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ABSTRACT

The Sun is a unique physical laboratory in which the varioomains of physics inac-
cessible to laboratories on earth can be studied in greail.dés proximity allows us to
understand it in great depths. George Ellery Hale, in 19B880dered the magnetic fields
in sunspots through his observations of the Zeeman effplittijsg of atomic lines in the
presence of a magnetic field). Advancements in observatiecdaniques, and instrumen-
tation since then enabled us to see the Sun with a high resoluthis revealed that the
magnetic fields are present everywhere on the Sun and theymgas structure and dy-
namics. The terrestrial environment is now known to be imfteel by the solar magnetic
fields. This is one of the reasons why their study is of gregbirtance.

One of the methods to study and measure these magnetic seldsanalyze the po-
larization of the light emitted by the Sun. The traditiogalbserved intensity spectrum of
the Sun called the first solar spectrum gives substantiatnmdtion about the structure and
composition of the solar surface layers (photosphere nebsphere, transition region, and
corona). However, more detailed information like the ggterand spatial distribution of
the solar magnetic fields can be obtained from the polarigiéd émitted by the Sun.

The line polarization arises due to the magnetic fields aadcttiherent scattering pro-
cesses taking place due to anisotropic illumination of #tkating atoms by the limb dark-
ened radiation. The linearly polarized solar spectrum peed by coherent scattering
mechanisms is called the ‘second solar spectrum’. Magfietits generate polarization
via Zeeman effect and also modify the scattering polanpafvia the Hanle effect). The
fingerprints of the magnetic fields are encoded in the pa@tdn signals. The analysis
of these fingerprints is of high scientific interest, sinceytican be suitably exploited to
investigate the magnetic fields present in the solar atmeysph

The most commonly used technique for the magnetic field disiirs is the Zeeman
effect in which case the spectral lines are split by the edlemagnetic field. However,
if the magnetic field is very weak then Zeeman effect cannaidssl for diagnosing the
field because it is practically difficult to measure extreyrerhall splitting by instruments
with finite spectral resolution. Also, the Zeeman effect limdbto mixed polarity fields
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within the resolution element of the telescope. These daakd can be overcome by the
Hanle effect which refers to the modification of the non-nmetgnscattering polarization

by the magnetic fields. The Hanle effect can help to detedidlds that are either weak or
turbulent. Thus, it acts as a complementary diagnostictiotiie Zeeman effect.

In some situations, the magnetic field is so strong that idpces a splitting whose pat-
tern is very different from that expected for the ZeemanatffApart from completely split-
ting the atomic lines, it also causes the magnetic substatberent atomic states belong-
ing to a given term to interfere. Such an effect of the magrfetid is called Paschen—Back
effect. It acts in those domains of field strength that areawoessible through the stan-
dard techniques based on the Zeeman effect. Due to theathfferagnetic field strength
regimes in which they operate, the Hanle, Zeeman, and PasBhek effects complement
one another. The role played by the Paschen—Back effectipirsip the polarization pro-
files of the spectral lines needs to be understood in ordedpimee the possibility of using
the Paschen—Back effect as a diagnostic tool for magneliisfigo this end, in this thesis,
we develop the scattering theory of Paschen—Back effectoimia states by accounting
for the redistribution in the frequencies of the photons ttu®oppler shift and apply it
to analyze the polarization profiles of diagnostically intpat solar spectral lines. This
study is an important step forward in understanding theceffef strong magnetic fields
and their manifestation in the polarized line radiation egimg from the solar (or stellar)
atmosphere.

We have divided the thesis into two parts. The first part (&#vag@ and3) concerns the
problem of line radiative transfer in the presence of pakiblend lines and a polarized
continuum. Polarizing blend lines are known to influencegbkarization of the spectral
lines as well as the polarized background continuum. Tharétieal modeling of any spec-
tral line in the second solar spectrum requires a propetntieat of these blend lines. With
this motivation, in Chapte2, we develop a formalism to include a blend line resultingrfro
transition in a two-level atom, having a non-zero intrinsadarization, formed under non-
local thermodynamic equilibrium conditions, in the patad radiative transfer equation
in the presence of a weak magnetic field (the Hanle effecths@ering one-dimensional
isothermal atmosphere, we study in detail its influence emthin spectral line of interest,
also resulting from the transition in a two-level atom.

In Chapter3, we extend the formalism developed in Chag¢o incorporate multiple
blend lines in the polarized transfer equation. This is ingo@t because generally more
than one blend line will be present in the wings of the maircspéline. Our formalism
can treat any number of blend lines, however, for the sakengbliity, we present the
results of our study involving only two polarized blend kndn this case we find that the
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blend line effects are important and needs to be considehned wis lying very close to the

main line and is relatively strong. As mentioned earlieg #tudy becomes important while
modeling the spectral lines in the second solar spectrumidardo extract the physical

guantities related to the magnetic field and the solar atherep

In the second part of the thesis (Chaptrs, 6, and7), we develop the scattering theory
of Paschen—Back effect using the Kramers—Heisenbergesicattmatrix approach. We
study the problem of quantum interfere (interference betw@e scattering amplitudes of
transitions) in the presence of a magnetic field of arbitsargngth with a particular interest
in the Paschen—Back effect regime. The second solar spetingts many spectral lines
which are governed by the quantum interference effects.pbleization features of such
lines can be explained only when interference effects angistently accounted for. The
guantum interference occurring between the atomic statissngodified in the presence of
a magnetic field. We identify and study the signatures intpdin the polarization profiles
by the quantum interference taking place in the presenceragnetic field.

In Chapter4, we develop the scattering theory of Paschen—Back effebyjperfine
structure states by considering a two-level atom which tgaks hyperfine structure split-
ting because of the interaction between the total angulanembum of the electron and the
nuclear spin. We consider frequency coherent scatteritigeophotons in the atom'’s rest
frame and account for the partial frequency redistribugéfects in the laboratory frame
that arise due to Doppler motions of the atoms. We test tieisrthby taking example of
the Na D, line for which observable effects from the Paschen—Backmegre expected
for the magnetic fields present on the Sun. Since our aim astatify and study the finger-
prints of Paschen—Back effect on polarization, we considy a single scattering of the
incident unpolarized radiation by the Na atom, avoidingdbmaplications due to radiative
transfer.

We then formulate the theory of quantum interference betviiee fine structure states
in a two-term atom in the presence of arbitrarily strong neignfields (including the
Paschen—Back regime) by accounting for the effects due ttap&equency redistribu-
tion. We present the theoretical formulation as well as #waiits of the tests performed
in a single scattering on the LD; & D, lines in Chapteb. This is the only line system
which is sensitive to Paschen—Back effect for the field gfitenthat are seen in the Sun
(the magnetic field strength required to see Paschen—B#eazit ef fine structure states for
other lines is much higher than those present in the Sun)thioline system, the effects
from the Paschen—Back regime are seen for field strengthsatiyppresent in sunspots.
We identify the various signatures of the level-crossingd avoided-crossings that take
place in the Paschen—Back regime.
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We also develop a more general scattering theory in Ché&ptdrich accounts for fine
and hyperfine structure interference simultaneously inpttesence of arbitrary strength
magnetic fields, for a two-term atom with hyperfine structuMe account for the effects
due to partial frequency redistribution. Due to the rel@eato solar applications, we again
consider the Li D, & D, lines to test this theory in a single scattering of the uniodal in-
cident radiation. We find that Paschen—Back effect resultet circular polarization value
(which is not seen in the case of Zeeman effect) and that #tisevhas a particular pattern
of variation with an increase in the magnetic field strengthis net circular polarization
could serve as a diagnostic tool for solar magnetic fields.

In Chapter7 we describe our efforts to model the lithium lines using st kcattering
approximation method and the theory developed in Ch&pt&¥e consider two levels of
approximations of the last scattering method originallyedeped for non-magnetic and
weak field cases and extend it to include the effects due dogtmagnetic fields. We end
the thesis by summarizing the results and indicating thsiptesdirections for future work
in Chapter8 and provide the additional details in the appendices.

VIlI
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1

INTRODUCTION

In this chapter, we introduce the basic concepts and tetoggdahat will be used in the
present thesis which are essential for understanding iitents. We qualitatively describe
the relevant physical effects without going into detailedtinematical derivation except
when it is needed.

1.1 Representation of Polarized Radiation

The state of polarization of an electromagnetic radiatsozoimpletely specified by the four
Stokes parameters @, U, andV. They were first defined by Sir George Gabriel Stokes
in 1852 as a mathematically convenient way of representing thegtigrpolarized light
and later introduced in the astrophysical contexihandrasekhatl950. I is the total
intensity,( is a measure of the degree of linear polarizatidmgives the orientation of the
plane of polarization, antl’ gives a measure of circular polarization.

Following the monograph bytenflo (1994, we describe below, the mathematical
framework that will be used in this thesis, to determine tta¢esof polarization of a ra-
diation. For a more detailed description of the polarizeghtliwe refer the reader to this
monograph. When a polarized light travels through a medhawause of its interaction
with matter, its characteristics change. This interactian be calculated in a number of
ways. The simplest one is the Jones formalism, introducéd4im by R. Clark Jones (see
Shurcliff, 1961 Collett, 1993 Clarke 201Q for more details), where the electric vecir
is decomposed into two mutually orthogonal directiengnde,, as

E = Re(E181 + Egeg) s (11)
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and the Jones vectdr is constructed using; andE,, as

E,y
J:<E2> . (1.2)

The complex amplitude and phase information are contaméd andE,. The interaction
of the polarized light with the medium is then represented By 2 Jones matrixv as

J=wJ . (1.3)

Here, J' is the Jones vector of the light entering the medium dnid that of the light
leaving the medium after interaction. It is important toentiat the Jones formalism as-
sumes that the waves propagate in the orthogonal direatr@amstaining the same phase
or the same phase difference. This refers to radiation bedrth are perfectly coherent
and perfectly polarized. In a statistical ensemble of uretated photons (produced by in-
dependent processes) with different state of polarizapartial polarization arises due to
incoherent superposition. In order to deal with this, wethgecoherency matri> which

is formed from the Jones vector as

D=JJ", (1.4)

where J denotes the adjoint of (transposition and complex conjugation #§. The
coherency matrix then transforms as

D =wD'w'. (1.5)
The polarized light is represented by a four component Steketor of the form
I=[1,Q,UV]", (1.6)
and is related to coherency matrix through the expression
I=Tr(eD). (1.7)

Here, Tr stands for trace which is the sum of all the diagolehents andr are the Pauli
spin matrices. The Stokes vector in a medium transformsrdicgpto

I=MI, (1.8)
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whereM is the Mueller matrix which describes how an incident Stokestor gets trans-
formed in a medium. It is defined as

M=TWT ', (1.9)

where
* * * *
W11Wyp Wi Wiy Wi2Wyyp Wi2Wyg
W Wy WiWiy WipWy Wi2Wiy
W=ww" = : (1.10)

* * * *
W21Wyp  W21Wip W22Wyp W22Wig

* * * *
W21Wyy  W21Wpy W22Wgy W22Wa

The symbols® andx denote tensor product and complex conjugation, respé&gtifeand
T~! are the purely mathematical transformation matrices hgtrie form

1 0 1 1 0 0
1 0 -1 1] o0 1

T— T ‘ (1.11)
0 1 0 0 1 —i
0 —i i 0 1 -1 0 0

The formalism based on the Mueller matrix accounts for theigdy polarized light.
Mueller matrix is an important tool in the measurement ofapiaked light (for more de-
tails, see, for examplelel Toro Iniesta2004). In this thesis, we use the coherency matrix
formalism, following the approach developed $tenflo(1994 1998.

1.2 Solar Polarization and Blend Lines

The criterion for radiation to get polarized is breaking loé spatial symmetry. In the so-
lar atmosphere this is met when there is an anisotropic iftatron of the atoms or when
there is a magnetic or electric field present. The source isbaopy is the limb darken-
ing, because of which a scattering atom receives more radiftom the vertical (radial)
direction, than from the horizontal (lateral) directionh@h an atom is illuminated by such
an anisotropic radiation, population imbalances and @fus are introduced among the
magnetic substates. In other words, the atom gets polarided ‘atomic polarization’ is
transferred to the scattered photon in a coherent scajtevient. Thus, there exist definite
phase correlations between the incident and scatteredmhot such coherent processes.
The linear polarization gets generated in the scatteringgeses which are coherent. In the
incoherent processes, due to collisions the atom lose<itsary of how it was excited, and
hence there exists no phase relation between the inciddrstcattered photons. Therefore,
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the scattered photon is unpolarized in an incoherent stajtevent.

The degree of polarization depends on the degree of anpgothat prevails in the
layers from where the photons are emitted. The degree obtangsy is small in the solar
atmosphere and hence the degree of polarization is of thex ofgust a few percent. With
spectropolarimeters like ZIMPOL (Zurich Imaging POLariere see, for examplé&ove|
1995, it is possible to measure such weak signals. Maximum zaiéon is measured in
the limb observations and minimum in the disk center becatides axial symmetry of the
radiation field.

Magnetic fields play an important role in shaping the poktran profiles of the spec-
tral lines, as scattering polarization signals are se#esiti their presence. They modify the
polarization generated in non-magnetic coherent scagf@vents and give rise to observ-
able signatures in the polarization through a series ofesteng physical mechanisms. The
analysis of these signatures is of high scientific intesaste they can be suitably exploited
to investigate the magnetic fields present in the solar giivere (or in other astrophysi-
cal plasma). See Sectidn7 for more details on the solar magnetic fields and the various
techniques used to determine them.
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1.2.1 The Second Solar Spectrum

A record of the linear polarization resulting from the cadr@rscattering processes in the
Sun as a function of wavelength is called the ‘second sokctspm’ (see5andorfey200Q
2002 20053. In Figurel.1, we show the second solar spectrufy { panel) recorded in
the wavelength rang&770 — 3780 A (Gandorfer 20058, along with the regular intensity
spectrum which is called the first solar spectrum. As we carirsen this figure() /I spec-
trum is very different from the intensity spectrum and hetimename second solar spec-
trum (lvanoy, 1991 Stenflo & Keller 1997). It contains a wealth of information about the
various physical processes governing the structure andrdips of the solar atmosphere.
It is highly structured and is characterized by a polarizackiground continuum on which
the spectral lines superpose. The physical mechanismsajengit are different from the
ones which give rise to the intensity spectrum. To explagséhmechanisms, scattering
theories were formulated based on the principles of quamb@chanics. Using these the-
oretical formulations, it is possible to characterize @gels in the solar atmosphere from
where the polarization is generated. This opened a prdyiongxplored window to study
the solar atmosphere (see, for exampiegnflg 2009ab, 2011).

1.2.2 The Blend Lines

As mentioned in Sectiof.2.], the second solar spectrum is characterized by numerous
spectral lines which are formed at different heights in thlarsatmosphere. Modeling their
polarization profiles is one of the ways to map the variatibdifberent physical quantities
within the atmosphere. This requires a proper treatmeiheobtend lines which are known
to affect the polarization of these spectral lines of inderén Figurel.l, if we consider
the spectral line marked by an arrow in the intensity pan¢hasnain line of our interest,
then we refer to all the other lines present in this wavelenghdow as blend lines. The
blend lines can arise from the transitions in the same atepecies as the main line or
from different atomic species. For simplicity, they are giatly assumed to be formed in a
medium under local thermodynamic equilibrium (L Eondition and are also assumed to
be unpolarized. The background continuum radiation israéd by Rayleigh scattering on
neutral hydrogen and Thomson scattering on free electrbims.intrinsically unpolarized
spectral lines dilute the polarized continuum photons ambthrize the continuum. Blend
lines, in reality, can be either polarizing or depolarizing

1 The LTE represents the transfer of radiation in a denserumgdihere the collision processes dominate.
The absorption and emission processes are sufficient teedbériocal source function, which at a given point
in the medium is given simply by the Planck function at thealdemperature. In the solar atmosphere, LTE
is a good approximation in the deeper photospheric layers.
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In polarization measurements and modeling of a spectml diatermining the absolute
zero level of polarization is very important but remains allénge (se&tenflo et al.1998
because of the instrumental polarization. One of the wayasrige at the absolute scale
for the polarization measurements is to use the blend liB¢snflo(2005 presented the
method of using the blend lines for this purpoSenitha et al(2014 used the blend lines
to determine the zero level of polarization in their effdtsnodel the Sa 4247 A line. In
Partl of this thesis, we present a formalism to treat both polagznd depolarizing blend
lines formed in non-LTE (NLTB conditions, and the ways to use them for modeling main
line polarization.

1.3 Frequency and Angular Redistribution in Scattering
Events

In scattering processes, the frequencies, polarizatidrdaections of the photons get re-
distributed. By considering a two-level atom (a simple atooaonfiguration having only a
lower and an upper level between which the transitions couthis section, we describe
the various types of redistribution that occurs in the atorast frame. We refer the reader
to Mihalas(1978 andHubeny & Mihalag2015 for detailed discussions on this topic.

Type |: This is an idealized situation where we consider both thel$eof the two-level
atom to be infinitely sharp. In this case, there is no redtistion in the atom’s frame. Type
| redistribution does not apply to any real line, howeversituseful in understanding the
redistribution which occurs due to Doppler motion as seearbgbserver in the laboratory
frame.

Type II: In this case, we assume that the lower level is infinitelyrgland the upper
level is only radiatively broadened because of Heisenbenmgtertainty principle. Further,
we assume that there are no additional perturbations (ficbliésions) to the upper level
so that when the atom de-excites, it emits a photon of the s@meency as was absorbed.
No redistribution occurs in the atom’s frame. This applies tresonance line (for which
the lower level is an infinitely long lived ground state) fardhin low density layers where
collisions are negligible.

Type Il : We consider the lower level to be infinitely sharp as befartelve upper level
is now both radiatively and collisionally broadened. Besmaaf collisions, the excited elec-

2 The NLTE represents the transfer of radiation in a rarefiediome, where the scattering processes
dominate. The source function at a given point is decouptaa the local temperature and is controlled by
the photons arriving from other points within the medium. TELprevails in the low density layers of the
solar atmosphere, namely, the upper photosphere and theobkphere.
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trons get reshuffled within the broadened upper level bdfwale-excitation occurs. The
atom therefore emits photon which will have no correlatiotinthe incident photon. There
will be complete frequency redistribution (CRD) in the atefname. This is applicable to
lines formed in high density layers dominated by collisions

Type IV: In this situation, we assume both the lower and upper lé¢gdis having finite
width. The absorption and emission occurs between thetnagljgbroadened levels. This
picture is suitable to describe the redistribution in sdibmate lines.

The description of all these types of redistribution as dgean observer in the labo-
ratory frame are given ilummer(1962. Heinzel (1981 derived the expression for the
type IV redistribution in the laboratory frame. This furastiis called the type V function.
See alsdHubeny(1982 andHeinzel & Hubeny(1982 for non-coherent scattering in sub-
ordinate lines. In this thesis, we use both angle averagdcaagle dependent forms of
Hummer’s functions.

1.3.1 Redistribution Matrix

In the scattering theory as applied to the astrophysicdllpros, the functions which de-
scribe the correlations between the frequencies and aonfldse absorbed and emitted
photons are called the redistribution functions. The poddion correlations are described
by the matrices called the phase matrices. In the simplernmagnetic case, the prod-
uct of the two is referred to as the scattering matrix or tltkstelbution matrix (RM). In
the magnetic case, the angle, frequency, and polarizabmelations in general cannot
be factorized. They can at most be expressed as combinatiadhese correlation func-
tions. For atoms under the influence of a magnetic field, theiRklyenerally denoted as
R(x,2',n,n’; B) wherex’ andn’ are the frequency and direction of the absorbed pho-
ton, andz andn are the corresponding quantities for the emitted phof8ris the vector
magnetic field whose strength i3, inclination isfg, and azimuth isyz with respect to
the atmospheric reference frame, which is the frame fixeti¢cstar, with the:-axis be-
ing normal to the atmosphere. RM contains the atomic phydissattering and is a very
important tool in understanding the generation and trarmdfpolarized radiation field.

For resonance lines, the scattering events that occur carsessed as a mixture of
the type Il and type Il processes. The resulting spectradiwill show the effects due
to both perfectly frequency coherent and incoherent swadgtevents. Therefore, one has
to use the RM for both these types of scattering and combiewn thppropriately using
the branching ratios which depend on the parameters thatuatdor the radiative and
collisional processes. This is referred to as the partedency redistribution (PRD). In
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Partl of the thesis, we deal with both type Il and type lll scattgmprocesses. In Palit,
we consider only the type Il processes in the atom’s restdrand derive the RM (or the
PRD matrix) in the laboratory frame accounting for the regthsation which occurs due to
the Doppler shift. We consider atomic systems which are momeplex compared to the
simple two-level atom model. To achieve this task, we maleaighe coherency matrix
formalism presented in Sectidhl along with the Kramers—Heisenberg formula. This
formula gives the scattering amplitude for a generab b — f type transition where, b,
andf are the initial, intermediate, and final states. It was a&tivyKramers & Heisenberg
(1925 based on the correspondence principle applied to theicéhsispersion relation for
light. A guantum mechanical derivation of the Kramers—ldeiserg formula was given by
Dirac (19273ab).

1.3.2 A Brief History of PRD

In PRD, there exists a correlation between the frequencidsaagles of the absorbed and
scattered photons. It is now known that the PRD mechanisys plarucial role in shaping
the polarization profiles of the spectral lines, particiyltine resonance lines. PRD affects
both the intensity and polarization and gives rise to a dtarsstic triple peak structure
(see, for exampldVlihalas 1978 Rees & Salibal982.

PRD was first introduced to explain the linear polarizatioofipes of resonance lines by
Zanstra(1941ab). Its first quantum electrodynamical treatment was give®@byont et al.
(1972 for the non-magnetic case which was later extended to diecthe magnetic fields
by Omont et al(1973. The functional forms of the RMs éddmont et al(1972 for prac-
tical applications were provided Hyomke & Hubeny(1988. Using the approach based
on the quantum electrodynami®@ymmier(1997ab) formulated the matrices for the non-
magnetic and magnetic cases, properly taking account afdhisional redistribution. A
modern approach for the atomic frame RM based on the classcdlator model was
given byStenflo(1994 1998 and later extended Byommier & Stenflo(1999 to include
the effects of collisions. Based on the density matrix appihg using the concept of met-
alevels,Landi Degl’'lnnocenti et al(1997) derived the RMs for coherent scattering in the
atom’s rest frame in the absence of collisicBampoorna et a{2013 presented a heuristic
theoretical approach to the problem of polarized line fdramain multi-level atoms taking
into account the effects of PRD and a weak magnetic field. I8eeeview byFrisch(1996
for more detalils.

There are more recent formulations of PRD matrices for meregal physical mecha-
nisms. For example&Sampoorna et a(20073 derived the Hanle-Zeeman PRD matrix for
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the simpler case of a normal Zeeman effect (see Settibd) and for a coordinate system
in which thez-axis is along the magnetic fieldampoorng20113 generalized the PRD
theory of Sampoorna et a20073 to other types of transitions with arbitrary quantum
numbers. This theory accounts for the quantum interfer&ee Sectiord..6) between the
magnetic substates of a given atomic st&mitha et al(2011h developed the PRD theory
of quantum interference between the fine structure statas afom by considering the up-
per states to be only radiatively broadened and in a lategrd@mitha et al.2013g devel-
oped a heuristic approach to include the effects of elastlsons. Smitha et al(2012h
formulated the PRD theory for the quantum interferencengkilace between the hyper-
fine structure states in the absence of magnetic fields ahsgions. RecentlyCasini et al.
(2019 developed an approach based on the Feynman diagramsamgimgsatom-photon
interaction and presented the generalized frequencytrigdion functions for arbitrary
magnetic fields. In this thesis, we extend the PRD theorieSnoitha et al(2011h and
Smitha et al(2012h to include the effects of magnetic fields of arbitrary s¢ygrand also
formulate a more general theory which can treat the quanttenference among the fine
and hyperfine structure states, simultaneously (seellPaftthe thesis for more details).
See the review articles bagendra2014 2015 for discussions on the role played by
PRD in scattering.

1.4 Atomic Configurations

In this section, we discuss the various atomic configurattbat we consider in our stud-
ies. We assume that the lower level is infinitely sharp andlarzed throughout. For
simplicity, we show only the atomic configurations in theetse of magnetic fields when
the magnetic substates are degenerate. All the atomidttoanssconsidered in this thesis
are of electric dipole type.

1.4.1 Two-Term Atom without Hyperfine Structure

An atomic term is characterized by the orbital angular mamm@quantum numbek and
spin quantum numbe¥ of the electron, under the approximation that the atom guobey
spin-orbit coupling. The, — S coupling results in states labeled by the total electronic a
gular momentum quantum numbér The term symbol generally followed in spectroscopy
is given by>>*1 L ;. In the two-term atom that we deal with in this thesis, thedoterm
is2S (L = 0,S = 1/2) and the upper term i¥P (L = 1,5 = 1/2). The L — S coupling
gives rise t0*S; , state in the lower term, amd;» and®P;, states in the upper term,
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according to/ = |L — S|...L + S. In Figurel.2, we show the two-term configuration in

, J=3/2
P L=1
J=172
S=1/2 D, D,
'S_L=0 J=172

Figure 1.2: A two-term configuration taking example ofi ID, » doublet. The splittings
are not to the scale.

Li atom. We study the effects of a magnetic field on this syste@hapters. The dipole
type transitions in a two-term atom follow the selectioreslAL = 0, +1 (L = 0 - 0),

AS =0,andAJ =0,+1 (J = 0 - 0). When a magnetic field is applied, the degeneracy
of the magnetic substates is lifted and the transitions micgubetween these states obey
Ap = 0,£1, with ¢ being the magnetic quantum number labeling the magnetistsids

of the J states.

1.4.2 Two-Level Atom with Hyperfine Structure

The two-level atom that we consider has twicstates belonging to two different terms.
When the atomic nucleus possesses a $pifffauli 1924, the coupling betweed and

I, results in hyperfine structure states labeled by the totglilan momentum quantum
numberF so thatF' = J + I,. The F states are given by the vector addition formula

J=3/2 F=3
F=2
< Fo1
F=0

p, | L7312
J=1/2 F=2
F=1

Figure 1.3: A two-level atom with hyperfine structure takihg example of NaD, line.
The splittings are not to the scale.

F =1J—1I4,...,J + I,. The number off’ states into which a gived state splits is

10
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given bymin(2J + 1, 21, + 1). For electric dipole transitions between thestates the
selectionrulesaraJ =0,+1(J =0-+»0),AF =0,£1 (F =0 - 0), andAp = 0, 1.
Here, i denotes the magnetic substates of fhetates. The electric dipole nature of the
interaction does not permit transitions amangtates of a given state. Figurd..3shows
the configuration of Na atom which we deal with in Chapterin Partl of the thesis, a
two-level atom model without hyperfine structure is conside

1.4.3 Two-Term Atom with Hyperfine Structure

In Sectionl.4.], we did not account for the hyperfine structure states tlstitebecause
of the coupling betweerd andI,. Certain spectral lines in the second solar spectrum are

F=1/2
J=3/2 _ F=3/2

P L=1 F=5/2
J=1/2 F=3/2
F=1/2

S=1/2 I=1

F=3/2

’S 1=0 J=1/2

F=1/2

Figure 1.4: A two-term atom with hyperfine structure takihg example of b and D,
lines ofSLi. The splittings are not to the scale.

F=0
F=1
J=3/2 F=2
P =1 F=3
J=1/2 F=2
F=1
S=1/2 1=3/2

) F=2

S L=0 J=1/2
F=1

Figure 1.5: A two-term atom with hyperfine structure takihg example of B and D,
lines of ’Li. The splittings are not to the scale.

known to be influenced by both fine and hyperfine structure.tddyssuch lines, one has

11
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to deal with two-term atom with hyperfine structure. In Clesp6 and7, we treat the lines
resulting from transitions between th8 and?P terms of two stable isotopéki and "Li
(see Figure4.4andl.5. The selection rules for the electric dipole transitiorestae same
as the ones discussed in Sectidné.1and1.4.2

Throughout this thesis, we denote the levels from which theogptions occur with
subscripts:, the levels to which the absorptions take place with suptdrj and the levels
to which the emissions happen with subscrifits

1.5 Theory of Fine and Hyperfine Structure in Atoms

In this section, we briefly introduce the derivation of thgpessions for the fine and hy-
perfine structure interaction Hamiltonians which will beedsn Partll of the thesis. We
follow Condon & Shortley(1939; Corney (1977 andWoodgate(1992 for this purpose
and recall their expressions here, for the sake of competen

1.5.1 Fine Structure Hamiltonian

The fine structure states arise due to the energy changeqaody the interaction between
the spin moment and the magnetic moment generated becatiseabital motion of the
electron (see Sectiah4). In this thesis, we consider only the spin-orbit couplimigiag
from the relativistic orbital motion of electrons possegsspin in an electric field produced
by the nuclear charge.

For a single electron system, this interaction can be repted by the spin-orbit Hamil-
tonian

His = —ps - By, (1.12)

where the spin magnetic moment of the electrqns given by

Hs = —3gsiUBS . (113)

Here, the spiny factorg, = 2 andup = eh/2m, is the Bohr magneton wherne, is
the mass of the electrom, is its charge and: = h/27 (h is the Planck constant). In
Equation (.12, B, is the magnetic field generated at the electron because ofhisl

motion and is given by
vX FE

2

B = , (1.14)

wherec is the speed of lighty is the velocity of the electron anH is the electric field
generated by the nucleus. Using the fact thas radial and the momentugm = m v, we

12
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can rewrite Equationl(14) as

E
B -"*P2 (1.15)
meC= T
We know that, ,
rXp 1dV(r) Ze
l= ; = - o Vir)=— . 1.16
h e dr ’ (r) Aegr ( )
Using these in Equatiorl (15 we get
1
B - _" 2—dv(r)l (1.17)
meec?r dr
The Hamiltonian in Equationl(12 now becomes
h?  Ze?
M © s, (1.18)

2m2c? Amegr3

whose expectation value gives the first order energy ghiftarising from the spin-orbit
interaction. The extra factdr/2 comes because of the relativistic corrections.

From the vector model of the atom, we know that [ + s. Also, s - I commutes with
12, 5%, 32 and;, which have a common eigenvectés;ju) wherey is the eigenvalue of the
operatorj,. We can now computé&y, as

where

A ‘

13 (r- (1.20)

9,22
2mzc* 4dmeg

We can express - [ as follows
ji=j3-j=0U+s)-(I+s)=P+s"+2s-1, (1.21)

from which we can write .

s-l= 5[3’2 —1* - 57 (1.22)
Using Equation1.22 in Equation (.19 and using the expectation values of the operators
42,12, ands?, we arrive at

Efs -

GO D 10+~ s(s+ 1), (1.23)

which is the energy shift produced by the spin-orbit intéoarcfor a single electron system.

13
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For a multi-electron system, we can generalize the spirt-bidmiltonian as
He=> &(rili-si, (1.24)
and the various angular momenta as
L=>1l; S§=>s; J=L+S. (1.25)

Here,i = 1,2,...n with n being the total number of electrons. The Hamiltonian is now
given by
Hi = C¢(LS)L - S, (1.26)

andH;, commutes with7?, L?, S?, and.J.. With the basis vecto..S.Ju) (whereu = J.)
we arrive at
C(LS)

Ey = T[J(J +1)—L(L+1)—-S(S+1)], (1.27)

where((LS) includes the for each electron and has the dimension of energy. We make
use of EquationX.27) to calculate the energies of the fine structure states ip€hsb, 6,
and7.

1.5.2 Hyperfine Structure Hamiltonian

Hyperfine structure is due to the interaction between thetr@lmagnetic multipole mo-
ments of the nucleus with the electromagnetic field gendratehe nucleus by the elec-
trons. The largest contributions to the hyperfine structumme from the interaction of
nuclear magnetic dipole moment with an electronic magrfitid and of nuclear electric
guadrupole moment with a gradient of the electronic eledigid. The contributions from
other terms in the multipolar expansion are either nedkgiompared to these two terms
or vanish because of the parity and time-reversal symnsetrie

Magnetic dipole interaction: The interaction of the nuclear magnetic momeint
with the magnetic fieldB,, produced at the nucleus by the electrons is described by the
Hamiltonian

Hp=—py, - By . (1.28)

We assume that the unperturbed Hamiltonian contains thigatdield, the electrostatic
repulsion terms between electrons, and the spin-orbitanti®n so that we have to consider
only those states labeled Ky.S.J). This approximation is in analogy with the — S

14
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coupling and is called, — .J coupling. This allows one to write

wr, = gr,unIy , (1.29)

whereg;. is the nucleay factor, .y = eh/2M is the nuclear magneton aid is the mass
of the proton. Since we assume that depends only on the nuclear coordinates &hd
only on the electronic coordinates, we can write, using/the .J coupling approximation

Bgx J, (1.30)

and therefore
Hp=A,I,-J. (1.31)

Here, A is the magnetic dipole interaction constant. To the firseotte energy shift of a
state.J because of the magnetic dipole interaction is given by tipeetation value of the
HamiltonianH p

Ay

Ep = (JLFul AL - J|JLFp) = K, (1.32)

where = [F(F + 1) — J(J + 1) — I,(I; + 1)] andp is the eigenvalue of,. We have
usedF = I, + J from the vector model of the atom.

