to the absorption lines.
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2.4.7 Optical depth and opacity

When a beam of light travels through a medium, some photons get absorbed. The in-
tensity /I, decreases by an amount d/,. This value entirely depends on the composition,

density and temperature of the medium. So the equation can be written as
d],] = —KApIAdS (29)

where ds is the distance travelled and p is the density. The quantity «, is called the ab-
sorption coefficient or opacity. It is defined as the cross-section for the absorbing photons
of wavelength A per unit mass of stellar material or it is the capacity of the material to

absorb photons. Integrating this equation within the limits s=0 to s=s, then I, is given by
I = Lyge™ Jxwds (2.10)

where —k, pds 1s defined as optical depth dr,. The intensity of light declines exponentially

by a factor of e~! for a mean free path [ = ﬁ. Then the optical depth can be defined as
number of mean free paths from the rays original position to the surface. The optical

depth entirely depend on the wavelength.

2.4.8 Model atmospheres

The chemical analysis of a spectrum is done by comparing the observed features with the
theoretical predictions. For the purpose, a model atmosphere of the star is assumed which
could reproduce the observed quantities. Model atmospheres are constructed by solving

the equation for hydrostatic equilibrium which relates pressure and optical depth and is

given as
dF = pgdAdx (2.11)
dF
A dpP (2.12)
dP = pgdx (2.13)

where p is the density, dAdx is the volume, g is surface gravity, dP is the pressure. To
construct the model photosphere the following assumptions are made.
1. Plane parallel geometry, making all physical variables a function of only one space
coordinate.
2. Hydrostatic equilibrium, meaning that the photosphere is not undergoing large scale

accelerations comparable to the surface gravity.
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3. Structures such as starspots and granulations are neglected.

4. Magnetic fields are not considered.

A model atmosphere consists of a table of numbers giving the pressure as a function
of optical depth for an assumed chemical composition. Depending upon the purpose of
usage some model contains intensity, absorption coefficient, electron pressure etc also.
Usually photosphere is assumed to have seventy two layers and the model atmosphere
contains seventy two rows each representing each layer of atmosphere. It is very difficult
to establish a perfect thermodynamic equilibrium in stars. The temperature of the star
varies with location. However, the thermodynamic equilibrium can be assumed in a small
region of unit optical depth and is called the Local Thermodynamic Equilibrium (LTE).
At LTE, photosphere can be represented by one temperature and optical depth. Also, only

collisionally induced transition occurs at LTE.

2.4.9 Estimation of radial velocity

Radial velocities of our programme stars are calculated using a selected set of clean un-

blended lines in the spectra using the equation

/lo s A a
v, =2 T (2.14)
Alap
Application of this formula requires laboratory measurements of the rest wavelength to
high accuracy. When an object moves towards us, the transition is shifted to shorter
wavelengths and it is called blue shifted. Similarly, when an object moves away from us

the transition is towards a longer wavelengths and therefore called redshifted.

2.4.10 Calculation of photometric temperature

The effective temperature of an object can be derived by using their angular diameter
and bolometric fluxes. But this direct method has very limited use. Alonso et al. (1996)
had derived an indirect method called Infrared flux method to determine the temperatures
of stellar dwarfs and sub-dwarfs, which is extended to main-sequence stars and giants
and the results are presented in Alonso et al. (1996, 1999). They have used a theoreti-
cal model atmospheres flux distributions developed by Kurucz (1991, 1993). The infrared
flux method uses the ratio between bolometric flux and monochromatic flux at the infrared
wavelength of the continuum. This ratio is called observational R factor, which is then

compared with the theoretically calculated R,,,.. Monochromatic fluxes are determined
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observationally using IR photometry. The calibrations relate T, ;s with Stromgren indices
as well as [Fe/H] and colours (V-B), (V-K), (J—H) and (J-K) and hold within a tempera-
ture and metallicity range 4000 < T, s <7000 K and —-2.5 < [Fe/H] < 0. The Alonso et al.
calibrations use Johnson photometric systems for UBVRI and use TCS (Telescopio Car-
los Sanchez) system for IR colours, J-H and J-K. We have used colour-temperature cal-
ibrations of Alonso et al. (1996) that relate T, with various optical and near-IR colours.
Estimated uncertainty in the temperature calibrations is ~ 100 K. Although the difference
between 2MASS infrared photometric system and photometry data measured on the TCS
system used by Alonso et al. to derive the T, scales is very small, the necessary transfor-
mations between these photometric systems are performed using transformation relations
from Ramirez & Meléndez (2004) and Alonso et al. (1996, 1999). V—-K is the preferred
temperature indicator since both pass-bands are only marginally affected by the presence
of the strong molecular lines in the temperature range of carbon stars. The B—V colour
of a star with strong molecular carbon absorption features depends not only on T, but
also on the metallicity of the star and on the strength of its molecular carbon absorption
features, due to the effect of CH molecular absorption in the B band. B—V colour often
gives a much lower value than the actual surface temperature of the star due to the effect
of CH molecular absorption in the B band. We have assumed that the effects of reddening
on the measured colours are negligible. The equations used for the calculations are as
follows.
Jres = Jamass +0.001 = 0.049(Lamass — Koamass)

Hres = Hyyass — 0.018 + 0.003(Japass — Kopass)
Kres = Koyass —0.014 + 0.034(Jopass — Komass)
K; = Krcs +0.042 — 0.019((Jres — Kres) — 0.008)/0.910)
(V = K)res = 0.050 +0.993(V - K,)
0,k = 0.582 +0.799(Jrcs — Kres) + 0.085(Jrcs — Kres)?

0,1 = 0.587 + 0.922(J7cs — Hres) + 0.218(Jres — Hres)? + 0.016(M)(Jres — Hres)
Byvk = 0.555+0.195(V=K)rcs+0.013(V—K)7 s —0.008(V=K)rcs (M)+0.009(M)—0.002M>
Opv(M) = 0.541+0.533(B—V)+0.007(B-V)*—0.019(B— V)(M)—0.047(M)—0.011M*

Trrry = 5040/, (2.15)

M indicates the metallicity value. XY indicates J-K, J-H, V-K and B—V. The visible
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magnitude (V) is in Johnson system, hence we have to convert 2MASS-K magnitude to

Johnson system. we used Alonso et al. (1994) calibration equation.
(J = K)res = 0.008 +0.910(J - K), (2.16)

We have determined the photometric temperatures for all the programme stars and the
results are tabulated in Tables 3.4 and 4.3.

2.4.11 Stellar Atmospheric parameters

In a stars atmosphere under LTE conditions, there is a direct correlation between the effec-
tive temperature of the star and the excitation temperature determined from the analysis
of spectral line strength of a given atomic species. Thus measurements of atomic lines
with differing excitation potentials can be used to determine the effective temperature
of stars. Another important factor at LTE is that abundances predicted from individual
lines using an LTE atmosphere should not show any correlation to the excitation potential
of the lines. We have used a set of Fe I and Fe II lines with excitation potential in the
range 0.0 - 5.0 eV and equivalent width 20 A to 180 A to find the stellar atmospheric
parameters. Throughout our analysis we have assumed LTE. The effective temperature is
determined by making the slope of the abundance versus excitation potential of Fe I lines
to be nearly zero. The initial value of temperature is taken from the photometric estimates
and arrived at a final value by an iterative method with the slope nearly equal to zero. The
micro-turbulent velocity was estimated at a given effective temperature by demanding
that there be no dependence of the derived Fe I abundance on the equivalent width of the
corresponding lines. Abundances derived from equivalent width are very sensitive to the
adopted micro-turbulent velocity. Micro-turbulent velocity is fixed at a value which gives
zero slope for the plot of equivalent width versus abundances of Fe lines.

The surface gravity is fixed at a value that gives the same abundances for Fe I and Fe
II lines. Clean Fe II lines are more difficult to detect than Fe I lines, so we were limited
to 4-10 Fe II lines for the abundance analysis in most cases.

Knowing the strength of a spectral line which depends on the number of atoms under-

going transition gives the abundance of the element involved in the transition.

2.4.12 Calculation of Chemical abundances

The method used to determine the abundances in stellar atmospheres are based on in-

tensity of spectral lines. This is done by comparing the observed values with theoretical
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predictions. The observed high resolution spectrum can be compared with a calculated
spectrum. The results are entirely depend on the model atmospheres and the line forma-
tion mechanisms. The two methods used are

1) Fine analysis method : The fine analysis method consists in comparing the measured
equivalent width with the equivalent widths calculated on the basis of selected model
photosperes. Weak lines (20 - 180 A) are generally used for the calculation because their
equivalent widths are not affected by micro-turbulence and damping constants. For the
accurate measurement of equivalent widths we need very high resolution spectra (R >
20000) with a very high S/N (> 20) ratio. Although LTE is assumed for the calculation,
for some elements like Na, LTE abundance analysis does not give accurate results since
they are affected by NLTE conditions. We have used lines with equivalent width < 180
mA and they are not much affected by NLTE effects.

2) The spectrum synthesis method: In this method, a line profile is compared with a
theoretically computed line profile instead of comparing equivalent widths. All the line
broadening mechanisms have to be taken into account for calculating the theoretical pro-
files. An extensive line list for each element in the different ionisation states with known
laboratory wavelengths, log gf and excitation potential are required for the accurate deter-
mination of the abundances. Spectrum synthesis method is generally applied to crowded
regions with severe line blending. This method is also used to confirm the results obtained

by the standard equivalent width method.

MOOG

MOOG is a FORTRAN code used to find the chemical abundances of objects. This code
was developed by Chris Sneden in 1973 for his PhD thesis and subsequently revised by
him. It uses the LTE conditions for the analysis. Moog needs a model photosphere to-
gether with a list of atomic or molecular transitions as inputs for the analysis. The detailed
description of these codes and methods can be found in Chris Sneden’s thesis and in a re-
view article by Castelli & Hack (1990). For fine analysis method the subroutine ABFIND
is used, which will fit the theoretically calculated equivalent widths to the observed equiv-
alent widths. With respect to the corresponding atmospheric model selected, a numerous
iterations are carried out by the program ABFIND, varying the abundances until the com-
puted equivalent width matches the observed equivalent width. For the synthesis, the
program SYNTH is used to fit the observed spectrum to the theoretically calculated spec-

trum. In this case also, a set of synthetic spectra are formed to match the observed one.
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2.4.13 Hyperfine splitting and chemical abundances

Hyperfine splitting is the splitting in atomic energy levels caused by the interaction be-
tween the nucleons and electrons in an atom due to their non zero spins. When the spin
angular momentum of the nucleus interacts with the total angular momentum of the elec-
trons, the splitting of energy level occurs. This in turn broadens the width of a spectral
line due to the transition between different levels. Abundances determined using these
broadened lines lead to wrong conclusions. Hence it is very important to consider the hy-
perfine correction while doing the abundance analysis. We have synthesised the elements
Sc, Mn, V, La and Eu with odd atomic numbers and Ba with even atomic number but odd
number of neutrons, considering the hyperfine splitting of levels and their contributions

to the total abundances.

2.5 Parametric model based study

Heavy element abundances in the solar system have contribution from both s- and r-
process. Identification of the major process contributing to the elemental abundances
is likely to provide clues to the nucleosynthetic mechanisms taking place in the objects
which in turn can give clues to their evolutionary states. There have been several efforts
to explain the solar system abundances of elements associated with slow neutron-capture
processes. The model created by Howard et al. (1986) could reproduce the observed
solar system o N curve, where o is the neutron-capture cross-section and N is the abun-
dance of the elements, with good agreement. This model used an exponential distribution
of neutron exposures via sequential irradiations since s-process is a long term process
and the neutron flux there by neutron exposure will vary time to time. This model was
used by Aoki et al. (2001) to study the observed abundances in metal-poor stars. Zhang
et al. (2006) also used this model to study the double enhancement in metal-poor stars.
We have conducted a parametric model based study to understand the contribution of
these neutron-capture processes to the observed abundances of the programme stars. The
detailed methodology used for the parametric model study along with the results are ex-

plained in section 5.5.

2.6 Luminosities and Masses

We have determined the luminosities of the programme stars using the equation 2.4.

Masses of the programme stars are determined using their positions in the Hertzsprung-
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Russel diagram using the evolutionary tracks given by Girardi et al. (2000). The tracks
are available for different initial compositions and initial masses from 0.6M to 120M,,,
which are calculated using updated opacities and equations of state considering all the
physical changes like dredge-up mechanisms, mass loss episodes and convective over-
shooting taking place in the stellar objects. These evolutionary tracks starts from Zero
age main-sequence and ends either at thermally pulsing AGB stage or carbon ignition.
We have selected the model for the initial composition with Y = 0.23 and Z = 0.019,
0.004, 0.008 etc, where Y represent the He mass fraction and Z is the global metallicity
for all the other metals.

2.7 Error Analysis

We have calculated the error in the presented abundance results as described by Ryan
et al. (1996). The errors in the elemental abundances have contributions from the un-
certainty in measurement of atmospheric parameters and equivalent widths. The errors
in the equivalent width have an affect on the measurement of surface gravity and micro
turbulent velocities also. Inaccurate gf-values also contribute to the error in the elemental
abundances. The elements, for which we have measured the abundances using spectrum
synthesis method, the error is uniformly taken as 0.2 dex by considering the fitting error
of 0.1 dex and error in gf-values as 0.1 dex. Similarly for a few objects we have calcu-
lated the elemental abundance using a single line, then the errors are expected to be from
the measurement of atmospheric parameters. In that case, to find the minimum error for
each star, we have considered the respective standard deviation of the iron abundances for
each object which is approximately 0.1 in all the objects, along with the uncertainties in
temperature, micro-turbulent velocities and surface gravities. We have assumed an error
of 100 K in effective temperature corresponding to 0.1 dex in abundances. Similarly 0.03
dex in gravity and 0.06 in micro-turbulence corresponding to a A of 0.5 km/s. These
values as typically accepted for the minimum error in giants and subgiants. Then the total

minimum error is calculated using the following equation, and the value is found as 0.12.

E, = \/Erlz +ES2+Es?+Es>+Es*.....+E,° (2.17)

When a large number of lines are used for the calculation of abundances, the standard

deviation of the abundances derived using individual lines is taken as the error.
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CHAPTER 3

LOW RESOLUTION SPECTROSCOPIC
STUDY OF CEMP (CH) STARS

Goswami A., Karinkuzhi D., Shantikumar N. S., 2010b, MNRAS, 402, 1111

3.1 Introduction

An accurate assessment of the fraction of CH stars can significantly aid our understand-
ing of formation and evolution of heavy elements at low metallicity. Our objective in
this study has been to identify the CH stars (as well as different type of stellar objects)
in a selected sample of high Galactic latitude field stars. As explained in section 1.3.1,
Morgan—Keenan system of carbon star classification (Keenan 1993) divided stars into
C—R, C-N and CH sequence, with sub classes running to C—R6, C—N6 and CH6 ac-
cording to the temperature of the stars. Wallerstein & Knapp (1998) had given a detailed
description of the spectra of different groups of carbon stars. In this chapter we describes
the classification of a large number of faint high Galactic latitude carbon stars into differ-

ent groups based on spectral characteristics as discussed in Goswami (2005).

3.2 Selection of programme stars

The programme stars belong to the list of 403 Faint High Latitude Carbon (FHLC) stars
presented by Christlieb et al. (2001) from the database of Hamburg/ESO Survey (HES)
described by Wisotzki et al. (2000). The details of observations and data reduction pro-

cedures are explained in section 2.3. A sample of CH stars from the CH star catalogue of
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Bartkevicius (1996) are also observed for a detailed studies of these objects.

3.3 Different types of carbon stars and their spectral char-

acteristics

Spectral characteristics of different groups of carbon stars are explained in section 1.3.
CH stars are mainly characterized by the presence of CH bands in their spectra. Using
low resolution spectra it is very difficult to distinguish the CH and C—R stars. Both show
strong CH bands in their spectra. In such cases the secondary P-branch head near 4342 A
is used as a more useful indicator. P-branch head are distinctly seen in CH stars spectra.
Another important criteria is the strength or weakness of Ca I at 4226 A. While in CH
stars this feature is weakened by the overlying CH band, in C—R stars this feature is quite
strong and strength will be similar to CN band strength. Enhanced lines of s-process ele-
ments and various strength of C, bands are also important criteria to distinguish CH stars
from other groups of carbon stars. But as the narrow atomic lines are blended with contri-
butions from the molecular bands, the classifications based on the elemental abundances
derived from the medium resolution spectra may not be accurate. We have classified the
spectra according to the following spectral characteristics.

1. The strength (band depth) of the CH band around 4300 A.

2. Prominence of the secondary P-branch head near 4342 A.

3. Strength/weakness of the Ca I feature at 4226 A.

4. Isotopic band depths of C, and CN, in particular the Swan bands of '>C'*C and *C!3C
near 4700 A.

5. Strengths of the other C, bands in the 6000 — 6200 A region.

6. The 3CN band near 6360 A and the other CN bands across the wavelength range.

7. Presence/absence of the Merrill-Sandford bands around 4900 — 4977 A region.

8. Strength of the Ba II features at 4554 A and 6496 A.

To assign a star in a particular group, we have compared the spectra of the programme
stars with the spectra of known carbon stars available in the low resolution spectral atlas
of Barnbaum et al. (1996). We have also acquired the spectra of some of the objects from
this atlas using the same observational set up. The objects with prominent C, molecular
bands are listed in Table 3.1 and those without prominent C, bands are listed in Table 3.2.

The potential CH star candidates identified from this survey are presented in Table 3.3.
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3.3.1 Location of the candidate CH stars on (J-H) vs (H-K) plot

We have used JHK photometry as supplementary diagnostics for stellar classification.
Figure 3.1 shows the locations of the candidate CH stars listed in Table 3.3 on the (J—H)
vs (H-K) plot. 2MASS JHK measurements of the stars are available online at http://www.
ipac.caltech.edu/. The thick box on the lower left represents the location of CH stars
and the thin box on the upper right represents the location of C—N stars (Totten et al.
2000). Except two lying outside (shown with open squares in Figure 3.1), the locations
of the candidate CH stars (shown with open circles) are well within the CH box. This
supports their identification with the class of CH stars. Location of the comparison CH
stars HD 26, HD 5223 and HD 209621, C—R star RV Sct, C—N stars V460 Cyg and Z
PSc, are shown by solid squares on the (J-H) vs (H-K) plot.

3.3.2 Effective temperatures of the programme stars

As described in section 2.4.10, we have used 2MASS JHK photometry to determine the
effective temperatures of the objects.

