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ABSTRACT

The Sun is a unique physical laboratory in which the various domains of physics inac-

cessible to laboratories on earth can be studied in great detail. Its proximity allows us to

understand it in great depths. George Ellery Hale, in 1908, discovered the magnetic fields

in sunspots through his observations of the Zeeman effect (splitting of atomic lines in the

presence of a magnetic field). Advancements in observational techniques, and instrumen-

tation since then enabled us to see the Sun with a high resolution. This revealed that the

magnetic fields are present everywhere on the Sun and they govern its structure and dy-

namics. The terrestrial environment is now known to be influenced by the solar magnetic

fields. This is one of the reasons why their study is of great importance.

One of the methods to study and measure these magnetic fields is to analyze the po-

larization of the light emitted by the Sun. The traditionally observed intensity spectrum of

the Sun called the first solar spectrum gives substantial information about the structure and

composition of the solar surface layers (photosphere, chromosphere, transition region, and

corona). However, more detailed information like the strength and spatial distribution of

the solar magnetic fields can be obtained from the polarized light emitted by the Sun.

The line polarization arises due to the magnetic fields and the coherent scattering pro-

cesses taking place due to anisotropic illumination of the radiating atoms by the limb dark-

ened radiation. The linearly polarized solar spectrum produced by coherent scattering

mechanisms is called the ‘second solar spectrum’. Magneticfields generate polarization

via Zeeman effect and also modify the scattering polarization (via the Hanle effect). The

fingerprints of the magnetic fields are encoded in the polarization signals. The analysis

of these fingerprints is of high scientific interest, since they can be suitably exploited to

investigate the magnetic fields present in the solar atmosphere.

The most commonly used technique for the magnetic field diagnostics is the Zeeman

effect in which case the spectral lines are split by the external magnetic field. However,

if the magnetic field is very weak then Zeeman effect cannot beused for diagnosing the

field because it is practically difficult to measure extremely small splitting by instruments

with finite spectral resolution. Also, the Zeeman effect is blind to mixed polarity fields

V



within the resolution element of the telescope. These drawbacks can be overcome by the

Hanle effect which refers to the modification of the non-magnetic scattering polarization

by the magnetic fields. The Hanle effect can help to detect thefields that are either weak or

turbulent. Thus, it acts as a complementary diagnostic toolto the Zeeman effect.

In some situations, the magnetic field is so strong that it produces a splitting whose pat-

tern is very different from that expected for the Zeeman effect. Apart from completely split-

ting the atomic lines, it also causes the magnetic substatesof different atomic states belong-

ing to a given term to interfere. Such an effect of the magnetic field is called Paschen–Back

effect. It acts in those domains of field strength that are notaccessible through the stan-

dard techniques based on the Zeeman effect. Due to the different magnetic field strength

regimes in which they operate, the Hanle, Zeeman, and Paschen–Back effects complement

one another. The role played by the Paschen–Back effect in shaping the polarization pro-

files of the spectral lines needs to be understood in order to explore the possibility of using

the Paschen–Back effect as a diagnostic tool for magnetic fields. To this end, in this thesis,

we develop the scattering theory of Paschen–Back effect in atomic states by accounting

for the redistribution in the frequencies of the photons dueto Doppler shift and apply it

to analyze the polarization profiles of diagnostically important solar spectral lines. This

study is an important step forward in understanding the effects of strong magnetic fields

and their manifestation in the polarized line radiation emerging from the solar (or stellar)

atmosphere.

We have divided the thesis into two parts. The first part (Chapters2 and3) concerns the

problem of line radiative transfer in the presence of polarized blend lines and a polarized

continuum. Polarizing blend lines are known to influence thepolarization of the spectral

lines as well as the polarized background continuum. The theoretical modeling of any spec-

tral line in the second solar spectrum requires a proper treatment of these blend lines. With

this motivation, in Chapter2, we develop a formalism to include a blend line resulting from

transition in a two-level atom, having a non-zero intrinsicpolarization, formed under non-

local thermodynamic equilibrium conditions, in the polarized radiative transfer equation

in the presence of a weak magnetic field (the Hanle effect). Considering one-dimensional

isothermal atmosphere, we study in detail its influence on the main spectral line of interest,

also resulting from the transition in a two-level atom.

In Chapter3, we extend the formalism developed in Chapter2 to incorporate multiple

blend lines in the polarized transfer equation. This is important because generally more

than one blend line will be present in the wings of the main spectral line. Our formalism

can treat any number of blend lines, however, for the sake of simplicity, we present the

results of our study involving only two polarized blend lines. In this case we find that the
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blend line effects are important and needs to be considered when it is lying very close to the

main line and is relatively strong. As mentioned earlier, this study becomes important while

modeling the spectral lines in the second solar spectrum in order to extract the physical

quantities related to the magnetic field and the solar atmosphere.

In the second part of the thesis (Chapters4, 5, 6, and7), we develop the scattering theory

of Paschen–Back effect using the Kramers–Heisenberg scattering matrix approach. We

study the problem of quantum interfere (interference between the scattering amplitudes of

transitions) in the presence of a magnetic field of arbitrarystrength with a particular interest

in the Paschen–Back effect regime. The second solar spectrum hosts many spectral lines

which are governed by the quantum interference effects. Thepolarization features of such

lines can be explained only when interference effects are consistently accounted for. The

quantum interference occurring between the atomic states gets modified in the presence of

a magnetic field. We identify and study the signatures imprinted in the polarization profiles

by the quantum interference taking place in the presence of amagnetic field.

In Chapter4, we develop the scattering theory of Paschen–Back effect inhyperfine

structure states by considering a two-level atom which undergoes hyperfine structure split-

ting because of the interaction between the total angular momentum of the electron and the

nuclear spin. We consider frequency coherent scattering ofthe photons in the atom’s rest

frame and account for the partial frequency redistributioneffects in the laboratory frame

that arise due to Doppler motions of the atoms. We test this theory by taking example of

the NaI D2 line for which observable effects from the Paschen–Back regime are expected

for the magnetic fields present on the Sun. Since our aim is to identify and study the finger-

prints of Paschen–Back effect on polarization, we consideronly a single scattering of the

incident unpolarized radiation by the Na atom, avoiding thecomplications due to radiative

transfer.

We then formulate the theory of quantum interference between the fine structure states

in a two-term atom in the presence of arbitrarily strong magnetic fields (including the

Paschen–Back regime) by accounting for the effects due to partial frequency redistribu-

tion. We present the theoretical formulation as well as the results of the tests performed

in a single scattering on the LiI D1 & D 2 lines in Chapter5. This is the only line system

which is sensitive to Paschen–Back effect for the field strengths that are seen in the Sun

(the magnetic field strength required to see Paschen–Back effect in fine structure states for

other lines is much higher than those present in the Sun). Forthis line system, the effects

from the Paschen–Back regime are seen for field strengths typically present in sunspots.

We identify the various signatures of the level-crossings and avoided-crossings that take

place in the Paschen–Back regime.
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We also develop a more general scattering theory in Chapter6 which accounts for fine

and hyperfine structure interference simultaneously in thepresence of arbitrary strength

magnetic fields, for a two-term atom with hyperfine structure. We account for the effects

due to partial frequency redistribution. Due to the relevance to solar applications, we again

consider the LiI D1 & D 2 lines to test this theory in a single scattering of the unpolarized in-

cident radiation. We find that Paschen–Back effect results in net circular polarization value

(which is not seen in the case of Zeeman effect) and that this value has a particular pattern

of variation with an increase in the magnetic field strength.This net circular polarization

could serve as a diagnostic tool for solar magnetic fields.

In Chapter7 we describe our efforts to model the lithium lines using the last scattering

approximation method and the theory developed in Chapter6. We consider two levels of

approximations of the last scattering method originally developed for non-magnetic and

weak field cases and extend it to include the effects due to strong magnetic fields. We end

the thesis by summarizing the results and indicating the possible directions for future work

in Chapter8 and provide the additional details in the appendices.
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1
I NTRODUCTION

In this chapter, we introduce the basic concepts and terminology that will be used in the

present thesis which are essential for understanding its contents. We qualitatively describe

the relevant physical effects without going into detailed mathematical derivation except

when it is needed.

1.1 Representation of Polarized Radiation

The state of polarization of an electromagnetic radiation is completely specified by the four

Stokes parametersI, Q, U, andV . They were first defined by Sir George Gabriel Stokes

in 1852 as a mathematically convenient way of representing the partially polarized light

and later introduced in the astrophysical context byChandrasekhar(1950). I is the total

intensity,Q is a measure of the degree of linear polarization,U gives the orientation of the

plane of polarization, andV gives a measure of circular polarization.

Following the monograph byStenflo (1994), we describe below, the mathematical

framework that will be used in this thesis, to determine the state of polarization of a ra-

diation. For a more detailed description of the polarized light we refer the reader to this

monograph. When a polarized light travels through a medium,because of its interaction

with matter, its characteristics change. This interactioncan be calculated in a number of

ways. The simplest one is the Jones formalism, introduced in1941 by R. Clark Jones (see

Shurcliff, 1961; Collett, 1993; Clarke, 2010, for more details), where the electric vectorE

is decomposed into two mutually orthogonal directionse1 ande2, as

E = Re(E1e1 + E2e2) , (1.1)
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REPRESENTATION OFPOLARIZED RADIATION

and the Jones vectorJ is constructed usingE1 andE2, as

J =

(

E1

E2

)

. (1.2)

The complex amplitude and phase information are contained inE1 andE2. The interaction

of the polarized light with the medium is then represented bya2 × 2 Jones matrixw as

J = wJ ′ . (1.3)

Here,J ′ is the Jones vector of the light entering the medium andJ is that of the light

leaving the medium after interaction. It is important to note that the Jones formalism as-

sumes that the waves propagate in the orthogonal directionsmaintaining the same phase

or the same phase difference. This refers to radiation beamswhich are perfectly coherent

and perfectly polarized. In a statistical ensemble of uncorrelated photons (produced by in-

dependent processes) with different state of polarization, partial polarization arises due to

incoherent superposition. In order to deal with this, we usethe coherency matrixD which

is formed from the Jones vector as

D = JJ † , (1.4)

whereJ † denotes the adjoint ofJ (transposition and complex conjugation ofJ ). The

coherency matrix then transforms as

D = wD′w† . (1.5)

The polarized light is represented by a four component Stokes vector of the form

I = [I, Q, U, V ]T , (1.6)

and is related to coherency matrix through the expression

I = Tr(σD) . (1.7)

Here, Tr stands for trace which is the sum of all the diagonal elements andσ are the Pauli

spin matrices. The Stokes vector in a medium transforms according to

I = MI ′ , (1.8)
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whereM is the Mueller matrix which describes how an incident Stokesvector gets trans-

formed in a medium. It is defined as

M = TWT
−1 , (1.9)

where

W = w ⊗ w∗ =













w11w
∗
11 w11w

∗
12 w12w

∗
11 w12w

∗
12

w11w
∗
21 w11w

∗
22 w12w

∗
21 w12w

∗
22

w21w
∗
11 w21w

∗
12 w22w

∗
11 w22w

∗
12

w21w
∗
21 w21w

∗
22 w22w

∗
21 w22w

∗
22













. (1.10)

The symbols⊗ and∗ denote tensor product and complex conjugation, respectively. T and

T
−1 are the purely mathematical transformation matrices having the form

T =













1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0













; T
−1 =

1

2













1 1 0 0

0 0 1 i

0 0 1 −i
1 −1 0 0













. (1.11)

The formalism based on the Mueller matrix accounts for the partially polarized light.

Mueller matrix is an important tool in the measurement of polarized light (for more de-

tails, see, for example,del Toro Iniesta, 2004). In this thesis, we use the coherency matrix

formalism, following the approach developed byStenflo(1994, 1998).

1.2 Solar Polarization and Blend Lines

The criterion for radiation to get polarized is breaking of the spatial symmetry. In the so-

lar atmosphere this is met when there is an anisotropic illumination of the atoms or when

there is a magnetic or electric field present. The source of anisotropy is the limb darken-

ing, because of which a scattering atom receives more radiation from the vertical (radial)

direction, than from the horizontal (lateral) direction. When an atom is illuminated by such

an anisotropic radiation, population imbalances and coherences are introduced among the

magnetic substates. In other words, the atom gets polarized. This ‘atomic polarization’ is

transferred to the scattered photon in a coherent scattering event. Thus, there exist definite

phase correlations between the incident and scattered photons in such coherent processes.

The linear polarization gets generated in the scattering processes which are coherent. In the

incoherent processes, due to collisions the atom loses its memory of how it was excited, and

hence there exists no phase relation between the incident and scattered photons. Therefore,

3
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the scattered photon is unpolarized in an incoherent scattering event.

The degree of polarization depends on the degree of anisotropy that prevails in the

layers from where the photons are emitted. The degree of anisotropy is small in the solar

atmosphere and hence the degree of polarization is of the order of just a few percent. With

spectropolarimeters like ZIMPOL (Zurich Imaging POLarimeter, see, for example,Povel,

1995), it is possible to measure such weak signals. Maximum polarization is measured in

the limb observations and minimum in the disk center becauseof the axial symmetry of the

radiation field.

Magnetic fields play an important role in shaping the polarization profiles of the spec-

tral lines, as scattering polarization signals are sensitive to their presence. They modify the

polarization generated in non-magnetic coherent scattering events and give rise to observ-

able signatures in the polarization through a series of interesting physical mechanisms. The

analysis of these signatures is of high scientific interest,since they can be suitably exploited

to investigate the magnetic fields present in the solar atmosphere (or in other astrophysi-

cal plasma). See Section1.7 for more details on the solar magnetic fields and the various

techniques used to determine them.

Figure 1.1: The second solar spectrum in the range3770 − 3780 Å (Gandorfer, 2005b).
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1.2.1 The Second Solar Spectrum

A record of the linear polarization resulting from the coherent scattering processes in the

Sun as a function of wavelength is called the ‘second solar spectrum’ (seeGandorfer, 2000,

2002, 2005a). In Figure1.1, we show the second solar spectrum (Q/I panel) recorded in

the wavelength range3770 − 3780 Å (Gandorfer, 2005b), along with the regular intensity

spectrum which is called the first solar spectrum. As we can see from this figure,Q/I spec-

trum is very different from the intensity spectrum and hencethe name second solar spec-

trum (Ivanov, 1991; Stenflo & Keller, 1997). It contains a wealth of information about the

various physical processes governing the structure and dynamics of the solar atmosphere.

It is highly structured and is characterized by a polarized background continuum on which

the spectral lines superpose. The physical mechanisms generating it are different from the

ones which give rise to the intensity spectrum. To explain these mechanisms, scattering

theories were formulated based on the principles of quantummechanics. Using these the-

oretical formulations, it is possible to characterize the layers in the solar atmosphere from

where the polarization is generated. This opened a previously unexplored window to study

the solar atmosphere (see, for example,Stenflo, 2009a,b, 2011).

1.2.2 The Blend Lines

As mentioned in Section1.2.1, the second solar spectrum is characterized by numerous

spectral lines which are formed at different heights in the solar atmosphere. Modeling their

polarization profiles is one of the ways to map the variation of different physical quantities

within the atmosphere. This requires a proper treatment of the blend lines which are known

to affect the polarization of these spectral lines of interest. In Figure1.1, if we consider

the spectral line marked by an arrow in the intensity panel asthe main line of our interest,

then we refer to all the other lines present in this wavelength window as blend lines. The

blend lines can arise from the transitions in the same atomicspecies as the main line or

from different atomic species. For simplicity, they are generally assumed to be formed in a

medium under local thermodynamic equilibrium (LTE1) condition and are also assumed to

be unpolarized. The background continuum radiation is polarized by Rayleigh scattering on

neutral hydrogen and Thomson scattering on free electrons.The intrinsically unpolarized

spectral lines dilute the polarized continuum photons and depolarize the continuum. Blend

lines, in reality, can be either polarizing or depolarizing.

1 The LTE represents the transfer of radiation in a denser medium, where the collision processes dominate.
The absorption and emission processes are sufficient to define the local source function, which at a given point
in the medium is given simply by the Planck function at the local temperature. In the solar atmosphere, LTE
is a good approximation in the deeper photospheric layers.
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In polarization measurements and modeling of a spectral line, determining the absolute

zero level of polarization is very important but remains a challenge (seeStenflo et al., 1998)

because of the instrumental polarization. One of the ways toarrive at the absolute scale

for the polarization measurements is to use the blend lines.Stenflo(2005) presented the

method of using the blend lines for this purpose.Smitha et al.(2014) used the blend lines

to determine the zero level of polarization in their effortsto model the ScII 4247 Å line. In

PartI of this thesis, we present a formalism to treat both polarizing and depolarizing blend

lines formed in non-LTE (NLTE2) conditions, and the ways to use them for modeling main

line polarization.

1.3 Frequency and Angular Redistribution in Scattering

Events

In scattering processes, the frequencies, polarization and directions of the photons get re-

distributed. By considering a two-level atom (a simple atomic configuration having only a

lower and an upper level between which the transitions occur), in this section, we describe

the various types of redistribution that occurs in the atom’s rest frame. We refer the reader

to Mihalas(1978) andHubeny & Mihalas(2015) for detailed discussions on this topic.

Type I: This is an idealized situation where we consider both the levels of the two-level

atom to be infinitely sharp. In this case, there is no redistribution in the atom’s frame. Type

I redistribution does not apply to any real line, however, itis useful in understanding the

redistribution which occurs due to Doppler motion as seen byan observer in the laboratory

frame.

Type II : In this case, we assume that the lower level is infinitely sharp and the upper

level is only radiatively broadened because of Heisenberg’s uncertainty principle. Further,

we assume that there are no additional perturbations (such as collisions) to the upper level

so that when the atom de-excites, it emits a photon of the samefrequency as was absorbed.

No redistribution occurs in the atom’s frame. This applies to a resonance line (for which

the lower level is an infinitely long lived ground state) formed in low density layers where

collisions are negligible.

Type III : We consider the lower level to be infinitely sharp as before but the upper level

is now both radiatively and collisionally broadened. Because of collisions, the excited elec-

2 The NLTE represents the transfer of radiation in a rarefied medium, where the scattering processes
dominate. The source function at a given point is decoupled from the local temperature and is controlled by
the photons arriving from other points within the medium. NLTE prevails in the low density layers of the
solar atmosphere, namely, the upper photosphere and the chromosphere.
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trons get reshuffled within the broadened upper level beforethe de-excitation occurs. The

atom therefore emits photon which will have no correlation with the incident photon. There

will be complete frequency redistribution (CRD) in the atom’s frame. This is applicable to

lines formed in high density layers dominated by collisions.

Type IV : In this situation, we assume both the lower and upper levelsto be having finite

width. The absorption and emission occurs between the radiatively broadened levels. This

picture is suitable to describe the redistribution in subordinate lines.

The description of all these types of redistribution as seenby an observer in the labo-

ratory frame are given inHummer(1962). Heinzel(1981) derived the expression for the

type IV redistribution in the laboratory frame. This function is called the type V function.

See alsoHubený(1982) andHeinzel & Hubený(1982) for non-coherent scattering in sub-

ordinate lines. In this thesis, we use both angle averaged and angle dependent forms of

Hummer’s functions.

1.3.1 Redistribution Matrix

In the scattering theory as applied to the astrophysical problems, the functions which de-

scribe the correlations between the frequencies and anglesof the absorbed and emitted

photons are called the redistribution functions. The polarization correlations are described

by the matrices called the phase matrices. In the simpler non-magnetic case, the prod-

uct of the two is referred to as the scattering matrix or the redistribution matrix (RM). In

the magnetic case, the angle, frequency, and polarization correlations in general cannot

be factorized. They can at most be expressed as combinationsof these correlation func-

tions. For atoms under the influence of a magnetic field, the RMis generally denoted as

R(x, x′,n,n′; B) wherex′ andn′ are the frequency and direction of the absorbed pho-

ton, andx andn are the corresponding quantities for the emitted photon.B is the vector

magnetic field whose strength isB, inclination isθB, and azimuth isχB with respect to

the atmospheric reference frame, which is the frame fixed to the star, with thez-axis be-

ing normal to the atmosphere. RM contains the atomic physicsof scattering and is a very

important tool in understanding the generation and transfer of polarized radiation field.

For resonance lines, the scattering events that occur can beexpressed as a mixture of

the type II and type III processes. The resulting spectral lines will show the effects due

to both perfectly frequency coherent and incoherent scattering events. Therefore, one has

to use the RM for both these types of scattering and combine them appropriately using

the branching ratios which depend on the parameters that account for the radiative and

collisional processes. This is referred to as the partial frequency redistribution (PRD). In
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PartI of the thesis, we deal with both type II and type III scattering processes. In PartII ,

we consider only the type II processes in the atom’s rest frame and derive the RM (or the

PRD matrix) in the laboratory frame accounting for the redistribution which occurs due to

the Doppler shift. We consider atomic systems which are morecomplex compared to the

simple two-level atom model. To achieve this task, we make use of the coherency matrix

formalism presented in Section1.1 along with the Kramers–Heisenberg formula. This

formula gives the scattering amplitude for a generala→ b→ f type transition wherea, b,

andf are the initial, intermediate, and final states. It was derived byKramers & Heisenberg

(1925) based on the correspondence principle applied to the classical dispersion relation for

light. A quantum mechanical derivation of the Kramers–Heisenberg formula was given by

Dirac (1927a,b).

1.3.2 A Brief History of PRD

In PRD, there exists a correlation between the frequencies and angles of the absorbed and

scattered photons. It is now known that the PRD mechanism plays a crucial role in shaping

the polarization profiles of the spectral lines, particularly the resonance lines. PRD affects

both the intensity and polarization and gives rise to a characteristic triple peak structure

(see, for example,Mihalas, 1978; Rees & Saliba, 1982).

PRD was first introduced to explain the linear polarization profiles of resonance lines by

Zanstra(1941a,b). Its first quantum electrodynamical treatment was given byOmont et al.

(1972) for the non-magnetic case which was later extended to include the magnetic fields

by Omont et al.(1973). The functional forms of the RMs ofOmont et al.(1972) for prac-

tical applications were provided byDomke & Hubeny(1988). Using the approach based

on the quantum electrodynamics,Bommier(1997a,b) formulated the matrices for the non-

magnetic and magnetic cases, properly taking account of thecollisional redistribution. A

modern approach for the atomic frame RM based on the classical oscillator model was

given byStenflo(1994, 1998) and later extended byBommier & Stenflo(1999) to include

the effects of collisions. Based on the density matrix approach, using the concept of met-

alevels,Landi Degl’Innocenti et al.(1997) derived the RMs for coherent scattering in the

atom’s rest frame in the absence of collisions.Sampoorna et al.(2013) presented a heuristic

theoretical approach to the problem of polarized line formation in multi-level atoms taking

into account the effects of PRD and a weak magnetic field. See the review byFrisch(1996)

for more details.

There are more recent formulations of PRD matrices for more general physical mecha-

nisms. For example,Sampoorna et al.(2007a) derived the Hanle-Zeeman PRD matrix for
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the simpler case of a normal Zeeman effect (see Section1.7.1) and for a coordinate system

in which thez-axis is along the magnetic field.Sampoorna(2011a) generalized the PRD

theory of Sampoorna et al.(2007a) to other types of transitions with arbitrary quantum

numbers. This theory accounts for the quantum interference(see Section1.6) between the

magnetic substates of a given atomic state.Smitha et al.(2011b) developed the PRD theory

of quantum interference between the fine structure states ofan atom by considering the up-

per states to be only radiatively broadened and in a later paper (Smitha et al., 2013a) devel-

oped a heuristic approach to include the effects of elastic collisions. Smitha et al.(2012b)

formulated the PRD theory for the quantum interference taking place between the hyper-

fine structure states in the absence of magnetic fields and collisions. Recently,Casini et al.

(2014) developed an approach based on the Feynman diagrams representing atom-photon

interaction and presented the generalized frequency redistribution functions for arbitrary

magnetic fields. In this thesis, we extend the PRD theories ofSmitha et al.(2011b) and

Smitha et al.(2012b) to include the effects of magnetic fields of arbitrary strength and also

formulate a more general theory which can treat the quantum interference among the fine

and hyperfine structure states, simultaneously (see PartII of the thesis for more details).

See the review articles byNagendra(2014, 2015) for discussions on the role played by

PRD in scattering.

1.4 Atomic Configurations

In this section, we discuss the various atomic configurations that we consider in our stud-

ies. We assume that the lower level is infinitely sharp and unpolarized throughout. For

simplicity, we show only the atomic configurations in the absence of magnetic fields when

the magnetic substates are degenerate. All the atomic transitions considered in this thesis

are of electric dipole type.

1.4.1 Two-Term Atom without Hyperfine Structure

An atomic term is characterized by the orbital angular momentum quantum numberL and

spin quantum numberS of the electron, under the approximation that the atom undergoes

spin-orbit coupling. TheL− S coupling results in states labeled by the total electronic an-

gular momentum quantum numberJ . The term symbol generally followed in spectroscopy

is given by(2S+1)LJ . In the two-term atom that we deal with in this thesis, the lower term

is 2S (L = 0, S = 1/2) and the upper term is2P (L = 1, S = 1/2). TheL − S coupling

gives rise to2S1/2 state in the lower term, and2P1/2 and 2P3/2 states in the upper term,
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according toJ = |L − S|...L + S. In Figure1.2, we show the two-term configuration in

L=0

S=1/2

L=1
J=3/2

J=1/2

J=1/2

D1
D2

2
P

2
S

Figure 1.2: A two-term configuration taking example of LiI D1,2 doublet. The splittings
are not to the scale.

Li atom. We study the effects of a magnetic field on this systemin Chapter5. The dipole

type transitions in a two-term atom follow the selection rules∆L = 0,±1 (L = 0 9 0),

∆S = 0, and∆J = 0,±1 (J = 0 9 0). When a magnetic field is applied, the degeneracy

of the magnetic substates is lifted and the transitions occurring between these states obey

∆µ = 0,±1, with µ being the magnetic quantum number labeling the magnetic substates

of theJ states.

1.4.2 Two-Level Atom with Hyperfine Structure

The two-level atom that we consider has twoJ states belonging to two different terms.

When the atomic nucleus possesses a spinIs (Pauli, 1924), the coupling betweenJ and

Is results in hyperfine structure states labeled by the total angular momentum quantum

numberF so thatF = J + Is. TheF states are given by the vector addition formula

J=1/2

J=3/2
F=3

F=2

F=1

F=0

F=1

F=2

Is=3/2D2

Figure 1.3: A two-level atom with hyperfine structure takingthe example of NaI D2 line.
The splittings are not to the scale.

F = |J − Is|, ......, J + Is. The number ofF states into which a givenJ state splits is
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given bymin(2J + 1, 2Is + 1). For electric dipole transitions between theF states the

selection rules are∆J = 0,±1 (J = 0 9 0), ∆F = 0,±1 (F = 0 9 0), and∆µ = 0,±1.

Here,µ denotes the magnetic substates of theF states. The electric dipole nature of the

interaction does not permit transitions amongF states of a givenJ state. Figure1.3shows

the configuration of Na atom which we deal with in Chapter4. In PartI of the thesis, a

two-level atom model without hyperfine structure is considered.

1.4.3 Two-Term Atom with Hyperfine Structure

In Section1.4.1, we did not account for the hyperfine structure states that results because

of the coupling betweenJ andIs. Certain spectral lines in the second solar spectrum are

L=0

S=1/2

L=1

J=3/2

J=1/2

J=1/2

Is=1

F=1/2

F=5/2

F=3/2

F=1/2

F=3/2

F=3/2

F=1/2

2
P

2
S

Figure 1.4: A two-term atom with hyperfine structure taking the example of D1 and D2

lines of6Li. The splittings are not to the scale.

L=0

S=1/2

L=1

J=3/2

J=1/2

J=1/2

Is=3/2

F=1

F=3

F=2

F=1

F=2

F=2

F=1

F=0

2
P

2
S

Figure 1.5: A two-term atom with hyperfine structure taking the example of D1 and D2

lines of7Li. The splittings are not to the scale.

known to be influenced by both fine and hyperfine structure. To study such lines, one has
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to deal with two-term atom with hyperfine structure. In Chapters6 and7, we treat the lines

resulting from transitions between the2S and2P terms of two stable isotopes6Li and 7Li

(see Figures1.4and1.5). The selection rules for the electric dipole transitions are the same

as the ones discussed in Sections1.4.1and1.4.2.

Throughout this thesis, we denote the levels from which the absorptions occur with

subscriptsa, the levels to which the absorptions take place with subscriptsb, and the levels

to which the emissions happen with subscriptsf .

1.5 Theory of Fine and Hyperfine Structure in Atoms

In this section, we briefly introduce the derivation of the expressions for the fine and hy-

perfine structure interaction Hamiltonians which will be used in PartII of the thesis. We

follow Condon & Shortley(1935); Corney(1977) andWoodgate(1992) for this purpose

and recall their expressions here, for the sake of completeness.

1.5.1 Fine Structure Hamiltonian

The fine structure states arise due to the energy change produced by the interaction between

the spin moment and the magnetic moment generated because ofthe orbital motion of the

electron (see Section1.4). In this thesis, we consider only the spin-orbit coupling arising

from the relativistic orbital motion of electrons possessing spin in an electric field produced

by the nuclear charge.

For a single electron system, this interaction can be represented by the spin-orbit Hamil-

tonian

Hfs = −µs · Bl , (1.12)

where the spin magnetic moment of the electronµs is given by

µs = −gsµBs . (1.13)

Here, the spin-g factor gs = 2 andµB = e~/2me is the Bohr magneton whereme is

the mass of the electron,e is its charge and~ = h/2π (h is the Planck constant). In

Equation (1.12), Bl is the magnetic field generated at the electron because of itsorbital

motion and is given by

Bl = −v × E

c2
, (1.14)

wherec is the speed of light,v is the velocity of the electron andE is the electric field

generated by the nucleus. Using the fact thatE is radial and the momentump = mev, we
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can rewrite Equation (1.14) as

Bl =
r × p

mec2
E

r
. (1.15)

We know that,

l =
r × p

~
; E =

1

e

dV (r)

dr
; V (r) = − Ze2

4πǫ0r
. (1.16)

Using these in Equation (1.15) we get

Bl =
~

meec2
1

r

dV (r)

dr
l . (1.17)

The Hamiltonian in Equation (1.12) now becomes

Hfs =
~2

2m2
ec

2

Ze2

4πǫ0r3
s · l , (1.18)

whose expectation value gives the first order energy shiftEfs, arising from the spin-orbit

interaction. The extra factor1/2 comes because of the relativistic corrections.

From the vector model of the atom, we know thatj = l + s. Also,s · l commutes with

l2, s2, j2 andjz which have a common eigenvector|lsjµ〉 whereµ is the eigenvalue of the

operatorjz. We can now computeEfs as

Efs = 〈lsjµ|ξs · l|lsjµ〉 , (1.19)

where

ξ =
~2

2m2
ec

2

Ze2

4πǫ0
〈r−3〉 . (1.20)

We can expresss · l as follows

j2 = j · j = (l + s) · (l + s) = l2 + s2 + 2s · l , (1.21)

from which we can write

s · l =
1

2
[j2 − l2 − s2] . (1.22)

Using Equation (1.22) in Equation (1.19) and using the expectation values of the operators

j2, l2, ands2, we arrive at

Efs =
ξ

2
[j(j + 1) − l(l + 1) − s(s+ 1)] , (1.23)

which is the energy shift produced by the spin-orbit interaction for a single electron system.
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For a multi-electron system, we can generalize the spin-orbit Hamiltonian as

Hfs =
∑

i

ξ(ri)li · si , (1.24)

and the various angular momenta as

L =
∑

i

li; S =
∑

i

si; J = L + S . (1.25)

Here,i = 1, 2, ...n with n being the total number of electrons. The Hamiltonian is now

given by

Hfs = ζ(LS)L · S , (1.26)

andHfs commutes withJ2,L2,S2, andJz. With the basis vector|LSJµ〉 (whereµ = Jz)

we arrive at

Efs =
ζ(LS)

2
[J(J + 1) − L(L+ 1) − S(S + 1)] , (1.27)

whereζ(LS) includes theξ for each electron and has the dimension of energy. We make

use of Equation (1.27) to calculate the energies of the fine structure states in Chapters5, 6,

and7.

1.5.2 Hyperfine Structure Hamiltonian

Hyperfine structure is due to the interaction between the electromagnetic multipole mo-

ments of the nucleus with the electromagnetic field generated at the nucleus by the elec-

trons. The largest contributions to the hyperfine structurecome from the interaction of

nuclear magnetic dipole moment with an electronic magneticfield and of nuclear electric

quadrupole moment with a gradient of the electronic electric field. The contributions from

other terms in the multipolar expansion are either negligible compared to these two terms

or vanish because of the parity and time-reversal symmetries.

Magnetic dipole interaction: The interaction of the nuclear magnetic momentµIs

with the magnetic fieldBel produced at the nucleus by the electrons is described by the

Hamiltonian

HD = −µIs
· Bel . (1.28)

We assume that the unperturbed Hamiltonian contains the central field, the electrostatic

repulsion terms between electrons, and the spin-orbit interaction so that we have to consider

only those states labeled by(LSJ). This approximation is in analogy with theL − S

14



INTRODUCTION

coupling and is calledIs − J coupling. This allows one to write

µIs
= gIs

µNIs , (1.29)

wheregIs
is the nuclearg factor,µN = e~/2M is the nuclear magneton andM is the mass

of the proton. Since we assume thatµIs
depends only on the nuclear coordinates andBel

only on the electronic coordinates, we can write, using theIs − J coupling approximation

Bel ∝ J , (1.30)

and therefore

HD = AJIs · J . (1.31)

Here,AJ is the magnetic dipole interaction constant. To the first order the energy shift of a

stateJ because of the magnetic dipole interaction is given by the expectation value of the

HamiltonianHD

ED = 〈JIsFµ|AJIs · J |JIsFµ〉 =
AJ

2
K , (1.32)

whereK = [F (F + 1) − J(J + 1) − Is(Is + 1)] andµ is the eigenvalue ofFz. We have

usedF = Is + J from the vector model of the atom.

Electric quadrupole interaction: The electrostatic interaction between a proton of

chargee at the pointrn and an electron of charge−e at the pointre is given by

HQ = − e2

4πǫ0|re − rn|
, (1.33)

where the origin of the coordinates is the center of mass of the nucleus. To account for

the finite extent of the nuclear charge distribution, we assumere > rn and expandHQ in

ascending powers ofrn/re as

HQ = − e2

4πǫ0
(r2

e + r2
n − 2rerncos θen)−1/2 ,

= − e2

4πǫ0

∑

k

rk
n

rk+1
e

Pk(cos θen) , (1.34)

wherePk(cos θen) is the Legendre polynomial of orderk andθen is the angle betweenre

andrn.