Electric quadrupole interaction: The electrostatic interaction between a proton of
charger at the pointr,, and an electron of chargee at the point-. is given by

e2

Ho = (1.33)

Ameg|re — 1|
where the origin of the coordinates is the center of massehticleus. To account for
the finite extent of the nuclear charge distribution, we asst. > r,, and expand- in
ascending powers of, /r. as

2

Ho = —4;60 (r2 4+ 12 — 2rer,cos e,) V2
_ Zip (08 O (1.34)
T dmeg Lk E o '

where Py (cos 6.,,) is the Legendre polynomial of ordérandé.,, is the angle between,
andr,,.

The first term in Equation1(34) represents a monopole interaction. As discussed ear-
lier, the moments of od#& vanish because of the parity and time-reversal symmetry. We
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can now separate the electric and nuclear coordinates iatiegull.34) by applying the
spherical harmonic addition theorem as

k
Z (_1>qu—Q(‘9n’ Xn>qu(8€7 X€> ) (135)

q=—k

47

P een = 57 . 1

b (c0s fen) 2k +1

whereY/? is the ¢"" component of the spherical harmonic of ordeand the spherical

coordinates{, y) are measured with respect to an arbitrargxis. Fork = 2, H, takes
the form

e? r?
Ho = 47r€o FPQ(COS Ocn)

627’2 4 2 B

B 471'607”3 5 Z (_1)(]}/2 q(en’Xn))/?q(et??Xe) ,
q=—2
2

_ 4 —e ;
el )
= 2 (FU'@ () Fe) - (1.36)

q

When summed over all the protons and electrons, this equgives the complete electric
guadrupole interaction. It can be simplified by defining thielear quadrupole moment
and the average gradient of the electric field produced bylinetrons. It finally leads us
to the Hamiltonian

B,

3
20,21, — 1)J(2J — 1) {3”3 J)

Ho = 2+§(IS-J)—IS(IS+1)J(J+1)}, (1.37)

and its expectation value gives the energy shift due torstegpiadrupole interaction as

B,
8I,(2I, — 1)J(2J — 1)

Eo = {(3K(K+1) — 4J(J + DI, + 1)}, (1.38)

wherel5; is the electric quadrupole interaction constant. In Chapte6, and7, we use
the expressions fak', and E, to obtain the energies of the states.

1.6 Quantum Interference Phenomena

The transitions in a two-term atom (see Sectlof) give rise to multiplets. The spectral
lines constituting the multiplets interact with each othed give rise to interesting sig-
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natures in the second solar spectrum. One such featureveldsisrthe crossover i /1
between the Ca H and K lines. Figurd..6shows the non-magnetic observations of the lin-
ear polarization in this doublet obtained near the solabliim such observations the only
source of polarization is the coherent scattering in lirfesimple two-level atom model
for the doublet without fine structure interaction could erplain the crossover effect.

1.2 T T T T T T T T T

o
)

~ Ccrossover

DEGREE OF LINEAR
POLARIZATION (%)
o
o

8
3
8

WAVELENGTH  (R)

Figure 1.6: Observed (solid line) and theoretical (dotfedjiles of the Ca H and K lines
given inStenflo(1980. Notice the crossover between the K and H lines.

Stenflo(1980 showed that this signature is a result of the quantum mecalanterfer-
ence that always occurs between the scattering transhigloaging to a multiplet. Ca H
and K lines result from the transitions in a two-term atone like one shown in Figure2
J = 1/2 — 1/2 transition gives rise to H line, and = 3/2 — 1/2 to the K line. The
S-shaped profile seen in the observations is attributed tquhatum interference between
the upper/ = 1/2 andJ = 3/2 states. This means that the scattered photons arise due
to a joint probability of transitions from both the uppéistates to the lowey state. This
is analogous to the probability of a photon passing througth khe slits simultaneously
in the double-slit experiment. The photons scattered orcéth@um ions do not choose
whether to scatter via H or K line. In fact, they have a joirdlmability of scattering in both
the lines at the same time.

Mathematically this arises due to the fact that the wavetfane) of an atomic state
can be expressed as a superposition stibstates ag = ) ¢,¢,, and the probability of
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Figure 1.7: Examples of the spectral lines showing effegtstd F'-state interference. This
figure is taken fronBelluzzi (2009. The observations of the Na and Ba lines presented
here were first reported bgtenflo & Keller(1997. The upper panels show the intensity
and the lower panels the degree of linear polarization.

finding the system to be in a given state is
WP =) entnl® (1.39)

and not

WP = [eadnl” (1.40)

Equation (.39 involves cross products which represent interferencedofiteon to the
terms given by Equatiorl(40. From this it can be clearly understood that the scattering
amplitude resulting from the calcium ions is a linear supsifion of the scattering ampli-
tudes for the H and K transitionStenflg 1980 20093. This type of quantum interference
taking place between the states is called/-state interference. The interference which
occurs between thé' states is called’-state interference. We study the effect of a mag-
netic field on these types of interference, in RariThe interference between the magnetic
substates of a given or F’ state is called as:-state interference where is the magnetic
quantum number (se8tenflg 1994 Sampoorna201133. Figurel.7 shows some of the
other examples of the spectral lines which are influencedéyrnterference phenomena.

3See als®ommier(1997ab)
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1.7 A Brief Introduction to Magnetic Fields on the Sun

The existence of magnetic fields on the Sun (in sunspots) waslfscovered by George
Ellery Hale in 1908 through the observations of Zeeman effeale, 1908ab). Soon
after it was observed that the magnetic fields are also présehe regions other than
sunspots. Since then a lot of advancement has taken plandénsianding the mechanisms
generating these fields, their nature and distribution. t8eereview article byStenflo
(201549 for the history of solar magnetic fields since the time ofrtdescovery by Hale.

Sun is the only star for which we have the possibility to resand study in detail
the interaction between the magnetic fields and matter. WNghhelp of several ground
and space based observations, we now know that the Sun iflg mggnetized sphere.
Magnetic fields, whose strengths vary from a few gauss to akiewgauss, govern the
structure and dynamics of the Sun. They contribute to th&rgeaf the corona, which is a
long standing problem in the field of solar physics which isyet completely understood.
They give rise to energetic phenomena like flares, promegreoronal mass ejections etc.
(see, for exampleHoward 1971 Kundu et al, 1989 Wilson, 1999. The coronal mass
ejections drive the solar winds which govern the space veealthe magnetic fields in the
solar winds interact with the earth’s magnetosphere arettyrinfluence the terrestrial
environment. Therefore, the study of the solar magnetiddia of profound importance.

The rapidly varying solar magnetic fields can be studied imewous waysBeckers
1971 Stenflg 1978k Landi Degl'lnnocenti 1985 1992. Measurements based on the
polarization of the electromagnetic radiation involvesmoels which use Zeeman effect,
Hanle effect, gyro-synchrotron radiation (radio obseorat), and Faraday rotation. A few
methods use magnetohydrodynamics effects on the solasptmace like alignment of the
structures, local changes in the temperature and pregslfiven velocity, prominence os-
cillations etc. Theoretical considerations involve fofee potential field calculations and
equipartition of magnetic and kinetic energies. In-situaswements in the solar wind
region and using the information on the primordial magniicls contained in the mete-
orites are among the other methods to study the solar madieddis.

1.7.1 The Zeeman Effect

Splitting of a spectral line into differently polarized cponents by the magnetic field
present in the region of line formation is termed as the Zeeeftect. It was discov-

ered by Pieter Zeeman 896 (Zeeman1897. The amount of splitting is proportional to
the magnetic field strength, the square of the line centeeleagth and the Landé factor
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which depends on the quantum numbers of the levels involvéide transition. Since the
discovery of magnetic fields on the Sun by Hale, Zeeman effesteen the main tool for
their diagnostics.

In the case of normal Zeeman effedt€£ 0 — 1 — 0 transition), three components re-
sult: one unshifted component and two oppositely shiftedomponents (see Figuied).
Ther component vanishes when the magnetic field is parallel thrta@f sight (longitudi-
nal Zeeman effect) and the twocomponents are left and right circularly polarized. When
the magnetic field is perpendicular to the line of sight ($rs@rse Zeeman effect), all the
three components are present. The strength of tbemponent equals the sum of the two
o components. Essentially, the linear polarization respaadhe transverse Zeeman effect
and the circular polarization to the longitudinal Zeemdeaf Therefore, in principle, it
is possible to derive the strength and geometry of the magfield by the simultaneous
measurement of the Stokes parameters $enflg 1978h.

+1

J=0 J=0

<co™

Figure 1.8: Quantum mechanical picture of the Zeeman (&ft) Hanle (right) effects.
The splittings are not to the scale in the illustration.

Zeeman effect depends on the ratio of the magnetic spliftihg), and the Doppler
width (which is substantially larger than the natural widftthe line). Thus, the Zeeman
effect is relatively insensitive to weak fields. Zeemandfianishes if the fields are turbu-
lent and tangled within the resolution element because dlteripation from the opposite
polarities cancel out due to symmetry. Therefore, it is mswited for studying resolved
strong fields which are unbalanced in the resolution eleroikthte telescope.

1.7.2 The Hanle Effect

Scattering in a spectral line in the absence of a magneteti@duces linear polarization.
This is called as Rayleigh scattering or resonance saagt@rispectral lines. Hanle effect
refers to the modification by the magnetic field, of the scaitepolarization generated
by resonance scattering in the line. The magnetic field esttie plane of polarization,
and leads to a decrease in the degree of linear polarizatitimei line core. This means
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that the Stoked/ signal is generated and the magnitude of the Stdkes reduced (as
compared to its value in the non-magnetic case). Thesetsigisehelp in the measurement
of magnetic fields. Therefore, in recent years, Hanle effiast emerged as a diagnostic
tool complementary to the Zeeman effect.

When the magnetic substates are not completely split by #gnetic field, the scat-
tering transitions take place from the overlapping substads shown in Figure.8 This
type of interference was first discovered in resonance lyd3ayleigh(1922 in his light
scattering experiment with mercury vapor in the absenceagfmatic fields (however, the
Earth’s magnetic field was not shielded)/ood & Ellet (1923 studied the depolarization
caused by weak applied magnetic fieldsnle(1923 1924 performed an experiment with
weak applied magnetic fields, and observed for the first tiheeso called ‘Hanle depolar-
ization’, and a rotation of the plane of polarization. Heoaymve a correct explanation for
this phenomena and hence the effect is named after him as Eff@tt. Hanle effect played
a fundamental role in the development of quantum mechanickrifying the concept of
linear superposition of stationary states in atoms. Forreetyaof applications of Hanle
effect in the main land of physics and also astrophysicsivimezzi & Strumia(1997).

Hanle effect depends on the natural width of the levels ardathount of splitting
caused by the magnetic field and does not depend on the Dopialttr of the spectral
lines. It is, therefore, sensitive to oriented fields th& waeak, and also to the fields of
mixed polarity within the resolution element (which are aotessible by the Zeeman ef-
fect, seeStenflg 1978h 2002 20159. The Hanle sensitivity regime varies depending on
the spectral line under consideratiofrujillo Bueno (2001 showed that for typical solar
lines in the optical domain, the upper level Hanle effecsgerity is in the rangel to 100
gauss, while that for the lower level is betwekn® and1 gauss. The Hanle and Zeeman
effects therefore complement each other in a rather ideglivéerms of field strength
regime.

In recent years, Hanle effect has found many applicatiotisarletermination of mag-
netic fields. Its first application in astrophysics wasl®&yoy et al.(1977, see alsd._eroy
1985 Bommier et al. 198bto determine the magnetic fields in the prominences. Hanle
effect in turbulent and oriented fields were also observe&tenflo(1982. Indeed the
diagnostic potential of Hanle effect to detect turbulentiBevas clearly demonstrated by
Stenflo in his paper (1982F-aurobert-Scholl et a{1995 used the Hanle effect to deter-
mine the turbulent magnetic field strength in the solar psahere andraurobert-Scholl
(1996 addressed the problem of the diagnostics of weak magnetdsfin the solar
photosphere and chromosphere by means of their Hanle éffescime selected absorp-
tion lines. Faurobert(2000 showed how the Hanle effect may be used for the diagnos-
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tics of magnetic canopies in the chromosphere (seeFdsmobert 2003. Some of the
other studies related to the measurement of weak magndts fising the Hanle effect
can be found in the pape&tenflo(2002; Trujillo Bueno (2003g; Trujillo Bueno et al.

(2005 2006 andFaurober{2012. See the monograph [Stenflo(1994 and the book by
Landi Degl'Innocenti & Landolf(2004) for full theoretical details.

1.7.3 The Paschen—-Back Effect

When the magnetic field is strong enough to produce a sgjittimich is comparable to or
greater than the separation between the atomic states eé@a tgirm in the absence of the
magnetic field, the magnetic substates belonging to diftemtomic states interfere. This
effect is called the Paschen—Back effect (PBE). The magfield influences the coupling
between the orbital and spin angular momenta, leading tditéirgppattern different from
that of the Zeeman effect. This effect was discovered bydfice Paschen and Ernst Back
in 1912 Paschen & Backl912).

Interfering magnetic
substates

J states

mixed J states

Infinitely sharp
ground state

<co™

Figure 1.9: lllustration of the atomic level mixing in the P&jime for fine structure. The
splittings are not to the scale.

PBE depends on the ratio of MS to the atomic (fine or hyperfinetitre) splitting.
If the ratio is less than, then the effects are still described by the Zeeman effeat. W
enter a regime called the incomplete Paschen—Back (PBheegihen the ratio is close to
1. This regime is characterized by nonlinear MS. When the m@tithe splittings is much
greater thari, we see the effects due to complete PBE. In this regime, Miaal like in
the Zeeman effect. The spectral lines formed in the PB regiolate the ordinary selec-
tion rules as a result of which the spectral lines will congotthe previously forbidden
transitions. This comes as a consequence of the mixing aitthmaic states due to which
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the quantum numbers cannot be precisely defined for thesedrstates (see, for example,
Condon & Shortley1935. In Figurel.9, we illustrate the mixing of fine structure states
in the PB regime. More details on the effects of such a mixnegosovide in Partl of the
thesis.

PBE in molecules is of great significance in the stellar gstysics because of its poten-
tial as a tool in diagnosing magnetic fields present in thiesstaver the last few years, the
theoretical formulations for PBE in molecules have beereltsmed and applied for mag-
netic field diagnosticsBerdyugina et al(2005 formulated the theory of molecular PBE
which is valid for terms of any multiplicity and accounts foteractions of all rotational
levels in a molecular electronic state (see @&godyugina et al.20060. This formulation
was employed byAsensio Ramos et 82005 to model the polarization profiles produced
by PBE in CN molecules, bBerdyugina et al(20063 to model the PBE in CaH transi-
tions, and byShapiro et al(2006 2007 for developing the theory of molecular Hanle ef-
fect in the PB regimeAsensio Ramo$2006 also presented the theory of molecular PBE
neglecting interactions between the rotational levelsithen, Kuzmychov & Berdyugina
(2013 examined the potential of PBE in CrH molecule for magneg@dfmeasurements
on stars, brown dwarfs, and hot exoplanets.

Many atomic spectral lines formed in the solar atmosphegesansitive to PBE for
the magnetic field strengths encountered on the Sun. PBBimiatines is also of great
importance because the signatures of it in the polarizatidhese spectral lines can serve
as diagnostic tools for magnetic fields, in a complementay t@ the Zeeman and Hanle
effects. However, the scattering theory of atomic spetitralformation with PBE needed
for this purpose is still not completely formulatd@ommier(1980 discussed the effect of
level-crossings and anti-level-crossings (see Pathat occur in the PB regime on the po-
larization of the 3 helium line of solar prominences considering the case of ¢$ also
Landi Degl'lnnocenti 1982 Socas-Navarro et al2004). Based on the concept of met-
alevels,Landi Degl'lnnocenti et al(1997) presented a formalism to include the effects of
a magnetic field of arbitrary strength including the effemt®RD. A formalism based on
the density matrix approach is able to account for PB&h@i Degl’'lnnocenti & Landolfi
2004 Casini & Manso Sainz2005 but is limited to CRD. Using this density matrix the-
ory Trujillo Bueno et al.(2002 andBelluzzi et al.(2007) explored the sensitivity of po-
larization in Na D lines and Ba D lines, respectively, to the magnetic fields in the
PB regime. Based on the approach of Feynman diagrams faiesngi Casini et al.
(2019 presented generalized frequency redistribution funcfar a two-term atom in-
cluding PBE which was extended recently to the case of lantygaa multi-term atom
by Casini & Manso SainZ2016. Our aim in this thesis is to develop the scattering the-
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ory of PBE including the effects of PRD, using an alternatipproach starting from the
Kramers—Heisenberg formula. The RM derived in this appiazn then be incorporated
in the transfer equation and used for modeling differentsgklines to analyze the mag-
netic sensitivity of the solar lines in the PB regime. Mor¢ails are given in Pati of the
thesis.

1.8 The Transfer of Polarized Radiation

The photons emitted by the atom traverse through the mékkasdlar or stellar atmosphere
before reaching the observer. Thus, they undergo multgalitexring before escaping from
the stellar atmosphere. This transport is described byaithiative transfer equation (which

is an energy balance equation) containing the absorptidreamssion terms. In Pattof

the thesis, we deal with the polarized transfer equatioherabsence and presence of weak
magnetic fields and in Chaptérwith the transfer in the presence of strong magnetic fields.

1.8.1 The Polarized Radiative Transfer Equation

In this thesis, we consider the formation and transfer ofsgklines in a one-dimensional
(1D) plane-parallel atmosphere under NLTE conditions (se#i@el.2.2. In Chapter
and3, we consider isothermal atmospheres while in Chapteve deal with realistic so-
lar model atmospheref&d@ntenla et a).199Q 1991 1993 Avrett, 1995 which mimic the
conditions prevailing on the Sun. The polarized radiatraesfer equation in the presence
of a magnetic field of arbitrary strengtBtenflg 1994 Landi Degl'Innocenti & Landolfi

2009 is given by
OI(1,\,n)

a or
where the Stokes vectdr= [I,Q, U, V], 7 is the optical depth) is the wavelengthiK
is the4 x 4 total absorption matrix and is the total source vector (see Chapldor its
explicit forms). . = cos 6, with colatituded which is the angle between the normal to the
atmosphere and the line of sight (see left panel of Figut€. n represents the direction
of the scattered ray (see right panel of FigaréQ. We follow the convention that the
direction for positive() corresponds to the linear polarization perpendicular eosblar
limb.

When the magnetic field is weak (such that the magnetic isygiis comparable to
the radiative width), the anisotropic absorption by therattan be neglected. In such a
case, the off-diagonal elements of the absorption marigan be ignored and only the
diagonal elements (scalar absorption coefficient) can tagned. Thus, we replace th€

=KI(t,\,n)—S(t,\,n), (1.41)
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z @ AZ
Normal Line of sight
0 'n

0'/1% i
—
X AXB Y

n' X =

x x B

Figure 1.10: A 1D plane-parallel atmospheric slab witheing the normal to the atmo-
sphere (left). Scattering geometry with the atom at theim@gd incident ray#’) along
the z-axis (right). The scattered ray is along The angle®’ and6 are the colatitudes for
the incident and the scattered rays, respectively, measuitk respect to the normal. The
anglesy’ andy are the azimuths of the incident and scattered rays respictmeasured
with respect to ther-axis. In the figure showny’ = 0°. B is the vector magnetic field
whose strength is given by, inclination byéz, and azimuth by .

in Equation (.41 with £, which is the principal diagonal element Kf, and obtain the
transfer equation for the weak field Hanle effect as

oI(r,\,n)

p—s T = o [L(r, A, m) = S(r A m)] (1.42)

where, now,I = [I,Q,U]" andk,, = ¢()\) + r is the total absorption coefficient with
¢(A) being the line profile function andthe ratio of the continuum to the line averaged
absorption coefficients. In case of the weak field Hanle &ffixe circular polarization
(StokesV') gets completely decoupled from the linear polarizatiod hence it suffices to
describe the radiation field by = [I,Q,U]*. StokesV does not get generated unless
there is an input circular polarization. In the absence ofmedic fields,I = [I,Q]" in
Equation (.42. The RM and the contribution from the polarized continuum@ontained

in the total source vector (see Chapt2end3).

1.8.2 Numerical Methods

Many methods have been developed over the past severaledettadolve the transfer
equations. To solve the scalar NLTE transfer equation, weapproximate lambda itera-
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tion (ALI) technique. It is a fast numerical method develd|by Olson et al(1986 based

on the concept of operator splittinG&nnon 1985. For an overview of the ALI method for
scalar transfer sedubeny(1992 2003. In order to solve the polarized transfer equation
of the type presented in SectidrB.], the ALI method was extended and called polarized
ALI (PALI) method byFaurobert-Scholl et a{1997) for the case of CRD in the absence of
magnetic fields. PRD was included in a later papePhietou & Faurobert-Schall997).

For the case of Hanle effect with CRNagendra et al(1998 developed the PALI
method which was extended to the case of PRIDNagendra et a[1999 2000; Fluri et al.
(2003 and Sampoorna et al20083. For a review on the numerical methods used to
solve the polarized transfer equation Jeajillo Bueno (20030; Nagendra et al(2003;
Nagendra(2003 and Nagendra & Sampoorné2009. The PALI method described in
all these papers are for the case of a two-level at@mitha et al.(2011a 20133 de-
veloped the PALI method for a two-term atom for non-magnand weak field Hanle
cases.Smitha et al(2012h developed the PALI method for a two-level atom with hyper-
fine structure in the absence of magnetic fields. A heurigic@ach to solve the polarized
line transfer equation with PRD in a multi-level atom, withdower level polarization, in
the presence of a weak magnetic field is present&hmpoorna et a(2013.

In the presence of an external magnetic field, the radiatedd f& non-axisymmetric.
For the case of weak fieldslagendra et al1998 andFrisch(2007) showed that the non-
axisymmetry can be removed by expressing the Stokes vetterms of a 6-component
irreducible vector which is cylindrically symmetric. Theginal PALI methods were de-
veloped for the transfer equation written in terms of theseducible vectors. Thus, the
transfer problem is solved in its axisymmetric form, anddbleition is later converted to the
Stokes vector, which is actually non-axisymmetric. It isessary to perform this transfor-
mation because Stokes parameters are actually the obsprartities. The decomposition
described above was actually performed only for the casegiéaveraged PRD functions.
However, when solving the problems with angle dependent RREtions, the above men-
tioned decomposition leads to irreducible vectors whidhrstain the non-axisymmetry.
In Faurober{1987, 1988 andNagendra et al2002), the angle dependent PRD problems
in the non-magnetic and the Hanle scattering cases weredgakspectively, in the Stokes
vector basis itself, which is computationally expensivéney{f showed the differences in
the Stokes profiles between the angle averaged and angledispieases, for atmospheric
slabs of different properties.

Frisch (2009 2010 Fourier expanded the angle dependent PRD functions, beer t
azimuth angle, and succeeded in further reducing the n@yaxetry of the irreducible
intensity vector. The PALI methods developed lagarhpoorna et gl2011 Sampoorna
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2011h Nagendra & Sampoorn2011, Supriya et al.20133 were based on this technique
to solve the angle dependent transfer problems. This tqabrnis numerically very effi-
cient. A detailed review of these methods is giverSampoorng2014. Supriya et al.
(2013H performed the non-magnetic angle dependent PRD calookfior a two-term
atom, and a two-level atom with hyperfine structure inclgdime effects due to quantum
interference. They showed that for all practical purpoesangle averaged redistribution
can be considered to a good approximation in the non-magcese.

A method to solve vector transfer equation in the presenaeagnetic fields where
the polarization is generated only by the Zeeman effecigqdadhe Zeeman line trans-
fer) in NLTE media was first proposed Auer et al. (1977 based on the method of
Feautrier(1964. Other techniques involve discrete space methidagéndra & Peraigh
1985ah), a faster diagonal element lambda operator (DELO) metRek$ et al.1989
and DELO parabolic (DELOPARTrujillo Bueno, 2003h, which is an extension of the
scalar short-characteristics methodkafnasz & Auer(1988 to handle polarization. See
Landi Degl'Innocenti & Landolf(2004) for more details on the Zeeman line transfer. The
methods mentioned above treat only the incoherent (CRD)estay. Stenflo(1994) for-
mulated the polarized transfer equation including botlctiteerent scattering (in PRD) and
the Zeeman effect. To solve this transfer equation for gstroagnetic fields which includes
both the absorption matrix and the RM, given in Equatibd{), a method was devised by
Sampoorna et a(2008h based on the DELOPAR formal solver. Such a general method
is necessary to solve the vector transfer equation with Ri2 cattering matrices and PB
absorption matrix derived in Pditof the thesis.

1.9 An Overview of the Thesis

In this thesis, we propose a formalism to include the inical$y polarized blend lines in
the line transfer calculations to model any given specimaliih the second solar spectrum.
We derive the RMs for the quantum interference taking plate/ben the atomic states in
the presence of arbitrary magnetic fields (covering the élatdeman and PB regimes). We
test the correctness of our formalism by reproducing thevknbenchmarks. We explore
the possibility of using the PBE as a tool to diagnose magffielids. We divide the thesis
into two parts. The first part consists of two chapters ands#dw®nd part consists of four
chapters.

In Partl of the thesis, we deal with the formation of blend lines, thinsfer through
the medium and highlight the role played by them in shapimgpblarization profiles of
the spectral lines. For our purpose, we consider the singsde of a line formed in a two-
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level atom and its transfer through an isothermal constapeyty medium. In Chapte,
we treat a single blend line interacting with the main sg@dine and carry out a detailed
parametric analysis. We extend this formalism to inclu@eatfiects of more than one blend
line in Chapter3. We find that the influence of the blend lines cannot be neggkict the
modeling efforts when they are strong and lie very closeeatiin spectral line of interest.

In Partll, we take up the more difficult problems of line formation imatlevel atom
with hyperfine structure, and a two-term atom without andhwigperfine structure, under
the influence of a magnetic field of arbitrary strength. Inrsoases, the level-crossing,
avoided crossing and quantum interference effects coreinture. We develop the the-
oretical formulations which treat these phenomena. Weicestur attention to the single
scattering case and try to identify the various signatuféiseoPBE on the Stokes profiles.
In Chapterd, we focus our attention on thié-state interference taking place in a two-level
atom with hyperfine structure. We derive the necessary RMHisrproblem and test it
taking Na (neutral sodium) B line as an example. The RM for thestate interference
phenomenon in the case of a two-term atom without hyperfietsire is derived in Chap-
ter5. We apply this theory to the case ofil(neutral lithium) D lines at 6708 A and identify
the signatures of the magnetic field in the PB regime. In Ghrdtwe develop a theory
to treat the combined’- and J-state interference phenomena (two-term atom with hyper-
fine structure). We once again take the D lines at 6708 A as an example and study the
characteristics of the RM derived. We attempt to model thiass using the last scattering
approximation (LSA) method and present the developmerttgsiregard in Chaptef.

In Chapter8, we summarize the work carried out in this thesis and prebemnossible
future applications of this work. We add a few appendiceshatend of the thesis for
presenting those details which could not be accommodatduti affecting the flow of
discussions in the main chapters.
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2

POLARIZED BLEND LINES

This chapter is based on:
Sowmya, K., Nagendra, K. N., & Sampoorna, M. 2012, MNRAS,222®

Outline

Blend lines, as discussed in Sectib2.2 form an integral part of the theoretical analysis
and modeling of the polarized spectrum of the Sun. Theirautgon with other spectral
lines needs to be explored and understood before we canrfyraise the main spectral
lines to diagnose the Sun. Blend lines are known to causeraatexin the polarization in
the wings of the main line on which they superpose, or in tHarpation of the background
continuum, when they are assumed to be formed either undefh conditions, or when
they do not have non-zero intrinsic polarization. In thiagter, we describe the theoretical
framework to include a blend line formed under NLTE condisipin the radiative transfer
equation, and the numerical techniques to solve it. We dsstlie properties of a blend
line having an intrinsic polarization of its own and its irgetion with the main line. The
results of our analysis show that the influence of the blemel ¢éin the main spectral lines,
though small for the parameters considered, is importashin@eds to be accounted when
interpreting the polarized spectral lines in the secondrssgectrum.

2.1 Introduction

A survey of the linear polarization arising due to the coheeeattering processes, carried
out by Stenflo et al(1983 over the wavelength range 65 — 4230 A of the solar spectrum,
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revealed the nature and influence of the blend lines on thendesolar spectrum (the po-
larized solar spectrum that is produced by scattering psEs see Sectidn2.1). They
introduced an empirical relation between the intensity poldrization profiles of intrin-
sically unpolarized lines. Based on this model, they coliithim a good determination of
both the zero-point of the polarization scale and the le¥¢he continuum polarization,
and could further use the model to remove the effect of theldeging blend lines and
the continuum polarization to bring out the intrinsic paation of the spectral lines in
the second solar spectrum. The high resolution recordinigeo$econd solar spectrum by
Stenflo & Keller(1996 1997 and the atlas oGandorfer200Q 2002 20053 also explic-
itly showed the importance of blend lines and the polariziagtinuum.

The highly structured second solar spectrum is charaetby a polarized background
continuum on which both intrinsically polarizing and degi¢ing blend lines are super-
posed. While a relative polarimetric precisionl®f > can routinely be achieved in current
imaging Stokes polarimetry, a direct observational deiesition of the zero-point of the
polarization scale is not possible with comparable acguiastead, the zero-point, which
is needed to convert the observed relative polarizatioadsolute polarizations, has to be
determined by theoretical considerations based on theceegh@olarization shapes of the
depolarizing blend lines. For this reason, the blend limesoh fundamental importance
for all observational and theoretical work with the secoalhisspectrum. The blend line
model that was proposed Btenflo et al(1983 was later applied in a somewhat extended
way in Stenflo(2005 for the empirical determination of the polarization of t@ntinuous
spectrum based on the Gandorfer’s atlas.

The theoretical modeling of the line polarization in the @et solar spectrum is al-
ways associated with incorporating the depolarizing blemek, as they invariably affect
the shapes of the polarized main lines. Blend lines are lystrahted by assuming that
they are formed in LTE conditions, thereby ignoring theimawtrinsic polarization. When
blend lines are treated in LTE, polarized line and continypimatons are removed due to
larger absorption within the line, causing a depolarizatbthe main line and the contin-
uum (sed-luri & Stenflo, 1999 2001). A theoretical study b¥luri & Stenflo(1999 on the
depolarizing blend lines in the visible solar spectrum skdthat the relative intensity and
relative polarization profiles defined with respect to thetoauum, are approximately pro-
portional to each other, with a proportionality constaratt tbaries with angle, wavelength,
and line strength.

The blend lines can be treated in LTE if their height of forim@atcorresponds to
collision-dominated layers. If they are formed in low déypdayers, it may be neces-
sary to treat them as being formed under NLTE. Analysig-lyi & Stenflo (2003 also
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showed that the depolarization of the continuum by absgrbliend lines rapidly decreases
with increasing height of formation, while the depolariaatby scattering blend lines in-
creases with height of formation. These calculations weréopmed with realistic model
atmospheres, and hypothetical or real line profiles formetiése atmospheres. Although
the blend lines were treated in NLTE, their intrinsic patability factor was assumed to
be zero (namely the blend lines do not have linear poladnati their own). When they
have a non-zero polarizability factor, it may also becomeeseary to treat their intrin-
sic polarization, to represent their contribution to théapaation profile of the main line
(depolarization or repolarization).

In this chapter, we consider a blend line with intrinsic pi@ation, which occurs in the
wings of the main lines. The number density of strongly gelag lines is modest in the
visible part of the second solar spectrum. Therefore, tinglitions that we have imposed
in this chapter (namely the proximity of polarizing main afldnd lines) is not often real-
ized. However, as we go down in the UV, the second solar speajets increasingly more
crowded with strongly polarizing lines. There we can findesalgood examples of polar-
izing blend lines (see the UV atlas Glandorfey 20053. Therefore, the theoretical studies
presented in this chapter become relevant in the analyslseda$cattering polarization of
the lines in the UV region of the second solar spectrum.

Blend lines belonging to different elements ‘interact’ wthe main line of interest
through radiative transfer effects (i.e., they couple ®rtiain line through the opacity dis-
tribution and multiple scattering). The strength of thigenaction depends on their wave-
length separation. This interaction is an example of inoamesuperposition of the lines.
On the other hand, the interaction between the line compgsr@mmultiplets like Cai
H&K, Na 1 D;&D,, Cri 5204 — 5208 A multiplet etc. represents coherent superposition of
lines. These interactions between the lines arise due tquartum interference between
fine structure states or hyperfine structure states of an éoenflg 1997 Smitha et al.
2011k 2012H.

