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Abstract

The discovery of Zeeman effect opened a new window to observe the Sun. It en-

abled to understand the magnetic field which is one of the basic features that govern

different physical processes on the Sun. These magnetic fields leave their signa-

tures in the splitting and polarization of spectral lines which can be extracted using

spectro-polarimetry. With the advent of increasingly powerful telescopes, like with

the SOT/SP instrument on-board the Japanese HINODE satellite, which achieved

a spatial resolution of 0.3 arcsec (or 200 km on the Sun), the small-scale structure

of solar magnetic fields have been explored via the Zeeman effect. It is however

now understood that the fundamental building blocks of solar magnetism are present

on scales much smaller than those resolved by HINODE. The polarization of line

radiation which is caused by resonance scattering on bound atomic levels acts as

a tool to measure these small scale magnetic fields. A modification of this pro-

cess by external magnetic fields is called the Hanle effect. Comparison between

the available constraints from the Hanle effect with the magnetic fluxes resolved by

the HINODE spacecraft reveals that about two thirds of the total magnetic flux re-

mains invisible at the HINODE 200 km resolution, since this flux is tangled on very

small scales, possibly 10-100 m, which is nearly 4 orders of magnitude smaller than

the HINODE resolution limit. While Hanle effect constraints on the properties of

this “hidden” magnetic flux exist, very little is known about its depth dependence.

One of the main objectives of the thesis is to explore the center-to-limb variation

(CLV) of the Stokes profiles which is in turn governed by the height variation of the

temperature-density structure in the solar atmosphere. Apart from this we study one

of the primary physical quantity needed to carry out the analysis of the scattering

process i.e., the redistribution matrix. These studies are motivated by the existence

of many unexplained signatures in the Second Solar Spectrum (SSS), which is the

linearly polarized spectrum of the Sun caused by coherent scattering process.

The thesis is divided into three parts. The first part is dedicated to the obser-

vations and modeling of the CLV of the well known Ca I 4227 Å line. Not much

progress is done in the literature in the area of modeling the CLV of different lines in

the SSS because of the complexity of the problem. The main challenge is to obtain a

single model atmosphere which can provide a simultaneous fit to the CLV of the (I ,
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Abstract

Q=I) spectra. From the theoretical perspective, the line radiative transfer modeling

of the observed data in the magnetically quiet regions using the scattering theory is

essential. To this end, we have to solve the polarized line transfer equation that gov-

erns the absorption, emission and scattering of radiation in the stellar atmosphere.

We use the one-dimensional (1D) modeling approach to study the CLV of the Ca

I 4227 Å line, which exhibits largest scattering polarization of all the lines in the

visible spectrum of the Sun. For the purpose of our studies we have observed the

Ca I 4227 Å line at 14 positions from the center-to-limb on the Sun using Zurich

Imaging Polarimeter-3 at Istituto Ricerche Solari Locarno in Switzerland. We have

modeled the CLV of this line using different realistic solar atmospheres (Chapter 2).

From the studies in Chapter 2 we concluded that no single 1D model attempted by us

helps us in providing a simultaneous fit to the CLV of the Stokes profile. The solar

atmosphere is too complex to be represented by a 1D model atmosphere. We have

to go beyond 1D modeling like multi-dimensional modeling to represent the actual

solar atmosphere. However this does not represent an impediment to the use of the

Ca I 4227 Å line for solar magnetic field diagnostics. To demonstrate this we have

carried out a model independent analysis to determine the turbulent weak magnetic

fields in the solar atmosphere.

The second and third part of the thesis is dedicated to the theoretical studies of

the fundamental physical quantity called the redistribution matrix which is required

to study the physics of scattering processes. The redistribution matrix contains all

the information of the scattering process, and hence is an important parameter to be

studied in detail. In this regard, there are certain approximations made in different

theoretical approaches developed in the literature to enable reduce the complexity of

the problem. However, such approximations point towards the existence of spectral

features in the SSS which cannot be explained using the available standard theories.

Our efforts in the second and third part of the thesis is to relax some of the approxi-

mations and study its effects on the emergent Stokes profiles by considering different

examples.

In second part of the thesis we study a series of problems concerning the polar-

ized line formation with the angle-dependent partial frequency redistribution (PRD).

The liner polarization of the strong resonance lines are sensitive to the type of fre-

quency redistribution used. The PRD matrix is dependent on the incoming and out-

going frequencies and angles. In order to reduce the computational efforts angle-

averaged PRD functions are used in most of the studies in the literature. In Chapters

3, 4 and 5 we consider different problems and relax this approximation and study

the effects of using angle-dependent PRD on emergent Stokes profiles. In Chapter 3

we study the effect of electron scattering redistribution on atomic line polarization in

non-magnetic regime. We use angle-dependent electron scattering and atomic redis-
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Abstract

tribution functions and present efficient numerical technique to solve this problem.

In Chapter 4 we study the combined effects of angle-dependent PRD and quantum

interference phenomena arising between the fine structure (J) states of a two-term

atom or between the hyperfine structure (F ) states of a two-level atom by restricting

our attention to the case of non-magnetic and collisionless line scattering on atoms.

From the studies in Chapters 3 and 4 in the non-magnetic regime we conclude that

the effect of angle-dependent PRD are sensitive to the optical thickness of the slab

used for the radiative transfer studies. In Chapter 5 we study the effect of using

angle-dependent PRD in the presence of weak magnetic field, i.e. the Hanle effect.

We present efficient decomposition techniques to solve the problem at hand. We

point towards the necessity to use angle-dependent PRD to solve the Hanle transfer

problem accurately, especially for the Stokes U parameter by taking the example of

vertical magnetic fields and turbulent magnetic fields.

In the third part we have attempted to relax another common assumption made

in our previous calculations, i.e. assuming the polarization of the lower-level of the

atom involved in the scattering process is zero. In Chapter 6 we formulate a general

theory for magnetized media to handle the problem of radiative transfer including

the effects of PRD and polarization of the lower-level of the atom involved in the

transition, starting from Kramers-Heisenberg scattering formulation. We then obtain

the radiative transfer equation starting from the well established quantum field theory

approach for the problem at hand. Further we apply this theory to two case studies

in the non-magnetic regime which leads us to the conclusion that the effects of lower

level polarization are significant only in the line core. Based on our conclusion

we also propose a simplified numerical approach to solve the problem of polarized

radiative transfer with PRD and lower-level polarization. Finally conclusions and

future outlook of the contents presented in this thesis are given in Chapter 7.
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Chapter 1

Introduction

The Sun being the closest star allows us to explore the different processes that gov-

erns the physics of the solar atmosphere. Spectral analysis gave birth to the modern

astrophysics with the discovery and classification of absorption lines in the Sun’s

spectrum by Joseph Fraunhofer. In 1897 Pieter Zeeman discovered the famous Zee-

man effect which describes the effect of magnetic fields on radiation (Zeeman, 1897).

The Sun being a prototype dynamo creates magnetic fields which encodes its signa-

ture on the spectral lines. Therefore it is very important to decode this information

and understand in detail the properties of the radiation, its formation process and

the origin. It is now known that the magnetic fields are responsible for almost all

the variability we see on the Sun and the other stars. The information about these

magnetic fields are encoded in the polarization of the radiation coming from the Sun

in the form of the splitting and polarization of spectral lines which is nothing but the

Zeeman effect. The Zeeman effect was first introduced to astrophysics by George

Ellery Hale in 1908. He predicted the existence of strong magnetic fields in sunspots

(Hale, 1908) using Zeeman’s discovery of the effect of magnetic fields on radiation.