The first term in Equation (1.34) represents a monopole interaction. As discussed ear-

lier, the moments of oddk vanish because of the parity and time-reversal symmetry. We
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can now separate the electric and nuclear coordinates in Equation (1.34) by applying the

spherical harmonic addition theorem as

Pk(cos θen) =
4π

2k + 1

k
∑

q=−k

(−1)qY −q
k (θn, χn)Y q

k (θe, χe) , (1.35)

whereY q
k is the qth component of the spherical harmonic of orderk and the spherical

coordinates (θ, χ) are measured with respect to an arbitraryz-axis. Fork = 2, HQ takes

the form

HQ = − e2

4πǫ0

r2
n

r3
e

P2(cos θen) ,

= − e2r2
n

4πǫ0r3
e

4π

5

2
∑

q=−2

(−1)qY −q
2 (θn, χn)Y q

2 (θe, χe) ,

=

2
∑

q=−2

(−1)q

{

√

4π

5
er2

nY
−q
2 (n)

}{

√

4π

5

( −e
4πǫ0r3

e

)

Y q
2 (e)

}

,

=
∑

q

(−1)qQ−q
2 (n)F q

2 (e) . (1.36)

When summed over all the protons and electrons, this equation gives the complete electric

quadrupole interaction. It can be simplified by defining the nuclear quadrupole moment

and the average gradient of the electric field produced by theelectrons. It finally leads us

to the Hamiltonian

HQ =
BJ

2Is(2Is − 1)J(2J − 1)

{

3(Is · J)2 +
3

2
(Is · J) − Is(Is + 1)J(J + 1)

}

, (1.37)

and its expectation value gives the energy shift due to electric quadrupole interaction as

EQ =
BJ

8Is(2Is − 1)J(2J − 1)
{3K(K + 1) − 4J(J + 1)Is(Is + 1)} , (1.38)

whereBJ is the electric quadrupole interaction constant. In Chapters 4, 6, and7, we use

the expressions forED andEQ to obtain the energies of theF states.

1.6 Quantum Interference Phenomena

The transitions in a two-term atom (see Section1.4) give rise to multiplets. The spectral

lines constituting the multiplets interact with each otherand give rise to interesting sig-
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natures in the second solar spectrum. One such feature observed is the crossover inQ/I

between the CaII H and K lines. Figure1.6shows the non-magnetic observations of the lin-

ear polarization in this doublet obtained near the solar limb. In such observations the only

source of polarization is the coherent scattering in lines.A simple two-level atom model

for the doublet without fine structure interaction could notexplain the crossover effect.

crossover

Figure 1.6: Observed (solid line) and theoretical (dotted)profiles of the CaII H and K lines
given inStenflo(1980). Notice the crossover between the K and H lines.

Stenflo(1980) showed that this signature is a result of the quantum mechanical interfer-

ence that always occurs between the scattering transitionsbelonging to a multiplet. CaII H

and K lines result from the transitions in a two-term atom like the one shown in Figure1.2.

J = 1/2 → 1/2 transition gives rise to H line, andJ = 3/2 → 1/2 to the K line. The

S-shaped profile seen in the observations is attributed to thequantum interference between

the upperJ = 1/2 andJ = 3/2 states. This means that the scattered photons arise due

to a joint probability of transitions from both the upperJ states to the lowerJ state. This

is analogous to the probability of a photon passing through both the slits simultaneously

in the double-slit experiment. The photons scattered on thecalcium ions do not choose

whether to scatter via H or K line. In fact, they have a joint probability of scattering in both

the lines at the same time.

Mathematically this arises due to the fact that the wave function ψ of an atomic state

can be expressed as a superposition ofn substates asψ =
∑

n cnφn and the probability of
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Figure 1.7: Examples of the spectral lines showing effects due toF -state interference. This
figure is taken fromBelluzzi (2009). The observations of the Na and Ba lines presented
here were first reported byStenflo & Keller(1997). The upper panels show the intensity
and the lower panels the degree of linear polarization.

finding the system to be in a given state is

|ψ|2 = |
∑

n

cnφn|2 , (1.39)

and not

|ψ|2 =
∑

n

|cnφn|2 . (1.40)

Equation (1.39) involves cross products which represent interference in addition to the

terms given by Equation (1.40). From this it can be clearly understood that the scattering

amplitude resulting from the calcium ions is a linear superposition of the scattering ampli-

tudes for the H and K transitions (Stenflo, 1980, 2009a). This type of quantum interference

taking place between theJ states is calledJ-state interference. The interference which

occurs between theF states is calledF -state interference. We study the effect of a mag-

netic field on these types of interference, in PartII . The interference between the magnetic

substates of a givenJ or F state is called asm-state interference wherem is the magnetic

quantum number (seeStenflo, 1994; Sampoorna, 2011a)3. Figure1.7 shows some of the

other examples of the spectral lines which are influenced by the interference phenomena.

3See alsoBommier(1997a,b)
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1.7 A Brief Introduction to Magnetic Fields on the Sun

The existence of magnetic fields on the Sun (in sunspots) was first discovered by George

Ellery Hale in 1908 through the observations of Zeeman effect (Hale, 1908a,b). Soon

after it was observed that the magnetic fields are also present in the regions other than

sunspots. Since then a lot of advancement has taken place in understanding the mechanisms

generating these fields, their nature and distribution. Seethe review article byStenflo

(2015a) for the history of solar magnetic fields since the time of their discovery by Hale.

Sun is the only star for which we have the possibility to resolve and study in detail

the interaction between the magnetic fields and matter. Withthe help of several ground

and space based observations, we now know that the Sun is a highly magnetized sphere.

Magnetic fields, whose strengths vary from a few gauss to a fewkilogauss, govern the

structure and dynamics of the Sun. They contribute to the heating of the corona, which is a

long standing problem in the field of solar physics which is not yet completely understood.

They give rise to energetic phenomena like flares, prominences, coronal mass ejections etc.

(see, for example,Howard, 1971; Kundu et al., 1989; Wilson, 1999). The coronal mass

ejections drive the solar winds which govern the space weather. The magnetic fields in the

solar winds interact with the earth’s magnetosphere and directly influence the terrestrial

environment. Therefore, the study of the solar magnetic fields is of profound importance.

The rapidly varying solar magnetic fields can be studied in numerous ways (Beckers,

1971; Stenflo, 1978b; Landi Degl’Innocenti, 1985, 1992). Measurements based on the

polarization of the electromagnetic radiation involves methods which use Zeeman effect,

Hanle effect, gyro-synchrotron radiation (radio observations), and Faraday rotation. A few

methods use magnetohydrodynamics effects on the solar atmosphere like alignment of the

structures, local changes in the temperature and pressure,Alfven velocity, prominence os-

cillations etc. Theoretical considerations involve force-free potential field calculations and

equipartition of magnetic and kinetic energies. In-situ measurements in the solar wind

region and using the information on the primordial magneticfields contained in the mete-

orites are among the other methods to study the solar magnetic fields.

1.7.1 The Zeeman Effect

Splitting of a spectral line into differently polarized components by the magnetic field

present in the region of line formation is termed as the Zeeman effect. It was discov-

ered by Pieter Zeeman in1896 (Zeeman, 1897). The amount of splitting is proportional to

the magnetic field strength, the square of the line center wavelength and the Landé factor
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which depends on the quantum numbers of the levels involved in the transition. Since the

discovery of magnetic fields on the Sun by Hale, Zeeman effecthas been the main tool for

their diagnostics.

In the case of normal Zeeman effect (J = 0 → 1 → 0 transition), three components re-

sult: one unshiftedπ component and two oppositely shiftedσ components (see Figure1.8).

Theπ component vanishes when the magnetic field is parallel to theline of sight (longitudi-

nal Zeeman effect) and the twoσ components are left and right circularly polarized. When

the magnetic field is perpendicular to the line of sight (transverse Zeeman effect), all the

three components are present. The strength of theπ component equals the sum of the two

σ components. Essentially, the linear polarization responds to the transverse Zeeman effect

and the circular polarization to the longitudinal Zeeman effect. Therefore, in principle, it

is possible to derive the strength and geometry of the magnetic field by the simultaneous

measurement of the Stokes parameters (seeStenflo, 1978b).

J=0

J=1

+1

0

-1

0

πσr σb

I

Q

U

V J=0

J=1
+1

0

-1

0

I

Q

U

Figure 1.8: Quantum mechanical picture of the Zeeman (left)and Hanle (right) effects.
The splittings are not to the scale in the illustration.

Zeeman effect depends on the ratio of the magnetic splitting(MS), and the Doppler

width (which is substantially larger than the natural widthof the line). Thus, the Zeeman

effect is relatively insensitive to weak fields. Zeeman effect vanishes if the fields are turbu-

lent and tangled within the resolution element because the polarization from the opposite

polarities cancel out due to symmetry. Therefore, it is muchsuited for studying resolved

strong fields which are unbalanced in the resolution elementof the telescope.

1.7.2 The Hanle Effect

Scattering in a spectral line in the absence of a magnetic field produces linear polarization.

This is called as Rayleigh scattering or resonance scattering in spectral lines. Hanle effect

refers to the modification by the magnetic field, of the scattering polarization generated

by resonance scattering in the line. The magnetic field rotates the plane of polarization,

and leads to a decrease in the degree of linear polarization in the line core. This means
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that the StokesU signal is generated and the magnitude of the StokesQ is reduced (as

compared to its value in the non-magnetic case). These signatures help in the measurement

of magnetic fields. Therefore, in recent years, Hanle effecthas emerged as a diagnostic

tool complementary to the Zeeman effect.

When the magnetic substates are not completely split by the magnetic field, the scat-

tering transitions take place from the overlapping substates, as shown in Figure1.8. This

type of interference was first discovered in resonance linesby Rayleigh(1922) in his light

scattering experiment with mercury vapor in the absence of magnetic fields (however, the

Earth’s magnetic field was not shielded).Wood & Ellet (1923) studied the depolarization

caused by weak applied magnetic fields.Hanle(1923, 1924) performed an experiment with

weak applied magnetic fields, and observed for the first time,the so called ‘Hanle depolar-

ization’, and a rotation of the plane of polarization. He also gave a correct explanation for

this phenomena and hence the effect is named after him as Hanle effect. Hanle effect played

a fundamental role in the development of quantum mechanics in clarifying the concept of

linear superposition of stationary states in atoms. For a variety of applications of Hanle

effect in the main land of physics and also astrophysics, seeMoruzzi & Strumia(1991).

Hanle effect depends on the natural width of the levels and the amount of splitting

caused by the magnetic field and does not depend on the Dopplerwidth of the spectral

lines. It is, therefore, sensitive to oriented fields that are weak, and also to the fields of

mixed polarity within the resolution element (which are notaccessible by the Zeeman ef-

fect, seeStenflo, 1978b, 2002, 2015a). The Hanle sensitivity regime varies depending on

the spectral line under consideration.Trujillo Bueno (2001) showed that for typical solar

lines in the optical domain, the upper level Hanle effect sensitivity is in the range1 to 100

gauss, while that for the lower level is between10−3 and1 gauss. The Hanle and Zeeman

effects therefore complement each other in a rather ideal way in terms of field strength

regime.

In recent years, Hanle effect has found many applications inthe determination of mag-

netic fields. Its first application in astrophysics was byLeroy et al.(1977, see alsoLeroy

1985; Bommier et al. 1985) to determine the magnetic fields in the prominences. Hanle

effect in turbulent and oriented fields were also observed byStenflo(1982). Indeed the

diagnostic potential of Hanle effect to detect turbulent fields was clearly demonstrated by

Stenflo in his paper (1982).Faurobert-Scholl et al.(1995) used the Hanle effect to deter-

mine the turbulent magnetic field strength in the solar photosphere andFaurobert-Scholl

(1996) addressed the problem of the diagnostics of weak magnetic fields in the solar

photosphere and chromosphere by means of their Hanle effectin some selected absorp-

tion lines. Faurobert(2000) showed how the Hanle effect may be used for the diagnos-
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tics of magnetic canopies in the chromosphere (see alsoFaurobert, 2003). Some of the

other studies related to the measurement of weak magnetic fields using the Hanle effect

can be found in the papersStenflo(2002); Trujillo Bueno (2003a); Trujillo Bueno et al.

(2005, 2006) andFaurobert(2012). See the monograph byStenflo(1994) and the book by

Landi Degl’Innocenti & Landolfi(2004) for full theoretical details.

1.7.3 The Paschen–Back Effect

When the magnetic field is strong enough to produce a splitting which is comparable to or

greater than the separation between the atomic states of a given term in the absence of the

magnetic field, the magnetic substates belonging to different atomic states interfere. This

effect is called the Paschen–Back effect (PBE). The magnetic field influences the coupling

between the orbital and spin angular momenta, leading to a splitting pattern different from

that of the Zeeman effect. This effect was discovered by Friedrich Paschen and Ernst Back

in 1912 (Paschen & Back, 1912).

I

Q

U

V

 J states

Interfering magnetic

substates

Infinitely sharp

ground state

} mixed J states

Figure 1.9: Illustration of the atomic level mixing in the PBregime for fine structure. The
splittings are not to the scale.

PBE depends on the ratio of MS to the atomic (fine or hyperfine structure) splitting.

If the ratio is less than1, then the effects are still described by the Zeeman effect. We

enter a regime called the incomplete Paschen–Back (PB) regime when the ratio is close to

1. This regime is characterized by nonlinear MS. When the ratio of the splittings is much

greater than1, we see the effects due to complete PBE. In this regime, MS is linear like in

the Zeeman effect. The spectral lines formed in the PB regimeviolate the ordinary selec-

tion rules as a result of which the spectral lines will compose of the previously forbidden

transitions. This comes as a consequence of the mixing of theatomic states due to which
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the quantum numbers cannot be precisely defined for these mixed states (see, for example,

Condon & Shortley, 1935). In Figure1.9, we illustrate the mixing of fine structure states

in the PB regime. More details on the effects of such a mixing are provide in PartII of the

thesis.

PBE in molecules is of great significance in the stellar astrophysics because of its poten-

tial as a tool in diagnosing magnetic fields present in the stars. Over the last few years, the

theoretical formulations for PBE in molecules have been developed and applied for mag-

netic field diagnostics.Berdyugina et al.(2005) formulated the theory of molecular PBE

which is valid for terms of any multiplicity and accounts forinteractions of all rotational

levels in a molecular electronic state (see alsoBerdyugina et al., 2006b). This formulation

was employed byAsensio Ramos et al.(2005) to model the polarization profiles produced

by PBE in CN molecules, byBerdyugina et al.(2006a) to model the PBE in CaH transi-

tions, and byShapiro et al.(2006, 2007) for developing the theory of molecular Hanle ef-

fect in the PB regime.Asensio Ramos(2006) also presented the theory of molecular PBE

neglecting interactions between the rotational levels. Further, Kuzmychov & Berdyugina

(2013) examined the potential of PBE in CrH molecule for magnetic field measurements

on stars, brown dwarfs, and hot exoplanets.

Many atomic spectral lines formed in the solar atmosphere are sensitive to PBE for

the magnetic field strengths encountered on the Sun. PBE in atomic lines is also of great

importance because the signatures of it in the polarizationof these spectral lines can serve

as diagnostic tools for magnetic fields, in a complementary way to the Zeeman and Hanle

effects. However, the scattering theory of atomic spectralline formation with PBE needed

for this purpose is still not completely formulated.Bommier(1980) discussed the effect of

level-crossings and anti-level-crossings (see PartII ) that occur in the PB regime on the po-

larization of the D3 helium line of solar prominences considering the case of CRD(see also

Landi Degl’Innocenti, 1982; Socas-Navarro et al., 2004). Based on the concept of met-

alevels,Landi Degl’Innocenti et al.(1997) presented a formalism to include the effects of

a magnetic field of arbitrary strength including the effectsof PRD. A formalism based on

the density matrix approach is able to account for PBE (Landi Degl’Innocenti & Landolfi,

2004; Casini & Manso Sainz, 2005) but is limited to CRD. Using this density matrix the-

ory Trujillo Bueno et al.(2002) andBelluzzi et al.(2007) explored the sensitivity of po-

larization in NaI D lines and BaII D lines, respectively, to the magnetic fields in the

PB regime. Based on the approach of Feynman diagrams for scattering, Casini et al.

(2014) presented generalized frequency redistribution function for a two-term atom in-

cluding PBE which was extended recently to the case of lambda-type multi-term atom

by Casini & Manso Sainz(2016). Our aim in this thesis is to develop the scattering the-
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ory of PBE including the effects of PRD, using an alternativeapproach starting from the

Kramers–Heisenberg formula. The RM derived in this approach can then be incorporated

in the transfer equation and used for modeling different spectral lines to analyze the mag-

netic sensitivity of the solar lines in the PB regime. More details are given in PartII of the

thesis.

1.8 The Transfer of Polarized Radiation

The photons emitted by the atom traverse through the media, like solar or stellar atmosphere

before reaching the observer. Thus, they undergo multiple scattering before escaping from

the stellar atmosphere. This transport is described by the radiative transfer equation (which

is an energy balance equation) containing the absorption and emission terms. In PartI of

the thesis, we deal with the polarized transfer equation in the absence and presence of weak

magnetic fields and in Chapter7, with the transfer in the presence of strong magnetic fields.

1.8.1 The Polarized Radiative Transfer Equation

In this thesis, we consider the formation and transfer of spectral lines in a one-dimensional

(1D) plane-parallel atmosphere under NLTE conditions (see Section 1.2.2). In Chapters2

and3, we consider isothermal atmospheres while in Chapter7, we deal with realistic so-

lar model atmospheres (Fontenla et al., 1990, 1991, 1993; Avrett, 1995) which mimic the

conditions prevailing on the Sun. The polarized radiative transfer equation in the presence

of a magnetic field of arbitrary strength (Stenflo, 1994; Landi Degl’Innocenti & Landolfi,

2004) is given by

µ
∂I(τ, λ,n)

∂τ
= KI(τ, λ,n) − S(τ, λ,n) , (1.41)

where the Stokes vectorI = [I, Q, U, V ]T , τ is the optical depth,λ is the wavelength,K

is the4 × 4 total absorption matrix andS is the total source vector (see Chapter7 for its

explicit forms).µ = cos θ, with colatitudeθ which is the angle between the normal to the

atmosphere and the line of sight (see left panel of Figure1.10). n represents the direction

of the scattered ray (see right panel of Figure1.10). We follow the convention that the

direction for positiveQ corresponds to the linear polarization perpendicular to the solar

limb.

When the magnetic field is weak (such that the magnetic splitting is comparable to

the radiative width), the anisotropic absorption by the atom can be neglected. In such a

case, the off-diagonal elements of the absorption matrixK can be ignored and only the

diagonal elements (scalar absorption coefficient) can be retained. Thus, we replace theK
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Figure 1.10: A 1D plane-parallel atmospheric slab withz being the normal to the atmo-
sphere (left). Scattering geometry with the atom at the origin and incident ray (n′) along
thex-axis (right). The scattered ray is alongn. The anglesθ′ andθ are the colatitudes for
the incident and the scattered rays, respectively, measured with respect to the normal. The
anglesχ′ andχ are the azimuths of the incident and scattered rays respectively, measured
with respect to thex-axis. In the figure shown,χ′ = 0°. B is the vector magnetic field
whose strength is given byB, inclination byθB, and azimuth byχB.

in Equation (1.41) with ktot which is the principal diagonal element ofK, and obtain the

transfer equation for the weak field Hanle effect as

µ
∂I(τ, λ,n)

∂τ
= −ktot [I(τ, λ,n) − S(τ, λ,n)] , (1.42)

where, now,I = [I, Q, U ]T andktot = φ(λ) + r is the total absorption coefficient with

φ(λ) being the line profile function andr the ratio of the continuum to the line averaged

absorption coefficients. In case of the weak field Hanle effect, the circular polarization

(StokesV ) gets completely decoupled from the linear polarization and hence it suffices to

describe the radiation field byI = [I, Q, U ]T . StokesV does not get generated unless

there is an input circular polarization. In the absence of magnetic fields,I = [I, Q]T in

Equation (1.42). The RM and the contribution from the polarized continuum are contained

in the total source vector (see Chapters2 and3).

1.8.2 Numerical Methods

Many methods have been developed over the past several decades to solve the transfer

equations. To solve the scalar NLTE transfer equation, we use approximate lambda itera-

25



THE TRANSFER OFPOLARIZED RADIATION

tion (ALI) technique. It is a fast numerical method developed by Olson et al.(1986) based

on the concept of operator splitting (Cannon, 1985). For an overview of the ALI method for

scalar transfer seeHubeny(1992, 2003). In order to solve the polarized transfer equation

of the type presented in Section1.8.1, the ALI method was extended and called polarized

ALI (PALI) method byFaurobert-Scholl et al.(1997) for the case of CRD in the absence of

magnetic fields. PRD was included in a later paper byPaletou & Faurobert-Scholl(1997).

For the case of Hanle effect with CRDNagendra et al.(1998) developed the PALI

method which was extended to the case of PRD byNagendra et al.(1999, 2000); Fluri et al.

(2003) and Sampoorna et al.(2008a). For a review on the numerical methods used to

solve the polarized transfer equation seeTrujillo Bueno (2003b); Nagendra et al.(2003);

Nagendra(2003) and Nagendra & Sampoorna(2009). The PALI method described in

all these papers are for the case of a two-level atom.Smitha et al.(2011a, 2013a) de-

veloped the PALI method for a two-term atom for non-magneticand weak field Hanle

cases.Smitha et al.(2012b) developed the PALI method for a two-level atom with hyper-

fine structure in the absence of magnetic fields. A heuristic approach to solve the polarized

line transfer equation with PRD in a multi-level atom, without lower level polarization, in

the presence of a weak magnetic field is presented inSampoorna et al.(2013).

In the presence of an external magnetic field, the radiation field is non-axisymmetric.

For the case of weak fields,Nagendra et al.(1998) andFrisch(2007) showed that the non-

axisymmetry can be removed by expressing the Stokes vector in terms of a 6-component

irreducible vector which is cylindrically symmetric. The original PALI methods were de-

veloped for the transfer equation written in terms of these irreducible vectors. Thus, the

transfer problem is solved in its axisymmetric form, and thesolution is later converted to the

Stokes vector, which is actually non-axisymmetric. It is necessary to perform this transfor-

mation because Stokes parameters are actually the observedquantities. The decomposition

described above was actually performed only for the case of angle averaged PRD functions.

However, when solving the problems with angle dependent PRDfunctions, the above men-

tioned decomposition leads to irreducible vectors which still retain the non-axisymmetry.

In Faurobert(1987, 1988) andNagendra et al.(2002), the angle dependent PRD problems

in the non-magnetic and the Hanle scattering cases were solved, respectively, in the Stokes

vector basis itself, which is computationally expensive. They showed the differences in

the Stokes profiles between the angle averaged and angle dependent cases, for atmospheric

slabs of different properties.

Frisch (2009, 2010) Fourier expanded the angle dependent PRD functions, over the

azimuth angle, and succeeded in further reducing the non-axisymmetry of the irreducible

intensity vector. The PALI methods developed later (Sampoorna et al., 2011; Sampoorna,
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2011b; Nagendra & Sampoorna, 2011; Supriya et al., 2013a) were based on this technique

to solve the angle dependent transfer problems. This technique is numerically very effi-

cient. A detailed review of these methods is given inSampoorna(2014). Supriya et al.

(2013b) performed the non-magnetic angle dependent PRD calculations for a two-term

atom, and a two-level atom with hyperfine structure including the effects due to quantum

interference. They showed that for all practical purposes,the angle averaged redistribution

can be considered to a good approximation in the non-magnetic case.

A method to solve vector transfer equation in the presence ofmagnetic fields where

the polarization is generated only by the Zeeman effect (called the Zeeman line trans-

fer) in NLTE media was first proposed byAuer et al. (1977) based on the method of

Feautrier(1964). Other techniques involve discrete space method (Nagendra & Peraiah,

1985a,b), a faster diagonal element lambda operator (DELO) method (Rees et al., 1989)

and DELO parabolic (DELOPAR:Trujillo Bueno, 2003b), which is an extension of the

scalar short-characteristics method ofKunasz & Auer(1988) to handle polarization. See

Landi Degl’Innocenti & Landolfi(2004) for more details on the Zeeman line transfer. The

methods mentioned above treat only the incoherent (CRD) scattering. Stenflo(1994) for-

mulated the polarized transfer equation including both thecoherent scattering (in PRD) and

the Zeeman effect. To solve this transfer equation for strong magnetic fields which includes

both the absorption matrix and the RM, given in Equation (1.41), a method was devised by

Sampoorna et al.(2008b) based on the DELOPAR formal solver. Such a general method

is necessary to solve the vector transfer equation with the PRD scattering matrices and PB

absorption matrix derived in PartII of the thesis.

1.9 An Overview of the Thesis

In this thesis, we propose a formalism to include the intrinsically polarized blend lines in

the line transfer calculations to model any given spectral line in the second solar spectrum.

We derive the RMs for the quantum interference taking place between the atomic states in

the presence of arbitrary magnetic fields (covering the Hanle, Zeeman and PB regimes). We

test the correctness of our formalism by reproducing the known benchmarks. We explore

the possibility of using the PBE as a tool to diagnose magnetic fields. We divide the thesis

into two parts. The first part consists of two chapters and thesecond part consists of four

chapters.

In PartI of the thesis, we deal with the formation of blend lines, their transfer through

the medium and highlight the role played by them in shaping the polarization profiles of

the spectral lines. For our purpose, we consider the simple case of a line formed in a two-
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level atom and its transfer through an isothermal constant property medium. In Chapter2,

we treat a single blend line interacting with the main spectral line and carry out a detailed

parametric analysis. We extend this formalism to include the effects of more than one blend

line in Chapter3. We find that the influence of the blend lines cannot be neglected in the

modeling efforts when they are strong and lie very close to the main spectral line of interest.

In PartII , we take up the more difficult problems of line formation in a two-level atom

with hyperfine structure, and a two-term atom without and with hyperfine structure, under

the influence of a magnetic field of arbitrary strength. In such cases, the level-crossing,

avoided crossing and quantum interference effects come into picture. We develop the the-

oretical formulations which treat these phenomena. We restrict our attention to the single

scattering case and try to identify the various signatures of the PBE on the Stokes profiles.

In Chapter4, we focus our attention on theF -state interference taking place in a two-level

atom with hyperfine structure. We derive the necessary RM forthis problem and test it

taking NaI (neutral sodium) D2 line as an example. The RM for theJ-state interference

phenomenon in the case of a two-term atom without hyperfine structure is derived in Chap-

ter5. We apply this theory to the case of LiI (neutral lithium) D lines at 6708 Å and identify

the signatures of the magnetic field in the PB regime. In Chapter 6, we develop a theory

to treat the combinedF - andJ-state interference phenomena (two-term atom with hyper-

fine structure). We once again take the LiI D lines at 6708 Å as an example and study the

characteristics of the RM derived. We attempt to model theselines using the last scattering

approximation (LSA) method and present the developments inthis regard in Chapter7.

In Chapter8, we summarize the work carried out in this thesis and presentthe possible

future applications of this work. We add a few appendices at the end of the thesis for

presenting those details which could not be accommodated without affecting the flow of

discussions in the main chapters.
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POLARIZED BLEND L INES

This chapter is based on:

Sowmya, K., Nagendra, K. N., & Sampoorna, M. 2012, MNRAS, 423, 2949

Outline

Blend lines, as discussed in Section1.2.2, form an integral part of the theoretical analysis

and modeling of the polarized spectrum of the Sun. Their interaction with other spectral

lines needs to be explored and understood before we can properly use the main spectral

lines to diagnose the Sun. Blend lines are known to cause a decrease in the polarization in

the wings of the main line on which they superpose, or in the polarization of the background

continuum, when they are assumed to be formed either under the LTE conditions, or when

they do not have non-zero intrinsic polarization. In this chapter, we describe the theoretical

framework to include a blend line formed under NLTE conditions, in the radiative transfer

equation, and the numerical techniques to solve it. We discuss the properties of a blend

line having an intrinsic polarization of its own and its interaction with the main line. The

results of our analysis show that the influence of the blend line on the main spectral lines,

though small for the parameters considered, is important and needs to be accounted when

interpreting the polarized spectral lines in the second solar spectrum.

2.1 Introduction

A survey of the linear polarization arising due to the coherent scattering processes, carried

out byStenflo et al.(1983) over the wavelength range3165−4230 Å of the solar spectrum,
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revealed the nature and influence of the blend lines on the second solar spectrum (the po-

larized solar spectrum that is produced by scattering processes, see Section1.2.1). They

introduced an empirical relation between the intensity andpolarization profiles of intrin-

sically unpolarized lines. Based on this model, they could obtain a good determination of

both the zero-point of the polarization scale and the level of the continuum polarization,

and could further use the model to remove the effect of the depolarizing blend lines and

the continuum polarization to bring out the intrinsic polarization of the spectral lines in

the second solar spectrum. The high resolution recording ofthe second solar spectrum by

Stenflo & Keller(1996, 1997) and the atlas ofGandorfer(2000, 2002, 2005a) also explic-

itly showed the importance of blend lines and the polarizingcontinuum.

The highly structured second solar spectrum is characterized by a polarized background

continuum on which both intrinsically polarizing and depolarizing blend lines are super-

posed. While a relative polarimetric precision of10−5 can routinely be achieved in current

imaging Stokes polarimetry, a direct observational determination of the zero-point of the

polarization scale is not possible with comparable accuracy. Instead, the zero-point, which

is needed to convert the observed relative polarizations toabsolute polarizations, has to be

determined by theoretical considerations based on the expected polarization shapes of the

depolarizing blend lines. For this reason, the blend lines are of fundamental importance

for all observational and theoretical work with the second solar spectrum. The blend line

model that was proposed inStenflo et al.(1983) was later applied in a somewhat extended

way inStenflo(2005) for the empirical determination of the polarization of thecontinuous

spectrum based on the Gandorfer’s atlas.

The theoretical modeling of the line polarization in the second solar spectrum is al-

ways associated with incorporating the depolarizing blendlines, as they invariably affect

the shapes of the polarized main lines. Blend lines are usually treated by assuming that

they are formed in LTE conditions, thereby ignoring their own intrinsic polarization. When

blend lines are treated in LTE, polarized line and continuumphotons are removed due to

larger absorption within the line, causing a depolarization of the main line and the contin-

uum (seeFluri & Stenflo, 1999, 2001). A theoretical study byFluri & Stenflo(1999) on the

depolarizing blend lines in the visible solar spectrum showed that the relative intensity and

relative polarization profiles defined with respect to the continuum, are approximately pro-

portional to each other, with a proportionality constant that varies with angle, wavelength,

and line strength.

The blend lines can be treated in LTE if their height of formation corresponds to

collision-dominated layers. If they are formed in low density layers, it may be neces-

sary to treat them as being formed under NLTE. Analysis byFluri & Stenflo (2003) also
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showed that the depolarization of the continuum by absorbing blend lines rapidly decreases

with increasing height of formation, while the depolarization by scattering blend lines in-

creases with height of formation. These calculations were performed with realistic model

atmospheres, and hypothetical or real line profiles formed in these atmospheres. Although

the blend lines were treated in NLTE, their intrinsic polarizability factor was assumed to

be zero (namely the blend lines do not have linear polarization of their own). When they

have a non-zero polarizability factor, it may also become necessary to treat their intrin-

sic polarization, to represent their contribution to the polarization profile of the main line

(depolarization or repolarization).

In this chapter, we consider a blend line with intrinsic polarization, which occurs in the

wings of the main lines. The number density of strongly polarizing lines is modest in the

visible part of the second solar spectrum. Therefore, the conditions that we have imposed

in this chapter (namely the proximity of polarizing main andblend lines) is not often real-

ized. However, as we go down in the UV, the second solar spectrum gets increasingly more

crowded with strongly polarizing lines. There we can find several good examples of polar-

izing blend lines (see the UV atlas ofGandorfer, 2005a). Therefore, the theoretical studies

presented in this chapter become relevant in the analysis ofthe scattering polarization of

the lines in the UV region of the second solar spectrum.

Blend lines belonging to different elements ‘interact’ with the main line of interest

through radiative transfer effects (i.e., they couple to the main line through the opacity dis-

tribution and multiple scattering). The strength of this interaction depends on their wave-

length separation. This interaction is an example of incoherent superposition of the lines.

On the other hand, the interaction between the line components of multiplets like CaII

H&K, Na I D1&D 2, Cr I 5204− 5208 Å multiplet etc. represents coherent superposition of

lines. These interactions between the lines arise due to thequantum interference between

fine structure states or hyperfine structure states of an atom(Stenflo, 1997; Smitha et al.,

2011b, 2012b).

In Section2.2, we describe the formulation of the relevant transfer equation. In Sec-

tion 2.3, we discuss the numerical methods used to solve the transferequation. In Sec-

tion 2.4, we present the results of this line transfer with resonanceand Hanle scattering and

present the concluding remarks in Section2.5.