Semi empirical temperature calibrations offered by Alonso et al. (1994, 1996, 1998)
are used to derive preliminary temperature estimates of the programme stars. These val-

ues are listed in Table 3.4.

Table 3.4: Estimated effective temperatures from semi empirical relations, T.;; from
(J-H), (V-K) and (B—-V) for metallicity —0.5, —1.0, —1.5, —=2.0, —2.5 from top to bottom

Star Terr (K)  Tepp (K)  Topp (K) Tepp (K)
(J-K) (J-H) (V-K) (B-V)

HE 0008—1712 4556.51 4378.94 4770.97 3941.10
4395.62 475796 3857.84

4412.42 474949 3793.67

4429.36 4745.52 3746.85

4446.43 4746.02 3716.18

H E0009-1824 5530.27 5377.40 4993.57 5038.84
5393.67 4982.96 4926.30

5410.04 4977.31 4844.15

5426.51 4976.59 4789.60

5443.08 4980.78 4760.87

HE 0037-0654 5496.71 4912.74 5331.46 4774.22
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

4929.47 5325.16 4668.96
4946.30 5324.49 4591.13
4963.26 5329.45 4538.21
4980.33 5340.08 4508.58
HE 0052-0543 3924.81 3831.70 4073.39 3622.64
3847.73 4054.99 3547.42
3863.90 4040.00 3488.49
3880.20 4028.33  3444.39
3896.64 4019.94 3414.06
H EO0100-1619 4615.21 4305.94 4771.83 4121.59
4322.56 4758.83  4033.68
4339.32 4750.37 3966.54
4356.21 4746.41 3918.28
4373.23 4746.92 3887.60
HE 0136-1831 4459.39 4493.10 4957.87 3941.10
4509.84 4946.85 3857.84
4526.71 4940.73  3793.67
4543.70 4939.46 3746.85
4560.81 4943.03 3716.19
HE 0217+0056 2794.61 3053.31 2825.70  3350.55
3067.42 2805.35 3282.04
3081.66 2786.83  3227.60
3096.03 2770.08 3185.98
3110.53 2755.03 3156.25
HE 0225-0546 4051.68 4086.82 4299.33 3941.10
4103.22 4282.32 3857.84
4119.76 4269.07 3793.67
4136.44 4259.49 3746.85
4153.25 4253.55 3716.18
HE 0228-0256 3655.89 3916.81 3855.61 3622.64
3932.98 3836.19 3547.42
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

3949.28 3819.85 3488.49
3965.72 3806.53 3444.39
3982.30 3796.15 3414.05
HE 0420-1037 4587.42 4534.65 3990.16 6037.74
4551.40 3971.34 5896.46
4568.28 3955.79 5798.10
4585.29 3943.45 5738.69
4602.42 3934.26 571591
HE 1011-0942 3417.52 3646.14 3210.10 4121.59
3661.82 3189.36  4033.68
3677.63 3170.88 3966.54
3693.58 3154.58 3918.28
3709.66 3140.41 3887.60
HE 1015-2050 5262.83 6529.13 5305.13 6037.74
6542.25 5298.47 5896.46
6555.41 5297.38 5798.10
6568.63 5301.87 5738.69
6581.90 5311.95 571591

HE 1027-2501 8484.79 8338.23 - 4121.59
8340.33 - 4033.68

8342.43 - 3966.54

8344.53 - 3918.28

8346.63 - 3887.60

HE 1037-2644 - - - 4774.22
- - 4668.96

- - 4591.12

- - 4538.21

- - 4508.57

HE 1045-1434 4436.49 4738.21 4624.39 4774.22
4754.98 4609.98 4668.96
4771.88 4599.85 4591.13
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

4788.89 4593.96 4538.21
4806.03 4592.25 4508.58
HE 1051-0112 4594.34 4411.69 4689.00 453543
4428.39 4675.19 4436.62
4445.22 4665.77 4362.69
4462.17 4660.71 4311.38
4479.26 4659.95 4281.16
HE 1102-2142 4492.47 4383.27 4687.26 4318.88
4399.95 4673.43 422581
4416.76 4664.00 415543
4433.70 465891 4105.67
4450.77 4658.13  4075.13
HE 1104-1442 4260.54 4037.36 4766.79 -
4053.71 4753.73 -
4070.18 4745.22 -
4086.79 4741.19 -
4103.54 4741.62 -
HE 1110-0153  3969.89 3842.74 3643.12  4535.43
3858.79 3622.98 4436.62
3874.97 3605.64 4362.69
3891.29 3591.02 4311.38
3907.75 3579.06 4281.16
HE 1116-1628 4224.43 4125.85 3895.27 4535.43
4142.30 3876.01 4436.62
4158.89 3859.89 4362.69
4175.61 3846.84 4311.38
4192.46 3836.80 4281.16
HE 1119-1933 4675.25 4790.28 4824.99 -
4807.05 4812.53 -
4823.93 4804.71 -
4840.94 4801.49 -
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

4858.06 4802.85 -
HE 1120-2122 4148.01 3961.56 - -
3977.80 - -
3994.17 - -
4010.68 - -
4027.32 - -
HE 1123-2031 4365.86 4339.84 3995.37 4535.44
4356.50 3976.57 4436.62
4373.28 3961.06 4362.69
4390.19 3948.76  4311.38
4407.23 3939.62 4281.17
HE 1127-0604 4875.50 4604.60 5203.67 4774.22
4621.37 5195.65 4668.96
4638.26 5192.99 4591.13
4655.28 5195.70 4538.21
4672.42 5203.77 4508.58
HE 1142-2601 - - - 4774.22
- - 4668.96
- - 4591.13
- - 4538.21
- - 4508.58
HE 1146-0151 4515.88 4525.81 5120.79 5333.73
4542.56 S5S111.71 521291
4559.44 5107.84 5125.96
4576.44 5109.15 5069.76
4593.57 5115.64 5042.37
HE 1157-1434 4182.98 4181.08 4194.24 -
4197.59 4176.55 -
4214.24 4162.44 -
4231.02 4151.85 -
4247.93 4144.71 -
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

HE 1205-0521 4650.36 4927.12 4373.76  5038.84
4943.84 4357.29 4926.30
4960.67 4344.68 4844.15
4977.61 4335.88 4789.60
4994.67 4330.83 4760.87
HE 1210-2636 - - - 4121.59
- - 4033.68
- - 3966.54
- - 3918.28
- - 3887.60
HE 1228-0417 4795.85 4964.09 4819.73  5038.84
4980.79 4807.22  4926.30
4997.59 4799.34 4844.15
5014.52 4796.04 4789.60
5031.55 479731 4760.87
HE 1230-0327 4814.60 4846.74 5040.33 -
4863.49 5030.27 -
4880.35 5025.26 -
4897.34 5025.27 -
4914.44 5030.29 -
HE 1238-0836 3521.23 3954.13 - -
3970.35 - -
3986.72 - -
4003.21 - -
4019.85 - -
HE 1253-1859 4239.41 4104.99 3952.74 5038.84
4121.42 3933.74  4926.30
4137.98 3917.96 4844.15
4154.68 3905.33 4789.60
4171.51 3895.80 4760.87
HE 1315-2035 4639.76 4949.26 4315.21 453543

66



Chapter 3: Low resolution spectroscopic study of CEMP (CH) stars

Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

4965.96 4298.31 4436.62
4982.78 4285.20 4362.69
4999.71 427578 4311.38
5016.76 4270.02 4281.16
HE 1331-2558 4227.41 4218.84 2380.29 -
4235.39 2361.42 -
4252.07 2343.93 -
4268.89 2327.77 -
4285.84 2312.90 -
HE 1344-0411 3118.34 3414.55 3001.50 3775.37
3429.69 2980.86 3696.32
344497 2962.25 3634.87
3460.38 2945.59 3589.44
3475.93 2930.81 3558.90
HE 1358-2508 - - - 4774.22
- - 4668.96
- - 4591.13
- - 4538.21
- - 4508.58
HE 1400-1113 4894.81 5010.94 5136.86 5038.84
5027.60 5127.98 4926.30
5044.38 5124.34 4844.15
5061.27 512591 4789.60
5078.27 5132.71 4760.87
HE 1404-0846 4239.41 4027.25 4452.00 4318.88
4043.58 4436.13  4225.81
4060.05 442425 415543
4076.64 4416.30 4105.67
4093.38 4412.24 4075.13
HE 1405-0346 4391.31 4484.40 4371.89 4121.59
4501.13 4355.41 4033.68
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

4517.99 434279 3966.54
4534.98 4333.96 3918.28
4552.09 4328.89 3887.60
HE 1410-0125 4378.56 4266.53 - -
4283.12 - -
4299.85 - -
4316.70 - -
4333.69 - -
HE 1428-1950 4505.82 4573.18 - -
4589.94 - -
4606.83 - -
4623.84 - -
4640.98 - -
HE 1429-1411 3057.76 3302.55 - 3775.37
3317.39 - 3696.32
3332.37 - 3634.87
3347.49 - 3589.44
3362.74 - 3558.90
HE 1430-0919 4700.39 4625.81 5119.78 4318.88
4642.58 5110.69 4225.81
4659.48 5106.80 4155.43
4676.50 5108.09 4105.67
4693.64 5114.56 4075.13
HE 1431-0755 3937.98 3950.23 3930.24 4318.88
3966.45 3911.13 422581
3982.81 3895.22 415543
3999.30 3882.42 4105.67
4015.93 3872.68 4075.13
HE 1432-2138 5074.95 5075.25 4557.66 5038.84
5091.87 4542.66 4926.30
5108.60 4531.83 4844.15
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

512543 4525.11 4789.60
5142.38 4522.47 4760.87
HE 1440-1511 4636.24 4747.85 4806.48 5038.84
4764.62 4793.83  4926.30
4781.51 4785.79 4844.15
4798.53 4782.31 4789.60
4815.66 4783.37 4760.87
HE 2114-0603 3948.57 3919.97 3395.16 3941.10
3936.14 3374.54 3857.84
3952.45 3356.40 3793.67
3968.90 3340.66 3746.85
3985.48 3327.27 3716.18
HE 2157-2125 4583.97 5135.81 4848.98 4774.22
5152.37 4836.77 4668.96
5169.04 4829.25 4591.13
5185.82 4826.37 4538.21
5202.71 4828.12 4508.58
HE 2211-0605 4553.10 4621.90 4605.25 4774.22
4638.67 4590.67 4668.96
4655.57 4580.34 4591.13
4672.59 4574.20 4538.21
4689.73 4572.22 4508.58
HE 2213-0017 2701.10 3005.84 2597.34 3228.85
3019.80 2577.62 3163.29
3033.88 2559.49 3110.86
3048.10 2542.89 3070.40
3062.45 2527.78 3041.04
HE 2216-0202 4969.46 5122.16 4604.51 5038.84
5138.74 4589.92  4926.30
5155.42 4579.58 4844.15
5172.21 4573.44  4789.60
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Table 3.4 — continued from previous page

Star Terr (K) Terr (K) Terr (K)  Tepp (K)
(J-K) (J-H) (V-K) (B-V)

5189.12 4571.45 4760.87
HE 2222-2337 3911.73 3879.01 3966.25 3775.36
3895.12 394731 3696.31
3911.36 3931.61 3634.87
3927.74 3919.09 3589.44
3944.26 3909.67 3558.89
HE 2228-0137 4369.03 4284.05 3900.54 4318.88
4300.66 3881.31 4225.81
4317.40 3865.22 4155.43
4334.27 3852.21 4105.67
4351.28 384221 4075.13
HE 2246-1312 4110.70 4125.95 4373.28 4318.88
4142.40 4356.81 4225.81
4158.99 434420 415543
4175.70 4335.39 4105.67
4192.56 4330.33  4075.13
HE 2255-1724 4675.26 4388.73 4183.68 453543
4405.42 4165.93 4436.62
4422.23 4151.74 4362.69
4439.18 4141.05 4311.38
4456.25 4133.80 4281.16
HE 2305-1427 5042.06 4594.23 4410.60 4318.88
4611.00 439441 422581
4627.89 4382.14 415543
464491 4373.74 4105.67
4662.05 4369.15 4075.13
HE 2334-1723 4729.39 4827.13 4889.88 453543
4843.89 4878.12 4436.62
4860.76 4871.11 4362.69
4877.75 4868.82 4311.38
4894.87 4871.24 4281.16
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Star Tepr (K)  Tepp (K)  Tepp (K) Tepp (K)
(J-K) (J-H) (V-K) (B-V)

HE 2347-0658 5554.47 4989.70 5241.78 4774.22
5006.38 5234.26 4668.96

5023.17 5232.18 4591.13

5040.08 5235.54 4538.21

5057.10 5244.36  4508.58

HE 2353-2314 3927.45 4014.92 3996.47 3941.10
4031.24 3977.67 3857.84

4047.68 3962.17 3793.67

4064.26 3949.88 3746.85

4080.98 3940.74 3716.18

3.3.3 Isotopic ratio '>2C/"*C from molecular band depths

Carbon isotopic ratios '2C/'3C, widely used as mixing diagnostics provide an important
probe of stellar evolution. These ratios measured on low resoltuion spectra do not give
accurate results but provide a fair indication of evolutionary states of the objects.

We have estimated these ratios, whenever possible, using the molecular band depths
of (1,0) '2C'2C 24737 and (1,0) '>C!3C A4744. For a majority of the candidate CH stars,
the ratios '2C/"3C are found to be < 10. These ratios for HD 26, HD 5223 and HD 209621
are respectively 5.9, 6.1 and 8.8 (Goswami 2005).

Our estimated ratios of '>C/!3C indicate that most of the candidate CH stars belong
to the ‘early—type’ category. Low isotopic ratios (< 30) are typical of stars on their first

ascent of the giant branch (section 1.7).

3.4 Spectral characteristics of the candidate CH stars

The spectra for the comparison stars obtained from the same observational set up are
shown in Figure 3.2. In Figure 3.3 we show one example of HE stars spectra from
the present sample corresponding to each comparison star’s spectrum in Figure 3.2.
HE 0037-0654, 0420-1037, 1102-2142, 1142-2601, 1146-0151, 1210-2636,
1253-1859, 1447+0102.
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Figure 3.1: A two colour J—H versus H-K diagram of the candidate CH stars. The thick
box on the lower left represents the location of CH stars and the thin box on the upper
right represents the location of C—N stars (Totten et al. 2000). Majority of the candidate
CH stars listed in Table 3.3 (represented by open circles) fall well within the CH box. The
positions of the two outliers are shown with open squares. C—N stars found in our sample
are represented by solid triangles. The location of the comparison stars are labeled and
marked with solid squares. Location of the three dwarf carbon stars are indicated by open
triangles.

The spectra of these objects resemble closely the spectrum of HD 26. HD 26 is a known
classical CH star with effective temperature 5170 K and log g = 2.2 (Vanture 1992b).
The temperatures of these objects as measured using JHK photometric data range from
4200 to 5000 K. The locations of these objects are well within the CH box in Figure
3.1. In Figure 3.4, we show as an example, a comparison of the spectra of three objects
HE 0420-1037, HE 1142-2601 and HE 1146—-0151 with the spectrum of HD 26.

With marginal differences in the strengths of the molecular features, the spectra of

these three objects show more or less a good match with their counterparts in HD 26. The
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Figure 3.2: The spectra of the comparison stars in the wavelength region 3860 — 6800 A.
Prominent features seen on the spectra are indicated.

CN band around 4215 A and the C, band around 5165 A in the spectra of HE 0420—-1037
and HE 1146-0151 are marginally stronger; the Na I D feature also appears stronger.
The features due to Ca K and H appear with similar strengths. In the spectrum of
HE 1142-2601, the CN band depth around 4215 A and Ca II K and H line depths are
deeper than their counterparts in HD 26. The Ca I line at 4226 A is detected with line
depth weaker than the band depth around 4215 A. In HD 26, the Ca I 4226 A feature
is not detected. The object HE 1253-1859 also have very similar spectrum with that
of HD 26. The CN band around 4215 A and carbon isotopic band around 4730 A are
stronger, but the CH band, Ca II K and H features are of similar strengths. The molecular
bands around 5165 A and 5635 A show an exact match. The lines due to Na I D, Ba
IT at 6496 A and H, are seen equally strongly as in HD 26. The Ca I feature at 4226
A could not be detected and the secondary P-branch head around 4342 A seems to be
marginally weaker. In the spectrum of HE 1102-2142 the molecular C, bands around
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Figure 3.3: An example of each of the HE stars corresponding to the comparison stars
presented in Figure 3.2, in the top to bottom sequence, in the wavelength region 3860 —
6800 A. The locations of the prominent features seen in the spectra are marked on the
figure.

4735, 5165 and 5635 A are slightly deeper than those in HD 26. The CN band around
4215 A and the CH band around 4310 A also appear marginally stronger in the spectrum
of HE 1102-2142. The H,, feature and the Ba II line at 6496 A are marginally weaker;
the feature due to Na I D appears with similar strength as in HD 26. Hp at 4856, is clearly
seen. The Ca I line at 4226 A is weakly detected. In the spectrum of HE 1210-2636, the
CN band around 4215 A and the secondary P-branch head around 4342 A appear slightly
stronger than in HD 26. The C, molecular band around 5165 A is also slightly weaker.
The carbon isotopic band around 4733 A is marginally detectable. Ca I line at 4226 A
could not be detected. Features due to Ca II K and H and H,, are clearly detected. In the
spectrum of HE 144740102, the CN band around 4215 A is almost absent. Strong well
defined features due to Ca II K and H are seen. Molecular bands around 4733, 5165, and
5635 A are distinctly seen to be stronger than their counterparts in HD 26. In the redward
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Figure 3.4: A comparison of the spectra of three HE stars in the wavelength region 3870
— 5400 A with the spectrum of the comparison star HD 26. Prominent features noticed in
the spectra are marked on the figure.

of 5700 A no molecular bands are detected. We assign these objects to the CH group.
HE 0037-0654, 2216-0202

The spectrum of HE 0037-0654 looks very similar to the spectrum of HD 26; however,
molecular bands of C, around 4730, 5165 and 5635 A are marginally stronger than their
counterparts in HD 26. The CN band around 4215 A is barely detected, much weaker
than in HD 26. Ba II line at 6496 A is clearly detected. Strong lines of H, and Na I D
are distinctly noticed. Except for the features of Ca II K and H which are much weaker,
the spectrum of HE 2216—0202 is very similar to the spectrum of HD 26. The secondary
P-branch head around 4342 A is much stronger than in HD 26. The CN band around 4215
A is not observed. The CH band at 4305 A is not as strong as in HD 26. The molecu-
lar bands around 4733 A and 5236 A are of similar depths. The carbon molecular band
around 5635 A is weaker than the band around 5165 A. No molecular bands longward of
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5700 A are detectable.