This discovery opened the window to the study of stellar and solar magnetic fields

in particular demonstrating that information from the Sun is not contained only in

the intensity measurements, but also in the polarization of the radiation. Further

measurements of Sun’s magnetic field have lead to the development of magnetohy-

drodynamics and dynamo theories.

The tool to remotely sense the Sun’s magnetic field is “spectro-polarimetry”.

Spectro-polarimetry adds a new dimension to the observational astrophysics. It was

G. G. Stokes who showed how complete information of a light beam can be obtained

by measuring both intensity and polarization of light. With the advent of ground

and space based telescopes with high spatial and spectral resolution we are able to

explore the solar magnetic fields in a greater detail. We know that the magnetic fields

on the Sun vary over a range of field strengths - few Gauss to kilo Gauss. Whereas

Zeeman effect can be conveniently used to measure the stronger fields, diagnostic

1



1.1. Solar polarization

tools like Hanle effect is essential to measure weak fields. Further details regarding

the measurement of Stokes profiles and usage of them to diagnose solar magnetic

fields are given in the next section.

1.1 Solar polarization

Polarization is produced when the spatial symmetry is broken in the physical process

that generates the radiation that we observe. The breaking of the spatial symmetry

can be due to the presence of a magnetic field, electric field, by instrumental po-

larization within the telescope, or by an anisotropic excitation process (radiative or

collisional). The atomic energy levels are split in the presence of external magnetic

fields and thus it cause the emitted radiation to be polarized. This phenomenon

is the well known Zeeman effect. It manifests itself in the circular polarization as

longitudinal Zeeman effect, which in turn gives information about the line-of-sight

component of the magnetic field. Further the linear polarization is produced by the

transverse Zeeman effect and carries information on the field component perpendic-

ular to the line-of-sight. Thus by measuring the full Stokes vector it is possible to

obtain the strength and orientation of the magnetic field.

Figure 1.1 shows an example of a spectrograph-based full disk solar magne-

togram which are nothing but the smoothed maps of the circular polarization pro-

duced by the longitudinal Zeeman effect. Early solar magnetograms showed that the

apparent field strengths increased with the angular resolution of the instrument. This

raised the question what would be the strength of the magnetic fields if we further

increase the angular resolution.

A technique introduced by Stenflo (1973) called the “line-ratio” technique an-

swered this question. From these studies it became clear that more than 90% of the

net magnetic flux on the “quiet-Sun” through the resolution elements had its origin

in magnetic fields with strengths 1––2 kG (see also Howard & Stenflo, 1972; Stenflo,

1994; Stenflo et al., 1984). Since the apparent field strengths in these line-ratio ob-

servations were of order 1––10 G, this finding implied that the kG flux elements were

far smaller in area than the existing resolution of the instruments. Further studies

revealed that 99% of the non-magnetic photosphere is fully magnetized with weak,

mixed-polarity fields far smaller than the angular resolution that we can reach. While

Zeeman effect is successfully used as a diagnostic tool to measure strong magnetic

fields, it is blind or insensitive to these “hidden” weak magnetic fields. Fortunately

there exists another diagnostic tool, the Hanle effect (Stenflo, 1982), which helps us

to diagnose weak magnetic fields (also see Faurobert-Scholl, 1993; Faurobert-Scholl

et al., 1995; Stenflo et al., 1998). The details regarding Hanle effect are described in

the next section.

2



Chapter 1. Introduction

Figure 1.1: Full-disk solar magnetogram taken from Stenflo (1994). It was recorded on 7
March 1979 at the National Solar Observatory at Kitt Peak. Heliographic north is at top, east
is to the left. Bright areas represent regions where the magnetic field is directed towards the
observer, dark regions where it is directed away from the observer.

1.1.1 Scattering polarization - Second Solar Spectrum and the

Hanle effect

As mentioned above, one of the process that leads to the breaking of symmetry and

hence generation of polarization signal is scattering. In contrast to the Zeeman effect,

the Hanle effect is a coherence phenomenon that only occurs in coherent scattering

process, where there is a phase relation between the absorption and emission pro-

cesses. These scattering processes produce polarization even in the absence of mag-

netic fields. A well known example for this case is the polarization of the blue sky by

Rayleigh scattering on molecules. The Sun’s spectrum is polarized by coherent scat-

tering, but the degree of polarization is small due to the small degree of anisotropy of

the incident radiation field (Stenflo, 2005) for scattering processes inside the Sun’s

atmosphere. However the measurement of small polarization signals have become

possible with the advent of highly sensitive instruments such as the Zurich Imaging

3



1.1. Solar polarization

Polarimeter (ZIMPOL; cf. Povel 1995, Stenflo 1984, Stenflo 1985, Stenflo & Povel

1985) with a precision of measurement of 10�5 in the degree of polarization. Due

to the limb darkening of the solar disk we see anisotropic radiative scattering in the

Sun. The non-magnetic scattering polarization is zero at the disk center due to sym-

metry reasons and monotonically increases as we move towards the limb. The entire

solar spectrum, both lines and continuum, is polarized by such scattering in the solar

atmosphere. The scattering polarization in the Sun was predicted in 1920s by Öh-

man (1929). It was Brückner (1963) who provided first reliable observation of the

scattering polarization in Ca I 4227 Å line close to the limb.

The linearly polarized spectrum of the Sun produced due to the coherent scat-

tering process (Stenflo et al., 1983a,b) is called the Second Solar Spectrum (SSS).

It is referred to as the second spectrum of the Sun because of the diversity it shows

compared to the well studied intensity spectrum i.e., the first solar spectrum. It

was therefore natural to call this new and unfamiliar spectrum the “Second Solar

Spectrum” (Ivanov, 1991; Stenflo & Keller, 1997). A spectral atlas of SSS has been

produced, which in three volumes covers the wavelength from 3160 to 6995 Å (Gan-

dorfer, 2000, 2002, 2005). Although the SSS exists regardless of whether there are

magnetic fields or not, the shapes and amplitudes of the various structures get mod-

ified by magnetic fields. This modification goes under the name “Hanle effect”. It

was discovered by Wilhelm Hanle in Göttingen in 1923 (Hanle, 1924; Moruzzi &

Strumia, 1991). The Hanle effect is a coherency phenomenon that only occurs when

coherent scattering contributes to the line formation. It represents all magnetic-field

induced modifications of the scattering polarization. The first observation of the

Hanle effect in an astrophysical context was done in solar prominences by Leroy

et al. (1977) at the Pic duMidi Observatory. Since then it is used widely for so-

lar weak magnetic field diagnostic purposes (see for example Sahal-Brechot, 1977;

Bommier, 1980; Landi Degl’Innocenti, 1982; Stenflo, 1982; Querfeld et al., 1985;

Moruzzi & Strumia, 1991; Faurobert-Scholl, 1993; Stenflo, 1994; Faurobert-Scholl

et al., 1995; Faurobert-Scholl, 1996; Stenflo et al., 1998; Bianda et al., 1998; Trujillo

Bueno, 1999; Faurobert, 2000; Trujillo Bueno, 2001; Stenflo, 2002; Faurobert, 2003;

Landi Degl’Innocenti & Landolfi, 2004; Anusha et al., 2011; Faurobert, 2012).

In a classical description the damped dipole oscillations that are induced by the

incident radiation precess in the presence of a magnetic field, as illustrated in Fig-

ure 1.2. In the illustrated case it is assumed that vertical oscillations are induced by

the excitation process, and that we observe the emitted radiation along the magnetic

field direction. The trajectory of the damped oscillator forms a rosette pattern that

becomes more isotropic when the field is stronger. The emitted polarization is ob-

tained from the Fourier transform of the rosette pattern. In the absence of magnetic

fields the scattered radiation would be linearly polarized in the vertical direction (in
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the illustrated case), but as the field strength is increased, the plane of polarization

gets rotated, and the amount of polarization is reduced. The Hanle effect leaves its

imprints in the linear polarization. Its two main signatures are depolarization and

rotation of the plane of polarization when the scattering geometry resembles 90°

scattering.