2.2 Formulation of the Transfer Equation

Line polarization arises from resonance scattering processes (both in the main and the blend

lines). In the presence of magnetic fields, this polarization is modified by the Hanle effect
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(see Section1.7.2). It is sufficient to describe the radiation field by the Stokes vector

I = (I, Q, U)T because we limit our attention to linear polarization, which, for the weak-

field Hanle effect, is fully decoupled from circular polarization. We consider only one

polarizing blend line in the wings of the main line, formed ina 1D, plane-parallel, static,

isothermal atmosphere with homogeneous layers. In the presence of a vector magnetic field

(B) and the blend line polarization, the total source vector inthe Stokes vector basis can

be written as

S(τ, λ,n) =
klφl(λ)Sl(τ, λ,n) + kcB(λ)U

klφl(λ) + kbφb(λ) + σsc + kc

+
kbφb(λ)Sb(τ, λ,n) + σscSsc(τ, λ,n)

klφl(λ) + kbφb(λ) + σsc + kc
, (2.1)

wherekl andkb are the frequency-integrated main and blend line absorption coefficients,

respectively.σsc andkc are the continuum scattering and absorption coefficients.φl andφb

denote the absorption profiles for the main and the blend lines. Throughout this chapter,

the symbols ‘l’ and ‘b’ stand for the ‘main’ line and the ‘blend’ line, respectively. τ is the

total optical depth scale defined by

dτ = −[klφl(λ) + kbφb(λ) + σsc + kc] dz . (2.2)

The ray directionn is defined by its polar angles(θ, χ) with respect to the atmospheric

normal (see Figure1.10). In Equation (2.1), U = (1, 0, 0)T . The line source vectors for the

main and the blend lines areSl andSb. The continuum scattering source vector is denoted

asSsc. They are given by

Sl(τ, λ,n) = ǫlB(λ)U + (1 − ǫl)

∮

dn′

4π

∫ ∞

0

dλ′
Rl(λ, λ′,n,n′; B)

φl(λ)
I(τ, λ′,n′) ,

Sb(τ, λ,n) = ǫbB(λ)U + (1 − ǫb)

∮

dn′

4π

∫ ∞

0

dλ′
Rb(λ, λ′,n,n′; B)

φb(λ)
I(τ, λ′,n′) ,

and

Ssc(τ, λ,n) =

∮

dn′

4π

∫ ∞

0

dλ′P (n,n′)I(τ, λ′,n′)δ(λ− λ′) , (2.3)

whereǫl andǫb are the thermalization parameters for the main and blend lines respectively,

andB(λ) is the Planck function. For simplicity,B(λ) is taken as the same for both the main

and the blend lines. The continuum is assumed to be scattering coherently through Rayleigh
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and Thomson scattering.P (n,n′) is the Rayleigh phase matrix (see e.g.Chandrasekhar,

1950). The RMR(λ, λ′,n,n′; B) is factorized in the form

R(λ, λ′,n,n′; B) = R(λ, λ′) P (n,n′; B) , (2.4)

whereB is the vector magnetic field andn′ is the direction of incidence.R(λ, λ′) is the

angle averaged redistribution function ofHummer(1962). P (n,n′; B) is the Hanle phase

matrix (seeStenflo, 1978a; Landi Degl’Innocenti & Landi Degl’Innocenti, 1988). For clar-

ity, we present the equations for a simple version of the RMR. In particular, we neglect

depolarizing elastic collisions and consider only pure type II scattering in the main line.

The blend line is assumed to be scattering according to either PRD or CRD. An exact treat-

ment of collisions according to the Approximation level IIIof Bommier(1997b) can easily

be incorporated into the present formalism. Calculations using such physically realistic

RM are presented in Section2.4.8.

For isothermal slab models, we introduce the parameters

βc =
kl

kc
; βb =

kb

kc
; βsc =

σsc

kc
. (2.5)

Further, we work in the irreducible basis (seeFrisch, 2007), where the source vector de-

pends only onτ andλ. In this basis, using the Hanle phase matrix elements in the atmo-

spheric reference frame, it is easy to show that the total andthe line source vectors have the

form:

S(τ, λ) =
[βcφl(λ) + βbφb(λ) + βsc]SL(τ, λ) +B(λ)U

βcφl(λ) + βbφb(λ) + βsc + 1
, (2.6)

and

SL(τ, λ) =
βcφl(λ)ǫl + βbφb(λ)ǫb
βcφl(λ) + βbφb(λ) + βsc

B(λ)U

+

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
[

N l(B)βc(1 − ǫl)W
lRl(λ, λ′)

βcφl(λ) + βbφb(λ) + βsc

+
N b(B)βb(1 − ǫb)W

bRb(λ, λ′) + Eβscδ(λ− λ′)

βcφl(λ) + βbφb(λ) + βsc

]

Ψ(µ′)I(τ, λ′, µ′) . (2.7)

Here,U = (1, 0, 0, 0, 0, 0)T , Rb(λ, λ′) is either given byRb
II(λ, λ

′) or CRD. Note that we

have combined the line source vectors for both the main and the blend lines, as well as the

continuum scattering source vector, in a single expression. This allows us to apply the ALI

method of solution based on the frequency by frequency (FBF)technique to compute the

line source vector corrections.Ψ(µ′) is the Rayleigh phase matrix in the irreducible basis.
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N l(B) andN b(B) are the Hanle phase matrices in the irreducible basis for themain and

blend lines, respectively. Expressions for these can be found inFrisch(2007). Hanle phase

matrices for the two lines could be different as they can format different heights in the

atmosphere, with different strength and geometry of the magnetic fields. In the absence of

magnetic fieldsN l(B) andN b(B) matrices reduce to unity matrixE . The matricesW l

andW b are diagonal, withW l,b
00 = 1 andW l,b

kk = W l,b
2 wherek = 1, 2, 3, 4, 5. Here,W2 are

called polarizability factors. They depend on the angular momentum quantum numbers of

the upper and lower levels. For a normal Zeeman triplet transition (J = 0 → 1 → 0), this

factor is unity.

The1D line transfer equation (see Section1.8.1for the transfer equation in the Stokes

vector basis) for polarized Hanle scattering problem in theirreducible basis is then given

by

µ
∂I(τ, λ, µ)

∂τ
= I(τ, λ, µ) − S(τ, λ) . (2.8)

I is the formal 6-component vector. Our task is to solve this transfer equation to obtain

the Stokes profilesI, Q/I, andU/I. For this purpose we use the scattering expansion

method (SEM) proposed byFrisch et al.(2009). See Section1.8.2for a short summary of

the various methods used to solve the polarized radiative transfer equation.

2.3 Numerical Solution of the Transfer Equation

The solution of the polarized radiative transfer equation by the commonly used PALI

method (seeNagendra et al., 1999) with the FBF technique is computationally expensive

(see e.g.Sampoorna et al., 2008a). Therefore, we opt for SEM which is a faster approxi-

mate method. It is based on Neumann series expansion of the polarized component of the

source vector. We apply this method presented inFrisch et al.(2009) to the problem at

hand. In this method, we first write the source vector components in the irreducible basis

as

SK
Q,L(τ, λ) =

βcφl(λ)ǫl + βbφb(λ)ǫb
φ(λ)

B(λ)δK0δQ0

+

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
∑

Q′

RK
QQ′

φ(λ)

∑

K ′

ΨKK ′

Q′ (µ′)IK ′

Q′ (τ, λ′, µ′) , (2.9)

where

φ(λ) = βcφl(λ) + βbφb(λ) + βsc , (2.10)
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and

RK
QQ′ =

βc(1 − ǫl)R
l(λ, λ′)W l

K

φ(λ)
NK,l

QQ′(B)

+
βb(1 − ǫb)R

b(λ, λ′)W b
K

φ(λ)
NK,b

QQ′(B) +
βscδ(λ− λ′)

φ(λ)
δQQ′δQ′0 . (2.11)

In the solar atmosphere, the degree of anisotropy is of the order of a few percent. Thus, the

degree of linear polarization that arises due to Rayleigh scattering is small. In other words,

for the calculation of StokesI, one can neglect the contribution from the linear polarization

(Q,U) to I to a good approximation. Therefore, the dominant contribution to StokesI

comes from the componentI0
0 . The corresponding source vector component neglecting the

K 6= 0 terms is given by

S̃0
0 ≃ βcφl(λ)ǫl + βbφb(λ)ǫb

φ(λ)
B(λ) +

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
R0

00

φ(λ)
I0
0 (τ, λ′, µ′) . (2.12)

Here,S̃0
0 stands for approximate value ofS0

0 . It represents the solution of a NLTE unpolar-

ized radiative transfer equation. We calculate it using theALI method of solution with the

FBF technique (seePaletou & Auer, 1995).

Retaining only the contribution from̃I0
0 on the RHS ofK = 2 component ofSK

Q,L in

Equation (2.9), we obtain the single scattering approximation for each componentS2
Q,L as

[S̃2
Q,L(τ, λ)](1) ≃

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
R2

Q0

φ(λ)
Ψ20

0 (µ′)Ĩ0
0 (τ, λ′, µ′) . (2.13)

The superscript (1) stands for single scattering. The single scattered polarized radiation

field [Ĩ2
Q](1) is calculated using a formal solver. This solution is used asa starting point to

calculate the higher order scattering terms. Thus the iterative sequence at ordern is

[S̃2
Q,L(τ, λ)](n) ≃ [S̃2

Q,L(τ, λ)](1) +

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′

×
∑

Q′

R2
QQ′

φ(λ)
Ψ22

Q′(µ′)[Ĩ2
Q′(τ, λ′, µ′)](n−1) . (2.14)

The iteration is continued until the maximum relative change in surface polarization be-

comes less than the convergence criteria of10−8.
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2.4 Results

When modeling the specific lines of the second solar spectrum, the blend lines are generally

treated in LTE. In that case, the blend usually depolarizes the main line polarization. In this

section we consider a polarizing blend line that is formed due to a transition in a two-level

atom withJ = 0 and1 for the lower and upper levels, respectively, both in the presence

and absence of magnetic fields. We present the dependence of the main line polarization

on the blend line polarizability, its separation from the main line and its strength. We

consider the effects of variation ofT – the optical thickness of the isothermal slab,ǫb – the

thermalization parameter of the blend line andβ̃c – the ratio of the background absorbing

continuum opacity to the main line opacity, on the main line polarization. We also discuss

the role played by the Hanle effect and collisions. Finally,we present a brief discussion on

the behavior of the scattering continuum.

Standard model: In the case of an isothermal atmosphere, the emergent intensity and

polarization spectra resemble closely the realistic situation, for the following model param-

eters. A self-emitting slab of optical thicknessT = 108. The ratio of background absorbing

continuum opacity to the main line opacitỹβc = 10−7, the main line strengthβc = 107, the

blend line strengthβb = 5 × 102, and the continuum scattering coefficientβsc = 0. The

thermalization parameters areǫl = 10−4 andǫb = 5×10−2. The damping parameters of the

main and blend lines are2 × 10−3 and10−4, respectively. Both the lines scatter according

to pureRII in the absence of magnetic fields. The main and the blend linesare assumed

to be resulting from theJ = 0 → 1 → 0 transitions in a two-level atom.W2 of both the

lines are therefore unity. The main line is centered at5000 Å and the blend line at5001 Å.

The Doppler width is0.025 Å for both the lines. We refer to this model as the ‘standard

model’ and the Stokes profiles for this model are representedby the solid lines in most of

the figures. The vertical dotted lines represent the wavelength positions of the main and

blend lines.

2.4.1 Influence of the Blend Line Polarizability Factor

Figure2.1 shows the emergent intensity and polarization profiles. Initially we treat the

blend line to be depolarizing (W b
2 = 0) and gradually increase the value ofW b

2 until it

becomes completely polarizing (W b
2 = 1). The variation inW b

2 causes a very little or no

change in the intensity. As expected, PRD triple peaks inQ/I are clearly visible in the

case of the main line. The PRD peaks of the blend line are not seen, since the blend line

is assumed to be weaker than the main line. If the blend line has zero intrinsic polarization
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(see the dotted line in the inset), then the wing polarization of the main line is reduced at

the core position of the blend line. The extent of depolarization depends on the blend line

strength. In the case presented in Figure2.1 (where the blend line is not too strong), we

Figure 2.1: Effect of variation of the polarizability factor of the blend line. The ‘standard
model’ parameters defined in Section2.4are used. Emergent Stokes profiles are shown for
a line of sightµ = 0.05, whereµ = cos θ.

still see a significant depolarization at the blend line core. When the blend line has a non-

zero intrinsic polarizability, a peak at the wavelength position of the blend line is observed.

As expected, with an increase inW b
2 the polarization of the blend line increases from0 %

(whenW b
2 = 0) to nearly2 % (whenW b

2 = 1). Since the blend line is very weak, the

polarization of the main line is insensitive to the changes in the polarizability factor of the

blend line outside the narrow core region of the blend line.

2.4.2 Influence of the Separation From the Main Line

The relevant results are shown in Figure2.2. The main line is kept fixed at5000 Å and

the position of the blend line is varied. The influence of the blend line on the main line

remains limited to the core region and the immediate surroundings of the blend line, as

it does not have a significant wing opacity due to its weakness. The ratio of the blend

line opacity to the main line opacity increases as the blend line is shifted away from the
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main line center (because the main line opacity is relatively small in the far wings). This

change in the opacity ratio makes the blend line intensity profile more and more deep, along

with corresponding increase inQ/I, at the wavelength positions of the blend line. As the

Figure 2.2: Effect of wavelength separation between the main and the blend line. The
‘standard model’ parameters are used. TheW b

2 factor of the blend line is set to unity. The
line of sight is represented byµ = 0.05. The wavelength separation is shown by different
line types.

line separation increases, the two lines are weakly coupledby transfer effects, eventually

becoming completely independent. The profiles computed by treating the blend line in

PRD or in CRD are similar because the blend line is assumed to be weak.

2.4.3 Influence of the Blend Line Strength

The strength of the blend line is varied fromβb = 5 × 102 to βb = 5 × 104. The blend line

is positioned1 Å away from the main line. The emergent intensity and polarization profiles

are shown in Figure2.3. Asβb increases, the blend line optical thickness increases resulting

in relatively larger heights of the blend line PRD wing peaksin intensity. In theQ/I panel,

the PRD peaks of the blend line become more and more prominentas its strength increases.

This occurs because of the enhanced scattering opacity as a result of which the near wing

polarization of the blend line increases. The Stokes profiles computed treating the blend
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Figure 2.3: Effect of the blend line strengthβb. The ‘standard model’ parameters are used.
The line of sight isµ = 0.05. The line types are given in the top panel.

line in CRD are not significantly different from those computed using PRD as the blend

line strength continues to be smaller than the main line strength.

2.4.4 Influence of the Optical Thickness of the Slab

The effect of a polarizing blend line on the main line polarization profile with the variation

in the total optical thicknessT of the isothermal slab is shown in Figure2.4. The blend line

is much weaker than the main line and scatters according to pureRII. As T increases, the

main line changes from a self-reversed emission line to an absorption line (see the intensity

panel in Figure2.4). As the main line core is already saturated, the effect of increase in

T is felt only in the line wings. As for the blend line, whenT = 105, a weak line is

formed because of the smaller number of main line photons available for scattering. AsT

increases, the blend line starts to show up prominently in intensity.

The main line polarization profile shows a typical triple peak structure (due to PRD

mechanism) whenT = 105. However, the main line near wing PRD peak changes over

from negative maxima to positive maxima, asT increases. This has a direct correlation

with the behavior of the StokesI profile in the region of near wing maxima. The change

in sign is indicative of a switchover from limb brightening to the limb darkening of the
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Figure 2.4: Effect of polarizing blend line on the main line polarization with variation in
the isothermal slab optical thicknessT . The ‘standard model’ parameters are used. The
line of sight is represented byµ = 0.05.

radiation field at heights where the monochromatic optical depths corresponding to the

near wing maxima are unity. WhenT = 105 the blend line shows a double-peak structure

in Q/I, although it is weaker in intensity. The polarization is quite strong, as the blend

line is assumed to be polarizing withW b
2 = 1. As T increases, the double-peak structure

changes over to a single-peak structure. Away from the blendline center, theQ/I profiles

of the blend line smoothly merge with the main line polarization profiles.

2.4.5 Influence of the Continuum Absorption Parameter

The ratio of the background continuum absorption opacity tothe main line opacity,̃βc, is

varied from10−3 to 10−9 (see Figure2.5). The main line strength (1/β̃c) correspondingly

changes. This variation of̃βc influences the Stokes profiles of both the lines. The intensity

profiles become narrow and shallow with the increase in the value of β̃c. This is because the

continuum progressively influences the inner parts of the main line profile asβ̃c increases.

The main line which was a pure absorption line whenβ̃c = 10−3 (the dotted line) becomes

a self reversed emission line wheñβc = 10−9 (dot-dashed line). The decrease in wing

intensity is due to a decrease in the continuum optical thickness (TC = β̃cT ) asβ̃c varies
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from 10−3 to 10−9. The blend line intensity profile also changes from a strong absorption

line to a weak emission line as̃βc changes from10−3 to 10−9.

Figure 2.5: Effect of polarizing blend line on the main line polarization with variation in
β̃c. The ‘standard model’ parameters are used. The line of sightis represented byµ = 0.05.

The main lineQ/I core amplitude is not very sensitive tõβc unlessβ̃c is sufficiently

large (see the dotted line). The main line near wing PRD peak,as well as far wing po-

larization, decreases in magnitude asβ̃c increases, due to the predominance of the un-

polarized continuum. TheQ/I profiles at the core of the blend line nearly coincide for

β̃c = 10−3, 10−5, and 10−7. However, whenβ̃c = 10−9, the blend line acts like a de-

polarizing line in the wing of the main line, in spite ofW b
2 being unity. This is possibly

because the blend line in this case is a weak emission line, whose polarization profiles are

characteristically different from those of absorption lines.

2.4.6 Influence of the Photon Destruction Probability

For the ‘standard model’ considered in this study, the variation in ǫb (the photon destruction

probability) does not produce significant changes in the (I, Q/I) profiles of the main line

as can be seen from Figure2.6. With a decrease in the value ofǫb, the blend line depth

increases (going from LTE-like to NLTE-like expected behavior), which saturates forǫb <

10−3 (figure not shown). InQ/I, the blend line core peak increases with the decrease in
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ǫb, as the blend line becomes more and more scattering dominated. Further, forǫb < 10−3,

Figure 2.6: Effect of polarizing blend line on the main line polarization with variation in
ǫb. The ‘standard model’ parameters are used. The line of sightis represented byµ = 0.05.

the blend line core peak inQ/I saturates, an effect discussed inFaurobert(1988) for the

single line case.

2.4.7 Influence of the Magnetic Fields

The vector magnetic fieldB is parametrized through(γB, θB, χB), with γB = gJωL/ΓR,

wheregJ is the upper level Landé factor,ωL the Larmor precession frequency, andΓR the

damping rate (inverse life time) of the excited state (see e.g. Stenflo, 1994). The magnetic

field orientation represented byθB andχB are defined with respect to the atmospheric

normal (see Figure1.10). TheγB for the main line is fixed as unity. TheγB of the blend

line is varied from0 to 10.

Figure2.7shows the profiles for the two-line system in the presence of magnetic fields.

The blend line shows similar effects on the main line both in the presence and absence of

magnetic fields, for the model parameters used in this section. The main and blend line

intensities are unaffected. The magnitude ofQ/I in the central peak of the blend line

reduces with an increase in the value of itsγB. This is the typical effect of magnetic fields,

namely, the Hanle effect which is operative in the core regions of the two lines. StokesU
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Figure 2.7: Illustration of the effect of a blend line on the scattering polarization of the main
line in the presence of magnetic fields. The ‘standard model’parameters are used. The
magnetic field parameters are(γB, θB, χB) = (1, 30°, 0°) for the main line and(θB, χB) =
(30°, 0°) with γB as free parameter for the blend line.

which was zero for Rayleigh case is generated by the Hanle effect and hence characteristic

core peaks are seen in theU/I panel. The depolarization in the core region of the blend

line due to Hanle effect causes a corresponding increase inU/I.

2.4.8 Influence of the Elastic Collisions

It is well known that the Hanle effect operates efficiently inthe line core (within a few

Doppler widths) and disappears in the line wings (Omont et al., 1973). The functional form

of this frequency dependence of the Hanle effect is presented in Stenflo(1998). To account

for this frequency dependence of the Hanle effect in numerical computations, we introduce
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the1D cut-off approximation. Figure2.7presented in Section2.4.7was computed using the

Figure 2.8: The effect of depolarizing elastic collisions.The magnetic field parameters are
(γB, θB, χB) = (1, 30°, 0°) for both the lines. Other model parameters are the same as in
the ‘standard model’.

1D cut-off approximation, which implies the use of Hanle phase matrix up to, say,|x| ∼ 3.5

and the Rayleigh phase matrix elsewhere.x is the non-dimensional frequency expressed

in Doppler width units. In the present section, we use the so called ‘two-dimensional (2D)

frequency domains’, which refer to a distribution of the domains in the (x, x′) space. These

so called ‘domains’ are nothing but piecewise continuous functions ofx andx′ marking

the switchover from Hanle to the Rayleigh-like phase matrices. The exact collisional PRD

theory of Hanle effect as well as the approximations leadingto these2D domain based PRD

formulation are developed byBommier(1997a,b). It is rather straightforward to extend the

formulation presented in Section2.2to include the2D frequency domains using the domain
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logic given inBommier(1997b).

The strength of elastic collisions is specified throughΓE/ΓR, whereΓE denotes the

elastic collisional rate andΓR the radiative de-excitation rate. The values ofΓE/ΓR chosen

by us cover the situations ranging from the absence of elastic collisions (pureRII) to the

presence of strong elastic collisions. Depolarizing collision rates are given byD(2) = cΓE

with c = 0.5 (seeStenflo, 1994). The emergent Stokes profiles are shown in Figure2.8.

They refer to the cases whereΓE/ΓR of both the lines are taken as equal and varied in

the same fashion. In all these cases we see that the elastic collisions do not modify the

intensities in the cores of the two lines. This is because in the line coreRII behaves more

like CRD. In the wings of the two lines, the PRD-like intensity profiles gradually approach

the CRD-like behavior (true absorption line), with an increase in the elastic collision rate

ΓE/ΓR. As in the single line case, theQ/I profiles show a simultaneous decrease in

magnitude at all wavelength points in the line profile, with an increase inΓE/ΓR. For large

values ofΓE/ΓR(= 100), the line polarization approaches zero (dash-triple-dotted line)

throughout the line profiles.U/I profiles also show similar behavior as theQ/I profiles in

both the lines.

Figure 2.9: Effect of continuum polarization. Figure showsthe change in the shape of the
wing polarization profiles when a background polarizing continuum radiation is present.
The ‘standard model’ is used to compute these profiles.
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2.4.9 Influence of the Continuum Polarization

Figure2.9 shows the effect of continuum polarization on the blend and the main line po-

larization. The continuum polarization arises due to Thomson scattering on electrons and

Rayleigh scattering on atoms and molecules. It is included here through the parameterβsc.

The continuum polarization is generally small in magnitudeexcept in the UV region

of the spectrum. Also, it has a weak wavelength dependence inthe visible region of the

spectrum. It affects the intensity and polarization throughout the line wings through the

addition of a spectrally flat polarizing opacity across the line, while the line cores remain

unaffected, because there the line opacity always dominates over the continuum opacity.

2.5 Conclusions

In this chapter, we presented our detailed studies on the effects of a blend line (polarizing or

depolarizing) present in the wings of a main line. Our particular interest is the linear polar-

ization profiles of the main line. We showed how theoretically the total source function can

be generalized to include a blend line. The same formalism can be extended to deal with the

cases where there is more than one blend line. We formulated the radiative transfer equa-

tion in the irreducible tensorial basis. We solved this transfer equation by computing the

scalar intensity with the standard FBF iterative technique, and the polarization by a faster,

promising method called SEM. The SEM involves expanding thepolarized component of

the source vector in Neumann series, computing the single scattered solution at first, and

then using this solution for calculating the higher order scattering terms. We explored the

dependence of the blend line intensity and polarization effects on various parameters like

polarizability factor, distance from the main line core, blend line strength, isothermal slab

optical thickness, continuum opacity and polarization, magnetic field, and elastic collision

rate.

The blend lines in the linearly polarized spectrum of the Suninvariably affect the main

spectral lines. A knowledge of the way in which this interaction takes place plays an impor-

tant role in the interpretation of the second solar spectrum. The insight that we have gained

through our theoretical studies using isothermal slab models is a first step towards realis-

tic modeling of the second solar spectrum. Such calculations become necessary in a fine

analysis of the solar spectrum, and help in our studies of thesolar atmosphere. The studies

carried out byAnusha et al.(2010, 2011b) andSmitha et al.(2012a) form the basis for the

inclusion of intrinsically polarized blend lines in modeling the second solar spectrum.
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This chapter is based on:

Sowmya, K., Nagendra, K. N., & Sampoorna, M. 2014, in ASP Conf. Ser. 489, Solar

Polarization 7, 125

Outline

The second solar spectrum formed by coherent scattering processes in the Sun, is highly

structured. It is characterized by numerous blend lines, both intrinsically polarizing and

depolarizing, superposed on the background continuum. These blend lines play an impor-

tant role in the interpretation of the second solar spectrum. In the previous chapter, we

studied the way in which a blend line affects the shape of the neighboring spectral line. In

reality, a spectral line of interest gets influenced by several closely lying blend lines. All

these blend lines have to be treated carefully while modeling the spectral line of interest.

An understanding of the influence of the blend lines on the polarization of the spectral lines

leads to a proper determination of the zero-point of the polarization scale, which otherwise

is very difficult to measure. With this motivation, in this chapter, we extend the framework

developed in the previous chapter to include many blend lines, both depolarizing and po-

larizing, formed under NLTE conditions, in the radiative transfer equation. For the sake of

simplicity, we present the results for the particular case of two blend lines situated on either

side of the main spectral line.
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3.1 Introduction

In the second solar spectrum, the spectral lines superpose on the background continuum.

To correctly estimate the line polarization, a knowledge ofthe continuum polarization is

therefore essential. Blend lines serve as a tool in fixing thezero point of the polarization

scale (Stenflo, 2005). It is not possible to directly determine the absolute polarization scale

with a precision that comes close to the polarimetric precision of the relative polarization

scale. The depolarizing blend lines can be used to obtain a good estimate of the zero

point of the polarization scale. Due to this fact the depolarizing blend lines are of profound

importance for all observational works on the second solar spectrum. The problem of blend

lines is of considerable interest due to its relevance to themeasurement and interpretation

of the polarized solar spectrum.

In the theoretical modeling of the line polarization in the second solar spectrum, we

have to incorporate the numerous blend lines in the vicinityof the line of interest, as they

are known to affect the shape of the polarized main line. In all the efforts to model the

second solar spectrum, the blend lines in the wavelength range of interest are assumed to

be depolarizing and formed under LTE conditions (see, for example,Fluri & Stenflo, 1999,

2001). This assumption fails when the blend lines are formed in low density layers which

demands the use of NLTE formulations. In Chapter2, we showed the importance of the

blend lines having non-zero intrinsic polarization and developed a framework to include

in the polarized line transfer equation an intrinsically polarized blend line formed under

NLTE conditions (seeSowmya et al., 2012).

In this chapter, we extend the formalism developed in Chapter 2 for a single polarized

blend line, to treat many blend lines with intrinsic polarization that occur in the wings of the

main lines. They interact with the main line through radiative transfer effects. As explained

in Chapter2, the formulation presented in this chapter becomes relevant in the analysis of

the scattering polarization of the lines in the UV region of the second solar spectrum. In

Section3.2, we develop the transfer equation in the absence of magneticfields and present

its numerical solution in Section3.3. In Section3.4, we present the results of this so called

‘multiline transfer’ with resonance scattering and conclusions in Section3.5.

3.2 The Transfer Equation

The main and the blend lines are considered to be formed in a1D, plane-parallel, static,

isothermal atmosphere. Throughout this chapter the symbols ‘l’ and ‘ba’ stand for the

‘main’ line and the ‘blend’ lines respectively, where the subscript ‘a’ takes values1 to n,

50



RADIATIVE TRANSFER WITH MULTIPLE BLEND L INES

with n being the number of blend lines considered. In the absence ofa magnetic field, the

total source vector in the Stokes vector basis may be writtenas

S(τ, λ, µ) =
1

ktot(λ)

{

βcφl(λ)Sl(τ, λ, µ)

+

n
∑

a=1

βba
φba

(λ)Sba
(τ, λ, µ) + βscSsc(τ, λ, µ) +B(λ)U

}

, (3.1)

whereµ = cos θ, with θ being the colatitude, and

ktot(λ) = βcφl(λ) +
n
∑

a=1

βba
φba

(λ) + βsc + 1 , (3.2)

with

βc =
kl

kc
; βba

=
kba

kc
; βsc =

σsc

kc
. (3.3)

Here,kl andkba
are the frequency integrated main and blend line absorptioncoefficients,

respectively.σsc andkc are the continuum scattering and absorption coefficients.φl and

φba
denote the absorption profiles for the main and the blend lines. The total optical depth

scaleτ is defined bydτ = −ktot(λ)kcdz. In Equation (3.1), U = (1, 0)T . The source

vectors for the main and the blend linesSl andSba
, and the continuum scattering source

vectorSsc are given, respectively, by

Sl(τ, λ, µ) = ǫlB(λ)U + (1 − ǫl)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
Rl(λ, λ′, µ, µ′)

φl(λ)
I(τ, λ′, µ′) , (3.4)

Sba
(τ, λ, µ) = ǫba

B(λ)U

+ (1 − ǫba
)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
Rba(λ, λ′, µ, µ′)

φba
(λ)

I(τ, λ′, µ′) , (3.5)

and

Ssc(τ, λ, µ) =

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′P (µ, µ′)I(τ, λ′, µ′)δ(λ− λ′) , (3.6)

whereǫl andǫba
are the thermalization parameters for the main and blend lines, respectively,

I = [I, Q]T , andB(λ) is the Planck function.B(λ) is taken as the same for both the main

and the blend lines. The continuum is assumed to scatter coherently through Rayleigh

and Thomson scattering.P (µ, µ′) is the Rayleigh phase matrix (see e.g.,Chandrasekhar,

1950). The RMR(λ, λ′, µ, µ′) contains the physics of scattering. For simplicity, here we
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consider the factorized form of the RM, given by

R(λ, λ′, µ, µ′) = R(λ, λ′) P (µ, µ′) , (3.7)

whereR(λ, λ′), as mentioned in Chapter2, is the angle averaged redistribution function of

Hummer(1962) which contains only the frequency correlations between the incident and

scattered photons. The Rayleigh phase matrix is now only a function ofθ and notn. This

is due to the fact that in the absence of a magnetic field, the radiation field is assumed to be

azimuthally symmetric.

The angular dependency of the source vectors are eliminatedby working in the irre-

ducible basis (seeFrisch, 2007). In this basis, the total and the line source vectors have the

form:

S(τ, λ) =
kL(λ)SL(τ, λ) + B(λ)U

ktot(λ)
, (3.8)

and

SL(τ, λ) =
1

kL(λ)

[

βcφl(λ)ǫl +

n
∑

a=1

βba
φba

(λ)ǫba

]

B(λ)U

+
1

kL(λ)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
[

βc(1 − ǫl)R
l(λ, λ′)W l

+

n
∑

a=1

βba
(1 − ǫba

)Rba(λ, λ′)W ba + βscδ(λ− λ′)E

]

Ψ(µ′)I(τ, λ′, µ′) , (3.9)

wherekL(λ) = βcφl(λ) +
∑n

a=1 βba
φba

(λ) + βsc. Here,U = (1, 0)T , E denotes the2×2

unity matrix, andRba(λ, λ′) is given by the type II redistribution function (Rba

II (λ, λ′)) of

Hummer(1962). Ψ(µ′) is the2 × 2 Rayleigh phase matrix in the irreducible basis. The

matricesW are given by
(

1 0

0 W2

)

, (3.10)

whereW2 are polarizability factors. They depend on the angular momentum quantum

numbers of the upper and lower levels. For a normal Zeeman triplet transition (J = 0 →
1 → 0), this factor is unity.

The1D polarized line transfer equation in the irreducible basisis then given by

µ
∂I(τ, λ, µ)

∂τ
= I(τ, λ, µ) − S(τ, λ) , (3.11)

whereI is the irreducible intensity vector. To solve this transferequation we use SEM
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proposed byFrisch et al.(2009).

3.3 Numerical Method of Solution

SEM is based on the Neumann series expansion of the polarizedcomponent of the source

vector. Single scattered solution is computed at first, and this solution is then used for

calculating the higher order scattering terms.

In the absence of a magnetic field, the source vector components in the irreducible basis

can be written as

SK
0,L(τ, λ) =

1

kL(λ)

[

βcφl(λ)ǫl +

n
∑

a=1

βba
φba

(λ)ǫba

]

B(λ)δK0

+
1

kL(λ)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
[

βc(1 − ǫl)R
l(λ, λ′)W l

K

+

n
∑

a=1

βba
(1 − ǫba

)Rba(λ, λ′)W ba

K + βscδ(λ− λ′)

]

×
∑

K ′=0,2

ΨKK ′

0 (µ′)IK ′

0 (τ, λ′, µ′) , (3.12)

whereΨKK ′

0 are the elements of theΨ matrix with K,K ′ = 0, 2. For the calculation

of StokesI, one can neglect the contribution from the linear polarization Q to a good

approximation because the linear polarization resulting from Rayleigh scattering in the

solar atmosphere is small. Therefore, the dominant contribution to StokesI comes from

the componentI0
0 . The corresponding source vector component, neglecting the K 6= 0

terms, is given by

S̃0
0 ≃ 1

kL(λ)

[

βcφl(λ)ǫl +

n
∑

a=1

βba
φba

(λ)ǫba

]

B(λ) +
1

kL(λ)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′

×
[

βc(1 − ǫl)R
l(λ, λ′) +

n
∑

a=1

βba
(1 − ǫba

)Rba(λ, λ′) + βscδ(λ− λ′)

]

×I0
0 (τ, λ′, µ′) . (3.13)

Here, S̃0
0 stands for approximate value ofS0

0 . We calculate it using the ALI method of

solution with the FBF technique (seePaletou & Auer, 1995).

Retaining only the contribution from̃I0
0 on the RHS ofK = 2 component ofSK

0,L in
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Equation (3.12), we obtain the single scattering approximation as

[

S̃2
0,L(τ, λ)

](1)

≃ 1

kL(λ)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
[

βc(1 − ǫl)R
l(λ, λ′)W l

2

+
n
∑

a=1

βba
(1 − ǫba

)Rba(λ, λ′)W ba

2 + βscδ(λ− λ′)

]

Ψ20
0 (µ′)Ĩ0

0 (τ, λ′, µ′) . (3.14)

The superscript (1) stands for single scattering. The single scattered polarized radiation

field

[

Ĩ2
0

](1)

is calculated using a formal solver. This solution is used asa starting point to

calculate the higher order scattering terms. Thus the iterative sequence at ordern is

[

S̃2
0,L(τ, λ)

](n)

≃
[

S̃2
0,L(τ, λ)

](1)

+
1

kL(λ)

∫ +1

−1

dµ′

2

∫ ∞

0

dλ′
[

βc(1 − ǫl)R
l(λ, λ′)W l

2

+
n
∑

a=1

βba
(1 − ǫba

)Rba(λ, λ′)W ba

2 + βscδ(λ− λ′)

]

Ψ22
0 (µ′)

[

Ĩ2
0 (τ, λ′, µ′)

](n−1)

. (3.15)

We impose the convergence criteria of10−8 and continue the iteration until the maximum

relative change in the surface polarization becomes less than the convergence criteria.

3.4 Results

In this section, we present the effects of polarizing blendson the main line of interest. For

illustration, we consider two blends located to the left (denotedb1) and to the right (denoted

b2) of the main line. A detailed parametric study involving only one polarizing blend line

is presented in Chapter2.