In Section2.2, we describe the formulation of the relevant transfer @qoatin Sec-
tion 2.3, we discuss the numerical methods used to solve the traegtetion. In Sec-
tion 2.4, we present the results of this line transfer with resonanceHanle scattering and
present the concluding remarks in Sectiba

2.2 Formulation of the Transfer Equation

Line polarization arises from resonance scattering psasetoth in the main and the blend
lines). In the presence of magnetic fields, this polarizatsomodified by the Hanle effect
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(see Sectiorl.7.9. It is sufficient to describe the radiation field by the Stokector
I = (I,Q,U)" because we limit our attention to linear polarization, whior the weak-
field Hanle effect, is fully decoupled from circular polation. We consider only one
polarizing blend line in the wings of the main line, formedanD, plane-parallel, static,
isothermal atmosphere with homogeneous layers. In thepcesof a vector magnetic field
(B) and the blend line polarization, the total source vectdha Stokes vector basis can
be written as

klasl()\)sl(/r? )\7 n) + kcB()\)U
kigi(A) + kypp(N) + 0sc + ke
kbasb()\)sb(/r? )‘7 n) + O—schc(Ta )\7 n)
kidi(A) + kpdp(N) + 05e + ke

S(t,\,n) =

(2.1)

wherek; andk, are the frequency-integrated main and blend line absaorgiefficients,
respectivelys,. andk, are the continuum scattering and absorption coefficientandg,
denote the absorption profiles for the main and the blend lifdaroughout this chapter,
the symbols” and ‘b’ stand for the ‘main’ line and the ‘blend’ line, respectiyet is the
total optical depth scale defined by

—[ki1(N) 4 kod(A) + 0uc + ke dz . (2.2)

The ray directionn is defined by its polar angl€®, x) with respect to the atmospheric
normal (see Figur&.10. In Equation2.1), U = (1,0, 0)”. The line source vectors for the
main and the blend lines af¢ andS,. The continuum scattering source vector is denoted
asS,.. They are given by

/ [e) [ / /.B
dn / d)\,R()\,)\,n,n, )I(T,X,n’),

Si(r. A m) = aBOWU + (1 - @) § " o)

b /
Sy(1, M\, n) = e, BOU + 1—6,,% / v Bl AA 5 B) e o),

Pb(A)

and

Se(m, A m) = f{ OZ /0 AN P(n, n)I(7, N, n')5(\ — N) (2.3)

wheree; ande, are the thermalization parameters for the main and bleed liespectively,
andB() is the Planck function. For simplicity?()\) is taken as the same for both the main
and the blend lines. The continuum is assumed to be scattherently through Rayleigh
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and Thomson scatterind?(n, n’) is the Rayleigh phase matrix (see eGhandrasekhar
1950. The RMR(\, X', n,n’; B) is factorized in the form

R\ N, n,n';B)=R(\\N) P(n,n;B), (2.4)

where B is the vector magnetic field and is the direction of incidenceR(\, \') is the
angle averaged redistribution functiontdimmer(1962. P(n,n/’; B) is the Hanle phase
matrix (seeStenflg 1978a Landi Degl’'Innocenti & Landi Degl'lnnocentiLl988. For clar-
ity, we present the equations for a simple version of the RMIn particular, we neglect
depolarizing elastic collisions and consider only pureetyjpscattering in the main line.
The blend line is assumed to be scattering according tordlR® or CRD. An exact treat-
ment of collisions according to the Approximation leveldfiIBommier(1997h can easily
be incorporated into the present formalism. Calculatiosiagisuch physically realistic
RM are presented in Secti@¥.8
For isothermal slab models, we introduce the parameters

60 = 7 ﬁb = 7 ﬁsc - 5 - (25)

Further, we work in the irreducible basis (desch 2007, where the source vector de-
pends only onr and \. In this basis, using the Hanle phase matrix elements intthe-a
spheric reference frame, it is easy to show that the totatlamtine source vectors have the
form:

(B (N) + Bodp(N) + Bse] ST, A) + BOANU

S = )+ B + Bt T (26)
and
 Beti(Ne + Bodn(Ney
Sl = 5o+ m( )+ B M
! TANYB)A(L — ) WIR(A, )
/_ / A [ Bedi(N) + Bodp(A) + Bse
)ﬂb 1 — Eb)WbRb(A )\/) + gﬂsc ()\ )\,) \IJ(M/)I(T, )\,“u,) ‘ (27)

6c¢l( ) + ﬂb¢b( ) + ﬁsc

Here,U = (1,0,0,0,0,0)%, R°()\, \) is either given byR? (), \') or CRD. Note that we
have combined the line source vectors for both the main amblénd lines, as well as the
continuum scattering source vector, in a single expresdibis allows us to apply the ALI
method of solution based on the frequency by frequency (E&FHnique to compute the
line source vector correction® (1) is the Rayleigh phase matrix in the irreducible basis.
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N'(B) andN*(B) are the Hanle phase matrices in the irreducible basis famtiia and
blend lines, respectively. Expressions for these can bedfauFrisch(2007). Hanle phase
matrices for the two lines could be different as they can fatndifferent heights in the
atmosphere, with different strength and geometry of themaigfields. In the absence of
magnetic fields\V"(B) and N*(B) matrices reduce to unity matr&. The matricedV"
andW? are diagonal, withV;’ = 1 andW;” = W}" wherek = 1,2, 3, 4, 5. Here, IV, are
called polarizability factors. They depend on the angulanmantum quantum numbers of
the upper and lower levels. For a normal Zeeman triplet ttiang.J = 0 — 1 — 0), this
factor is unity.

The 1D line transfer equation (see Sectidi8.1for the transfer equation in the Stokes
vector basis) for polarized Hanle scattering problem initregducible basis is then given

by
OZL (T, \, p
M¥

or
7 is the formal 6-component vector. Our task is to solve trasdfer equation to obtain
the Stokes profiled, /I, andU/I. For this purpose we use the scattering expansion
method (SEM) proposed Wirisch et al(2009. See Sectiod.8.2for a short summary of
the various methods used to solve the polarized radiatwester equation.

Z(r,\,p)—S8(1,A). (2.8)

2.3 Numerical Solution of the Transfer Equation

The solution of the polarized radiative transfer equatigntiire commonly used PALI
method (sedNagendra et al.1999 with the FBF technique is computationally expensive
(see e.gSampoorna et gl20083. Therefore, we opt for SEM which is a faster approxi-
mate method. It is based on Neumann series expansion of laezed component of the
source vector. We apply this method presente&nsch et al.(2009 to the problem at
hand. In this method, we first write the source vector comptsia the irreducible basis

as
SgL(T, A) = ﬁc@()\)ﬁqu—(i-)\)ﬁbqbb()\)eb B(A\)dko00qo
1
/+ i’ / Z QQ’ Z\DKK’ VIE (N ) (2.9)
where

Cb()‘) = ﬁcqbl()‘) + ﬁbqbb()‘) + ﬁsc ) (210)

36



POLARIZED BLEND LINES

and
— )R\, M)W
RgQ/ _ (]. 61;(}\() ) ) K Ngé/(B)
ﬂ (]_ — Eb)Rb()\, )\,>W]b( Kb 5305()\ - >\I>
gzﬁ()\) NQQ/(B) + W 5QQ/5Q/O . (211)

In the solar atmosphere, the degree of anisotropy is of tieraf a few percent. Thus, the
degree of linear polarization that arises due to Rayleigltegng is small. In other words,

for the calculation of Stokes one can neglect the contribution from the linear polaitrat
(Q,U) to I to a good approximation. Therefore, the dominant contidiouto Stokes/
comes from the componeff. The corresponding source vector component neglecting the
K # 0 terms is given by

0 Betr(N)e + Bydp(A Ty / Rgo 0/ \/
59 o O / / XSS I X ) - (2.12)

Here,Sg stands for approximate value 8§. It represents the solution of a NLTE unpolar-
ized radiative transfer equation. We calculate it usingAhkemethod of solution with the
FBF technique (sePaletou & Aueyr1995.

Retaining only the contribution fronf) on the RHS ofK” = 2 component of5§ 1, in
Equation 2.9), we obtain the single scattering approximation for eaohponments*gm as

+1 d,u 0
1S3 (7, )] / / d)\’ Q @20 IO N ) (2.13)
The superscriptl() stands for single scattering. The single scattered paldrradiation

field [I%](l) is calculated using a formal solver. This solution is used agarting point to
calculate the higher order scattering terms. Thus thetiteraequence at orderis

Y n +1 d/’L /
152,,(r V] ~ [82 (7, \)] / / i\
1

Z QQ\I%Q, T2 (7, X)) "D

(2.14)

The iteration is continued until the maximum relative chemg surface polarization be-
comes less than the convergence criteriatof'.
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2.4 Results

When modeling the specific lines of the second solar specthablend lines are generally
treated in LTE. In that case, the blend usually depolarizesrain line polarization. In this
section we consider a polarizing blend line that is formee thua transition in a two-level
atom with.J = 0 and1 for the lower and upper levels, respectively, both in thespnee
and absence of magnetic fields. We present the dependente wiain line polarization
on the blend line polarizability, its separation from theimkne and its strength. We
consider the effects of variation @f— the optical thickness of the isothermal slaf; the
thermalization parameter of the blend line ahd- the ratio of the background absorbing
continuum opacity to the main line opacity, on the main liodgpization. We also discuss
the role played by the Hanle effect and collisions. Finallg,present a brief discussion on
the behavior of the scattering continuum.

Standard modet In the case of an isothermal atmosphere, the emergensittemd
polarization spectra resemble closely the realistic stnafor the following model param-
eters. A self-emitting slab of optical thickneBs= 10%. The ratio of background absorbing
continuum opacity to the main line opacity = 107, the main line strengthi. = 107, the
blend line strengtB, = 5 x 10%, and the continuum scattering coefficieht = 0. The
thermalization parameters ae= 10~* ande, = 5 x 10~2. The damping parameters of the
main and blend lines a2 x 10~3 and10~4, respectively. Both the lines scatter according
to pure Ry in the absence of magnetic fields. The main and the blend #iresassumed
to be resulting from the = 0 — 1 — 0 transitions in a two-level atonid/’; of both the
lines are therefore unity. The main line is centeredo@n A and the blend line ai001 A.
The Doppler width i€.025 A for both the lines. We refer to this model as the ‘standard
model’ and the Stokes profiles for this model are represdmyetie solid lines in most of
the figures. The vertical dotted lines represent the waggtepositions of the main and
blend lines.

2.4.1 Influence of the Blend Line Polarizability Factor

Figure 2.1 shows the emergent intensity and polarization profilestially we treat the
blend line to be depolarizing(? = 0) and gradually increase the value 18’ until it
becomes completely polarizingit = 1). The variation inlW? causes a very little or no
change in the intensity. As expected, PRD triple peak® i are clearly visible in the
case of the main line. The PRD peaks of the blend line are rewt, stnce the blend line
is assumed to be weaker than the main line. If the blend lisebeo intrinsic polarization
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(see the dotted line in the inset), then the wing polarizatibthe main line is reduced at
the core position of the blend line. The extent of depolaioradepends on the blend line
strength. In the case presented in FigBre(where the blend line is not too strong), we

Effect of W’
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Figure 2.1: Effect of variation of the polarizability factof the blend line. The ‘standard
model’ parameters defined in Sectidd are used. Emergent Stokes profiles are shown for
a line of sight, = 0.05, whereu = cos 6.

still see a significant depolarization at the blend line ca¥hen the blend line has a non-
zero intrinsic polarizability, a peak at the wavelengthipos of the blend line is observed.
As expected, with an increase il the polarization of the blend line increases fro
(whenW? = 0) to nearly2% (whenW? = 1). Since the blend line is very weak, the
polarization of the main line is insensitive to the changethe polarizability factor of the
blend line outside the narrow core region of the blend line.

2.4.2 Influence of the Separation From the Main Line

The relevant results are shown in Fig@€ The main line is kept fixed a000A and

the position of the blend line is varied. The influence of thend line on the main line
remains limited to the core region and the immediate sudimgs of the blend line, as
it does not have a significant wing opacity due to its weaknd&dse ratio of the blend
line opacity to the main line opacity increases as the bleralis shifted away from the
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main line center (because the main line opacity is relatigetall in the far wings). This
change in the opacity ratio makes the blend line intensifilermore and more deep, along
with corresponding increase @/, at the wavelength positions of the blend line. As the

Effect of the blend line separation
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Figure 2.2: Effect of wavelength separation between thenraad the blend line. The
‘standard model’ parameters are used. Thgfactor of the blend line is set to unity. The
line of sight is represented hy = 0.05. The wavelength separation is shown by different
line types.

line separation increases, the two lines are weakly coupfettansfer effects, eventually
becoming completely independent. The profiles computeddntihg the blend line in
PRD or in CRD are similar because the blend line is assumee teeiak.

2.4.3 Influence of the Blend Line Strength

The strength of the blend line is varied froip= 5 x 102 to 3, = 5 x 10*. The blend line
is positioned. A away from the main line. The emergent intensity and potaian profiles
are shown in Figur.3. As 3, increases, the blend line optical thickness increasegtiresu
in relatively larger heights of the blend line PRD wing peakimtensity. In thel)/I panel,
the PRD peaks of the blend line become more and more promaseétststrength increases.
This occurs because of the enhanced scattering opacityessith of which the near wing
polarization of the blend line increases. The Stokes psofittmputed treating the blend

40



POLARIZED BLEND LINES

Effect of g,
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Figure 2.3: Effect of the blend line strength The ‘standard model’ parameters are used.
The line of sight isu = 0.05. The line types are given in the top panel.

line in CRD are not significantly different from those comgaitusing PRD as the blend
line strength continues to be smaller than the main linengtte

2.4.4 Influence of the Optical Thickness of the Slab

The effect of a polarizing blend line on the main line polatian profile with the variation
in the total optical thickness of the isothermal slab is shown in Figu2el The blend line
is much weaker than the main line and scatters accordingrfy. As T increases, the
main line changes from a self-reversed emission line to aorghion line (see the intensity
panel in Figure2.4). As the main line core is already saturated, the effect ofeiase in
T is felt only in the line wings. As for the blend line, whén = 10°, a weak line is
formed because of the smaller number of main line photoniaéme for scattering. A§”
increases, the blend line starts to show up prominentlytanisity.

The main line polarization profile shows a typical triple kesructure (due to PRD
mechanism) whefi' = 10°. However, the main line near wing PRD peak changes over
from negative maxima to positive maxima, Adncreases. This has a direct correlation
with the behavior of the Stokesprofile in the region of near wing maxima. The change
in sign is indicative of a switchover from limb brightening the limb darkening of the
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Effect of T
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Figure 2.4: Effect of polarizing blend line on the main linglgrization with variation in
the isothermal slab optical thickne®s The ‘standard model’ parameters are used. The
line of sight is represented hy= 0.05.

radiation field at heights where the monochromatic optiegdtds corresponding to the
near wing maxima are unity. Whéh = 10° the blend line shows a double-peak structure
in @/I, although it is weaker in intensity. The polarization istqustrong, as the blend
line is assumed to be polarizing with? = 1. As T increases, the double-peak structure
changes over to a single-peak structure. Away from the Hieedcenter, the) /I profiles

of the blend line smoothly merge with the main line polaii@afprofiles.

2.4.5 Influence of the Continuum Absorption Parameter

The ratio of the background continuum absorption opacityreomain line opacitys., is
varied from10~3 to 10~Y (see Figure2.5. The main line strengthl(Bc) correspondingly
changes. This variation gf. influences the Stokes profiles of both the lines. The intgnsit
profiles become narrow and shallow with the increase in thﬂé\ﬂfﬁc. This is because the
continuum progressively influences the inner parts of thmirae profile asi, increases.
The main line which was a pure absorption line witer= 103 (the dotted line) becomes
a self reversed emission line whep = 109 (dot-dashed line). The decrease in wing
intensity is due to a decrease in the continuum optical tésk {¢ = 3.7) as/3. varies
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from 102 to 10~°. The blend line intensity profile also changes from a strdv&pgption
line to a weak emission line @ changes from 02 to 10~°.

4998 4999 5000 5001 5002
Wavelength (A)

Figure 2.5: Effect of polarizing blend line on the main linglgrization with variation in
G.. The ‘standard model’ parameters are used. The line of Egapresented by = 0.05.

The main lineQ/I core amplitude is not very sensitive b unlessg, is sufficiently
large (see the dotted line). The main line near wing PRD paskyell as far wing po-
larization, decreases in magnitude @asincreases, due to the predominance of the un-
polarized continuum. Thé)/I profiles at the core of the blend line nearly coincide for
B. = 1073,10°5, and 10~ 7. However, when3, = 10, the blend line acts like a de-
polarizing line in the wing of the main line, in spite Bf¢ being unity. This is possibly
because the blend line in this case is a weak emission linesevpolarization profiles are
characteristically different from those of absorptiorekn

2.4.6 Influence of the Photon Destruction Probability

For the ‘standard model’ considered in this study, the Waan ¢, (the photon destruction
probability) does not produce significant changes in th&)('I) profiles of the main line

as can be seen from FiguBe6. With a decrease in the value gf the blend line depth
increases (going from LTE-like to NLTE-like expected belba) which saturates fot, <

1073 (figure not shown). IQ/I, the blend line core peak increases with the decrease in
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e, as the blend line becomes more and more scattering dordirfasether, fore, < 1073,

Effect of €,

0.6}

0.2}

0.0k

4998 4999 5000 5001 5002
Wavelength (A)

Figure 2.6: Effect of polarizing blend line on the main linglgrization with variation in
€,. The ‘standard model’ parameters are used. The line of Eghpresented by = 0.05.

the blend line core peak i/ saturates, an effect discussed-aurobert(1988 for the
single line case.

2.4.7 Influence of the Magnetic Fields

The vector magnetic field is parametrized throughyg, 05, x5), with v = g wr /TR,
whereg; is the upper level Landé factar,, the Larmor precession frequency, dnglthe
damping rate (inverse life time) of the excited state (sgeStenflg 1994. The magnetic
field orientation represented tfy and xz are defined with respect to the atmospheric
normal (see Figur@.10. The~p for the main line is fixed as unity. Thes of the blend
line is varied from0 to 10.

Figure2.7 shows the profiles for the two-line system in the presenceaafrratic fields.
The blend line shows similar effects on the main line bothhm presence and absence of
magnetic fields, for the model parameters used in this secfltne main and blend line
intensities are unaffected. The magnitude(df in the central peak of the blend line
reduces with an increase in the value ofits This is the typical effect of magnetic fields,
namely, the Hanle effect which is operative in the core negjiof the two lines. Stokes
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Effect of magnetic fields
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Figure 2.7: lllustration of the effect of a blend line on tlvatering polarization of the main
line in the presence of magnetic fields. The ‘standard magakelameters are used. The
magnetic field parameters ares, 05, x5) = (1, 30°,0°) for the main line andfz, x5) =
(30°,0°) with vz as free parameter for the blend line.

which was zero for Rayleigh case is generated by the Hardetedhd hence characteristic
core peaks are seen in the'/ panel. The depolarization in the core region of the blend
line due to Hanle effect causes a corresponding increaSg in

2.4.8 Influence of the Elastic Collisions

It is well known that the Hanle effect operates efficientlytle line core (within a few
Doppler widths) and disappears in the line win@sr{ont et al.1973. The functional form
of this frequency dependence of the Hanle effect is predent8tenflo(1998. To account
for this frequency dependence of the Hanle effect in nurabciemputations, we introduce
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the 1D cut-off approximation. Figur.7presented in Sectidh4.7was computed using the

Effect of elastic collisions
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Figure 2.8: The effect of depolarizing elastic collisiofite magnetic field parameters are
(v, 08, xB) = (1,30°,0°) for both the lines. Other model parameters are the same as in
the ‘standard model'.

1D cut-off approximation, which implies the use of Hanle pheasatrix up to, sayiz| ~ 3.5

and the Rayleigh phase matrix elsewherds the non-dimensional frequency expressed
in Doppler width units. In the present section, we use theafled ‘two-dimensionalqD)
frequency domains’, which refer to a distribution of the dons in the ¢, »') space. These
so called ‘domains’ are nothing but piecewise continuoutions ofx andx’ marking
the switchover from Hanle to the Rayleigh-like phase magicThe exact collisional PRD
theory of Hanle effect as well as the approximations leatbripese2D domain based PRD
formulation are developed lBommier(1997ab). It is rather straightforward to extend the
formulation presented in Secti@2to include theD frequency domains using the domain
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logic given inBommier(19971).

The strength of elastic collisions is specified throdgfyT'r, wherel'; denotes the
elastic collisional rate andly the radiative de-excitation rate. The valued'ef/I"' chosen
by us cover the situations ranging from the absence of elastiisions (pureRzy;) to the
presence of strong elastic collisions. Depolarizing s rates are given bp? = cI'p
with ¢ = 0.5 (seeStenflg 1994. The emergent Stokes profiles are shown in Figlge
They refer to the cases wherg;/I'; of both the lines are taken as equal and varied in
the same fashion. In all these cases we see that the elalisitoos do not modify the
intensities in the cores of the two lines. This is becausénine corel;; behaves more
like CRD. In the wings of the two lines, the PRD-like integgirofiles gradually approach
the CRD-like behavior (true absorption line), with an irage in the elastic collision rate
I'z/Tr. As in the single line case, th@/I profiles show a simultaneous decrease in
magnitude at all wavelength points in the line profile, withiacrease ii'g /T"r. For large
values ofl'g /T'r(= 100), the line polarization approaches zero (dash-tripleedbline)
throughout the line profiled//I profiles also show similar behavior as ¢/ profiles in
both the lines.
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Figure 2.9: Effect of continuum polarization. Figure shdws change in the shape of the
wing polarization profiles when a background polarizingtomrum radiation is present.
The ‘standard model’ is used to compute these profiles.
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2.4.9 Influence of the Continuum Polarization

Figure2.9 shows the effect of continuum polarization on the blend dednbain line po-
larization. The continuum polarization arises due to Thomscattering on electrons and
Rayleigh scattering on atoms and molecules. It is includwd through the parametgé..
The continuum polarization is generally small in magnitedeept in the UV region
of the spectrum. Also, it has a weak wavelength dependentteeimisible region of the
spectrum. It affects the intensity and polarization thifoag the line wings through the
addition of a spectrally flat polarizing opacity across time,| while the line cores remain
unaffected, because there the line opacity always donsmater the continuum opacity.

2.5 Conclusions

In this chapter, we presented our detailed studies on thetsfbf a blend line (polarizing or
depolarizing) present in the wings of a main line. Our paiticinterest is the linear polar-
ization profiles of the main line. We showed how theoretictilke total source function can
be generalized to include a blend line. The same formalignibeaxtended to deal with the
cases where there is more than one blend line. We formulbeedhtiative transfer equa-
tion in the irreducible tensorial basis. We solved this $fanequation by computing the
scalar intensity with the standard FBF iterative technjgunel the polarization by a faster,
promising method called SEM. The SEM involves expandingathlarized component of
the source vector in Neumann series, computing the singltesed solution at first, and
then using this solution for calculating the higher ordeatsring terms. We explored the
dependence of the blend line intensity and polarizatioect$fon various parameters like
polarizability factor, distance from the main line coregitdl line strength, isothermal slab
optical thickness, continuum opacity and polarizationgretic field, and elastic collision
rate.

The blend lines in the linearly polarized spectrum of the Bwariably affect the main
spectral lines. A knowledge of the way in which this intelactakes place plays an impor-
tant role in the interpretation of the second solar spectiime insight that we have gained
through our theoretical studies using isothermal slab risadea first step towards realis-
tic modeling of the second solar spectrum. Such calculatimtome necessary in a fine
analysis of the solar spectrum, and help in our studies cddkae atmosphere. The studies
carried out byAnusha et al(201Q 20119 andSmitha et al(20123 form the basis for the
inclusion of intrinsically polarized blend lines in modwdithe second solar spectrum.
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RADIATIVE TRANSFER WITH
MULTIPLE BLEND LINES

This chapter is based on:
Sowmya, K., Nagendra, K. N., & Sampoorna, M. 2014, in ASP.C8ef. 489, Solar
Polarization 7, 125

Outline

The second solar spectrum formed by coherent scatterirggpses in the Sun, is highly
structured. It is characterized by numerous blend linet) barinsically polarizing and
depolarizing, superposed on the background continuumséhkend lines play an impor-
tant role in the interpretation of the second solar spectrimthe previous chapter, we
studied the way in which a blend line affects the shape of gighboring spectral line. In
reality, a spectral line of interest gets influenced by saveopsely lying blend lines. All
these blend lines have to be treated carefully while modelie spectral line of interest.
An understanding of the influence of the blend lines on thanmation of the spectral lines
leads to a proper determination of the zero-point of thenmation scale, which otherwise
is very difficult to measure. With this motivation, in thisagter, we extend the framework
developed in the previous chapter to include many blendJibeth depolarizing and po-
larizing, formed under NLTE conditions, in the radiativarisfer equation. For the sake of
simplicity, we present the results for the particular cagdevo blend lines situated on either
side of the main spectral line.
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3.1 Introduction

In the second solar spectrum, the spectral lines superposeedackground continuum.
To correctly estimate the line polarization, a knowledgéhaf continuum polarization is
therefore essential. Blend lines serve as a tool in fixingz#re point of the polarization
scale Gtenflg 2009. It is not possible to directly determine the absolute poédion scale
with a precision that comes close to the polarimetric preaisf the relative polarization
scale. The depolarizing blend lines can be used to obtainod gstimate of the zero
point of the polarization scale. Due to this fact the deppiag blend lines are of profound
importance for all observational works on the second s@ecisum. The problem of blend
lines is of considerable interest due to its relevance tarteasurement and interpretation
of the polarized solar spectrum.

In the theoretical modeling of the line polarization in treesnd solar spectrum, we
have to incorporate the numerous blend lines in the vicioitthe line of interest, as they
are known to affect the shape of the polarized main line. lInha efforts to model the
second solar spectrum, the blend lines in the wavelengtjerahinterest are assumed to
be depolarizing and formed under LTE conditions (see, fangde Fluri & Stenflo, 1999
2007). This assumption fails when the blend lines are formedwdensity layers which
demands the use of NLTE formulations. In Chafewe showed the importance of the
blend lines having non-zero intrinsic polarization andeleped a framework to include
in the polarized line transfer equation an intrinsicallygsized blend line formed under
NLTE conditions (se&owmya et al.2012).

In this chapter, we extend the formalism developed in Chidpter a single polarized
blend line, to treat many blend lines with intrinsic polation that occur in the wings of the
main lines. They interact with the main line through radiatransfer effects. As explained
in Chapter2, the formulation presented in this chapter becomes reténdahe analysis of
the scattering polarization of the lines in the UV regionlod second solar spectrum. In
Section3.2 we develop the transfer equation in the absence of madredtls and present
its numerical solution in Sectid®.3. In Section3.4, we present the results of this so called
‘multiline transfer’ with resonance scattering and cosans in Sectior3.5.

3.2 The Transfer Equation

The main and the blend lines are considered to be formedlD, glane-parallel, static,
isothermal atmosphere. Throughout this chapter the sysmbohnd ‘b,” stand for the
‘main’ line and the ‘blend’ lines respectively, where thdsaript ‘«’ takes valued to n,
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with n being the number of blend lines considered. In the absenaeragnetic field, the
total source vector in the Stokes vector basis may be wrésen

S(T A ,u) {ﬂcﬁbl( )Sl(Tv )‘nu)

ktot ( )

—l—Zﬁba(bba ) S, (T3 A, 1) + BseSse(T, A\, ) +B()\)U} , (3.1)

whereyu = cos 6, with 6 being the colatitude, and

ktot( 6c¢l + Z ﬁbagbba + ﬁsc + 1 ) (32)
with " .
_h _ b, _ Osc
60 - kcv ﬁba kc ) 630 kc . (33)

Here,k; andk,, are the frequency integrated main and blend line absorpbefficients,
respectively.o,. andk. are the continuum scattering and absorption coefficieptand
o, denote the absorption profiles for the main and the blend lifibe total optical depth
scaler is defined bydr = —k(A\)k.dz. In Equation 8.1), U = (1,0)”. The source
vectors for the main and the blend linfsand.S,,, and the continuum scattering source
vectorS,. are given, respectively, by

+1 [ /
Si(r A ) = aBOYWU + (1— @) / d“/ ay BN i) A A ’“‘) I(r. N, 41) , (3.4)

Sp (T, A 1) =
+1 ba /
1—%/ d“/ an AN ““)I(T,X,u’), (3.5)
P, (N)
and
+1 d,u’ o]
SSC(T,A,M)Z/ 7/ AN P (g, ) I (m, N, p)6(A = X') (3.6)
—1 0

wheree; ande,,, are the thermalization parameters for the main and bleed lirespectively,

= [1,Q]", and B(\) is the Planck functionB()) is taken as the same for both the main
and the blend lines. The continuum is assumed to scatteraathe through Rayleigh
and Thomson scatterind?(u, /') is the Rayleigh phase matrix (see e@handrasekhar
1950. The RMR(\, X, u, 11') contains the physics of scattering. For simplicity, here we
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consider the factorized form of the RM, given by
R(A N, p, 1) = ROLXN) P(p, i) (3.7)

whereR(\, \'), as mentioned in Chapt@r is the angle averaged redistribution function of
Hummer(1962 which contains only the frequency correlations betweeniticident and
scattered photons. The Rayleigh phase matrix is now onlyetifon of§ and notn. This
is due to the fact that in the absence of a magnetic field, thatran field is assumed to be
azimuthally symmetric.

The angular dependency of the source vectors are elimifgtedbrking in the irre-
ducible basis (sekrisch 2007. In this basis, the total and the line source vectors hawe th

form:
k)L()\)SL(T, )\) + B()\)u

S(r,\) = - , (3.8)
and
Sulr ) = g | e+ 3 . W | B

1 +ld_:u, = / o l / l
+kL(A)/_1 2/0 dA{ﬂc(l &R\ X)W

+ 3 B (1 — e, )R (AN )W + B,.6(A — X)e} O )I(r, N, i), (3.9)
a=1

wherek,(A) = Bedi(N) + Don_, Boado.(N) + Bse. Hereld = (1,0)7, € denotes the x 2
unity matrix, andR’(\, \') is given by the type Il redistribution functiorg; (, \')) of
Hummer(1962. ¥ (') is the2 x 2 Rayleigh phase matrix in the irreducible basis. The

matricesW are given by
1
0 , (3.10)
0 Ws

where I/, are polarizability factors. They depend on the angular maorma quantum
numbers of the upper and lower levels. For a normal Zeempletiransition { = 0 —
1 — 0), this factor is unity.

The 1D polarized line transfer equation in the irreducible b&stbhen given by

OZ(7,\ 1)

" =Z(r,\,pn) —8S(1,\), (3.11)

whereZ is the irreducible intensity vector. To solve this transfguation we use SEM
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proposed byFrisch et al(2009.

3.3 Numerical Method of Solution

SEM is based on the Neumann series expansion of the polarimedonent of the source
vector. Single scattered solution is computed at first, dnsl golution is then used for
calculating the higher order scattering terms.

In the absence of a magnetic field, the source vector comp®metie irreducible basis
can be written as

Sé,{L(Ta A) = |:ﬁc¢l €+ Z Boo P (A Eba} B(A)dxo

k‘L( )
+1 d,u’

N [50(1 — ) R'(\ VYW

+Zﬁba (1 — ey, )R (N XYWPe + Byed (N — A)}

X Z GEE NI (7 N ) (3.12)

where UXE" are the elements of th& matrix with K, K’ = 0,2. For the calculation
of Stokes/, one can neglect the contribution from the linear polaizat) to a good
approximation because the linear polarization resultiognf Rayleigh scattering in the
solar atmosphere is small. Therefore, the dominant cartoib to Stokes/ comes from
the component. The corresponding source vector component, neglectiadsthZ 0
terms, is given by

0 1

50 1 +1 d,u' o] ,
Sp =~ o] |:ﬂc¢l € + Zﬂbasﬁba 614 (\) + ey /_1 7/0 d\

X |:ﬁc(1 — El)Rl()\, )\/) —+ Zﬁba(l — EbG)Rba()\, )\/) —+ 630(5()\ — )\/) :|

a=1

) IO(r N i) (3.13)

Here, SY stands for approximate value 6f. We calculate it using the ALI method of
solution with the FBF technique (s@aletou & Auer1995.
Retaining only the contribution frorﬁ? on the RHS ofK = 2 component ofS¥, or In
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Equation 8.12), we obtain the single scattering approximation as

- (1) 1 +1 d,u’ [e%S)
2 ~ / _ l !/ l
|:SO7L(T7 A):| — ]CL(A) /—1 9 /0 dA |: 60(]- EZ)R (>\7 A )W2

+ 3 B (L= e, )R N + Bud(A = N) } W () I(r N, i) - (3.14)

a=1
The superscript (1) stands for single scattering. The sisgattered polarized radiation

field fg is calculated using a formal solver. This solution is used sfarting point to

calculate the higher order scattering terms. Thus thetiteraequence at orderis

ey

_ (n) B 1 +1 du’ e
S| =[]+ [0 [ aa - aroonw

n ~ (n—1)
+ D B (1= e, ) B (A N)W5" + Bucd(A = X) } W (') [f(?(n N, uﬂ .(3.15)
a=1

We impose the convergence criterialof ® and continue the iteration until the maximum
relative change in the surface polarization becomes lessttie convergence criteria.