Figure 1.2: Trajectory of a damped classical oscillator, illustrating the Hanle effect depo-
larization and rotation of the plane of polarization when the magnetic field is oriented along
the line of sight. The three diagrams represent different values of the field strength, which
increases from left to right. This illustration is taken from Stenflo (1994).

According to the quantum mechanical description of the Hanle effect, magnetic

fields remove the degeneracy of the radiatively excited and coherently superposed

magnetic substates and thereby cause partial decoherence that leaves a signature in

the polarization of the scattered radiation. It is the ratio between the Zeeman splitting

and the radiative damping width of the atomic states that determine the Hanle depo-

larization. If they are comparable then we are in the optimal Hanle regime and if the

Zeeman splitting is much larger than the radiative damping width of the atomic state

then we are in the saturated Hanle regime (Stenflo, 1994; Trujillo Bueno, 2001; Sam-

poorna et al., 2007a,b, 2008c). The observations and recording of the SSS opened up

the field of the theoretical studies to study the fundamental physical processes that

govern the polarized structures. SSS is a source of information to learn more about

atomic physics namely the quantum-mechanical interference between atomic states

of different total angular momentum quantum numbers (Stenflo, 1980), hyperfine

structure, abundances and isotope ratios (Stenflo, 1997), radiative transfer physics,

solar magnetic fields, and the thermodynamics of the solar atmosphere. Other in-

teresting problems studied are optical pumping that creates ground-state atomic po-

larization (Trujillo Bueno & Landi Degl’Innocenti, 1997; Manso Sainz & Trujillo

Bueno, 2003b, 2007), and molecular scattering (Stenflo & Keller, 1997; Berdyug-
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ina et al., 2002). Figure 1.3 shows an example of SSS indicating the phenomena of

quantum interference. The observed profiles in Figure 1.3 are of Ca II K and H lines

recorded by Stenflo (1980). The quantum interference resulting because of the co-

herent superposition of states (as indicated in the upper right diagram) is responsible

for the sign reversal of the SSS in Figure 1.3 (Stenflo, 1980).

Figure 1.3: The above figure is taken from Stenflo (2015b). The top left panel are the obser-
vations of the 200 Å wide Ca II K and H line taken by Stenflo (1980). The zoomed in version
of the SSS in the bottom panels indicate the sign reversal resulting from the quantum inter-
ference between the atomic states. The top right panel indicates the quantum interference
between the upper total angular momentum states of the H and K lines.

1.2 Measurement of Stokes parameters

The measurement of Stokes parameters (I , Q, U , and V ), provides a complete de-

scription of a partially polarized beam and is the key ingredient to understand solar

polarization. The Stokes parameters introduced by G. G. Stokes in 1852 can be de-

fined in a variety of ways, which are all equivalent but in its own way convenient

for use in different contexts. Stokes parameters were introduced to astrophysics by

Subrahmanyan Chandrasekhar in 1946 (Chandrasekhar, 1950). In the monograph

by Jan Stenflo (Stenflo, 1994) a detailed description of the representation of the po-
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larized light and different approaches to define the Stokes parameters are given. We

recall the equations and description given in Stenflo (1994) in this section (see also

Collett, 1993).

One of the simplest ways to represent Stokes vector I , which consists of the

Stokes parameters I , Q, U , V , or, S
k

, k = 0,1,2,3, i.e.,

I =

0

B

B

B

B

�

S

0

S

1

S

2

S

3

1

C

C

C

C

A

=

0

B

B

B

B

�

I

Q

U

V

1

C

C

C

C

A

; (1.1)

is the operational one in terms of four idealized filters F
k

in a measurement pro-

cess which directly relates to the understanding of polarimetric observations. By

considering a set of idealized filters as shown in Figure 1.4 the meaning of the four

Stokes parameters I , Q, U , and V can be visualized. F
0

represents empty space, F
1

and F
2

transmit linear polarization with the electric vector at position angles 0 and

45

°, respectively, while F
3

transmits right-handed circular polarization. If I
k

is the

observed value behind each filter then

I

k

=

1

2

(S

0

+ S

k

); (1.2)

and the inverse relation is given by

S

k

= 2I

k

� I

0

: (1.3)

S

0

thus represents the ordinary intensity, S
1

and S
2

the amount of linear polarization

along position angles 0 and 45

°, and S
3

the amount of right-handed circular polar-

ization. If we instead choose the filters F
1

and F
2

to transmit linear polarization at

90

° and �45°, and F
3

left-handed circular polarization, then the signs of Q, U , and

V would change.

Figure 1.4: Symbolic representation of the four idealized filters F
k

. The above figure is
taken from Stenflo (1994)
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1.2. Measurement of Stokes parameters

1.2.1 Jones calculus and coherency matrix formalism

If e
1

and e
2

represent orthogonal basis vectors in a plane perpendicular to the light

beam, then electric vector E at any point in space can be written as

E = Re(E

1

e

1

+ E

2

e

2

); (1.4)

where

E

k

= E

0k

e

�i!t

; k = 1; 2; (1.5)

and E
0k

are complex amplitudes. The Jones vector J can now be defined as

J =

 

E

1

E

2

!

: (1.6)

Since each of the complex number E
1

and E
2

has a real and an imaginary part, the

Jones vector is characterized by a set of four parameters like Stokes vector. However

the Stokes vector can represent partially polarized light, but the Jones vector can

only represent 100% elliptically polarized light. This is because, as we know each

photon is always 100% elliptically polarized. In nature we often deal with an en-

semble of photons created by stochastically independent atomic processes because

of which they are mutually uncorrelated with different polarization states. Even a

linear superposition of Jones vectors represents 100% elliptically polarized light, as

the superposition is coherent and phase-preserving. Thus in order to describe par-

tially polarized light we need an “incoherent” superposition of the photons. This

can be obtained by the superposition of bilinear products of Jones vectors for each

individual wave train because of which the factor e�i!t disappears. Following this

the 2� 2 coherency matrixD of the radiation field is defined as

D = hJJ

y

i; (1.7)

where J y is the adjoint of J , and the bracket represents averaging over a statistical

ensemble of uncorrelated photons.

1.2.2 Mueller calculus

If we consider a wave train that enters a medium as Jones vector J 0 and exists it as

J then the relation between them can be described as

J = wJ

0

: (1.8)
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w is a 2� 2 matrix that describes the property of a medium, and does not depend on

whether we make a coherent or incoherent superposition of the many wave trains.

Further the coherency matrix transforms as

D = wD

0

w

y

: (1.9)

The transformation of the Stokes vector I 0 by a medium can be described by the

4� 4 “Mueller matrix”M as

I =MI

0

: (1.10)

The Mueller matrix can be expressed in terms of the Jones matrix w using the rela-

tion between the Stokes parameters and the coherency matrix formalism as

M = TWT

�1

; (1.11)

where the matrix W contains all the physical properties of the medium and can be

written as

W = w 
w

�

=

0

B

B

B

B

�

w

11

w

�

11

w

11

w

�

12

w

12

w

�

11

w

12

w

�

12

w

11

w

�

21

w

11

w

�

22

w

12

w

�

21

w

12

w

�

22

w

21

w

�

11

w

21

w

�

12

w

22

w

�

11

w

22

w

�

12

w

21

w

�

21

w

21

w

�

22

w

22

w

�

21

w

22

w

�

22

1

C

C

C

C

A

: (1.12)

The symbols 
 and � denote tensor product and complex conjugation, respectively.