HE 0136-1831, 1027-2501, 1051-0112, 1119-1933, 1120-2122, 1123-2031,
1145-1319, 1205-2539, 1331-2558, 1404—-0846, 1525-0516, 2114-0603, 2211-0605,
2228-0137, 2246-1312.

The spectra of these objects resemble closely the spectrum of HD 209621, a classical
CH star with effective temperature ~ 4400 K (Tsuji et al. 1991). The effective tem-
peratures estimated for this set of objects using JHK photometry range from 3948 K
(HE 2114-0603) to 4675 K (HE 1119-1933). Their locations on the J-H vs H-K plot are
well within the CH box in Figure 3.1. Three examples, HE 0136—1831, HE 1027-2501
and HE 2228-0137 from this set are shown in Figure 3.5 together with the spectrum of
HD 209621. In the spectrum of HE 0136—1831, the CN band around 4215 Ais marginally
weaker and the carbon molecular bands around 4733 and 5635 A are marginally stronger
than those in HD 209621. All other features show a good match. The spectrum of
HE 1027-2501 also shows a close match with the spectrum of HD 209621. Except
for the molecular bands around 4733, 5165 and 5635 A that appear marginally weaker
in the spectrum of HE 2228—-0137 the spectrum of this object bears a close resemblance
with the spectrum of HD 209621. The spectrum of HE 1051-0112 shows a weaker CN
band around 4215 A. The G-band of CH appears with almost the same strength as in
HD 209621. The secondary P-branch head around 4342 A and the bands around 4730
and 5635 A are relatively stronger. Features due to Ca II K and H are barely detectable
in the spectrum of this object. The molecular band around 5165 A shows an exact match
with its counterpart in HD 209621. The features due to H, and Na I D are detected
distinctly; the Ba II feature at 6496 A is marginally detected.

In the spectrum of HE 1119-1933, Ca II K and H appear marginally stronger. The
molecular band around 5365, appears marginally weaker than in HD 209621. The spec-
tra of HE 1120-2122 and HE 1123-2031 are very similar, both exhibit a weaker CN
band around 4215 A. All other features show a good match with their counterparts in
the spectrum of HD 209621. Ca II K and H appear with almost the same strength in the
spectrum of HE 11202122 as in HD 209621. Ca I line at 4226 A is not detectable. The
spectra of HE 1123-2031, HE 1145-1319, HE 1205-2539, HE 1331-2558 are noisy
shortward of 4100 A and the lines due to Ca II K and H could not be clearly detected.
Ca I line at 4226 A is not detectable in these spectra. Features due to Na I D, H,, and
Ba II at 6496 A are detected. In the spectrum of HE 1145-1319, C, molecular bands
around 5635 and 4733 A are marginally deeper than those in HD 209621. The features
redward of 4200 A in the spectrum of HE 1205-2539 show a good match with those in
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HD 209621. The molecular features in the spectrum of HE 1331-2558 are also of similar
strengths with those in HD 209621. Except for the G-band of CH, all other molecular
features are weaker in the spectrum of HE 1404—-0846. The features due to Ca II K and
H are marginally stronger. The spectrum of HE 1404—-0846 is noisy at the blue end. In
the spectrum of HE 1525-0516, H, and Na I D features are detected with almost equal
strength as in HD 209621. The spectrum of HE 2114-0603 shows a remarkably close
match with the features in HD 209621 including those longward of 5700 A. However the
features due to Ca II K and H that are seen very distinctly in the spectrum of HD 209621
could not be detected in the spectrum of HE 2114—-0603; the spectrum is noisy blueward
of 4000 A. In the spectrum of HE 2211-0605 the molecular features are weaker than
their counterparts in HD 209621 but stronger than those in HD 26. The CH band matches
exactly with the one in HD 209621. Ca II K and H appear with almost equal strengths as
in HD 209621. The spectrum of HE 2246—1312 shows a weaker molecular band around
CN 4215 A. Other molecular bands appear with almost of equal strengths as their coun-
terparts in HD 209621. The spectrum blueward of 4100 A is noisy and Ca II K and H
features could not be detected as well defined features.

HE 0954+0137, 1230-0327, 1315-2035, 1400-1113, 1430-0919, 1447-0102,
2157-2125, 2216-0202, 2255-1724, 2305-1427, 2334-1723, 2347-0658, 2353-2314.
The spectra of these objects are characterized by a weak (or absent) CN band around
4215 A. Apart from this feature the spectra are somewhat similar to the spectrum of
HD 209621.

The spectrum of HE 1230-0327 shows a strong G-band of CH and a distinct sec-
ondary P-branch head near 4342 A. Ca I feature at 4226 A is not detected. The CN band
around 4215 A is almost absent. While atomic lines of Ca II K,H, H,, NaID are dis-
tinctly seen, Ba II line at 6496 A is marginally detected. The spectra of HE 0954+0137,
HE 1400-1113, HE 1430-0919, HE 2255—-1724 and HE 2347-0658 look very similar
to the spectrum of HE 1230-0327. In the spectra of these objects the feature due to the
CN band around 4215 A is marginally detectable. Weak molecular bands noticed in the
spectrum of HD 209621 upward of 5700 A are not observable in these spectra. Compared
to HD 209621, the molecular bands around 4733, 5165, and 5635 A are slightly weaker
in the spectra of these objects. Ca II K and H are detected almost with equal strength
as in HD 209621. In the spectrum of HE 1430—0919 the secondary P-branch head near
4342 A is marginally weaker than in HD 209621. While the molecular band around 5165
A shows a good match, the bands around 4733 and 5635 A are marginally stronger. The
spectrum in the redward of 5700 A resembles the spectrum of HD 209621. Features due
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Figure 3.5: A comparison of the spectra of three HE stars in the wavelength region 3870 —
5400 A with the spectrum of the comparison star HD 209621. Prominent features noticed
in the spectra are marked on the figure.

to Na I D, H, and Ba II line at 6496 A are detected. In the spectrum of HE 1447+0102,
the CN band around 4215 A is almost absent. Strong well defined features of Ca II K and
H are seen. The C, molecular bands around 4733, 5165, 5635 A are distinctly present. No
other molecular bands are noticed longward of 5700 A. The spectra of HE 2305—1427
and HE 2334-1723 show the CN band around 4215 A with band depth almost half of
that in HD 209621. All other molecular features match well with their counterparts in
the spectrum of HD 209621. Weak molecular bands that are noticed in the spectrum of
HD 209621 upward of 5700 A are not noticeable in the spectra of these two objects. The
features due to Na I D, H, and Ba Il at 6496 A could be detected. The secondary P-branch
head at 4223 A is seen as distinctly as in HD 209621.

In the spectrum of HE 2353-2314, the CH band around 4300 A as well as the CN
band around 4215 A are marginally detected. The carbon molecular band around 5165 A
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is clearly detected; the band around 5635 A is much weaker. No other molecular bands
or atomic lines are detectable. In the spectrum of HE 2255-1724, the CN band around
4215 A is much weaker than that in HD 209621. The CH band and Ca IT K and H are
of similar depths. The molecular bands around 4733, 5165, 5635 A are slightly weaker
in this object. Features of Na I D, Ba II line at 6496 A, and H,, are distinctly seen. The
molecular bands longward of 5635 A are not detectable. The spectrum acquired on Sep
11, 2008 have a better signal. In the spectrum of HE 23341723, the CN band around
4215 A is much weaker than in HD 209621; all other molecular bands show a good
match. The features due to Ca II K and H also show a good match. No molecular bands
are detectable upward of 5700 A. In the spectrum of HE 2347-0658 the CN band around
4215 A is almost absent. Ca II K and H features and carbon molecular bands around
4733, 5165, 5635 A show a good match. Molecular bands seen in HD 209621 upward of
5700 A are not detectable in the spectrum of this object.

The spectrum of HE 1400—-1113 is noisy below about 4220 A. The CN band around
4215 A could be marginally detected. Ca II K and H are detected as weak features.
A strong CH band around 4300 A and the secondary P-branch head near 4342 A are
distinctly seen. Other molecular features have band depths marginally weaker than their
counterparts in HD 209621. Except for Na I D, Ba II at 6496 A and H, no other atomic
lines are detected redward of 5670 A.

The spectrum of HE 1430-0919 also shows a very weak CN band around 4215 A.
The features due to Ca II K and H are not detected. The G-band of CH around 4300 A
is however very strong in the spectrum. The spectrum of HE 2157-2125 shows the CH
band around 4300 A with almost equal strength to its counterpart in HD 209621. Features
due to Ca II K and H and other molecular features are also seen with equal intensities.
Howeyver, the CN band around 4215 A is much weaker than that in HD 209621.

The spectrum of HE 1315-2035 is noisy blueward of 4200 A. The G-band of CH and
the carbon molecular bands near 4733, 5165 and 5635 A are detected in the spectrum.
The H,, feature is clearly detected. The effective temperature of this object is 4639 K as
estimated from J—K colour calibration.

HE 0008-1712, 0052-0543, 0100-1619, 0225-0546, 0237-0835, 0507-1430,
1045-1434, 1110-0153, 1157-1434, 1228-0417, 1318-1657, 1405-0346, 1400-0229,
1410-0125, 1431-0755, 1432-2138, 1440-1511.

The spectra of these objects closely resemble the spectrum of HD 5223, a well-known
classical CH star with effective temperature ~ 4500 K, log g = 1.0 and metallicity [Fe/H]

= —2.06 (Goswami et al. 2006). The effective temperatures of these objects derived from
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J—K colour range from about 3924 K (HE 0052-0543) to 4795 K (HE 1228-0417).
Except for the two outliers HE 1045-1434 and HE 1228-0417 (represented with open
squares) the locations of this set of objects are well within the CH box in Figure 3.1.

A comparison of the spectra of HE 0008—1712, HE 0100-1619 and HE 1405-0346
with the spectrum of HD 5223 is shown in Figure 3.6. The Ca I line at 4226 A is not
detectable in any of these spectra. The CH band as well as other molecular bands show
a very good match. The features due to Ca II K and H are seen with equal strength as in
HD 5223. The CN band around 4215 A in HE 01001619 is slightly deeper. The bands
longward of 5635 A are also marginally deeper. This object HE 0100—1619 is also men-
tioned as a CH star in (Totten et al. 2000). Heliocentric radial velocity of HE 0100-1619
as reported by Bothun et al. (1991) is —142 km s~'.

The spectra of HE 0052—-0543 and HE 1110-0153 show stronger molecular bands
than their counterparts in HD 5223. In the spectrum of HE 0225-0546 the molecular
bands are marginally stronger than in HD 5223. The molecular features above 5700 A
seen in these two spectra are barely noticed in the spectrum of HD 5223. The spectrum
of HE 1157-1434 also show a good match with the spectrum of HD 5223 except for the
molecular band around 5635 A which is distinctly weaker in its spectrum. The molec-
ular features redward of 5700 A are also noticed weakly in the spectrum of this object.
The spectrum of HE 14050346 shows a stronger CN band around 4215 A as well as a
stronger carbon molecular band around 5635 A. The secondary P-branch head near 4342
A is also stronger than its counterpart in HD 5223. Other molecular bands around 4733
and 5165 A show a good match. Ca II K and H are seen as strongly as in HD 5223.
The effective temperature of the object from J—K colour is 4391 K, slightly lower than
the effective temperature of HD 5223. In the spectrum of HE 1410-0125 the molecular
features are slightly shallower than their counterparts in HD 5223. The CH band depth
is however of similar strength. The feature at Ca I 4226 Ais absent; the features due to
Ca Il K and H are of similar strengths. The CN band around 4215 A matches well with
the CN feature in HD 5223. The radial velocity of this object as quoted by (Frebel et al.
2006) is +80 Km s~!. The effective temperature estimated using J-K calibration returns
a value 4378 K for this object.

The spectrum of HE 1431-0755 is noisy blueward of 4000 A; the features of Ca II K
and H could not be detected. The CH band around 4310 A and the CN band around 4215
A appear slightly stronger than their counterparts in HD 5223. Other C, molecular bands
present in the spectrum are narrower than their counterparts in HD 5223. The spectrum

redward of 5700 A shows molecular features that are barely noticed in the spectrum of
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HD 5223. The spectrum of HE 1440—-1511 shows molecular bands with almost equal
depths with those in HD 5223. Ca II K and H features are however stronger than their
counterparts in HD 5223. The spectrum shows a distinctly stronger feature due to Na |
D. Features of H, and Ba II at 6496 A are of equal strengths. The spectrum redward of
5700 A shows a good match.

In the spectrum of HE 1228-0417 the Ba II feature at 6496 A and H,, are seen with
equal strengths as in HD 5223. The part of the spectrum redward of 5700 A shows a
very good match. The Ca I line at 4226 A is not detected. The feature due to Na I D
is clearly detected. Other carbon molecular features around 4730, 5165, and 5635 A ap-
pear marginally weaker than their counterparts in HD 5223. The G-band of CH appears
with almost equal strength but the CN band around 4215 Ais marginally weaker than
its counterpart in HD 5223. The effective temperature of the object estimated using J—K
colour calibration is 4795 K, higher than the effective temperature of HD 5223 ~ 4500
K (Goswami et al. 2006). The location of this object outside the CH box is not obvious
from its low resolution spectra.

The spectra of the objects HE 0237—-0835, HE 0507—-1430, HE 1318—-1657, HE 1400-0229,
HE 1432-2138 closely resemble the spectra of HD 5223. The G-band of CH is visible
at about 4300 A and of almost equal strength in all the objects including HD 5223. The
Ca I line at 4226 A is weakly detected in HE 1318—1657. The C, molecular bands of HE
1318—1657 is also weak compared to HD 5223. Hp line is clearly visible and of equal
strength to HD 5223. The Ba II features at 4554 and 6496 A are marginally weaker in HE
1318—1657. The Na I D feature is weakly detected.

The spectra of HE 0507-1430 and HE 1400—-0229 show very close resemblances to the
spectrum of HD 5223. CH and C, bands are strongly detected and are seen with equal
strengths as in HD 5223. The Ca I feature at 4226 A is very weakly detected. The C,
molecular bands around 4730, 5165, 5635 A are also very strong similar to HD 5223. In
HE 0237-0835 and HE 1432-2138 the C, bands at 4737 and 5165 A are found to be
similar in strength to HD 5223. But the C, band at 5635 Ais slightly weak compared to
HD 5223. The H, line at 6563 A and Ba II line at 6496 A are seen in all the objects ex-
cept HE 1432-2138 with similar strength to HD 5223. In HE 1432-2138, these lines are
weakly detected. The Hy line is clearly visible in case of HE 1400-0229 and 0237-0835
but slightly weak and broad in HE 0507—1430, 1432—2138. The Ba II line at 4554 A is
stronger in HE 0237-0835, 0507—-1430 moderately strong in HE 1400—-0229 and very
weak in HE 1432-2138. The Na I D feature is shallow and weak in all of these stars and

the individual contributions are not visible.
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Figure 3.6: A comparison of the spectra of three HE stars in the wavelength region 3880
— 5400 A with the spectrum of the comparison star HD 5223. Prominent features noticed
in the spectra are marked on the figure.

HE 0009-1824, 11161628, 1358-2508.

The spectra of these objects are illustrated in Figure 3.7. These three objects are known
dwarf carbon stars. The effective temperatures of HE 0009-1824, HE 1116-1628,

HE 1358-2508 as estimated from J—K calibration are respectively 5530 K, 4224 K and
3623 K. As expected, the molecular band depths are the strongest in HE 1358-2508,
the coolest of the three objects; and weakest in HE 0009-1824. In the spectrum of
HE 0009-1824 the CN band around 4215 A is completely missing. The features due
to Ca IT K and H as well as the CN band near 3880 A are detected. The G-band of CH is
strong but not as strong as it appears in CH stars. The secondary P-branch head near 4342
A is seen distinctly. Apart from the absence of the CN band around 4215 A the spectrum
of this object looks somewhat similar to the spectrum of HD 209621. The distance of this
object as reported by Mauron et al. (2007) is 300 pc. The spectra of HE 1116—1628 and
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Figure 3.7: The spectra of three dwarf carbon stars in the wavelength region 4500 — 6800
A. Prominent features noticed in the spectra are marked on the figure.

HE 1358-2508 show characteristics of C—R star RV Sct with marginal differences in the
molecular band depths. In the spectrum of HE 1358-2508, the CH band is marginally
stronger than in RV Sct. The C, molecular bands are stronger in the spectrum of this
object. The CN band around 4215 A is clearly detected. Ratnatunga, in his PhD thesis
(1983) first proposed this object HE 1116—1628 to be a dwarf carbon star. This object
is also present in the list of dwarf carbon stars of Lowrance et al. (2003). Mauron et al.
(2007) reported the proper motions in a and ¢ and their respective 1o~ errors in mas yr!
as —23.5 = 6.7 and +29.8 + 4.6. The distances of HE 1116—-1628 and HE 1358-2508
as reported by Mauron et al. (2007) are 170 pc and 270 pc respectively. Totten & Irwin
(1998) reported a radial velocity of —69 km s~! for the object HE 1116—1628. All the
three objects have total proper motion u > 30 mas yr~! (Mauron et al. 2007).

The locations of the three dwarf carbon stars are indicated by open triangles in Fig-

ure 3.1. Location of HE 0009-1824 is on the left below the CH box, the location of
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HE 1358-2508 is on the right edge of the CH box and the location of HE 1116-1628
is found to be well inside the CH box. Dwarf carbon stars have anomalous infrared
colours (Green et al. 1992; Westerlund et al. 1995). In the conventional two colour JHK
diagram the locus of dwarf carbon stars colours is away from the normal carbon star lo-
cus. The locus defined by dwarf carbon stars is bounded by (J-H) < 0.75 and (H-K)
> (0.25 (Westerlund et al. 1995). This condition is satisfied by HE 1358—-2508; however
HE 0009—-1824 and HE 1116—-1628 both have (H—K) colours less than the lower limit of

0.25 mag set for dwarf carbon stars.