3.4 Results

In this section, we present the effects of polarizing blema$he main line of interest. For
illustration, we consider two blends located to the lefin@keds; ) and to the right (denoted
b,) of the main line. A detailed parametric study involving yohe polarizing blend line
is presented in Chapter

We consider a self-emitting isothermal atmospheric sladratterized by the param-
eters(T,r, B) = (10%,107°,1). The grids used in the computations have the resolution
given by(N4, N, N,) = (5,401,5). N, is the number of depth points in a decade of the
logarithmically spaced grid with the first point being0-2. N, is the total number of
points in the equally spaced wavelength grid with a separatf 5 mA. N, is the colat-
itude grid represented bymapoint Gaussian quadrature formula. The main line strength
8. = 10° and the continuum scattering coefficight = 0. » = 1/, is the ratio of contin-
uum to the main line opacity. The photon destruction prditas are given by; = 10~*
ande,, = 5 x 1072, The damping parameters for the three lines@re- 2 x 1073 and
a, = 10~%. The main line is centered 3000 A. The two blends are plac&® mA away on
either side of the main line. The Doppler widths of all theekrare2s mA unless specified
otherwise.
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The Stokes profiles obtained from this multiline transfex presented in Figurd.1
The positive() corresponds to the vibrations of the electric vector pedpriar to the
limb. In panels (a), (b), and (c), dotted lines represénf)(/ ) profiles computed without
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Figure 3.1: Emergent Stokes profiles in the presence of tendlines for a line of sight
1 = 0.047. See SectioB.4for details on the cases presented and parameters usee for th
computations of the profiles presented in panels (a), (bar(d (d).

blends, while dashed lines represent those computed vétidbl In panels (a) and (b), we
show the effects of polarizing blendd’¢* = 1) on the intrinsically unpolarized main line
(WL = 0). Blends of unequal strength are considered in panel (d)ehpanel (b), they
are of equal strength. In panel (a), the blend%9.98 A has a strength of,, = 5 x 10?
and the one ai000.02 A has a strength of,, = 5 x 10°. Blends make the main line core
in I relatively narrow and less deep (compare dotted and dagheslih Figure3.1(a)).

In @/, the main line does not produce any signal in the absenceeoflblas expected
(see dotted line). The blends show triple peak structuredihpeaks are seen here) due to
the PRD scattering mechanism. The wing peaks of the blerfigs o amplitude because
of the difference in their relative strengths. The main fpwdarization which should have
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been zero according to the expectatiol§ & 0) is now clearly non-zero (see dashed line
in Figure3.1(a)). This is an effect of the proximity of the polarizing bts. The central
and the wing PRD peaks of the two blends combine so as to giigated signal i) /1.

It appear as though thg/ I signal that we are seeing is due to the main line. One has to be
therefore careful in identifying these effects in the psscef modeling.

The parameters used to compute the Stokes profiles in panatdlsimilar to those
used in panel (a) but for blend lines of equal strengths € 5 x 10%). We see, as before, a
shallow and narrow absorption line in Stokiee’hen blends are included (see dashed line)
compared to the case when they are neglected (see dottedHinee both the blends are of
equal strength, th@ /I profile is symmetric and shows a double peak structure witipa d
at the main line cente(000 A). The increase in the percentage of polarization compared
to panel (a) is attributed to the increase in the blend lirengfths.

The case in which all the three lines are strongly polariZing = W, = 1) is pre-
sented in panel (c). The blend lines have equal strengths<( 5 x 10*). The dotted line
corresponds to the main line case without blends. In thie,dhg main line appears as a
pure absorption line in intensity and shows a strong pa#on of about % at main line
center. When the blends are included, they bring down tleedemter polarization of the
main line to nearlyl % (see dashed line). The short peaks on either side of thelmain
core correspond to blend line peaks. The signs ofij\t at the main line center and at the
blend lines centers are opposite. This is indicative of dchwier from limb brightening
to the limb darkening of the radiation field.

The effect of variation of the Doppler width is shown in pa(&). Here, the dotted
and dashed lines represent the cases where the Dopplesviddtthe blends arés mA
and40mA, respectively. The Doppler width of the main line2smA in both the cases.
The strength of the blends continues tote 10*. All the three lines have an intrinsic
polarizability factorl¥, = 1. The intensity/ profile becomes broad in the main line core,
with an increase in the the Doppler width of the blends. Magte of( /I in the main line
core decreases with an increase in the blend line width.

3.5 Conclusions

In this chapter, we have shown theoretically how the totate®vector can be generalized
to include many blend lines (s&owmya et al.20143. Blend lines are generally present
in the wings of the main spectral line. For the cases consttierthis chapter, blend lines
lie in the core of the main line. In practice, it is possiblénave such situations where the
blend lines are placed very close to the main line, therelbysig a considerable effect.
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We showed in our studies that the blends affect the main biterization significantly when
they lie closer to the main line. Including these effectgphdb achieve a better modeling
of a given spectral line. These studies are essential in aafialysis of the second solar
spectrum, and help in our understanding of the solar atneweph
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PBEINA TWO-LEVEL ATOM WITH
HYPERFINE STRUCTURE

This chapter is based on:
Sowmya, K., Nagendra, K. N., Stenflo J. O., & Sampoorna, M4,284J, 786, 150

Outline

In this chapter, we consider the quantum interference (@ett6) in a two-level atom with
hyperfine structure (Sectidh4.2 under the influence of a magnetic field. We derive the
PRD matrix (Section&.3and 1.3.]) that includes interference between the uppestates
and neglect the interference between the lowestates. We apply the theory to the Na
D, line that is produced by the transition between the lowet 1/2 and uppet/ = 3/2
states which split intd” states because of the coupling with the nuclear gpia- 3/2.

We explore the properties of the PRD matrix for the singldtedag case, in particular,
the effects of the magnetic field in the PB regime and theifulisess as a tool for the
diagnostics of solar magnetic fields.

4.1 Introduction

The atomic energy levels are split into magnetic substatekd presence of a magnetic
field. When MS is much smaller than the hyperfine structuritsg (HFS), then we are
in the Zeeman effect (see Sectibr7.]) regime. In this regime, the energy shift produced
by the magnetic field varies linearly with the field strengn the other hand, if the MS
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is comparable to or larger than the HFS then the magneticdféddts are described by the
PBE (Sectiornl.7.3 in which the MS varies nonlinearly with the magnetic fielcesigth,
leading to level-crossing interference effects. The Haflect represents a modification

of the resonance scattering polarization by the magnetat fie this chapter, we are con-
cerned with the Hanle effect involving states. This leads to several interesting phenomena
related to level-crossing interferences.

PBE in molecules gives signatures in the Stokes profilesghwbérve as a promising
tool for diagnosis of solar and stellar magnetic fields ($&eexample Berdyugina et a).
2005 2006ab; Shapiro et a].2006 2007 Asensio Ramag2006. Like PBE in molecular
lines, PBE in atomic lines could also serve as a diagnostidéo measuring the magnetic
fields. With this motivation, people have studied the infeenf PBE on emergent pro-
files of atomic lines such as the H&0830 A multiplet (Bommier, 1980, Fell multiplet,
Sill, Sil etc. (see, for exampl&asso et al200§ Stift et al, 2008 Stift & Leone, 2008
Khalack & Landstreet2012.

Landi Degl'lnnocenti(1975 formulated the transfer equation for a line with hyperfine
structure in the presence of a magnetic field, both in LTE ah@BEN He also presented
expressions for the strengths and shifts of the magnetigpoaents of the lines formed
due to transitions between ttié states. In a later paper, he provided a Fortran program
to compute these strengths and magnetic shiftsl(aadi Degl’'lnnocenti1978. We use
this computer program to calculate the eigenvalues andsipacoefficients discussed in
Sectiornd.3. Lopez Ariste et al(2002 2003 discussed the net circular polarization (NCP)
induced by the hyperfine structure and its usefulness asldaiothe diagnosis of solar
magnetic fields in the quiet photosphere and plages.

The F-state interference phenomenon plays a significant roleadifying the shapes
of the emergent Stokes profilesStenflo (1997 developed a scattering theory of quan-
tum interference phenomena which explains the effedt'attate interference on coher-
ently scattered linesLandi Degl'Innocenti & Landolfi(2004 developed a QED theory
to handleF'-state interference phenomenon in the PB regime for soaiten a multi-
level atom under the approximation of CRDBasini & Manso Sain2005 discuss the
same problem but for scattering on a multi-term atom thdughes both/-state andrF'-
state interference phenomena again under the approximaftiGRD. Using the theory of
Landi Degl'Innocenti & Landolf(2004), Belluzzi et al.(2007 andBelluzzi (2009 inves-
tigated the effects of magnetic field on lines resulting frivamsitions between hyperfine
structure states of odd isotope of Ba andiSpespectively.

A scattering theory of’-state interference based on a metalevel approach was devel
oped byLandi Degl'lnnocenti et al(1997. This theory takes into account PRD in the
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collisionless regime. I®mitha et al(2012h, we presented the PRD matrix for thestate
interference phenomenon in the absence of magnetic fiettlmdhe collisionless regime.
This PRD theory was applied Bmitha et al(20130 to illustrate the importance of PRD,
hyperfine structure, isotopic shifts, and radiative trangi modeling the observed non-
magnetic linear polarization profiles of BaD, 4554 A line. In this chapter, we derive
the PRD matrix for a two-level atom with hyperfine structunethie presence of a mag-
netic field of arbitrary strength. A straightforward extemsof the .J-state RM presented
in Smitha et al(20110 to the case of'-state interference in the PB regime is not possible
because the RM derived in that paper is valid only in the lid@geman regime. Therefore,
in this chapter, we formulate the theory Bfstate interference in the PB regime and derive
an expression for the RM including PRD in the absence ofsiolis. We assume the lower
levels to be infinitely sharp and unpolarized. For the sakdanfty, in Sectior4.2 we de-
scribe the atomic system on which the magnetic field acts. ¥éuds the atom-radiation
interaction in the presence of a magnetic field of arbitrargrgyth quantitatively in Sec-
tion 4.3. In Sectiond.4we present the characteristics of the RM derived in SeetiBand
give our concluding remarks in Sectidtb.

4.2 The Interaction Hamiltonian

The hyperfine structure of an element has dominant contoiisifrom the magnetic dipole
and electric quadrupole interactions (§€&@ney 1977 Woodgate1992. The Hamiltonian
‘Hp describing the interaction of the nuclear magnetic momaitit the magnetic field
produced at the nucleus by the valence electrons can bemvagt

Hp = AL, J | (4.1)

where A; is the magnetic dipole hyperfine structure constant and istljndetermined
from experiments. The HamiltonigH, for the electric quadrupole interaction between
the protons and electrons due to the finite extent of the auclearge distribution is given
by

B, 3

Mo =SB - ie =1 {S(Is I+ G T) = L+ 1) (T + 1)} , (4.2)

whereB; is the electric quadrupole hyperfine structure constantiisialso in most cases
determined by experimental measurememis= 0 when I, = 1/2 because the nuclear
charge distribution is spherically symmetric. Ald®);, vanishes whe/ = 0, 1/2 because
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of the spherical symmetry of the electron charge distrdouti
The total Hamiltonian for the atomic system in the preserfcanoexternal magnetic
field is written as
H =Ho + Hus + Hp , (4.3)

whereH, is the Hamiltonian describing the atomic structure excaigdiyperfine structure,
Huts IS the Hamiltonian for the hyperfine structure interactidmah, is the sum of{, and
Ho.

In the absence of an external magnetic field, the hyperfirezantion energyy is
given by

B,
81,(21, — 1)J(2J — 1)

1
By = 5AJ/C + {BK(K+1) —4J(J+ 1) (s + 1)}, (4.4)
wherelC = F(F + 1) — J(J + 1) — I;(Is + 1). Eus is the energy of thé” state measured
from the parent/ state. See Sectidh5.2for more details.
In the limit of B, < A;, the spacing between the states is given by the so called
hyperfine structure interval rule

AE = EF - EF—l — AJF . (45)

In cases wheré; is finite, an additional energy shift is produced.
The magnetic Hamiltoniat{z in Equation 4.3) has the form

Hp = po(L +28) - B = jyB(J. + 5.) , (4.6)

where i is the Bohr magnetonB is the strength of the vector magnetic fiegl#l The
z-axis of the coordinate system is assumed to be along theetiadield direction. In the
PB regime, the magnetic field produces a splitting companaiih the separation between
the F’ states (HFS). In such cases, the magnetic substates ofrafgistate can superpose
on the magnetic substates of anotlestate. This leads to a mixing @f states. Such a
mixing of states can occur even for very small values of figldrggths. Our purpose is to
derive an expression for the PRD matrix representingRkstate interference process in
the PB regime.
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4.3 PRD Matrix

As mentioned in Chaptdy, in the scattering theory approach, the physics of atonatizah
interaction is described through the RM. In this sectiondeave the general form of the
RM for the F'-state interference process and present its forms in a feviaases.

4.3.1 RMinthe PB Regime

The PB regime is reached when the Zeeman splitting of the etegpgubstateg belonging
to a givenF' state becomes comparable to the energy separation betivedn states
themselves. This is generally referred to as the incom&té. In such a situation, the
magnetic field can no longer be treated as a perturbatioretatthm-radiation interaction,
and one has to carry out a simultaneous diagonalizationeohyiperfine interaction and
magnetic Hamiltonians. In the complete PB regime, the Zeesmditting is very large
compared to the separation between khstates.

The Kramers—Heisenberg formulkramers & Heisenbergl925 gives the complex
probability amplitudes for scattering from an initial magic substate to a final substate
f through intermediate statésnd is written as

{f]r - €a|b) bl - es]a)
waw; o w2 (4.7)

Here,w = 2r¢ is the circular frequency of the scattered radiatidiu,; is the energy
difference between the excited and final levels, amslthe damping constant.
The coherency matrix (Sectidnl) for this scattering process— b — f is given by

W=> > wauw. (4.8)
a f

The incoherent summation is taken over the initial and fieakls (seeStenflg 1998.
Here,w is the Jones matrix, and its elements are given by Equadidh (
We first identify the basis vectots), |b), and| f) in the PB regime as

la) = |Jolsiafta) (4.9)

with similar forms for|b) and|f). We then expand these PB regime basis vectors in terms
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of basis vectors/ I, F i) of the Zeeman regime as

[ToLsiapta) = Y Cp (Juls: ta) [JaIFapta) | (4.10)

Fa

with similar expansions carried out for the intermediatd &nal state vectors. Thé'
coefficients appearing in the above equation are given by

Cp(JILs, p) = (JIFplJ Lip) (4.11)

which can be assumed to be real because the total Hamiltmniaal.

Using Equation4.10 in the Kramers—Heisenberg formula and noting that= J,
the dipole matrix elements can be expanded using the Wigckeft theorem (see Equa-
tions (2.96) and (2.108) dfandi Degl'lnnocenti & Landolfi2004) to obtain

Wag ~ Y Y (VT al 1) Cl (i pa)
ivty FaFyFyFyr qqlt
X Ct (JyLey 1) O, (Jo, ) (20 + 1)\/(2Fa +1)(2F; + 1)(2F, + 1)(2Fy + 1)
X( F, F; 1 )(Fb F, 1 ){Ja Jy 1}{ Jo 1}
—Hy ff —q —py Ha —q" Fy, Fy I Fyr Fy I

x €2 el O (Vi — €) - (4.12)

Here,c are the spherical vector components of the polarizatiohwaators witha and 5
referring to the scattered and incident rays, respectide|yy; —¢) is the frequency-
normalized profile function given by

bIbLFILS

1/mi
D (Vi yivn, — &) = . , 4.13
Wiy =)~ €T (@19
where we have used an abbreviation
Ez' (Jb]sw Mb) - Ez v(Ja]sa :uf)
Vigpyipiy = ViyLaisppJalsi gy = Viyda + — " ! , (4.14)

with h being the Planck constant. The energy eigenvaldemnd the expansion coeffi-
cientsC are obtained by diagonalizing the total Hamiltonian giverEguation 4.3, see
Landi Degl'Innocenti 1978

We take the bilinear product of the matrix elements;, which involves performing
coherent summation over the intermediate substateBurthermore, we perform inco-
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herent summations over initiak) and final (f) substates to form the coherency matrix
and transform it to the laboratory frame, following the stefescribed in Section 2.2
of Sampoorna et al(20073. With the help of Equation (3.84) dtenflo (1994 and
the steps given in Appendix C @ampoorna et ak20078, we express the coherency
matrix in terms of irreducible spherical tensOTéf(i,n) introduced to polarimetry by
Landi Degl'Innocenti(1984. Here,i = 0, 1,2, 3 refer to the Stokes parameters, =
0,1,2, with Q taking QK + 1) values, anch is the direction of the scattered ray. We then
transform the coherency matrix to Stokes vector basiswviatig the steps in Appendix C
of Sampoorna et a(2007h to obtain

3
I, =) Rj(x,n2 n;B)]Ij, (4.15)
j=0
wherel; andI’ are the Stokes vectors for the scattered and incident remsectivelng.
is the normalized RM for type Il scattering in the laboratérgme given by

32, + 1)
Rie.mstnB) = 20D S >

KK'Qiapalypfipppiy iy FoF, /FfFf/Fbe/Fb//Fb///

x 3 (—1)T 2K 1)K+ 1) €08 By 0 00

qaq'q"q"
[(hg,ub Zb/y,b/ )Za,ufaif,uff + i(filblub,ib/pb/ )iallaifﬂf]cglf (Ja]37 /’Lf)CE(Ja]SJ /’La)c}l‘)b((]b]SJ /’Lb)
XC??W (JbIS> Mb)clzﬂ{"/ (JaISa /Lf)cjlﬂ[‘;/ (Ja[sa /la)cllul?;, (Jb[s, ub/)O;i’;W (Jb[s, ub/)

\/(2F +1)(2F; +1)(2F, + 1)(2Fp + 1)(2F, + 1)(2Fy + 1)(2Fy + 1)(2Fym + 1)
X(Fb Fy )(FbF )(Fb F, 1)
—Hy Py —q py  py —q —tp o —q"
Fyn F, 1 1 1 1 K
X<_Mb’ ta —q" )( Q)(q’” —q" Q )
X{J Jy }{J bl}{Ja Jbl}{Ja Jbl}
F, Fr I Fy Fp I, Fy F, I, Fyw Fy I,
x(—1 QTK (i,m) j,n') (4.16)
Equation 4.16 represents the PRD matrix for hyperfine interaction in tiBerBgime.
This equation, when written in the atomic rest frame, canibextly obtained from Equa-

tion (12) of Landi Degl’'lnnocenti et al(1997 by introducing the spherical tensors and
by assuming that the lower levels are unpolarized. The PRDixrderived in this sec-

67



PRD MATRIX

tion satisfies the symmetry relations described in detédlammier(19970. In the above
expressionn’ represents the direction of the incident ray and the soddlle@nle angle

Biy iy ivus 1S divEN by

Vi pyriapa—Vippyiapia ) (4.17)
v/2m

The auxiliary functiong:!! and f! appearing in Equatiord(16 have the form

tan ﬂib/ub/ibub -

1
I . ILH I1L,H
(hibub,iwbr)iwaifﬂf - §[Ribubiauaifuf + Rib/ub/iauaifuf] ’ (4.18)
and
( 1T ) . _ E[RH’F _ RH,F ] (4 19)
ip sty S tabtal iy T o L My py e tta o p Tppplaftalspiyl :

where the magnetic redistribution functions of type Il aeéinked as

1 Tha = Thy + Tigpaisuy |
RI'I,H' ' ) ’ @ _ B a allalffLf
ibiblaflalffbf (.Ib » Lbas ) 7T sin @exp 2 sm(@/Q)
a Tba + Ty T Tiopuaipuy
4.20
<cos(@/2) ’ 2cos(0/2) - 420

and

/ 2
RILF C oy L Tha — Tpo + Tigpaispy
ioriyiapiaisiy (Tbas Thay ©) = ———=expq — :
bhivtakalsiif 7sin © 25in(0/2)
/
a Lba + Lha + 'Tiaﬂaifl"f

XQF(COS(@/2)’ 2cos(©/2) ) - 42D

Here, © is the scattering angle, the functioAsand F' are the Voigt and Faraday—Voigt
functions (see Equation (18) &mitha et al.2011h. The quantities appearing in the ex-
pressions for the type Il redistribution functions haveftiiwing definitions:

/

Tpy = Viypwiapa — V| = Viypyiapa — V
.= = =22re
AI/D ’ ba AVD
Viapaigpy Y
altatfitf AI/D ’ 47TAI/D ’

wherex,, is the emission frequency,is the damping parameter, add, is the Doppler
width.

We remark that the PRD matrix in the PB regime presented s1d@ction can also
be obtained by an alternative approach based on the t@msithplitudes $hapiro et al.
2007 that avoids the use of statistical tens@% . See AppendiA for more details.
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4.3.2 Special Cases

The PB theory and the relevant RM derived in Sectidhlgives exact PRD matrix for the
problem at hand. However, it is possible, under limitingesaso derive simple expressions
for practical applications. One example of this is the sdedaZeeman regime. In this
regime, the magnetic field is so weak that it produces a sgjitvhich is much smaller
than the energy differences between ihstates. In such a case, the magnetic Hamiltonian
can be diagonalized analytically using the perturbati@oti.

In the Zeeman regime where the basis vect®yisF 1) in which F'is a good quantum
number, the RM in Equatior(16) takes the form

3(2Jb + 1) o

11 / /. _ 2\&dp T 4) \a—d"+Q

Rz‘j(xvn?x’naB)— o7 + 1 E (—1)
KK'Qqq'q"q" Fapa Frpug Fopin Fy py

1BF,, 1y Fyu I i
X COS ﬁFblﬂb/Fbl/«be BB TbH [(thub7Fb/ub/)FaﬂaFfﬂf + 1( Fbub,Fb/ub/)FaNaFfﬂf

X (2F, + 1)(2F; + 1)(2F, + 1)(2Fy + 1)/ (2K + 1)(2K" + 1)

X{Ja Jy 1}{Ja Jy 1}{Ja Jy 1}{Ja Jy 1}
Fy, Fy I, F, F, I, Fy Fy I, Fy F, I,
F, F, 1 F, Fy 1 Fy, F, 1

g ( —My Ha —c/’) (—ub 1if —Q> ( —ty Ha —q’”>
Fy Fy 1 1 1 K 1 1 K

g ( —Hy —q’> (q —q —Q) (q’” —q" Q )

< (=197 (i, n) 15" (5, n) . (4.23)

The Hanle angl&r, ,,,,, 7, .., IS given by

wr, B, + (8F, ly — 8F, )WL
tan ﬁFb/Nb/FbNb = S : ~ - ) (424)

wherewy, is the Larmour frequency associated with the applied magfield. The Landé
factorsg appearing in the above equation are defined as

LF(F+1)+J(J+1)— I, +1)

— o, = 4.2
gr = 8J 5 F(F+1) ) (4.25)
for F' # 0. Here,g; is the L — S coupling Landé factor given by
1J(J+1)—L(L+1)+S(S+1)
=1+- . 4.26
g7 + 5 TT+1) ( )
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Equation 4.23 has a formal resemblance to Equation (25) deriveshmtha et al(20110

for the case of/-state interference. Indeed, tliestate interference RM in the Zeeman

regime can be obtained from the correspondingtate interference RM through the re-

placement of {, L, S) by (F, J, 1,) in the latter RM. When the magnetic field is set to zero
in Equation 4.23), it takes the same form as Equation (2)Swhitha et al(20121.

4.4 Redistribution in Single Scattering

To study the behavior of the RM derived in Sectib.1for arbitrary field strengths, we
consider the atomic line with the following configuratiommely, the Na D line result-
ing from the transition betweesi, = 1/2 andJ, = 3/2 (see Figured.3and1.7). The
wavelength in air corresponding to this transition\is= 5889.95095 A. The nuclear spin
I, = 3/2. TheJ — I, coupling results in the hyperfine structure statgs= 0, 1,2, 3 for
the upper statd, and F, = 1, 2 for the lower state/,. The energies of thesE states are
taken fromSteck(2003. When the degeneracy of the magnetic substates of 'thates
is lifted by the magnetic field, 68 allowed transitions takacp between them in the PB
regime. The hyperfine structure constants have the valyes= 885.81 MHz, B,,, = 0,
Asjo = 18.534 MHz, andB;/, = 2.724 MHz (seeSteck 2003. The Einstein4 coefficient
for the J, = 3/2 state is taken to b&3 x 107 s~'. The Doppler widthA), = 25 mA and
the damping parameter = 0.00227 (a value obtained after using= 6.3 x 107 s~ ! in
Equation 4.22, wherea is defined) for all the components. The system that we have con
sidered obeys the spacing rule described in Sedtiar-or the case of, = 3/2 considered
here, the spacing between tRestates is predicted to be

By — By =2Ay)9,
for the lowerJ = 1/2 state and

FEs — Ey = 3A3/5 + Bs)a
Ey — By =2A3/ — Bs)o
Ey — Ey = A3y — Bs)a

for the upper/ = 3/2 state. We study the results of a singl¥ scattering event in which
the unpolarized spectrally flat incident beam is scatteyddis atomic system in a direction
perpendicular to the incident beam. We show the resultsraateby considering the Li
D, lines in AppendixB.
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Figure 4.1: Energies of the magnetic substates oftis¢éates as a function of the magnetic
field strengthB in G.

4.4.1 Polarization Diagram

Figure4.1shows the energies of the magnetic substates of the upptates as a function
of the magnetic field strengtB. This figure is similar to the one presented in Figure 3.11
of Landi Degl'Innocenti & Landolfi(2004. It is apparent from the figure that the MS is
nonlinear. This nonlinear behavior of the energies of thgmeéic substates starts as soon
asB # 0. We also notice several level-crossings occurring at idiffefield strengths. For
the atomic system under consideration, the magnetic fiedshgths (in G) for which the
level-crossings occur are tabulated in Tadble These level-crossings show up as loops in
the polarization diagrams (plots 6f/I vs U/I) and significantly influence the scattered
Stokes profiles.

The scattering geometry used for the calculation of therpafon diagrams in the
present section is shown in Figu4e2 This geometry is identical to the one considered
in Figure 5.11 ofLandi Degl'Innocenti & Landolfi(2004. To explore the effects of the
magnetic field in the PB regime on the linear polarization present in Figurd.3 polar-
ization diagrams computed at different distances from itie denter. To construct these
diagrams, we first compute the elements of the RM for a giverevaf B and integrate the
first column of the RM over incident wavelengths.

The solid curve fors = 0° (magnetic field parallel to the scattered beam) in Figug
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FNFy 2 3 3 3
gy —2 -3 -2 —1

1 0 12.7 31.3

1 +1 15 36

2 -1 w251 ..
2 0 16.3 22 52
2 +1 14 20 44.5
2 +2 13.3 18 378

Table 4.1: Magnetic field strengths (approximate values Jrfdg which the magnetic
substates of thé’ states cross. For instance, the crossing betwges 0 of F;, = 1
anduy = —2 of Fy = 2 occurs atB ~ 12.7G. The numbers highlighted in bold-
face correspond to the field strength values for which levessings occur when one
considers the geometry given in Figude2 i.e., the level-crossings corresponding to
Ap = py — pp = £2.

AZ

9'

<Y

Figure 4.2: Geometry considered for polarization diagramss the angle between the
magnetic field vector and the scattered beam. The incideltran is characterized by
(0, x") = (90°,0°) and the scattered radiation 10§, x) = (3,90°). The magnetic field

inclinationfz = 0° and its azimuthy g = 0° (magnetic reference frame).

matches with Figure 10.30 dfandi Degl’'lnnocenti & Landolfi(2004). As discussed in
Landi Degl'Innocenti & Landolfi(2004), the loops seen in the polarization diagram arise
due to the level-crossings that occur in the PB regime (sger€4.1). For the geometry
considered, level-crossings take place only between ntiagsigbstates withAp| = 2.
The magnetic field values for which these crossings occuhigdighted in boldface in
Table4.1 The coherence between the overlapping substates insrassed these values
of field strengths. This leads to an increase in the scatfgrofarization toward its non-
magnetic value, resulting in the formation of loops.
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Figure 4.3: Polarization diagrams obtained for= 0° at different distances from the
line center as indicated in the figure. The solid verticag Irepresents thé = 90° case
corresponding to the line center wavelength. The numbergahe solid curves represent
the value of magnetic field strengthin G. The symbols on the other curves mark the same
values ofB as indicated for the solid curve for= 0°. The zero field point is the same for
the two cases represented by solid lines.

We see from the figure an overall increasé)/ andU/I as we move away from the
line center whers = 0°. Furthermore, the upper loop (nea®) seen in the solid line case
disappears for wavelengths away from the line center. Omtiner hand, the lower loop
(near20 G) becomes bigger in size. In the far wings of the line, thewpphtion diagram
becomes a point corresponding to the Rayleigh cag¥y at= 0.428 andU/I = 0.

In Figure4.3, we also present the case®f= 90° (magnetic field perpendicular to the
scattering plane). In this case, the Hanle effect in a twetlatom with hyperfine structure
shows an interesting phenomenon (see the vertical so) talled anti-level-crossing,
which has been extensively studied and characterized icetbe of CRD Bommier, 198Q
Landi Degl’Innocenti & Landolfi 2004. We see that the)/! initially decreases from
0.118 at B = 0 to nearly0.0847 for B = 8 G. With further increase i, the /I starts
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increasing and exceeds its valugat 0. Thus, we see that

Is#0 Is#0
(%) o (?) o (4.27)

B=0 B—o0
This occurs due to the basis transformation of the energgnsigtes in the complete PB
regime. The basis transformation takes place when the fieddgth increases from in-
complete PB regime to the complete PB regime. In the incor@ 8 regime, the energy
eigenstates are given byl iu), whereas in the complete PB regime they are given by
|Juslspr,). Anti-level-crossing is also known as avoided crossingwiich, due to the

strong coupling of the/ and I, to the magnetic field, the magnetic substates instead of
crossing, repel each other. Due to the geometry of the pmoldlg ] is zero.

4.4.2 Scattered Stokes Profiles

In this section, we present the Stokes profiles computedRRD in the PB regime. Sec-
tions4.4.2.1 4.4.2.2 and4.4.2.3show the Stokes profiles obtained for various magnetic
field configurations. The magnetic field orientations areulsed in the text and strengths
are indicated in the figures. The incident radiation is cttarézed by(cos ¢, x') = (0, 0°)

and the scattered ray ljyos 0, x) = (0,90°). For the computation of the Stokes profiles,
we use a wavelength grid haviag6 finely spaced points covering a bandwidt2d. The
separation between thfé states in the absence of a magnetic field is of the order of mA. |
the presence of a magnetic field, the magnetic componenthdted away from the line
center and the wavelength grid that we have considered i@ goough and covers all the
components shifted by the magnetic field.

4.4.2.1 \Vertical Field Perpendicular to the Line of Sight

In Figure 4.4, we show the Stokes profiles obtained for different stremgtha vertical
magnetic field §z = 0° andyp = 0°). We see that the intensity increases slightly with
increasing field strengthQ) /I profiles show a decrease in amplitude uB® (see short
dashed line). For stronger fields (greater tB&3), the /I amplitude increases (see also
Figure4.3). This is the signature of anti-level-crossing effect whazcurs because of the
repulsion between the magnetic substates. As discusdeat e a result of this effect, the
@ /1 line core value, when considered as a function of the fielhgth, initially decreases
and then increases beyond its non-magnetic value. Trasesvareman effect signatures
show up prominently for fields stronger th&af0 G. Because of the geometry considered,
U/I is zero.
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Figure 4.4: Stokes profiles computed for the case of a vémieggnetic field. Vertical
dotted line marks the wavelength position of theiNy line.

4.4.2.2 Horizontal Field Perpendicular to the Line of Sight

The case of a horizontal field perpendicular to the line dfis{@z = 90° andy gz = 0°) is
shown in Figuret.5. We see that the intensity decreases monotonically with sgength.
Q/1 profiles show an increase in amplitude from their Rayleightteced values with an
increase in the field strength. For fields of the ordern@i G and larger, we see three
lobed profiles inR) /I due to transverse Zeeman effect. Once adajfi, is zero due to the
geometry.

4.4.2.3 Horizontal Field Parallel to the Line of Sight

For this geometry of the magnetic fieldx( = 90° and yg = 90°), the intensity profiles
behave in the same way as in the case of a horizontal field peiqeéar to the line of
sight (see Figurd.6). The depolarization in the line core due to the Hanle effectearly
visible in the@/I panel. TheU/I signal is now generated because of Hanle rotation.
There is an increase iti// amplitude for weaker fields and then a decrease for stronger
fields, which is a typical signature of the Hanle effect. Weiaethat thelV//I profiles

are asymmetric in the incomplete PB regime (for fields up@G) while it is perfectly
anti-symmetric in the complete PB regime (for fields gre#tan200 G). This is because
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Figure 4.5: Stokes profiles computed for the case of a ha@tamagnetic field perpendic-
ular to the line of sight. Vertical dotted line marks the wawgyth position of the NaD,
line.

incomplete PBE shifts the magnetic components asymmbyredaout the line center and
causes differential strengths for these components. Becaiuthis asymmetry, the NCP,
defined as/ V d\ (where the integration is done over the full line profile)pan-zero (the
NCP would be zero if the splitting produced by the magnetid fie symmetric). For the
atomic line under consideration, NCP remains non-zero 2pads.