The matrix T is a purely mathematical transformation matrix without physical con-

tents, given by

T =

0

B

B

B

B

�

1 0 0 1

1 0 0 �1

0 1 1 0

0 �i i 0

1

C

C

C

C

A

; (1.13)

and

T

�1

=

1

2

0

B

B

B

B

�

1 1 0 0

0 0 1 i

0 0 1 �i

1 �1 0 0

1

C

C

C

C

A

: (1.14)

The Mueller matrix is a very flexible tool that can be used in the radiative transfer

equation for the Stokes vector, both as the 4� 4 absorption matrix that contains the

Zeeman effect, and the scattering matrix that can include both coherent and incoher-

ent scattering, frequency redistribution, and the Hanle effect. The characteristics of

the medium described by the Mueller matrix can be a telescope system or a stellar

atmosphere. If the medium is described as a sequence of consecutive components
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1.3. The Ca I 4227 Å line and its modeling

i = 1; 2; :::; n like a sequence of retarders, polarizers, or modulators in a telescope

system, or a sequence of differential layers in a stellar atmospheres, each with its

own Muller matrixM
i

, then

M =M

n

M

n�1

::::M

2

M

1

; (1.15)

where index i increases in the propagation direction. The evaluation of the Mueller

matrix for the problem at hand is the important task when dealing with polarized

radiative transfer. We concentrate on this particular task in the Parts II and III of the

present thesis. In the next section we describe about one of the important lines in the

SSS namely, the Ca I 4227 Å line and the efforts till date towards its modeling.

1.3 The Ca I 4227 Å line and its modeling

In the present thesis we are interested in studying one particular line in the SSS,

namely, the Ca I 4227 Å line. This line is of particular interest because of the large

scattering polarization that it exhibits of all the lines in the visible part of the SSS. It

was one of the lines to be first observed and studied in the SSS. The Ca I 4227 Å line

arises due to the transition between the atomic states with total angular momentum

J = 0 and J =1.

The first observation of the linear polarization of this line is presented in Figure

1.5 which was taken by Redman (1941). He wrote “For the most part the profiles

are indistinguishable, but there is a small difference amounting to about 1.8 percent

of the continuous spectra at line intensity 60 percent. Examinations of likely sources

of errors suggests that this may be real. The ratio of theoretical to observed effect is

of the order of ten.” Though Redman observed real signals, the previously predicted

theoretical values (Zanstra, 1941) made him doubt his observations. More than a

decade later in 1954, Jäger observed the scattering polarization in this line (Jäger,

1954). He detected a significant amount of linear polarization in the line core of the

Ca I 4227 Å line. He also noticed a large difference at the line core between the

signals observed at the north and the east limb positions which he predicted to be

due to the solar magnetic fields. Another decade later, Brückner (1963) measured

several points across the Ca I 4227 Å line profile using the 45cm Gregory-Coude

telescope at Istituto Ricerche Solari Locarno (IRSOL). He established that the linear

polarization in the wings of the Ca I 4227 Å line is stronger than in the core.

A major step forward in the measurements of the Ca I 4227 Å line occurred when

Stenflo (1974) observed more points across the Ca I 4227 Å line profile. He also

established the center-to-limb variation (CLV) of this line which was confirmed later

by the polarized line profiles obtained by Wiehr (1975). The Hanle effect in the core

10



Chapter 1. Introduction

Figure 1.5: First observations (Log I vs wavelength (Å)) of the Ca I 4227 Å line. The
top curve represents the observations taken parallel to the solar limb and the bottom curve
perpendicular to the solar limb. The figure is taken from Redman (1941).

of the Ca I 4227 Å line was first observed by Stenflo (1982). There are many efforts

since 1970s to observe this line with high precision instruments (see, e.g., Stenflo

et al., 1980; Stenflo, 1982; Bianda et al., 1998; Gandorfer, 2002). Figure 1.6 shows

the observations of the Ca I 4227 Å line by Stenflo et al. (1980). These observations

were obtained using the High Altitude Observatory Stokesmeter at the Sacramento

Peak Observatory. Modeling of the Ca I 4227 Å line also opened the pathway to test

the theory of linear polarization. One of the first attempts to model the non-magnetic

observations by Brückner (1963) of this line was by Dumont et al. (1973). Other

observations and modeling efforts are briefly accounted below. Another interesting

feature exhibited by this line is the the triple peak structure in the linear polarization

profile (see bottom panel of Figure 1.6). A theoretical understanding of the wing

polarization of the Ca I 4227 Å line was first provided by Dumont et al. (1973). Later

Rees & Saliba (1982) showed how the wing polarization peaks could be understood

as an effect of partial frequency redistribution (PRD) in polarized radiative transfer

for strong lines (also see Saliba, 1985; Frisch, 1996; Holzreuter et al., 2005). Hence

these wing peaks of the Ca I 4227 Å line are famously called PRD wing peaks.

One of the early attempts to model the polarization profiles of the Ca I 4227 Å

line observed in both quiet and active regions was by Faurobert-Scholl (1992) using

the observations of Stenflo (1982). Her treatment included the effects of PRD and

radiative transfer.

Other interesting aspect of this line is the spatial variation of the wing polariza-

tion in (Q=I , U=I) spectra along the spectrograph slit. These variations were noticed

by Bianda et al. (2003) in the observations near an active region. Later these spatial

variations were also observed in quiet regions by Sampoorna et al. (2009) and were
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1.3. The Ca I 4227 Å line and its modeling

Figure 1.6: Intensity and polarization recording of the Ca I 4227 Å line by Stenflo et al.
(1980) obtained at 700 inside the south polar limb with an effective spectral resolution of
about 30 mÅ. The figure is taken from Stenflo et al. (1980).

predicted to arise possibly due to the local inhomogeneities in the atmospheric lay-

ers. A detailed modeling of the Ca I 4227 Å line profile observed in a quite region

near the solar limb is presented by Anusha et al. (2010). The authors employed last

scattering approximation to model them. The idea of using the Hanle effect near

the disk center to measure chromospheric magnetic fields was proposed by Trujillo

Bueno (2001). This is referred to as ‘forward scattering Hanle effect’ (a very small

angle scattering near the disk center). In an axially symmetric one-dimensional (1D)

atmosphere with no oriented magnetic fields, the scattering polarization is zero when

the line-of-sight is parallel to the atmospheric normal. The forward scattering Hanle

effect is the non-zero scattering polarization produced in the presence of an oriented

magnetic field by the Hanle effect. Observations of the forward scattering Hanle

effect in the Ca I 4227 Å line near the disk center were performed by Bianda et al.

(2011). Subsequently, these observations were modeled by Anusha et al. (2011) to

determine the chromospheric weak magnetic fields.

However, most of the above mentioned studies concerned either the limb or the

near disk center observations and modeling. To better understand the solar atmo-

sphere it is very important to study the CLV of different lines which maps the height

variation of various atmospheric quantities. The first non-magnetic CLV observation

of the Ca I 4227 Å line was done by Stenflo et al. (1980) and subsequently analyzed
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Figure 1.7: Flow-chart of the two-stage modeling procedure to solve the polarized radiative transfer problem. First stage uses the multi-level radiative transfer
code developed by Uitenbroek (2001) and the second stage uses POLY code developed by D. M. Fluri to solve the non-magnetic polarized radiative transfer
equation with angle-averaged PRD (see Fluri et al., 2003). SEE - statistical equilibrium equation; RTE - radiative transfer equation.

13



1.3. The Ca I 4227 Å line and its modeling

by Auer et al. (1980). Further Faurobert-Scholl (1994) used the CLV of the line

center polarization observed by Stenflo et al. (1980, see also Bianda et al. 1998,

1999) to study the Hanle effect due to the magnetic canopies in the chromosphere.