We consider a self-emitting isothermal atmospheric slab characterized by the param-

eters(T, r, B) = (108, 10−5, 1). The grids used in the computations have the resolution

given by(Nd, Nx, Nµ) = (5, 401, 5). Nd is the number of depth points in a decade of the

logarithmically spacedτ grid with the first point being10−2. Nx is the total number of

points in the equally spaced wavelength grid with a separation of 5 mÅ. Nµ is the colat-

itude grid represented by a5-point Gaussian quadrature formula. The main line strength

βc = 105 and the continuum scattering coefficientβsc = 0. r = 1/βc is the ratio of contin-

uum to the main line opacity. The photon destruction probabilities are given byǫl = 10−4

andǫba
= 5 × 10−2. The damping parameters for the three lines areal = 2 × 10−3 and

aba
= 10−4. The main line is centered at5000 Å. The two blends are placed20 mÅ away on

either side of the main line. The Doppler widths of all the lines are25 mÅ unless specified

otherwise.
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The Stokes profiles obtained from this multiline transfer are presented in Figure3.1.

The positiveQ corresponds to the vibrations of the electric vector perpendicular to the

limb. In panels (a), (b), and (c), dotted lines represent (I, Q/I) profiles computed without

Figure 3.1: Emergent Stokes profiles in the presence of two blend lines for a line of sight
µ = 0.047. See Section3.4 for details on the cases presented and parameters used for the
computations of the profiles presented in panels (a), (b), (c) and (d).

blends, while dashed lines represent those computed with blends. In panels (a) and (b), we

show the effects of polarizing blends (W ba

2 = 1) on the intrinsically unpolarized main line

(W l
2 = 0). Blends of unequal strength are considered in panel (a), while in panel (b), they

are of equal strength. In panel (a), the blend at4999.98 Å has a strength ofβb1 = 5 × 102

and the one at5000.02 Å has a strength ofβb2 = 5 × 103. Blends make the main line core

in I relatively narrow and less deep (compare dotted and dashed lines in Figure3.1(a)).

In Q/I, the main line does not produce any signal in the absence of blends as expected

(see dotted line). The blends show triple peak structure (not all peaks are seen here) due to

the PRD scattering mechanism. The wing peaks of the blends differ in amplitude because

of the difference in their relative strengths. The main linepolarization which should have
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been zero according to the expectations (W l
2 = 0) is now clearly non-zero (see dashed line

in Figure3.1(a)). This is an effect of the proximity of the polarizing blends. The central

and the wing PRD peaks of the two blends combine so as to give a distorted signal inQ/I.

It appear as though theQ/I signal that we are seeing is due to the main line. One has to be

therefore careful in identifying these effects in the process of modeling.

The parameters used to compute the Stokes profiles in panel (b) are similar to those

used in panel (a) but for blend lines of equal strengths (βba
= 5×104). We see, as before, a

shallow and narrow absorption line in StokesI when blends are included (see dashed line)

compared to the case when they are neglected (see dotted line). Since both the blends are of

equal strength, theQ/I profile is symmetric and shows a double peak structure with a dip

at the main line center (5000 Å). The increase in the percentage of polarization compared

to panel (a) is attributed to the increase in the blend line strengths.

The case in which all the three lines are strongly polarizing(W l
2 = W ba

2 = 1) is pre-

sented in panel (c). The blend lines have equal strengths (βba
= 5 × 104). The dotted line

corresponds to the main line case without blends. In this case, the main line appears as a

pure absorption line in intensity and shows a strong polarization of about7 % at main line

center. When the blends are included, they bring down the line center polarization of the

main line to nearly4 % (see dashed line). The short peaks on either side of the mainline

core correspond to blend line peaks. The signs of theQ/I at the main line center and at the

blend lines centers are opposite. This is indicative of a switchover from limb brightening

to the limb darkening of the radiation field.

The effect of variation of the Doppler width is shown in panel(d). Here, the dotted

and dashed lines represent the cases where the Doppler widths for the blends are15 mÅ

and40 mÅ, respectively. The Doppler width of the main line is25 mÅ in both the cases.

The strength of the blends continues to be5 × 104. All the three lines have an intrinsic

polarizability factorW2 = 1. The intensityI profile becomes broad in the main line core,

with an increase in the the Doppler width of the blends. Magnitude ofQ/I in the main line

core decreases with an increase in the blend line width.

3.5 Conclusions

In this chapter, we have shown theoretically how the total source vector can be generalized

to include many blend lines (seeSowmya et al., 2014a). Blend lines are generally present

in the wings of the main spectral line. For the cases considered in this chapter, blend lines

lie in the core of the main line. In practice, it is possible tohave such situations where the

blend lines are placed very close to the main line, thereby showing a considerable effect.
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We showed in our studies that the blends affect the main line polarization significantly when

they lie closer to the main line. Including these effects helps to achieve a better modeling

of a given spectral line. These studies are essential in a fineanalysis of the second solar

spectrum, and help in our understanding of the solar atmosphere.
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4
PBE IN A TWO-L EVEL ATOM WITH

HYPERFINE STRUCTURE

This chapter is based on:

Sowmya, K., Nagendra, K. N., Stenflo J. O., & Sampoorna, M. 2014, ApJ, 786, 150

Outline

In this chapter, we consider the quantum interference (Section 1.6) in a two-level atom with

hyperfine structure (Section1.4.2) under the influence of a magnetic field. We derive the

PRD matrix (Sections1.3and 1.3.1) that includes interference between the upperF states

and neglect the interference between the lowerF states. We apply the theory to the NaI

D2 line that is produced by the transition between the lowerJ = 1/2 and upperJ = 3/2

states which split intoF states because of the coupling with the nuclear spinIs = 3/2.

We explore the properties of the PRD matrix for the single scattering case, in particular,

the effects of the magnetic field in the PB regime and their usefulness as a tool for the

diagnostics of solar magnetic fields.

4.1 Introduction

The atomic energy levels are split into magnetic substates in the presence of a magnetic

field. When MS is much smaller than the hyperfine structure splitting (HFS), then we are

in the Zeeman effect (see Section1.7.1) regime. In this regime, the energy shift produced

by the magnetic field varies linearly with the field strength.On the other hand, if the MS
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is comparable to or larger than the HFS then the magnetic fieldeffects are described by the

PBE (Section1.7.3) in which the MS varies nonlinearly with the magnetic field strength,

leading to level-crossing interference effects. The Hanleeffect represents a modification

of the resonance scattering polarization by the magnetic field. In this chapter, we are con-

cerned with the Hanle effect involvingF states. This leads to several interesting phenomena

related to level-crossing interferences.

PBE in molecules gives signatures in the Stokes profiles, which serve as a promising

tool for diagnosis of solar and stellar magnetic fields (see,for example,Berdyugina et al.,

2005, 2006a,b; Shapiro et al., 2006, 2007; Asensio Ramos, 2006). Like PBE in molecular

lines, PBE in atomic lines could also serve as a diagnostic tool for measuring the magnetic

fields. With this motivation, people have studied the influence of PBE on emergent pro-

files of atomic lines such as the HeI 10830 Å multiplet (Bommier, 1980), FeII multiplet,

Si II , Si III etc. (see, for example,Sasso et al., 2006; Stift et al., 2008; Stift & Leone, 2008;

Khalack & Landstreet, 2012).

Landi Degl’Innocenti(1975) formulated the transfer equation for a line with hyperfine

structure in the presence of a magnetic field, both in LTE and NLTE. He also presented

expressions for the strengths and shifts of the magnetic components of the lines formed

due to transitions between theF states. In a later paper, he provided a Fortran program

to compute these strengths and magnetic shifts (seeLandi Degl’Innocenti, 1978). We use

this computer program to calculate the eigenvalues and expansion coefficients discussed in

Section4.3. López Ariste et al.(2002, 2003) discussed the net circular polarization (NCP)

induced by the hyperfine structure and its usefulness as a tool for the diagnosis of solar

magnetic fields in the quiet photosphere and plages.

TheF -state interference phenomenon plays a significant role in modifying the shapes

of the emergent Stokes profiles.Stenflo(1997) developed a scattering theory of quan-

tum interference phenomena which explains the effect ofF -state interference on coher-

ently scattered lines.Landi Degl’Innocenti & Landolfi(2004) developed a QED theory

to handleF -state interference phenomenon in the PB regime for scattering on a multi-

level atom under the approximation of CRD.Casini & Manso Sainz(2005) discuss the

same problem but for scattering on a multi-term atom that includes bothJ-state andF -

state interference phenomena again under the approximation of CRD. Using the theory of

Landi Degl’Innocenti & Landolfi(2004), Belluzzi et al.(2007) andBelluzzi (2009) inves-

tigated the effects of magnetic field on lines resulting fromtransitions between hyperfine

structure states of odd isotope of Ba and ScII , respectively.

A scattering theory ofF -state interference based on a metalevel approach was devel-

oped byLandi Degl’Innocenti et al.(1997). This theory takes into account PRD in the
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collisionless regime. InSmitha et al.(2012b), we presented the PRD matrix for theF -state

interference phenomenon in the absence of magnetic fields and in the collisionless regime.

This PRD theory was applied inSmitha et al.(2013b) to illustrate the importance of PRD,

hyperfine structure, isotopic shifts, and radiative transfer in modeling the observed non-

magnetic linear polarization profiles of BaII D2 4554 Å line. In this chapter, we derive

the PRD matrix for a two-level atom with hyperfine structure in the presence of a mag-

netic field of arbitrary strength. A straightforward extension of theJ-state RM presented

in Smitha et al.(2011b) to the case ofF -state interference in the PB regime is not possible

because the RM derived in that paper is valid only in the linear Zeeman regime. Therefore,

in this chapter, we formulate the theory ofF -state interference in the PB regime and derive

an expression for the RM including PRD in the absence of collisions. We assume the lower

levels to be infinitely sharp and unpolarized. For the sake ofclarity, in Section4.2we de-

scribe the atomic system on which the magnetic field acts. We discuss the atom-radiation

interaction in the presence of a magnetic field of arbitrary strength quantitatively in Sec-

tion 4.3. In Section4.4we present the characteristics of the RM derived in Section4.3and

give our concluding remarks in Section4.5.

4.2 The Interaction Hamiltonian

The hyperfine structure of an element has dominant contributions from the magnetic dipole

and electric quadrupole interactions (seeCorney, 1977; Woodgate, 1992). The Hamiltonian

HD describing the interaction of the nuclear magnetic moment with the magnetic field

produced at the nucleus by the valence electrons can be written as

HD = AJIs · J , (4.1)

whereAJ is the magnetic dipole hyperfine structure constant and is mostly determined

from experiments. The HamiltonianHQ for the electric quadrupole interaction between

the protons and electrons due to the finite extent of the nuclear charge distribution is given

by

HQ =
BJ

2Is(2Is − 1)J(2J − 1)

{

3(Is · J)2 +
3

2
(Is · J) − Is(Is + 1)J(J + 1)

}

, (4.2)

whereBJ is the electric quadrupole hyperfine structure constant which is also in most cases

determined by experimental measurements.B = 0 whenIs = 1/2 because the nuclear

charge distribution is spherically symmetric. Also,BJ vanishes whenJ = 0, 1/2 because
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of the spherical symmetry of the electron charge distribution.

The total Hamiltonian for the atomic system in the presence of an external magnetic

field is written as

H = H0 + Hhfs + HB , (4.3)

whereH0 is the Hamiltonian describing the atomic structure excluding hyperfine structure,

Hhfs is the Hamiltonian for the hyperfine structure interaction which, is the sum ofHD and

HQ.

In the absence of an external magnetic field, the hyperfine interaction energyEhfs is

given by

Ehfs =
1

2
AJK +

BJ

8Is(2Is − 1)J(2J − 1)
{3K(K + 1) − 4J(J + 1)Is(Is + 1)} , (4.4)

whereK = F (F + 1) − J(J + 1) − Is(Is + 1). Ehfs is the energy of theF state measured

from the parentJ state. See Section1.5.2for more details.

In the limit of BJ ≪ AJ , the spacing between theF states is given by the so called

hyperfine structure interval rule

∆E = EF − EF−1 = AJF . (4.5)

In cases whereBJ is finite, an additional energy shift is produced.

The magnetic HamiltonianHB in Equation (4.3) has the form

HB = µ0(L + 2S) · B = µ0B(Jz + Sz) , (4.6)

whereµ0 is the Bohr magneton.B is the strength of the vector magnetic fieldB. The

z-axis of the coordinate system is assumed to be along the magnetic field direction. In the

PB regime, the magnetic field produces a splitting comparable with the separation between

theF states (HFS). In such cases, the magnetic substates of a given F state can superpose

on the magnetic substates of anotherF state. This leads to a mixing ofF states. Such a

mixing of states can occur even for very small values of field strengths. Our purpose is to

derive an expression for the PRD matrix representing theF -state interference process in

the PB regime.
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4.3 PRD Matrix

As mentioned in Chapter1, in the scattering theory approach, the physics of atom radiation

interaction is described through the RM. In this section, wederive the general form of the

RM for theF -state interference process and present its forms in a few special cases.

4.3.1 RM in the PB Regime

The PB regime is reached when the Zeeman splitting of the magnetic substatesµ belonging

to a givenF state becomes comparable to the energy separation between the F states

themselves. This is generally referred to as the incompletePBE. In such a situation, the

magnetic field can no longer be treated as a perturbation to the atom-radiation interaction,

and one has to carry out a simultaneous diagonalization of the hyperfine interaction and

magnetic Hamiltonians. In the complete PB regime, the Zeeman splitting is very large

compared to the separation between theF states.

The Kramers–Heisenberg formula (Kramers & Heisenberg, 1925) gives the complex

probability amplitudes for scattering from an initial magnetic substatea to a final substate

f through intermediate statesb and is written as

wαβ ∼
∑

b

〈f |r · eα|b〉〈b|r · eβ |a〉
ωbf − ω − iγ/2

. (4.7)

Here,ω = 2πξ is the circular frequency of the scattered radiation.~ωbf is the energy

difference between the excited and final levels, andγ is the damping constant.

The coherency matrix (Section1.1) for this scattering processa→ b→ f is given by

W =
∑

a

∑

f

w ⊗ w∗ . (4.8)

The incoherent summation is taken over the initial and final levels (seeStenflo, 1998).

Here,w is the Jones matrix, and its elements are given by Equation (4.7).

We first identify the basis vectors|a〉, |b〉, and|f〉 in the PB regime as

|a〉 = |JaIsiaµa〉 , (4.9)

with similar forms for|b〉 and|f〉. We then expand these PB regime basis vectors in terms
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of basis vectors|JIsFµ〉 of the Zeeman regime as

|JaIsiaµa〉 =
∑

Fa

Cia
Fa

(JaIs, µa) |JaIsFaµa〉 , (4.10)

with similar expansions carried out for the intermediate and final state vectors. TheC

coefficients appearing in the above equation are given by

Ci
F (JIs, µ) = 〈JIsFµ|JIsiµ〉 , (4.11)

which can be assumed to be real because the total Hamiltonianis real.

Using Equation (4.10) in the Kramers–Heisenberg formula and noting thatJf = Ja,

the dipole matrix elements can be expanded using the Wigner–Eckart theorem (see Equa-

tions (2.96) and (2.108) ofLandi Degl’Innocenti & Landolfi, 2004) to obtain

wαβ ∼
∑

ibµb

∑

FaFf FbFb′′

∑

qq′′

(−1)q−q′′C
if
Ff

(JaIs, µf)C
ia
Fa

(JaIs, µa)

×Cib
Fb

(JbIs, µb)C
ib
Fb′′

(JbIs, µb)(2Ja + 1)
√

(2Fa + 1)(2Ff + 1)(2Fb + 1)(2Fb′′ + 1)

×
(

Fb Ff 1

−µb µf −q

)(

Fb′′ Fa 1

−µb µa −q′′

){

Ja Jb 1

Fb Ff Is

}{

Ja Jb 1

Fb′′ Fa Is

}

× εα∗

q εβ
q′′ Φγ(νibµbif µf

− ξ) . (4.12)

Here,ε are the spherical vector components of the polarization unit vectors withα andβ

referring to the scattered and incident rays, respectively. Φγ(νibµbif µf
− ξ) is the frequency-

normalized profile function given by

Φγ(νibµbif µf
− ξ) =

1/πi

νibµbif µf
− ξ − iγ/4π

, (4.13)

where we have used an abbreviation

νibµbif µf
= νJbIsibµb,JaIsif µf

= νJbJa
+
Eib(JbIs, µb) − Eif (JaIs, µf)

h
, (4.14)

with h being the Planck constant. The energy eigenvaluesE and the expansion coeffi-

cientsC are obtained by diagonalizing the total Hamiltonian given in Equation (4.3, see

Landi Degl’Innocenti 1978).

We take the bilinear product of the matrix elementswαβ , which involves performing

coherent summation over the intermediate substatesb. Furthermore, we perform inco-
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herent summations over initial (a) and final (f ) substates to form the coherency matrix

and transform it to the laboratory frame, following the steps described in Section 2.2

of Sampoorna et al.(2007a). With the help of Equation (3.84) ofStenflo (1994) and

the steps given in Appendix C ofSampoorna et al.(2007b), we express the coherency

matrix in terms of irreducible spherical tensorsT K
Q (i,n) introduced to polarimetry by

Landi Degl’Innocenti(1984). Here, i = 0, 1, 2, 3 refer to the Stokes parameters,K =

0, 1, 2, with Q taking (2K + 1) values, andn is the direction of the scattered ray. We then

transform the coherency matrix to Stokes vector basis following the steps in Appendix C

of Sampoorna et al.(2007b) to obtain

Ii =

3
∑

j=0

RII
ij(x,n, x

′,n′; B)I ′
j , (4.15)

whereIi andI ′
j are the Stokes vectors for the scattered and incident rays, respectively,RII

ij

is the normalized RM for type II scattering in the laboratoryframe given by

RII
ij(x,n, x

′,n′; B) =
3(2Jb + 1)

(2Is + 1)

∑

KK ′Q

∑

iaµaif µf ibµbib′µb′

∑

FaFa′Ff Ff ′FbFb′Fb′′Fb′′′

×
∑

qq′q′′q′′′

(−1)q−q′′′+Q
√

(2K + 1)(2K ′ + 1) cos βib′µb′ ibµb
eiβi

b′
µ

b′
ibµb

×[(hII
ibµb,ib′µb′

)iaµaif µf
+ i(f II

ibµb,ib′µb′
)iaµaif µf

]C
if
Ff

(JaIs, µf)C
ia
Fa

(JaIs, µa)C
ib
Fb

(JbIs, µb)

×Cib
Fb′′

(JbIs, µb)C
if
Ff ′

(JaIs, µf)C
ia
Fa′

(JaIs, µa)C
ib′
Fb′

(JbIs, µb′)C
ib′
Fb′′′

(JbIs, µb′)

×
√

(2Fa + 1)(2Ff + 1)(2Fa′ + 1)(2Ff ′ + 1)(2Fb + 1)(2Fb′ + 1)(2Fb′′ + 1)(2Fb′′′ + 1)

×
(

Fb Ff 1

−µb µf −q

)(

Fb′ Ff ′ 1

−µb′ µf −q′

)(

Fb′′ Fa 1

−µb µa −q′′

)

×
(

Fb′′′ Fa′ 1

−µb′ µa −q′′′

)(

1 1 K

q −q′ −Q

)(

1 1 K ′

q′′′ −q′′ Q

)

×
{

Ja Jb 1

Fb Ff Is

}{

Ja Jb 1

Fb′ Ff ′ Is

}{

Ja Jb 1

Fb′′ Fa Is

}{

Ja Jb 1

Fb′′′ Fa′ Is

}

×(−1)QT K
−Q(i,n)T K ′

Q (j,n′) . (4.16)

Equation (4.16) represents the PRD matrix for hyperfine interaction in the PB regime.

This equation, when written in the atomic rest frame, can be directly obtained from Equa-

tion (12) of Landi Degl’Innocenti et al.(1997) by introducing the spherical tensors and

by assuming that the lower levels are unpolarized. The PRD matrix derived in this sec-
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tion satisfies the symmetry relations described in detail inBommier(1997b). In the above

expression,n′ represents the direction of the incident ray and the so called Hanle angle

βib′µb′ ibµb
is given by

tanβib′µb′ ibµb
=
νib′µb′ iaµa−νibµbiaµa

γ/2π
. (4.17)

The auxiliary functionshII andf II appearing in Equation (4.16) have the form

(hII
ibµb,ib′µb′

)iaµaif µf
=

1

2
[RII,H

ibµbiaµaif µf
+RII,H

ib′µb′ iaµaif µf
] , (4.18)

and

(f II
ibµb,ib′µb′

)iaµaif µf
=

1

2
[RII,F

ib′µb′ iaµaif µf
− RII,F

ibµbiaµaifµf
] , (4.19)

where the magnetic redistribution functions of type II are defined as

RII,H
ibµbiaµaif µf

(xba, x
′
ba,Θ) =

1

π sin Θ
exp

{

−
[

xba − x′ba + xiaµaif µf

2 sin(Θ/2)

]2}

×H
(

a

cos(Θ/2)
,
xba + x′ba + xiaµaifµf

2 cos(Θ/2)

)

, (4.20)

and

RII,F
ibµbiaµaif µf

(xba, x
′
ba,Θ) =

1

π sin Θ
exp

{

−
[

xba − x′ba + xiaµaif µf

2 sin(Θ/2)

]2}

×2F

(

a

cos(Θ/2)
,
xba + x′ba + xiaµaif µf

2 cos(Θ/2)

)

. (4.21)

Here,Θ is the scattering angle, the functionsH andF are the Voigt and Faraday–Voigt

functions (see Equation (18) ofSmitha et al., 2011b). The quantities appearing in the ex-

pressions for the type II redistribution functions have thefollowing definitions:

xba =
νibµbiaµa

− ν

∆νD
; x′ba =

νibµbiaµa
− ν ′

∆νD
,

xiaµaif µf
=
νiaµaifµf

∆νD

; a =
γ

4π∆νD

, (4.22)

wherexba is the emission frequency,a is the damping parameter, and∆νD is the Doppler

width.

We remark that the PRD matrix in the PB regime presented in this section can also

be obtained by an alternative approach based on the transition amplitudes (Shapiro et al.,

2007) that avoids the use of statistical tensorsT K
Q . See AppendixA for more details.
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4.3.2 Special Cases

The PB theory and the relevant RM derived in Section4.3.1gives exact PRD matrix for the

problem at hand. However, it is possible, under limiting cases, to derive simple expressions

for practical applications. One example of this is the so called Zeeman regime. In this

regime, the magnetic field is so weak that it produces a splitting which is much smaller

than the energy differences between theF states. In such a case, the magnetic Hamiltonian

can be diagonalized analytically using the perturbation theory.

In the Zeeman regime where the basis vector is|JIsFµ〉 in whichF is a good quantum

number, the RM in Equation (4.16) takes the form

RII
ij(x,n, x

′,n′; B) =
3(2Jb + 1)

2Is + 1

∑

KK ′Qqq′q′′q′′′FaµaFfµf FbµbFb′µb′

(−1)q−q′′′+Q

× cos βFb′µb′Fbµb
eiβF

b′
µ

b′
Fbµb

[

(hII
Fbµb,Fb′µb′

)FaµaFfµf
+ i(f II

Fbµb,Fb′µb′
)FaµaFfµf

]

×(2Fa + 1)(2Ff + 1)(2Fb + 1)(2Fb′ + 1)
√

(2K + 1)(2K ′ + 1)

×
{

Ja Jb 1

Fb Ff Is

}{

Ja Jb 1

Fb Fa Is

}{

Ja Jb 1

Fb′ Ff Is

}{

Ja Jb 1

Fb′ Fa Is

}

×
(

Fb Fa 1

−µb µa −q′′

)(

Fb Ff 1

−µb µf −q

)(

Fb′ Fa 1

−µb′ µa −q′′′

)

×
(

Fb′ Ff 1

−µb′ µf −q′

)(

1 1 K

q −q′ −Q

)(

1 1 K ′

q′′′ −q′′ Q

)

×(−1)QT K
−Q(i,n)T K ′

Q (j,n′) . (4.23)

The Hanle angleβFb′µb′Fbµb
is given by

tan βFb′µb′Fbµb
=
ωFb′Fb

+ (gFb′
µb′ − gFb

µb)ωL

γ
, (4.24)

whereωL is the Larmour frequency associated with the applied magnetic field. The Landé

factorsgF appearing in the above equation are defined as

gF = gJ
1

2

F (F + 1) + J(J + 1) − Is(Is + 1)

F (F + 1)
, (4.25)

for F 6= 0. Here,gJ is theL− S coupling Landé factor given by

gJ = 1 +
1

2

J(J + 1) − L(L+ 1) + S(S + 1)

J(J + 1)
. (4.26)
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Equation (4.23) has a formal resemblance to Equation (25) derived inSmitha et al.(2011b)

for the case ofJ-state interference. Indeed, theF -state interference RM in the Zeeman

regime can be obtained from the correspondingJ-state interference RM through the re-

placement of (J, L, S) by (F, J, Is) in the latter RM. When the magnetic field is set to zero

in Equation (4.23), it takes the same form as Equation (2) ofSmitha et al.(2012b).

4.4 Redistribution in Single Scattering

To study the behavior of the RM derived in Section4.3.1for arbitrary field strengths, we

consider the atomic line with the following configuration, namely, the NaI D2 line result-

ing from the transition betweenJa = 1/2 andJb = 3/2 (see Figures1.3 and1.7). The

wavelength in air corresponding to this transition isλ0 = 5889.95095Å. The nuclear spin

Is = 3/2. TheJ − Is coupling results in the hyperfine structure statesFb = 0, 1, 2, 3 for

the upper stateJb andFa = 1, 2 for the lower stateJa. The energies of theseF states are

taken fromSteck(2003). When the degeneracy of the magnetic substates of theF states

is lifted by the magnetic field, 68 allowed transitions take place between them in the PB

regime. The hyperfine structure constants have the valuesA1/2 = 885.81 MHz, B1/2 = 0,

A3/2 = 18.534 MHz, andB3/2 = 2.724 MHz (seeSteck, 2003). The EinsteinA coefficient

for theJb = 3/2 state is taken to be6.3 × 107 s−1. The Doppler width∆λD = 25 mÅ and

the damping parametera = 0.00227 (a value obtained after usingγ = 6.3 × 107 s−1 in

Equation (4.22), wherea is defined) for all the components. The system that we have con-

sidered obeys the spacing rule described in Section4.2. For the case ofIs = 3/2 considered

here, the spacing between theF states is predicted to be

E2 −E1 = 2A1/2 ,

for the lowerJ = 1/2 state and

E3 −E2 = 3A3/2 + B3/2 ,

E2 −E1 = 2A3/2 − B3/2 ,

E1 −E0 = A3/2 − B3/2 ,

for the upperJ = 3/2 state. We study the results of a single90° scattering event in which

the unpolarized spectrally flat incident beam is scattered by this atomic system in a direction

perpendicular to the incident beam. We show the results obtained by considering the LiI

D2 lines in AppendixB.
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Figure 4.1: Energies of the magnetic substates of theF states as a function of the magnetic
field strengthB in G.

4.4.1 Polarization Diagram

Figure4.1shows the energies of the magnetic substates of the upperF states as a function

of the magnetic field strengthB. This figure is similar to the one presented in Figure 3.11

of Landi Degl’Innocenti & Landolfi(2004). It is apparent from the figure that the MS is

nonlinear. This nonlinear behavior of the energies of the magnetic substates starts as soon

asB 6= 0. We also notice several level-crossings occurring at different field strengths. For

the atomic system under consideration, the magnetic field strengths (in G) for which the

level-crossings occur are tabulated in Table4.1. These level-crossings show up as loops in

the polarization diagrams (plots ofQ/I vs U/I) and significantly influence the scattered

Stokes profiles.

The scattering geometry used for the calculation of the polarization diagrams in the

present section is shown in Figure4.2. This geometry is identical to the one considered

in Figure 5.11 ofLandi Degl’Innocenti & Landolfi(2004). To explore the effects of the

magnetic field in the PB regime on the linear polarization, wepresent in Figure4.3polar-

ization diagrams computed at different distances from the line center. To construct these

diagrams, we first compute the elements of the RM for a given value ofB and integrate the

first column of the RM over incident wavelengths.

The solid curve forβ = 0° (magnetic field parallel to the scattered beam) in Figure4.3
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Fb�Fb′ 2 3 3 3
µb�µb′ −2 −3 −2 −1

1 0 12.7 31.3 ... ...
1 +1 15 36 ... ...
2 −1 ... 25.1 ... ...
2 0 ... 16.3 22 52
2 +1 ... 14 20 44.5
2 +2 ... 13.3 18 37.8

Table 4.1: Magnetic field strengths (approximate values in G) for which the magnetic
substates of theF states cross. For instance, the crossing betweenµb = 0 of Fb = 1
and µb′ = −2 of Fb′ = 2 occurs atB ∼ 12.7 G. The numbers highlighted in bold-
face correspond to the field strength values for which level-crossings occur when one
considers the geometry given in Figure4.2, i.e., the level-crossings corresponding to
∆µ = µb′ − µb = ±2.

n'

n

x

y

z

B

β

θ'

χ

Figure 4.2: Geometry considered for polarization diagrams. β is the angle between the
magnetic field vector and the scattered beam. The incident radiation is characterized by
(θ′, χ′) = (90°, 0°) and the scattered radiation by(θ, χ) = (β, 90°). The magnetic field
inclinationθB = 0° and its azimuthχB = 0° (magnetic reference frame).

matches with Figure 10.30 ofLandi Degl’Innocenti & Landolfi(2004). As discussed in

Landi Degl’Innocenti & Landolfi(2004), the loops seen in the polarization diagram arise

due to the level-crossings that occur in the PB regime (see Figure4.1). For the geometry

considered, level-crossings take place only between magnetic substates with|∆µ| = 2.

The magnetic field values for which these crossings occur arehighlighted in boldface in

Table4.1. The coherence between the overlapping substates increases around these values

of field strengths. This leads to an increase in the scattering polarization toward its non-

magnetic value, resulting in the formation of loops.
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Figure 4.3: Polarization diagrams obtained forβ = 0° at different distances from the
line center as indicated in the figure. The solid vertical line represents theβ = 90° case
corresponding to the line center wavelength. The numbers along the solid curves represent
the value of magnetic field strengthB in G. The symbols on the other curves mark the same
values ofB as indicated for the solid curve forβ = 0°. The zero field point is the same for
the two cases represented by solid lines.

We see from the figure an overall increase inQ/I andU/I as we move away from the

line center whenβ = 0°. Furthermore, the upper loop (near8 G) seen in the solid line case

disappears for wavelengths away from the line center. On theother hand, the lower loop

(near20 G) becomes bigger in size. In the far wings of the line, the polarization diagram

becomes a point corresponding to the Rayleigh case atQ/I = 0.428 andU/I = 0.

In Figure4.3, we also present the case ofβ = 90° (magnetic field perpendicular to the

scattering plane). In this case, the Hanle effect in a two-level atom with hyperfine structure

shows an interesting phenomenon (see the vertical solid line) called anti-level-crossing,

which has been extensively studied and characterized in thecase of CRD (Bommier, 1980;

Landi Degl’Innocenti & Landolfi, 2004). We see that theQ/I initially decreases from

0.118 atB = 0 to nearly0.0847 for B = 8 G. With further increase inB, theQ/I starts
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increasing and exceeds its value atB = 0. Thus, we see that

(

Q

I

)Is 6=0

B=0

<

(

Q

I

)Is 6=0

B→∞

. (4.27)

This occurs due to the basis transformation of the energy eigenstates in the complete PB

regime. The basis transformation takes place when the field strength increases from in-

complete PB regime to the complete PB regime. In the incomplete PB regime, the energy

eigenstates are given by|JIsiµ〉, whereas in the complete PB regime they are given by

|JµJIsµIs
〉. Anti-level-crossing is also known as avoided crossing, inwhich, due to the

strong coupling of theJ andIs to the magnetic field, the magnetic substates instead of

crossing, repel each other. Due to the geometry of the problem,U/I is zero.

4.4.2 Scattered Stokes Profiles

In this section, we present the Stokes profiles computed withPRD in the PB regime. Sec-

tions4.4.2.1, 4.4.2.2, and4.4.2.3show the Stokes profiles obtained for various magnetic

field configurations. The magnetic field orientations are discussed in the text and strengths

are indicated in the figures. The incident radiation is characterized by(cos θ′, χ′) = (0, 0°)

and the scattered ray by(cos θ, χ) = (0, 90°). For the computation of the Stokes profiles,

we use a wavelength grid having376 finely spaced points covering a bandwidth of2 Å. The

separation between theF states in the absence of a magnetic field is of the order of mÅ. In

the presence of a magnetic field, the magnetic components areshifted away from the line

center and the wavelength grid that we have considered is good enough and covers all the

components shifted by the magnetic field.

4.4.2.1 Vertical Field Perpendicular to the Line of Sight

In Figure4.4, we show the Stokes profiles obtained for different strengths of a vertical

magnetic field (θB = 0° andχB = 0°). We see that the intensity increases slightly with

increasing field strength.Q/I profiles show a decrease in amplitude up to8 G (see short

dashed line). For stronger fields (greater than8 G), theQ/I amplitude increases (see also

Figure4.3). This is the signature of anti-level-crossing effect which occurs because of the

repulsion between the magnetic substates. As discussed earlier, as a result of this effect, the

Q/I line core value, when considered as a function of the field strength, initially decreases

and then increases beyond its non-magnetic value. Transverse Zeeman effect signatures

show up prominently for fields stronger than100 G. Because of the geometry considered,

U/I is zero.
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Figure 4.4: Stokes profiles computed for the case of a vertical magnetic field. Vertical
dotted line marks the wavelength position of the NaI D2 line.

4.4.2.2 Horizontal Field Perpendicular to the Line of Sight

The case of a horizontal field perpendicular to the line of sight (θB = 90° andχB = 0°) is

shown in Figure4.5. We see that the intensity decreases monotonically with field strength.

Q/I profiles show an increase in amplitude from their Rayleigh scattered values with an

increase in the field strength. For fields of the order of100 G and larger, we see three

lobed profiles inQ/I due to transverse Zeeman effect. Once again,U/I is zero due to the

geometry.

4.4.2.3 Horizontal Field Parallel to the Line of Sight

For this geometry of the magnetic field (θB = 90° andχB = 90°), the intensity profiles

behave in the same way as in the case of a horizontal field perpendicular to the line of

sight (see Figure4.6). The depolarization in the line core due to the Hanle effectis clearly

visible in theQ/I panel. TheU/I signal is now generated because of Hanle rotation.