3.5 Candidate C—R stars

HE 0201-0327, 0417-0513, 0419+0124, 0926-0417, 1011-0942, 1127-0604,
1205-0521, 1238-0836, 1319-2340, 1418—-0306, 1428—-1950, 1439-1338, 2222-2337.
The spectra of these objects show characteristics of C—R stars. The spectra of HE 1011-0942,
HE 1205-0521, HE 1238-0836 match closest to the spectrum of RV Sct. The effec-
tive temperatures of the objects estimated using J-K calibration range from 3521 K
(HE 1238-0836) to 4875 K (HE 1127-0604).

In the spectra of HE 1238-0836 and HE 1428—-1950 the CH band around 4300 Ais
slightly deeper than in RV Sct. The molecular features in the redward of 5700 A appear
marginally weaker. The spectrum of HE 2222—2337 has low flux below about 4100 A.
The CH band does not appear as strong as it should be in C—R star’s spectrum. The
CN band around 4215 A is marginally detected. Other molecular bands are of similar
strengths. The molecular features redward of 5635 A are slightly weaker. We place these
objects in the C—R group.

The spectra of the objects HE 0201-0327, HE 0417-0513, HE 0419+0124, HE 0926-0417,
HE 1319-2340 closely resemble the spectra of C—R stars. The NaI D line is very strongly
detected in all these star’s spectra which is a well known characteristic of C—R stars. The
Cal line at 4226 A is also strong and of equal strength in all these spectra. The CH band
is weakly detected. The secondary P-branch head is not visible. The C, molecular bands
around 4730 and 5635 A are very weak in all the spectra. The C, band at 5165 A is
moderately strong in HE 0201-0327, HE 0417-0513 and HE 0419+0124. The CN band
(4215 A) is strong for HE 0926—-0417. In HE 0201-0327 the CN band is appeared very
weak but for HE 0417-0513 and HE 0419+0124 it appeared moderately strong. While
the Hg line in all these spectra, is broad and blended with molecular lines, the H, line is

clearly visible. The Ba II line at 4554 Ais very weak in all the objects. Similarly Ba II
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line at 6496 A is clearly visible though not strong. H, and Ba II line at 6496 A are seen

with similar strengths.

3.6 Candidate C—N stars

HE 0217+0056, 0228-0256, 1019-1136, 1344-0411, 1429-1411, 1442-0058,
2213-0017, 2319-1534, 2331-1329

The spectra of these objects show a close resemblance with the spectrum of the C-N
star Z PSc with similar strengths of CN and C, molecular bands across the wavelength
regions. In Figure 3.1, the objects HE 0217+0056, HE 1344-0411, HE 1429-1411,
HE 1442-0058 and HE 2213-0017 represented by solid triangles lie well within the CN
box. The spectra have low flux below about 4400 A. The spectrum of HE 1429-1411 is
similar to that of Z PSc’s spectrum, except that the CN band around 4215 A is marginally
weaker in this star. The CH band is weakly detected in the spectrum of HE 1116—-1628.
The molecular bands near 4735, 5135 and 5635 A are noticed distinctly. The feature due
to Na I D is strongly detectable. The Ba II line at 6496 A is detectable but the H, fea-
ture could not be detected. HE 1127—0604 has low flux below about 4200 A. The CH
band and C, molecular bands around 4735, 5165, 5635 A are detected. All the features
in the spectrum are weaker than their counterparts in Z Psc. While features of Ca II K
and H are detected, the CN band around 4215 A is not clearly seen. The spectra of the
objects HE 2213-0017, HE 1442-0058, HE 1344—-0411 compare closest to the spectrum
of C—N star V460 Cyg as illustrated in Figure 3.8.

The objects HE 0217+0056, HE 1442—-0058 and HE 2213—-0017 are also mentioned
as N—type stars in the APM survey of cool carbon stars in the Galactic halo (Totten &
Irwin 1998). Totten et al. (2000) have provided proper motion measurements for these
objects. The distances measured by these authors assuming an average My = —3.5 for
these objects lies in the range 16 to 43 kpc. Heliocentric radial velocities estimated by
Totten & Irwin (1998) for these objects are respectively —142 + 3, 126 £ 4, 37 + 4, —44
+3,and —113 + 5 km s~'. Heliocentric radial velocity of HE 0228—-0256 is —72 km s7!
(Bothun et al. 1991).

The spectra of the objects HE 2319-1534, HE 2331-1329 show a strong depression
in the bluer side of the spectra. In HE 2319-1534 the spectrum is noisy blueward from
4400 A and in HE 2331-1329 spectrum is noisy from 4200 A. All C, bands appears to
be strong except the C, band at 5635 A in HE 2319—-1534. The Na I D line is very broad
in both the spectra and appear strong in HE 2331-1329 compared to HE 2319-1534.
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Figure 3.8: A comparison of the spectra of the candidate C—N stars with the spectrum
of V460 Cyg in the wavelength region 4500 — 6800 A. The bandheads of the prominent
molecular bands, Na I D and H,, are marked on the figure.

The strong Ca I line (4226 A) can be seen in HE 2331-1329 but is not visible in HE
2319-1534 due to the depression in the spectrum. The H, line is not visible in these
spectra and Hg line appears very broad and weak. The Ba II feature at 4554 Ais strong
for both these stars. Similarly the Ba IT at 6496 A line is also broadened in the spectra of
HE 2331-1329 while in HE 2319-1534 it appears narrow. These objects lie well within
the C—N box in J-H and H-K plot. All these features strongly support these stars to be
the members of C—N group.

HE 1015-2050. The spectra of HE 1015-2050 do not show the presence of any
carbon molecular bands. The features due to Ca II K and H are not detected. The G-
band of CH is seen as a weak feature. Features due to Ca I at 4226 A and Na D I are
seen as strong features. Ba II line at 6496 A and H,, feature are detected. 2MASS JHK

photometry is not available for this object. A careful inspection reveals the star to exhibit
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Figure 3.9: Spectra for the CH stars from the catalogue of Bartkevicius (1996)

spectral characteristics of cool HAC stars.

3.7 Low resolution spectroscopy of stars from the CH

star catalogue of Bartkevicius (1996)

We have conducted low resolution as well as high resolution spectroscopic study for
twenty two stars from the CH star catalogue of Bartkevicius (1996) Low resolution spec-
tra of a sample of these objects obtained with 2m HCT at IAO are presented in Figures 3.9
and 3.10. The detailed studies of these objects based on high resolution Elodie spectra;
analyses and results; are discussed in chapter 4 and 5.
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Figure 3.10: Same as Figure 3.9

3.8 Conclusion

We have analysed a total of hundred and eleven objects including twenty two objects
from the CH star catalogue of Bartkevicius (1996). Among these, the spectra of sixty
eight objects are characterized by the presence of strong C, molecular bands. The spec-
tra of twenty two objects from the CH95 catalogue are also characterized by a weak or
moderate G-band of CH. The spectral analysis led to the detection of thirty eight poten-
tial CH star candidates. Their locations on the two color J-H versus H-K diagram are
in support of their classification with this class of objects. This set of objects will make
important targets for subsequent chemical composition studies based on high resolution
spectroscopy and for confirmation of these objects with this class of identification.
While identification of C—N and C-J type stars are relatively easy, separating C—R
stars from CH stars is not so straightforward. The two main properties, presence or ab-
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sence of s-process elements and binarity that differentiate early—R stars from CH stars,
can be known only through detailed abundance studies that require high resolution spec-
troscopy and from long—term radial velocity monitoring. The faintness of these objects
makes high resolution spectroscopic studies very difficult. As such, the method described
in Goswami (2005) to distinguish a C—R from a CH star proved quite useful. Abia et al.
(2002) have shown that CH stars cannot be formed above a threshold metallicity, around
Z ~ 0.4Z,. According to Dominy (1984), the metallicities of C—R stars are either solar
or slightly sub-solar. C—R stars are believed to be Core Helium Burning (CHeB) counter-
parts of CH stars in which s-process elements are either absent or not detectable (Izzard
et al. 2007). These authors have predicted an early—R/CH ratio ~ 7 per cent, at [Fe/H]
= —2.3, a metallicity typical of the Galactic halo. This ratio is derived considering only
CHeB CH stars, if CH giants and dwarfs are also considered, this ratio is likely to get
much lower.

Westerlund et al. (1995) defined dwarf carbon stars as having J-H < 0.75, H-K >
0.25 mag. Among the three dwarf carbon stars in our sample the objects HE 1358—-2508
occupies a region defined by these limits on J-H, H-K plane. HE 0009-1824 and
HE 1116-1628 however do not follow the JHK definition of dwarf carbon stars offered
by Westerlund et al. (1995). It seems, these limits on J-H and H-K may not be very
tight. Proper motions of these objects have been estimated by Mauron et al. (2007) and

have placed them as dwarf carbon stars.
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CHAPTER 4

SPECTROSCOPIC ANALYSIS OF CH
STARS I: BASIC OBSERVATIONAL
PROPERTIES

Karinkuzhi D, & Goswami A, 2014, MNRAS, 440, 1095
Karinkuzhi D, & Goswami A, 2015, MNRAS, 446, 2348

4.1 Introduction

In this chapter we have presented the observational properties of the programme stars
from the CH star catalogue of Bartkevicius (1996) for which we have carried out detailed
abundance analysis in chapter 5. CH stars characterized by iron deficiency, enhanced
carbon and s-process elements are known to be post-mass-transfer binaries (McClure &
Woodsworth 1990) in which the companion (primary) has evolved to white dwarf passing
through an AGB stage of evolution. The chemical composition of CH stars (secondaries)
bear the signature of the nucleosynthesis processes occurring in the companion AGB stars
due to mass transfer. Two suggested mass transfer mechanisms include RLOF and wind
accretion (section 1.8.1). Recent hydrodynamical simulations have shown in the case
of the slow and dense winds, typical of AGB stars, that efficient wind mass transfer is
possible through a mechanism called wind Roche-lobe overflow (WRLOF) (Abate et al.
(2013) and references therein). CH stars (secondaries) thus form ideal targets for studying
the operation of s-process occurring in AGB stars. Chemical abundances of key elements

such as Ba, Eu etc. and their abundance ratios could provide insight in this regard. How-
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ever, literature survey shows that detailed chemical composition studies of many for the
objects belonging to the CH star catalogue of Bartkevicius (1996) are currently not avail-
able. A few studies that exist are either limited by resolution or wavelength range. We
have therefore undertaken to carry out chemical composition studies for a selected sam-
ple of CH stars from this catalogue using high resolution spectra. In our previous studies
along this line (see chapter 3) we have considered the sample of faint high latitude carbon
stars of Hamburg/ESO survey (Christlieb et al. 2001) and based on medium resolution
spectroscopy found about 33 per cent of the objects to be potential CH star candidates
(Goswami 2005; Goswami et al. 2007, 2010b). Chemical composition of two objects
from this sample based on high resolution Subaru spectra are discussed in Goswami et al.
(2006).

CH stars (with —0.2 < [Fe/H] < -2) and the class of carbon-enhanced metal-poor
(CEMP)-s stars of the CEMP stars classification of Beers & Christlieb (2005) are be-
lieved to have a similar origin as far as their chemical composition is concerned and that,
the CEMP-s stars are thought to be more metal-poor counterparts of CH stars. High
resolution spectroscopic analyses of CEMP stars have established that the largest group
of CEMP stars are s-process rich (CEMP-s) stars and accounts for about 80 per cent of
all CEMP stars (Aoki et al. 2007). Chemical composition studies of carbon-enhanced
metal-poor stars (Barbuy et al. 2005; Norris et al. 1997a,b, 2002; Aoki et al. 2001, 2002;
Goswami et al. 2006; Goswami & Aoki 2010) also have suggested that a variety of pro-
duction mechanisms are needed to explain the observed range of elemental abundance
patterns in them; however, the binary scenario of CH star formation is currently con-
sidered as the most likely formation mechanism also for CEMP-s stars. This idea has
gained further support with the demonstration by Lucatello et al. (2005), that the fraction
of CEMP-s stars with detected radial-velocity variations is consistent with the hypothesis
of all being members of binary systems.

The sample of programme stars includes five confirmed binaries, HD 16458, HD 122202,
HD 201626, HD 204613 and HD 216219. Six objects in this sample, HD 4395, HD 48565,
HD 55496, HD 92545, HD 104979 and HD 107574 are known to show radial velocity
variability, and for the rest, none of these two information is available. In the following
text, for convenience, we will refer the objects that are confirmed binaries as group I ob-
jects, those with limited radial velocity information as group II objects and the objects for
which none of these information are available as group III objects. One of our primary
objectives is to estimate the abundances of heavy elements and critically examine the

abundance patterns and abundance ratios if they exhibit characteristic abundance patterns
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of CH stars and if there exist any correlation between the group I, group II and group III

objects.

4.2 High resolution spectra of the programme stars

Programme stars are selected from the CH star catalogue of Bartkevicius (1996); the
basic data of these objects are listed in Table 4.1. The spectra are taken from the ELODIE
archive (Moultaka et al. 2004). We have considered only those CH stars for which high
resolution spectra are available in the archive with S/N ratio > 20. ELODIE is an echelle
spectrograph used at the 1.93 m telescope of Observatoire de Haute Provence (OHP). The
spectra recorded in a single exposure as 67 orders on a 1K CCD have a resolution of R
~ 42000. Details about the telescope and ELODIE spectrograph are explained in section
2.3.2. The wavelength range spans from 3900 to 6800 A. A few sample spectra are shown
in Figures 4.1 and 4.2.

4.3 Radial velocity

Radial velocities of the programme stars are calculated using a selected set of clean un-
blended lines in the spectra. Estimated mean radial velocities along with the standard de-
viation from the mean values are presented in Table 4.2. The literature values are also pre-
sented for a comparison. Radial velocity variations are reported in McClure (1984, 1997)
and McClure & Woodsworth (1990) for four stars, HD 16458, HD 201626, HD 216219
and HD 4395. McClure (1997) has reported the radial velocity variations and orbital
parameters for two subgiant-CH stars HD 122202 and HD 204613. Except HD 4395,
other five objects are confirmed binaries. Radial velocity variations in HD 4395 is found
to be very small. Our radial velocity estimate for HD 48565 shows a difference of ~ 6
km s~! from the literature value. Variation in radial velocity for this object was also re-
ported by North et al. (1994) and Nordstroem et al. (2004). For the remaining stars we
note smaller differences from the literature values. Except for HD 55496 (315 km s™!)
HD 201626 (—141.6 km s~!) and HD 81192 (—136.5 km s~!), the programme stars are
low-velocity objects. Although radial velocity variations are noticed in HD 55496, it is not
confirmed as a binary. Our estimate also shows a difference of 7 km s~! from the literature
value. Mild radial velocity variations are noticed in HD 92545 and HD 107574 (North
& Duquennoy 1992) also. Our radial velocity estimates of HD 104979 and HD 164922

show a difference of ~ 15 km s~! from the literature values.
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Figure 4.1: Sample spectra of a few programme stars in the wavelength region 5161 to
5190 A

4.4 'Temperatures from photometric data

The estimates of photometric temperatures at metallicity values from —0.5 to —1.5 of the
programme stars are presented in Table 4.3. The equations used and the details about
the calculations performed are explained in section 2.4.10. The temperature calibrations
from the (J—H) and (V—K) relations involve a metallicity ([Fe/H]) term. Adopted [Fe/H]
values are shown in parenthesis in table 4.3.
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Figure 4.2: Spectra showing the wavelength region 6481 to 6510 A, for the same stars as
in Figure 4.1.
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Table 4.1: Basic data for the programme stars

Star RA (2000) DEC (2000) B A% J H K
hms dms
Group I
HD 16458 024747.70 +812654.51 7.12 579 3.840 3.343 3.032
HD 122202 1400 18.96 +045125.06 9.85 9.36 8.506 8.358 8.252
HD 201626 2109 59.27 +263654.92 920 8.13 6.315 5.838 5.736
HD 204613 21274296 +571918.86 8.86 8.22 7.100 6.824 6.788
HD 216219 225052.15 +180007.58 8.06 7.44 6.265 6.034 5.935
Group 11
HD 4395 0046 13.74 -112708.56 839 7.70 6.394 6.099 5.972
HD 48565 06445492 +20513835 7.73 7.20 6.122 5.884 5.806
HD 55496 07121137 -225900.61 930 840 6.590 6.043 5.931
HD 92545 104057.70 -121144.23 9.07 8.56 7.548 7.347 7.282
HD 104979 120512.54 +084358.74 5.10 4.13 2459 1987 1.869
HD 107574 122151.86 -182400.15 899 8.54 7.660 7.460 7.415
Group IIT
HD 5395 00563990 +591051.80 5.57 4.63 3.123 2.680 2.468
HD 81192 09244533 +194711.86 7.45 653 4.846 4282 4.119
HD 89668 102043.40 -012811.38 10.50 9.41 7.443 6.908 6.760
HD 111721 125125.19 -132928.17 8.78 797 6.347 5.898 5.786
HD 125079 141720.71 -041557.81 9.57 8.67 7.136 6.759 6.610
HD 126681 14272491 -18244043 993 9.32 8.044 7.709 7.631
HD 148897 163033.54 +202845.07 6.50 5.25 2950 2.248 1.966
HD 164922 180230.86 +261846.80 7.79 6.99 5.553 5.203 5.113
HD 167768 18 1653.10 -030026.64 6.89 6.00 4.376 3.906 3.789
HD 188650 195448.25 +365944.43 6.52 579 4.626 4.111 4.114
HD 214714 22393433 +373534.14 6.86 6.03 - -
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Table 4.2: Radial velocities for the programme stars

Star V.(kms™!) V,(kms') References
our estimates literature
Group I
HD 16458 182+0.5 18 1
HD 122202 -7.40 = 0.97 -10.5 2
HD 201626 —-141.6 +1.2 —145.7 6
HD 204613 -89.53 +0.33 -90.96 7
HD 216219 -6.8+0.7 =75 4
Group 11
HD 4395 -0.8+0.8 -1.3 6
HD 48565 -257+04 -194 6
HD 55496  315.28 = 0.80 322.00 8
HD 92545  —17.51 = 0.65 —16.65 12
HD 104979 —45.40 + 0.42 -29.62 9
HD 107574 -16.33 +£0.72 -29.40 8
Group IIT
HD 5395 -47.8+0.9 -47.0 9
HD 81192 136.5 + 0.3 135.3 1
HD 89668 22.84 +0.70 23.0 10
HD 111721  20.59 = 0.67 21.40 8
HD 125079 -45+02 -4.3 3
HD 126681 -45.36 = 0.46 —45.58 11
HD 148897 17.55 +0.71 18.40 8
HD 164922  34.86 + 091 20.29 5
HD 167768 1.39 £ 0.42 1.60 8
HD 188650 -24.6 04 -23.8 1
HD 214714 -7.0+0.5 -6.8 1

1. Wilson (1953), 2. Luck & Bond (1991), 3. Smith et al. (1993), 4. de Medeiros & Mayor (1999), 5.
Nidever et al. (2002), 6.Nordstroem et al. (2004), 7. Pourbaix et al. (2004), 8. Gontcharov (2006), 9.
Massarotti et al. (2008), 10. Soubiran et al. (2008), 11. Santos et al. (2011), 12. Siebert et al. (2011).