Part I of the present thesis concerns the observations and modeling of the CLV of the

Ca I 4227 Å line. The CLV modeling is a challenge as it is necessary to find a single

solar model atmosphere which provides a simultaneous fit to both the intensity and

polarization at all the limb distances. Further details regarding the CLV observations

and modeling of the Ca I 4227 Å line are described in Section 2.1 of Chapter 2.

Though there are many efforts in the literature to study the Ca I 4227 Å line, it

still poses challenge to the theorists, there by helping them to improve the modeling

efforts. A detailed radiative transfer modeling of this line would in turn help to map

the temperature structure within the solar atmosphere in a better way.

Modeling of different lines in the SSS (in particular the Ca I 4227 Å line which

is our line of interest) requires to take account of atomic physics of the atom in-

volved in the transition and depth dependence of various physical parameters of

the solar atmosphere. To this end, we need to solve for the statistical equilibrium

equations and polarized radiative transfer equation accounting for PRD. This mod-

eling procedure is carried out in a two-stage process which is pictorially represented

in Figure 1.7. In the first stage we use the multi-level radiative transfer code by

Uitenbroek (2001, from now on referred to as the RH-code) developed to handle

1D, two-dimensional (2D) and three-dimensional (3D) problems. This code solves

the statistical equilibrium equations using the multi-level accelerated lambda itera-

tion (MALI) scheme of Rybicki & Hummer (1991) and the unpolarized radiative

transfer equation. There are two main input parameters that goes into the first stage

modeling procedure namely, the model atom and the model atmosphere. The model

atom contains all the information on the atomic levels of the atom involved in the

transition such as the energy levels, transitions, radiative and collisional transition

rates, and oscillator strength. Apart from the main atom under consideration the de-

tails of all the other transitions in the solar spectrum arising from other elements are

included in the transfer computations as blend lines. A detailed account of atomic

data of different lines of the solar spectrum can be found in Kurucz (1990). The other

input parameter is the model atmosphere. For our studies in the present thesis we

use 1D solar model atmospheres by Fontenla et al. (1993); Avrett (1995); Fontenla

et al. (2009). These model atmospheres contain all the information about the solar

atmosphere like depth scale (either as column mass or optical depth), temperature,

electron number density, macroscopic velocity, and microturbulent velocity. There

are many 1D solar models available in the literature, taking different solar structures

into account and each one is updated and made more sophisticated over a period of

time. Some of the examples of 1D model atmosphere can be found in Kurucz (1969,
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1973, 1979); Vernazza et al. (1973, 1976); Machado et al. (1980); Vernazza et al.

(1981); Avrett et al. (1984); Maltby et al. (1986); Fontenla et al. (1990, 1991, 1993);

Avrett (1995); Fontenla et al. (2006, 2007, 2009). The output obtained from the first

stage like intensity, opacities and collisional rates are used as inputs to the second

stage. The second stage is developed by D. M. Fluri and is called the POLY code.

The POLY code solves the non-magnetic polarized radiative transfer equation for a

two-level atom (Fluri et al., 2003). This two-stage modeling procedure is adopted to

model different lines of SSS in the literature by Holzreuter et al. (2005); Holzreuter

& Stenflo (2007a,b) and later by Anusha et al. (2010, 2011); Smitha et al. (2012a,

2013b, 2014) after suitable modifications to account for the relevant physics of the

problem under consideration. In Part I of this thesis, we appropriately use this code

to model the CLV observations of the Ca I 4227 Å line. In the next section we

elaborate on the theories developed to understand scattering polarization.

1.4 Theory of scattering polarization

In this section we present two important theoretical approaches developed to study

the physics of spectral line polarization. With this we also point out at the advan-

tages and limitations of each of the approaches. Before we describe the theoretical

approaches we want to give a brief account of the fundamental quantity in the polar-

ized line transfer theory namely, the redistribution matrix.

1.4.1 Partial frequency redistribution

In a resonance scattering event the photon of frequency � 0 is absorbed by the atom

and is scattered by emitting a photon of frequency �. The redistribution function

determines the probability of this event occurring in a scattering process. If the

frequency of the scattered (emitted) photon is correlated to the frequency of the

incident (absorbed) photon then it is classified as partial frequency redistribution

(generally referred to as PRD). If there is no correlation between the frequency of the

emitted and absorbed photon then it is called as complete frequency redistribution

(generally referred to as CRD). Transfer problems with CRD are much easier to

solve than transfer problems with PRD. Though CRD mechanism is sufficient in

describing subordinate and weak resonance lines, PRD is very essential to account

for intensity and polarization profiles of strong resonance lines.

PRD effects are described by the 4�4 redistribution matrixR(�;
; �

0

;


0

)which

gives the joint probability of absorbing a photon with frequency � 0 traveling in the

direction 
0 and reemitting a photon with frequency � and in the direction 
. The

redistribution matrix also depends on the local properties of the atmosphere, such as
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1.4. Theory of scattering polarization

the value and direction of the magnetic field, B. This redistribution matrix contains

all the information about the physics of a scattering event and forms an important

ingredient to the polarized radiative transfer problem.

The scalar frequency-coherent redistribution function, commonly referred to as

type-II redistribution function, r
II

(�; �

0

) for a two-level atom in the atomic frame

was first introduced by Hummer (1962). It describes the absorption of radiation

with frequency �0 followed by a reemission at the same frequency. If we consider

an atomic system with infinitely sharp lower level and radiatively broadened upper

level then r
II

(�; �

0

) for a two-level atom in the atomic frame is given by

r

II

(�; �

0

) = L(�)Æ(� � �

0

); (1.16)

where Æ is the Dirac distribution and L(�) is the Lorentzian rest frame absorption

profile. Further we consider the same atomic system whose upper level is not only

broadened radiatively but also by collisions, then the scalar frequency-incoherent

scattering function, referred to as type-III redistribution function, r
III

in the atomic

frame for a two-level atom is given by

r

III

(�; �

0

) = L(�)L(�

0

): (1.17)

A detailed explanation of the scalar redistribution functions is given in Mihalas

(1978). Further studies on scalar redistribution function was also done by Oxenius

(1965); Heinzel (1981); Hubený et al. (1983); Hubeny & Cooper (1986); Hubeny

& Lites (1995). A more detailed and recent account on the theory of PRD is given

in Hubeny & Mihalas (2014). Figure 1.8 gives the schematic representation of the

frequency-coherent and incoherent scattering described above.

Figure 1.8: Schematic representation of the atomic system considered for coherent and
incoherent scattering in the atomic frame. �

R

and �

E

represent the radiative and elastic
collisional rates of the upper level, respectively.

The expression of r
II

and r
III

in the laboratory frame is denoted asR
II

andR
III

,

respectively and these expressions can be found in Mihalas (1978). The determina-

tion of the expression for redistribution function in the laboratory frame involves ac-
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counting for thermal motion of the atoms. Two assumptions are made in this process,

first that the atomic velocity is unchanged during the scattering process, second that

the velocity distribution for the lower level of the transition is a Maxwellian. A more

elaborate discussion on these assumptions and the possibility of relaxing them can

be found in Hubeny (1985); Landi Degl’Innocenti (1996); Bommier (1999, 2003).