4.5 Conclusions

Landi Degl'Innocenti & Landolfi(2004 incorporated the PBE on the hyperfine structure
states in the polarization studies under the assumptionRi.CThey assumed that the
incident radiation is independent of frequency in an irdaélarger than the frequency shifts
and inverse lifetimes of the hyperfine structure substatesived in the transitions (flat-
spectrum approximation). In this chapter, we consideredstime problem, but for the
case of PRD. This allows us to handle the frequency depeedsftbe incident radiation
field (relaxation of flat-spectrum approximation). In thiaywthe Stokes profile shapes can
be properly calculated by including the effects of PRD. Wewiel the PRD matrix for
F-state interference process, in the collisionless regimthe presence of magnetic fields
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Figure 4.6: Stokes profiles computed for the case of a ha@tomagnetic field parallel to
the line of sight. Vertical dotted line marks the wavelengtisition of the Na D, line.

of arbitrary strengths.

Through the polarization diagrams computed at differeatteced wavelengths, we
showed the dependence on wavelength of the loops which araatbristics of the level-
crossings that occur in the PB regime. With the help of th&&tgrofiles computed for
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the case of a vertical magnetic field, we also demonstraie@uii-level-crossing effect,
discussed for the case of CRD Bpmmier(1980 andLandi Degl'Innocenti & Landolfi
(2004. Based on the formulation described in this chapter, itassgble to explore the
diagnostic potential of PBE with PRD, in a complementary wéty the Zeeman effect, to
determine the strengths and geometry of the magnetic fieldheisolar atmosphere.
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5

PBEINA TWO-TERM ATOM WITHOUT
HYPERFINE STRUCTURE

This chapter is based on:
Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo J. 04,284J, 793, 71

Outline

In Chapterd, we dealt with the problem of quantum interference betwberftstates in a
two-level atom with hyperfine structure. In this chapter,sttedy the quantum interference
between the fine structure states of an atom which modifieshiapes of the emergent
Stokes profiles in the second solar spectrum. This phenomies® been studied in great
detail both in the presence and absence of magnetic fieldsasByming a flat-spectrum
for the incident radiation, the signatures of this effeatehbeen explored for arbitrary field
strengths. Even though the theory which takes into accdwnfrequency dependence of
the incident radiation is well developed, it is restrictedte regime in which MS is much
smaller than the separation between the fine structuresstatéhis chapter, we carry out a
generalization of our scattering matrix formalism inchuglthe effects of PRD for arbitrary
magnetic fields. We test the formalism by using availablecherarks for special cases. In
particular, we apply it to the Li6708 A D, and D, line system (see Figurk2), for which
observable effects from the PB regime are expected in this Spactrum.
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5.1 Introduction

The magnetic substates belonging to thetates are degenerate in the absence of a mag-
netic field. When a magnetic field is applied, the degenermmdjteéd and the energies of
these magnetic substates are modified. With an increase frettd strength, the magnetic
substates belonging to differeststates of a given term begin to overlap, leading to a mix-
ing of the J states, and thereforéno longer remains a good quantum number. The PBE
occurs when the splitting produced by the magnetic field msmarable to the fine structure
splitting (FS). In this chapter, we address the problem dE B a two-term atom without
hyperfine structure (Sectidh4.]) taking into account the effects of PRD. In other words,
we study the/-state interference phenomenon in the presence of a madieddi of arbi-
trary strength. In particular, we derive the PRD matrix fog problem at hand and present
the results obtained for the single scattering case.

Bommier (1980 developed a density matrix formalism to handlestate interference
in the presence of a magnetic field of arbitrary strengthloiog both the Zeeman and
PB regimes). Her formalism was limited to CRD in scatteridgquantum theory of/-
state interference phenomenon for the case of frequen&reontscattering was formulated
by Stenflo(198Q 1994 1997. Landi Degl'Innocenti & Landolfi(2004), under the flat-
spectrum approximation, developed a QED theory forMstate interference phenomenon
in a multi-term atom and in the presence of magnetic fieldstofrary strengths. Assuming
CRD, Casini & Manso Sain£2005 considered the problem of PBE in a multi-term atom
with hyperfine structure involving the interferences ambogh the/ and F' states. In
the linear Zeeman regime where FS is larger than the sglitioduced by the magnetic
field, Smitha et al(2011h 20133 developed a theory for the interference between the fine
structure states taking into account the effects of PRDhil¢hapter, we generalize the
RM derived bySmitha et al (2011 in the absence of collisions to include the PBE. In
other words, we present a general form of the RM which holgs itn the Hanle, Zeeman,
and PB regimes.

PBE is of great interest to the stellar community as well assblar community be-
cause it serves as an effective tool to diagnose vector madietds. The emergent spec-
tral line polarization depends sensitively on the magnf¢iicd. PBE in molecules has
proven to be a good diagnostic tool in recent years for magfiekd measurements. Since
the FS in molecules is smaller than those for atoms, the PBBres operative for rela-
tively lower field strengths in molecules. Attempts haverbemde to develop a theoretical
framework for this problem and to identify and understarelglgnatures of this effect in
the emergent line polarization (see, for examplsensio Ramos & Trujillo Buend®006
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Berdyugina et a).2005 2006ab; Shapiro et al.2006 2007). An important step in doing
a similar study with atoms is to set up the Hamiltonian in ilgatrform and diagonalize it
to obtain the energy eigenvalues and eigenvectors, whitclbeaised later in the compu-
tations of the Stokes parameters. To this end, in our workeared with PBE in atoms,
we use the diagonalization codeladndi Degl'lnnocenti(1978. This is a computer pro-
gram written for the simultaneous diagonalization of theymetic and hyperfine structure
Hamiltonian. We modify this program suitably for the prablef our interest.

In Chapter4, we derived the PRD matrix for PBE on hyperfine structureestaif a
two-level atom (se&sowmya et al.20149. Furthermore, we studied the characteristics
of the RM in a single90° scattering event. The same framework can also be developed
for the case of PBE on fine structure states through the btfargvard replacement of the
guantum numbers which we discuss in Sectto® In Section5.2, we set up the total
Hamiltonian for PBE in a two-term atom. The Hamiltonian irstbase has non-zero, non-
diagonal elements which represent the mixing of fretates. We present the general form
of the RM in terms of the irreducible spherical tensors,\a&tiassuming the lower levels
to be unpolarized and infinitely sharp, in SectmB. We discuss the results for the single
scattering case in Sectidn4 considering the fine structure states of the lithiumdnd
D, lines as an example. In the solar case, thedz08 A doublet, which has the same fine
structure configuration as the @nd D, lines of Nai and Bail, but for which the FS is only
0.15A, serves as a good candidate for application of the theorgldped in this chapter.
Spectropolarimetric observations of thisi ldoublet have been published$tenflo(2011).
The theoretical work on the same spectral line system haspresented bielluzzi et al.
(2009 in the limit of microturbulent fields and for the non-magnetase. In Sectiod.5
we give our concluding remarks.

5.2 The Total Hamiltonian

We consider a two-term atom described by the S coupling scheme. Under the— S
coupling approximation, the fine structure Hamiltoniare(Sectionl.5.J) is given by

He = ((LgS)Ly. - S, (5.1)

where((L;S) has the dimensions of energy and is given by the “Landévatérule as
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Here,k = a (lower term) orb (upper term). The energy shift due to spin-orbit coupling ca
be obtained from Hund'’s rule (3) as

Fr,s() = 5CLS) i +1) — L+ 1) =SS+ 1] (63)

If an external magnetic field is applied, then its interattath the atomic system is de-
scribed by the Hamiltonian

If the applied magnetic field produces a splitting comparablthe FS, then the magnetic
Hamiltonian can no longer be treated as a perturbation tegheorbit HamiltonianH;,.

In this case, the energy levels have to be found by diaganglihe total Hamiltoniari{
given by

H=Hi+ Hp . (5.5)

The quantization axis:faxis) is taken to be along the applied magnetic field so teatdtal
Hamiltonian can be diagonalized in the energy eigenvedasishl;.S Jy.ju,). However, in
the PB regime, the magnetic field produces a mixing of.fretates belonging to a given
term. Thus, the eigenvectors of the total Hamiltonian artefform

| L Sanpie) =Y CF (LiS, pu) | LS Tpis) (5.6)

Jk

where the symboj,. labels the states spanned by the quantum numtiersS, u) and
Cf}i (LS, 1u1,) are the expansion coefficients. In order to determine theeBBne eigenvec-
tors|LxSj ) and the corresponding eigenvalues, we have to diagonasieead matrices
of the form

(LS T Hes + Hp| LS Ty k) - (5.7)

The above expression indicates that a givgoan be assigned to boih and.J,. as a result
of level interference. Since the spin-orbit Hamiltoniaxliiggonal inJ,, we have

(LS Jipue| Hes| LS Jipre) = Er,s(Jk) (5.8)
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whereEy, s(.Ji) is given by Equationq.3). The magnetic Hamiltonian can be written in
the energy eigenvector basis as

<LkS<]k,uk|HB‘LkSJk’,uk’> = 5!%!%/ MOB (_1)Jk+Jk/+Lk+S+Hk

P05, +

x\/(2jk+1)(2Jk/+1)S(S+1)(2S+1)( S 1){‘]’“ e L } . (5.9)

— M Mk 0 S S Lk

The diagonalization of the total Hamiltonian gives the ggegigenvalues and the energy
eigenvectors (sekeandi Degl'Innocenti 1978. For simplicity, we consider the PBE only
in the upper term and neglect the crossing of magnetic sigsdb@longing to different fine
structure states in the lower term.

5.3 RM for PBE on Fine Structure States

The step we follow in deriving the RM are the same as thosespted in Chapted for
the case of PBE in hyperfine structure states Se@mya et al.20149. The resulting
RM for J-state interference in the presence of magnetic fields ofrarp strengths can
also be obtained from the corresponding RM for fhatate interference phenomenon in
Equation 4.16 by the following quantum number replacement:

F—J J—L I,—S i—j, (5.10)

in Equation 4.16. Here,: andj label different states spanned by the quantum numbers
(J, Is, nr) and(L, S, uuy) respectively.u andy; are the projections of' and.J onto the
guantization axis. Thus, the RM fgrstate interference in the presence of a magnetic field
of arbitrary strength can be written as

3(2Ly + 1)
Rg'(x’n’x,’n,; B) = 25b+ 1) Z Z Z

KK'Q jatadfityIobody tyr Jad, /JfJf/Jbe/Jb//me

X Z q q”’+Q\/ 2K + 1)<2K, + 1) cos ﬂ]b/llbdb#be ﬁjblub/]b%

111

q9'q"q

[(hiiub ST ! )]aﬂa]fﬂf + 1( bl Jp! Ly! )Ja,ﬂa]fﬂf]O;J; (LaS7 Iu‘f)C:]]Z(LaS7 /,La)CL]IZ(LbS7 lu‘b)
X C‘j]l;// (LbS7 /’Lb)cﬂ;‘/ (LGSJ /’Lf)C‘j]a/ (LGSJ /’LQ)C§Z: (LbSJ /’Lb,>C§Zl/// (LbS7 /’Lb,)

x\/ 2+ 1)@+ 1)(2]; + 1)@y + 1)@y + 12y + 1)@y + )20 + 1)
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><< gy Jpo 1 )( Jy Jpo 1 )(an J, 1 )(me Jo 1 )
—Ho ftf —q —p pp —q —Hp fta —q" —ty o —q"
><<1 1 K )( 11 K’){La Ly 1}{La Ly 1}

¢ —¢ -Q " —q" Q Jy Jp S Jy Jp S

L, L, 1 Lo Ly 1 : »
X —1)9TE (i, n)TX (j,n) . 5.11
S R B (E R T 61

The assumptions underlying the derivation of Equatidri]) are that the lower levels
are unpolarized and infinitely sharp; see Chagtésr details on the terminology and the
derivation.

5.4 Single Scattering Polarization with PBE

As an example to study PBE in the fine structure states, wadmmbel = 0 andL = 1
terms of the two stable isotopes of neutral lithium, nam@lyand °Li. The isotope shifts
are measured with respect to the reference isotbpeIn our calculations, we use the
isotope shift values given in Table 1 Belluzzi et al.(2009. The abundances for the two
isotopes are also read from the same table. Agund et al.(2009 for more details on
the calculation of abundances.The total electron spth4s1/2. The coupling betweei
and S results inJ = 3/2 and1/2 for the L = 1 term andJ = 1/2 for the L = 0 term.
The transitions between thedestates in the absence of magnetic fields results in the D
and D lines (obeying the selection rulesS = 0 andAJ = 0,+1). The wavelengths
of these transitions are listed in TalBel In the presence of a magnetic field, the non-
degenerate magnetic substates give rise to 10 allowedttoarsgaccording to the selection
rule Ap = 0,+1) in each of the two isotopes. Among these 10 transitionse®atween
the magnetic substates of the upger 3/2 and the lowet/ = 1/2 states and the rest are
between those of the uppér= 1/2 and the lower/ = 1/2 states. These transitions can
be classified into three groups; (Ay = —1), 7 (Ap = 0), andoy, (Ap = +1). Note
that Ay = uy, — 1, Wherep, are the magnetic substates of the uppestate and.,, are
the magnetic substates of the lowkstate. The magnetiar(@ndo) components of the D
lines will be denoted with a prime in the following discusssdor the sake of clarity and
distinction. As per this classification, the, [ne gives rise to twar,, two 7, and twooy,
components while the Dine gives rise to one;, two 7/, and ones{, components in each
of the two isotopes. These are tabulated in T&2 The magnetic components of the two
isotopes will be distinguished by their mass numbers, atéid in the superscripts to the
ando components. For the computation of the Stokes profiles ptedén Figure$.2-5.4,
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we assume that an unpolarized radiation is incident on thra at an angleos ' = 1 and

is scattered in a directioros # = 0, wheref’ and# are the colatitudes. The values of the
azimuthsy andy’ for scattered and incident rays, respectively, are assumbd zero in

this single90° scattering event. The scattered ray thus obtained is dyehe first column

of the RM, which is then integrated over the incoming frequies to obtain the singly
scattered Stokes profiles. For the D line system, the Stokes parameters are obtained by
linearly combining the Stokes parameters computed fornbde&idual isotopes weighted

by their respective abundances. Such a linear superpostalowed because the lines are
optically thin. FollowingBelluzzi et al.(2009, we use a Doppler width @) mA for all of

the components.

Isotope Line A A
(A) (s
OLi D, 6708.05534 3.689 x 107
OLi D, 6707.90232 3.689 x 107
Li D, 6707.89719 3.689 x 107
Li D, 6707.74416 3.689 x 107

Table 5.1: Wavelengths and Einsteincoefficients for the D line transitions of neutral Li
isotopes.

AN/ 12 1/2 3/2 3/2 3/2 32
Il 12 112 —3/2 —1/2 1172 13/2
1/2 —1/2 ! o o T o NA

1/2 +1/2 o, 7’ NA o T o8

Table 5.2: The list of transitions between the magnetic tsuibs of the upper and the
lower J states. NA: Not Allowed. In the discussions, the magnetmponents of the two
isotopes are distinguished by their atomic masses indi¢atihe superscripts.

5.4.1 The Diagonalization Procedure

The non-zero matrix elements of the total Hamiltonian defimeEquation §.7) are of the
form given by Equations (3.61a) and (3.61b)Laindi Degl'Innocenti & Landolfi(2004).
FollowingLandi Degl’'lnnocent(1978, we write a program to diagonalize the total Hamil-
tonian in Equation{.5). The numerical diagonalization is performed using thee@Gs+
Householder method. We obtain the eigenvalues in termseoéttergy shifts from the
parentl state and the eigenvectors in terms of theoefficients. By making use of these
energy shifts, we determine the energies ofthe= 0 and L, = 1 terms. SinceJ is not
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a good quantum number in the PB regime, we cannot use either D, wavelengths.
For the atomic system we have considered, the line centeglemayths correspond to the
transitions’., = 0 — "L, = 1 and®L, = 0 — YL, = 1, which are, respectively,
6707.79517 A and6707.95333 A.

In the presence of a magnetic field, the degeneracy of the etiaggubstates is lifted
and the spectral lines split into magnetic components.gossible to obtain the magnetic
shifts and strengths of these components by making use af tteefficients and the en-
ergy eigenvalues. The normalized strengths of the tramsitivhich connect the magnetic
substates of the lower termi.{S) with those of the upper terni{S) are given by

Jala,Jolb ]a Ja
S =a > SHO (LaS, 11a)C% (LaS, pra)

Jad 1 Jydy

XC‘J]Z(Lng /’Lb)C‘J]Z/(LbS7 Mb) \/(2Ja + ]')(2‘]&' + 1)(2Jb + 1)(2(]17, + 1)

Jy  Jy 1 Jy  Jg 1 L, Ly 1 L, L, 1
x ’ ’ ’ ’ . (5.12)
—Mp o —q —t Ha —q Jo Ja S Jy Jo S

Here,a represents the percentage abundance of the isotope. Theeticaghifts are given
by

AJado  — E;, (LyS, ) — Ej, (Lo, fta)
Ha b h

+ 0B , (5.13)

where LJ; are the energy eigenvalues.is the Planck constanti £, is the isotope shift
measured with respect to the reference isofdpeNote thaté £, is zero for the reference
isotope’Li. As are given in frequency units. Figusel shows the behavior of the energy
eigenvalues of the magnetic substates belonging to uppsates as a function of the
magnetic field strengtli. As described irLandi Degl’'lnnocenti & Landolfi(2004), we
define a parameteras

_ B

==
which is the ratio of the magnetic energy to the fine strucamergy. The energy eigen-
values diverge linearly with increasing magnetic field mgth fory < 1. This regime is
called the linear Zeeman regime. For intermediate values nbnlinearity sets in and the
eigenvalues start to cross. This regime is called the indet@ B regime. For > 1, the
eigenvalues again vary linearly with and this regime is called the complete PB regime.
For the atomic system considered, we see two level-crossifige values ofy and B for
which these crossings occur are listed in Tl

(5.14)
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Figure 5.1: Level-crossings between the magnetic sulsskati®nging to théP term of

the “Li isotope in the presence of a magnetic field. A comparisdawéen the splittings
produced by including (solid lines) and neglecting (dadiest) PBE. TheéP term of the

SLi isotope gives a similar diagram except for the isotopitsh

Hy Hb g B (G)
—-3/2 +1/2 0.667 3238
-3/2 —-1/2 1.0 4855

Table 5.3: The values of and approximate values &f at level-crossings for th& term
of "Li for which the diagram shown in Figu&1is made. The same table holds good for
the2P term ofSLi.

The solid lines in Figuré.1 are computed by taking into account the non-zero non-
diagonal elements of the total Hamiltonian, while the dddhmes are computed by neglect-
ing them (see Equation (3.61b) bandi Degl’'lnnocenti & Landolfi 2004. This means
that for the dashed lines, the splitting produced by the reagfield is simply given by the
expression, Bg, 1, (Whereg,, is the Landé factor). From this diagram, we can clearly see
the differences that PBE makes to the energy eigenvaluessibstates withy, = +3/2
and—3/2 show the same behavior irrespective of whether or not PBEcisded. This is
because the contribution from the non-diagonal elememtthisey, s are zero, as these
1S can be assigned to onlly = 3/2 state. For the other magnetic substates, the splitting
becomes nonlinear because of the contribution from thediagenal elements to the total
splitting caused by the magnetic field. In particular, weenibiat the magnetic substates
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which cross in the case of Zeeman effect avoid crossing ooianin the case of PBE. For
example, the,, = +1/2 belonging toJ, = 1/2 andy, = —1/2 belonging toJ, = 3/2
cross atB ~ 7300 G when MS is computed using the Zeeman effect. On the othet,han
when PBE is included to compute MS, these substates do nss.crbhis is known as
avoided crossing (also known as anti-level-crossing).séqoently, we find that the polar-
ization in the asymptotic limit oB — oo is larger than that whel® — 0; seeBommier
(1980 andLandi Degl'lnnocenti & Landolf(2004) for more details on this effect.

5.4.2 Comparison of the Stokes Profiles

In the linear Zeeman regime, the RM presented in Sedi8meduces to Equation (25)
of Smitha et al.(20110. In order to show the effects of level-crossing, we comphes
results of our code which programs Equati®nl{l, hereafter referred to as PB-FS code)
with the results oBmitha et al(2011h hereafter referred to as the Zeeman-FS code). This
comparison is shown in Figur&2and5.3 The Stokes profiles from the two codes match
very well up to500G for whichy = 0.1029. According to the classification scheme
discussed in the previous section, we are still in the lirdseman regime for this field
strength. For field strengths greater ti3a0 G, the differences start to appear as we already
enter the nonlinear regime in which the linear Zeeman appraton (Zeeman-FS code)
breaks down. The separation between the magnetic comofvemth increases with an
increase inB) is no longer given by,Bg, . Hence, there is a difference in the line
center positions of the magnetic components computed fhanvio codes. These small
differences can clearly be seen in intensitygrofiles (see right panels of Figuse?). For
level-crossing field strength8338 G and4855 G), the Stokes profiles computed from the
Zeeman-FS and PB-FS codes differ drastically. The Zeentanede therefore does not
cover all the field strength ranges that we can expect on the Su

5.4.3 Stokes Profiles in the PB Regime

By making use of the strengths and shifts of the PB comporadsitggsned from the diago-
nalization code, we have made line splitting diagrams wttezdogarithm of the PB com-
ponent strengthsy) given in Equation$.12) are plotted against their wavelength shifts
from the line center computed using Equatidnl@®. These are shown in Figurés2
and5.3 along with the Stokes profiles for different valuesi®f The zero on the:-axis
of the line splitting diagram corresponds to the line cemtavelength of the. = 0 — 1
transition in"Li.

For B = 500G (linear regime), the magnetic components are separatedtwo
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Figure 5.2: Top panels refer to the line splitting diagratimse(strengthS vs. wavelength

shift). The other panels show the comparison of the Stokeflgs computed using the
PB-FS code (dashed lines) with the Zeeman-FS code (dotted)li The two columns
correspond to different field strengths, as indicated inlithe splitting diagrams. The
vertical dotted lines indicate the positions of théand®Li D lines. The orientation of the
magnetic field is given bydg, ¢5) = (90°,45°).

bunches of six and four each in both isotopes. The magnetipooents of théD; and

5D, lines are superposed due to their proximity in wavelengtie Jplitting is more or less
symmetric about the line centers of the&nhd D, lines, but the strengths of the components
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Figure 5.3: Same as Figute2, except for field strengths.

vary depending on the values of the magnetic quantum numhersd,, (see the left top
panel of Figures.2). The same is reflected in the intensity profiles. The thresenied
peaks in intensity correspond to the three bunches of magrehponents with the ampli-
tudes of the peaks being proportional to the relative aboeceof the two isotopes. The
@ /1 andU/1I profiles show typical signatures of the Hanle effect, eslycat the position
of theD, line, namely, a depolarization of tiig/ I with respect to the non-magnetic value
(0.428 in the line core) and a generation of thi¢/ signal. The'D, and®D, lines are non-
polarizing, and hence are unaffected by Hanle effect. “Theline, although affected by
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Hanle effect, produces insignificant signatures due tanigllsabundance. In spite of these,
we sed//I peaks at the positions corresponding,(°D,) and®D;, the origin of which

is not clear. They may be due to the interference between tireeB. Note, however, that
theselU//I signatures are about three orders of magnitude smallerttigacorresponding
Q/I signatures, and are therefore much too weak to be observetdd /I arises due to
the longitudinal component of the magnetic field.

For B = 2000 G (see panels (b) of Figute2), the components are well separated and
their strengths change because of the dependence an toefficients, which vary with
B. The components cannot be resolved in intensity as theip@opvidth is larger than
the separation between them. The decrease in intensityeisadan increased separation
between the magnetic components with increasing magnedticsirength. Ir¢)/ 1, a three-
lobed Zeeman-like pattern is sedrij ! is very small because of the geometry. THgl
profiles become broader, as expected. #heomponents show the opposite behavior to
those ofo,, again as expected. Positive peaks appear at the posifitsq components
while negative peaks occur at the positions corresponding.t

For B = 3238 G (see panels (a) of Figute3), at which the first level-crossing occurs,
we see the interference between theand o; components in the two isotopes. Their
positions overlap, as can be seen from the line splittingrdia. Interestingly, at these
positions, we see a generation @f I signal due to interference between the magnetic
substates (Hanle effect). Thé&/ I signals of the D lines overlap giving rise to a broader
profile.

For B = 4855 G (see panels (b) of Figue3), where the second level-crossing occurs,
there is interference between thheand7’ components in the two isotopes. Tti¢! signal
is generated due to the Hanle effect.

In Figure5.4, we show the Stokes profiles obtained from the PB-FS codecipitbs-
ence of a weakly polarized background continuum. The daution from the continuum
is included in the same way as 8tenflo(1998. For the sake of clarity, we recall his
Equations (58) and (61):

a

I'/rr=1- 5.15

/1, ﬁ+l+aﬁ, (5.15)
I a

= 5.16

P [+ap+[+a ( )

In the above equationd, and p are the intensity and fractional polarization given by
—Q/I1,-U/I, andV/I in the absence of the continuum. The corresponding quesititi
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Figure 5.4: Stokes profiles computed using PB-FS code bydinaf) the contribution from
the polarized continuum. The line types and the orientaticthe magnetic field are indi-
cated in the intensity panel. The vertical dotted linesespond to the line center wave-
lengths of the Li D lines; see text for more details.

in the presence of the continuum afeandp’. The limb darkening paramete?, and the
continuum strength parameter, are chosen a8.5 and0.1, respectively. Such a large
value ofa is chosen to make the Stokes profiles closely resemble tHigegrpresented for
the non-magnetic caseBelluzzi et al.(2009. The continuum polarization parametigns
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chosen to b8.01 for ¢ and 0 forU andV'. With this choice, we obtain profile shapes of the
kind that we expect in the Sun’s spectrum. In particular,ran-magnetigp, (= —Q'/I’)
profile (solid line) resembles the shape of the correspangliafile observed with ZIMPOL
(Stenflg 201]). The intensity profiles appear as broad absorption lings.fiactional lin-
ear polarizationy, approaches the continuum polarization value-(0.01) away from the
line center. They, (= —U'/I") andp{, (= V'/I') profiles retain their overall shape com-
pared to the pure line case without continuum, althouglr tiraplitudes decrease because
of the contribution from the continuum strength parametter/’. As can be seen from the
figure, the shape of the, profile for the zero field case (solid line) compares well viiité
corresponding profiles presentedBelluzzi et al.(2009. Note that since the Stokes pro-
files are computed here for a single scattering event, oelgltape and not the amplitude
is comparable to the corresponding profiles presenteBdiuzzi et al.(2009.

5.4.4 Polarization Diagrams

The geometry considered for the results presented in toisoseis shown in Figuret.2
Polarization diagrams are shown for the line center wayghenof the Li D lines in Fig-
ure5.5. For the geometry considered, only the level-crossings {f = puy — pp| = 2
are effective. Therefore, in the following, we will only séee effects due to the first level-
crossing aB238 G.

At the "D, line center & = 6707.74416 A), we see a decrease /I up to a few
hundred gauss (Hanle regime) with an initial increase ¥odid by a decrease iti// (see
Figure5.5a)). This is due to the Hanle effect which operates in the tiare. As we ap-
proach the level-crossing field strengih & 3238 G), we see an increase in the value of
@ /1 and the formation of a loop. Indeed, the level-crossing xower a narrow range
of field strengths around238 G. Within this narrow range, if the field strength is var-
ied by organizing a fine grid, we get a strong variatiorGip/ andU/1, producing the
polarization diagram shown in FiguBe5(a). This behavior is generic to all of the polar-
ization diagrams shown in FiguBe5. Further discussion on the formation of loops around
the level-crossing field strengths can be foundamdi Degl’'Innocenti & Landolf(2004).
Basically, at the level-crossing field strengths, the cehee between the overlapping mag-
netic substates increases, resulting in the scatt@yddtending toward the non-magnetic
value.U/I becomes zero for fields having a strength of a few thousanskdacause of the
geometry considered. For fields stronger th@d00 G (see Figurd.5b)), /I arises due
to Rayleigh scattering in strong magnetic fields, as disifyBommier(1997h Section
6, Figure 14). The author states that in this case, for thengéy considered (magnetic
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Figure 5.5: Polarization diagrams computed using the PBdei@ at the line center wave-
lengths of the’Li and °Li D lines. The curves are marked by the values of the magnetic
field strengthB in G.

field along the line of sight) and for®° scattering, only the components are scattered if
the atomic system considered is a normal Zeeman triglet 0 — 1 — 0). Incidentally,

we note the same behavior in the casé.ef 0 — 1 — 0 transition (which is not a normal
Zeeman triplet). It is interesting to note that theomponents are not scattered in this case
also. TheR)/I changes sign and increases for fields up(@)00 G.

Atthe®D; line center § = 6707.90232 A; see Figuré.5(c)), the /I for zero magnetic
field case is approximately0 times smaller than th&/I at theD, line center. This is
due to the relatively small abundance®af. Due to an increased separation between the
magnetic components with the field strength, t¢/ value decreases. As in the case
of "Dy, we note the formation of a loop near the level-crossing fagtdngth. When the
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field strength is increased beyon@)00 G, we again note Rayleigh scattering in the strong
magnetic fields (not shown in the figure).

The®D; line (A = 6708.05534 A; see Figures.5(d)) is intrinsically unpolarizable as it
haslV, = 0. Therefore, the polarization remains zero until the lesrelssing field strength
(B = 3238 G) is reached. A further increase in the field strength resnlthe formation
of a loop and Rayleigh scattering as already described ®fEh and °D, line center
positions.

5.5 Conclusions

Landi Degl'Innocenti & Landolfi(2004 developed the theory of Hanle effect in a two-
term atom assuming a flat-spectrum for the incident unpmddrradiation using the den-
sity matrix formalism. Though this theory is applicable ke tentire range of magnetic
fields, it does not take into account the effects of PBbnitha et al(2011h included the
effects of PRD by taking the RM approach, but their treatmeas limited to the lin-
ear Zeeman regime. In this chapter, we have generalizedpfvach ofSmitha et al.
(2011H for magnetic fields of arbitrary strengths to include there@me. However, our
treatment ignores the effects of collisions. Furthermthe,lower term is assumed to be
unpolarized. The frequency dependence of the incidenatiadi field is taken into ac-
count in our theory which is essentially a relaxation of tla¢-fpectrum approximation of
Landi Degl'Innocenti & Landolfi(2004). This enables us to properly calculate the scat-
tered Stokes profile shapes, which was otherwise not pessiti the theory presented in
Landi Degl'Innocenti & Landolf(2004).

An example where the present theory has observable effetite®un is for the lithium
6708 A doublet. Since the FS in this line system is small§ A), PBE in scattering po-
larization becomes prominent for magnetic fields which occuthe Sun (in sunspots, see
Maltby, 1977). We have therefore tested our theory by applying it to tithéum doublet
and demonstrated the correctness of the formalism by repnogl available benchmarks.
We have explored the properties of the RM for the single sdaty case, and clarified the
effects of Rayleigh scattering in strong fields when the neéigrfield is along the line of
sight. This has given us an overview of the behavior of theuprdtion effects that can
occur as a result of PRD in the PB regime.
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PBEINA TWO-TERM ATOM WITH
HYPERFINE STRUCTURE

This chapter is based on:
Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo J. (6,284.J, 814, 127

Outline

We studied the’-state interference process in Chaptemnd showed how this formalism
can be used to study thestate interference process in Chagiein this chapter, we study
the combined effects of- and F'-state interference processes. It is now established that
the interference between magnetic substates of the hypetfincture states belonging to
different fine structure states of the same term influencegttarization for some of the
diagnostically important lines of the Sun’s spectrum, like sodium and lithium doublets.
The polarization signatures of this combined interfererm#ain information on the prop-
erties of the solar magnetic fields. Motivated by this, irs ttthapter, we study the problem
of polarized scattering on a two-term atom with hyperfinactire (Sectiori.4.3 by ac-
counting for the partial redistribution in the photon fregeies arising due to the Doppler
motions of the atoms. We consider the scattering atoms totderdhe influence of a mag-
netic field of arbitrary strength and develop a formalismeolasn the Kramers—Heisenberg
approach to calculate the scattering cross section foptbisess. We explore the rich polar-
ization effects that arise from various level-crossingbhaPB regime in a single scattering
case using the lithium atomic system as a concrete exanmgdléstielevant to the Sun.
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6.1 Introduction

In this chapter, we address the problem of quantum interéerdetween the magnetic
substates of thé’ states pertaining to different states of a given term, in the presence of
magnetic fields of arbitrary strength covering the Hanlesrdan, and PB effect regimes.
We will refer to this as “combined interference” or thé' “+ J-state interference”. We
develop the necessary theory including the effects of PRIh@énabsence of collisions,
assuming the lower levels to be unpolarized and infinitegrghWe refer to this theory as
the “combined theory”.