96



Chapter 4: Spectroscopic analysis of CH stars |

08°69S9 611899 1TLYS9 L8'ST8Y LTSI69 0L£S6L9  €L°€069 OL'vLL9 €TT689 84°S099 +LSLOT
98'8Thy TOE'EOSY 6SH09Y 0€'8LSY L8'680S 1TS8St  €I1°€L0S 06968F 6%°9S0S LL'STOS 6L6V01
0I'v16S THHI09 €£6S19 898019 T6'6VH9 10°S609 € 9€H9 GL'8809 I8°CCH9 00°€PE9  SPSTH
TU16SY  96'899% TTVYLLY 9L'SLYY 6V'SLYy VILSYY S9'8SHY 19°20SY  v6' 1vPy 06 THSYy  96%SS
08°€69S 6£06LS €4'8T6S 19°€06S SI'6L19 TI'¥68S 09919 IST68S TI0OSI9 9t'Lt09  S9SSH
06'SSIS LEEYTS 80°S9ES  €1S89 9G'8ISS  69T6ES 6L T6LS SO'86ES  STILLS TL96¥S S6EY
11 dnoao
6S°GLES 6L99YS  80°S6SS  €6TLS €£8€T9  OI'€CLS 86°€CC9 IP°€2LS 696079 €1696S 61791¢
YT6LTS 08'89€S  61H6vS €0°TS8S 896685 €S €HSS T H8SS 8 1¥8S  +0°698S  S1°0L09 €19+0¢
LS SITY 86'98TY OL'ISSy  8'SSSt PLLSLY +¥$'99Sh  SS'OLLY  $TI8SY LOPSLY OL'6C8Y 97910T
€0°9L09 60°6L19 TI'6Z€9 8TTOP9 +ITSE9 91°0LE9  +9° 1069 Y0'0689 L¥'8L89 t8LIY9 CTOTTTI
P IPLE  89H0SE SS988€  6+8Iv 6V LvLy 88°861% 6S0ELY cr'oITy  CSCILY  IHT80v  8SH9IT
[ dnoan
<1- o1 o) 15 - o1 01 (s0-) (50-)
(A-9D (A-9) (A-9) OI-A) (H-1) OI-A) (H-1) OI-A) (H-1) oI ad
GD’L DAL DL oDL DAL oL oD/ oD AL oD L oD L RN

sxe)s owweagold oy Jo sarmeradwa) omewoloyd ¢y 2[qel

97



Chapter 4: Spectroscopic analysis of CH stars |

“pare[nOTed a1 sarnjeradurs) oY) Yorym I8 SanfeA AJOI[[eIoW 9} 91edIpul sIseyjuated oy} ur sIoquinu oy,

6I°SLLY  SIPSSY 194961 - - - - - - ~ PILYIT
SL'ETOS 96'801S  9L°9TTS  09°99vS  90°L8SY 66V9vS  LI'OLSY  1€69FS I¥'E€SSH  69°S60S  0S9881
9TSI9Y  0S'€69Y SY66LY OLT6SY €8°€60F th6687 TELLOY  86°016% +6°090F 80 T¥Sy S9LLIT
SI'bP8y  0€'9T6F ¥8'8€0S +6081S vOoPSPS LLESIS S98EYS  v6'161S  ¥HTThS LOTIVS TT6VII
SYP98€  ¥8'6T6E  00°SIOF LTOTLE SI'SI6E  SOEPLE 06'106€  98°TILE  8L'S88E  €1°SE9€  L688Y1
6v'80YS  ¥T00SS €S6T9S IL'6VPS SE8PPS v6TSKS TTOPSS  90FTSS  00°80SS  €6'6£SS  1899T1
CI'T6SY  96'899y TTYLLY €8LV6F 6TSIES 98°€S6V 6L TOES — 6LV96F  6€°S8TS  86°LE0S  6L0STI
€OLISY €€6687 OI'TI0S L698Y9 vI'SE9Y S8+9v9 ST8I9r  TI'ISKY 8 109% - ITLITL
6CSLIY  109YCy  9'6£€  96'88TH  SOTOEY 16'8IEy  €9°SESH  9L'8ISY TOTOSY 8979y 89968
TOESSY  0TOS9Y  SEVELY OL'6TSY 69 SIvy  €9°0vSt  88°86EF  S9SSSH  0TTSEY  v6'ITEy  T611S
08'L8FY L8€9SY 0T999y O01'CI8Y I1v86V 9L°6T8Y 0€L96F  YOTHSY 6S0S6F TS9SSY  S6€S
111 dnoas

<c1- 1) (o) 1) €1 01 010 (S0-) (S0-)

A9 AD  (AD I-A) (H-1) I-A) (H-1) I-A) (H-1) I-0 dH
op/L oL oL opfr opfr opfr opfL oL oL on /L RN

o3ed snoraaid woiy panunuod — ¢4 9[qeL,

98



Chapter 4: Spectroscopic analysis of CH stars |

1.5 -

log (L/Ly)

L A HD 125079

| = HD 216219
ol * HD 4395 h ]
| e HD 5395 ]

—0.5 [ P SR S EN T SO SN S NN SO S SO SN ENT S S S
4 3.9 3.8 3.7 3.6

log T,

Figure 4.3: The location of HD 125079, HD 216219, HD 4395 and HD 5395 are indicated
in the H-R diagram. The masses are derived using the evolutionary tracks of Girardi et al.
(2000). The evolutionary tracks for masses 1, 1.1, 1.2, 1.3 1.4, 1.5, 1.6 1.7, 1.8, 1.9 and
1.95 M;, from bottom to top are shown in the Figure.

4.5 Stellar masses

We have derived the mass of the programme stars from their locations in the Hertzsprung-
Russel diagram (Figures 4.3 to 4.7), using Girardi et al. (2000) database of evolutionary
tracks in the mass range of 0.15 Mg to 7.0 Mg and the Z values from 0.0004 to 0.03.
These evolutionary tracks are available at http://pleiadi.pd.astro.it/. Since [Fe/H] of our
target stars are near solar, we have selected an initial composition of Z = 0.0198, Y =
0.273. The masses derived are presented in Table 4.4. For the objects that have metal-
licities < —0.5 we have also used evolutionary tracks for Z = 0.008, however the masses
obtained are found to be similar to those obtained using the evolutionary tracks with Z =
0.019. In general the masses are found to lie within a range of 0.6 My — 2 Mg, except
for HD 188650 and 214714, for which our estimated stellar masses are 3.5 and 4 Mg, re-
spectively. Stellar masses could not be estimated for the rest of the objects as the parallax

estimates are not available in the literature.
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Figure 4.4: Same as Figure 4.3, but for objects HD 81192, HD 16458, HD 201626 and
HD 48565.
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Figure 4.5: The location of HD 188650, and HD 214714 are indicated in the H-R diagram.

The evolutionary tracks of Girardi et al. (2000) are shown for masses 2, 2.2, 2.5, 3.0, 3.5,
4.0 and 4.5 M, from bottom to top.
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Figure 4.6: Same as figure 4.3, but for the objects HD 92545, HD 167768, HD 111721

and HD 55496.
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Figure 4.7: The location of HD 148897, HD 204613, HD 107574 and HD 104979 are
indicated in the H-R diagram. The masses are derived using the evolutionary tracks of
Girardi et al. (2000). The evolutionary tracks are shown for masses 0.6, 0.7, 0.8, 0.9, 1.0,
1.1,1.2,1.31.4,1.5,1.6 1.7, 1.8, 1.9 and 1.95 Mg, from bottom to top.
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Table 4.4: Stellar masses

Star M, log(L/L,) Mass (M)
Group I

HD 16458 0.1 1.68 1.50
HD 201626 1.3 1.20 1.90
HD 204613 3.9 0.26 1.10
HD 216219 2.1 0.99 1.60
Group II

HD 4395 2.8 0.64 1.35
HD 48565 3.7 0.40 1.15
HD 55496  -0.16 1.96 1.60
HD 92545 3.1 0.66 1.20
HD 104979 0.63 1.49 1.60
HD 107574 2.1 1.03 1.45
Group IIT

HD 5395 0.70 1.47 1.95
HD 81192 1.20 1.26 1.70
HD 111721 1.2 1.30 1.50
HD 125079 1.80 1.05 1.75
HD 148897 2.3 2.21 0.60
HD 167768 2.1 1.43 1.55
HD 188650 -2.70 2.65 4.00
HD 214714 -1.30 2.35 3.50

4.6 Linelist and Equivalent widths

The set of Fe I and Fe II lines that are generated and used in the present analysis to find the
stellar atmospheric parameters are listed in Tables A.1 — A.3. The equivalent width of a
spectral line is measured by fitting a gaussian to the line as explained in section 2.4.6. The
excitation potential of the lines are in the range 0.0 - 5.0 eV and equivalent width in the
range 20 A to 180 A. We have also presented the list of lines used for the determination
of chemical abundances for the programme stars in Tables A4 — A6. A master line list

including all the elements is generated comparing the spectra of the programme stars with
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the spectrum of Arcturus and equivalent widths are measured for all the lines wherever
possible. The presented line lists contain only those lines which are used for abundance
calculation. In most of the spectra we could get very few usable clean lines. The log gf
values for the atomic lines were adopted from various sources (Aoki et al. 2005, 2007;
Goswami et al. 2006; Jonsell et al. 2006; Luck 1991; Sneden et al. 1996), and also from
Kurucz atomic line database (Kurucz 1995b,a). The log gf values for a few La lines are
taken from Lawler et al. (2001).

4.7 Conclusions

In this chapter, we have presented the basic observational properties of the programme
stars namely radial velocities, photometric temperatures, mass and luminosities. In gen-
eral, CH stars are known as high velocity objects. Our sample includes three high-velocity
(V, > + 100 km s7!) and nineteen low-velocity (V, < + 50 km s™!) CH stars. Five of our
programme stars are confirmed binaries (group I). Among these, the objects HD 122202,
HD 204613 and HD 216219 with periods 1290, 878 and 3871 days respectively (Mc-
Clure & Woodsworth 1990; McClure 1997) are known subgiant-CH stars. Other two
stars HD 16458 and HD 201626 have periods 2018 and 1465 days respectively (McClure
1984, 1997; McClure & Woodsworth 1990). Long-term radial velocity monitoring (~ 10
years) for the subgiant-CH star HD 4395 shows a radial velocity variation of —4 km s~
indicating its binarity (McClure 1983, 1984, 1997). Our radial velocity estimate differs by
6 km s~! from the literature value. Other six objects from the sample are known to show
radial velocity variations (group II). Our estimates also suggest that these are possible
binary objects. Among the group III objects that have no information on radial velocity
variations, we find HD 164922 showing a variation of 15 km s~! from the literature value.
Long term radial velocity monitoring is required for confirming its binarity.

We have calculated the photometric temperatures for these objects. The temperature
estimates of the programme stars derived using JHK-temperature calibration relations
(Alonso et al. 1994, 1996, 1999) although varying over a wide range, provide a prelim-
inary temperature check for the programme stars and can be used as starting values in
deriving atmospheric parameters using model atmospheres.

CH stars are low-mass objects. Sixteen objects in our sample for which we could
estimate stellar masses are found to be low-mass objects with masses in the range 0.6 M,
to 1.95 My. Two objects HD 188650 and HD 214714 have masses 4.0 Mg and 3.5 M,

respectively. Stellar masses could not be estimated for the rest four objects as the parallax
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estimates are not available in the literature.
In the next chapter we have presented the stellar atmospheric parameters and elemen-
tal abundance ratios for these objects. A parametric model based analysis are also carried

out to understand the origin of the neutron-capture elements observed in these objects.
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CHAPTER 5

SPECTROSCOPIC ANALYSIS OF CH
STARS II: ATMOSPHERIC
PARAMETERS AND CHEMICAL
ABUNDANCES

Karinkuzhi D, & Goswami A, 2014, MNRAS, 440, 1095
Karinkuzhi D, & Goswami A, 2015, MNRAS, 446, 2348

5.1 Introduction

CH stars provide an important means to study the production and distribution of heavy
elements arising from AGB nucleosynthesis. Inspite of their usefulness, literature survey
reveals that detailed chemical composition studies are not available for many CH stars.
Many of the objects listed in Bartkevicius (1996) catalogue have no information on binary
status. We have carried out the detailed chemical analysis of twenty two objects from this
catalogue, some of them are known binaries, others with no information on binary status.
Basic data for these objects along with the radial velocities and photometric temperatures
are presented in chapter 4. This chapter describes the details of the chemical analysis of
these objects.

Elements heavier than iron are mainly produced by two neutron-capture processes,
the slow neutron-capture process (s-process) and the rapid neutron-capture process (-

process), see section 1.4.1. They require entirely different astrophysical environments,
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different time-scales and different neutron fluxes. While slow neutron-capture elements
are believed to be produced in the inter pulse phases of low mass AGB stars, the rapid
neutron-capture process requires very high temperatures and neutron flux and are ex-
pected to be produced during supernova explosions. As mentioned in chapter 1, based on
the abundances of representative elements of the s-process and r-process, CEMP stars are
classified into different sub groups (Table 1.1). To understand the contribution of these
two processes to the chemical abundance of the neutron-capture elements we have con-
ducted a parametric model based study. Our study indicates seven objects in our sample to
have abundances of heavy elements with major contributions coming from the s-process.

Estimation of stellar atmospheric parameters and elemental abundances are discussed
in this chapter. A discussion on the parametric model based analysis of heavy element

abundances is also presented.

5.2 Stellar Atmospheric parameters

The set of Fe I and Fe II lines used for the present analysis to find the stellar atmospheric
parameters are listed in Tables A1, A2 and A3 . The excitation potential of the lines are
in the range 0.0 - 5.0 eV and equivalent width in the range 20 A to 180 A. We have
assumed LTE for our calculations. A recent version of MOOG of Sneden (1973) is used.
Model atmospheres (available at http: //cfakuS.cfa.harvard.edu/ and labelled with a suffix
odfnew) were selected from the Kurucz grid of model atmospheres with no convective
over shooting. Solar abundances are taken from Asplund et al. (2005).

The effective temperature is determined by making the slope of the abundance versus
excitation potential of Fe I lines to be nearly zero. The initial value of temperature is
taken from the photometric estimates and arrived at a final value by an iterative method
with the slope nearly equal to zero (Figure 5.1).

The microturbulent velocity is estimated at a given effective temperature by demand-
ing that there be no dependence of the derived Fe I abundance on the equivalent width
of the corresponding lines (Figure 5.2). The surface gravity is fixed at a value that gives
same abundances for Fe I and Fe II lines. Derived atmospheric parameters are listed in
Table 5.1.
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Figure 5.1: The iron abundances of stars are shown for individual Fe I and Fe II lines as
a function of excitation potential. The solid circles indicate Fe I lines and solid triangles
indicate Fe II lines.
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Figure 5.2: The iron abundances of stars are shown for individual Fe I and Fe II lines as
a function of equivalent width. The solid circles indicate Fe I lines and solid triangles
indicate Fe II lines.
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Table 5.1: Derived atmospheric parameters and carbon isotopic ratios for the programme

stars

Star T.rr (K) logg l [Fe I/H] [Fell/H] '2C/3C
km s™!

Group I

HD 16458 4550 1.8 1.92 -0.65 -0.66

HD 122202 6430 40 2.08 -0.63 -0.65 13.2

HD 201626 5120 225 1.02 -1.39 -1.41

HD 204613 5875 42 122 -0.24 -0.24 11.1

HD 216219 5950 35 1.31 -0.17 -0.18

Group II

HD 4395 5550 3.66 0.93 -0.16 -0.19

HD 48565 6030 3.8 1.13 -0.59 -0.59

HD 55496 4850 205 1.52 -1.49 -1.41 4

HD 92545 6380 465 145 -0.21 -0.22 -

HD 104979 5060 2.67 1.55 -0.26 -0.31 99

HD 107574 6250 29 1.35 -0.65 -0.60 -

Group IIT

HD 5395 4860 251 1.21 -0.24 -0.24

HD 81192 4870 2775 1.08 -0.50 -0.51

HD 89668 5400 435 2.35 -0.13 -0.19 19.1

HD 111721 5212 26 1.30 -1.11 -1.11 -

HD 125079 5520 33 1.25 -0.18 -0.18

HD 126681 5760 4.65 09 -0.90 -0.92 -

HD 148897 4285 06 1.83 -1.02 -0.99 13

HD 164922 5400 43 0.09 0.22 0.23 12

HD 167768 5070 255 149 -0.51 -0.56 -

HD 188650 5700 215 233 -0.46 -0.44

HD 214714 5550 2.41 1.96 -0.35 -0.36

5.3 Abundance analysis

Abundances for most of the elements are determined from the measured equivalent widths

of lines (listed in Tables A4 - A6) due to neutral and ionized elements using a recent
version of MOOG of Sneden (1973) and the adopted model atmospheres.
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We have determined abundances for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn and
for heavy elements Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. For the elements Sc,
V, Mn, Ba, La and Eu, spectrum synthesis was used to find the abundances considering
hyperfine structure. The results are shown in Tables A.7 - A.9 along with the errors.
The line lists for each region that is synthesized were generated from Kurucz atomic
line list (http://www.cfa.harvard.edu/amdata/ampdata/kurucz23/sekur.html). Atomic line
databases like NIST, VALD etc were also consulted. As an example, spectrum synthesis
calculations for Sc, Ba and La are shown in Figures 5.3, 5.4 and 5.5.

Derived abundance ratios with respect to iron are listed in Tables 5.2 and 5.3. In
Table 5.4, we have presented [Is/Fe], [hs/Fe] and [hs/Is] values, where 1s represents light
s-process elements Sr, Y and Zr and hs represents heavy s-process elements Ba, La, Ce,
Nd and Sm.