The efforts are majorly concentrated on deriving the expression for the redistribution

matrix from quantum mechanical calculations, where the scattering occurs between

different atomic states. The Rayleigh (or resonance) scattering takes place when

the quantum numbers of the initial and final states are the same. The first quantum

mechanical derivation of the redistribution matrix taking into account the effects of

collisions was given by Omont et al. (1972). Further the effects of magnetic field

were included in Omont et al. (1973). Starting from this, Domke & Hubeny (1988)

derived a very general expression of the redistribution matrix for scattering of ar-

bitrarily polarized radiation by an atom undergoing collisions. The expression for

the redistribution matrix proposed by these authors was extensively used for further

studies. Using this expression Faurobert-Scholl (1992) pointed out the sensitivity of

the line-wing polarization to the elastic collisional rate. Nagendra (1994) showed

how depolarizing collisions affect the line-core polarization. By applying master

equation theory, Bommier (1997a) derived a more elegant but equivalent expression

of the PRD matrix of Domke & Hubeny (1988) for the non-magnetic case. Further,

the explicit form of the laboratory frame PRD matrix in the presence of an arbitrary

magnetic field, for the case of a two-level atom without atomic polarization in the

lower level was derived in Bommier (1997b).

A classical oscillator theory for frequency-coherent scattering of polarized radia-

tion in the presence of magnetic fields was developed by Stenflo (1994, 1997, 1998).

The theory developed by Stenflo (1998) is based on a semi-classical approach us-

ing the Kramers-Heisenberg dispersion formula. The Kramers-Heisenberg formula

gives differential cross-section for scattering of a photon by an atomic electron. This

approach has formed the basis for many studies developed later. More details of the

Kramers-Heisenberg approach can also be found in the Part III of the present thesis

where we use the same approach to handle the problem of lower-level polarization

(LLP) with PRD. Also theory proposed by Stenflo (1998) was further extended for

the particular case of a normal Zeeman triplet in the atomic rest frame by Bommier

& Stenflo (1999) to handle PRD effects. This theory was developed for the spe-

cial case of J* = 0 ! 1 ! 0 scattering transition. The corresponding laboratory

frame redistribution matrices were derived in Sampoorna et al. (2007a). In Sam-

poorna et al. (2007b) an equivalence between the quantum electrodynamic approach

(Bommier, 1997b) and the classical oscillator theory (based on Bommier & Stenflo,

*
J being the total angular momentum quantum number
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1.4. Theory of scattering polarization

1999) was shown for the particular case of J = 0! 1! 0 scattering transition. The

theory given in Sampoorna et al. (2007a) for the special case of J = 0! 1! 0 tran-

sition was extended phenomenologicaly in Sampoorna (2011a) to the general case

of J
a

! J

b

! J

a

scattering transition, where J
a

and J
b

are the total angular mo-

mentum quantum numbers of the lower and upper levels respectively. Also Smitha

et al. (2011b, 2013a) used the semi-classical approach to formulate a PRD matrix

for the case of two-term atom taking into account the interference between the up-

per J-states in the linear Zeeman regime (magnetic splitting much smaller than the

fine structure splitting). Later Sowmya et al. (2014a) extended this to the arbitrary

field strengths (including the Paschen-Back effect regime). The angle-averaged ver-

sion of this PRD matrix derived in Smitha et al. (2011b) was used in Smitha et al.

(2011a) for the non-magnetic polarized radiative transfer. For the case of a two-level

atom with hyperfine structure splitting, the non-magnetic PRD matrix was derived

by Smitha et al. (2012b) which includes the F -state interference effects. Sowmya

et al. (2014b) have derived the PRD matrix for F-state interference in the presence

of arbitrary field strengths. Also recently Sowmya et al. (2015) have derived PRD

matrix in arbitrary magnetic fields with level-crossings from the combination of hy-

perfine and fine structure splittings. We refer the reader to review articles on PRD

by Hubeny (1985); Frisch (1988, 1996); Frisch et al. (2001); Stenflo (1996b). A de-

tailed review is given in Sampoorna (2008) and more recently by Nagendra (2014,

2015).

We have to note that in all the above mentioned studies a two-level or two-term

atomic system with unpolarized lower-level is considered. In Part III of the present

thesis we extend the formalism presented in Sampoorna (2011a) to include the ef-

fects of the polarization of the lower-level and study its effects on Stokes profiles. To

determine the form of the redistribution matrix for scattering polarization both in the

presence and absence of magnetic fields is still a subject of research. Further details

on the redistribution matrices are given in the next section which describes one of

the theoretical approaches developed to handle polarized radiative transfer using the

scattering matrix formalism. Redistribution matrix is the fundamental element of

this approach.

There were other efforts to handle the complex problem of PRD. The coherent

scattering theory based on the concept of metalevels which can account for the po-

larization of the lower-level was developed by Landi degl’Innocenti et al. (1997).

Also a heuristic approach to solve the polarized line transfer equation with PRD in

a multi-level atom, without LLP is presented in Sampoorna et al. (2013). More re-

cently a new quantum scattering theory has been proposed by Casini et al. (2014).

They derive a generalized redistribution function taking account of polarization of

the lower-level.
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1.4.2 Redistribution matrix or Scattering matrix formalism

The most natural way to describe PRD effect is by means of a redistribution function

and hence the scattering matrix formalism is also referred to as the redistribution

matrix formalism. It is a semi-classical approach. The redistribution matrix natu-

rally appears in the scattering approach which can be used to study transfer of line

radiation (Stenflo, 1994) basically consisting of polarized differential and integral

equations. We describe these equations in this section.

The traditional scattering approach is presented in Mihalas (1978) for the unpo-

larized case. The extension of this for the polarized case is given in Stenflo (1994);

Ivanov et al. (1997). For a detailed list of papers in this field see Nagendra (2003,

2014, 2015) and see also Nagendra & Sampoorna (2009). The polarized radiative

transfer equation for a two-level atom with unpolarized lower level in the component

form can be written as

�

�I

i

��

= ['(x) + r℄ [I

i

(�; x;
)� S

i

(�; x;
)℄ ; (1.18)

where i = 0; 1; 2 refer to the Stokes parameters (I; Q; U) respectively. The ray

direction is given by 
 = (�; �), with � = 
os

�1

(�) and � being the polar angles.

x is the frequency in non-dimensional units. The line optical depth is denoted by �

and '(x) is the normalized Voigt function H(a; x), where a represents a constant

damping parameter. The ratio of continuum to the line absorption coefficient is

denoted by r. The positive Q is defined as electric vector parallel to the solar limb.

The total source vector is given by

S

i

(�; x;
) =

'(x)S

l;i

(�; x;
) + r S
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'(x) + r

; (1.19)

where S

;i

are the components of the unpolarized continuum source vector. We

assume that S

;0

= B

�

0

, where B
�

0

is the Planck function at the line center, and

S


;1

= S


;2

= 0. The line source vector can be written as
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where 
0

(�

0

; �

0

) is the direction of the incoming ray defined with respect to the at-

mospheric normal. The solid angle element d


0

= sin �

0

d�

0

d�

0 where �0 2 [0; �℄

and �0 2 [0; 2�℄. The primary source is assumed to be unpolarized, so that G
0

(�) =

�B

�

0

and G
1

(�) = G

2

(�) = 0. Here, ^

R

ij

(x;
; x

0

;


0

;B) is the Hanle redistribution

matrix with angle-dependent PRD, and B represents an oriented vector magnetic
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field. The thermalization parameter � = �

I

=(�

R

+�

I

), with �

I

and �

R

being the in-

elastic collisional de-excitation rate and the radiative de-excitation rate, respectively.

The Stokes intensity and source vectors can be decomposed using the irreducible

spherical tensors T K

Q

(i;
) (with K = 0; 1; 2 being the multipolar index of the ra-

diation, and �K 6 Q 6 +K) introduced by Landi Degl’Innocenti (1984, also see

Landi Degl’Innocenti & Landolfi 2004). For the particular case of angle-averaged

PRD matrix and 1D planar geometry, this type of decomposition allows the source

vector to become independent of the angles (�, �) and the specific intensity to be-

come independent of the azimuthal angle � of the radiation field, leading to simpli-

fication of the problem. Such a useful decomposition technique was given by Frisch

(2007) based on the decomposition of the polarization phase matrix in terms of the

irreducible spherical tensors.