There is an increase inU/I amplitude for weaker fields and then a decrease for stronger

fields, which is a typical signature of the Hanle effect. We notice that theV/I profiles

are asymmetric in the incomplete PB regime (for fields up to200 G) while it is perfectly

anti-symmetric in the complete PB regime (for fields greaterthan200 G). This is because
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Figure 4.5: Stokes profiles computed for the case of a horizontal magnetic field perpendic-
ular to the line of sight. Vertical dotted line marks the wavelength position of the NaI D2

line.

incomplete PBE shifts the magnetic components asymmetrically about the line center and

causes differential strengths for these components. Because of this asymmetry, the NCP,

defined as
∫

V dλ (where the integration is done over the full line profile), isnon-zero (the

NCP would be zero if the splitting produced by the magnetic field is symmetric). For the

atomic line under consideration, NCP remains non-zero up to200 G.

4.5 Conclusions

Landi Degl’Innocenti & Landolfi(2004) incorporated the PBE on the hyperfine structure

states in the polarization studies under the assumption of CRD. They assumed that the

incident radiation is independent of frequency in an interval larger than the frequency shifts

and inverse lifetimes of the hyperfine structure substates involved in the transitions (flat-

spectrum approximation). In this chapter, we considered the same problem, but for the

case of PRD. This allows us to handle the frequency dependence of the incident radiation

field (relaxation of flat-spectrum approximation). In this way, the Stokes profile shapes can

be properly calculated by including the effects of PRD. We derived the PRD matrix for

F -state interference process, in the collisionless regime,in the presence of magnetic fields
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Figure 4.6: Stokes profiles computed for the case of a horizontal magnetic field parallel to
the line of sight. Vertical dotted line marks the wavelengthposition of the NaI D2 line.

of arbitrary strengths.

Through the polarization diagrams computed at different scattered wavelengths, we

showed the dependence on wavelength of the loops which are characteristics of the level-

crossings that occur in the PB regime. With the help of the Stokes profiles computed for
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the case of a vertical magnetic field, we also demonstrated the anti-level-crossing effect,

discussed for the case of CRD byBommier(1980) andLandi Degl’Innocenti & Landolfi

(2004). Based on the formulation described in this chapter, it is possible to explore the

diagnostic potential of PBE with PRD, in a complementary waywith the Zeeman effect, to

determine the strengths and geometry of the magnetic fields in the solar atmosphere.
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5
PBE IN A TWO-TERM ATOM WITHOUT

HYPERFINE STRUCTURE

This chapter is based on:

Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo J. O. 2014, ApJ, 793, 71

Outline

In Chapter4, we dealt with the problem of quantum interference between theF states in a

two-level atom with hyperfine structure. In this chapter, westudy the quantum interference

between the fine structure states of an atom which modifies theshapes of the emergent

Stokes profiles in the second solar spectrum. This phenomenon has been studied in great

detail both in the presence and absence of magnetic fields. Byassuming a flat-spectrum

for the incident radiation, the signatures of this effect have been explored for arbitrary field

strengths. Even though the theory which takes into account the frequency dependence of

the incident radiation is well developed, it is restricted to the regime in which MS is much

smaller than the separation between the fine structure states. In this chapter, we carry out a

generalization of our scattering matrix formalism including the effects of PRD for arbitrary

magnetic fields. We test the formalism by using available benchmarks for special cases. In

particular, we apply it to the LiI 6708 Å D1 and D2 line system (see Figure1.2), for which

observable effects from the PB regime are expected in the Sun’s spectrum.
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5.1 Introduction

The magnetic substates belonging to theJ states are degenerate in the absence of a mag-

netic field. When a magnetic field is applied, the degeneracy is lifted and the energies of

these magnetic substates are modified. With an increase in the field strength, the magnetic

substates belonging to differentJ states of a given term begin to overlap, leading to a mix-

ing of theJ states, and thereforeJ no longer remains a good quantum number. The PBE

occurs when the splitting produced by the magnetic field is comparable to the fine structure

splitting (FS). In this chapter, we address the problem of PBE on a two-term atom without

hyperfine structure (Section1.4.1) taking into account the effects of PRD. In other words,

we study theJ-state interference phenomenon in the presence of a magnetic field of arbi-

trary strength. In particular, we derive the PRD matrix for the problem at hand and present

the results obtained for the single scattering case.

Bommier(1980) developed a density matrix formalism to handleJ-state interference

in the presence of a magnetic field of arbitrary strength (including both the Zeeman and

PB regimes). Her formalism was limited to CRD in scattering.A quantum theory ofJ-

state interference phenomenon for the case of frequency coherent scattering was formulated

by Stenflo(1980, 1994, 1997). Landi Degl’Innocenti & Landolfi(2004), under the flat-

spectrum approximation, developed a QED theory for theJ-state interference phenomenon

in a multi-term atom and in the presence of magnetic fields of arbitrary strengths. Assuming

CRD, Casini & Manso Sainz(2005) considered the problem of PBE in a multi-term atom

with hyperfine structure involving the interferences amongboth theJ andF states. In

the linear Zeeman regime where FS is larger than the splitting produced by the magnetic

field, Smitha et al.(2011b, 2013a) developed a theory for the interference between the fine

structure states taking into account the effects of PRD. In this chapter, we generalize the

RM derived bySmitha et al.(2011b) in the absence of collisions to include the PBE. In

other words, we present a general form of the RM which holds true in the Hanle, Zeeman,

and PB regimes.

PBE is of great interest to the stellar community as well as the solar community be-

cause it serves as an effective tool to diagnose vector magnetic fields. The emergent spec-

tral line polarization depends sensitively on the magneticfield. PBE in molecules has

proven to be a good diagnostic tool in recent years for magnetic field measurements. Since

the FS in molecules is smaller than those for atoms, the PBE becomes operative for rela-

tively lower field strengths in molecules. Attempts have been made to develop a theoretical

framework for this problem and to identify and understand the signatures of this effect in

the emergent line polarization (see, for example,Asensio Ramos & Trujillo Bueno, 2006;
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Berdyugina et al., 2005, 2006a,b; Shapiro et al., 2006, 2007). An important step in doing

a similar study with atoms is to set up the Hamiltonian in the right form and diagonalize it

to obtain the energy eigenvalues and eigenvectors, which can be used later in the compu-

tations of the Stokes parameters. To this end, in our work concerned with PBE in atoms,

we use the diagonalization code ofLandi Degl’Innocenti(1978). This is a computer pro-

gram written for the simultaneous diagonalization of the magnetic and hyperfine structure

Hamiltonian. We modify this program suitably for the problem of our interest.

In Chapter4, we derived the PRD matrix for PBE on hyperfine structure states of a

two-level atom (seeSowmya et al., 2014c). Furthermore, we studied the characteristics

of the RM in a single90° scattering event. The same framework can also be developed

for the case of PBE on fine structure states through the straightforward replacement of the

quantum numbers which we discuss in Section5.3. In Section5.2, we set up the total

Hamiltonian for PBE in a two-term atom. The Hamiltonian in this case has non-zero, non-

diagonal elements which represent the mixing of theJ states. We present the general form

of the RM in terms of the irreducible spherical tensors, derived assuming the lower levels

to be unpolarized and infinitely sharp, in Section5.3. We discuss the results for the single

scattering case in Section5.4 considering the fine structure states of the lithium D1 and

D2 lines as an example. In the solar case, the LiI 6708 Å doublet, which has the same fine

structure configuration as the D1 and D2 lines of NaI and BaII , but for which the FS is only

0.15 Å, serves as a good candidate for application of the theory developed in this chapter.

Spectropolarimetric observations of this LiI doublet have been published inStenflo(2011).

The theoretical work on the same spectral line system has been presented byBelluzzi et al.

(2009) in the limit of microturbulent fields and for the non-magnetic case. In Section5.5

we give our concluding remarks.

5.2 The Total Hamiltonian

We consider a two-term atom described by theL − S coupling scheme. Under theL − S

coupling approximation, the fine structure Hamiltonian (see Section1.5.1) is given by

Hfs = ζ(LkS)Lk · S , (5.1)

whereζ(LkS) has the dimensions of energy and is given by the “Landé-interval” rule as

ζ(LkS) =
E(Jk) − E(Jk − 1)

Jk
. (5.2)
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Here,k = a (lower term) orb (upper term). The energy shift due to spin-orbit coupling can

be obtained from Hund’s rule (3) as

ELkS(Jk) =
1

2
ζ(LkS)[Jk(Jk + 1) − Lk(Lk + 1) − S(S + 1)] . (5.3)

If an external magnetic field is applied, then its interaction with the atomic system is de-

scribed by the Hamiltonian

HB = µ0(Lk + 2S) · B . (5.4)

If the applied magnetic field produces a splitting comparable to the FS, then the magnetic

Hamiltonian can no longer be treated as a perturbation to thespin-orbit Hamiltonian,Hfs.

In this case, the energy levels have to be found by diagonalizing the total HamiltonianH
given by

H = Hfs + HB . (5.5)

The quantization axis (z-axis) is taken to be along the applied magnetic field so that the total

Hamiltonian can be diagonalized in the energy eigenvector basis|LkSJkµk〉. However, in

the PB regime, the magnetic field produces a mixing of theJ states belonging to a given

term. Thus, the eigenvectors of the total Hamiltonian are ofthe form

|LkSjkµk〉 =
∑

Jk

Cjk

Jk
(LkS, µk)|LkSJkµk〉 , (5.6)

where the symboljk labels the states spanned by the quantum numbers(Lk, S, µk) and

Cjk

Jk
(LkS, µk) are the expansion coefficients. In order to determine the PB regime eigenvec-

tors|LkSjkµk〉 and the corresponding eigenvalues, we have to diagonalize aset of matrices

of the form

〈LkSJkµk|Hfs + HB|LkSJk′µk〉 . (5.7)

The above expression indicates that a givenµk can be assigned to bothJk andJk′ as a result

of level interference. Since the spin-orbit Hamiltonian isdiagonal inJk, we have

〈LkSJkµk|Hfs|LkSJkµk〉 = ELkS(Jk) , (5.8)
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whereELkS(Jk) is given by Equation (5.3). The magnetic Hamiltonian can be written in

the energy eigenvector basis as

〈LkSJkµk|HB|LkSJk′µk′〉 = δµkµk′
µ0B

[

µkδJkJk′
+ (−1)Jk+Jk′+Lk+S+µk

×
√

(2Jk + 1)(2Jk′ + 1)S(S + 1)(2S + 1)

(

Jk Jk′ 1

−µk µk 0

){

Jk Jk′ 1

S S Lk

}]

. (5.9)

The diagonalization of the total Hamiltonian gives the energy eigenvalues and the energy

eigenvectors (seeLandi Degl’Innocenti, 1978). For simplicity, we consider the PBE only

in the upper term and neglect the crossing of magnetic substates belonging to different fine

structure states in the lower term.

5.3 RM for PBE on Fine Structure States

The step we follow in deriving the RM are the same as those presented in Chapter4 for

the case of PBE in hyperfine structure states (seeSowmya et al., 2014c). The resulting

RM for J-state interference in the presence of magnetic fields of arbitrary strengths can

also be obtained from the corresponding RM for theF -state interference phenomenon in

Equation (4.16) by the following quantum number replacement:

F → J, J → L, Is → S, i→ j , (5.10)

in Equation (4.16). Here,i andj label different states spanned by the quantum numbers

(J, Is, µF ) and(L, S, µJ) respectively.µF andµJ are the projections ofF andJ onto the

quantization axis. Thus, the RM forJ-state interference in the presence of a magnetic field

of arbitrary strength can be written as

RII
ij(x,n, x

′,n′; B) =
3(2Lb + 1)

(2S + 1)

∑

KK ′Q

∑

jaµajf µf jbµbjb′µb′

∑

JaJa′JfJf ′JbJb′Jb′′Jb′′′

×
∑

qq′q′′q′′′

(−1)q−q′′′+Q
√

(2K + 1)(2K ′ + 1) cosβjb′µb′ jbµb
eiβj

b′
µ

b′
jbµb

×[(hII
jbµb,jb′µb′

)jaµajfµf
+ i(f II

jbµb,jb′µb′
)jaµajf µf

]C
jf

Jf
(LaS, µf )C

ja

Ja
(LaS, µa)C

jb

Jb
(LbS, µb)

×Cjb

Jb′′
(LbS, µb)C

jf

Jf ′
(LaS, µf)C

ja

Ja′
(LaS, µa)C

jb′

Jb′
(LbS, µb′)C

jb′

Jb′′′
(LbS, µb′)

×
√

(2Ja + 1)(2Ja′ + 1)(2Jf + 1)(2Jf ′ + 1)(2Jb + 1)(2Jb′ + 1)(2Jb′′ + 1)(2Jb′′′ + 1)
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×
(

Jb Jf 1

−µb µf −q

)(

Jb′ Jf ′ 1

−µb′ µf −q′

)(

Jb′′ Ja 1

−µb µa −q′′

)(

Jb′′′ Ja′ 1

−µb′ µa −q′′′

)

×
(

1 1 K

q −q′ −Q

)(

1 1 K ′

q′′′ −q′′ Q

){

La Lb 1

Jb Jf S

}{

La Lb 1

Jb′ Jf ′ S

}

×
{

La Lb 1

Jb′′ Ja S

}{

La Lb 1

Jb′′′ Ja′ S

}

(−1)QT K
−Q(i,n)T K ′

Q (j,n′) . (5.11)

The assumptions underlying the derivation of Equation (5.11) are that the lower levels

are unpolarized and infinitely sharp; see Chapter4 for details on the terminology and the

derivation.

5.4 Single Scattering Polarization with PBE

As an example to study PBE in the fine structure states, we consider theL = 0 andL = 1

terms of the two stable isotopes of neutral lithium, namely,7Li and 6Li. The isotope shifts

are measured with respect to the reference isotope7Li. In our calculations, we use the

isotope shift values given in Table 1 ofBelluzzi et al.(2009). The abundances for the two

isotopes are also read from the same table. SeeAsplund et al.(2009) for more details on

the calculation of abundances.The total electron spin isS = 1/2. The coupling betweenL

andS results inJ = 3/2 and1/2 for theL = 1 term andJ = 1/2 for theL = 0 term.

The transitions between theseJ states in the absence of magnetic fields results in the D1

and D2 lines (obeying the selection rules∆S = 0 and∆J = 0,±1). The wavelengths

of these transitions are listed in Table5.1. In the presence of a magnetic field, the non-

degenerate magnetic substates give rise to 10 allowed transitions (according to the selection

rule ∆µ = 0,±1) in each of the two isotopes. Among these 10 transitions, 6 are between

the magnetic substates of the upperJ = 3/2 and the lowerJ = 1/2 states and the rest are

between those of the upperJ = 1/2 and the lowerJ = 1/2 states. These transitions can

be classified into three groups:σr (∆µ = −1), π (∆µ = 0), andσb (∆µ = +1). Note

that∆µ = µb − µa, whereµb are the magnetic substates of the upperJ state andµa are

the magnetic substates of the lowerJ state. The magnetic (π andσ) components of the D1
lines will be denoted with a prime in the following discussions for the sake of clarity and

distinction. As per this classification, the D2 line gives rise to twoσr, two π, and twoσb

components while the D1 line gives rise to oneσ′
r, two π′, and oneσ′

b components in each

of the two isotopes. These are tabulated in Table5.2. The magnetic components of the two

isotopes will be distinguished by their mass numbers, indicated in the superscripts to theπ

andσ components. For the computation of the Stokes profiles presented in Figures5.2–5.4,
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we assume that an unpolarized radiation is incident on the atom at an anglecos θ′ = 1 and

is scattered in a directioncos θ = 0, whereθ′ andθ are the colatitudes. The values of the

azimuthsχ andχ′ for scattered and incident rays, respectively, are assumedto be zero in

this single90° scattering event. The scattered ray thus obtained is givenby the first column

of the RM, which is then integrated over the incoming frequencies to obtain the singly

scattered Stokes profiles. For the LiI D line system, the Stokes parameters are obtained by

linearly combining the Stokes parameters computed for the individual isotopes weighted

by their respective abundances. Such a linear superposition is allowed because the lines are

optically thin. FollowingBelluzzi et al.(2009), we use a Doppler width of60 mÅ for all of

the components.

Isotope Line λ A

(Å) (s−1)
6Li D 1 6708.05534 3.689 × 107

6Li D 2 6707.90232 3.689 × 107

7Li D 1 6707.89719 3.689 × 107

7Li D 2 6707.74416 3.689 × 107

Table 5.1: Wavelengths and EinsteinA coefficients for the D line transitions of neutral Li
isotopes.

Ja�Jb 1/2 1/2 3/2 3/2 3/2 3/2
µa�µb −1/2 +1/2 −3/2 −1/2 +1/2 +3/2

1/2 −1/2 π′ σ′
b σr π σb NA

1/2 +1/2 σ′
r π′ NA σr π σb

Table 5.2: The list of transitions between the magnetic substates of the upper and the
lowerJ states. NA: Not Allowed. In the discussions, the magnetic components of the two
isotopes are distinguished by their atomic masses indicated in the superscripts.

5.4.1 The Diagonalization Procedure

The non-zero matrix elements of the total Hamiltonian defined in Equation (5.7) are of the

form given by Equations (3.61a) and (3.61b) ofLandi Degl’Innocenti & Landolfi(2004).

FollowingLandi Degl’Innocenti(1978), we write a program to diagonalize the total Hamil-

tonian in Equation (5.5). The numerical diagonalization is performed using the Givens–

Householder method. We obtain the eigenvalues in terms of the energy shifts from the

parentL state and the eigenvectors in terms of theC coefficients. By making use of these

energy shifts, we determine the energies of theLa = 0 andLb = 1 terms. SinceJ is not
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a good quantum number in the PB regime, we cannot use either D1 or D2 wavelengths.

For the atomic system we have considered, the line center wavelengths correspond to the

transitions7La = 0 → 7Lb = 1 and 6La = 0 → 6Lb = 1, which are, respectively,

6707.79517Å and6707.95333Å.

In the presence of a magnetic field, the degeneracy of the magnetic substates is lifted

and the spectral lines split into magnetic components. It ispossible to obtain the magnetic

shifts and strengths of these components by making use of theC coefficients and the en-

ergy eigenvalues. The normalized strengths of the transitions which connect the magnetic

substates of the lower term (LaS) with those of the upper term (LbS) are given by

Sjaµa,jbµb
q = α

∑

JaJa′JbJb′

3

2S + 1
Cja

Ja
(LaS, µa)C

ja

Ja′
(LaS, µa)

×Cjb

Jb
(LbS, µb)C

jb

Jb′
(LbS, µb)

√

(2Ja + 1)(2Ja′ + 1)(2Jb + 1)(2Jb′ + 1)

×
(

Jb Ja 1

−µb µa −q

)(

Jb′ Ja′ 1

−µb µa −q

){

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}

. (5.12)

Here,α represents the percentage abundance of the isotope. The magnetic shifts are given

by

∆jajb
µaµb

=
Ejb

(LbS, µb) − Eja
(LaS, µa)

h
+ δEiso , (5.13)

whereEj are the energy eigenvalues.h is the Planck constant.δEiso is the isotope shift

measured with respect to the reference isotope7Li. Note thatδEiso is zero for the reference

isotope7Li. ∆s are given in frequency units. Figure5.1shows the behavior of the energy

eigenvalues of the magnetic substates belonging to upperJ states as a function of the

magnetic field strengthB. As described inLandi Degl’Innocenti & Landolfi(2004), we

define a parameterγ as

γ =
µ0B

ζ
, (5.14)

which is the ratio of the magnetic energy to the fine structureenergy. The energy eigen-

values diverge linearly with increasing magnetic field strength forγ ≪ 1. This regime is

called the linear Zeeman regime. For intermediate values ofγ, nonlinearity sets in and the

eigenvalues start to cross. This regime is called the incomplete PB regime. Forγ ≫ 1, the

eigenvalues again vary linearly withB and this regime is called the complete PB regime.

For the atomic system considered, we see two level-crossings. The values ofγ andB for

which these crossings occur are listed in Table5.3.
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Figure 5.1: Level-crossings between the magnetic substates belonging to the2P term of
the 7Li isotope in the presence of a magnetic field. A comparison between the splittings
produced by including (solid lines) and neglecting (dashedlines) PBE. The2P term of the
6Li isotope gives a similar diagram except for the isotopic shift.

µb′ µb γ B (G)
−3/2 +1/2 0.667 3238
−3/2 −1/2 1.0 4855

Table 5.3: The values ofγ and approximate values ofB at level-crossings for the2P term
of 7Li for which the diagram shown in Figure5.1 is made. The same table holds good for
the2P term of6Li.

The solid lines in Figure5.1 are computed by taking into account the non-zero non-

diagonal elements of the total Hamiltonian, while the dashed lines are computed by neglect-

ing them (see Equation (3.61b) ofLandi Degl’Innocenti & Landolfi, 2004). This means

that for the dashed lines, the splitting produced by the magnetic field is simply given by the

expressionµ0BgJb
µb (wheregJb

is the Landé factor). From this diagram, we can clearly see

the differences that PBE makes to the energy eigenvalues. The substates withµb = +3/2

and−3/2 show the same behavior irrespective of whether or not PBE is included. This is

because the contribution from the non-diagonal elements for theseµbs are zero, as these

µbs can be assigned to onlyJb = 3/2 state. For the other magnetic substates, the splitting

becomes nonlinear because of the contribution from the non-diagonal elements to the total

splitting caused by the magnetic field. In particular, we note that the magnetic substates
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which cross in the case of Zeeman effect avoid crossing one another in the case of PBE. For

example, theµb′ = +1/2 belonging toJb′ = 1/2 andµb = −1/2 belonging toJb = 3/2

cross atB ∼ 7300 G when MS is computed using the Zeeman effect. On the other hand,

when PBE is included to compute MS, these substates do not cross. This is known as

avoided crossing (also known as anti-level-crossing). Consequently, we find that the polar-

ization in the asymptotic limit ofB → ∞ is larger than that whenB → 0; seeBommier

(1980) andLandi Degl’Innocenti & Landolfi(2004) for more details on this effect.

5.4.2 Comparison of the Stokes Profiles

In the linear Zeeman regime, the RM presented in Section5.3 reduces to Equation (25)

of Smitha et al.(2011b). In order to show the effects of level-crossing, we comparethe

results of our code which programs Equation (5.11, hereafter referred to as PB-FS code)

with the results ofSmitha et al.(2011b, hereafter referred to as the Zeeman-FS code). This

comparison is shown in Figures5.2and5.3. The Stokes profiles from the two codes match

very well up to500 G for which γ = 0.1029. According to the classification scheme

discussed in the previous section, we are still in the linearZeeman regime for this field

strength. For field strengths greater than500 G, the differences start to appear as we already

enter the nonlinear regime in which the linear Zeeman approximation (Zeeman-FS code)

breaks down. The separation between the magnetic components (which increases with an

increase inB) is no longer given byµ0BgJb
µb. Hence, there is a difference in the line

center positions of the magnetic components computed from the two codes. These small

differences can clearly be seen in intensity (I) profiles (see right panels of Figure5.2). For

level-crossing field strengths (3238 G and4855 G), the Stokes profiles computed from the

Zeeman-FS and PB-FS codes differ drastically. The Zeeman-FS code therefore does not

cover all the field strength ranges that we can expect on the Sun.

5.4.3 Stokes Profiles in the PB Regime

By making use of the strengths and shifts of the PB componentsobtained from the diago-

nalization code, we have made line splitting diagrams wherethe logarithm of the PB com-

ponent strengths (S) given in Equation (5.12) are plotted against their wavelength shifts

from the line center computed using Equation (5.13). These are shown in Figures5.2

and5.3 along with the Stokes profiles for different values ofB. The zero on thex-axis

of the line splitting diagram corresponds to the line centerwavelength of theL = 0 → 1

transition in7Li.

For B = 500 G (linear regime), the magnetic components are separated into two
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Figure 5.2: Top panels refer to the line splitting diagrams (line strengthS vs. wavelength
shift). The other panels show the comparison of the Stokes profiles computed using the
PB-FS code (dashed lines) with the Zeeman-FS code (dotted lines). The two columns
correspond to different field strengths, as indicated in theline splitting diagrams. The
vertical dotted lines indicate the positions of the7Li and 6Li D lines. The orientation of the
magnetic field is given by(θB, φB) = (90°, 45°).

bunches of six and four each in both isotopes. The magnetic components of the7D1 and
6D2 lines are superposed due to their proximity in wavelength. The splitting is more or less

symmetric about the line centers of the D1 and D2 lines, but the strengths of the components
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Figure 5.3: Same as Figure5.2, except for field strengths.

vary depending on the values of the magnetic quantum numbersµa andµb (see the left top

panel of Figure5.2). The same is reflected in the intensity profiles. The three observed

peaks in intensity correspond to the three bunches of magnetic components with the ampli-

tudes of the peaks being proportional to the relative abundances of the two isotopes. The

Q/I andU/I profiles show typical signatures of the Hanle effect, especially at the position

of the7D2 line, namely, a depolarization of theQ/I with respect to the non-magnetic value

(0.428 in the line core) and a generation of theU/I signal. The7D1 and6D1 lines are non-

polarizing, and hence are unaffected by Hanle effect. The6D2 line, although affected by
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Hanle effect, produces insignificant signatures due to its small abundance. In spite of these,

we seeU/I peaks at the positions corresponding to (7D1,6D2) and6D1, the origin of which

is not clear. They may be due to the interference between the Dlines. Note, however, that

theseU/I signatures are about three orders of magnitude smaller thanthe corresponding

Q/I signatures, and are therefore much too weak to be observable. TheV/I arises due to

the longitudinal component of the magnetic field.

ForB = 2000G (see panels (b) of Figure5.2), the components are well separated and

their strengths change because of the dependence on theC coefficients, which vary with

B. The components cannot be resolved in intensity as their Doppler width is larger than

the separation between them. The decrease in intensity is due to an increased separation

between the magnetic components with increasing magnetic field strength. InQ/I, a three-

lobed Zeeman-like pattern is seen;U/I is very small because of the geometry. TheV/I

profiles become broader, as expected. Theσb components show the opposite behavior to

those ofσr, again as expected. Positive peaks appear at the positions of theσr components

while negative peaks occur at the positions corresponding to σb.

ForB = 3238 G (see panels (a) of Figure5.3), at which the first level-crossing occurs,

we see the interference between theσr and σ′
b components in the two isotopes. Their

positions overlap, as can be seen from the line splitting diagram. Interestingly, at these

positions, we see a generation ofU/I signal due to interference between the magnetic

substates (Hanle effect). TheV/I signals of the D lines overlap giving rise to a broader

profile.

ForB = 4855 G (see panels (b) of Figure5.3), where the second level-crossing occurs,

there is interference between theσr andπ′ components in the two isotopes. TheU/I signal

is generated due to the Hanle effect.

In Figure5.4, we show the Stokes profiles obtained from the PB-FS code in the pres-

ence of a weakly polarized background continuum. The contribution from the continuum

is included in the same way as inStenflo(1998). For the sake of clarity, we recall his

Equations (58) and (61):

I ′/I ′c = 1 − β +
a

I + a
β , (5.15)

p′ =
I

I + a
p +

a

I + a
b . (5.16)

In the above equations,I and p are the intensity and fractional polarization given by

−Q/I,−U/I, andV/I in the absence of the continuum. The corresponding quantities
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Figure 5.4: Stokes profiles computed using PB-FS code by including the contribution from
the polarized continuum. The line types and the orientationof the magnetic field are indi-
cated in the intensity panel. The vertical dotted lines correspond to the line center wave-
lengths of the LiI D lines; see text for more details.

in the presence of the continuum areI ′ andp′. The limb darkening parameter,β, and the

continuum strength parameter,a, are chosen as0.5 and 0.1, respectively. Such a large

value ofa is chosen to make the Stokes profiles closely resemble the profiles presented for

the non-magnetic case inBelluzzi et al.(2009). The continuum polarization parameter,b, is
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chosen to be0.01 forQ and 0 forU andV . With this choice, we obtain profile shapes of the

kind that we expect in the Sun’s spectrum. In particular, ournon-magneticp′Q(= −Q′/I ′)

profile (solid line) resembles the shape of the corresponding profile observed with ZIMPOL

(Stenflo, 2011). The intensity profiles appear as broad absorption lines. The fractional lin-

ear polarizationp′Q approaches the continuum polarization value (b = 0.01) away from the

line center. Thep′U(= −U ′/I ′) andp′V (= V ′/I ′) profiles retain their overall shape com-

pared to the pure line case without continuum, although their amplitudes decrease because

of the contribution from the continuum strength parametera to I ′. As can be seen from the

figure, the shape of thep′Q profile for the zero field case (solid line) compares well withthe

corresponding profiles presented inBelluzzi et al.(2009). Note that since the Stokes pro-

files are computed here for a single scattering event, only the shape and not the amplitude

is comparable to the corresponding profiles presented byBelluzzi et al.(2009).

5.4.4 Polarization Diagrams

The geometry considered for the results presented in this section is shown in Figure4.2.

Polarization diagrams are shown for the line center wavelengths of the LiI D lines in Fig-

ure5.5. For the geometry considered, only the level-crossings with |∆µ = µb′ − µb| = 2

are effective. Therefore, in the following, we will only seethe effects due to the first level-

crossing at3238 G.

At the 7D2 line center (λ = 6707.74416Å), we see a decrease inQ/I up to a few

hundred gauss (Hanle regime) with an initial increase followed by a decrease inU/I (see

Figure5.5(a)). This is due to the Hanle effect which operates in the line core. As we ap-

proach the level-crossing field strength (B = 3238G), we see an increase in the value of

Q/I and the formation of a loop. Indeed, the level-crossing occurs over a narrow range

of field strengths around3238 G. Within this narrow range, if the field strength is var-

ied by organizing a fine grid, we get a strong variation inQ/I andU/I, producing the

polarization diagram shown in Figure5.5(a). This behavior is generic to all of the polar-

ization diagrams shown in Figure5.5. Further discussion on the formation of loops around

the level-crossing field strengths can be found inLandi Degl’Innocenti & Landolfi(2004).

Basically, at the level-crossing field strengths, the coherence between the overlapping mag-

netic substates increases, resulting in the scatteredQ/I tending toward the non-magnetic

value.U/I becomes zero for fields having a strength of a few thousand gauss because of the

geometry considered. For fields stronger than10000G (see Figure5.5(b)),Q/I arises due

to Rayleigh scattering in strong magnetic fields, as discussed byBommier(1997b, Section

6, Figure 14). The author states that in this case, for the geometry considered (magnetic
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Figure 5.5: Polarization diagrams computed using the PB-FScode at the line center wave-
lengths of the7Li and 6Li D lines. The curves are marked by the values of the magnetic
field strengthB in G.

field along the line of sight) and for a90° scattering, only theσ components are scattered if

the atomic system considered is a normal Zeeman triplet (J = 0 → 1 → 0). Incidentally,

we note the same behavior in the case ofL = 0 → 1 → 0 transition (which is not a normal

Zeeman triplet). It is interesting to note that theπ components are not scattered in this case

also. TheQ/I changes sign and increases for fields up to100000 G.

At the6D2 line center (λ = 6707.90232Å; see Figure5.5(c)), theQ/I for zero magnetic

field case is approximately10 times smaller than theQ/I at the7D2 line center. This is

due to the relatively small abundance of6Li. Due to an increased separation between the

magnetic components with the field strength, theQ/I value decreases. As in the case

of 7D2, we note the formation of a loop near the level-crossing fieldstrength. When the
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field strength is increased beyond10000 G, we again note Rayleigh scattering in the strong

magnetic fields (not shown in the figure).

The 6D1 line (λ = 6708.05534Å; see Figure5.5(d)) is intrinsically unpolarizable as it

hasW2 = 0. Therefore, the polarization remains zero until the level-crossing field strength

(B = 3238 G) is reached. A further increase in the field strength results in the formation

of a loop and Rayleigh scattering as already described for the 7D2 and 6D2 line center

positions.

5.5 Conclusions

Landi Degl’Innocenti & Landolfi(2004) developed the theory of Hanle effect in a two-

term atom assuming a flat-spectrum for the incident unpolarized radiation using the den-

sity matrix formalism. Though this theory is applicable to the entire range of magnetic

fields, it does not take into account the effects of PRD.Smitha et al.(2011b) included the

effects of PRD by taking the RM approach, but their treatmentwas limited to the lin-

ear Zeeman regime. In this chapter, we have generalized the approach ofSmitha et al.

(2011b) for magnetic fields of arbitrary strengths to include the PBregime. However, our

treatment ignores the effects of collisions. Furthermore,the lower term is assumed to be

unpolarized. The frequency dependence of the incident radiation field is taken into ac-

count in our theory which is essentially a relaxation of the flat-spectrum approximation of

Landi Degl’Innocenti & Landolfi(2004). This enables us to properly calculate the scat-

tered Stokes profile shapes, which was otherwise not possible with the theory presented in

Landi Degl’Innocenti & Landolfi(2004).

An example where the present theory has observable effects on the Sun is for the lithium

6708 Å doublet. Since the FS in this line system is small (0.15 Å), PBE in scattering po-

larization becomes prominent for magnetic fields which occur on the Sun (in sunspots, see

Maltby, 1971). We have therefore tested our theory by applying it to this lithium doublet

and demonstrated the correctness of the formalism by reproducing available benchmarks.

We have explored the properties of the RM for the single scattering case, and clarified the

effects of Rayleigh scattering in strong fields when the magnetic field is along the line of

sight. This has given us an overview of the behavior of the polarization effects that can

occur as a result of PRD in the PB regime.
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PBE IN A TWO-TERM ATOM WITH

HYPERFINE STRUCTURE

This chapter is based on:

Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo J. O. 2015, ApJ, 814, 127

Outline

We studied theF -state interference process in Chapter4 and showed how this formalism

can be used to study theJ-state interference process in Chapter5. In this chapter, we study

the combined effects ofJ- andF -state interference processes. It is now established that

the interference between magnetic substates of the hyperfine structure states belonging to

different fine structure states of the same term influences the polarization for some of the

diagnostically important lines of the Sun’s spectrum, likethe sodium and lithium doublets.

The polarization signatures of this combined interferencecontain information on the prop-

erties of the solar magnetic fields. Motivated by this, in this chapter, we study the problem

of polarized scattering on a two-term atom with hyperfine structure (Section1.4.3) by ac-

counting for the partial redistribution in the photon frequencies arising due to the Doppler

motions of the atoms. We consider the scattering atoms to be under the influence of a mag-

netic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg

approach to calculate the scattering cross section for thisprocess. We explore the rich polar-

ization effects that arise from various level-crossings inthe PB regime in a single scattering

case using the lithium atomic system as a concrete example that is relevant to the Sun.
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6.1 Introduction

In this chapter, we address the problem of quantum interference between the magnetic

substates of theF states pertaining to differentJ states of a given term, in the presence of

magnetic fields of arbitrary strength covering the Hanle, Zeeman, and PB effect regimes.