5.3.1 Carbon

We have derived the carbon abundance for our objects using the synthesis of C I line at
5380.337 A. We have determined a carbon abundance of 8.65 dex and '2C/'3C ratio of
12 for the object HD 16458 while Smith (1984) reported a carbon abundance of 8.70 dex
and '?C/'3C ~ 15. For the three subgiant-CH stars in our sample, HD 4395, HD 125079
and HD 216219 we have found carbon abundance of 8.09, 8.39 and 8.55 dex respectively.
Carbon abundances and isotopic ratios are also available in the literature for these objects
(Smith et al. 1993; Luck & Bond 1982). Smith et al. (1993) gave carbon abundances
of 8.65 dex, 9.05 dex and 9.02 dex for HD 4395, HD 125079 and HD 216219 respec-
tively. Luck & Bond (1982) determined a [C/Fe] value of 0.4 and 1.2 for HD 216219
and HD 4395 respectively. For HD 201626, we have calculated a carbon abundance of
8.22 dex and a [C/Fe] value of 1.22. Vanture (1992a,b) reported a carbon abundance of
8.4 dex and '?C/'3C ~ 25 for the object HD 201626. Due to severe line distortions we
could not find '2C/"3C ratio in this object. While Luck (1991) gives a [C/H] ~ —0.16
and '>C/BC ~ 25 for HD 214714 we could a find [C/H] value of —0.30 and [C/Fe] of
0.05. We have calculated the [C/Fe] value of 0.16 in HD 188650. Baird et al. (1975) also
noticed an enhancement of carbon in HD 188650 and HD 214714 with respect to 5 Aqr.
Because of the carbon deficiency in 8 Aqr they concluded that these two stars show nor-
mal carbon abundances. For HD 81192, Cottrell & Sneden (1986) reported a C/N ratio of
11.2 and Shetrone et al. (1993) gave '>C/'3C ~ 35. We could not find carbon abundance
in HD 81192. For the objects HD 5395 and HD 48565 the calculated [C/Fe] values are
—0.06 and 0.59 respectively.
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We could not detect a C I line for HD 89668, HD 111721 and HD 126681 due to noise
and line distortions through out the spectra. For HD 148897, we could find a very weak C
I line but it is not useful for spectrum synthesis. For HD 148897 and HD 111721 we have
found out the carbon abundance by synthesising CH band at 4300 A. For HD 126681 we
could not determine C abundance due to severe line distortion and blending throughout
the spectrum. The [C/Fe] ratio determined for all the objects are listed in Table 5.2.
Although the isotopic shifting of 2)CH and *CH lines is very small we have estimated
the '2C/'3C ratio using the synthesis of CH band. The initial >C/!*C is fixed at solar
value and then varied to fit the observed spectrum for the determined carbon abundances.
The values are given in Table 5.1 along with the atmospheric parameters. We could
determine the isotopic ratios for seven objects and the values are in the range 4 - 19. The
line list for the synthesis of CH band is taken from the Kurucz database for molecular
lines. We have derived a [C/H] value of —0.23 and —1.23 for two cyanogen-weak giants
HD 104979 and HD 148897. For these objects Luck (1991) reported the [C/H] value for
as —0.38 and —0.94 respectively. We have determined a carbon abundance of 8.68 dex
for HD 204613 while Smith et al. (1993) reported a carbon abundance of 8.91 dex for the
same object. North et al. (1994) has given the [C/H] ratio of —0.07 and —0.03 respectively
for HD 92545 and HD 107574. We have derived slightly lower [C/H] values for these
objects. For HD 92545 we have obtained [C/H] value of —0.37 and for HD107574, we
found a value of —0.18. Masseron et al. (2010) listed the [C/Fe] ratio of these objects
as 0.32 and 0.39 respectively. Carbon abundance for HD 122202 is not available in the
literature. We have derived a [C/H] value of —0.13 and [C/Fe] value of 0.50 for this object.
We could get a [C/H] value of —0.48 and [C/Fe] value of 0.03 in HD 167786, which is
in good agreement with the value of [C/H] = —0.63 and [C/Fe] = —0.02 in from Luck &
Heiter (2007).

5.3.2 Naand Al

The sodium (Na) abundance is calculated using the lines at 5682.65 A and 5688.22 A for
most of the programme stars. For HD 48565 a single line at 5682.65 A is used. As these
lines could not be used for HD 5395 and HD 81192, the resonant doublet lines at 5890.9
and 5895.9 A are used. For HD 201626 the line at 5895.9 A is used which is observed
as a broad line with an equivalent width of 214 mA. We have used LTE analysis for the
abundance determination. However, the resonance lines are sensitive to non-LTE effects
(Baumueller & Gehren 1997; Baumueller et al. 1998; Cayrel et al. 2004). Derived Na
abundances from LTE analysis range from —0.23 to 0.76 in the present sample. We note
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that Na in HD 5395, HD 81192, HD 104979, HD 148897 and HD 164922 are found to
be underabundant with respect to Fe while the other stars show near solar or mild over
abundances.

Even though we could measure a few Aluminium (Al) lines in our programme stars

spectra, they are blended and could not be used for abundance determination.

5.3.3 Mg,Si, Ca, Sc, Ti, V

We could measure several lines due to these elements. Except for HD 201626 and
HD 148897, that show an overabundance for magnesium (Mg) with [Mg/Fe] > 0.63,
all other stars show mild enhancement or near-solar value of Mg. [Mg/Fe] in HD 148897
and HD 201626 (both with metallicity < —1.0) are ~ 0.63 and ~ 0.69 respectively, slightly
higher than as expected for classical enhancement of a-elements in stars with [Fe/H] ~
—1.0 (Goswami & Prantzos 2000).

Abundance of silicon (Si1) could not be estimated as none of the Si lines are found
usable for abundance determination. Calcium (Ca) shows a near solar value or mild en-
hancement in most of the programme stars. HD 89668 and HD 201626, show an over-
abundance of Ca with [Ca/Fe] ~ 0.60.

Scandium (Sc) abundance is determined using spectrum synthesis calculation of Sc II
line at 6245.637 A considering hyperfine structure from Prochaska & McWilliam (2000).
While Sc is found to be mildly underabundant in ten objects with [Sc/Fe] > —0.54, other
stars show nearly solar values. HD 81192 and HD 204613 show a [Sc/Fe] value of 0.25
and 0.17 respectively.

Mild overabundance or near-solar abundance for titanium (Ti) is noticed in all the
programme stars except for HD 89668. More than ten good lines of Ti are used for
abundance determination. HD 201626 shows an overabundance of Ti with [Ti/Fe] ~
0.74.

We have detected more than 16 vanadium (V) lines but only one or two are usable
for the determination of V abundance; other lines appear either blended or distorted in
the spectra. Abundance of V is estimated for fifteen programme stars, from spectrum
synthesis calculation of V I line at 5727.048 A taking into account the hyperfine splitting.
The log gf values of these lines are taken from Kurucz database. V abundance could
not be estimated for other objects due to severe line blending. While HD 16458 and
HD 164922 show [V/Fe] ~ 0.25 and 0.40 respectively all other programme stars show

mild under abundance or nearly solar values.
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Figure 5.3: Spectral-synthesis fits of Sc II line at 6245.637 A. The dotted lines indicate the
synthesized spectra and the solid lines indicate the observed line profiles. Two alternative
synthetic spectra for [X/Fe] = +0.3 (long-dashed line) and [X/Fe] = —0.3 (short-dashed
line) are shown to demonstrate the sensitivity of the line strength to the abundances.

5.3.4 Cr, Co, Mn, Ni, Zn

HD 16458 shows a mild overabundance of cromium (Cr) relative to Fe. HD 4395,
HD 107574, HD 122202, HD 125079, HD 148897, HD 188650, HD 164922 and HD 216219
show near-solar abundances. The rest of the stars in our sample are mildly underabundant
in Cr. HD 55496 and HD 201626 however shows a larger underabundance with [Cr/Fe]
= —0.35 and —-0.59 respectively. Cr abundances measured using Cr II lines whenever
possible also show similar trends.

Manganese (Mn) abundance is calculated using spectrum synthesis of 6013.51 A
line considering hyperfine structures from Prochaska & McWilliam (2000). Except for
HD 16458, HD 89668 and HD 164922, with a mild overabundance of Mn with [Mn/Fe]
~ 0.06, 0.34 and 0.14 respectively, the rest of the objects show underabundance with
[Mn/Fe] < —0.33. Except for HD 16458 and HD 92545, with [Co/Fe] ~ 0.49 and 0.80
all other stars in our sample show near-solar values or mild underabundance for cobalt
(Co). Abundances of nickel (Ni) measured from Ni I lines give near-solar values for all
the stars. HD 5395, HD 16458 and HD 122202 show mild overabundance with [Zn/Fe]
~0.29, 0.43 and 0.50 respectively. The rest of the objects show near-solar values.
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535 SrY,Zr

The strontium (Sr) abundance is derived from Sr I line at 4607.327 A for fourteen stars.
HD 16458, HD 4395, HD 48565, HD 89668, HD 125079, HD 204613 and HD 216219
show overabundances with [St/Fe] > 1.0. The objects HD 5395, HD 55496, HD 81192,
HD 104979, HD 148897, HD 164922 and HD 167768 give [Sr/Fe] ratios in the range
0.28 to 0.99. For the remaining objects the Sr abundance could not be measured as the
line at 4607.327 A appears distorted. None of the Sr II lines detected in the spectra are
usable for abundance estimates.

The abundance of yttrium (Y) is derived for all the stars except for HD 201626.
HD 16458, HD 48565, HD 122202, HD 125079, HD 204613 and HD 216219 show an
overabundance with [Y/Fe]> 1.0. In the case of HD 4395, HD 89668, HD 104979 and
HD 167768 [Y/Fe] < 0.71. Also HD 204613 and HD 55496 show [Y/Fe] values of 0.97
and 0.85 respectively. The remaining stars HD 92545, HD 5395, HD 81192, HD 111721,
HD 126681, HD 148897, HD 164922, HD 188650 and HD 214714 show near-solar val-
ues.

We could derive zirconium (Zr) abundance for eleven stars. Five stars show an over-
abundance with [Zr/Fe] > 1.0. HD 148897 and HD 214714 show an underabundance
with [Zr/Fe] < —0.28 and HD 81192 gives a near-solar value. HD 4395 and HD 104979
show overabundance with [Zr/Fe] ~ 0.58 and 0.85 respectively. The rest show mild en-
hancement with [Zr/Fe] > 0.2.

5.3.6 Ba, La, Ce, Pr, Nd, Sm, Eu, Dy

As many lines due to Ce, Pr, Nd, Sm and Dy could be measured on our spectra, the stan-
dard abundance determination method using equivalent width measurements are used for
the abundance determination of the elements Ce, Pr, Nd, Sm and Dy. Spectrum synthesis
calculation are carried out for Ba, La and Eu. We could determine the abundances for Ba
and Ce for all the stars.

Barium (Ba): We have determined Ba abundances by synthesising Ba Il line at 5853.67
A considering hyperfine components from McWilliam (1998). Nine of our programme
stars HD 16458, HD 48565, HD 92545, HD 104979, HD 107574, HD 125079, HD 204613,
HD 201626 and HD 216219 show over abundance of Ba with [Ba/Fe] > 1.0. HD 4395
shows an overabundance with [Ba/Fe] ~ 0.79. The objects HD 5395, HD 81192 and
HD 188650 show near solar values. HD 55496, HD 122202 and HD 126681 show only a
mild overabundance. Five objects HD 89968, HD 111721, HD 148897, HD 167768 and
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Figure 5.4: Spectral-synthesis fits of Ba IT line at 5853.67 A. The dotted lines indicate the
synthesized spectra and the solid lines indicate the observed line profiles. Two alternative
synthetic spectra for [X/Fe] = +0.3 (long-dashed line) and [X/Fe] = —0.3 (short-dashed
line) are shown to demonstrate the sensitivity of the line strength to the abundances.

HD 214714 show underabundance with [Ba/Fe] in the range —0.09 to —0.65 (Table 5.3).
Lanthanum (La): We have derived La abundance for the programme stars from spec-
trum synthesis calculation of La II line at 4921.77 A considering hyperfine components
from Jonsell et al. (2006). Except for HD 81192, HD 5395, HD 111721, HD 148897,
HD 164922 and HD 167768, La in all other stars is found to be overabundant relative to
Fe with [La/Fe] > 0.9. HD 5395, HD 81192, HD 111721, HD 148897, HD 164922 and
HD 167768 show [La/Fe] of 0.24, —0.13, 0.31, 0.29, 0.15 and —0.54 respectively.
Cerium (Ce): We have derived Ce abundance for all the programme stars. In HD 125079
[Ce/Fe] ~ 0.93. While three stars HD 5395, HD 188650 and HD 214714, show almost
near-solar values, HD 16458, HD 48565, HD 201626, HD 216219 give 1.47, 1.42, 1.89
and 1.03 respectively for [Ce/Fe]. Six of the programme stars, HD 89668, HD 92545,
HD 104979, HD 111721, HD 122202 and HD 204613 also show overabundance with
[Ce/Fe] > 1.0. Estimated [Ce/Fe] for HD 4395 and HD 107574 is ~ 0.42 and 0.6 re-
spectively. While two stars HD 55496 and HD 167768 show almost near-solar values
for [Ce/Fe], HD 81192, HD 148897 and HD 164922 show mild underabundance with
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Figure 5.5: Spectral-synthesis fits of La II line at 4921.78 A. The dotted lines indicate the
synthesized spectra and the solid lines indicate the observed line profiles. Two alternative
synthetic spectra for [X/Fe] = +0.3 (long-dashed line) and [X/Fe] = —0.3 (short-dashed
line) are shown to demonstrate the sensitivity of the line strength to the abundances.

[Ce/Fe] ~ —0.10.

Praseodymium (Pr): We could derive Pr abundance in the programme stars mainly
using the Pr II line at 5292.619 A. A mild over enhancement of Pr is seen in HD 4395,
HD 55496 and HD 188650 with [Pr/Fe] ~ 0.53, 0.43 and 0.57 respectively. In all the
other stars Pr shows an overabundance with values 0.79 > [Pr/Fe] > 1.0.

Neodymium (Nd): Abundance of Nd is estimated for seventeen programme stars.
Two stars HD 148897 and HD 167768 give [Nd/Fe] values ~ 0.13 and 0.65 respectively.
HD 188650 and HD 214714 show mild overabundance with [Nd/Fe] ~ 0.39 and 0.36 re-
spectively. Two stars HD 4395 and HD 5395 give [Nd/Fe] ~ 0.8 and 0.74 respectively.
While HD 16458, HD 48565, HD 81192 HD 125079 and HD 216219 show an overabun-
dance with [Nd/Fe] > 1.0, HD 111721 and HD 201626 show a large overabundance with
[Nd/Fe] > 2.1.

Samarium (Sm): Except for HD 125079, we have used at least two clean lines for
deriving the Sm abundance. HD 188650 shows a mild underabundance with [Sm/Fe] ~
—0.12. This value is found to be 0.85, 0.56, 0.58, 0.90, 0.46 and 0.91 respectively in
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HD 81192, HD 125079, HD 148897, HD 167768, HD 214714 and HD 216219. Abun-
dance of Sm is derived from a single Sm I line at 4577.690 A in HD 125079. Four objects
HD 16458, HD 4395, HD 48565 and HD 201626 show an overabundance with [Sm/Fe]
~ 1.87, 1.08, 1.18 and 1.63 respectively. Similarly HD 89668, HD 104979, HD 122202,
HD 126681 and HD 204613 show overabundance with [Sm/Fe] > 1.0. We could not
estimate Sm abundance in HD 5395.

Europium (Eu): The abundance of Eu is derived for HD 5395 and HD 16458 using
spectrum synthesis of Eu II lines at 6437.640 A and 6645.130 A by considering the hy-
perfine components from Worley et al. (2013). Eu shows an overabundance with [Eu/Fe]
~ 0.34 and 0.67 respectively. In HD 48565 we have used the Eu II line at 4129.700 A
and hyperfine components are taken from Mucciarelli et al. (2008). Eu is found to be
slightly overabundant with [Eu/Fe] ~ 0.29. In case of HD 216219 we note that the above
Eu II lines are marginally asymmetric on the right wings. These lines however, return
a near solar value with [Eu/Fe] ~ 0.07 for this object. Eu shows mild overabundance in
HD 89668, HD 92545 and HD 167768 with [Eu/Fe] ~ 0.38, 0.40 and 0.26 respectively.
HD 204613 shows a near-solar value with [Eu/Fe] ~ 0.06.

Dysprosium (Dy): We could derive Dy abundance for six objects using the Dy II lines
at 4103.310 A and 4923.167 A. For, HD 5395, HD 81192, HD 167768, HD 201626
and HD 204613 Dy shows an overabundance with [Dy/Fe] > 1.0. HD 148897 shows a

near-solar value of ~ 0.02.
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Chapter 5: Spectroscopic analysis of CH stars 11

Table 5.4: [Is/Fe], [hs/Fe] and [hs/Is] for the programme stars

Star [Fe/H] [Is/Fe] [hs/Fe] [hs/Is] Remarks
Group I
HD 16458  —-0.65 1.34 1.50 0.16 1
HD 122202 -0.63 1.44 1.16 —-0.28 1
HD 201626 -1.39 - 1.93 - 1
-1.30 1.10 1.60  0.50 2
HD 204613 -0.24 1.27 1.16 -0.11 1
HD 204613 -0.35 1.0 06 -04 2
HD 216219 -0.17 1.26 1.01 -0.25 1
-0.32 1.00 09 -0.10 2
Group II
HD 4395 -0.18 0.77 0.82  0.05 1
-0.33 0.70 0.50 -0.2 2
HD 48565  -0.59 1.24 1.47 0.23 1
HD 55496  -1.49 0.73 0.38 -0.35 1
HD 92545  -0.21 0.23 1.15 0.92 1
HD 104979 -0.26 0.85 1.03 0.18 1
HD 104979 -0.47 0.6 1.0 0.4 2
HD 107574 -0.48 1.02 0.87 -0.15 1
Group IIT
HD 5395 -0.24 0.16 0.27 0.11 1
HD 81192  -0.50 0.26 0.34  0.08 1
HD 89668  —0.13 0.81 1.16  0.35 1
HD 111721 -1.11 0.05 0.98 0.93 1
HD 125079 -0.18 1.32 0.93 -0.39 1
HD 126681 —0.90 0.02 0.80  0.78 1
HD 148897 -1.02 -0.13 0.01 0.14 1
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Table 5.4 — continued from previous page

Star [Fe/H] [Is/Fe] [hs/Fe] [hs/Is] Remarks

HD 164922  0.22 0.47 0.10 -0.37
HD 167768 —0.51 0.51 0.14 -0.37
HD 188650 -0.45 -0.03 023 0.26
HD 214714 -035 -0.03 0.14  0.17

— e e

1. Our work; 2: Busso et al. (2001)

5.4 Discussion on individual stars

Comparisons of our estimated atmospheric parameters and elemental abundance ratios
with literature values whenever available, are presented in Tables 5.5 and 5.6 respectively.
In the case of HD 201626 the author gave absolute abundances (loge(x)), rather than
abundance ratios; hence in Table 5.6, calculated abundance ratios are presented using
solar Fe values from Asplund et al. (2005).