From Equation (1.20) it is clear how the PRD effects can easily be accounted for

in the scattering formalism through the ^

R

ij

(x;
; x

0

;


0

;B). This is one of the main

advantages of the scattering formalism. PRD effects in radiative transfer were first

accounted by Dumont et al. (1977) who considered only the case of pure Doppler

redistribution in the line core. The computations involving the combined PRD effects

at both the line core and wings were done by Rees & Saliba (1982). Also in this paper

a very convenient approximation called the ‘hybrid approximation’ was introduced.

According to this approximation, the non-magnetic PRD matrix can be written as

R(x;
; x

0

;


0

) = R(x;
; x

0

;


0

)P

R

(
;


0

); (1.21)

where full decoupling of the frequency redistribution R(x;
; x0;
0

), and the polar-

ization - represented by the angular phase matrixP
R

(
;


0

), is assumed. P
R

(
;


0

)

is nothing but the Rayleigh phase matrix given in Chandrasekhar (1950). Because

of the computational complexities involved in the radiative transfer problem, the

frequency redistribution function is often angle-averaged independent of the phase

matrix. This reduces the computer CPU requirements and the PRD matrix can thus

be written as

R(x;
; x

0

;


0

) = R(x; x

0

)P

R

(
;


0

); (1.22)

This technique was suggested in Rees & Saliba (1982) where they used it to solve

the non-magnetic 1D polarized transfer equation. It was also used in other non-

magnetic studies by Faurobert (1987, 1988); Nagendra (1988, 1994); Paletou &

Faurobert-Scholl (1997); Sampoorna et al. (2010); Sampoorna & Trujillo Bueno

(2010); Anusha et al. (2010); Sowmya et al. (2012); Nagendra & Sampoorna (2012).

A similar angle-average approximation is also used in the computations of polarized

radiative transfer solution in the presence of magnetic fields, by Faurobert-Scholl

(1991); Nagendra et al. (1999); Faurobert-Scholl et al. (1999); Fluri et al. (2003);
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Nagendra et al. (2002); Sampoorna et al. (2008a); Anusha et al. (2011). Though

the angle-average approximation is valid for intensity computations, it is definitely

questionable for the computations of the linear polarization profiles. This is because

as discussed in the previous sections of this chapter, the linear polarization is directly

controlled by the anisotropy of the incident radiation field.

There are many studies in the literature to test the angle-average approximation.

Dumont et al. (1977) undertook the preliminary studies of the polarized line transfer

using angle-dependent PRD. Following this there were studies by McKenna (1985);

Faurobert (1987, 1988) for the case of resonance lines. The case of Hanle effect with

angle-dependent PRD was considered by Nagendra et al. (2002). The main challenge

involved in the angle-dependent PRD computations is the use of effective numerical

techniques. All the above authors used numerical methods which were computa-

tionally expensive. Frisch (2009, 2010) proposed decomposition techniques to solve

angle-dependent PRD problems which reduce the computational cost needed to han-

dle such PRD problems. Efficient numerical methods were developed using this de-

composition technique by Sampoorna et al. (2011); Sampoorna (2011b); Nagendra

& Sampoorna (2011) to solve polarized radiative transfer problem both in the pres-

ence and absence of magnetic fields. This decomposition technique is also applied

in the studies presented in Part II of the present thesis to solve the angle-dependent

polarized radiative transfer problems for different cases. We have extended the nu-

merical methods developed in the above mentioned papers for the problem at hand.

Also a detailed review of the angle-dependent PRD studies is given in Sampoorna

(2014). We want to recall here that all the above mentioned studies are for the case

of a two-level atom with unpolarized, infinitely sharp lower atomic level. This is

often considered as one of the drawback or limitation of the scattering matrix ap-

proach. We address this issue in Part III of the present thesis. As a first attempt we

derive the type II redistribution matrix for a magnetic case taking account of PRD

and population imbalances in the lower atomic level. However the information about

the lower level population imbalances can be obtained only by solving the statistical

equilibrium equations (SEEs) of the different atomic levels involved in the transi-

tion. SEEs can be effectively handled using another established formalism to solve

the polarized radiative transfer problem called the “density matrix formalism". The

details of this formalism is described in the next section.

1.4.3 Density matrix formalism

The other important theoretical formulation to study the problem of polarized radia-

tive transfer is the one developed by Landi Degl’Innocenti (1983) within the frame-

work of the density-matrix formalism. It is a self-consistent theoretical approach de-
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1.4. Theory of scattering polarization

veloped starting from the basic principles of quantum electrodynamics. A clear and

detailed derivation of this theoretical scheme can be found in Landi Degl’Innocenti

& Landolfi (2004). We recall briefly a few equations given in Landi Degl’Innocenti

& Landolfi (2004) in this section. As described in the previous section the radia-

tive transfer equation plays the central role in the scattering matrix approach. In the

density matrix approach it is the SEEs which are coupled to the radiative transfer

equation that guide the behavior of the polarized radiation. The main advantage of

the quantum theory for scattering polarization is its ability to account for the atomic

polarization of all the levels in the model atom considered. The atomic polariza-

tion represents the presence of population imbalances and/or quantum interferences

(coherences) between pairs of magnetic sublevels. The formulation of the SEEs to

determine the atomic polarization in the quantum mechanical framework was pro-

posed by Bommier & Sahal-Brechot (1978) and Bommier (1980) through the den-

sity operator. This is a very powerful tool to describe any physical system that is in

a statistical mixture of states which is defined as

�̂ =

X

�

p

�

j  

�

ih 

�

j; (1.23)

where p
�

is the probability of finding the system in the pure state j  
�

i. The density

matrix elements contain all the information about the system. Landi Degl’Innocenti

(1983) with further advancement of the density matrix formalism described the gen-

eration and transfer of polarized radiation self consistently for a multi-level atomic

system in the presence of arbitrary field strength. It is shown in Landi Degl’Innocenti

& Landolfi (2004) that the diagonal terms of the density matrix represent the popu-

lations in the magnetic sublevels, and the off-diagonal terms represent the quantum

interferences between different magnetic sublevels.

The derivation of the SEEs and the transfer equation involves the same starting

point i.e., the equation describing the time evolution of the expectation value of a

given dynamical variable O(t) with the corresponding quantum operator ^

O(t). In

particular, if we replace O(t) and ^

O(t) by the density matrix elements associated

to the atomic system, and the corresponding quantum operator (projection opera-

tor), then we obtain the SEEs for the density matrix. Instead if we replace O(t) and
^

O(t) by individual polarization tensor (J yJ ) describing the radiation field and corre-

sponding quantum operator (number operator) then we obtain the radiative transfer

equations. In this way we obtain the self consistent SEEs and the transfer equation

in the quantum mechanical framework. However in the simplification of the time

evolution equation for SEEs there is an assumption made that the process of emis-

sion and absorption are independent. This assumption is also known as Markovian

approximation implying that the radiation field illuminating the atom is spectrally
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flat (i.e. independent of frequency). Thus we obtain the SEEs in which different

rates (transfer and relaxation rates) that appear are dependent on the local properties

of the radiation field illuminating the atom. Within the same theoretical framework

we also obtain the polarized radiative transfer equation which contains the absorp-

tion and emission coefficients which depend on the local values of the density matrix

elements. This coupled set of equations has to be solved to obtain the solution of the

radiative transfer problem (referred to as the NLTE problem of second kind in Landi

Degl’Innocenti & Landolfi, 2004). A schematic representation of the simultaneous

solution is shown in Figure 1.9 (taken from Landi Degl’Innocenti & Landolfi, 2004).