We will refer to this as “combined interference” or the “F + J-state interference”. We

develop the necessary theory including the effects of PRD inthe absence of collisions,

assuming the lower levels to be unpolarized and infinitely sharp. We refer to this theory as

the “combined theory”.

We consider a two-term atom with hyperfine structure under the assumption that the

lower term is unpolarized. In the absence of a magnetic field,the atomic transitions in

a two-term atom take place between the degenerate magnetic substates belonging to the

F states. An applied magnetic field lifts the degeneracies andmodifies the energies of

these magnetic substates. The amount of splitting (or the energy change) produced by the

magnetic field defines the regimes in which Zeeman and PB effects act. Depending on the

relative magnitudes of the FS, HFS, and MS, we characterize the magnetic field strength

into five regimes. These regimes are illustrated schematically in Figure6.1. In the approach

presented in this chapter, we account for the interference between the magnetic substates

pertaining to the sameF state, the magnetic substates belonging to differentF states of

the sameJ state, and the magnetic substates belonging to differentF states pertaining to

differentJ states. Although all three types of interference are alwayspresent, depending

on the field strength one or two of them would dominate as depicted in the different panels

of Figure6.1.

Casini & Manso Sainz(2005) formulated a theory, within the framework of the non-

relativistic quantum electrodynamics, for polarized scattering on a multi-term atom with

hyperfine structure in the presence of an arbitrary strengthmagnetic field under the ap-

proximation of CRD. In this chapter, we restrict our treatment to a two-term atom with

hyperfine structure and consider the limit of coherent scattering in the atomic frame with

Doppler frequency redistribution in the observer’s frame.We base our formalism on the

Kramers–Heisenberg coherency matrix approach ofStenflo(1994). In our combined the-

ory, we do not account for the coherences among the states in the lower term. In a recent

paper,Stenflo(2015b) indicated how they may be included by extending the coherency

matrix approach to the multi-level case.

Based on the concept of “metalevels”,Landi Degl’Innocenti et al.(1997) formulated a

theory that is able to treat coherent scattering in the atomic rest frame for a two-term atom

with hyperfine structure. Recently,Casini et al.(2014) presented a generalized frequency
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(a) FS > MS < HFS Linear Zeeman regime for both J and F
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(b) FS > MS ≥ HFS Linear Zeeman regime for J and incomplete PB regime for F
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(c) FS > MS ≫ HFS Linear Zeeman regime for J and complete PB regime for F
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Figure 6.1: Illustration of the magnetic field strength regimes in the combined theory. For
illustration purpose, a2P term with nuclear spin3/2 is considered. The various splittings
indicated are not to scale. Panels (a)–(d) show the first fourregimes of the field strength.
When MS is much greater than FS, we have a complete PB regime for bothJ andF , which
we call the fifth regime (not illustrated in the figure).

redistribution function for the polarized two-term atom inarbitrary fields, based on a new

formulation of the quantum scattering theory. Our approachis an alternative approach to
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the same problem and is conceptually more transparent, although limited to infinitely sharp

and unpolarized lower levels.

Belluzzi et al.(2009) studied the linear polarization produced due to scattering on the D

lines of neutral lithium isotopes. They employed the density matrix formalism presented in

Landi Degl’Innocenti & Landolfi(2004), together with the approximation of CRD, to treat

the quantum interference between the fine and hyperfine structure states. They restricted

their study to the non-magnetic case. However, they explored the sensitivity of the Stokes

profiles to the microturbulent magnetic fields. For our study, we consider the same D

lines of lithium isotopes and present in detail the effects of a deterministic magnetic field

of arbitrary strength. For this atomic line system, the PB effect in both the fine and the

hyperfine structure states occurs for the magnetic field strengths encountered on the Sun.

We restrict our treatment to the single scattering case, since our aim here is to explore the

basic physical effects of the combined theory.

6.2 The Atomic Model

In this section, we describe the structure of the model atom considered for our studies and

its interaction with an external magnetic field. We considera two-term atom, each state of

which is designated by the quantum numbersL, S, J , Is, F , andµ (projection ofF onto

the quantization axis).

6.2.1 The Atomic Hamiltonian

Under theL − S coupling scheme, the atomic Hamiltonian for a two-term atomwith hy-

perfine structure is given by

HA = ζ(LS)L · S + AJIs · J +
BJ

2Is(2Is − 1)J(2J − 1)

×
{

3(Is · J)2 +
3

2
(Is · J) − Is(Is + 1)J(J + 1)

}

.

(6.1)

The first term in the above equation is a measure of the FS whilethe second and the third

terms provide a measure of the HFS (see Sections1.5.1and1.5.2). The eigenvalues of the

atomic Hamiltonian represent the energies of theF states, calculated with respect to the

energy of the corresponding term.
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6.2.2 The Magnetic and the Total Hamiltonians

An external magnetic field lifts the degeneracies of the magnetic substates of theF states

and changes their energies by an amount given by the eigenvalues of the magnetic Hamil-

tonian

HB = µ0(J + S) · B . (6.2)

Assuming the quantization axis to be along the magnetic field(z-axis of the reference

system), the matrix elements of the total Hamiltonian,HT = HA + HB, can be written as

〈LSJIsFµ|HT |LSJ ′IsF
′µ〉 = δJJ ′δFF ′

[

1

2
ζ(LS){J(J + 1) − L(L+ 1) − S(S + 1)}

+
1

2
AJK +

BJ

8Is(2Is − 1)J(2J − 1)
{3K(K + 1) − 4J(J + 1)Is(Is + 1)}

]

+µ0B(−1)L+S+J+J ′+Is−µ+1
√

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
(

F F ′ 1

−µ µ 0

){

J J ′ 1

F ′ F Is

}

[

δJJ ′(−1)L+S+J+1

√

J(J + 1)√
2J + 1

+(−1)J−J ′
√

S(S + 1)(2S + 1)

{

J J ′ 1

S S L

}

]

,

(6.3)

whereK = F (F+1)−Is(Is+1)−J(J+1). The total Hamiltonian matrix in the combined

theory is no longer a symmetric tridiagonal matrix, unlike the case of the PB effect in fine or

hyperfine structure states. Instead, it is a full symmetric matrix and we diagonalize it using

the Givens–Householder method described inOrtega(1968). We test the diagonalization

code written for the problem at hand using the principle of spectroscopic stability (PSS)

presented in AppendixC.

6.2.3 Eigenvalues and Eigenvectors

The diagonalization of the total Hamiltonian gives the energy eigenvectors in terms of the

linear Zeeman effect regime basis|LSJIsFµ〉 through the expansion coefficientsCk
JF as

|LSIs, kµ〉 =
∑

JF

Ck
JF (LSIs, µ) |LSJIsFµ〉 . (6.4)
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The symbolk labels different states corresponding to the given values of (L, S, Is, µ) and

its dimension is given by

Nk =
L+S
∑

d=|L−S|

1 + d+ Is − max(|µ|, |d− Is|) . (6.5)

We assume theC coefficients appearing in Equation (6.4) to be real because the total

Hamiltonian is real. We obtain theC coefficients and the corresponding eigenvalues de-

noted here asEk(LSIs, µ) after diagonalizing the atomic and magnetic Hamiltonians pre-

sented in Sections6.2.1and6.2.2.

6.3 RM for the Combined Theory

The methodology followed to derive the RM for theF+J-state interference in the presence

of a magnetic field is similar to that presented in Chapter4 for F -state interference alone.

For the sake of clarity, we only present the important equations involved in the derivation.

Using Equation (6.4) for the states|a〉, |b〉, and|f〉 in the Kramers–Heisenberg formula

given by Equation (4.7), and noting thatLf = La and using the Wigner–Eckart theorem

(refer to Equations (2.96) and (2.108) ofLandi Degl’Innocenti & Landolfi, 2004), we arrive

at

wαβ ∼ (2La + 1)
∑

kbµb

∑

JaJfJbJb′′FaFfFbFb′′

∑

qq′′

(−1)q−q′′(−1)Jf +Ja+Jb+Jb′′

×Ckf

JfFf
(LaSIs, µf)C

ka

JaFa
(LaSIs, µa)C

kb

JbFb
(LbSIs, µb)C

kb

Jb′′Fb′′
(LbSIs, µb)

×
√

(2Fa + 1)(2Ff + 1)(2Fb + 1)(2Fb′′ + 1)(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′′ + 1)

×
(

Fb Ff 1

−µb µf −q

)(

Fb′′ Fa 1

−µb µa −q′′

){

Jf Jb 1

Fb Ff Is

}{

Ja Jb′′ 1

Fb′′ Fa Is

}

×
{

La Lb 1

Jb Jf S

}{

La Lb 1

Jb′′ Ja S

}

εα∗

q εβ
q′′ Φγ(νkbµbkf µf

− ξ) . (6.6)

Here,ε are the spherical vector components of the polarization unit vectors (eα andeβ)

with α andβ referring to the scattered and incident rays, respectively. Φγ(νkbµbkfµf
− ξ) is

the frequency-normalized profile function defined as

Φγ(νkbµbkf µf
− ξ) =

1/πi

νkbµbkfµf
− ξ − iγ/4π

, (6.7)
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where we have used an abbreviation

νkbµbkf µf
= νLbSIskbµb,LaSIskf µf

= νLbLa
+
Ekb

(LbSIs, µb) −Ekf
(LaSIs, µf)

h
,

(6.8)

with h being the Planck constant.

Inserting Equation (6.6) into the expression for the coherency matrix given in Equa-

tion (4.8), and after elaborate algebra (see for exampleSowmya et al., 2014c), we obtain

the normalized RM,RII
ij, for type II scattering in the laboratory frame as

RII
ij(x,n, x

′,n′; B) =
3(2Lb + 1)

(2S + 1)(2Is + 1)

∑

KK ′Q

∑

kaµakfµf kbµbkb′µb′

×
∑

qq′q′′q′′′

(−1)q−q′′′+Q
√

(2K + 1)(2K ′ + 1) cosβkb′µb′kbµb
eiβk

b′
µ

b′
kbµb

×[(hII
kbµb,kb′µb′

)kaµakfµf
+ i(f II

kbµb,kb′µb′
)kaµakf µf

]
∑

JaJa′JfJf ′JbJb′Jb′′Jb′′′

∑

FaFa′Ff Ff ′FbFb′Fb′′Fb′′′

×Ckf

JfFf
(LaSIs, µf)C

ka

JaFa
(LaSIs, µa)C

kb

JbFb
(LbSIs, µb)C

kb

Jb′′Fb′′
(LbSIs, µb)

×Ckf

Jf ′Ff ′
(LaSIs, µf)C

ka

Ja′Fa′
(LaSIs, µa)C

kb′

Jb′Fb′
(LbSIs, µb′)C

kb′

Jb′′′Fb′′′
(LbSIs, µb′)

×(−1)Ja+Ja′+Jf+Jf ′+Jb+Jb′+Jb′′+Jb′′′

×
√

(2Ja + 1)(2Jf + 1)(2Ja′ + 1)(2Jf ′ + 1)(2Jb + 1)(2Jb′ + 1)(2Jb′′ + 1)(2Jb′′′ + 1)

×
√

(2Fa + 1)(2Ff + 1)(2Fa′ + 1)(2Ff ′ + 1)(2Fb + 1)(2Fb′ + 1)(2Fb′′ + 1)(2Fb′′′ + 1)

×
(

Fb Ff 1

−µb µf −q

)(

Fb′ Ff ′ 1

−µb′ µf −q′

)(

Fb′′ Fa 1

−µb µa −q′′

)

×
(

Fb′′′ Fa′ 1

−µb′ µa −q′′′

)(

1 1 K

q −q′ −Q

)(

1 1 K ′

q′′′ −q′′ Q

)

×
{

Jf Jb 1

Fb Ff Is

}{

Jf ′ Jb′ 1

Fb′ Ff ′ Is

}{

Ja Jb′′ 1

Fb′′ Fa Is

}{

Ja′ Jb′′′ 1

Fb′′′ Fa′ Is

}

×
{

La Lb 1

Jb Jf S

}{

La Lb 1

Jb′ Jf ′ S

}{

La Lb 1

Jb′′ Ja S

}{

La Lb 1

Jb′′′ Ja′ S

}

×(−1)QT K
−Q(i,n)T K ′

Q (j,n′) . (6.9)

The non-dimensional frequenciesx′ and x are given in Doppler width units (see Ap-
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pendixD for their definitions). The Hanle angleβkb′µb′kbµb
is given by

tan βkb′µb′kbµb
=
νkb′µb′kaµa

− νkbµbkaµa

γ/2π
. (6.10)

The explicit forms of the auxiliary functionshII andf II appearing in Equation (6.9) are

given in AppendixD. WhenIs = 0, Equation (6.9) reduces to Equation (5.11). When

FS is neglected, Equation (6.9) reduces to Equation (4.16). When we neglect both FS and

HFS, we recover RM forLa → Lb → La transition (analogous to a two-level atom case)

in the presence of a magnetic field.

6.4 Results

In this section, we present the results obtained from the combined theory for the case of the

single scattering of an unpolarized, spectrally flat incident radiation beam by an atom with

both non-zero electron and nuclear spins. Considering the relevance to solar applications,

we choose the D line system at6708 Å from neutral6Li and 7Li isotopes as an example to

test the formalism developed (the atomic level diagrams forthe D line transitions in these

two isotopes are given in Figures1.4 and1.5, respectively). We take the values of the

atomic parameters and isotope abundances for this system from Table 1 ofBelluzzi et al.

(2009).

6.4.1 Level-Crossings and Avoided Crossings

In Figures6.2and6.3, we show the dependence of the energies of the levels in the2P terms

of the 6Li and 7Li isotopes on the magnetic field strength. Such figures provide us with

the information on the field strength regimes in which processes like the Zeeman effect,

incomplete PB effect, and complete PB effect operate. They help us to choose the magnetic

field strength values for studying the effects of level-crossing on the Stokes profiles. We

choose different scales for thex-axes in different panels to bring out the level-crossings

which occur at different field strengths due to the difference in the magnitudes of FS and

HFS. They-axes in all of the panels in both figures denote the energy shift of the levels

from the parentL = 1 level.

In panels (a) and (c) of Figure6.2, we plot the energies of the magnetic substates of

theF states belonging to the2P3/2 and2P1/2 levels of6Li, respectively, as a function of the

field strength. Since the nuclear spin of6Li is 1, we have half-integer values forF . In these

panels, we see that the magnetic substates of theF states of2P3/2 cross at nine points while
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Figure 6.2: Energies of the HFS magnetic substates as a function of the magnetic field
strength for6Li (left column) and7Li (right column). Panels (a) and (b) correspond, re-
spectively, to the2P3/2 levels of 6Li and 7Li, while panels (c) and (d) correspond to the
2P1/2 levels of6Li and 7Li, respectively. The nuclear spins of6Li and 7Li are 1 and3/2,
respectively.

those of2P1/2 do not cross. We note a similar behavior in the case of theF states belonging

to the 2P3/2 and 2P1/2 levels of 7Li (see panels (b) and (d), respectively). The magnetic

substates of theF states of2P1/2 do not cross while those of2P3/2 cross at14 points. In

the weak field regime (e.g.,0 − 60 G), we see PB effect for theF states, and in the strong

field regime (for thousand gauss fields) we see PB effect for theJ states. In Tables6.1and

6.2, we list the quantum numbers of the levels which cross along with their corresponding

field strengths for the weak field regime. The numbers indicated in boldface in these tables

correspond to those crossings which satisfy∆µ = µb′ − µb = ±2. We discuss the effects

of these level-crossings on the polarization in later sections.

In panels (a) and (d) of Figure6.3, we plot the energies of the magnetic substates of the
2P terms of6Li and 7Li as a function of the magnetic field strength. In these panels, the
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Fb�Fb′ 1/2 3/2 3/2 3/2
µb�µb′ +1/2 −1/2 +1/2 +3/2

3/2 −3/2 0.57 ... ... ...
5/2 −5/2 1.61 1.26 0.72 0.63
5/2 −3/2 ... ... 1.3 0.9
5/2 −1/2 ... ... 2.93 2.25

Table 6.1: Magnetic field strengths (approximate values in G) for which the magnetic
substates of theF states cross in the6Li isotope. For instance, the crossing between
(µb = −3/2, Fb = 3/2) and(µb′ = 1/2, Fb′ = 1/2) occurs atB ∼ 0.57 G. The numbers
highlighted in boldface represent the field strength valuesfor which the level-crossings
corresponding to∆µ = µb′ − µb = ±2 occur.

Fb�Fb′ 1 1 2 2 2 2
µb�µb′ 0 +1 −1 0 +1 +2

2 −2 2.2 2.6 ... ... ... ...
3 −3 5.2 5.95 4.15 2.65 2.35 2.1
3 −2 ... ... ... 3.7 3.25 2.95
3 −1 ... ... ... 8.8 7.25 6.0

Table 6.2: Magnetic field strengths (approximate values in G) for which the magnetic
substates of theF states cross in the7Li isotope. For instance, the crossing between
(µb = −2, Fb = 2) and(µb′ = 0, Fb′ = 1) occurs atB ∼ 2.2 G. The numbers highlighted
in boldface represent the field strength values for which thelevel-crossings corresponding
to ∆µ = µb′ − µb = ±2 occur.

points where the levels cross are denoted as c1 and c2 for 6Li and as c′1 and c′2 for 7Li.

When we zoom into these crossing points, we see other interesting phenomena (see panels

(b), (c), (e), and (f)). For example, at c1, we see a crossing of the bunch of lowermost three

levels going downward in Figure6.2(a) with the three levels going upward in Figure6.2(c).

Although the magnetic substates of theF states appear to be degenerate in Figure6.3(a),

they are not fully degenerate, as can be seen in Figure6.3(b). Similar behavior can be seen

in Figures6.3(c), (e), and (f), and the levels correspond to the magnetic substates of theF

states shown in Figure6.2.

In addition to the usual level-crossings, we see several avoided crossings in Figures6.3,

in panels (b), (c), (e), and (f). For example, in panel (b), wesee one avoided crossing

marked a1, two in panel (c) marked a2 and a3, two in panel (e) marked a′1 and a′2, and

three in panel (f) marked a′3, a′4, and a′5. As we can see from the figure, these avoided

crossings take place between the magnetic substates with the sameµ values (−1/2 in panel

(b),−3/2 and−1/2 in panel (c),0 and−1 in panel (e), and−2,−1, and0 in panel (f)). The

levels with the sameµ cannot cross owing to the small interaction that takes placebetween
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Figure 6.3: Energies of the magnetic substates belonging tothe 2P terms as a function of
the magnetic field strength for6Li (a) and7Li (d). Blow up of the crossing regions c1 (b)
and c2 (c) in 6Li and c′1 (e) and c′2 (f) in 7Li. In the panels (b), (c), (e), and (f) the levels
are identified by their magnetic quantum number valuesµ.

them. This interaction is determined by the off-diagonal elements of the magnetic hyperfine

interaction Hamiltonian which couple the states with differentJ values (Brog et al., 1967;

Wieder & Eck, 1967; Arimondo et al., 1977). A rapid transformation in the eigenvector

basis takes place around the region of avoided crossing. This is described inBommier

(1980) and inLandi Degl’Innocenti & Landolfi(2004, see alsoSowmya et al. 2014b,c).
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6.4.2 Line Splitting Diagrams

The line splitting diagram shows the displacement of the magnetic components from the

line center (corresponding to the wavelength of theL = 0 → 1 → 0 transition in the

reference isotope7Li) and the strengths of these components for a given field strength.

In Figure6.4, we show the line splitting diagrams for differentB values. We take into

account the isotope shift and the solar abundances of the twoisotopes while computing the

strengths and magnetic shifts. As mentioned earlier, the components arising forB = 0

correspond to the transitions between the unperturbedF states. We see that the hyperfine

structure components of the D lines are well separated whenB = 0 due to the relatively

large FS. When the magnetic field is applied, the degeneracy of the magnetic substates is

lifted. As a result,70 allowed transitions take place in6Li and 106 in 7Li. This explains

why the diagrams become crowded as the field strength increases. We see that the magnetic

displacements increase with an increase inB as expected. In the diagrams shown, we note

that the MS is nonlinear and is a characteristic of the incomplete PB regime.

6.4.3 Single Scattered Stokes Profiles

In this section, we present the Stokes profiles for variousB values computed using the com-

bined theory for the single scattering case. We choose a coordinate system (see Figure6.5)

in which the magnetic field lies in the horizontal (xy) plane making anglesθB = 90° and

χB = 45°. We make this choice followingStenflo(1998) in order to bring out clearly the

effects of the magnetic field. We assume the unpolarized incident ray to be along the ver-

tical (z-axis) and the scattered ray (or the line of sight) to lie in the horizontal plane along

thex-axis. Thus, the angles for the incident and the scattered rays becomeµ′ = 1, χ′ = 0°,

µ = 0, andχ = 0°. We use the fact that the lithium lines are optically thin and only single

scattering is considered here to add the Stokes profiles computed for the individual iso-

topes after weighting them by their respective abundances.In Figures6.6–6.9, we compare

the single scattered Stokes profiles for three cases: the cases of pureF -state interference

(dotted lines) represented by a two-level atom with hyperfine structure, pureJ-state inter-

ference (dashed lines) represented by a two-term atom without hyperfine structure, and the

combined theory (solid lines) represented by a two-term atom with hyperfine structure. We

choose a Doppler width of60 mÅ for all of the components of the multiplet when comput-

ing the Stokes profiles. For this particular value of the Doppler width, the theoreticalQ/I

profile closely resembles the observedQ/I profile (seeBelluzzi et al., 2009). We use the

EinsteinA coefficient of3.689 × 107 s−1 for all of the components.

In Figure6.6, we show the Stokes profiles computed in the absence of magnetic fields
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Figure 6.4: Line splitting diagrams for the two lithium isotopes for the field strengths
indicated. The solid lines represent the magnetic components of 7Li while the dashed lines
represent those of6Li. Vertical dotted lines mark the positions of the D lines ofthe two
isotopes.∆λ = 0 corresponds to the line center wavelength ofL = 0 → 1 → 0 transition
in 7Li.

for 100 % 7Li in panel (a), for100 % 6Li in panel (b), and for both the isotopes combined

according to their percentage abundance in panel (c). In panels (a) and (b), we see two

peaks corresponding to the D lines of the two isotopes in intensity. The intensities of the D
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Figure 6.5: Scattering geometry considered for the resultspresented in Section6.4.3.

lines in both the isotopes are of similar magnitude since we have assumed100 % abundance

for the two isotopes. We also note that the wavelength positions of the D lines of6Li are

different from those of7Li owing to the isotope shift. In panel (c), we see two distinct

peaks in intensity. The first peak to the left is due to the7Li D 2 line. The second peak

falls at the line center positions of7Li D 1 and6Li D 2. However, the dominant contribution

comes from the7Li D 1 due to its relatively larger abundance. A small bump to the right

of the second peak is due to the6Li D 1 line. A small difference in the intensity at the
7Li D 2 peak between the dashed lines and the other two cases is seen in panels (a) and

(c). It is clear from the figure that this discrepancy is caused by 7Li. Comparing the solid,

dotted, and dashed profiles, we come to the conclusion that the HFS is at the origin of

this discrepancy. This is because the solid and dotted linescomputed by including HFS

perfectly match and only the dashed lines computed without HFS differ from the other

two cases. The discrepancy is very small in the case of6Li because of smaller HFS in
6Li compared to that in7Li. The reason for this discrepancy is due to the asymmetric

splitting of the hyperfine structure components about the givenJ state and also due to finite

widths of the components. This difference decreases (graphically indistinguishable) when

a magnetic field is applied (for example, whenB = 5 G as seen in Figure6.7) because of

the superposition of a large number of magnetic components.In contrast, this difference

is about an order of magnitude larger in the non-magnetic case. As we increase the field

strength, the intensity profiles broaden due to an increasedseparation between the magnetic

components.

WhenB = 0, theQ/I profiles exhibit a multi-step behavior around the line center po-
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Figure 6.6: Single scattered Stokes profiles for the lithiumD line system in the absence
of a magnetic field: (a)100 % 7Li, (b) 100 % 6Li, and (c)7Li and 6Li combined according
to their percentage abundance. The line types are indicatedin the intensity panels. The
geometry considered for scattering isµ = 0, µ′ = 1, χ = 0°, andχ′ = 0°. The vertical
dotted lines represent the line center wavelength positions of the7Li D 2, 7Li D 1, 6Li D 2,
and6Li D 1 lines in the absence of magnetic fields.

sitions of the D1 and D2 lines of both isotopes. We see the effects of quantum interference

clearly inQ/I. In the7Li D 2 core, significant depolarization is caused by the HFS com-

pared to the case where this splitting is neglected (comparethe solid and dashed lines in

panels (a) and (c)). A similar depolarization is also exhibited by the core of the6Li D 2 line

(see panels (b) and (c)). However, in the scale adopted, the solid and dashed lines appear to

merge around the core of6Li D 2 in panels (c), as theQ/I values of6Li D 2 are an order of

magnitude smaller than those of7Li D 2 because of their relative abundances. The D1 lines

remain upolarized. As expected, the solid lines merge with the dotted lines in the cores of

lithium lines while they coincide with the dashed lines in the wings. When a magnetic field
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Figure 6.7: Same as Figure6.6 but in the presence of a magnetic field. The left and the
right panels correspond to different field strength values.The field orientation (θB = 90°,
χB = 45°) is the same in both the panels. Refer to Section6.4.3for the scattering geometry.

is applied, we see a depolarization inQ/I and a generation ofU/I signal in the cores of the

lithium lines due to the Hanle effect. We note that the combined theory results match more

closely the pureJ-state interference results for fields of the order of100 G. This behavior

continues until the level-crossing field strength ofB = 3238 G for fine structure is reached.

When the field strength is of the order of a few thousand gauss,we are by far in the

complete PB regime for theF states. In this regime, theJ andIs couple strongly to the

magnetic field and the interaction betweenJ andIs becomes negligible. Therefore, one

would expect the magnetic substates of theF states to be fully degenerate, and therefore

the solid and dashed lines should match closely for fields of this order. However, for the

level-crossing field strengths, we see considerable differences between the solid and the

dashed lines, especially inU/I. In order to understand this, we compare the Stokes profiles

for 7Li and 6Li separately in panel (a) and (b) of Figure6.8 with the combined profiles

in panel (c). We do this to check whether a particular isotopeis giving rise to this differ-

ence. We note that this difference between the solid and dashed lines prevails in all three
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panels (i.e., in both isotopes). We attribute this difference in the shape and amplitude be-

tween the solid and the dashed lines to HFS, the level-crossings, and avoided crossings

between the magnetic substates of theF states. When we look at Figure6.3, we find that

the magnetic substates of theF states have finite energy differences and are not fully de-

generate in the complete PB regime for theF states. We see several crossings as well as

a few avoided crossings. These level-crossings and avoidedcrossings between the non-

degenerate magnetic substates of theF states lead to a modification of the coherence and

significant Hanle rotation, thereby affecting the shape andamplitude of theU/I profiles.

The HFS effects show more prominently in the polarization diagrams which will be dis-

cussed in Section6.4.5. For the geometry under consideration, this effect is significantly

seen forB = 3238 G. For a level-crossing field strength of4855 G, the Stokes profiles show

somewhat different behavior.

We also note that for fields of the order of a few thousand gauss, differences between

the solid and dashed lines remain only in the far left wing (see Figures6.8and6.9). From

Figure6.8 it is clear that this difference in the far blue wings is only due to the7Li iso-

tope (compare panels (a)–(c)). This can be understood with the help of the line splitting

diagrams for level-crossing fields in Figure6.4 in comparison with the corresponding di-

agrams in Figure5.3 (a direct comparison of the displacements can be made as the zero

points in the two figures are the same). In a two-term atom without hyperfine structure,

when a magnetic field is applied, the various fine structure magnetic components are either

blue or redshifted from the line center depending on their energies. When HFS is included,

the hyperfine structure magnetic components are distributed around the positions of the fine

structure magnetic components in the absence of HFS. We find that the positions of the hy-

perfine structure magnetic components in Figure6.4correspond well with the wavelength

positions of the fine structure magnetic components in Figure 5.3, except for the bunch of

magnetic components to the extreme left represented by solid lines. The magnetic field

leads to a large blue shift of this bunch, which consists of threeσb (∆µ = µb − µa = +1),

two π (∆µ = 0) and oneσr (∆µ = −1) components. These components (otherwise not

present at this wavelength position when HFS is neglected) give rise to the systematic dif-

ference inQ/I, U/I, andV/I in the far blue wing of the D2 line of 7Li. However, they do

not affect the intensity.

TheV/I profiles remain somewhat indistinguishable between the three cases consid-

ered, except for very weak fields like5 G as in Figure6.7. F -state interference sig-

nificantly changes theV/I profile at the7Li D 2 wavelength position. This is a signa-

ture of the alignment-to-orientation (A-O) conversion mechanism (for more details, see

Landi Degl’Innocenti, 1982; Landi Degl’Innocenti & Landolfi, 2004) acting in the incom-
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Figure 6.8: Stokes profiles obtained forB = 3238 G: (a)100 % 7Li, (b) 100 % 6Li, and (c)
7Li and 6Li combined according to their percentage abundance. Referto Section6.4.3for
the scattering geometry. WhenB = 3238 G, theU/I values are so small for the dotted line
case that they become indistinguishable from the zero line.
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Figure 6.9: Stokes profiles obtained forB = 4855 G andB = 5000 G. Refer to Sec-
tion 6.4.3for the scattering geometry.

plete PB regime for theF states. As described inLandi Degl’Innocenti & Landolfi(2004),

this occurs because of the double summation overK andK ′ appearing in Equation (6.9)

and because the spherical tensorT K
Q (3,n) is non-zero only whenK = 1 (see Equa-

tion (E.6) of Appendix E). This means that circular polarization can be generated by

resonance scattering even if the atom is not exposed to circularly polarized light. The

alignment present in the radiation field is converted to the orientation in the upper term.

This orientation in the upperF states gives rise to circularly polarized light. As discussed

earlier, small differences appear in the far blue wings for fields equal to or larger than the

level-crossing field strengths.

Finally, we remark that the discussion presented above concerning the comparison of

the single scattered Stokes profiles between the three cases(namely, the pureJ-state, pure

F -state, andF + J-state interference) also remains valid for other scattering geometries.

In Figure6.10, we show the Stokes profiles obtained after including a weakly polar-

ized background continuum. The continuum is added in the same way as described in

Section5.4.3. The parameters used for the continuum are same as the ones given in Sec-
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Figure 6.10: Stokes profiles obtained by including the contribution from the continuum
for different values ofB. Refer to Section6.4.3for the scattering geometry. The vertical
dotted lines represent the positions of the D lines.

tion 5.4.3. We compare Figure6.10with Figure5.4 and find that the HFS does not cause

any change in the intensities. WhenB = 0 the HFS causes a depolarization in the core

of Q/I without affecting the shape of the profile. For other field strengths, there is only

a slight difference in the amplitude of the profiles as compared to the case without HFS,
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although their shapes remain the same. TheU/I profiles differ both in amplitude and shape

for B = 3238 G. This difference is due to HFS. When HFS is neglected, thereis only one

level-crossing at this field strength. On the other hand, when HFS is included, there are

several level-crossings around this field strength (see Figures6.3(b) and (e)).V/I profiles

have the same shapes and amplitudes as compared to the case without hyperfine structure.

6.4.4 NCP in the Combined Theory

In this section, we present the plots NCP as a function ofB. Since the PBE causes nonlinear

splitting of the magnetic components with respect to the line center, the StokesV profiles

become asymmetric. As a result of this asymmetry, the integration of the StokesV over the

full line profile yields a non-zero value. In the linear Zeeman and complete PB regimes,

the V profiles show perfect antisymmetry which causes the NCP to become zero. The

A-O conversion mechanism discussed in Section6.4.3further enhances the asymmetry in

StokesV profiles already caused by nonlinear MS, and thereby contributes to the NCP. This

mechanism is particularly efficient when the level-crossings satisfy∆µ = µb′ − µb = 1.

Figure 6.11: NCP as a function of the magnetic field strengthB. The scattering geometry
is characterized by:µ′ = 0, χ′ = 0°, µ = 1, χ = 90°, θB = 0°, andχB = 0°.

In Figure6.11, we show the behavior of NCP in different field strength ranges for the

scattering geometry:µ′ = 0, χ′ = 0°, µ = 1, χ = 90°, θB = 0°, andχB = 0°. This choice

of the field geometry is made in order to obtain larger values for StokesV . In panel (a),
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we show the weak field behavior of NCP. We attribute the non-zero NCP in this regime to

the PBE in theF states and the A-O conversion mechanism taking place in the incomplete

PB regime for theF states. We find that the NCP increases with increasing field strength,

peaking around the level-crossing field strength (see Tables 6.1 and6.2), and decreases

with further increase inB. When the fields are as strong as a few thousand gauss we see a

second peak in NCP whose magnitude is larger than the first peak by an order. This is due to

the PBE in theJ states and the A-O conversion mechanism occurring in the incomplete PB

regime for theJ states. With a further increase in the field strength, we enter the complete

PB regime for theJ states where the NCP becomes zero.

SeeLandi Degl’Innocenti & Landolfi(2004) for detailed discussions on the various

mechanisms producing NCP.

6.4.5 Polarization Diagrams

In Figure6.12, we present the polarization diagrams for a givenB andθB and for the full

range ofχB. Refer to the figure caption for the incident and scattered ray directions.θB

takes values0°, 70°, 90°, and110°. We find that theθB = 70° and110° curves perfectly

coincide in all four panels. They take same values forQ/I andU/I at χB = 0° and

χB = 180°. However, we see that the dependence onχB of theθB = 70° curve is somewhat

different from that of theθB = 110° curve. By this, we mean that for theθB = 70° case, the

Q/I value changes in an anti-clockwise direction from theχB = 0° point while it changes

in a clockwise direction from theχB = 0° point for theθB = 110° case. TheQ/I value

increases with increasingχB, reaches a maximum and then decreases tillχB = 180°. U/I

makes a gradual transition from being positive to negative.Q/I again increases with an

increase inχB and atχB = 360° it resumes the same value it had atχB = 0°. U/I now

makes a transition from being negative to positive. WhenθB = 0° the magnetic field is

along thez-axis and exhibits azimuthal symmetry. Hence,θB = 0° is just a point in the

polarization diagram. ForθB = 90° the diagram is symmetric with respect to theU/I = 0

line.