Information on the circumstellar environment of these objects are not available in the
literature. Information on polarization estimates is limited to only eight objects (Goswami
& Karinkuzhi 2013) in this sample. Estimated percentage polarization in B, V, R, I bands
are found to be low with < 0.2 per cent in all the four bands for HD 81192 and < 0.4
per cent for HD 125079 (Goswami & Karinkuzhi 2013). Among these, three objects
show percentage V-band polarization at a level ~ 0.2 per cent (HD 55496 (p,% ~ 0.18),
HD 111721 (p,% ~ 0.22, and HD 164922 (p,% ~ 0.28)) indicating presence of circum-
stellar dust distribution in non-spherically symmetric envelopes. The other three objects,
HD 92545, HD 107574 and HD 126681, show V-band percentage polarization at a level
<0.1%.

HD 125079, HD 4395, HD 216219: These three low-velocity CH stars are identi-
fied as subgiant-CH stars by Bond (1974). Spectral characteristics of subgiant-CH stars
are similar to giant CH stars. With lower temperatures and luminosities the subgiant-
CH stars occupy a position below the giants in H-R diagram. High resolution spectro-
scopic analyses of subgiant-CH stars by Sneden & Bond (1976) and Luck & Bond (1982)
have confirmed the enhancement of heavy elements and a metal-deficiency in the range

—0.2 to —0.5 for these objects. As in the case of CH giants, abundance peculiarities of
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subgiant-CH stars are also explained as due to mass transfer mechanisms from their bi-
nary companions (Luck & Bond 1991). Smith et al. (1993) have reported the abundances
for elements Y, Zr, Ba and Nd. The effective temperature adopted by us is about 250
K larger than what they have considered for these three stars. The estimated metallic-
ity values are about 0.15 dex lower than their estimates. For HD 125079, our estimated
abundances for Y is about 0.3 dex higher and for Ba and Nd, the values are about 0.2
dex higher. In addition, we have also estimated the abundances of Ce, Pr and Sm in these
objects. For the other two stars we have derived almost similar abundances for Y. For Zr,
Ba and Nd, our estimated abundances are slightly higher than their values.

HD 122202, HD 204613: These two objects are also subgiant-CH stars. Luck &
Bond (1991) have studied the object HD 122202 and reported abundances for a few
s-process elements. HD 204613 was studied by Smith (1984); these authors gave the
abundances for Y, Zr, Ba and Nd in this object. In addition to these elements we es-
timated the abundances for Sr, La, Ce, Pr, Sm, Eu and Dy in HD 204613 and La, Pr
and Sm in HD 122202. The object HD 122202 shows a large enhancement in Ce, Pr
and Nd. However, Ba is only mildly enhanced with [Ba/Fe] ~ 0.33. HD 204613 shows
a large enhancement in all the elements except Eu. According to Beers and Christlieb
(2005) classification, this object fall into the group of CEMP-s stars with [Ba/Fe] ~ 1.04
and [Ba/Eu] ~ 0.98. McClure (1997) have confirmed these objects as binaries and also
provided the information on the orbital elements. While HD 122202 shows radial ve-
locity variations in the range —14.81 to —7.64 with an orbital period of 1290 + 9 days;
HD 204613 exhibits radial velocity variations from —95.07 to —87.85 with period 878 +
4 days.

HD 55496: Bond (1974) has classified this high velocity object as a subgiant-CH star.
MacConnell et al. (1972) included this in the category of weak lined metal-deficient Ba
IT star. Being a high velocity object with lower metallicity ([Fe/H] = —1.45), HD 55496
seems to show the extreme halo kinematics. Luck & Bond (1991) has studied this ob-
ject and reported abundances for a few elements (Table 5.6). Estimated Ba abundance
([Ba/Fe] = 0.57) does not qualify the object to be a typical CH star. Light s-process ele-
ments Sr, Y and Zr are more abundant in this star than the heavy s-process elements Ba,
Ce, and Pr.

HD 16458: This star is included both in the Ba star catalogue of Lu (1991) and CH
star catalogue of Bartkevicius (1996). Estimated radial velocity is about 18.24 km s~!.
Chemical composition studies of this object with respect to the abundances of a standard

giant star 8 Gem by Tomkin & Lambert (1983) reported the enhancement of heavy ele-
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ments in this object. Smith (1984) also studied this star and reported the enhancement of
heavy elements. Our abundance estimates are slightly higher compared to those of Smith
(1984). With [Ba/Fe] value ~ 1.18 and [Ba/Eu] ~ 0.52, this star satisfies the conditions
for CEMP-s stars (Beers & Christlieb 2005). Long-term radial velocity monitoring of
HD 16458 by McClure & Woodsworth (1990) have confirmed it to be a binary star.

HD 5395: HD 5395 is included both in the Ba star catalogue of Lu (1991) and CH star
catalogue of Bartkevicius (1996). McWilliam (1990) provided the elemental abundances
for Sr, Zr, Y, La and Nd. We present updates on these abundances along with the first
estimates of abundances for Ba, Ce, Pr and Eu. While Y, Ba and Ce show almost near-
solar values, Sr, La and Eu show mild enhancement with [Sr/Fe] = 0.26, [La/Fe] = 0.24
and [Eu/Fe] = 0.38. Pr, Nd and Dy show larger enhancement with respect to Fe. As far as
the chemical abundances are concerned this object does not seem to belong to the group
of CH stars if we stick to the definition that CH stars are those that show high abundance
of s-process elements with [Ba/Fe] > 1.

HD 214714, HD 188650: The spectra of HD 214714 and 188650 show a close re-
semblance. Bidelman (1953) first noticed strong bands of CH and moderate CN bands in
the spectra of these stars and called them as low-velocity CH stars. Our estimated radial
velocities for these two objects are —7.04 and —24.6 km s~! respectively. Strong ionized
lines of elements seen in their spectra indicate high luminosity. However, following Mor-
gan et al. (1943), Luck (1991) referred to these objects as a cyanogen-weak giants as their
spectrum is characterized by weak violet CN bands. Using a curve of growth method in
comparison with S Aqr, Baird et al. (1975) estimated chemical abundances for these ob-
jects and reported a high lithium abundance for HD 214714. Our chemical analysis with
respect to solar values indicates a mild enhancement of heavy elements. Ba is found to
be underabundant in this object. We present first-time estimates of chemical abundances
for HD 188650 based on high-resolution spectrum. The abundance of Eu could not be
estimated for this object. Light s-process element Y, and heavy s-process elements Ba,
Ce and Sm show near-solar values in this object. Pr and Nd also show mild enhancement
with [Pr/Fe] ~ 0.57 and [Nd/Fe] ~ 0.39 respectively. This object does not seem to repre-
sent the characteristic properties of CH stars as far as the heavy element abundances are
concerned.

HD 104979, HD 148897: Luck (1991), identified these objects as cyanogen-weak gi-
ants and reported elemental abundances for Y, Zr, Ce, Nd and Eu. Our results closely
match with their values. In addition to these elements we could measure abundances for

Sr, Ba, La, Sm, Pr and Dy. Similar to the two cyanogen-weak giants HD 188650 and
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HD 214714, the object HD 148897 also does not show large enhancement in heavy ele-
ments. These three objects are of the same spectral type. The object HD 104979 shows
enhancements in Ba with [Ba/Fe] = 0.94. Estimated metallicities of these objects are
—0.26 and —1.02 respectively.

HD 201626 : This object was first identified as a CH star by Wallerstein & Greenstein
(1964); its spectrum closely resembles the spectrum of the well-known CH star HD 26.
This is a high velocity object with a radial velocity of —141.6 km s™! and metallicity
[Fe/H] ~ —1.4. Abundances of heavy elements Ba, La, Ce, Pr, Nd, Sm and Dy with
respect to Fe are found to be highly enhanced in this object. Our estimates of heavy
element abundances are in good agreement with the estimates of Vanture (1992c).

HD 48565: The object HD 48565 is known to show abnormally strong Sr line at 4077
A North et al. (1994). Bidelman (1981) classified these type of objects as F Str A4 4077
stars. They exhibit enhancement of light and heavy s-process elements but abundances
of iron-peak elements are similar to those generally seen in F type stars. Allen & Barbuy
(2006a) have given the abundance estimates for heavy elements in this star. Our results
are slightly higher than their results, with [X/Fe] values > 1 for all the heavy elements
(Table 5.3). Our estimated radial velocity (—25.74 km s™!) is about 6 km s™! lower than
the literature value. This object is showing a large radial velocity variations (North et al.
1994; Nordstroem et al. 2004) giving indications of the object being a binary system.

HD 92545, HD 107574: North & Duquennoy (1992) have categorized these objects
as F str 4 4077 stars following the classification of Bidelman (1981). Allen & Bar-
buy (2006a,b) have reported chemical abundances for these objects (Table 5.6). For
HD 92545, our Ce abundance is higher than their estimates. Other elements show a
close similarity and within the error limits. For HD 107574, our results are fairly in good
agreement with their estimates.

HD 81192: Except for Sr, Nd and Sm this object shows almost near-solar values for Y,
Zr, Ba, La, and Ce with respect to Fe. Morgan et al. (1943) have noted weaker CN bands
in HD 81192 compared to other stars of same temperature and luminosity. Weakening of
CN band is most common in stars with high space velocities. Estimated radial velocity
of this object is 136 km s™!. Cottrell & Sneden (1986) have studied the kinematics and
elemental abundances of this object. Estimated heavy element abundances by Luck &
Bond (1985) are found to be in close agreement with our estimates. We present first-time
estimates of abundances for Sr, Sm and Dy for this object. With [Ba/Fe] = 0.13, this
object too does not seem to belong to the group of CH stars.

HD 89668: We present first time detailed abundances for this object. This object
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shows large enhancements in La, Ce, Pr, Nd and Sm with [X/Fe], where X represents the
heavy elements, values > 1; however, Ba is slightly underabundant with [Ba/Fe] ~ —0.24.

HD 111721: Gratton & Sneden (1994) have studied this object and reported abun-
dances for a few heavy elements. From our analysis and also from Gratton & Sneden
(1994) this object does not show enhancement in heavy elements. The metallicity of this
objectis —1.11. Estimated [C/Fe] ratio is 0.08 for this object.

HD 126681: We have presented the first time abundance estimates for the elements
Ce, Nd and Sm in this object. Fulbright (2000) has studied this object and reported
abundances for Y and Ba. This object shows a large enhancement in Nd and Sm but other
heavy elements are only mildly enhanced.

HD 164922: The object HD 164922 is listed as a CH star by Bartkevicius (1996),
however, this object does not seem to show the characteristics of CH stars. Mishenina
et al. (2013) have studied this object and reported abundances for a few heavy elements
that show almost near-solar values for Zr, Ba, Ce, Nd, Sm and Eu. Our estimated Ba and
Ce abundances give [Ba/Fe] ~ 0.28 and [Ce/Fe] ~ —0.09 for this object.

HD 167768: Luck & Heiter (2007) has studied this object and reported abundances
for Y, Ba, Ce, Pr, Nd, Eu. In addition to these elements, we have estimated abundances

for Sr, Zr, La and Sm. This object does not show large enhancement of heavy elements.

Table 5.5: Atmospheric parameters from literature

Star Vmag T, (K) logg [Fe/H] Reference

Group I

HD16458 5.78 4550 1.80 -0.65 1
4582  2.00 -0.32 5
4582  2.00 -043 5
4800 1.80 -0.30 6
4500 1.40 -0.36 17

HD 122202  9.37 6430 4.0 -0.63 1

6600 3.0 -0.09 19
HD 201626  8.13 5120 -1.39 1
HD 204613 8.21 5875 42 -0.24 1

5718 3.88 —-0.38 39
5650 3.80 -0.35 35
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Table 5.5 — continued from previous page

Star Vmag T, (K) logg [Fe/H] Reference

5650 3.80 -0.35 23
5600 35 -=0.70 14
5600 35 -0.65 16
5663 375 -0.54 12
HD216219  7.40 5950 35 -0.17
5478 2.80 -0.55 7
5600 325 -0.39 12
5600 320 -0.32 23

Group II

HD4395 7.50 5550 3.66 -0.17
5478 340 -0.31 7
5478 330 -0.38 12
5450 330 -0.33 23
5467 332 -0.35 34

HD48565 7.07 6030 3.80 -0.59 1
5910 427 -0.56 25
HD 55496 8.40 4850 205 145 1
4858 205 -1.48 39
4935 233 -1.44 37
4800 28 -1.55 19
HD 92545 8.56 6380 4.65 -0.21 1
6240 423 -0.26 25
HD 104979 4.13 5060 2.67 -0.26 1

4842 29 =031 33
4996  2.86 -0.33 32

4825 234 -0.33 18
4870 323 -0.51 16
4893 26 -0.29 11
4990 265 -0.11 3
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Table 5.5 — continued from previous page

Star Vmag T, (K) logg [Fe/H] Reference

5250 325 -0.29 2
HD 107544  8.55 6250 29 -0.65
6340 3.87 -0.36 24

Group IIT
HD5395 4.63 4860 251 -0.24 1
4800 220 -1.00 17
4770 290 -0.51 16
4764 236 -0.44 34
HD 81192  6.54 4870 275 -0.50 1
-0.61 4
4755 240 -0.60 8
4582 275 -0.70 9
HD 89968 941 5400 435 -0.13 1

4811 445 -0.11 40
HD 111721  7.97 5212 26 -1.11 1
5120 290 -1.27 37
4995 252 -1.26 30
4825 22 -154 29
4800 3.00 -1.68 28
5164 327 -0.98 27
4940 240 -1.34 26
5103 3.06 -1.22 24

5000 -1.34 22
5103 287 -1.25 20
HD125079  8.60 5520 330 -0.18 1

5305 3.50 -0.30 12

5300 350 -0.16 23
HD 126681 9.32 5760  4.65 -0.90 1

5507 445 -1.17 38

128



Chapter 5: Spectroscopic analysis of CH stars 11

Table 5.5 — continued from previous page

Star Vmag T, (K) logg [Fe/H] Reference

5561 471 -1.14 40
55717 425 -1.12 39
5475 4.65 -1.38 36
5533 428 -1.14 31
5450 45 -1.25 29
5625 495 -1.09 27
HD 148897 5.25 4285 0.6 -1.02 1
4293 1.01 -1.11 39
4100 0.09 -1.16 19
4345 1.5 -0.62 10

HD 167768  6.00 5070 255 -0.51 1
4953 229 -0.69 39
5102 2776 -0.61 32

HD188650  5.76 5700 2.15 -0.46 1

HD214714  6.03 5550 241 -0.36 1

5400 238 -0.36 18

References.1. Our work, 2. Lambert & Ries (1981), 3. Sneden et al. (1981), 4. Luck & Bond (1983), 5.
Tomkin & Lambert (1983), 6. Smith (1984), 7. Krishnaswamy & Sneden (1985), 8. Luck & Bond (1985),
9. Cottrell & Sneden (1986), 10. Kyrolainen et al. (1986), 11. Tomkin & Lambert (1986), 12. Smith &
Lambert (1986), 13. Abia et al. (1988), 14. Rebolo et al. (1988), 15. Abia et al. (1988), 16.McWilliam
(1990), 17. Fernandez-Villacanas et al. (1990) 18. Luck (1991), 19. Luck & Bond (1991), 20. Gratton &
Sneden (1991), 21. Tomkin et al. (1992), 22.Pilachowski et al. (1993), 23. Smith et al. (1993), 24. Gratton
& Sneden (1994), 25. North et al. (1994), 26. Ryan & Lambert (1995), 27. Gratton et al. (1996), 28.Cavallo
et al. (1997), 29. Fulbright (2000), 30. Gratton et al. (2000), 31. Nissen et al. (2000), 32. Luck & Heiter
(2007), 33. Massarotti et al. (2008), 34. Soubiran et al. (2008), 35.Frasca et al. (2009), 36. Sozzetti et al.
(2009), 37. Koleva & Vazdekis (2012), 38. Nissen & Schuster (2011), 39. Prugniel et al. (2011), 40. Sousa
etal. (2011).
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5.5 Parametric model based study

Elements heavier than iron are mainly produced by two neutron-capture processes, the s-
process and the r-process. Observed abundances of heavy elements estimated using model
atmospheres and spectral synthesis techniques do not provide direct quantitative estimates
of the relative contributions from s- and/or r- process nucleosynthesis. Identification of
the dominant processes contributing to the heavy element abundances in the stars is likely
to provide clues to their origin. We have investigated ways to delineate the observed
abundances into their respective r- and s-process contributions in the framework of a
parametric model using an appropriate model function. The origin of the neutron-capture
elements is explored by comparing the observed abundances with predicted s- and r-
process contributions following Goswami et al. (2010a), (and references there in). The

ith element abundance can be calculated as
N{(Z) = A,N;; + A,N,, 10tF¢/H]

where Z is the metallicity of the star, ;, indicates the abundance from s-process in AGB
star, NV, indicates the abundance from r-process; A; indicates the component coefficient
that correspond to contributions from the s-process and A, indicates the component coef-
ficient that correspond to contributions from the r-process.