We consider a two-term atom with hyperfine structure underassumption that the
lower term is unpolarized. In the absence of a magnetic fiblel,atomic transitions in
a two-term atom take place between the degenerate magobstates belonging to the
F states. An applied magnetic field lifts the degeneraciesmadifies the energies of
these magnetic substates. The amount of splitting (or teeggrchange) produced by the
magnetic field defines the regimes in which Zeeman and PBtsféet. Depending on the
relative magnitudes of the FS, HFS, and MS, we charactenezenagnetic field strength
into five regimes. These regimes are illustrated schenligtind=igure 6.1 In the approach
presented in this chapter, we account for the interfereet@den the magnetic substates
pertaining to the samé’ state, the magnetic substates belonging to diffeféstates of
the same/ state, and the magnetic substates belonging to diffdresthtes pertaining to
different J states. Although all three types of interference are alvpagsent, depending
on the field strength one or two of them would dominate as degin the different panels
of Figure6.1

Casini & Manso SainZ2005 formulated a theory, within the framework of the non-
relativistic quantum electrodynamics, for polarized sratg on a multi-term atom with
hyperfine structure in the presence of an arbitrary strengbnetic field under the ap-
proximation of CRD. In this chapter, we restrict our treatin® a two-term atom with
hyperfine structure and consider the limit of coherent scaty in the atomic frame with
Doppler frequency redistribution in the observer’s franifée base our formalism on the
Kramers—Heisenberg coherency matrix approac8tehnflo(1994). In our combined the-
ory, we do not account for the coherences among the statbe lower term. In a recent
paper,Stenflo (20150 indicated how they may be included by extending the colwren
matrix approach to the multi-level case.

Based on the concept of “metalevelkgndi Degl’'lnnocenti et al(1997 formulated a
theory that is able to treat coherent scattering in the atoest frame for a two-term atom
with hyperfine structure. Recentl@asini et al (2014 presented a generalized frequency
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(a) FS>MS <HFS Linear Zeeman regime for both J and F

p

J=3/2

(b) FS>MS > HFS Linear Zeeman regime for J and incomplete PB regime for F

p

J=3/2

(c) FS>MS > HFS Linear Zeeman regime for J and complete PB regime for F

’p

(d) FS < MS > HFS

p

Figure 6.1: lllustration of the magnetic field strength regs in the combined theory. For
illustration purpose, 8P term with nuclear spifi/2 is considered. The various splittings
indicated are not to scale. Panels (a)—(d) show the firstriegimes of the field strength.
When MS is much greater than FS, we have a complete PB regirbetio./ and F', which

J=3/2

J=3/2

we call the fifth regime (not illustrated in the figure).

redistribution function for the polarized two-term atomarbitrary fields, based on a new
formulation of the quantum scattering theory. Our appraaam alternative approach to

9

9

MsS

Incomplete PB regime for J and complete PB regime for F

MS
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THE ATOMIC MODEL

the same problem and is conceptually more transparenbuagthlimited to infinitely sharp
and unpolarized lower levels.

Belluzzi et al.(2009 studied the linear polarization produced due to scatgjezmthe D
lines of neutral lithium isotopes. They employed the demnsiatrix formalism presented in
Landi Degl'Innocenti & Landolf(2004), together with the approximation of CRD, to treat
the quantum interference between the fine and hyperfinetgteustates. They restricted
their study to the non-magnetic case. However, they exgltre sensitivity of the Stokes
profiles to the microturbulent magnetic fields. For our studg consider the same D
lines of lithium isotopes and present in detail the effedta deterministic magnetic field
of arbitrary strength. For this atomic line system, the PRafin both the fine and the
hyperfine structure states occurs for the magnetic fielshgths encountered on the Sun.
We restrict our treatment to the single scattering casegsmr aim here is to explore the
basic physical effects of the combined theory.

6.2 The Atomic Model

In this section, we describe the structure of the model atonsidered for our studies and
its interaction with an external magnetic field. We consa@éwno-term atom, each state of
which is designated by the quantum numbgyss, J, I,, F, andu (projection of F' onto
the quantization axis).

6.2.1 The Atomic Hamiltonian

Under theL — S coupling scheme, the atomic Hamiltonian for a two-term atwith hy-
perfine structure is given by

B,

Ha=CLS)L-S+AI;-J+ LT~ 1)J (2] — 1)

x{3(18 - J)?+ g(Is J) = L(I,+1)J(J + 1)} :

(6.1)

The first term in the above equation is a measure of the FS wiglsecond and the third
terms provide a measure of the HFS (see Sectlohdand1.5.9. The eigenvalues of the
atomic Hamiltonian represent the energies of fhetates, calculated with respect to the
energy of the corresponding term.
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6.2.2 The Magnetic and the Total Hamiltonians

An external magnetic field lifts the degeneracies of the reigrsubstates of the' states
and changes their energies by an amount given by the eigesvaf the magnetic Hamil-
tonian

Hp = juo(J+8)-B.. (6.2)

Assuming the quantization axis to be along the magnetic fieldxis of the reference
system), the matrix elements of the total Hamiltonidr, = H4 + Hp, can be written as

1
(LSJI,Fu[Hp|LSJ I,F' 1) = 61555 kg(LS){J(J +1) = LL+1)—S5(S+1)}

B,
8I,(2I, —1)J(2J — 1)
o B(—1) LS+ st S0 7 4 1) (207 4+ 1)(2F + 1)(2F + 1)

AN TE -

%AJ;H {3K(K +1) — 4J(J + DI(I, + 1)}

- p 0 F' F I V2J+1

+(—1)J‘J'\/S(S+1)(2S+1){ ; ‘g z H ,

(6.3)

wherelC = F(F+1)—I(I;+1)—J(J+1). The total Hamiltonian matrix in the combined
theory is no longer a symmetric tridiagonal matrix, unlike tase of the PB effect in fine or
hyperfine structure states. Instead, it is a full symmetatrim and we diagonalize it using
the Givens—Householder method describe®rtega(1968. We test the diagonalization
code written for the problem at hand using the principle adcspscopic stability (PSS)
presented in Appendi&.

6.2.3 Eigenvalues and Eigenvectors

The diagonalization of the total Hamiltonian gives the ggexigenvectors in terms of the
linear Zeeman effect regime basisS.J I, F i) through the expansion coefficiertt$,. as

|LSIy k) = Chp(LSI, p) [LSJIFp) . (6.4)
JF
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The symbolk labels different states corresponding to the given valfi€4.oS, I, 1) and
its dimension is given by

L+S
Ne= Y l4d+I,—max(|u|,|d—L]). (6.5)
d=|L—S|

We assume thé&' coefficients appearing in Equatiof.q) to be real because the total
Hamiltonian is real. We obtain th€ coefficients and the corresponding eigenvalues de-
noted here a%),(LSI,, 1) after diagonalizing the atomic and magnetic Hamiltoniares p
sented in Sectiong8.2.1and6.2.2

6.3 RM for the Combined Theory

The methodology followed to derive the RM for thet J-state interference in the presence

of a magnetic field is similar to that presented in Chagtar F'-state interference alone.

For the sake of clarity, we only present the important eguatinvolved in the derivation.
Using Equation.4) for the statesa), |b), and| f) in the Kramers—Heisenberg formula

given by Equation4.7), and noting that; = L, and using the Wigner—Eckart theorem

(refer to Equations (2.96) and (2.108)L.a&ndi Degl'Innocenti & Landolfi2004), we arrive

at

Wap ~ (2L, + 1) Z Z Z(_l)q—q//(_1>Jf+Ja+Jb+Jb,,

kp iy JanJbe//FaFbeFb// qq!!

k¢
XCylp (LS T, 1) Che (LS L, 1) Ot g, (LuS L, 1) C3F e, (LoS T, )

X \/(2Fa +1)(2F; + 1)(2F, + 1) (2Fy + 1)(2J, + 1)(2J5 + 1)(2Jp + 1) (2Jyr + 1)
B 1 Fy F, 1 Jp gy 1 o Jy 1

My Hf —q —Hb  Ha _q” F Ff I Fy  F, I

La Lb 1 La Lb 1 o B
X{ Jy Jr S }{ Jy Ja S }gq for o Whapnkyieg = &) - (6.9

Here, s are the spherical vector components of the polarizatiohveutors €, andeg)
with a and3 referring to the scattered and incident rays, respecti@e|{vy, ., ., — &) is
the frequency-normalized profile function defined as

1/mi

kaubkfuf - 5 - 1’7/471- 7

®7(kaﬂbkj'ﬂj' - 5) - (67)
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where we have used an abbreviation

Ekb(LbS]m ,ub) - Ekf(LaS]sa ,uf)
Vkyppkppg = VLySIskyup,LaSTsksps = VLyLo T 3 )

(6.8)

with & being the Planck constant.
Inserting Equation@.6) into the expression for the coherency matrix given in Equa-
tion (4.8), and after elaborate algebra (see for exangoe/mya et al.20149, we obtain

the normalized RMRU, for type Il scattering in the laboratory frame as

3(2Ly + 1)
R}j(x,n,2',n; B) = > >

25+ 1)(21, + 1)
( S+ * KK’Q kapak gk ppky py
X Y ()T 2K 4 1) (2K + 1) 08 Bry k@ 00

qq q//q///

[(h}flbﬂb Ky by )ka“‘akf“f + l(fkbﬂb Ky gy >ka“‘akf“f] Z Z

JaJ /Jij/Jbe/Jb//Jb/// Fa leFlebe/Fb//Fb///
kg ka ky kp
XCJfFf (LaSIS, luf)CJaFa (LaSIS, ua)CJbe(LbSIS, Mb)ch//Fb//(LbSIS7 ,ub)

k Ky Ky
XCJJJ:/Ff/ (LuSIS? Mf>C§Z/Fa/ (LﬂSIS? /’LG)CJ:/FI)/ (LbS]S? l’l’b/)CJ:///Fb/// (LbS]S? /’Lb,)
% (_1)Ja-i-Ja/+Jf+Jf/+Jb+Jb/+Jb// +‘]b”’

X\/(2Ja + 1)(2Jf + 1)(2Ja/ + 1)(2Jf/ + 1)(2Jb + 1)(2Jb/ + 1)(2J "+ 1)(2J i+ 1)

\/(2F +1)( 2Ff+1)(2F +1)(2Ff/—|—1)(2Fb+1)(2Fb/+1)(2Fb,,+1)(2Fb,,,+1)
% Fb f F/ Ff/ Fb// Fa 1
—y py —q —py  py —q —ty o —q"
% Fb/// a’ 1 1 1 K’
—ly g _q Q q/// _q// Q
X{
X{
X (=

Jf Jb 1 Jf/ Jb/ 1 Ja Jb// 1 Ja/ me 1
Fb Ff ]s Fb/ Ff/ ]s Fb// Fa ]s Fbm Fa/ ]s
L, Ly 1 L, L, 1 L, Ly 1 L, L, 1
Jb Jf S Jb/ Jf/ S Jb// Ja S me Ja/ S

1)Q’TK( n)Tg/(j, n'). (6.9)

The non-dimensional frequencie$ and x are given in Doppler width units (see Ap-
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pendixD for their definitions). The Hanle angl, ., ., iS given by

ka/ﬂb/kaﬂa - Vk’b#bk’a#a (610)

ta"n /Bkb’iu‘b’kbub - 7/27_‘_

The explicit forms of the auxiliary functions™ and 7' appearing in Equatior6(9) are
given in AppendixD. WhenI, = 0, Equation 6.9) reduces to Equatiorb(11). When
FS is neglected, Equatiof.Q) reduces to Equatior(16. When we neglect both FS and
HFS, we recover RM for, — L, — L, transition (analogous to a two-level atom case)
in the presence of a magnetic field.

6.4 Results

In this section, we present the results obtained from thebooea theory for the case of the
single scattering of an unpolarized, spectrally flat inoidadiation beam by an atom with
both non-zero electron and nuclear spins. Consideringetleeance to solar applications,
we choose the D line system6it08 A from neutralLi and “Li isotopes as an example to
test the formalism developed (the atomic level diagramsherD line transitions in these
two isotopes are given in Figurds4 and 1.5, respectively). We take the values of the
atomic parameters and isotope abundances for this systemTable 1 ofBelluzzi et al.
(2009.

6.4.1 Level-Crossings and Avoided Crossings

In Figures6.2and6.3, we show the dependence of the energies of the levels itPtherms

of theSLi and "Li isotopes on the magnetic field strength. Such figures peovis with
the information on the field strength regimes in which preesdike the Zeeman effect,
incomplete PB effect, and complete PB effect operate. Tlegyuns to choose the magnetic
field strength values for studying the effects of level-sing on the Stokes profiles. We
choose different scales for theaxes in different panels to bring out the level-crossings
which occur at different field strengths due to the diffeeentthe magnitudes of FS and
HFS. They-axes in all of the panels in both figures denote the enerdy ahihe levels
from the parent. = 1 level.

In panels (a) and (c) of Figuré.2, we plot the energies of the magnetic substates of
the F' states belonging to thé; , and®P; , levels of®Li, respectively, as a function of the
field strength. Since the nuclear spirfafis 1, we have half-integer values fét. In these
panels, we see that the magnetic substates of tstates of P; , cross at nine points while
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Figure 6.2: Energies of the HFS magnetic substates as aidanaf the magnetic field
strength for°Li (left column) and’Li (right column). Panels (a) and (b) correspond, re-
spectively, to thePs, levels ofSLi and “Li, while panels (c) and (d) correspond to the
?P, /5 levels of°Li and Li, respectively. The nuclear spins @fi and "Li are 1 and3/2,

respectively.

those of P12 do not cross. We note a similar behavior in the case oftiséates belonging
to the?P;,, and?P; , levels of 'Li (see panels (b) and (d), respectively). The magnetic
substates of thé” states ofP; ;, do not cross while those 6P, cross atl4 points. In
the weak field regime (e.g),— 60 G), we see PB effect for the states, and in the strong
field regime (for thousand gauss fields) we see PB effect &/ thtates. In Table6.1and
6.2 we list the quantum numbers of the levels which cross aloitig their corresponding
field strengths for the weak field regime. The numbers inditat boldface in these tables
correspond to those crossings which sati&fy = p, — 1, = £2. We discuss the effects
of these level-crossings on the polarization in later sesti

In panels (a) and (d) of Figu&3, we plot the energies of the magnetic substates of the
2P terms of’Li and "Li as a function of the magnetic field strength. In these pRrbke
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N\ Fy /2 3/2 3/2 3/2

Ny F1/2 =172 +1/2 +3/2
3/2 —3/2 057
52 —5/2 161 126 0.72 0.63
5/2  =3/2 .. .. 13 09
5/2  —1/2 .. .. 293 225

Table 6.1: Magnetic field strengths (approximate values jrfd® which the magnetic
substates of thé" states cross in théli isotope. For instance, the crossing between
(y = —=3/2, F, = 3/2) and(uy = 1/2, Fy = 1/2) occurs atB ~ 0.57G. The numbers
highlighted in boldface represent the field strength valieesvhich the level-crossings
corresponding ta\p = pyy — i, = £2 Occur.

Fy\ Fy 1 1 2 2 2 2
,ub\,ub/ 0 +1 —1 0 +1 +2
2 —2 22 26
3 -3 5.2 595 415 265 235 21
3 -2 w370 325 295
3 —1 . 88 725 6.0

Table 6.2: Magnetic field strengths (approximate values Jrfdg which the magnetic
substates of thé" states cross in théli isotope. For instance, the crossing between
(up = —2,F, = 2) and(uy = 0, Fy = 1) occurs atB ~ 2.2 G. The numbers highlighted
in boldface represent the field strength values for whicHekel-crossings corresponding
to Ap = puy — pup = +2 occur.

points where the levels cross are denotedlaara @ for Li and as ¢l and &2 for "Li.
When we zoom into these crossing points, we see other ititeygghenomena (see panels
(b), (c), (e), and (f)). For example, at,onve see a crossing of the bunch of lowermost three
levels going downward in Figuig 2(a) with the three levels going upward in Fig@€(c).
Although the magnetic substates of thestates appear to be degenerate in Figuga),
they are not fully degenerate, as can be seen in F§&b). Similar behavior can be seen
in Figures6.3(c), (e), and (f), and the levels correspond to the magnabstates of thé”
states shown in Figuré.2

In addition to the usual level-crossings, we see severafladarossings in Figures3,
in panels (b), (c), (e), and (f). For example, in panel (b),see one avoided crossing
marked a, two in panel (c) marked2aand &, two in panel (e) marked aand &2, and
three in panel (f) marked'®y &4, and &. As we can see from the figure, these avoided
crossings take place between the magnetic substates witlathg: values (-1/2 in panel
(b), —3/2and—1/2in panel (c)0 and—1 in panel (e), and-2, —1, and0 in panel (f)). The
levels with the samg cannot cross owing to the small interaction that takes pfhaeteeen
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Figure 6.3: Energies of the magnetic substates belongitigettP terms as a function of
the magnetic field strength f6t.i (a) and”Li (d). Blow up of the crossing regions ¢b)
and @ (c) inSLi and ¢1 (e) and & (f) in "Li. In the panels (b), (c), (e), and (f) the levels
are identified by their magnetic quantum number vajues

them. This interaction is determined by the off-diagonah®tnts of the magnetic hyperfine
interaction Hamiltonian which couple the states with ddfet./ values Brog et al, 1967,
Wieder & Eck 1967 Arimondo et al, 1977). A rapid transformation in the eigenvector
basis takes place around the region of avoided crossings i$hdescribed irBommier
(1980 and inLandi Degl'Innocenti & Landolf(2004 see als@owmya et al. 2014b).
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6.4.2 Line Splitting Diagrams

The line splitting diagram shows the displacement of themetig components from the
line center (corresponding to the wavelength of the= 0 — 1 — 0 transition in the
reference isotopéLi) and the strengths of these components for a given fiekehgth.

In Figure 6.4, we show the line splitting diagrams for differeBt values. We take into
account the isotope shift and the solar abundances of thesttapes while computing the
strengths and magnetic shifts. As mentioned earlier, tinepoments arising foB = 0
correspond to the transitions between the unpertufsthtes. We see that the hyperfine
structure components of the D lines are well separated when 0 due to the relatively
large FS. When the magnetic field is applied, the degenerfaityeanagnetic substates is
lifted. As a result,70 allowed transitions take place fhi and 106 in “Li. This explains
why the diagrams become crowded as the field strength irese¥i¢e see that the magnetic
displacements increase with an increas&ias expected. In the diagrams shown, we note
that the MS is nonlinear and is a characteristic of the indete B regime.

6.4.3 Single Scattered Stokes Profiles

In this section, we present the Stokes profiles for varidwalues computed using the com-
bined theory for the single scattering case. We choose altte system (see FiguBeb)
in which the magnetic field lies in the horizontalf plane making anglegz = 90° and
x5 = 45°. We make this choice followin§tenflo(1998 in order to bring out clearly the
effects of the magnetic field. We assume the unpolarizedémtiray to be along the ver-
tical (z-axis) and the scattered ray (or the line of sight) to lie ia liorizontal plane along
thez-axis. Thus, the angles for the incident and the scatteseslracome’ = 1, ' = 0°,
1 =0, andy = 0°. We use the fact that the lithium lines are optically thin @mly single
scattering is considered here to add the Stokes profiles wimagor the individual iso-
topes after weighting them by their respective abundarindsgurest.6-6.9, we compare
the single scattered Stokes profiles for three cases: tles cdgpureF'-state interference
(dotted lines) represented by a two-level atom with hyperéitnucture, purg-state inter-
ference (dashed lines) represented by a two-term atom mtithyperfine structure, and the
combined theory (solid lines) represented by a two-terrmatdth hyperfine structure. We
choose a Doppler width @0 mA for all of the components of the multiplet when comput-
ing the Stokes profiles. For this particular value of the Depgidth, the theoretical)/ [
profile closely resembles the observed! profile (seeBelluzzi et al, 2009. We use the
EinsteinA coefficient 0f3.689 x 107 s~! for all of the components.

In Figure6.6, we show the Stokes profiles computed in the absence of madjieéds
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Figure 6.4: Line splitting diagrams for the two lithium ispes for the field strengths
indicated. The solid lines represent the magnetic compsménLi while the dashed lines
represent those dLi. Vertical dotted lines mark the positions of the D linesthé two
isotopes.AX\ = 0 corresponds to the line center wavelengtiLof 0 — 1 — 0 transition
in "Li.

for 100 % Li in panel (a), for100 % °Li in panel (b), and for both the isotopes combined
according to their percentage abundance in panel (c). Ielpdn) and (b), we see two
peaks corresponding to the D lines of the two isotopes imsitg The intensities of the D
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Figure 6.5: Scattering geometry considered for the repoéisented in Sectiof.4.3

lines in both the isotopes are of similar magnitude since avelassumeth0 % abundance
for the two isotopes. We also note that the wavelength positof the D lines ofLi are
different from those of Li owing to the isotope shift. In panel (c), we see two distinc
peaks in intensity. The first peak to the left is due to theD, line. The second peak
falls at the line center positions éfi D, and®Li D,. However, the dominant contribution
comes from théLi D, due to its relatively larger abundance. A small bump to thétri
of the second peak is due to thei D, line. A small difference in the intensity at the
Li D, peak between the dashed lines and the other two cases isrspandls (a) and
(c). Itis clear from the figure that this discrepancy is calisg’Li. Comparing the solid,
dotted, and dashed profiles, we come to the conclusion teatBEs is at the origin of
this discrepancy. This is because the solid and dotted toagouted by including HFS
perfectly match and only the dashed lines computed withdt® iiffer from the other
two cases. The discrepancy is very small in the caséd.obecause of smaller HFS in
SLi compared to that inLi. The reason for this discrepancy is due to the asymmetric
splitting of the hyperfine structure components about thergy state and also due to finite
widths of the components. This difference decreases (gralphindistinguishable) when
a magnetic field is applied (for example, whBn= 5 G as seen in Figuré.7) because of
the superposition of a large number of magnetic componéntsontrast, this difference
is about an order of magnitude larger in the non-magnetie.cAs we increase the field
strength, the intensity profiles broaden due to an incresegaration between the magnetic
components.

WhenB = 0, the@/I profiles exhibit a multi-step behavior around the line cepte

110



PBEIN A TWO-TERM ATOM WITH HYPERFINE STRUCTURE

(a) 100% “Li (b) 100% °Li
0.4 "D, D, 0.4 D, °D,
0.3F B=0G 0.3F 8=0 G
— J+F-state — J+F-state
—~ 02 I e F-state 4 . pg2F il e F-state
- -~ J-state - - - J-state
0.1F 0.1F
0.0 0.0
1 osf ]
N L IBN L ]
S | 1S | -
] 0.4_—7 1 0.4_— ]
0.0k 0.0
6707.2 6707.6 6708.0 6708.4 6708.8 6707.2 6707.6 6708.0 6708.4 6708.8
Wavelength (A) Wavelength (A)
(c) 92.41% "Li+7.59% °Li
04 D, DD, °D,
03F r\ H : B=0 G =
— J+F-state
- 02 b A e F-state :
- - - J-state
0.1F
0.0

o8k

2

04fF

0.0L

6707.2 6707.6 6708.0 6708.4 6708.8
Wavelength (A)

Figure 6.6: Single scattered Stokes profiles for the lithDrline system in the absence
of a magnetic field: (a)00 % “Li, (b) 100 % °Li, and (c)"Li and °Li combined according
to their percentage abundance. The line types are indidatéeb intensity panels. The
geometry considered for scatteringus= 0, ¢/ = 1, x = 0°, andy’ = 0°. The vertical
dotted lines represent the line center wavelength positadrthe’Li D, “Li D4, °Li Do,
and®Li D, lines in the absence of magnetic fields.

sitions of the O and D, lines of both isotopes. We see the effects of quantum it
clearly inQ/I. Inthe’Li D, core, significant depolarization is caused by the HFS com-
pared to the case where this splitting is neglected (comgp@eolid and dashed lines in
panels (a) and (c)). A similar depolarization is also exiitbby the core of théLi D, line
(see panels (b) and (c)). However, in the scale adoptedotitkasnd dashed lines appear to
merge around the core 6ifi D, in panels (c), as th€@/I values of°Li D, are an order of
magnitude smaller than thosedfi D, because of their relative abundances. Thdiies
remain upolarized. As expected, the solid lines merge vghdotted lines in the cores of
lithium lines while they coincide with the dashed lines ie things. When a magnetic field
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Figure 6.7: Same as Figufe6 but in the presence of a magnetic field. The left and the
right panels correspond to different field strength valdédee field orientationz = 90°,
xB = 45°) is the same in both the panels. Refer to Seddidn3for the scattering geometry.

is applied, we see a depolarizatior(iri/ and a generation @f /I signal in the cores of the
lithium lines due to the Hanle effect. We note that the corabitheory results match more
closely the pure/-state interference results for fields of the ordet @ G. This behavior
continues until the level-crossing field strengthof= 3238 G for fine structure is reached.
When the field strength is of the order of a few thousand gaussare by far in the
complete PB regime for thé' states. In this regime, thé and/, couple strongly to the
magnetic field and the interaction betweérand I, becomes negligible. Therefore, one
would expect the magnetic substates of thetates to be fully degenerate, and therefore
the solid and dashed lines should match closely for fieldisfdrder. However, for the
level-crossing field strengths, we see considerable diffegs between the solid and the
dashed lines, especially 17/ 1. In order to understand this, we compare the Stokes profiles
for “Li and °Li separately in panel (a) and (b) of Figuée8 with the combined profiles
in panel (c). We do this to check whether a particular isoispgving rise to this differ-
ence. We note that this difference between the solid andeddsies prevails in all three
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panels (i.e., in both isotopes). We attribute this diffeem the shape and amplitude be-
tween the solid and the dashed lines to HFS, the level-ergssand avoided crossings
between the magnetic substates of thetates. When we look at Figu6e3, we find that

the magnetic substates of tlhestates have finite energy differences and are not fully de-
generate in the complete PB regime for thestates. We see several crossings as well as
a few avoided crossings. These level-crossings and avaidesings between the non-
degenerate magnetic substates of ihstates lead to a modification of the coherence and
significant Hanle rotation, thereby affecting the shape amglitude of thel//I profiles.
The HFS effects show more prominently in the polarizaticegdams which will be dis-
cussed in Sectiof.4.5 For the geometry under consideration, this effect is §icamtly
seen forB = 3238 G. For a level-crossing field strength4#55 G, the Stokes profiles show
somewhat different behavior.

We also note that for fields of the order of a few thousand galiferences between
the solid and dashed lines remain only in the far left wing (Bgures.8and6.9). From
Figure6.8it is clear that this difference in the far blue wings is onlyedto the’Li iso-
tope (compare panels (a)—(c)). This can be understood wételp of the line splitting
diagrams for level-crossing fields in FiguBed in comparison with the corresponding di-
agrams in Figuré.3 (a direct comparison of the displacements can be made a®tbe z
points in the two figures are the same). In a two-term atomowittnyperfine structure,
when a magnetic field is applied, the various fine structurgmafic components are either
blue or redshifted from the line center depending on theergies. When HFS is included,
the hyperfine structure magnetic components are distdar@und the positions of the fine
structure magnetic components in the absence of HFS. Wehiatdie positions of the hy-
perfine structure magnetic components in Figiidecorrespond well with the wavelength
positions of the fine structure magnetic components in Ei§u8, except for the bunch of
magnetic components to the extreme left represented by kods. The magnetic field
leads to a large blue shift of this bunch, which consists b, (Ay = pp — pa = +1),
two 7 (A = 0) and oner, (A = —1) components. These components (otherwise not
present at this wavelength position when HFS is neglected)rgse to the systematic dif-
ference inQ/I,U/I, andV/I in the far blue wing of the Bline of "Li. However, they do
not affect the intensity.

The V/I profiles remain somewhat indistinguishable between theetbases consid-
ered, except for very weak fields likeG as in Figure6.7. F-state interference sig-
nificantly changes thé’/I profile at the’Li D, wavelength position. This is a signa-
ture of the alignment-to-orientation (A-O) conversion mm&cism (for more details, see
Landi Degl'Innocenti1982 Landi Degl'Innocenti & Landolfi2004) acting in the incom-
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Figure 6.8: Stokes profiles obtained fBr= 3238 G: (a) 100 % “Li, (b) 100 % SLi, and (c)
Li and °Li combined according to their percentage abundance. Refgection6.4.3for
the scattering geometry. Whéh= 3238 G, theU /I values are so small for the dotted line
case that they become indistinguishable from the zero line.
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Figure 6.9: Stokes profiles obtained fBr = 4855G and B = 5000 G. Refer to Sec-
tion 6.4.3for the scattering geometry.

plete PB regime for thé’ states. As described lrandi Degl'lnnocenti & Landolf(2004),

this occurs because of the double summation @&veand K’ appearing in Equatior6(9)

and because the spherical ten§@‘(3,n) is non-zero only whenk’ = 1 (see Equa-
tion (E.6) of AppendixE). This means that circular polarization can be generated by
resonance scattering even if the atom is not exposed tolaitgpolarized light. The
alignment present in the radiation field is converted to thentation in the upper term.
This orientation in the uppéefr states gives rise to circularly polarized light. As disagss
earlier, small differences appear in the far blue wings feldé equal to or larger than the
level-crossing field strengths.

Finally, we remark that the discussion presented aboveeroimg the comparison of
the single scattered Stokes profiles between the three geseely, the pure/-state, pure
F-state, and + J-state interference) also remains valid for other scaitegeometries.

In Figure6.10 we show the Stokes profiles obtained after including a wepklar-
ized background continuum. The continuum is added in theesaray as described in
Section5.4.3 The parameters used for the continuum are same as the weesigiSec-
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Figure 6.10: Stokes profiles obtained by including the dbuation from the continuum
for different values ofB. Refer to Sectiorb.4.3for the scattering geometry. The vertical
dotted lines represent the positions of the D lines.

tion 5.4.3 We compare Figuré.10with Figure5.4 and find that the HFS does not cause
any change in the intensities. Whéh= 0 the HFS causes a depolarization in the core
of /1 without affecting the shape of the profile. For other fieleesgths, there is only
a slight difference in the amplitude of the profiles as coragdo the case without HFS,
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although their shapes remain the same. IThé profiles differ both in amplitude and shape
for B = 3238 G. This difference is due to HFS. When HFS is neglected, tisevaly one
level-crossing at this field strength. On the other hand,nWHES is included, there are
several level-crossings around this field strength (seerég$.3(b) and (e)).V/I profiles
have the same shapes and amplitudes as compared to the tama Wyperfine structure.

6.4.4 NCP in the Combined Theory

In this section, we present the plots NCP as a functiai.dbince the PBE causes nonlinear
splitting of the magnetic components with respect to the Ganter, the Stokds profiles
become asymmetric. As a result of this asymmetry, the iatemr of the Stoke¥” over the
full line profile yields a non-zero value. In the linear Zeenand complete PB regimes,
the V' profiles show perfect antisymmetry which causes the NCP torbe zero. The
A-O conversion mechanism discussed in Secagh3further enhances the asymmetry in
StokesV profiles already caused by nonlinear MS, and thereby carté#to the NCP. This
mechanism is particularly efficient when the level-crogsisatisfyAu = py — pp = 1.

0.008F i i i i i -
0.006 |
S 0004:
Z ’ [
0.002F

0.000

0 5 10 15 20 25 30
5 (G)

0.04F b)

0.03
0.02E

NCP

0.01

0.00E . . : : E
0 2x10*  4x10* 6x10* 8x10* 1x10°
B (G)

Figure 6.11: NCP as a function of the magnetic field strerigjtiThe scattering geometry
is characterized by’ = 0,y = 0%, =1, x = 90", 05 = 0°, andyz = 0°.

In Figure6.11, we show the behavior of NCP in different field strength ranfpe the
scattering geometryy’ =0, X' = 0°, u =1, x = 90°, 05 = 0°, andy g = 0°. This choice
of the field geometry is made in order to obtain larger valwesStokesl”. In panel (a),
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we show the weak field behavior of NCP. We attribute the nan-kE&CP in this regime to
the PBE in thef’ states and the A-O conversion mechanism taking place imtimriplete
PB regime for thel” states. We find that the NCP increases with increasing fisttgth,
peaking around the level-crossing field strength (see $dhlkand6.2), and decreases
with further increase irB. When the fields are as strong as a few thousand gauss we see a
second peak in NCP whose magnitude is larger than the firktgyean order. Thisis due to
the PBE in the/ states and the A-O conversion mechanism occurring in thenpiete PB
regime for the/J states. With a further increase in the field strength, werghtecomplete
PB regime for the/ states where the NCP becomes zero.

SeelLandi Degl'lnnocenti & Landolfi(2004) for detailed discussions on the various
mechanisms producing NCP.