In Figure6.13, we compare the polarization diagrams obtained at different wavelength

points by varyingB for a two-term atom without hyperfine structure (dashed curves) and

a two-term atom with hyperfine structure (solid curves). Thegeometry considered is de-

scribed in the caption to the figure. In panel (a), we see a decrease inQ/I with increasing

field strength due to the Hanle effect. For fields greater than100 G, we enter the Hanle

saturation regime.Q/I starts to increase as we approach the level-crossing field strength

(around3000 G). Loops (i.e., a single circular loop for the dashed line and multiple small
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Figure 6.12: Polarization diagrams obtained at the D line positions forB = 5 G and dif-
ferentθB as indicated in the panels. The azimuthχB of the magnetic field is varied from
0° to 360°. The symbols on the curves mark theχB values:∗ − 0°, ◦ − 70°, � − 180°,
and△ −270°. Since the curves for theθB = 70° and110° coincide, we use symbols that
are bigger in size for theθB = 110° case to distinguish it from theθB = 70° curve. The
geometry considered isµ = 0, µ′ = 1, χ = 0°, andχ′ = 0°.

loops for the solid line) arise due to several level-crossings (see Figure6.3) where the co-

herence increases andQ/I tends to approach its non-magnetic value. Comparing the solid

and dashed curves in Figure6.13, the effects of HFS can be clearly seen. First, due to the

depolarization caused by HFS, the polarization diagram shrinks in size. Second, multiple

small loops are formed (see the solid lines in Figure6.13). These multiple loops arise due

to several level-crossings that occur only when HFS is included (see Figure6.3(b), (c), (e),

and (f)). For field strengths larger than the level-crossingfield strengths, theQ/I value

decreases again and becomes zero around10000G. We see the effects due to Rayleigh
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Figure 6.13: Polarization diagrams obtained at the D line positions for a given orientation
of the magnetic field. The dashed lines correspond to the pureJ-state interference case
without HFS while the solid lines correspond to the combinedtheory case (including HFS).
The magnetic field strength values are marked along the dashed curves in G. The asterisks
on the solid curves represent the same field strength values as indicated for the dashed
curves. The scattering geometry considered isµ = 1, µ′ = 0, χ = 90°, andχ′ = 0°.

scattering in strong magnetic fields when we increase the field strength beyond10000G

(similar to Figure5.5(b)). In panel (b), we show the polarization diagram computed at the
6Li D 2 wavelength position. Since the7Li D 1 position nearly coincides with that of6Li D 2,

we see the combined effect of both lines. However, due to the large abundance of7Li, the

behavior of the polarization diagram is dominated by contribution from7Li D 1. Since7Li

D1 is unpolarized, the small arcs seen for weak fields are due to the6Li D 2 line. After the

Hanle saturation field strength (30 G), the polarization diagrams essentially show behavior

similar to the corresponding polarization diagrams in panel (a). In panel (c), we show the
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polarization diagram for6Li D 1 position. The D1 line remains unpolarized till the level-

crossing field strength (around3000 G) is reached. Around the level-crossing field strength,

we see a bigger loop for the case without HFS (dashed line) anda smaller loop for the case

with HFS (solid line).

6.5 Conclusions

In this chapter, we presented a formalism to treat the interferences between the magnetic

substates of the hyperfine structure states pertaining to different fine structure states of

the same term including the effects of PRD in scattering. Using the Kramers–Heisenberg

approach, we calculated the polarized scattering cross section (i.e., the RM) for this pro-

cess. We also demonstrated the behavior of the RM in a single scattering of the incident

unpolarized radiation by the lithium atoms. In the solar case, the combined theory finds

applications in modeling of spectral lines like lithium6708 Å for which the effects of both

fine and hyperfine structure are significant.

We illustrated the effects of a deterministic magnetic fieldon the Stokes profiles of

the lithium D line system. We covered the entire field strength regime from a weak field

Hanle regime to incomplete and complete PB regimes. When thefields are weak, the

Stokes profiles exhibit the well known Hanle signatures at the centers of the lithium D lines,

namely, depolarization ofQ/I and rotation of polarization plane. We noted that there are

Zeeman-like signatures for stronger fields. We identified the signatures of level-crossings

and avoided crossings in Stokes profiles and polarization diagrams. Unlike the pureJ-state

orF -state interferences, whenJ- andF -state interferences are treated together, a multitude

of level-crossings and avoided crossings occur which produce multiple loops in the polar-

ization diagrams and interesting signatures in theU/I profiles. Non-zero NCP is seen for

fields in the incomplete PB regime which arises not only due tononlinear MS but also due

to the A-O conversion mechanism as already described inLandi Degl’Innocenti & Landolfi

(2004). However, its diagnostic potential needs to be explored. We performed all the cal-

culations including the effects of PRD. However, its effectmanifests itself only when one

considers the transfer of the line radiation in the solar atmospheric conditions.
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Outline

In this chapter, we present our efforts towards modeling theStokes profiles of the LiI

D lines at6708 Å using the LSA and the combined theory for arbitrary magnetic field

strengths described in Chapter6. These lines are optically very thin and weakly polarized.

They can be observed in the quiet Sun with the existing spectropolarimeters. The magnetic

field reduces the polarization already present in these lines and their observations in mag-

netized regions are currently unavailable due to the lack ofpolarimeters with a sensitivity

beyond10−5 which is necessary to measure the weak polarization of theselines. Therefore,

we aim at only computing the theoretical profiles for variousgeometry and strengths of the

magnetic field in order to explore the diagnostic potential of these lines.

7.1 Introduction

In Chapter6, we derived the RM for theF + J- state interference process and studied its

characteristics in a single90° scattering of the incident unpolarized light. To model the

lines in the second solar spectrum which are sensitive to this combined interference for

the field strengths encountered on the Sun, we need to computetheoretical Stokes profiles

through detailed radiative transfer calculations using the RM derived and the realistic solar

model atmospheres. These profiles can then be compared with the observations and at-

tempts be made to infer and constrain the magnetic field parameters. This task, however,

is computationally very expensive for the magnetic field parameter domains that one need

to consider for such a study. Therefore, we opt for the LSA method which is based on
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the concept that the polarization information contained inthe scattered light is generated

in the last scattering event and is determined by the anisotropy of the medium at the place

of the last scattering. Since the amount of polarization contained in the emergent radiation

is very small (less than a few percent), the polarization of the incident radiation can be ne-

glected. This method is computationally fast and allows oneto determine the polarization

from StokesI, without the need to solve the full polarized radiative transfer equation for

multiple scattering.

LSA concept has proven to be a useful tool in modeling the polarization profiles of

molecular and atomic lines.Stenflo(1980) used this concept to model the polarization

profiles of the CaII H and K lines, which exhibited the signatures of quantum mechanical

interference.Stenflo(1982) used the LSA concept to elucidate the physics of the Hanle

effect and diagnose the turbulent magnetic fields in the solar atmosphere (see alsoStenflo,

1994). Faurobert & Arnaud(2002) applied this method to model the scattering polarization

of molecular emission lines in the quiet solar chromosphere. In order to study the polar-

ization of the Sun’s continuous spectrum,Stenflo(2005) used LSA.Belluzzi et al.(2007);

Belluzzi (2009) andBelluzzi et al.(2009) used a variant of the LSA method to understand

the origin of the polarization in BaII D1 and D2, ScII , and LiI D lines, respectively. The

single scattering approximation proposed inFrisch et al.(2009) is another variant of the

LSA method to study the Hanle effect in random magnetic fields.

In this chapter, we will work with the LSA methods proposed bySampoorna et al.

(2009) andAnusha et al.(2010). Sampoorna et al.(2009) extended the approach ofStenflo

(1982) to deal with the Hanle effect for resolved magnetic fields. They determined the ra-

diation field anisotropy at the place where the last scattering occurs from the observed limb

darkening and used it in combination with the PRD matrices (either of the form given in

Domke & Hubeny 1988or the ones presented inSampoorna et al. 2007a,b) to obtain the

Stokes profiles. With this method,Sampoorna et al.(2009) could successfully reproduce

most of the features in the limb observations of the CaI 4227 Å line. This modeling effort

led them to rule out the magnetic origin for the spatial variation of the scattering polar-

ization in the wings of this line. In this chapter, we will refer to this approach as LSA-0

method. We use this method to compute the LiI D line profiles for various magnetic field

strengths.

Anusha et al.(2010) presented three different LSA methods, namely, LSA-1, LSA-2,

and LSA-3 (see alsoAnusha et al., 2011a) for the non-magnetic case. In LSA-1 method,

the anisotropy factor is determined from the observed center to limb variation (CLV) of

the intensity. It is very similar to the LSA-0 method and makes use of the angle aver-

aged forms of theDomke & Hubeny(1988) PRD matrices. LSA-2 and LSA-3 methods

124



MODELING THE L I I D1 AND D2 L INES

take into account the radiative transfer effects. In these two approximations, StokesI is

calculated by solving the scalar transfer equation at all depth points in a given model of

the solar atmosphere, neglecting contributions from polarization. Then the total polarized

source vector for the line and the continuum are obtained. InLSA-2, Eddington–Barbier

relation (Mihalas, 1978) is employed to calculate theQ andI values using this source vec-

tor whereas in LSA-3, a simple formal solution of the radiative transfer equation gives the

emergent StokesQ. The authors model the CaI 4227 Å line profiles using LSA-3 and com-

pare the modeled profiles with the observations taken at different limb (µ) positions. They

show that LSA-3 gives a reasonably good fit to the observed profile that are comparable to

the ones obtained by solving the full polarized radiative transfer equation.

In this chapter, our aim is to model the LiI D lines using LSA in order to avoid the

computationally difficult radiative transfer calculations. Here, we describe the develop-

ments made so far in this regard. This work is in progress. In Section7.2, we present the

outcome of our efforts to compute the LiI D line profiles using the LSA-0 method. We

derive the required anisotropy factor, absorption matrix including the effects of PBE, and

present the Stokes profiles obtained using the RM derived forthe combined theory. We

compare the non-magnetic profiles with the quiet Sun observations given inStenflo(2011).

In Section7.3, we present an extension of the LSA-3 method ofAnusha et al.(2010) to

include arbitrarily strong magnetic fields. We call this as the extended LSA-3 method.

7.2 The LSA-0 Method

In this section, we describe our attempts to model the LiI D lines using the LSA-0 method

of Sampoorna et al.(2009). This method assumes that the polarization of the emergent

radiation is determined by the anisotropy of the incident radiation field at the last scattering

event. The anisotropy factor is then determined as a function of the wavelength by fitting

the limb darkening function obtained from the observed datawith a parabolic function and

using the limb darkening coefficients fromPierce(2000). This empirical anisotropy profile

is then used along with the polarized continuum, the line absorption matrix, and the RM

for the single scattering case (which contains all the PRD, collisional, fine and hyperfine

structure, isotope shifts, and magnetic field effects) to calculate the Stokes profiles.

7.2.1 CLV of the Li I D Line Intensity

Since the LiI D lines are optically very thin, their intensities can be approximated to the

intensities of the continuum at their line center wavelengths (i.e.,Iλ(µ) ⋍ Ic(µ), where
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µ = cos θ, with θ being the colatitude). To obtain the CLV of the continuum at Li I D

line wavelengths we use the limb darkening function ofNeckel (1996) who present the

wavelength dependency of the limb darkening coefficients byfitting the continuum data of

Neckel & Labs(1994). The limb darkening function is defined as

cλ(µ) =
Ic(µ)

Ic(µ = 1)
. (7.1)

An IDL program provided by Stenflo, J. O. (through private communication) computes

the limb darkening function for a givenµ using the wavelength dependent limb darkening

coefficients. We use this IDL program to obtain the CLV of the Li I D line intensities. In

Figure 7.1: CLV of the continuum at∼ 6708 Å.

Figure7.1 we show the CLV of the continuum at∼ 6708 Å. We use the intensity values

obtained in this step for the computation of the anisotropy factorkG,λ(µ) discussed in the

next section.

7.2.2 The Anisotropy Factor

The anisotropy factorkG,λ(µ), is obtained by multiplying the Rayleigh phase matrix with

an unpolarized Stokes vector of the form(I, 0, 0, 0)T and integrating it over all incoming

angles as

kG,λ(µ) =
Gλ(1 − µ2)

Iλ(µ)
, (7.2)

where

Gλ =
3

16

∫ +1

−1

(3µ′2 − 1)Iλ(µ
′)dµ′ . (7.3)

Since the limb darkening function is defined only for positiveµ, we carry out the integration

in the above equation in the limit0 ≤ µ ≤ 1. The anisotropy factor is flat in the wavelength

range that covers the LiI D lines. It has a value of∼ 0.0575 atµ = 0.1.
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7.2.3 The Absorption Matrix

In the LSA method, to compute the fractional polarization, we need to take into account

the contribution from the absorption probability for the LiI D lines. The LiI D line sys-

tem can well be represented by a two-term atom model and we need to derive the cor-

responding absorption matrix in the presence of arbitrary strength fields. In this section,

we present this derivation of the PB absorption matrix in thecombined theory following

Landi Degl’Innocenti & Landolfi(2004). Most of the symbols and notations used carry the

same meaning as in Chapter6, unless indicated otherwise.

We start from the set of Equations (6.88) given inLandi Degl’Innocenti & Landolfi

(2004) which are listed below

ηA
i (ν,n) =

8π3ν

ch
N
∑

mnn′

∑

qq′

(−1)q+q′

×Re[(d−q)mn(d−q′)
∗
mn′Tqq′(i,n)ρnn′Φ(νmn − ν)] , (7.4)

whereηA
i (ν,n) is the absorption coefficient with the symboli = (1, 2, 3, 4) representing

the Stokes parameters(I, Q, U, V ). ν is the frequency andn is the direction of the ray.c is

the speed of light,h is the Planck constant, andN is the total number density of atoms.dq

are the spherical components of the dipole moment operator,Tqq′ are the reducible spherical

tensors, andρnn′ are the matrix elements of the density operator.m,n, n′ represent a set of

eigenvectors which will be defined below, andΦ is the complex profile function withνmn

being the frequency of the transition between the states with eigenvectorsm andn. The

dispersion coefficientρA
i (ν,n) is given by

ρA
i (ν,n) = ηA

i (ν,n){Re → Im} , (7.5)

with {Re → Im} meaning that theRe (for real part) in last line of Equation (7.4) should

be replaced withIm (for imaginary part). Substituting in the above equations,

m→ LbSIskbµb; n→ LaSIskaµa; n′ → LaSIska′µa′ ,

wherea and b represent the lower and upper terms, respectively,µ the quantum num-

ber of the magnetic substates, andk the subspace spanned byµ (see Chapter6, also

Sowmya et al., 2015b). Making use of the expression for the Wigner–Eckart theorem,
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Equations (7.31) and (7.32) ofLandi Degl’Innocenti & Landolfi(2004), we arrive at

ηA
i (ν,n) = N hν

4π
(2La + 1)B(LaSIs → LbSIs)

∑

kaka′kb

∑

µaµa′µb

∑

qq′

3(−1)q+q′

×
∑

JaJa′FaFa′JbJb′FbFb′

(−1)Jb+Jb′+Ja+Ja′
√

(2Ja + 1)(2Ja′ + 1)(2Fa + 1)(2Fa′ + 1)

×
√

(2Jb + 1)(2Jb′ + 1)(2Fb + 1)(2Fb′ + 1)Cka

JaFa
(LaSIs, µa)C

ka′

Ja′Fa′
(LaSIs, µa′)

×Ckb

JbFb
(LbSIs, µb)C

kb

Jb′Fb′
(LbSIs, µb)

(

Fb Fa 1

−µb µa −q

)(

Fb′ Fa′ 1

−µb µa′ −q′

)

×
{

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}{

Ja Jb 1

Fb Fa Is

}{

Ja′ Jb′ 1

Fb′ Fa′ Is

}

×Re[Tqq′(i,n)ρLaSIs
(kaµa, ka′µa′)Φ(νLbSIskbµb,LaSIskaµa

− ν)] , (7.6)

ρA
i (ν,n) = ηA

i (ν,n){Re → Im} . (7.7)

Here,B(LaSIs → LbSIs) is the EinsteinB coefficient. We expand the density matrix

elements in the above equations using Equation (7.36) ofLandi Degl’Innocenti & Landolfi

(2004) as

ρLaSIs
(kaµa, ka′µa′) =

∑

KaQa

∑

Ja′′′Fa′′′

∑

Ja′′Fa′′

(−1)Fa′′−µa

√

2Ka + 1

×Cka′

Ja′′′Fa′′′
(LaSIs, µa′)Cka

Ja′′Fa′′
(LaSIs, µa)

×
(

Fa′′ Fa′′′ Ka

µa −µa′ −Qa

)

LaSIsρKa

Qa
(Ja′′Fa′′ , Ja′′′Fa′′′) . (7.8)

whereρKa

Qa
are the multipolar components of the density matrix. Using the relation (5.156)

of Landi Degl’Innocenti & Landolfi(2004) which is

Tqq′(i,n) =
∑

KQ

(−1)1+q

√

2K + 1

3

(

1 1 K

q −q′ −Q

)

T K
Q (i,n) , (7.9)

and the orthogonality relations (5a) and (5b) ofCasini & Manso Sainz(2005), we can

rewrite Equations (7.6) and (7.7) as

ηA
i (ν,n) = N hν

4π
(2La + 1)B(LaSIs → LbSIs)

∑

KQ

∑

KaQa

√

3(2K + 1)(2Ka + 1)
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×
∑

kakb

∑

JaJa′Ja′′FaFa′Fa′′JbJb′FbFb′

∑

µaµa′µb

∑

qq′

(−1)Jb+Jb′+Ja+Ja′+Fa′′−µa+q′+1

×
√

(2Ja + 1)(2Ja′ + 1)(2Fa + 1)(2Fa′ + 1)(2Jb + 1)(2Jb′ + 1)(2Fb + 1)(2Fb′ + 1)

×Cka

JaFa
(LaSIs, µa)C

ka

Ja′′Fa′′
(LaSIs, µa)C

kb

JbFb
(LbSIs, µb)C

kb

Jb′Fb′
(LbSIs, µb)

×
{

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}{

Ja Jb 1

Fb Fa Is

}{

Ja′ Jb′ 1

Fb′ Fa′ Is

}

×
(

Fb Fa 1

−µb µa −q

)(

Fb′ Fa′ 1

−µb µa′ −q′

)(

1 1 K

q −q′ −Q

)(

Fa′′ Fa′ Ka

µa −µa′ −Qa

)

×Re[T K
Q (i,n) LaSIsρKa

Qa
(Ja′′Fa′′ , Ja′Fa′)Φ(νLbSIskbµb,LaSIskaµa

− ν)] , (7.10)

ρA
i (ν,n) = ηA

i (ν,n){Re → Im} . (7.11)

Equations (7.10) and (7.11) represent the general expressions for the absorption coefficients

which include polarization intrinsic to the lower term. In order to evaluate these coefficients

we need to computeρKa

Qa
. This can be done by solving the statistical equilibrium equations

of the lower term. To be consistent with Chapter6 wherein we neglect the lower term

polarization, we neglect it in this chapter also. This meansthat the absorption takes place

from the equally populated lower states. Following Equations (10.120) and (10.121) of

Landi Degl’Innocenti & Landolfi(2004), we represent this approximation mathematically

as

ρLaSIs
(kaµa, ka′µa′) = δkaka′

δµaµa′
C , (7.12)

and
LSIsρKa

Qa
(JaFa, Ja′Fa′) = δKa0δQa0δJaJa′

δFaFa′

√

2Fa + 1 C , (7.13)

with

C =
1

(2S + 1)(2Is + 1)(2La + 1)

Na

N , (7.14)

whereNa is the population of the lower term. Using this approximation we finally obtain

ηA
i (ν,n) = Na

hν

4π

B(LaSIs → LbSIs)

(2S + 1)(2Is + 1)

∑

KQ

√

3(2K + 1)
∑

kakb

∑

JaJa′FaFa′JbJb′FbFb′

×
∑

µaµbq

(−1)Jb+Jb′+Ja+Ja′+q+1
√

(2Ja + 1)(2Ja′ + 1)(2Fa + 1)(2Fa′ + 1)

×
√

(2Jb + 1)(2Jb′ + 1)(2Fb + 1)(2Fb′ + 1)

×Cka

JaFa
(LaSIs, µa)C

ka

Ja′Fa′
(LaSIs, µa)C

kb

JbFb
(LbSIs, µb)C

kb

Jb′Fb′
(LbSIs, µb)
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×
{

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}{

Ja Jb 1

Fb Fa Is

}{

Ja′ Jb′ 1

Fb′ Fa′ Is

}

×
(

Fb Fa 1

−µb µa −q

)(

Fb′ Fa′ 1

−µb µa −q

)(

1 1 K

q −q −Q

)

×Re[T K
Q (i,n)Φ(νLbSIskbµb,LaSIskaµa

− ν)] , (7.15)

ρA
i (ν,n) = ηA

i (ν,n){Re → Im} . (7.16)

With the help of Equations (7.15) and (7.16), we can write the PB line absorption matrix as

Φ(ν,n) =













ηA
I ηA

Q ηA
U ηA

V

ηA
Q ηA

I ρA
V −ρA

U

ηA
U −ρA

V ηA
I ρA

Q

ηA
V ρA

U −ρA
Q ηA

I













. (7.17)

7.2.3.1 The Absorption Coefficient in the Non-Magnetic Case

In the absence of a magnetic field, the absorption matrix reduces to a scalar function which

forms the diagonal element, and is given by the expression

ηA
I (ν) =

kM

(2S + 1)(2Is + 1)

∑

JaFaJbFb

√

(2Ja + 1)(2Fa + 1)(2Jb + 1)(2Fb + 1)

×
{

Ja Jb 1

Fb Fa Is

}2{

La Lb 1

Jb Ja S

}2

φ(νJbFb,JaFa
− ν) , (7.18)

with

kM = Na
hν

4π
B(LaSIs → LbSIs) , (7.19)

and

φ(νJbFb,JaFa
− ν) = Re[Φ(νLbSJbIsFb,LaSJaIsFa

− ν)] , (7.20)

whereφ is the Voigt profile function with line center atνJbFb,JaFa
. This line center frequency

actually corresponds toνFbFa
. The indicesJb andJa are used to label the fine structure

states to which theF states belong. We expand Equation (7.18) for the allowed transitions

between theF states in6Li and 7Li isotopes and arrive at

6ηA
I (ν) = k6

M

[

1

81
φ(ν 1

2

1

2
, 1
2

1

2

− ν) +
8

81
φ(ν 1

2

3

2
, 1
2

1

2

− ν) +
8

81
φ(ν 1

2

1

2
, 1
2

3

2

− ν)
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+
10

81
φ(ν 1

2

3

2
, 1
2

3

2

− ν) +
8

81
φ(ν 3

2

1

2
, 1
2

1

2

− ν) +
10

81
φ(ν 3

2

3

2
, 1
2

1

2

− ν)

+
1

81
φ(ν 3

2

1

2
, 1
2

3

2

− ν) +
8

81
φ(ν 3

2

3

2
, 1
2

3

2

− ν) +
3

9
φ(ν 3

2

5

2
, 1
2

3

2

− ν)

]

, (7.21)

and

7ηA
I (ν) = k7

M

[

1

48
φ(ν 1

2
1, 1

2
1 − ν) +

5

48
φ(ν 1

2
2, 1

2
1 − ν) +

15

144
φ(ν 1

2
1, 1

2
2 − ν)

+
5

48
φ(ν 1

2
2, 1

2
2 − ν) +

1

24
φ(ν 3

2
0, 1

2
1 − ν) +

15

144
φ(ν 3

2
1, 1

2
1 − ν) +

5

48
φ(ν 3

2
2, 1

2
1 − ν)

+
5

240
φ(ν 3

2
1, 1

2
2 − ν) +

5

48
φ(ν 3

2
2, 1

2
2 − ν) +

7

24
φ(ν 3

2
3, 1

2
2 − ν)

]

. (7.22)

Here,k6
M andk7

M are given by Equation (7.19) where the respective lower term populations

of 6Li and 7Li are used.

7.2.4 Stokes Profiles Computed Using the LSA-0 Method

FollowingSampoorna et al.(2009) we write the polarization in line as

PQ,line =

∫

R21(λ, λ
′,Θ)kG,λ′(µ)Iλ′(µ = 1)dλ′

∫

R11(λ, λ′,Θ)Iλ′(µ = 1)dλ′
, (7.23)

PU,line =

∫

R31(λ, λ
′,Θ)kG,λ′(µ)Iλ′(µ = 1)dλ′

∫

R11(λ, λ′,Θ)Iλ′(µ = 1)dλ′
, (7.24)

and

PV,line =

∫

R41(λ, λ
′,Θ)kG,λ′(µ)Iλ′(µ = 1)dλ′

∫

R11(λ, λ′,Θ)Iλ′(µ = 1)dλ′
. (7.25)

Here,Θ is the scattering angle, andRi1(λ, λ
′,Θ) with i = 1, 2, 3, 4 are the elements of the

first column of the RM computed using the combined theory presented in Chapter6 (see

alsoSowmya et al., 2015b).

When modeling the LiI D lines with the LSA method, we have to account for the con-

tribution from the continuum in addition to the contribution from the line. The expressions

for the fractional polarization in the presence of continuum then take the form

Q

I
= S

[

PQ,line
ηA

I (λ,n)

ηA
I (λ,n) + Cc

+ Pc
Cc

ηA
I (λ,n) + Cc

]

, (7.26)
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Figure 7.2: Combined Stokes profiles for the LiI D lines forB = 500 G (left) andB =
2000 G (right). The model parameters used areS = 1, Cc = 40 andPc = 0.009 %.

U

I
= SPU,line

ηA
I (λ,n)

ηA
I (λ,n) + Cc

, (7.27)

and
V

I
= SPV,line

ηA
I (λ,n)

ηA
I (λ,n) + Cc

, (7.28)

whereηA
I is now written in terms ofλ. S is the global scaling parameter,Cc is the contin-

uum opacity, andPc is the continuum polarization.

The Stokes profiles computed using the LSA-0 method, assuming the scattering to be

frequency coherent, is presented in Figures7.2 and7.3. The contributions from the two

isotopes are combined considering their percentage abundances. For the calculation of the

Stokes profiles we have usedµ = 0.1, χ = 0°, cosθ′ = µ′ = 1.0, andχ′ = 0°. The

magnetic field orientation is given by(θB, χB) = (90°, 45°). The model parameter values

used are mentioned in the figure captions. We fixPc = 0.009 % based onStenflo(2005)

and choose a Doppler width of60 mÅ (corresponding to3000 K) following Belluzzi et al.

(2009). Since the LiI D lines are optically very thin and produce almost no featurein

the intensity spectrum, we assume the continuum to dominateover the line and choose

Cc = 40. This high value ofCc is needed to obtain the fractional polarization values

that are similar to the observed values (see for exampleStenflo et al., 2000; Stenflo, 2011;

Belluzzi et al., 2009). We expect the radiative transfer calculations to not affect the results
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much as the LiI D lines are very weak and hence use the global scaling parameter value as

unity.

Figure 7.3: Combined Stokes profiles for the LiI D lines forB = 3238 G (left) andB =
4855 G (right). The model parameters used areS = 1, Cc = 40 andPc = 0.009 %.

We notice that the profiles computed with the LSA-0 method aresimilar to the ones

obtained in a single scattering event shown in Figure6.10. If we examine Equations (7.26)–

(7.28) for the LSA-0 method and Equations (5.15)–(5.16) for the single scattering case, we

see that they depend on similar free parameters, namely, theparameters representing the

radiation anisotropy, continuum strength and its polarization. The only difference being

the global scaling parameterS (that may differ from unity) in the LSA-0 method which

is introduced to obtain a match with the profiles obtained by solving the radiative transfer

equation fully. Also, the Li D lines are optically thin and therefore,kG,λ is spectrally flat

across these lines (which is equivalent to using a constant value forβ in Equation (5.15)).

Therefore, the profiles computed using the LSA-0 method do not differ much from their

counterparts for the single scattering case.

7.2.5 Comparison with the Observations

In Figure7.4 we show the comparison between the non-magnetic theoretical Q/I profile

and the observedQ/I profile. Since the observations were recorded in the quiet Sun region,

we have first tried to fit it by consideringB = 0 G. The model parameters used in comput-
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ing the theoretical profiles using the LSA-0 method ofSampoorna et al.(2009) are given in

the figure caption. These values are different from the ones used in Section7.2.4. We have

used a Doppler width of85 mÅ in order to achieve the required broadening. This Doppler

width corresponds to a temperature of about6000 K. As we can see from the figure, the

LSA-0 method gives a reasonable fit to the non-magnetic observations of the LiI D lines.

Figure 7.4: Comparison between the observed (dotted) and theoretical (solid)Q/I for the
Li I D lines. Observations were taken with ZIMPOL at THEMIS,5 arcsec inside the E limb
of the quiet Sun on June7, 2008 by Stenflo (seeStenflo, 2011, for more details). The model
parameters used to compute the theoretical profile areS = 1, Cc = 55, Pc = 0.009 %, and
B = 0 G. We have used a Doppler width of85 mÅ to obtain a match with the observed
profile.

LSA-0 method, however, does not take into account the depth dependence of the phys-

ical quantities. We saw in the previous section that this method needs free parameters and

empiricalkG,λ as input. In order to eliminate these free parameters, whilestill being signif-

icantly less computationally expensive as compared with a full polarized radiative transfer

solution, we use the LSA-3 method ofAnusha et al.(2010) which we will discuss in the

next section. In LSA-3, the depth dependence of various physical quantities is taken into

consideration.

7.3 The LSA-3 Method

In this method, the radiation anisotropy is calculated by solving the scalar radiative transfer

equation using a realistic model atmosphere (seeFontenla et al., 1993; Avrett, 1995). PRD-

capable multi-level ALI code ofUitenbroek(2001) is used to compute the StokesI, in the

absence of magnetic fields, at all depth points by neglectingthe contribution fromQ to

I. This code is based on the methods described in the papersRybicki & Hummer(1991,

1992, 1994). The mean intensity and the anisotropy are then calculatedusing the Stokes
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I, from which the source vector is constructed under the LSA (seeAnusha et al., 2010, for

more details). The emergentQ/I is obtained from this source vector using a formal solver.

7.3.1 Extended LSA-3 Method

The LSA-3 method described inAnusha et al.(2010) considers the case of resonance scat-

tering in the presence of microturbulent magnetic fields. Our aim in this chapter is to

develop a method to compute the Stokes profiles of LiI D lines by including the effects of

arbitrarily strong deterministic magnetic fields. Therefore we modify the LSA-3 equations

of Anusha et al.(2010) to include the effects of deterministic magnetic fields.

The 1D polarized radiative transfer equation in the presence of magnetic fields (see

Section1.8.1) is written as (see alsoSampoorna et al., 2008b)

µ
∂

∂τ
I(τ, λ,n) = (Φ + rE)I(τ, λ,n)

−[(rE + ǫΦ)Bλ(τ)U + Sscat(τ, λ,n) + βcSc(τ, λ,n)] . (7.29)

Here,I = [I, Q, U, V ]T , Φ is the depth dependent4 × 4 line absorption matrix (see Equa-

tion (7.17)), E is the4 × 4 unity matrix, K = (Φ + rE) is the total absorption matrix

wherer is the ratio of continuum to line averaged opacity.Bλ(τ) is the Planck function,

U = [1, 0, 0, 0]T andǫ is the thermalization parameter.βc denotes the ratio of continuum

scattering coefficient to the line averaged absorption coefficient. The scattering integral

Sscat(τ, λ,n) is given by

Sscat(τ, λ,n) =

∮

dn′

4π

∫ ∞

0

dλ′R(λ, λ′,n,n′, τ,B)I(τ, λ′,n′) , (7.30)

whereR is the RM for the combined theory including PBE.Sc is the continuum source

vector scattering according to Rayleigh’s law given by

Sc(τ, λ,n) =

∮

dn′

4π
P (n,n′)I(τ, λ′,n′) , (7.31)

whereP (n,n′) is the well known Rayleigh phase matrix (seeChandrasekhar, 1950).

Defining the total optical depth as

dτ tot = dτ(ηA
I + r + βc)/µ , (7.32)

and usingdτ instead ofdτ tot for simplicity of notation, we rewrite the transfer equation
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(7.29) as
∂

∂τ
I(τ, λ,n) =

(Φ + rE)

(ηA
I + r + βc)

I(τ, λ,n) − Stot(τ, λ,n) , (7.33)

where the total source vectorStot is given by

Stot(τ, λ,n) =
1

(ηA
I + r + βc)

[(rE + ǫΦ)Bλ(τ)U + Sscat(τ, λ,n) + βcSc(τ, λ,n)] .

(7.34)

The dominant contribution toSscat comes fromI(τ, λ,n). Therefore we neglect the con-

tributions from(Q,U, V ). In other words, in the integral in Equation (7.30) we replace

the incident Stokes vectorI by [I, 0, 0, 0]T . With this replacement, only the contribution

from the first column of theR matrix becomes relevant. Thus the expressions for the total

source vector components including the contribution from the polarized continuum take

the following simple form under LSA-3

[SI(τ, λ,n)]LSA−3 =
[r(τ, λ) + ǫ(τ)ηA

I (τ, λ)]

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

Bλ(τ)

+

∮

dn′

4π

∫ ∞

0

dλ′
R11(λ, λ

′,n,n′, τ,B)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

I(τ, λ′,n′)

+

∮

dn′

4π

βc(τ, λ)P11(n,n
′)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

I(τ, λ′,n′) , (7.35)

[SQ(τ, λ,n)]LSA−3 =
ǫ(τ)ηA

Q(τ, λ)Bλ(τ)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

+

∮

dn′

4π

∫ ∞

0

dλ′
R21(λ, λ

′,n,n′, τ,B)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

I(τ, λ′,n′)

+

∮

dn′

4π

βc(τ, λ)P21(n,n
′)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

I(τ, λ′,n′) , (7.36)

[SU(τ, λ,n)]LSA−3 =
ǫ(τ)ηA

U (τ, λ)Bλ(τ)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

+

∮

dn′

4π

∫ ∞

0

dλ′
R31(λ, λ

′,n,n′, τ,B)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

I(τ, λ′,n′) , (7.37)

and

[SV (τ, λ,n)]LSA−3 =
ǫ(τ)ηA

V (τ, λ)Bλ(τ)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]
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+

∮

dn′

4π

∫ ∞

0

dλ′
R41(λ, λ

′,n,n′, τ,B)

[ηA
I (τ, λ) + r(τ, λ) + βc(τ, λ)]

I(τ, λ′,n′) . (7.38)

Here,Pij are the elements of the Rayleigh phase matrix. The emergentQ/I, U/I, andV/I

profiles can be obtained by using the source terms constructed above, in the formal solution

of the transfer equation. The Stokes profiles can then be calculated for various magnetic

field strengths and orientations, in order to understand theinfluence of the magnetic field.