We have utilized the solar system s- and r-process isotopic abundances from stellar
models of Arlandini et al. (1999) . The observed elemental abundances are scaled to the
metallicity of the corresponding CH star and are normalised to their respective Ba abun-
dances. Elemental abundances are then fitted with the parametric model function. The
best fit coefficients and reduced chi-square values for a set of CH stars are given in Table
5.7. The best fits obtained with the parametric model function loge; = A;N;; + AN, for
HD 16458, HD 48565, HD 92545, HD 104979, HD 107574, HD 204613 and HD 216219
are shown in Figures 5.6 - 5.13. The errors in the derived abundances play an important
role in deciding the goodness of fit of the parametric model functions. From the paramet-
ric model based analysis we find HD 16458 to fall in the group of CEMP r/s stars . The
objects HD 48565, HD 92545, HD 104979, HD 107574, HD 125079, HD 204613 and
HD 216219 belong to the group of CEMP-s stars.
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Table 5.7: Best fit coefficients and reduced chi-square values

loge

Star Name

Ay

A,

X2

HD 16458
HD 48565
HD 92545
HD 104979
HD 107574
HD 125079
HD 204613
HD 216219

0.490 + 0.09
0.835 + 0.09
0.560 + 0.33
0.514 £ 0.16
0.823 + 0.01
0.832 £0.16
0.739 + 0.08
0.859 £ 0.14

0.600 + 0.09
0.112 + 0.08
0.503 £ 0.33
0.493 £ 0.15
0.171 £ 0.01
0.182 £ 0.15
0.291 + 0.08
0.169 £ 0.13

1.6
1.15
2.15
0.50
1.22
0.50
1.65
1.22

HD

i

16458

40 50 60 70 80
Atomic number (Z)

Figure 5.6: Solid curve represent the best fit for the parametric model function loge =
ANy + A, N,;, where N; and N,; represent the abundances due to s- and r-process re-
spectively (Arlandini et al. (1999), Stellar model, scaled to the metallicity of the star).
The points with errorbars indicate the observed abundances in HD 16458.
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Figure 5.7: Same as Figure 5.6, but for HD 48565.

HD 92545

40 50 60 70 80
Atomic number (Z)

Figure 5.8: Same as Figure 5.6, but for HD 92545.
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Figure 5.9: Same as Figure 5.6, but for HD 104979.
T T I T T T T I T T T T I T T T T I T T T T I T I_
| HD 107574
3 — —
2 — —
w
- il -
2 L i
1 — —
O — —
1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
40 50 60 70 80

Atomic number (Z)

Figure 5.10: Same as Figure 5.6, but for HD 107574
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Figure 5.11: Same as Figure 5.6, but for HD 125079.
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Figure 5.12: Same as Figure 5.6, but for HD 204613.
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Figure 5.13: Same as Figure 5.6, but for HD 216219.

5.6 Conclusion

Results from our analyses of a group of twenty two stars from the CH star catalogue
of Bartkevicius (1996) are presented. Abundances for 22 elements are estimated. The
high velocity object, HD 55496 with radial velocity 315.2 km s~!, is also listed in the
Ba star catalogue of Lu (1991). This object with a metallicity of —1.49 and [C/Fe] ratio
of 1.01 shows a mild enhancement in neutron-capture elements. Estimated [Ba/Fe] for
this object is ~ 0.57. Metallicity [Fe/H] of the other two high-velocity stars HD 81192
and HD 201626 (with V, = 136.5, —141.6 km s~! respectively) are found to be —0.5 and
—1.4 respectively. For the low-velocity stars (V, < 100), metallicity ranges from —0.18
to —0.66. The derived T, from V-K is ~ 400 K, and from J-H is ~ 300 K lower than
the adopted spectroscopic T, derived by imposing Fe I excitation equilibrium. For two
objects temperature derived from both spectroscopic method and photometric method are
similar.

The estimated [C/Fe] ratio for the objects, except for HD 55496 and HD 201626, are
less than 1.0. Thus, if we follow the CEMP stars classification of Beers and Christlieb
(2005), only HD 55496 and HD 201626 fit well in the CEMP star group with [Fe/H] <
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—1.0 and [C/Fe] > 1.0. Several authors have adopted a value for [C/Fe] > 0.5 to define
CEMP stars (Ryan et al. 2005; Carollo et al. 2012). In our sample six objects have [C/Fe]
> 0.5. HD 107574 shows a [C/Fe] value of 0.47. The rest show either solar or mildly
under solar value for [C/Fe]. These objects also show nearly solar or underabundant
[Ba/Fe] value. Although other heavy elements are mildly enhanced in these objects, these
objects are unlikely to belong to the group of CEMP or classical CH stars.

We have estimated the Ba abundance for all the objects in our sample, however abun-
dance of Eu could be measured only for eight objects. Following the abundance criteria of
Beers & Christlieb (2005) based on Ba and Eu abundances five objects fall into the group
of CEMP-s stars. These objects show enhancement in heavy elements. Two subgiant-
CH stars HD 204613 ([Ba/Fe] = 1.04, [Ba/Eu] = 0.98) and HD 216219 ([Ba/Fe] = 1.10,
[Ba/Eu] = 1.03) and three objects from the CH star catalogue, i.e. HD 16458 ([Ba/Fe] =
1.18, [Ba/Eu] = 0.52), HD 48565 ([Ba/Fe] = 1.52, [Ba/Eu] = 1.23), HD 104979 ([Ba/Fe] =
0.94, [Ba/Eu] = 0.54) satisfy the criterion for CEMP-s stars; among these HD 16458 and
HD 48565 although listed in the Ba star catalogue are more likely CH stars. HD 201626
with [Ba/Fe] = 2.12 can also be considered in CEMP-s group. In HD 16458, HD 48565,
HD 104979 the heavy s-process elements are more enhanced than the light s-process el-
ements with [hs/Is] > 0.16. In HD 204613 and HD 216219, light s-process elements are
more enhanced than heavy s-process elements. The parametric model based analysis of
HD 48565, HD 104979, HD 204613 and HD 216219 also indicate higher contribution
from the s-process than that of r-process to the abundances of heavy elements observed
in these objects.

For the objects, HD 89968, HD 126681 and HD 164922, we have [Ba/Fe] < 0.30
with HD 89968 giving a [Ba/Fe] estimate of ~ —0.24. These objects do not qualify as
CH stars. HD 89668 and HD 126681, La, Ce, Pr and Nd are found to be enhanced.
HD 122202 with a [C/Fe] ratio 0.5, shows enhancements of heavy elements other than
Ba. HD 107574 with a metallicity —0.48 and [C/Fe] value 0.47 show enhancements in
light s-process elements. In HD 148897, the heavy elements are either underabundant
or nearly solar. HD 111721 with a metallicity —1.11, shows near solar [C/Fe] ratio and
enhancements in second peak s-process elements.

Two subgiant-CH stars HD 4395 ([Fe/H] = —0.16 and [C/Fe] = —0.14) and HD 125079
([Fe/H] = —0.18) show enhancement in all the heavy elements. HD 4395, with known
radial velocity variations, shows almost equal enhancements of light and heavy s-process
elements with [hs/Is] ~ 0.05. But in the case of HD 125079, light s-process elements are

more enhanced. The abundance trends indicate these objects to be members of CH group.
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HD 5395, with estimated [Ba/Fe] ~ 0.13, [Eu/Fe] ~ 0.34 and [Ba/Eu] ~ —0.31 also
does not seem to belong either to the group of CH stars or CEMP-1/s stars. However,
heavy elements Pr and Nd are found to be overabundant with [Pr/Fe] and [Nd/Fe] values
of 0.79 and 0.74 respectively. Sr and La are also found to be mildly overabundant with
[Sr/Fe] ~ 0.26 and [La/Fe] ~ 0.24. The abundance of HD 5395 is however consistent with
one of the characteristic properties of CH stars, i.e. the 2nd peak s-process elements are
more abundant than the first-peak s-process elements.

The chemical composition of HD 81192 with [Ba/Fe] = 0.13, is peculiar, (i.e., it is
enriched) in heavy elements of Nd and Sm and shows near-solar abundances for Ba,
La, and Ce. This object shows a mild enhancement of Sr with [Sr/Fe] = 0.58. For CH
and CEMP-s stars estimated [hs/Fe] are in general > 1, where hs represents the heavy
s-process elements and Is represents the light s-process elements. This condition is also
not satisfied by this object. The binary status of this object is not known; the object does
not seem to represent a typical CH star as far as its chemical composition is concerned.

HD 167768, an object with no information on radial velocity variations, shows en-
hancements in a few heavy elements but Ba and La are found to be underabundant with
[Ba/Fe] = —0.36 and [La/Fe] = —0.54. This indicate the object may not be a bonafide
member of CH star group.

Estimated values of [Ba/Fe] for the two high mass objects in our sample HD 188650
and 214714 are respectively ~ —0.01 and —0.31. Abundance of Eu could not be estimated
for these two objects from our spectra. Except for Pr ([Pr/Fe] = 0.57) and Nd ([Nd/Fe] =
0.39) all other heavy elements i.e., Y, Ce and Sm show near-solar values for HD 188650.
Similarly, HD 214714 shows a near-solar value for Ce. While Y is overabundant with
[Y/Fe] = 0.22, Zr is found to be underabundant with [Zr/Fe] = —0.28 in this object. Pr,
Nd and Sm are overabundant with [Pr/Fe] = 0.93, [Nd/Fe] = 0.36 and [Sm/Fe] = 0.46. It
is possible that the objects that show mild enhancement of heavy elements such as Pr, Nd
etc., their origin could be from material that are pre-enriched with such heavy elements.

CEMP-s stars are believed to be the metal-poor counterparts of CH stars having same
origin as CH stars. As in the case of CH stars, the observed chemical composition of
CEMP-s stars is also explained considering a binary picture. The relationship between
CEMP-s and CEMP-1/s stars are not clearly understood; there are however speculations
that the progenitors of the CEMP-s and CEMP-1/s class may be one and the same (TP-
AGB) (Tsangarides 2005). None of the four stars for which we could measure both Ba
and Eu abundances are found to satisfy the criterion of Beers & Christlieb (2005) for
CEMP-1/s stars.
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Several authors have used [hs/ls] as a good indicator of s-process efficiency and used
these values for classification of CH stars. For example Bisterzo et al. (2012) classified
the stars with [hs/Fe] value > 1.5 as S II stars and those with [hs/Fe] value < 1.5as S 1
stars. In our sample three objects belong to S II category according to these criteria. For
subgiant-CH stars light s-process are enhanced compared to heavy s-process elements.
For giant-CH stars heavy s-process elements are found to be more enhanced. The cor-
relation between metallicity and [hs/Is] values (see section 1.6) are also clear from our
analysis.

Abundance ratios of the sample stars show a large scatter with respect to [Fe/H] (Fig-
ure 5.14). [X/Fe] ratios of the heavy elements for most of the objects belonging to group
III are distinctly lower than their counterparts observed in the stars of group I and II.
Abundance ratios of Eu with respect to Fe observed in three stars of group III show sim-
ilar values as those seen in two objects of group II. Population I Ba stars are believed to
be metal-rich counter parts of CH stars. Both CH stars and Ba stars are known to show
enhancement in heavy elements. A comparison of the abundance ratios of heavy elements
with those observed in barium stars (solid squares) and CEMP stars from Masseron et al.
(2010) (solid pentagons) within the metallicity range 0.2 to -2.2 show that the group
III objects distinctly return lower [X/Fe] ([Zr/Fe], [Ba/Fe], [La/Fe] and [Ce/Fe]; Figure
5.15). These objects do not seem to belong to the group of CH stars as far as the chemical

composition of heavy elements are concerned.
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Figure 5.14: Abundance ratios of heavy elements observed in the programme stars with
respect to [Fe/H]. The confirmed binaries are shown with solid circles, the objects with
limited radial velocity information are shown with open circles, and the rest of the objects
are indicated with solid triangles. The abundance ratios show a large scatter with respect
to metallicity.
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Figure 5.15: Same as figure 5.14. But the estimated abundance ratios of Ba, La, Ce
and Eu with respect to Fe plotted in this figure are compared with the abundance ratios
observed in CEMP stars (solid pentagons) from Masseron et al. (2010) and Ba stars (solid
squares) from Allen & Barbuy (2006a).
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CHAPTER 6

SUMMARY AND CONCLUSION

Studies on very metal-poor stars have progressed significantly over the past three decades.
Detailed studies of a number of metal-poor stars have revealed a large fraction of them
to possess a wide variety of elemental abundance patterns and overabundance of carbon
(the CEMP stars and their sub-classes). Inspite of several efforts to understand their
formation mechanisms (Qian & Wasserburg 2003; Zijlstra 2004; Wanajo et al. 2006)
numerous questions still remain as to the nucleosynthetic histories and astrophysical sites
associated with the production of these classes of objects. Although carbon-enhanced
stars have several sub-classes, the majority are those showing large enhancement of heavy
elements which are provided by AGB stars (CEMP-s and CEMP-1/s); being the largest
group they could have major impacts on the Galactic chemical evolution.

An important aspect of this study is to obtain statistics of CEMP stars in addition to
elemental abundances. These inputs are required to estimate the contribution of their
progenitors (AGB stars) to the Galactic chemical evolution. Towards this end, we have
undertaken a detailed spectroscopic studies of these objects. To summarize the important

results,

1. A total of hundred and eleven objects from HES survey and CH star catalogue of
Bartkevicius (1996) were classified into CH, C—R, C—N and C-J sub-classes based on
low-resolution spectroscopy and using well-defined spectral criteria.

2. Conducted a detailed chemical composition study of a sample of 22 CH (CEMP-s)
stars based on high resolution (R ~ 48000) spectra, dividing into three groups: group I
(known binaries), group II ( objects with limited radial velocity information) and group

IIT (objects that have no information either on radial velocity or binarity).

e The group I objects show enhancement in carbon with two objects HD 16458 and
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HD 201626 showing [C/Fe] values > 0.9. The '2C/!*C ratio in these objects are below 15.
The other three objects show a [C/Fe] value < 0.50. The group I objects, that include three
subgiant-CH stars HD 122202, HD 204613, HD 216219 clearly show enhancement in
heavy elements, in which, the light s-process elements are found to be more enhanced than
the heavy s-process elements (Table 5.4). In HD 122202, while Ba is mildly enhanced
with [Ba/Fe] = 0.33, other heavy elements are largely enhanced. Except HD 201626,
with [Fe/H] = —1.39, the other objects are not so Fe-poor. For HD 201626, all the heavy
s-process elements are highly enhanced.

e Among the group II objects, except HD 4395 with [C/Fe] = —0.14 and HD 104979
with [C/Fe] = 0.03, the other objects show mild or large enhancement with [C/Fe] in the
range 0.47 to 1.01. All the six objects in this group exhibit enhancements in heavy ele-
ments. This group also includes a subgiant-CH star HD 4395, which show almost equal
enhancements of light and heavy s-process elements with [hs/Is] ~ 0.05. HD 48565 with
metallicity —0.59, shows a large enhancement in Ba with [Ba/Fe] = 1.52, other heavy ele-
ments are also highly enhanced. For the other five objects although enhanced [Ba/Fe] esti-
mates are < 1.0. Estimated Eu gives [Eu/Fe] = 0.29. Four objects, HD 55496, HD 92545,
HD 104979 and HD 107574 show the heavy s-process elements that are more enhanced
than the light s-process elements. The metallicity of these objects are either solar or
mildly metal poor except for HD 55496 for which [Fe/H] = —1.49. The abundance pat-
terns in these objects suggest them to be members of binary systems. Long term radial
velocity monitoring is required to understand the binary nature.

e Group III objects show near solar or mild underabundance of C. While HD 89668
and HD 125079 show large enhancements in heavy elements, other objects show mild
enhancements. HD 125079, a subgiant-CH star, shows enhancement in all the heavy ele-
ments and HD 89668 shows enhancement in heavy elements other than Ba with [Ba/Fe] =
—0.24. In the three cyanogen—weak giants HD 148897, HD 188650 and HD 214714, all
the heavy elements are either solar or mildly underabundant. HD 164922 and HD 167768
show mild enhancements in light s-process elements. In general, group III objects show
smaller enhancement in heavy element abundances compared to their counterparts in
group II and group III objects with similar metallicities (Figures 5.14 and 5.15). Six
objects in this group show underabundance in Ba. The origin of the heavy elements in
these objects can be attributed to the interstellar clouds from which they have formed.
Further studies are required for confirmation. The object, HD 164922, shows in radial ve-
locity a difference of 15 km s™! from the literature value indicating that the object could

be a member of binary system. Long term radial velocity monitoring of these objects are
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also required to understand the binary nature.

In summary,

e Enhancement of heavy elements, a well known characteristic of CH stars is evident
for eleven objects (group I and II) from our analysis.

e Stars with radial velocity variations or binaries show more enhancements of heavy
elements.

e The s-process enhancement in subgiant-CH stars are similar to Ba stars.

¢ High neutron-exposure index [hs/Is] favours lower metallicities.

e Light s-process elements are found to be enhanced than heavy s-process elements

in subgiant-CH stars.

The spread in metallicity of our programme stars is not wide enough to make a critical
analysis of the abundance trends with metallicity. In our sample, the abundances of the
heavy elements appear scattered with respect to metallicity, suggesting that the enrich-
ment may not be a function of only metallicity. Many studies (McClure 1983; Jorissen &
Mayor 1992; Zacs 1991) have been conducted to find a possible correlation between the
level of s-process enhancement and orbital parameters. McClure finds no correlation be-
tween the derived orbits and and Barium line strength in a sample of Barium stars. Zacs
(1991) concluded that a correlation exists between s-process abundance anomalies and
orbital periods for Barium star binaries. Most of the Ba stars are identified as wide bina-
ries with long periods. Three objects in our sample are also listed in the Ba star catalogue
of Lu (1991). Among the confirmed binaries with long periods > 878 days, we could not

find any correlation between the orbital parameters and abundances of heavy elements.

6.1 Future plans

Detailed chemical analysis of a large number of CH stars are required to draw a robust
conclusion on their roles in the Galactic chemical evolution. We would like to extend this
study to more number of CH stars and low metallicity carbon stars.

We have collected high resolution spectra for several carbon-enhanced metal-poor
stars from the ESO-FEROS (Fiber-fed Extended Range Optical Spectrograph) covering
the wavelength range 3500 — 9200 A. Analysis of these data are in progress. We also
plan to analyse medium resolution 4m LAMOST (The Large Sky Area Multi-Object Fibre
Spectroscopic Telescope in China) spectra with a primary objective to search for metal-
poor carbon-enhanced stars.

The data used for the present analysis cover a wavelength range 3800 — 6800 A,
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We would like to extend the analysis along the higher wavelength region and derive the
nitrogen and oxygen abundances which would help to understand better the evolutionary
stages. We also plan to extend our study based on theoretical models in order to get better
ideas about the nature of binary companions and hence to understand the origin of the
observed abundances.

The present analysis is based on optical spectroscopy, it would be worthwhile to carry
out the investigation using IR spectroscopy to understand the nature and extent of the cir-

cumstellar envelop; this is expected to provide insight into the mass transfer mechanisms.
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Linelists and equivalent widths
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