6.4.5 Polarization Diagrams

In Figure6.12 we present the polarization diagrams for a giveéanddz and for the full
range ofyz. Refer to the figure caption for the incident and scattergddieections. 6z
takes value$°, 70°,90°, and110°. We find that the/z = 70° and110° curves perfectly
coincide in all four panels. They take same values@g/ andU/I at yz = 0° and
xs = 180°. However, we see that the dependenceg piof thedz = 70° curve is somewhat
different from that of théz = 110° curve. By this, we mean that for tihg = 70° case, the
@ /1 value changes in an anti-clockwise direction from the= 0° point while it changes
in a clockwise direction from thg z = 0° point for thefz = 110° case. The&) /I value
increases with increasingg, reaches a maximum and then decreases gil= 180°. U/I
makes a gradual transition from being positive to negat¢/ again increases with an
increase inyp and atypz = 360° it resumes the same value it hadyat = 0°. U/I now
makes a transition from being negative to positive. Whgn= 0° the magnetic field is
along thez-axis and exhibits azimuthal symmetry. Henég,= 0° is just a point in the
polarization diagram. Fatz = 90° the diagram is symmetric with respect to tel = 0
line.

In Figure6.13 we compare the polarization diagrams obtained at diffesawelength
points by varyingB for a two-term atom without hyperfine structure (dashed esjnand
a two-term atom with hyperfine structure (solid curves). gkeemetry considered is de-
scribed in the caption to the figure. In panel (a), we see aedserin) /I with increasing
field strength due to the Hanle effect. For fields greater &G, we enter the Hanle
saturation regime() /I starts to increase as we approach the level-crossing fiedgth
(around3000 G). Loops (i.e., a single circular loop for the dashed lind arultiple small
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Figure 6.12: Polarization diagrams obtained at the D lingtmms for B = 5G and dif-
ferentdz as indicated in the panels. The azimyth of the magnetic field is varied from
0° to 360°. The symbols on the curves mark thg values:x — 0°, o — 70°, O — 180°,
andA —270°. Since the curves for thi; = 70° and110° coincide, we use symbols that
are bigger in size for thég = 110° case to distinguish it from th&s = 70° curve. The
geometry considered js= 0, i/ = 1, x = 0°, andy’ = 0°.

loops for the solid line) arise due to several level-crogsifsee Figuré.3) where the co-
herence increases any I tends to approach its non-magnetic value. Comparing the sol
and dashed curves in Figuéel3 the effects of HFS can be clearly seen. First, due to the
depolarization caused by HFS, the polarization diagranmksiin size. Second, multiple
small loops are formed (see the solid lines in FigbwEd. These multiple loops arise due
to several level-crossings that occur only when HFS is metl(see Figuré.3(b), (c), (e),

and (f)). For field strengths larger than the level-crosdielgl strengths, the€)/I value
decreases again and becomes zero arddndo G. We see the effects due to Rayleigh

119



RESULTS

0.6 e A MM 0.4 e ARRAARARS e

T T T 3 4
E 0,=0"x=0° "Li Dy 6707.7420 4 | E 6,=0° y,=0° SLi D,: 6707.9010 A ]
0.5¢ -TEss Tl
E 32367, E -7 3833537~ _ ]
,“3234.3 3236.3 « ]
L ’ \ 1
~ / \ ]
\
N : ‘
132333 | ]
\ !
\\\3232 ¢ . 3238/) ‘
AN QO 2 O)//
' (b) 10000 7
J e o0y | A A | PP R | I AT A A ]
-02 -0.1 -0.0 0.1 0.2 03 -0.1 0.0 0.1 0.2
u/1 u/I

04 T TrrrTT T TrrrT T ]

o 0,=0° yp=0° °Li D,: 6708.0547 A ]

03F e 3

] -~ 732353 T~ ]

; 32343 3236.3% ]

0.2F ’ : ]

i [ ” \\ ]

<@ | ,
43233.3 !

[ | | ]

0.1F \ 3238/ 3

: *\3232 L ]

N 3240,
0.0F () 710000 7
||||||||| | ISP ET ST AT AT S BP AT ST ET A ST R AT S PR A A
-0.1 0.0 0.1 0.2
u/I

Figure 6.13: Polarization diagrams obtained at the D lingtpms for a given orientation

of the magnetic field. The dashed lines correspond to the jstate interference case
without HFS while the solid lines correspond to the combiteebry case (including HFS).

The magnetic field strength values are marked along the dashees in G. The asterisks
on the solid curves represent the same field strength vaki@sdaated for the dashed
curves. The scattering geometry consideredis 1, i/ = 0, x = 90°, andy’ = 0°.

scattering in strong magnetic fields when we increase the sigength beyond0000 G
(similar to Figure5.5b)). In panel (b), we show the polarization diagram comg@uatethe

bLi D, wavelength position. Since th&i D, position nearly coincides with that 6Ei D ,,

we see the combined effect of both lines. However, due toatyelabundance 6L, the
behavior of the polarization diagram is dominated by cootion from”Li D ;. Since’Li

D, is unpolarized, the small arcs seen for weak fields are dusettiL t D, line. After the
Hanle saturation field strengtR((G), the polarization diagrams essentially show behavior
similar to the corresponding polarization diagrams in p&ae In panel (c), we show the

120



PBEIN A TWO-TERM ATOM WITH HYPERFINE STRUCTURE

polarization diagram fofLi D, position. The D line remains unpolarized till the level-
crossing field strength (arould00 G) is reached. Around the level-crossing field strength,
we see a bigger loop for the case without HFS (dashed lineqandaller loop for the case
with HFS (solid line).

6.5 Conclusions

In this chapter, we presented a formalism to treat the iaterfices between the magnetic
substates of the hyperfine structure states pertainingffiereht fine structure states of
the same term including the effects of PRD in scatteringni¢ihe Kramers—Heisenberg
approach, we calculated the polarized scattering crogwsgce., the RM) for this pro-
cess. We also demonstrated the behavior of the RM in a siegtéesing of the incident
unpolarized radiation by the lithium atoms. In the solaregdbe combined theory finds
applications in modeling of spectral lines like lithius#i08 A for which the effects of both
fine and hyperfine structure are significant.

We illustrated the effects of a deterministic magnetic fieidthe Stokes profiles of
the lithium D line system. We covered the entire field stranggime from a weak field
Hanle regime to incomplete and complete PB regimes. Wheriiglds are weak, the
Stokes profiles exhibit the well known Hanle signaturesattnters of the lithium D lines,
namely, depolarization af /I and rotation of polarization plane. We noted that there are
Zeeman-like signatures for stronger fields. We identifieddignatures of level-crossings
and avoided crossings in Stokes profiles and polarizatagrdms. Unlike the puré-state
or F'-state interferences, wheh and F-state interferences are treated together, a multitude
of level-crossings and avoided crossings occur which prednultiple loops in the polar-
ization diagrams and interesting signatures inlthié profiles. Non-zero NCP is seen for
fields in the incomplete PB regime which arises not only dusotadinear MS but also due
to the A-O conversion mechanism as already describkdmai Degl'Innocenti & Landolfi
(2004. However, its diagnostic potential needs to be explored.péfformed all the cal-
culations including the effects of PRD. However, its effenifests itself only when one
considers the transfer of the line radiation in the solarospheric conditions.
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Outline

In this chapter, we present our efforts towards modelingStakes profiles of the Li

D lines at6708 A using the LSA and the combined theory for arbitrary magnétld
strengths described in Chap&rThese lines are optically very thin and weakly polarized.
They can be observed in the quiet Sun with the existing spectarimeters. The magnetic
field reduces the polarization already present in thess lnel their observations in mag-
netized regions are currently unavailable due to the laghotdrimeters with a sensitivity
beyond10~° which is necessary to measure the weak polarization of thre=se Therefore,
we aim at only computing the theoretical profiles for variggemetry and strengths of the
magnetic field in order to explore the diagnostic potentighese lines.

7.1 Introduction

In Chapter6, we derived the RM for thé” + J- state interference process and studied its
characteristics in a singl0° scattering of the incident unpolarized light. To model the
lines in the second solar spectrum which are sensitive sodbimbined interference for
the field strengths encountered on the Sun, we need to conifaatestical Stokes profiles
through detailed radiative transfer calculations usirggRIV derived and the realistic solar
model atmospheres. These profiles can then be comparedhsithbservations and at-
tempts be made to infer and constrain the magnetic field peteas This task, however,
is computationally very expensive for the magnetic fieldapagter domains that one need
to consider for such a study. Therefore, we opt for the LSAhmétwhich is based on
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the concept that the polarization information containetha scattered light is generated
in the last scattering event and is determined by the aoigptf the medium at the place
of the last scattering. Since the amount of polarizatiortaioed in the emergent radiation
is very small (less than a few percent), the polarizatiorhefihcident radiation can be ne-
glected. This method is computationally fast and allows tongetermine the polarization
from StokesI, without the need to solve the full polarized radiative sfen equation for
multiple scattering.

LSA concept has proven to be a useful tool in modeling therjaaton profiles of
molecular and atomic linesStenflo (1980 used this concept to model the polarization
profiles of the Car H and K lines, which exhibited the signatures of quantum raaial
interference.Stenflo (1982 used the LSA concept to elucidate the physics of the Hanle
effect and diagnose the turbulent magnetic fields in the sdtaosphere (see al§ienflg
1994). Faurobert & Arnaud2002 applied this method to model the scattering polarization
of molecular emission lines in the quiet solar chromosphéreorder to study the polar-
ization of the Sun’s continuous spectruBtenflo(2005 used LSA Belluzzi et al.(2007);
Belluzzi (2009 andBelluzzi et al.(2009 used a variant of the LSA method to understand
the origin of the polarization in Ba D; and D,, Scii, and Lil D lines, respectively. The
single scattering approximation proposedHirsch et al.(2009 is another variant of the
LSA method to study the Hanle effect in random magnetic fields

In this chapter, we will work with the LSA methods proposed $§mpoorna et al.
(2009 andAnusha et al(2010. Sampoorna et a{2009 extended the approach $tenflo
(1982 to deal with the Hanle effect for resolved magnetic fieldseyr determined the ra-
diation field anisotropy at the place where the last scatjeyccurs from the observed limb
darkening and used it in combination with the PRD matricétde of the form given in
Domke & Hubeny 198&r the ones presented 8ampoorna et al. 200Ja to obtain the
Stokes profiles. With this metho&ampoorna et a(2009 could successfully reproduce
most of the features in the limb observations of tha @227 A line. This modeling effort
led them to rule out the magnetic origin for the spatial #wraof the scattering polar-
ization in the wings of this line. In this chapter, we will egfto this approach as LSA-0
method. We use this method to compute the Diline profiles for various magnetic field
strengths.

Anusha et al(2010 presented three different LSA methods, namely, LSA-1, £5A
and LSA-3 (see alsAnusha et a].20113 for the non-magnetic case. In LSA-1 method,
the anisotropy factor is determined from the observed cdntémb variation (CLV) of
the intensity. It is very similar to the LSA-0 method and makese of the angle aver-
aged forms of thédomke & Hubeny(1988 PRD matrices. LSA-2 and LSA-3 methods
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take into account the radiative transfer effects. In thesedpproximations, Stokekis
calculated by solving the scalar transfer equation at gitldgoints in a given model of
the solar atmosphere, neglecting contributions from jpdéion. Then the total polarized
source vector for the line and the continuum are obtained.SA-2, Eddington—Barbier
relation Mihalas 1978 is employed to calculate thg and/ values using this source vec-
tor whereas in LSA-3, a simple formal solution of the radiatiransfer equation gives the
emergent Stoke§. The authors model the €227 A line profiles using LSA-3 and com-
pare the modeled profiles with the observations taken aréifit limb (:) positions. They
show that LSA-3 gives a reasonably good fit to the observefilpthat are comparable to
the ones obtained by solving the full polarized radiatiem$fer equation.

In this chapter, our aim is to model the ILD lines using LSA in order to avoid the
computationally difficult radiative transfer calculat&anHere, we describe the develop-
ments made so far in this regard. This work is in progress.elti8n7.2, we present the
outcome of our efforts to compute theIlD line profiles using the LSA-O method. We
derive the required anisotropy factor, absorption matrotuding the effects of PBE, and
present the Stokes profiles obtained using the RM derivethiacombined theory. We
compare the non-magnetic profiles with the quiet Sun obsensgiven inStenflo(2011).

In Section7.3, we present an extension of the LSA-3 methodAaluisha et al(2010 to
include arbitrarily strong magnetic fields. We call this las éxtended LSA-3 method.

7.2 The LSA-0 Method

In this section, we describe our attempts to model thelllines using the LSA-0 method

of Sampoorna et al2009. This method assumes that the polarization of the emergent
radiation is determined by the anisotropy of the incideditaton field at the last scattering
event. The anisotropy factor is then determined as a fumciaghe wavelength by fitting

the limb darkening function obtained from the observed datia a parabolic function and
using the limb darkening coefficients froRierce(2000. This empirical anisotropy profile

is then used along with the polarized continuum, the linegiigon matrix, and the RM

for the single scattering case (which contains all the PRilistwonal, fine and hyperfine
structure, isotope shifts, and magnetic field effects) toutate the Stokes profiles.

7.2.1 CLV ofthe Li I D Line Intensity

Since the Li D lines are optically very thin, their intensities can be @pmated to the
intensities of the continuum at their line center wavelesdi.e., /(1) = I.(u), where
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i = cos 6, with 6 being the colatitude). To obtain the CLV of the continuum at D
line wavelengths we use the limb darkening functiorNeftkel (1996 who present the
wavelength dependency of the limb darkening coefficientittiyg the continuum data of
Neckel & Labs(1994. The limb darkening function is defined as

an(p) = ———— . (7.1)

An IDL program provided by Stenflo, J. O. (through private conmication) computes
the limb darkening function for a givemusing the wavelength dependent limb darkening
coefficients. We use this IDL program to obtain the CLV of the D line intensities. In
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Figure 7.1: CLV of the continuum at 6708 A.

Figure 7.1 we show the CLV of the continuum at 6708 A. We use the intensity values
obtained in this step for the computation of the anisotr@mydrk (1) discussed in the
next section.

7.2.2 The Anisotropy Factor

The anisotropy factokg ,(u), is obtained by multiplying the Rayleigh phase matrix with
an unpolarized Stokes vector of the fofi 0,0,0)? and integrating it over all incoming
angles as

Ga(L — %)
k = , 7.2
G)\(:u) [,\(/J) ( )
where
3 - 12 / /
Gy = 16 (3™ = D I(p)dp (7.3)
-1

Since the limb darkening function is defined only for posijiy we carry out the integration
in the above equation in the limit< ; < 1. The anisotropy factor is flat in the wavelength
range that covers the LD lines. It has a value of 0.0575 aty = 0.1.
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7.2.3 The Absorption Matrix

In the LSA method, to compute the fractional polarizatior, meed to take into account
the contribution from the absorption probability for thel LD lines. The Lii D line sys-
tem can well be represented by a two-term atom model and we toederive the cor-
responding absorption matrix in the presence of arbitramgngth fields. In this section,
we present this derivation of the PB absorption matrix indbmbined theory following
Landi Degl'Innocenti & Landolf(2004. Most of the symbols and notations used carry the
same meaning as in Chap&runless indicated otherwise.

We start from the set of Equations (6.88) givenLiandi Degl'Innocenti & Landolfi
(20049 which are listed below

3
mh ) = TN ST S (e

mnn’ qq’

xRe[(d—g)mn(d—g')mn Tag' (i ) pris @ (Vi — V)] (7.4)

wheren (v, n) is the absorption coefficient with the symbiok= (1,2, 3, 4) representing
the Stokes parametefs, @, U, V). v is the frequency and is the direction of the ray: is
the speed of light} is the Planck constant, add is the total number density of atoms,
are the spherical components of the dipole moment opeftoare the reducible spherical
tensors, ang,,,,, are the matrix elements of the density operatorn, n’ represent a set of
eigenvectors which will be defined below, afds the complex profile function with,,,,,
being the frequency of the transition between the statds @jenvectorsn andn. The
dispersion coefficient:* (v, n) is given by

p?(”? n) = 77?(’/7 n){Re - Im} ) (75)

with {Re — Im} meaning that th&e (for real part) in last line of Equatiorv(4) should
be replaced withm (for imaginary part). Substituting in the above equations,

m — LySTkypy; 1 — LoSTkapta; n — LoSITky iy

wherea andb represent the lower and upper terms, respectivelthe quantum num-
ber of the magnetic substates, ahdhe subspace spanned jpy(see Chapte6, also
Sowmya et al.20150. Making use of the expression for the Wigner—Eckart thegre
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Equations (7.31) and (7.32) bandi Degl'Innocenti & Landolf(2004), we arrive at

hl/ ’
A _
n; (v,m) = NE(QLG + 1)B(LoSI, — LySI,) § > > 3(—1)rH

kgrky patiar e qq’

X > (=)ot tdatdory f(2 ], + 1)(2Ja/ +1)(2F, + 1)(2F, + 1)
Jad g FoF o dyJy FyFyy

</, + 1)(2Jy + 1)2F, + 1)(2Fy + 1)Cp, (LaSTe, 11)Cy p (LaS T, frar)

F, F, 1 Fy Fy 1

—ly fa —q —y P —q
" L, Ly 1 L, L, 1 J, S 1 Jo Jy 1
Jy J, S Jy Jy S F, F, I Fy F, I
XR@[’];q/ (Z7 n)pLaSIs(ka:ua? ka/lua/>(D(VLbSIskab7LaSIskaua - V)] ) (76)
p(v,n) = nt(v,n){Re — Im} . (7.7)

Here, B(L,SI; — L,S1;) is the EinsteinB coefficient. We expand the density matrix
elements in the above equations using Equation (7.36andi Degl'Innocenti & Landolfi
(2009 as

pLaSIs(ka,uaa ’,ua Z Z Z F al! Ha \ 2Ka —+ 1

KaQaJ ///F 1 J //F 7
kot ka
X CYJa///Fa/// (LU«SIS’ /’LGI)OJG//FGH (LaSIS’ lua)

(Fa// Fa K,
X

LoSIs K,
a &p Z(Ja// Fa//’ Ja///Fa///) . (78)
Ha  —Ha _Qa ) Q

wherepgg are the multipolar components of the density matrix. Ushgrelation (5.156)
of Landi Degl'lnnocenti & Landolf{2004 which is

2K+1 (1 1 K
To(in) =S (—1)iey /2201 TX(in) . 7.9

and the orthogonality relations (5a) and (5b)@dsini & Manso Sain2005, we can
rewrite Equationsq.6) and (7.7) as

v, m) :/\/'ZV(QL +1)B(LeSI, — LySL) > Y \/BR2K + 1)(2K, +1)

KQ KaQa
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XE : } : } : § :(_1)Jb+Jb,+Ja+Ja/+Fau—ua+q’+1

kakb JaJa/Ja//FaFa/Fa//Jbe/Fbe/ Ha by b qq/
X/ (2J, + 1)(2Jw + 1) (2F, + 1)(2Fy + 1)(2J, + 1)(2Jy + 1)(2F, + 1)(2Fy + 1)
XOL];ZFE(LQSIS, MG)OL];Z//FQ// (LaSIs> Ma)cﬁgpb (LbSIs> Mb)CZ),Fb, (LbSIs> ,ub)

L, Ly 1 Lo Ly 1 Jo Iy 1 Jo Jy 1
X{Jb Jo S}{Jb/ T S}{Fb F, Is}{Fb, Fy Is}

F F, 1 Fy Fy 1 1 1 K Fyn Fo. K,
X(—ub [ta —q><—ub o —q’><q —q —Q)(ua —ta! —Qa>

xRe[T5 (i,n) L“SIspgj(JaﬂFa", Jor Far )®(VL, 81k, LaSTakapia — V)] 5 (7.10)

pi(v,n) = 0 (v, n){Re — Im} . (7.11)

EquationsT7.10 and (7.11) represent the general expressions for the absorptioficdeats
which include polarization intrinsic to the lower term. Irder to evaluate these coefficients
we need to comput,egg. This can be done by solving the statistical equilibriumagons

of the lower term. To be consistent with Chapéewherein we neglect the lower term
polarization, we neglect it in this chapter also. This methas the absorption takes place
from the equally populated lower states. Following Equati¢10.120) and (10.121) of
Landi Degl'Innocenti & Landolf(2004), we represent this approximation mathematically
as

pLaSIs(ka,uaa ka',ua') = 5kaka,5uaualc ) (7-12)
and
LSISPgZ(JaFa, JoFo) = 0k,000,007,5,,0F,7,V/2F, +1C, (7.13)
with . N
C = 2 (7.14)

(25 +1)(2L, + (2L, + ) N’
whereN, is the population of the lower term. Using this approximatree finally obtain

nf(y,n):NhVB(L Sy — LpSIy) Z /72K+1 Z Z

dr (25+1)2L +1) kaky, Jad g FaF oy JyJy FyFy

X Y (=1)P et letatt f(0 ], 4 1)(2Ja/ +1)(2F, + 1)(2F, + 1)

Halbq

X/ (2Jp + 1) (2Jy + 1)(2F, + 1)(2Fy + 1)
XChp (LaSTe, t1a)Ch o (LaST, 11a)C5 g, (LoS e, 1) C5 e (ST, i)
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X{LaLbl}{La Lbl}{Ja Jbl}{Ja/ bel}
Jy J, S Jy Jo S F F, I, Fy Fy I,
X(Fb F, 1><Fb, Fy 1)(1 1 K)

— Pa —q — Ha —q ¢ —q¢ —Q

xRe[T5 (i, n) (L, S1.kypuy, LaSTekapa — V)] 5 (7.15)

pv,m) = n(v,n){Re — Im} . (7.16)

With the help of Equations7(15 and (7.16), we can write the PB line absorption matrix as

noomy my o my

A A A A

d,n)=| @ T (7.17)
Ny —Pv M Pq
U Ay

7.2.3.1 The Absorption Coefficient in the Non-Magnetic Case

In the absence of a magnetic field, the absorption matrixaeslto a scalar function which
forms the diagonal element, and is given by the expression

k
A M
i (v) = > V@I +1DRF,+ 12+ 1)2F, +1)
(25 +1)(2I+ 1) W
2 2
X —), 7.18
{ EOE L } { 5o S } &V, 5, J0F, — V) ( )
with )
ks = Na4—VB(LaSIS — L,SI,), (7.19)
T
and
OV a.F, — V) = Re[®(vr, 50,1, 7. LaS Il Fe — V)] (7.20)

whereg is the Voigt profile function with line center aj, , s, .. This line center frequency
actually corresponds tog, z,. The indicesJ, and.J, are used to label the fine structure
states to which thé’ states belong. We expand Equati@nl@ for the allowed transitions
between the” states irfLi and “Li isotopes and arrive at

)+ Do

TRAC Tt R

N[
[NIES
[SIES
[SIES
NI

13
22

8
" (v) = K | g0 g0y = ¥) + grov
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10 8 10
TerfWieds V) F g0ty — v+ gl - v)
1 8 3
+§¢(V%%’%% — V) + 8_1¢(V%%’%% — V) + §¢(V%%7%% — V) , (7.21)
and
1 ) 15
i (v) = ki 4_8¢(V%1,%1 —v)+ @QXV%Q,%I —v)+ m¢(”§1 12— v)
) 1 15 D
Wit = V) + 5 p0vae = V) + 7 pdva V) + 2 d(Van 1 — )
) D 7
+m¢(”§1,%2 —v)+ 4_8415(’/32,%2 —v)+ ﬂgb(V%&%Q —v) (7.22)

Here,k$, andk?, are given by Equatior7(19 where the respective lower term populations
of Li and "Li are used.

7.2.4 Stokes Profiles Computed Using the LSA-0 Method

Following Sampoorna et a(2009 we write the polarization in line as

[ Ray(M\ N, )k () Dy (1 = 1)dXN

P, ine — s 7.23
o T RO X, )Ty (1 = D) (7:23)
J Rar(A\, N, ©)ka x () v (= 1)dN
P ine — . 5 7.24
vl [ Riy(\ N, 0) Ly (1 = 1)dN (7.24)
and Ry (NN, 0O)k I 1)dXN
PV,line - f 41( —— ) oA ('u) a (Iu — ) (725)

J R\ N, 0) Ly (= 1)dN
Here,© is the scattering angle, artl; (A, N, ©) with i = 1,2, 3, 4 are the elements of the
first column of the RM computed using the combined theoryegesd in Chapteb (see
alsoSowmya et a].2015h.

When modeling the Li D lines with the LSA method, we have to account for the con-
tribution from the continuum in addition to the contributirom the line. The expressions
for the fractional polarization in the presence of contimuhhen take the form

Q nIA()\a n) CVC
—=9|F ine + Ie )
I P AN ) +C, | nr (A n) + C.

(7.26)
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Figure 7.2: Combined Stokes profiles for the ID lines for B = 500G (left) andB =
2000 G (right). The model parameters used &re- 1, C'. = 40 and P, = 0.009 %.

U 77?()\,77,)

2 = SPy e TY 7.27

)i Uliep X\, n) + C, (7.27)
and v A()\ )
77[ 7”

L = Py eI\ 7.28

i Vi A0n m) + C, (7.28)

wheren? is now written in terms of\. S is the global scaling parametét, is the contin-
uum opacity, andP, is the continuum polarization.

The Stokes profiles computed using the LSA-0 method, asguthescattering to be
frequency coherent, is presented in Figuredand7.3. The contributions from the two
isotopes are combined considering their percentage ahuadaFor the calculation of the
Stokes profiles we have used= 0.1, x = 0°cosf’ = p/ = 1.0, andx’ = 0°. The
magnetic field orientation is given ¥z, x5) = (90°,45°). The model parameter values
used are mentioned in the figure captions. WeHix= 0.009 % based orStenflo(2005
and choose a Doppler width 66 mA (corresponding t8000 K) following Belluzzi et al.
(2009. Since the Li D lines are optically very thin and produce almost no feafare
the intensity spectrum, we assume the continuum to dommate the line and choose
C. = 40. This high value ofC, is needed to obtain the fractional polarization values
that are similar to the observed values (see for exai@tgaflo et al.200Q Stenflg 2011,
Belluzzi et al, 2009. We expect the radiative transfer calculations to notcaffiee results
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much as the Li D lines are very weak and hence use the global scaling paganadtie as
unity.
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Figure 7.3: Combined Stokes profiles for tha ID lines for B = 3238 G (left) andB =
4855 G (right). The model parameters used &re- 1, C. = 40 and P. = 0.009 %.

We notice that the profiles computed with the LSA-O methodsamglar to the ones
obtained in a single scattering event shown in Figul€® If we examine Equationg (26—
(7.28 for the LSA-0 method and Equations.15—(5.16) for the single scattering case, we
see that they depend on similar free parameters, namelypatfaeneters representing the
radiation anisotropy, continuum strength and its polaiera The only difference being
the global scaling parametér (that may differ from unity) in the LSA-O method which
is introduced to obtain a match with the profiles obtaineddlyisg the radiative transfer
equation fully. Also, the LiD lines are optically thin andetiefore, k¢ \ is spectrally flat
across these lines (which is equivalent to using a constdaevor 3 in Equation 5.15).
Therefore, the profiles computed using the LSA-0 method ddifter much from their
counterparts for the single scattering case.

7.2.5 Comparison with the Observations

In Figure7.4we show the comparison between the non-magnetic thedrélicaprofile
and the observe@/ I profile. Since the observations were recorded in the quietr&gion,
we have first tried to fit it by considering = 0 G. The model parameters used in comput-
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ing the theoretical profiles using the LSA-0 metho®aimpoorna et a(2009 are given in

the figure caption. These values are different from the osed in Sectior7.2.4 We have
used a Doppler width &85 mA in order to achieve the required broadening. This Doppler
width corresponds to a temperature of abea0 K. As we can see from the figure, the
LSA-0 method gives a reasonable fit to the non-magnetic ghtens of the Li D lines.
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Figure 7.4: Comparison between the observed (dotted) amtatical (solid)p /! for the

Li 1 D lines. Observations were taken with ZIMPOL at THEMS$Srcsec inside the E limb
of the quiet Sun on Jurig 2008 by Stenflo (se&tenflg 2011, for more details). The model
parameters used to compute the theoretical profil&atel, C,. = 55, P. = 0.009 %, and
B = 0G. We have used a Doppler width 8 mA to obtain a match with the observed
profile.

LSA-0 method, however, does not take into account the degteridence of the phys-
ical quantities. We saw in the previous section that thisho@iheeds free parameters and
empiricalkc y as input. In order to eliminate these free parameters, wslilldeing signif-
icantly less computationally expensive as compared witkilgblarized radiative transfer
solution, we use the LSA-3 method Ahusha et al(2010 which we will discuss in the
next section. In LSA-3, the depth dependence of variousipalyguantities is taken into
consideration.

7.3 The LSA-3 Method

In this method, the radiation anisotropy is calculated byiag the scalar radiative transfer
equation using a realistic model atmosphere gm#enla et a).1993 Avrett, 1995. PRD-
capable multi-level ALI code aflitenbroek(2001) is used to compute the Stokésin the
absence of magnetic fields, at all depth points by negledtirgcontribution from@) to
1. This code is based on the methods described in the p&ybiski & Hummer(1991,
1992 1994. The mean intensity and the anisotropy are then calculadedy the Stokes

134



MODELING THE LI | Dy AND D, LINES

1, from which the source vector is constructed under the L&&Anusha et al.201Q for
more details). The emerget/ I is obtained from this source vector using a formal solver.

7.3.1 Extended LSA-3 Method

The LSA-3 method described Anusha et al(2010 considers the case of resonance scat-
tering in the presence of microturbulent magnetic fields.r @m in this chapter is to
develop a method to compute the Stokes profiles oflliines by including the effects of
arbitrarily strong deterministic magnetic fields. Therefae modify the LSA-3 equations
of Anusha et al(2010 to include the effects of deterministic magnetic fields.

The 1D polarized radiative transfer equation in the presesfcmagnetic fields (see
Sectionl1.8.]) is written as (see alsbampoorna et gl20080

u%I(T, An)=(®+rE)I(T,\\n)
_[(TE + ECI))B)\(T)U + Sscat(7—> )‘7 ’I’L) + ﬁcsc(’ra )‘7 n)] : (729)

Here, I = [I,Q,U,V]", ® is the depth dependenitx 4 line absorption matrix (see Equa-
tion (7.17), E is the4 x 4 unity matrix, K = (® + rE) is the total absorption matrix
wherer is the ratio of continuum to line averaged opacifyy () is the Planck function,

U = [1,0,0,0]" ande is the thermalization paramete$, denotes the ratio of continuum
scattering coefficient to the line averaged absorptionfamoefit. The scattering integral
S.eat (T, A, m) is given by

‘i" / ANRO\ N, n,n/, 7, BYI(r,N,n),  (7.30)
T Jo

Sscat(Ta )‘7 ’I’L) = f
where R is the RM for the combined theory including PBE. is the continuum source

vector scattering according to Rayleigh’s law given by

dn’

47

S.(T,\,n) = % Pn,n)I(t,\,n'), (7.31)

where P(n,n') is the well known Rayleigh phase matrix (s€handrasekharl950.
Defining the total optical depth as

dr'ot = dr(n} +r+ B.)/p (7.32)

and usingdr instead ofdr'°* for simplicity of notation, we rewrite the transfer equatio
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(7.29 as 5 ( )
® +rE
A A v S )

where the total source vectst,; is given by

I(T>)\7n) - Stot(7—>)\7n) 9 (733)

Siot (7, A, n) = [(TE + €®)B)\(7)U + Sscat (T, A, 1) + B.Sc(7,\, )] .

(7.34)
The dominant contribution t8... comes from/ (7, A\, n). Therefore we neglect the con-
tributions from(Q, U, V). In other words, in the integral in Equatioi.B0 we replace
the incident Stokes vectdr by [, 0,0,0]”. With this replacement, only the contribution
from the first column of théR matrix becomes relevant. Thus the expressions for the total
source vector components including the contribution frowa polarized continuum take

the following simple form under LSA-3

(n + 7+ 6e)

[r(7,A) + e(m)nt (1, )]

[Si(T, A\, n)]Lsa—s = (N (N + B, )\)]B,\(T)
j{ / Riy(\N,n,n/, 7, B) I Nm)
77 (T, A) +r(m, A+ Be(m, )]
,)\)Pll(n n') o
7{47T [yt (7 A) e VA e UL (7.35)

e(T)n5 (T, \)Ba(7)
M1 A) +7(T,A) + Bo(T, V)]

/ / B
/dx 2“"’” TRV
77

[SQ(Tﬂ )‘7 n)]LSA—3 - [

I

(1, \) + (7, ) + Be(1, )]
T ) 21 ( ) ! n/
7{ A [ (T, ) RES VIR R ey R (7.36)

B e(T)ni (7, \) Ba(7)
[Su(T, A, n)|Lsa_3 = (T, \) +7(7, A) + Be(T, M)

Rgl)\)\’nnTB) -~
7{ / 7 (7, A) +7(7, A) + Be(, M)] I(r, X, m), (7.37)

and

B () (7, \) BA(7)
[Sy (T, \,n)|Lsa—3 = (T, \) + 7 (1, A) + Be(T, M)
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(N, n) . (7.38)

/ R41)\>\ nn TB)
(2 (7, A) + (7, A) + Be(, N)]

I

Here, P; are the elements of the Rayleigh phase matrix. The eme€gent/ /1, andV/1
profiles can be obtained by using the source terms constrabtave, in the formal solution
of the transfer equation. The Stokes profiles can then beilleédd for various magnetic
field strengths and orientations, in order to understanéhtheence of the magnetic field.