However, this is a challenging task because of the complications related to the computa-

tion of the elements of the RM. If we treat only the frequency coherent scattering processes

in the atom’s rest frame, neglecting collisions, then we canreplaceRij(λ, λ
′,n,n′, τ,B)

with RII
ij(λ, λ

′,n,n′, τ,B). In that case, for a given combination of the magnetic field pa-

rameters, incoming and outgoing radiation angles, the timetake taken for the computation

of the RM for a single depth point is∼ 29 hrs. It becomes computationally very diffi-

cult to calculate the RM elements over grids of depth, radiation angles and magnetic field

variables. Because of this practical difficulty, we are unable to compute the Stokes pro-

files using the LSA-3 method. We are currently trying to devise numerical methods with

reasonable approximations which will help us overcome thisproblem to an extent. These

methods can be tested by applying them to reproduce the knownbenchmarks. This work is

in progress.

7.4 Conclusions

In this chapter, we have tried to model the LiI D lines at 6807 Å using the last scattering

approximation to avoid numerical complications which arise while performing detailed

radiative transfer calculations. We first used the LSA-0 method ofSampoorna et al.(2009)

to compute the polarization profiles of these lines. We foundthat the LSA-0 method gives

results which are nearly indistinguishable from the results obtained in a single scattering

event (see for e.g., Chapter6). A comparison of theQ/I profile obtained from the LSA-

0 method with the non-magnetic observations shows that the observations are reproduced

reasonably well by this method.

However, the LSA-0 method uses free parameters. In order to get rid of these free

parameters and to consider the effects due to the atmosphere, we chose to use the LSA-3

method ofAnusha et al.(2010) which is computationally less expensive (as compared to

the full transfer computations) as only the scalar radiative transfer equation is solved instead

of the full polarized radiative transfer equation. We extended this method ofAnusha et al.

(2010) to include the effects due to deterministic magnetic fieldsof arbitrary strengths.
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We have not yet succeeded in computing the Stokes profiles using the extended LSA-3

method because of the challenges discussed in the previous section. We are now working

at developing the numerical methods to surpass these problems. This project forms an

extension of the thesis work in the future.
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8
SUMMARY AND FUTURE PROSPECTS

The study of solar magnetic fields is of profound importance as they dictate the structural

evolution of the Sun. They also directly influence the space weather which has direct im-

plications for the Earth. Several methods are employed in order to measure their strength

and distribution in the solar atmosphere. One such method involves extracting the magnetic

field parameters from the polarization of the light emitted by the Sun, via the Zeeman and

Hanle effects. Zeeman effect is the most popular measurement technique in use. It uses

the fact that the lines formed in the magnetic regions are split by the magnetic field and

the amount of splitting is directly proportional to the fieldstrengthB. The limitation of

the Zeeman effect is that it is insensitive to weak and turbulent fields. To explore weak

magnetic fields, Hanle effect was proposed as a tool for the field measurements. Hanle

effect is sensitive to weak fields which are inaccessible to the Zeeman effect. However,

these tools are not sufficient to encompass the field strengthregimes observationally de-

tected on the Sun. This is because the Zeeman and Hanle effects do not fully account for

various interference phenomena occurring between the magnetic sustates belonging to dif-

ferent fine or hyperfine structure states. For many atomic lines, this type of interference

occurs for the field strengths prevailing on the Sun. This effect of the magnetic field, called

the Paschen–Back effect, can serve as a diagnostic tool complementary to the Hanle and

Zeeman effects.

8.1 Summary

In Chapter1, we introduced some of the basic concepts which were necessary for under-

standing the contents of the rest of the thesis. In the first part of the thesis, we focused
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our attention on understanding the influence of blend lines on the main line of interest.

Modeling any spectral line in the second solar spectrum for determining the physical quan-

tities like magnetic field, abundances etc., requires a proper treatment of the blend lines.

Blend lines are generally treated to be formed in local thermodynamic equilibrium con-

ditions and are assumed to possess no intrinsic polarization of their own. We proposed a

formalism where, in addition to the main line, the blend lines are also treated in non-local

thermodynamic equilibrium conditions. Our formalism allows the blend lines to have in-

trinsic polarization. It is also capable of treating any number of blend lines that lie in the

wavelength range of interest. By considering the lines formed in an isothermal atmosphere,

we showed that the effects of polarized blend lines are significant when they are relatively

strong and lie very close to the main line.

With a motivation to explore the usefulness of Paschen–Backeffect in atomic states for

extracting the information on distribution of solar magnetic fields, we developed the neces-

sary primary theoretical framework, namely, the derivation of the redistribution matrix. We

formulated the theory of Paschen–Back effect in atomic states accounting for the effects

of partial frequency redistribution. We first dealt with Paschen–Back effect in a two-level

atom with hyperfine structure and developed the formulationfor this process by follow-

ing the Kramers–Heisenberg scattering matrix approach. For simplicity, we assumed the

lower levels to be unpolarized and accounted for Paschen–Back effect in only the upper

levels. We checked the correctness of the formulation by reproducing the known and avail-

able theoretical benchmarks on the NaI D2 line polarization. We identified the signatures

of Paschen–Back effect on polarization in the case where theincident unpolarized light is

singly scattered in a direction perpendicular to the direction of incidence.

The next logical step was to explore the influence of Paschen–Back effect in fine struc-

ture states on the Stokes parameters. Therefore, we took up the problem of Paschen–Back

effect in a two-term atom without hyperfine structure and derived the required redistribu-

tion matrix following the Kramers–Heisenberg approach. Westudied its properties in a

single90° scattering of the incident unpolarized radiation. We usedLi I D lines at6708 Å

for this purpose because it is only for this system that one can expect to see Paschen–Back

effect in fine structure states for the magnetic field strengths that one encounters on the

Sun. For this atomic system, the fine structure splitting in the2P term is about0.15 Å and

Paschen–Back effect sets in for fields stronger than2000 G. Such strong fields are known

to be present in sunspots.

The polarization of some of the diagnostically important spectral lines in the second

solar spectrum is a result of the combined effects of fine and hyperfine structure. There-

fore, we developed a more general theory which treats theF - and J-state interference
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processes together, considering a two-term atom with hyperfine structure. We followed the

same procedure that we employed for the cases discussed above and arrived at a general

expression for the redistribution matrix, which reduces tothe expressions for the redistri-

bution matrices derived in Chapters4 and5, when fine and hyperfine structure respectively,

are neglected. Keeping in mind the relevance to solar applications, we again used LiI D

lines at6708 Å for testing the redistribution matrix. We identified a multitude of effects,

such as level-crossing, avoided crossing, quantum interference, alignment-to-orientation

conversion mechanism etc., caused by the magnetic field in the Paschen–Back regime.

The radiation field undergoes multiple scattering before itescapes from the solar atmo-

sphere. When modeling the lines in the second solar spectrum, one has to account for the

radiative transfer effects in the atmosphere. This can be done by using the redistribution

matrix (in the Paschen–Back regime), in the polarized radiative transfer equation, and solv-

ing it using the available models which closely mimic the solar atmosphere. However, it

takes huge computational resources to perform this task, asa large number of transitions

are involved in the Paschen–Back regime. Also, the radiation and magnetic field parameter

domains that one has to consider while solving the transfer equation are large. Devising

the numerical methods to solve the transfer equation in the presence of arbitrary magnetic

fields is challenging. To avoid the numerical complications, a simple approach, called the

last scattering approximation (LSA) method is proposed.

As the Li I D lines are weak and optically very thin, the transfer effects are not expected

to play a major role in shaping these line profiles. Hence we used different levels of LSA

method to model these lines. We found that the LSA-0 method nearly reproduces the

observed profiles in the quiet Sun. We presented the theoretical Stokes profiles obtained

using the LSA-0 method for various values ofB. We also presented the extended LSA-3

method which can be used to generate Stokes profiles and latercompare them with the

observations when they are available.

8.2 Future Work

In this section, we briefly discuss the possible ways to expand the work already carried out

in this thesis and its application to better understand the Sun with a particular interest in the

surface magnetic fields.

For the radiative transfer calculations carried out in Chapters2 and3 with blend lines,

we used isothermal atmospheres. The real solar atmosphere,however, is not a constant

property medium and is not isothermal. Therefore, the computations in PartI can be ex-

tended for realistic solar model atmospheres. This enablesus to decipher the effects of
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blend lines on main line polarization in a more transparent manner. We can then attempt

to model some of the observations recorded in the solar spectrum using these new com-

putations with blend lines. For example, we can apply this theory to extend the efforts

by Anusha et al.(2010, 2011b) andSupriya et al.(2014, 2015) to model the observations

of CaI 4227 Å line which exhibits the highest degree of polarization in the second solar

spectrum.

In Chapters4, 5, and6, we identified the signatures of Paschen–Back effect such as

nonlinear splitting, level-crossing, anti-level-crossing, non-zero net circular polarization

etc., considering various atomic systems. Our ultimate goal is to use Paschen–Back effect,

like the Hanle and Zeeman effects, to diagnose solar or stellar magnetic fields. We know

that in the case of Zeeman effect, the fact that the wavelength shift produced by the mag-

netic field is directly proportional to its strength, is usedto obtain information about the

field strength in the line of sight. Through the analysis carried out in this thesis, we know

that the nonlinear wavelength shift produced by the magnetic field gives rise to asymmetric

StokesV profiles. In addition to this, the alignment-to-orientation conversion mechanism

also contributes to the asymmetry. Using this information,an attempt can be made to quan-

titatively express the relation between the amount of net circular polarization and the field

strengthB. Polarization diagrams presented by us along with those of the similar kind

shown inAnusha et al.(2011b) can also be used in this regard. This will then enable one

to ascertain the use of Paschen–Back effect as a tool to diagnose the magnetic structuring

of the solar atmosphere.

While formulating the theory of quantum interference between the atomic states in the

presence of a magnetic field, in PartII , we assumed the lower levels to be unpolarized

and infinitely sharp. This assumption is valid in cases wherethe lower levels have the

quantum numbersJ = 0 or1/2, as the lower level polarization becomes zero due to equally

populated magnetic substates and also due to symmetry considerations. Moreover, if the

J = 1/2 state undergoes hyperfine structure splitting, then the resulting hyperfine structure

states can get polarized. We also neglected Paschen–Back effect occurring in the lower

levels. Another possible future task is to extend the Kramers–Heisenberg formalism used

in this thesis to account for the polarization of the lower levels following the foundations

laid byStenflo(2015b) andLandi Degl’Innocenti & Landolfi(2004, see alsoSupriya et al.

2016).

In Chapter7, we have presented the Stokes profiles computed using the LSA-0 method

for a given magnetic field configuration. We have also developed the extended LSA-3

method, but have not presented results obtained with this method. The immediate plan of

action is to develop a numerical method to handle the modifiedLSA-3 equations and com-
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pute the Stokes parameters using the solar model atmospheres for a set of magnetic field

strengths and orientations. Due to the lack of magnetic observations of LiI line polarization

we cannot compare our results with the observations. A possibility is to record magnetic

observations of other spectral lines which are sensitive toPaschen–Back effect and apply

the formulation of PartII , and the extended LSA-3 method to model those observations.

For some of the strong resonance lines, the radiative transfer effects are important.

The magnetic field diagnostics using these lines require a proper solution of the polarized

radiative transfer equation in the presence of magnetic fields. In such cases, the LSA-3

method may not suffice (the results from the LSA-3 method may greatly deviate from what

is observed). One has to carry out detailed transfer calculations which are computationally

expensive. Therefore, faster numerical methods have to be devised in order to overcome

the challenges of solving the full transfer equation in large parameter domains. This task,

along with the others mentioned above, form important stepsahead in the modeling of

spectral lines and gives an opportunity to explore a wide range of possibilities to map and

study the magnetic field distribution.
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A
TRANSITION AMPLITUDE APPROACH

In this appendix, we present an alternate derivation of the RM for theF -state interference

process derived in Chapter4, following the approach given in Section 3 ofShapiro et al.

(2007). In the presence of a magnetic field,F states undergo a mixing, because of whichF

no longer remains a good quantum number. However the projection of F on the magnetic

axis, namelyµ, is a good quantum number and the magnetic components can be classified

into three groups characterized by∆µ = µb − µa = 0,±1. The symbols used have the

same meaning as in Chapter4.

To derive the coherency matrix, the starting point is to calculate the elements of the

Jones matrix from the Kramers–Heisenberg formula

wαβ ∼
∑

ibµb

〈JfIsifµf |r · eα|JbIsibµb〉〈JbIsibµb|r · eβ |JaIsiaµa〉
ωbf − ω − iγ/2

. (A.1)

We expand the dot product using spherical vectors, and rewrite the above equation as

wαβ ∼
∑

ibµb

〈JfIsifµf |
∑

q

rqε
α∗

q |JbIsibµb〉〈JaIsiaµa|
∑

q′

rq′ε
β∗

q′ |JbIsibµb〉∗

×Φγ(νibµbifµf
− ξ) . (A.2)

This can be further written as

wαβ ∼
∑

ibµb

∑

qq′

(−1)q−q′Qibµb

if µf
Qibµb

iaµa
εα

q ε
β∗

q′ Φγ(νibµbif µf
− ξ) . (A.3)

Here,q = µb−µf andq′ = µb−µa. Q is the amplitude of the transition between the upper

and lower levels. In the atomic rest frame, we take the bilinear product of the Jones matrix
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elements, and write the coherency matrix as

W =
∑

iaµaif µf

∑

ibµbib′µb′

A
µaµf µbµb′

iaif ibib′
Γ(q, q′, q′′, q′′′) cosβib′µb′ ibµb

eiβi
b′

µ
b′

ibµb

×Φγ
ibµbib′µb′ iaµa

(ξ′)δ(ξ − ξ′ − νiaµaif µf
) . (A.4)

Here,A contains all the fourQs representing transition amplitudes. It is given by

A
µaµf µbµb′

iaif ibib′
= Qibµb

if µf
Qibµb

iaµa
Qi′

b
µ′

b

if µf
Qi′

b
µ′

b

iaµa
. (A.5)

Γ(q, q′, q′′, q′′′) is a4 × 4 matrix containing the bilinear product of the geometrical factors,

expressed as

Γ(q, q′, q′′, q′′′) = εα
q ε

β∗

q′ ε
α′∗

q′′ ε
β′

q′′′ . (A.6)

To transform Equation (A.4) to the laboratory frame, we follow the steps described in

Section 2.2 ofSampoorna et al.(2007a). In the laboratory frame, Equation (A.4) then

takes the form

W =
∑

iaµaif µf

∑

ibµbib′µb′

A
µaµf µbµb′

iaif ibib′
Γ(q, q′, q′′, q′′′) cosβib′µb′ ibµb

eiβi
b′

µ
b′

ibµb

×[(hII
ibµb,ib′µb′

)iaµaif µf
+ i(f II

ibµb,ib′µb′
)iaµaifµf

] . (A.7)

Finally, the Mueller matrixM (Section1.1) that relates the scattered Stokes vector to the

incident Stokes vector is given by

M = TWT
−1 , (A.8)

whereT andT
−1 are purely mathematical transformation matrices (seeStenflo, 1998, and

Section1.1for the forms of these matrices). The Mueller matrixM given in Equation (A.8)

is obtained in the magnetic reference frame, and it needs to be transformed to the atmo-

spheric reference frame for use in the radiative transfer equation. This is done following

the steps given in Appendix D ofSampoorna et al.(2007b). The matrixM is related to the

RM R through the relation

R =
1

N
M , (A.9)

whereN is the normalization constant.
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B
PBE IN HYPERFINE STRUCTURE

STATES OF L ITHIUM

In this appendix, we apply the theory of PBE in hyperfine structure states developed in

Chapter4 including the effects of PRD to the case of LiI D2 lines (seeSowmya et al.,

2015a). We consider both the stable isotopes of Li, namely6Li and 7Li. All the relevant

atomic parameters for both the isotopes (including their abundance) are taken from Table 1

of Belluzzi et al.(2009). For the computation of Stokes profiles, we use the geometrygiven

Figure B.1: Energies of the hyperfine structure states as a function ofB for 6Li (left panel)
and7Li (right panel).

in Figure4.2. Following Belluzzi et al.(2009) we choose the Doppler width as60 mÅ.

Because the lithium lines are optically thin and as only single scattering is considered here,

the Stokes profiles computed for the two isotopes are added after weighting them with their
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percentage abundances, to obtain the actual scattered Stokes profiles from both isotopes

together.

Figure B.2: Line splitting diagrams for D2 lines of6Li (left panel) and7Li (right panel).

Figure B.3: The scattered Stokes profiles in the presence of avertical magnetic field. The
geometry for scattering is shown in Figure4.2.

As described earlier, the PB regime is characterized by the crossing of magnetic sub-

states belonging to different hyperfine structure states. The magnetic substates belonging
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to hyperfine structure states of6Li (nuclear spin,Is = 1) show9 crossings corresponding

to magnetic fields in the range0 − 4 G (see left panel of FigureB.1) while those of7Li

(Is = 3/2) show14 crossings in the range0 − 10 G (see right panel of FigureB.1). Be-

cause of the relatively smaller HFS (in comparison to the FS), the fields required to enter

the PB regime are much smaller in the case of hyperfine structure states.

Another characteristic of the PB regime is the nonlinearityof the MS. In the linear Zee-

man regime, the magnetic components are symmetrically displaced about the line center

position while in the PB regime, they are displaced asymmetrically. Line splitting diagrams

for the magnetic components resulting from the transitionsbetween the magnetic substates

belonging to the hyperfine structure states of D2 lines of6Li and 7Li are respectively shown

in left and right panels of FigureB.2. One can clearly notice the asymmetric splitting of

the magnetic components caused by the PBE.

In Figure B.3, we present the Stokes profiles obtained in the presence of a vertical

magnetic field (β = 90°, see Figure4.2) for the hyperfine structure case involving only

the D2 lines of6Li and 7Li weighted by their respective abundances. The intensity profiles

remain almost unaffected as the MS is too small to produce anysignificant broadening.

We see a decrease inQ/I with the increasing field strength followed by an increase. For

stronger fields, signatures of the transverse Zeeman effectare seen. The StokesU andV

are zero owing to the chosen geometry.
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C
THE PSSFOR THE COMBINED

THEORY

PSS is a basic test for checking the correctness of the eigenvalues and eigenvectors obtained

from a diagonalization procedure, for a given problem.Landi Degl’Innocenti & Landolfi

(2004) provides a detailed description of the PSS. InLandi Degl’Innocenti & Landolfi

(2004), the manifestations of PSS are given separately for (a) a two-level atom with hyper-

fine structure and (b) a two-term atom exhibiting only FS. In this appendix, we formulate

the PSS for the case of a two-term atom exhibiting both FS and HFS. We basically follow

the same procedure as described inLandi Degl’Innocenti & Landolfi(2004) to derive the

expression for the centers of gravity in frequency of the magnetic components.

The strengths of the magnetic components are given by

Skaµa,kbµb
q = |〈LaSIs, kaµa|rq|LbSIs, kbµb〉|2 , (C.1)

which are essentially the square of the complex amplitude ofthe transition between the

lower term (quantities with subscriptsa) and the upper term (quantities with subscriptsb).

rq are the spherical components of the dipole moment operator.Using the basis expansion

defined in Equation (6.4), the Wigner–Eckart theorem and its corollary, we expand the

above equation as

Skaµa,kbµb
q = (2La + 1)

∑

JaJa′JbJb′FaFa′FbFb′

(−1)Ja+Ja′+Jb+Jb′

×Cka

JaFa
(LaSIs, µa)C

ka

Ja′Fa′
(LaSIs, µa)C

kb

JbFb
(LbSIs, µb)C

kb

Jb′Fb′
(LbSIs, µb)

×
√

(2Ja + 1)(2Ja′ + 1)(2Jb + 1)(2Jb′ + 1)(2Fa + 1)(2Fa′ + 1)(2Fb + 1)(2Fb′ + 1)
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×
{

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}{

Ja Jb 1

Fb Fa Is

}{

Ja′ Jb′ 1

Fb′ Fa′ Is

}

×
(

Fb Fa 1

−µb µa −q

)(

Fb′ Fa′ 1

−µb µa −q

)

|〈La||r||Lb〉|2 , (C.2)

with, q = 0 for π, +1 for σr, and−1 for theσb components. The transitions connecting

the upper and the lower terms obey the selection rules∆L = 0,±1, ∆S = 0, ∆Is = 0,

and∆µ = µb − µa = 0,±1. Summing the expression for the unnormalized strengths over

all the possible transitions, making use of the orthogonality property of theC coefficients

given in Equation (5a) ofCasini & Manso Sainz(2005) and Equations (2.23a) and (2.39)

of Landi Degl’Innocenti & Landolfi(2004), we obtain

∑

kakbµaµb

Skaµa,kbµb
q =

1

3
(2La + 1)(2S + 1)(2Is + 1)|〈La||r||Lb〉|2 . (C.3)

Making use of the condition that

∑

kakbµaµb

Skaµa,kbµb
q = 1 , (C.4)

we write the expression for the normalized strengths as

Skaµa,kbµb
q =

3

(2S + 1)(2Is + 1)

∑

JaJa′JbJb′FaFa′FbFb′

(−1)Ja+Ja′+Jb+Jb′

×Cka

JaFa
(LaSIs, µa)C

ka

Ja′Fa′
(LaSIs, µa)C

kb

JbFb
(LbSIs, µb)C

kb

Jb′Fb′
(LbSIs, µb)

×
√

(2Ja + 1)(2Ja′ + 1)(2Jb + 1)(2Jb′ + 1)(2Fa + 1)(2Fa′ + 1)(2Fb + 1)(2Fb′ + 1)

×
{

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}{

Ja Jb 1

Fb Fa Is

}{

Ja′ Jb′ 1

Fb′ Fa′ Is

}

×
(

Fb Fa 1

−µb µa −q

)(

Fb′ Fa′ 1

−µb µa −q

)

.

(C.5)

The centers of gravity in frequency of the magnetic components are defined as

∆νq =
∑

kakbµaµb

Skaµa,kbµb
q ∆νkakb

µaµb
, (C.6)
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with

∆νkakb
µaµb

=
Ekb

(LbSIs, µb) − Eka
(LaSIs, µa)

h
. (C.7)

Using Equations (C.5) and (C.7) in Equation (C.6), and performing sums overka andkb

with the help of Equations (5a) and (7) ofCasini & Manso Sainz(2005), we obtain

∆νq =
1

h

3

(2S + 1)(2Is + 1)

∑

JaJa′JbJb′FaFa′FbFb′

∑

µaµb

(−1)Ja+Ja′+Jb+Jb′

×
√

(2Ja + 1)(2Ja′ + 1)(2Jb + 1)(2Jb′ + 1)(2Fa + 1)(2Fa′ + 1)(2Fb + 1)(2Fb′ + 1)

×
{

La Lb 1

Jb Ja S

}{

La Lb 1

Jb′ Ja′ S

}{

Ja Jb 1

Fb Fa Is

}{

Ja′ Jb′ 1

Fb′ Fa′ Is

}

×
(

Fb Fa 1

−µb µa −q

)(

Fb′ Fa′ 1

−µb µa −q

)

×[δJaJa′
δFaFa′

〈LbSJbIsFbµb|HT |LbSJb′IsFb′µb〉
−δJbJb′

δFbFb′
〈LaSJaIsFaµa|HT |LaSJa′IsFa′µa〉] . (C.8)

We separate the atomic and magnetic Hamiltonians in the above expression. It can be

shown that the atomic part does not contribute to the centersof gravity. Using Equations

(2.42), (2.41), (2.36d), (2.26d), and (2.39) ofLandi Degl’Innocenti & Landolfi(2004), we

simplify the magnetic Hamiltonian part and find that

∆νq = −qνL , (C.9)

whereνL is the Larmor frequency associated with the applied magnetic field. This result is

the same as Equation (3.66) ofLandi Degl’Innocenti & Landolfi(2004) which one would

expect for a two-term atom without any fine or hyperfine structure. This means that the

centers of gravity of the magnetic components in the PB regime have the same frequencies

as the individual components due to Zeeman effect that wouldarise from the transitions

between spinless lower and upper terms. In situations wherethe electron and nuclear spins

are negligible, this is expected from the PSS.

We then verify that the eigenvalues and eigenvectors obtained by diagonalizingHT ,

when used in Equation (C.6), give the same value for∆νq as that calculated from Equa-

tion (C.9).
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D
THE M AGNETIC REDISTRIBUTION

FUNCTIONS FOR THE COMBINED

THEORY

The magnetic redistribution functions of type II in the caseof combinedJ andF state

interferences have the same form as those in cases where onlythe interferences between

fine structure or hyperfine structure states are considered,except for the increase in the

dimension of the quantum number space. For our problem of interest, they take the forms

given by

RII,H
kbµbkaµakfµf

(xba, x
′
ba,Θ) =

1

π sin Θ
exp

{

−
[

xba − x′ba + xkaµakfµf

2 sin(Θ/2)

]2}

×H
(

a

cos(Θ/2)
,
xba + x′ba + xkaµakf µf

2 cos(Θ/2)

)

, (D.1)

and

RII,F
kbµbkaµakfµf

(xba, x
′
ba,Θ) =

1

π sin Θ
exp

{

−
[

xba − x′ba + xkaµakfµf

2 sin(Θ/2)

]2}

×2F

(

a

cos(Θ/2)
,
xba + x′ba + xkaµakf µf

2 cos(Θ/2)

)

. (D.2)

Here,Θ is the scattering angle, and the functionsH andF are the Voigt and Faraday-

Voigt functions (see Equation (18) ofSmitha et al., 2011b). The quantities appearing in the

157



expressions for the type II redistribution functions have the following definitions:

xba =
νkbµbkaµa

− ν

∆νD
; x′ba =

νkbµbkaµa
− ν ′

∆νD
,

xkaµakf µf
=
νkaµakf µf

∆νD
; a =

γ

4π∆νD
, (D.3)

wherexba is the emission frequency,x′ba is the absorption frequency,a is the damping

parameter, and∆νD is the Doppler width.

The auxiliary functionshII andf II appearing in Equation (6.9) can be constructed by

making use of Equations (D.1) and (D.2) as

(hII
kbµb,kb′µb′

)kaµakf µf
=

1

2

[

RII,H
kbµbkaµakfµf

+RII,H
kb′µb′kaµakfµf

]

, (D.4)

(f II
kbµb,kb′µb′

)kaµakf µf
=

1

2

[

RII,F
kb′µb′kaµakfµf

−RII,F
kbµbkaµakf µf

]

. (D.5)

These auxiliary functions contain the information regarding the Doppler redistribution of

photon frequencies.
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E
A-O CONVERSION M ECHANISM

The RM presented in Equation (6.9) can be reduced to the phase matrix by integrating the

auxiliary functions over the incoming and outgoing frequencies. The phase matrix will

then take the form given by

Pij(n,n
′; B) =

∑

KK ′Q

WKK ′Q(B)(−1)QT K
Q (i,n)T K ′

−Q(j,n′) , (E.1)

where

WKK ′Q(B) =
3(2Lb + 1)

(2S + 1)(2Is + 1)

{

1 1 K

Lb Lb La

}{

1 1 K ′

Lb Lb La

}

×
∑

JbJb′Jb′′Jb′′′

∑

FbFb′Fb′′Fb′′′

∑

µbµb′

(−1)Jb+Jb′+Jb′′+Jb′′′ (−1)K+K ′

×
√

(2Jb + 1)(2Jb′ + 1)(2Jb′′ + 1)(2Jb′′′ + 1)

×
√

(2Fb + 1)(2Fb′ + 1)(2Fb′′ + 1)(2Fb′′′ + 1)

×
{

Lb Lb K

Jb Jb′ S

}{

Lb Lb K ′

Jb′′ Jb′′′ S

}{

Jb′ Jb K

Fb Fb′ Is

}{

Jb′′′ Jb′′ K ′

Fb′′ Fb′′′ Is

}

×
(

Fb Fb′ K

−µb µb′ −Q

)(

Fb′′ Fb′′′ K ′

−µb µb′ −Q

)

√

(2K + 1)(2K ′ + 1)

×
∑

kbkb′

Ckb

JbFb
(LbSIs, µb)C

kb

Jb′′Fb′′
(LbSIs, µb)C

kb′

Jb′Fb′
(LbSIs, µb′)C

kb′

Jb′′′Fb′′′
(LbSIs, µb′)

× 1

1 + 2πiν(kb′µb′ , kbµb)/A(LaSIs → LbSIs)
. (E.2)
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Here, A is the Einstein coefficient for theLa → Lb transition andν(kb′µb′ , kbµb) =

(Ekb′µb′
− Ekbµb

)/h. We compute theT K
Q s for the geometry considered in Section6.4.3

so that we can obtain an expression for the frequency integrated fractional circular polar-

ization, p̃V (see Section 10.20 ofLandi Degl’Innocenti & Landolfi, 2004). The explicit

expressions for theT K
Q (i,n) in the atmospheric reference frame for a rotation of the form

R ≡ (0,−θ,−χ) × (χB, θB, 0) are given by

T 0
0 (0,n) = 1 ,

T 1
0 (0,n) = 0 ,

T 1
1 (0,n) = 0 ,

T 2
0 (0,n) =

1√
2

[

1

4
(3cos2θ − 1) (3cos2θB − 1)

+3 sinθ cosθ sinθB cosθB cos(χ− χB) +
3

4
sin2θ sin2θB cos2(χ− χB)

]

,

T 2
1 (0,n) =

1√
2

[
√

3

2
√

2
(3cos2θ − 1) sinθB cosθB

−
√

3√
2

sinθ cosθ

[

ei(χ−χB)

(

cosθB − 1

2

)

(cosθB + 1)

−e−i(χ−χB)

(

cosθB +
1

2

)

(1 − cosθB)

]

−
√

3

2
√

8
sin2θ sinθB

[

e2i(χ−χB)(1 + cosθB) − e−2i(χ−χB)(1 − cosθB)
]

]

,

T 2
2 (0,n) =

1√
2

[
√

3

4
√

2
(3cos2θ − 1) sin2θB

−
√

3

2
√

2
sinθ cosθ sinθB

[

ei(χ−χB)(1 + cosθB) − e−i(χ−χB)(1 − cosθB)
]

+

√
3

8
√

2
sin2θ

[

e2i(χ−χB)(1 + cosθB)2 + e−2i(χ−χB)(1 − cosθB)2
]

]

, (E.3)

T 0
0 (1,n) = 0 ,

T 1
0 (1,n) = 0 ,

T 1
1 (1,n) = 0 ,

T 2
0 (1,n) = −

√
3

2

[
√

3√
8

sin2θ (3cos2θB − 1)

−2
√

3√
2

sinθ cosθ sinθB cosθB cos(χ− χB)
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+

√
3√
8

(1 + cos2θ) sin2θB cos2(χ− χB)

]

,

T 2
1 (1,n) = −

√
3

2

[

3

2
sin2θ sinθB cosθB

+sinθ cosθ

[

ei(χ−χB)

(

cosθB − 1

2

)

(cosθB + 1)

−e−i(χ−χB)

(

cosθB +
1

2

)

(1 − cosθB)

]

−1

4
(1 + cos2θ) sinθB

[

e2i(χ−χB)(1 + cosθB) − e−2i(χ−χB)(1 − cosθB)
]

]

,

T 2
2 (1,n) = −

√
3

2

[

3

4
sin2θ sin2θB

+
1

2
sinθ cosθ sinθB

[

ei(χ−χB)(1 + cosθB) − e−i(χ−χB)(1 − cosθB)
]

+
1

8
(1 + cos2θ)

[

e2i(χ−χB)(1 + cosθB)2 + e−2i(χ−χB)(1 − cosθB)2
]

]

, (E.4)

T 0
0 (2,n) = 0 ,

T 1
0 (2,n) = 0 ,

T 1
1 (2,n) = 0 ,

T 2
0 (2,n) =

√
3

2

[

−
√

6 sinθ sinθB cosθB sin(χ− χB)

+

√
3√
2

cosθ sin2θB sin2(χ− χB)

]

,

T 2
1 (2,n) = −i

√
3

2

[

sinθ

[

ei(χ−χB)

(

cosθB − 1

2

)

(cosθB + 1)

+e−i(χ−χB)

(

cosθB +
1

2

)

(1 − cosθB)

]

−1

2
cosθ sinθB

[

e2i(χ−χB)(1 + cosθB) + e−2i(χ−χB)(1 − cosθB)
]

]

,

T 2
2 (2,n) = −i

√
3

2

[

1

2
sinθ sinθB

[

ei(χ−χB)(1 + cosθB) + e−i(χ−χB)(1 − cosθB)
]

+
1

4
cosθ

[

e2i(χ−χB)(1 + cosθB)2 − e−2i(χ−χB)(1 − cosθB)2
]

]

, (E.5)

and

T 0
0 (3,n) = 0 ,
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T 1
0 (3,n) =

√
3√
2
[cosθ cosθB + sinθ sinθB cos(χ− χB)] ,

T 1
1 (3,n) =

√
3√
2

[

1√
2

cosθ sinθB

− 1

2
√

2
sinθ

[

ei(χ−χB)(1 + cosθB) − e−i(χ−χB)(1 − cosθB)
]

]

,

T 2
0 (3,n) = 0 ,

T 2
1 (3,n) = 0 ,

T 2
2 (3,n) = 0 . (E.6)

We then expand the summations overK,K ′, andQ in Equation (E.1) and write down the

expressions for theP00 andP30
1 elements. We substitute in the expressions forP00 andP30

theT K
Q s evaluated for the incoming and the outgoing rays by making use of Equations (E.3)

and (E.6) for the geometry considered in Section6.4.3. After elaborate algebra, we finally

arrive at an expression for the frequency integrated fractional circular polarization given by

p̃V =
P30

P00
=

−2
√

6W120

16 −W220 − 3Re(W222)
. (E.7)

As discussed in Section6.4.3 and in Section 10.20 ofLandi Degl’Innocenti & Landolfi

(2004), due to the double summations overK andK ′ in Equation (E.1) and due to the

fact that the spherical tensorT K
Q (3,n) are non-zero only whenK = 1, orientation can be

produced in the upper term even when the circular polarization is not present in the incident

radiation. This mechanism is therefore called the A-O conversion mechanism. We identify

that the term withK = 1 in the numerator of Equation (E.7) is responsible for the A-O

conversion mechanism. We have discussed the signatures of this mechanism in the Stokes

V parameter in Section6.4.

1Note that we considerP30 element to calculate the frequency integrated fractional circular polarization
and notP33 as erroneously mentioned in Appendix C ofSowmya et al.(2015b).
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