However, this is a challenging task because of the compdiesitelated to the computa-
tion of the elements of the RM. If we treat only the frequenali@rent scattering processes
in the atom’s rest frame, neglecting collisions, then we regtaceR;; (A, N, n,n’, 7, B)
with R3(X\, X',n,n/, 7, B). In that case, for a given combination of the magnetic field pa
rameters, incoming and outgoing radiation angles, the take taken for the computation
of the RM for a single depth point is 29 hrs. It becomes computationally very diffi-
cult to calculate the RM elements over grids of depth, raaheéingles and magnetic field
variables. Because of this practical difficulty, we are dadb compute the Stokes pro-
files using the LSA-3 method. We are currently trying to devisimerical methods with
reasonable approximations which will help us overcomephiblem to an extent. These
methods can be tested by applying them to reproduce the khemechmarks. This work is
in progress.

7.4 Conclusions

In this chapter, we have tried to model the! ID lines at 6807 A using the last scattering
approximation to avoid numerical complications which anghile performing detailed
radiative transfer calculations. We first used the LSA-Ohndtof Sampoorna et a{2009

to compute the polarization profiles of these lines. We foilnad the LSA-0 method gives
results which are nearly indistinguishable from the resalitained in a single scattering
event (see for e.g., Chapt8)y. A comparison of th&) /I profile obtained from the LSA-
0 method with the non-magnetic observations shows thatlibergations are reproduced
reasonably well by this method.

However, the LSA-0 method uses free parameters. In ordeetaoid of these free
parameters and to consider the effects due to the atmosphehose to use the LSA-3
method ofAnusha et al(2010 which is computationally less expensive (as compared to
the full transfer computations) as only the scalar radedti@nsfer equation is solved instead
of the full polarized radiative transfer equation. We exieah this method oAnusha et al.
(2010 to include the effects due to deterministic magnetic fia@éiarbitrary strengths.

137



CONCLUSIONS

We have not yet succeeded in computing the Stokes profileg tise extended LSA-3
method because of the challenges discussed in the prewgotisrs We are now working

at developing the numerical methods to surpass these pnebldhis project forms an
extension of the thesis work in the future.
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8

SUMMARY AND FUTURE PROSPECTS

The study of solar magnetic fields is of profound importarcéhay dictate the structural
evolution of the Sun. They also directly influence the spaeather which has direct im-
plications for the Earth. Several methods are employedderaio measure their strength
and distribution in the solar atmosphere. One such methaiMes extracting the magnetic
field parameters from the polarization of the light emittgdhoe Sun, via the Zeeman and
Hanle effects. Zeeman effect is the most popular measurtet®@emique in use. It uses
the fact that the lines formed in the magnetic regions an¢ Isplthe magnetic field and
the amount of splitting is directly proportional to the fiedttengthB. The limitation of
the Zeeman effect is that it is insensitive to weak and twiufields. To explore weak
magnetic fields, Hanle effect was proposed as a tool for the freeasurements. Hanle
effect is sensitive to weak fields which are inaccessiblehtéoZeeman effect. However,
these tools are not sufficient to encompass the field straegimes observationally de-
tected on the Sun. This is because the Zeeman and Hanlesadfeciot fully account for
various interference phenomena occurring between the etiagustates belonging to dif-
ferent fine or hyperfine structure states. For many atomeéslithis type of interference
occurs for the field strengths prevailing on the Sun. Thisafbf the magnetic field, called
the Paschen—Back effect, can serve as a diagnostic toolleoraptary to the Hanle and
Zeeman effects.

8.1 Summary

In Chapterl, we introduced some of the basic concepts which were nagelssaunder-
standing the contents of the rest of the thesis. In the firdtqfathe thesis, we focused
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our attention on understanding the influence of blend linreshe main line of interest.
Modeling any spectral line in the second solar spectruméterinining the physical quan-
tities like magnetic field, abundances etc., requires agrtpeatment of the blend lines.
Blend lines are generally treated to be formed in local tleelymamic equilibrium con-
ditions and are assumed to possess no intrinsic polaneafitheir own. We proposed a
formalism where, in addition to the main line, the blend $irmee also treated in non-local
thermodynamic equilibrium conditions. Our formalism albothe blend lines to have in-
trinsic polarization. It is also capable of treating any fn@mof blend lines that lie in the
wavelength range of interest. By considering the lines &atiim an isothermal atmosphere,
we showed that the effects of polarized blend lines are gt when they are relatively
strong and lie very close to the main line.

With a motivation to explore the usefulness of Paschen—Bé#ekt in atomic states for
extracting the information on distribution of solar magoéelds, we developed the neces-
sary primary theoretical framework, namely, the derivatbthe redistribution matrix. We
formulated the theory of Paschen—Back effect in atomiestatcounting for the effects
of partial frequency redistribution. We first dealt with Pasn—Back effect in a two-level
atom with hyperfine structure and developed the formulatowrthis process by follow-
ing the Kramers—Heisenberg scattering matrix approacih.sirgplicity, we assumed the
lower levels to be unpolarized and accounted for Pascherk-Bffect in only the upper
levels. We checked the correctness of the formulation byodepring the known and avail-
able theoretical benchmarks on the N, line polarization. We identified the signatures
of Paschen—Back effect on polarization in the case wherentigent unpolarized light is
singly scattered in a direction perpendicular to the dioecdf incidence.

The next logical step was to explore the influence of Pasd@ck-effect in fine struc-
ture states on the Stokes parameters. Therefore, we todieypablem of Paschen—Back
effect in a two-term atom without hyperfine structure andwer the required redistribu-
tion matrix following the Kramers—Heisenberg approach. dMedied its properties in a
single90° scattering of the incident unpolarized radiation. We usiedD lines at6708 A
for this purpose because it is only for this system that omeezpect to see Paschen—Back
effect in fine structure states for the magnetic field stiemghat one encounters on the
Sun. For this atomic system, the fine structure splittindia?P term is abou®.15 A and
Paschen—Back effect sets in for fields stronger t#) G. Such strong fields are known
to be present in sunspots.

The polarization of some of the diagnostically importarécpal lines in the second
solar spectrum is a result of the combined effects of fine ametiine structure. There-
fore, we developed a more general theory which treatsfthand J-state interference
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processes together, considering a two-term atom with fipeestructure. We followed the
same procedure that we employed for the cases discussed abdwarrived at a general
expression for the redistribution matrix, which reducegh®m expressions for the redistri-
bution matrices derived in Chaptetand5, when fine and hyperfine structure respectively,
are neglected. Keeping in mind the relevance to solar apics, we again used LD
lines at6708 A for testing the redistribution matrix. We identified a niultle of effects,
such as level-crossing, avoided crossing, quantum imeerée, alignment-to-orientation
conversion mechanism etc., caused by the magnetic fieleeiRalschen—Back regime.

The radiation field undergoes multiple scattering befoesdapes from the solar atmo-
sphere. When modeling the lines in the second solar spectmenhas to account for the
radiative transfer effects in the atmosphere. This can Ioe &y using the redistribution
matrix (in the Paschen—Back regime), in the polarized tadigransfer equation, and solv-
ing it using the available models which closely mimic theas@tmosphere. However, it
takes huge computational resources to perform this task,lagje number of transitions
are involved in the Paschen—Back regime. Also, the radiati@ magnetic field parameter
domains that one has to consider while solving the trangfeaton are large. Devising
the numerical methods to solve the transfer equation in teggmce of arbitrary magnetic
fields is challenging. To avoid the numerical complicaticmsimple approach, called the
last scattering approximation (LSA) method is proposed.

As the Lil D lines are weak and optically very thin, the transfer eBeot not expected
to play a major role in shaping these line profiles. Hence vesl ulfferent levels of LSA
method to model these lines. We found that the LSA-O methatiyneeproduces the
observed profiles in the quiet Sun. We presented the theaf&tokes profiles obtained
using the LSA-0 method for various values Bf We also presented the extended LSA-3
method which can be used to generate Stokes profiles andctatgrare them with the
observations when they are available.

8.2 Future Work

In this section, we briefly discuss the possible ways to edphe work already carried out
in this thesis and its application to better understand thevth a particular interest in the
surface magnetic fields.

For the radiative transfer calculations carried out in Gaeg®2 and3 with blend lines,
we used isothermal atmospheres. The real solar atmospgit@seyer, is not a constant
property medium and is not isothermal. Therefore, the cdatfns in Parl can be ex-
tended for realistic solar model atmospheres. This enaldds decipher the effects of
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FUTURE WORK

blend lines on main line polarization in a more transpareahmer. \We can then attempt
to model some of the observations recorded in the solar speaising these new com-
putations with blend lines. For example, we can apply theoth to extend the efforts

by Anusha et al(201Q 2011hH andSupriya et al(2014 2015 to model the observations
of Cal 4227 A line which exhibits the highest degree of polarizationtie second solar

spectrum.

In Chapters4, 5, and6, we identified the signatures of Paschen—Back effect such as
nonlinear splitting, level-crossing, anti-level-craggi non-zero net circular polarization
etc., considering various atomic systems. Our ultimaté igda use Paschen—Back effect,
like the Hanle and Zeeman effects, to diagnose solar oastelagnetic fields. We know
that in the case of Zeeman effect, the fact that the wavebestyft produced by the mag-
netic field is directly proportional to its strength, is ugedobtain information about the
field strength in the line of sight. Through the analysisiearout in this thesis, we know
that the nonlinear wavelength shift produced by the magffietd gives rise to asymmetric
StokesV profiles. In addition to this, the alignment-to-orientaticonversion mechanism
also contributes to the asymmetry. Using this informatsgmattempt can be made to quan-
titatively express the relation between the amount of meudr polarization and the field
strengthB. Polarization diagrams presented by us along with thoséefsimilar kind
shown inAnusha et al(20110 can also be used in this regard. This will then enable one
to ascertain the use of Paschen—Back effect as a tool toa@saghe magnetic structuring
of the solar atmosphere.

While formulating the theory of quantum interference betwéhe atomic states in the
presence of a magnetic field, in Pdrt we assumed the lower levels to be unpolarized
and infinitely sharp. This assumption is valid in cases wlibeelower levels have the
quantum numberg = 0 or 1/2, as the lower level polarization becomes zero due to equally
populated magnetic substates and also due to symmetrydesasons. Moreover, if the
J = 1/2 state undergoes hyperfine structure splitting, then thétheg hyperfine structure
states can get polarized. We also neglected Paschen—Back @fcurring in the lower
levels. Another possible future task is to extend the Kramdeisenberg formalism used
in this thesis to account for the polarization of the lowefels following the foundations
laid by Stenflo(20158 andLandi Degl'lnnocenti & Landolf(2004 see als®&upriya et al.
2016.

In Chapter7, we have presented the Stokes profiles computed using theOl'Sathod
for a given magnetic field configuration. We have also dewadofne extended LSA-3
method, but have not presented results obtained with thisade The immediate plan of
action is to develop a numerical method to handle the modif@4-3 equations and com-
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pute the Stokes parameters using the solar model atmospioera set of magnetic field
strengths and orientations. Due to the lack of magneticrghtiens of Lil line polarization
we cannot compare our results with the observations. A piisgiis to record magnetic
observations of other spectral lines which are sensitiveaschen—Back effect and apply
the formulation of Parll, and the extended LSA-3 method to model those observations.

For some of the strong resonance lines, the radiative gamffects are important.
The magnetic field diagnostics using these lines requir@pgorsolution of the polarized
radiative transfer equation in the presence of magnetidsfieln such cases, the LSA-3
method may not suffice (the results from the LSA-3 method nragitty deviate from what
is observed). One has to carry out detailed transfer calongwhich are computationally
expensive. Therefore, faster numerical methods have tewseatl in order to overcome
the challenges of solving the full transfer equation in¢éapgrameter domains. This task,
along with the others mentioned above, form important stdpsad in the modeling of
spectral lines and gives an opportunity to explore a widgeasf possibilities to map and
study the magnetic field distribution.
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A

TRANSITION AMPLITUDE APPROACH

In this appendix, we present an alternate derivation of thlefét the F'-state interference
process derived in Chaptdr following the approach given in Section 3 $hapiro et al.
(2007. In the presence of a magnetic field states undergo a mixing, because of whith
no longer remains a good quantum number. However the prafect ' on the magnetic
axis, namelyu, is a good quantum number and the magnetic components cdadséied
into three groups characterized By, = p, — p, = 0,+1. The symbols used have the
same meaning as in Chapter

To derive the coherency matrix, the starting point is to alalie the elements of the
Jones matrix from the Kramers—Heisenberg formula

- Z <Jflsif:“f|r - eq| Sy Lsippin) (Jodsippin|r - eﬁ‘JaIsiaMa> (A.1)
wpf — w — 17/2 ' '

ippp

We expand the dot product using spherical vectors, andteetine above equation as

Wap ~ Z Jelsispgl qua | JoLsipin) { Josiq il qufgq | JoLsippip)™

ipHp q q

X, (Vigpiy — ) (A2)

This can be further written as

X
~ ZZ )4~ Q;;ﬁ;@ Qi e, & (Viyuyipuy — €) - (A.3)

iy qq’

Here,q = 1, — 1y andq’ = 1, — 1o Q is the amplitude of the transition between the upper
and lower levels. In the atomic rest frame, we take the kaliggoduct of the Jones matrix
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elements, and write the coherency matrix as

Ha g by T I A ) Bipyipn
W = E § Azaz/zbzb/ (.4,4",q )CO5ﬂlb'Hb'2bube bR

lapalffbf Tty Hpr

(I);ybubzb/ub/zaua (5/)5(5 - 5/ - Viauaifuf) . (A4)
Here, A contains all the fou©s representing transition amplitudes. It is given by

Half oy Al Ayibk YioHs YoM

Aiaifibib/ - Qlfy,f Qla/.l,a Qlfp,j Qiaua ° (A'5)
I(q,q,q",q") is a4 x 4 matrix containing the bilinear product of the geometrieadtors,
expressed as

(g, q,q¢",q") = aqﬁ/ % 65/// . (A.6)

To transform EquationA.4) to the laboratory frame, we follow the steps described in
Section 2.2 ofSampoorna et al20073. In the laboratory frame, Equatio®@) then
takes the form

Z Z APty Moty 1o A3 , 1Biypyripn
W Talfipiy F q q,9,4 )Cosﬂlb/ubllbﬂbe v

lafalffbf Tty Hpr

[(hg,ub iy )Za,uaif,uf + i(fiIqub,ib/pb/ )iauaif,uf] : (A7)

Finally, the Mueller matrixM (Sectionl.l) that relates the scattered Stokes vector to the
incident Stokes vector is given by

M=TWT ', (A.8)

whereT andT ! are purely mathematical transformation matrices &eaflg 1998 and
Sectionl.1for the forms of these matrices). The Mueller maivikgiven in EquationA.8)

is obtained in the magnetic reference frame, and it needs toansformed to the atmo-
spheric reference frame for use in the radiative transfaaggn. This is done following
the steps given in Appendix D &ampoorna et a{20078H. The matrixM is related to the

RM R through the relation

1
R=-M, (A.9)

whereN is the normalization constant.
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B

PBE IN HYPERFINE STRUCTURE
STATES OF LITHIUM

In this appendix, we apply the theory of PBE in hyperfine dtree states developed in
Chapter4 including the effects of PRD to the case ofilD, lines (seeSowmya et al.
20153. We consider both the stable isotopes of Li, nanfélyand "Li. All the relevant
atomic parameters for both the isotopes (including thainalance) are taken from Table 1
of Belluzzi et al.(2009. For the computation of Stokes profiles, we use the geongaten

1x107°] - ] 3x107°F E
[ 2x107°f 4
5x107° ; ]
. I 1 . 1x1075E S
N N ]
st 1T :
= 1E E
0 0 3
< i< 1
b 1 b = E
i ] —1x107%f E
-5%1078 : E
I ] —ex107%F 3
—1x107°[ ] —3x107%F : : :
1 2 3 4 2 4 6 8 10
B (G)

Figure B.1: Energies of the hyperfine structure states asditn of B for 5Li (left panel)
and’Li (right panel).

in Figure4.2 Following Belluzzi et al.(2009 we choose the Doppler width & mA.
Because the lithium lines are optically thin and as only lgiisgattering is considered here,
the Stokes profiles computed for the two isotopes are addedvadighting them with their
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percentage abundances, to obtain the actual scatteredsStodfiles from both isotopes
together.

T T T T T T T T
Or B=10G op,. h 0 B=10 G D,
I -1
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& —4t 18
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-8} = -4
L : ] -5 :
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Figure B.2: Line splitting diagrams forDines of°Li (left panel) and'Li (right panel).
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Figure B.3: The scattered Stokes profiles in the presencevefteal magnetic field. The
geometry for scattering is shown in Figute

As described earlier, the PB regime is characterized by th&smg of magnetic sub-
states belonging to different hyperfine structure staté® magnetic substates belonging
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PBE IN HYPERFINE STRUCTURE STATES OFLITHIUM

to hyperfine structure states @fi (nuclear spin,/, = 1) show9 crossings corresponding
to magnetic fields in the range— 4 G (see left panel of FigurB.1) while those of'Li
(Is = 3/2) show14 crossings in the range— 10 G (see right panel of FigurB.1). Be-
cause of the relatively smaller HFS (in comparison to the E®#) fields required to enter
the PB regime are much smaller in the case of hyperfine steustates.

Another characteristic of the PB regime is the nonlinearitthe MS. In the linear Zee-
man regime, the magnetic components are symmetricallyatisg about the line center
position while in the PB regime, they are displaced asymicadly. Line splitting diagrams
for the magnetic components resulting from the transitlmetgveen the magnetic substates
belonging to the hyperfine structure states gfibes of°Li and “Li are respectively shown
in left and right panels of FigurB.2. One can clearly notice the asymmetric splitting of
the magnetic components caused by the PBE.

In Figure B.3, we present the Stokes profiles obtained in the presence eftmal
magnetic field § = 90°, see Figuret.2) for the hyperfine structure case involving only
the D, lines ofLi and "Li weighted by their respective abundances. The intensitfilps
remain almost unaffected as the MS is too small to producesamjficant broadening.
We see a decrease @/ 1 with the increasing field strength followed by an increaser F
stronger fields, signatures of the transverse Zeeman effecteen. The StokésandV
are zero owing to the chosen geometry.
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C

THE PSSFOR THE COMBINED
THEORY

PSS is a basic test for checking the correctness of the eijes/and eigenvectors obtained
from a diagonalization procedure, for a given probldmandi Degl’'Innocenti & Landolfi
(20049 provides a detailed description of the PSS.Landi Degl'Innocenti & Landolfi
(2004, the manifestations of PSS are given separately for (apdawel atom with hyper-
fine structure and (b) a two-term atom exhibiting only FS.His appendix, we formulate
the PSS for the case of a two-term atom exhibiting both FS df@. MVe basically follow
the same procedure as described.amdi Degl’'Innocenti & Landolfi2004) to derive the
expression for the centers of gravity in frequency of the medig components.

The strengths of the magnetic components are given by

Shattakoits — (L, S 1y, kapta|rg| LuS Ty, kopis)|? | (C.1)

which are essentially the square of the complex amplitudid@ftransition between the
lower term (quantities with subscript$ and the upper term (quantities with subscrigts

r, are the spherical components of the dipole moment opetasing the basis expansion
defined in Equation§.4), the Wigner—Eckart theorem and its corollary, we exparal th
above equation as

Séf?aumkbub — (2La + 1) E (_1)Ja+Ja’+Jb+Jb/
Jad oy Ty dy FaFi FyFy

XChep (LS T, 1a)C o (LaS Ty, 11a) O3 g, (LoS T, 1) C5 o (LuST s, 1)
x/(2J, + 1) (2Jw +1)(2J, + 1)(2Jy + 1)(2F, 4+ 1)(2Fy + 1)(2F, + 1)(2F, + 1)
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" L, Ly 1 L, L, 1 J, S 1 Jy Jy 1
Jy J, S Jy Jg S F, F, I, Fy, F, I
F F, 1 Fy, F, 1

( ’ )( ’ >|<La||r||Lb>|2, (C.2)
—Hy MHa —¢ —Hy Mo —(

with, ¢ = 0 for =, +1 for o,, and—1 for the o, components. The transitions connecting
the upper and the lower terms obey the selection rlés= 0,+1, AS = 0, Al, = 0,
andAp = pup — e = 0,£1. Summing the expression for the unnormalized strengthis ove
all the possible transitions, making use of the orthogtyalioperty of theC' coefficients
given in Equation (5a) o€asini & Manso Sain£2005 and Equations (2.23a) and (2.39)
of Landi Degl'lnnocenti & Landolf{2004), we obtain

1
S Shamekun — 5(2La + 125+ 1) (2L, + D[{La|[x[|Ly)* . (C.3)

kakppa

Making use of the condition that

Z Sjaﬂmkbﬂb =1 , (C4)

kakppiapy
we write the expression for the normalized strengths as

Skaﬂmkbﬂb — 3 E (_1)Ja+Ja/+Jb+Jb/
q

@S+ 1DEL+Y) e ar,

XChep (LaSTe, 1a)C o (LaS Ty, 11a) O3 g, (LoS T, 1) C5 o (LuST s, i)
x/(2J, + 1) (2Jy + 1)(2J, + 1)(2Jy + 1)(2F, 4+ 1)(2Fy + 1)(2F, + 1)(2F, + 1)

X{La Ly 1}{La Ly 1}{Ja J, 1}{@, Ty 1}
Jy J, S Jy Jo S F, F, I, Fy Fy I,
X(Fb Fa1><Fb/ Fl)

—Hy Ha —( —Ho Ha  —9

The centers of gravity in frequency of the magnetic comptsare defined as

(C.5)

Avg= Y Sperakors Aphaks (C.6)

Hafty ?
kakypa o
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with

Apkaks — B, (LySTs, py) — B, (LaSTs, o)
Haly h .

(C.7)

Using Equations@.5) and C.7) in Equation C.6), and performing sums ovét, and k;
with the help of Equations (5a) and (7) @&sini & Manso Sain£2005, we obtain

1 3
A = — —1 Ja+J g +Jp+ Ty
YT RS T )2+ 1) > > (=1

Ja.]a/Jbe/FaFa/Fbe/ Ha p

X/ (2J, + 1) (2] + 1)(2Jy + 1)(2Jy + 1)(2F, + 1)(2F, + 1)(2F, + 1)(2Fy + 1)
X{La Ly 1}{La L, 1}{Ja J, 1}{Ja/ Ty 1}

Jy J. S Jy Ju S F, F, I, Fy Fy I,
X(Fb Fa1><Fb/ Fo 1)

—Hb Mo —(q “Hb Ha  —(

X[01,.0,, 05, £, (LS Jo L Fypuo| Hor | LpS Ty I Fiy )
_5Jbe/5Fbe/ <LaS<]aIsFa,ua‘HT|LaS<]a’IsFa’,ua>] . (C8)

We separate the atomic and magnetic Hamiltonians in theeabgrpression. It can be
shown that the atomic part does not contribute to the cepfegsavity. Using Equations
(2.42), (2.41), (2.36d), (2.26d), and (2.39)L@ndi Degl’'lnnocenti & Landolf(2004), we
simplify the magnetic Hamiltonian part and find that

Av, = —quy, , (C.9)

wherew, is the Larmor frequency associated with the applied magfietd. This result is
the same as Equation (3.66)ladndi Degl'Innocenti & Landolfi2004) which one would
expect for a two-term atom without any fine or hyperfine stitest This means that the
centers of gravity of the magnetic components in the PB rediave the same frequencies
as the individual components due to Zeeman effect that wanst from the transitions
between spinless lower and upper terms. In situations wherelectron and nuclear spins
are negligible, this is expected from the PSS.

We then verify that the eigenvalues and eigenvectors oddany diagonalizing,
when used in Equatior((6), give the same value faky, as that calculated from Equa-
tion (C.9).
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D

THE MAGNETIC REDISTRIBUTION
FUNCTIONS FOR THE COMBINED
THEORY

The magnetic redistribution functions of type Il in the cadecombined./ and F' state
interferences have the same form as those in cases wher¢hernilyterferences between
fine structure or hyperfine structure states are considesaxgpt for the increase in the
dimension of the quantum number space. For our problem efast, they take the forms
given by

1 Toa — Thy + Thopiak s 2
RILH Tha QL“, ’@ — e . a allaRflLf
kbubkauak‘f,uf( ba> Yba ) 7 sin © *p 2 sm(@/?)

a Lba + x;)a + xkaﬂakfl‘f
H D.1
(005(9/2)’ 2cos(©/2) ’ (D-1)

and

/ 2
RILF (0, 22 ©) = 1 exp Tba — Tpg + Thopakppy
o, (T, = — - :
kopkapakypp A0 bas 7 sin © 2sin(0/2)
/
a Lba + 'rba + xkal‘akfuf)

X2F(cos(@/2)’ 2cos(©/2) (D-2)

Here, © is the scattering angle, and the functiolsand F' are the Voigt and Faraday-
\oigt functions (see Equation (18) 8mitha et al.20110. The quantities appearing in the
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expressions for the type Il redistribution functions hawe fiollowing definitions:

/
ka#bkaﬂa i

Tpy = Vkypkapa — V. =
.= — " =
AI/D ’ ba AI/D
Vikapakppy v
Tk poop, = —Sakabsis (D.3)
aktaliflis AI/D 7 47TAI/D ’

where z;, is the emission frequency;,, is the absorption frequency, is the damping
parameter, and\vp, is the Doppler width.

The auxiliary functions:!! and ' appearing in Equatior6(9) can be constructed by
making use of Equation®(1) and D.2) as

1

11 _ 1| plLH IL,H
(hkbub,kb/ub/>ka#a’ff'uf' 9 Rkbubkauakfuf - Rkbfub/kauakfw ! (D'4)
i -
I _ 1| pILF _ pILF
( kb#mkblﬂbl)ka“akfﬂf o 92 Rkb/ub/kauakfuf Rkbpbkapakfuf : (D5)

These auxiliary functions contain the information regagdihe Doppler redistribution of
photon frequencies.
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E

A-O CONVERSION M ECHANISM

The RM presented in Equatiof.9) can be reduced to the phase matrix by integrating the
auxiliary functions over the incoming and outgoing freqeies. The phase matrix will
then take the form given by

P,;(n,n’; B) Z Wik l)QTg(i,n)’ng(j, n'), (E.1)

KK'Q

where

Wiero(B) — 3(2L, + 1) {1 1 K}{ 11 K’}

RS+1)(2L+1) | Ly Ly, L, Ly, Ly, L,

X Z Z Z (_1)Jb+Jb/+JbN+me (_1)K+K’

JoJyr Jyrr Jyrr Fy Eyr Fyir Fyinr oy gy
X/ (20, + 1) (2Jy + 1)(2Jyr + 1)(2Jyw + 1)
x/(2F, + 1)(2Fy + 1)(2Fy + 1)(2Fyw + 1)

% Lb Lb K Lb Lb K/ Jb’ Jb K Jb/// Jb” K/
o Sy S Jyr Ty S F, Fy I Fy Fyr 1,
F, F, K Fy Fyr K’

X < b ) ( v ) VK + 12K +1)

—py py —Q —pp py —Q
ky ky Ky Ky
X Z OJbe (LbSIS7 Mb)CJb,,Fb,, (LbS[37 Mb)CJb,Fb, (LbSIS7 IU“bI)CJb///Fb/// (LbS[S’ lub/)

Kk

1
% 1+ 27riy(kb/ub/, kb,ub)/A(LaSIS — LbSIS) .

(E.2)
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Here, A is the Einstein coefficient for thé, — L, transition andv(ky pw, kops) =
(Erypy — Eryp)/h- We compute thej's for the geometry considered in Sectiéd.3

so that we can obtain an expression for the frequency irttadjfeactional circular polar-
ization, py, (see Section 10.20 dfandi Degl'Innocenti & Landolfi 2004. The explicit
expressions for théj* (i, n) in the atmospheric reference frame for a rotation of the form
R =(0,-0,—x) x (xs,0p,0) are given by

7(0,n) =1,
7,(0,n) =0,
7;'(0,n) =0,
1 |1
T2(0,n) = — |~ (3cos*d — 1) (3cos’0p — 1)
V2 |4
+3 sinf cosf sinfg cosfp cos(x — xB) + Z sin®@ sin®0 cos2(x — x5)| ,
1
72(0,n) = 7 [% (3cos?0 — 1) sinflp cosfp
V3 e 1
7/ sinf cosf {e (x=xz) (cos@B — 5) (cosbp + 1)
: 1
—e i0xp) (00583 + 5) (1-— 00803)}
—% sin?f sinfp [eQi(X_XB)(l + cosflp) — e A0xB) (] — cos@B)ﬂ :
1[V3
T2(0,n) = — | —= (3cos?d — 1) sin®dp
V2 [4V2
V3 ; i(x—xs) —i(x—xs)
N sinfl cosd sinfp e (1 + cosbfp) —e (1 — costp)]
V3 29 [o2i(x—xB) 2 —2i(x—xB) (1 — 2
+8\/§ sin“f[e (1+cosfp)* +e (1 —cosfp)?]| , (E.3)
7y(1,n) =0,
7)(1,m) =0,
7'(1,m) =0,
V3[V3
T2(1,n) = —— | —= sin?@ (3cos?dp — 1)
> | Vs
2V3 . .
_W sinf cosf sinflg cosfp cos(x — xB)
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A-O CONVERSION MECHANISM

™

~— (1 4+ cos?0) sin?@p cos2(y — XB)} ,

=

T2(1,n) = —? E sinf sinfp cosfp

. 1
+sin# cosf {el(X_XB) (cos@B — 5) (cosfp + 1)

¢}

—ilx=xz) (cos@B + %) (1-— cos@B)}

1 ) .
1 (1 + cos®d) sinf [te(X_XB)(l + cosflp) — e AxB) (] — cosé’B)]} ,

T2 (1,n) = —? E sin?6 sin®0

1 : .
—i—§ sinf cosf sinfp [e‘(X_XB)(l + cosfg) — e 0xB)(1 — costp)]

1 : .
—|—§(1 + cos?0) [621(X_XB)(1 + cosfp)? + e H0xB)(] — cosQB)z]} , (E.4)

,]60(27 n) =0 5

,]61(27 ) =0 5

7'(2,n) =0,

762(2, n) = ? { — V6 sind sinfp cosfp sin(x — xB)
+£ cosf) sin?fp sin2(y — XB):| 7

T2(2,n) = —i? [sin@ {ei(X_XB) <cos@B - %) (cosfp + 1)
+eix—xz) <cos«93 + %) (1— cos@B)}
—% cosd sinfp [ezi(X_XB)(l + cosfg) + e AxB) (] — cos@B)}] :
T2(2,n) = —i? E sinf sinfp [/ XX5) (1 4 cosflp) + e XB)(1 — cosfp)]
+i cost [eQi(X_XB)(l + cosfp)? — e HOxB) (1 — 00893)2}] : (E.5)

and

Ty (3.m) =0,

161



3
7, (3,n) = %[COS@ cosflp + sinf sinfp cos(x — xB)] ,
V3[ 1
7. (3,n) = — | —= cosf sinfp
V21v2
b sinf [ei(X_XB)(l + cosflp) — e X8l (1 — cosp)]| .
2v2
77(3,m) =0,
7(3,m) =0,
T2(3,n) =0. (E.6)
2

We then expand the summations overk’, and(@ in Equation E.1) and write down the
expressions for th&,, and P, elements. We substitute in the expressiongfgrand Ps,
theTé(s evaluated for the incoming and the outgoing rays by maksegfiEquationsH.J)
and E.6) for the geometry considered in Sectié.3 After elaborate algebra, we finally
arrive at an expression for the frequency integrated foaelicircular polarization given by

I —2v/6W1s

= = = ) E.7
pv POO 16 — W220 — 3R6(W222) ( )

As discussed in Sectio6.4.3and in Section 10.20 dfandi Degl'lnnocenti & Landolfi
(2009, due to the double summations ov&rand K’ in Equation E.1) and due to the
fact that the spherical tens@p* (3, n) are non-zero only whef” = 1, orientation can be
produced in the upper term even when the circular poladmasi not present in the incident
radiation. This mechanism is therefore called the A-O cige mechanism. We identify
that the term withX' = 1 in the numerator of EquatiorE(7) is responsible for the A-O
conversion mechanism. We have discussed the signatures ofi¢chanism in the Stokes
V' parameter in Sectio@.4.

Note that we considePs, element to calculate the frequency integrated fractioimalitar polarization
and notPs3 as erroneously mentioned in Appendix CSdwmya et al(20158).
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