Efficient numerical methods to handle this problem was developed by Trujillo Bueno

& Manso Sainz (1999).

Figure 1.9: Schematic representation of the NLTE problem of the second kind which is
solved iteratively. This Figure is taken from Landi Degl’Innocenti & Landolfi (2004).

The main advantage of the self consistent density matrix formalism is that it

allows the possibility of taking LLP into account. The general assumption of con-

sidering the lower atomic level to be unpolarized is valid when the lower atomic

level involved in the scattering transition is 0 or 1=2 and is definitely questionable

otherwise. The importance of LLP was first highlighted in the theoretical studies by

Trujillo Bueno & Landi Degl’Innocenti (1997) using the density matrix formalism.

They considered the case of transition between J
a

= 1 and J
b

= 0. This case is

of particular interest because if the polarization of the lower-level is not taken into

account then the resulting polarization is zero (since the upper level corresponds to

J

b

= 0). Following this, Landi degl’Innocenti (1998) attempted to explain the linear

polarization peaks of the Na I D
1

and D
2

lines using the theory of optical depopula-

tion pumping of the lower level. The theory of density matrix formalism with LLP

was applied to the modeling of Mg I b
2

line in Trujillo Bueno (1999). In the same pa-
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per the importance of the depolarizing elastic collisions and their role in decreasing

the alignment of the atomic levels (see also Trujillo Bueno, 2001; Casini et al., 2002)

was shown. The operation of the ground-level Hanle effect and importance of the

selective absorption from the ground level to the generation of the polarization in the

He I triplet system was demonstarted in Trujillo Bueno et al. (2002). Manso Sainz

& Trujillo Bueno (2003b, 2010) presented the importance of atomic polarization of

the metastable levels of the Ca II infrared triplet. The challenge of including the LLP

also manifests in the radiative transfer computations. This is because the consider-

ation of the lower-level atomic polarization leads to a coupled system of non-linear

transfer equations, even for the simplest case of a two-level atom. The details of this

can be found in Appendix C of the present thesis.

Though the density matrix formalism is successful, it suffers from the main limi-

tation that it cannot account for the PRD effects. This limitation arises because of the

Markovian approximation made in obtaining the SEEs and radiative transfer equa-

tion self consistently. There are numerous studies in the literature highlighting the

importance of PRD specifically in the wings of the strong resonance lines (Nagendra,

2003, also refer to the previous sections). In this regard there were attempts by Landi

degl’Innocenti et al. (1997) to formulate a theory for coherent scattering taking ac-

count of LLP based on the concept of metalevels. Recently Belluzzi et al. (2015)

derived the type II redistribution matrix for a two term atom with hyperfine structure

splitting in the non-magnetic regime by including the polarizability of the lower hy-

perfine levels (F levels). But in their studies they considered the contribution from

LLP as a free parameter. Also a new quantum scattering theory is proposed by Casini

et al. (2014) in which they present a generalized redistribution function considering

the effects of LLP.

Thus we have two well established theoretical methods to study polarized radia-

tive transfer. The first one is the scattering matrix formalism which can successfully

account for the PRD effects but not the effects of LLP and the second one is the

density matrix formalism which is self consistent and can account for LLP but not

for PRD. This points towards the need to develop an intermediate theory which can

exploit the strengths of both the scattering matrix formalism and the density matrix

formalism. Our aim is towards this in Part III of the present thesis. We have derived

the collisionless redistribution matrix using the scattering matrix formalism and in-

cluding the contribution from the population imbalances of the lower atomic level.

The information about the population imbalances of the lower atomic level is further

obtained using the density matrix formalism. In the next section we describe dif-

ferent numerical schemes developed so far to handle the polarized radiative transfer

problem.
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1.5 Numerical methods to solve polarized radiative

transfer problems

One of the earliest attempts to solve the polarized radiative transfer problem with

CRD for non-magnetic resonance scattering was by Stenflo & Stenholm (1976).

They used Rybicki’s core saturation method and treated Stokes Q as a perturba-

tion to the Stokes I . Then the studies involving the comparison of line profiles

obtained with CRD and PRD were done by McKenna (1984). The next important

step was by Rees & Saliba (1982) who introduced hybrid approximation and also

used differential equation based scalar Feautrier method to solve the polarized radia-

tive transfer problem with angle-averaged PRD functions of Hummer (1962). Fur-

ther Dumont et al. (1977) and Faurobert (1987) used Feautrier method to solve this

vector transfer problem with angle-dependent PRD functions of Hummer (1962).

While McKenna (1984) used perturbative Feautrier method, Faurobert (1987, also

see Faurobert 1988) used non-perturbative Feautrier method. There was another

exact method developed around this time called the Discrete Space Method by Na-

gendra (1988, see also Nagendra 1989, 1994, 1995). The above mentioned exact

methods are accurate and general. They can handle PRD problems of any level of

complexity. But the main disadvantage of these methods is that they are computa-

tionally expensive requiring large computer memory and CPU time.

To overcome this, another method was developed called the Polarized Approxi-

mate Lambda Iteration (PALI) method which is based on operator perturbation. The

PALI method was developed for both density matrix formalism and scattering ma-

trix formalism. The PALI methods were generalizations of the scalar Approximate

Lambda Iteration (ALI) method developed by Olson et al. (1986) to include polar-

ization. A detailed review of unpolarized ALI methods is given in Hubeny (1992)

and Hubeny & Mihalas (2014). The development of PALI method for the density

matrix formalism is given in Trujillo Bueno & Landi Degl’Innocenti (1996); Trujillo

Bueno & Manso Sainz (1999); Manso Sainz & Trujillo-Bueno (1999); Manso Sainz

& Trujillo Bueno (2003a). A detailed review of all these methods can be found in

Trujillo Bueno (2003). The development of PALI method for the scattering matrix

formalism was through a series of papers. The PALI-1 was developed by Faurobert-

Scholl et al. (1997) for the case of resonance line scattering with CRD. Then this

was extended to include the effects of PRD by Paletou & Faurobert-Scholl (1997)

which is nothing but the PALI-2 method. The PALI-3 was developed by Nagendra

et al. (1998) for the Hanle effect with CRD. The 1D domain based PRD was in-

cluded in Nagendra et al. (1999) which is the fourth in the series of PALI method

development (PALI-4) and was extended in Nagendra et al. (2000) for solar weak
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magnetic field diagnostics (PALI-5). Fluri et al. (2003) extended further to include

the 2D frequency domain logic of Bommier (1997a,b) for the weak magnetic field

case (PALI-6). In all the PALI methods a Fourier decomposition of the radiation field

and of the phase matrix with respect to the azimuth angle are used which in turn re-

duce the complexity of the problem. A PALI method for non-domain based Hanle

PRD problem was presented in Sampoorna et al. (2008b). This may be referred to as

PALI-7 method which uses the frequency decomposition technique of Frisch (2007).

A detailed review of PALI methods can be found in Nagendra (2003); Nagendra &

Sampoorna (2009); Nagendra (2014).

The other important numerical approach developed is the scattering expansion

method (SEM). This method is based on the Neumann series expansion of the com-

ponents of the source vector contributing to the polarization. SEM was first formu-

lated by Frisch et al. (2009) for solving the polarized line transfer with CRD. This

method is now extended to solve transfer problem with PRD by Sampoorna et al.

(2011); Nagendra & Sampoorna (2011); Sowmya et al. (2012); Smitha et al. (2012b).

In all these studies it is shown that the SEM is faster than the PALI method and is

very efficient while handling angle-dependent PRD problems. In the present thesis

we have used both the PALI and SEM for our studies. A recent review by Nagendra

(2014) gives very elaborate explanation of both the PALI and SEM. The develop-

ment of powerful numerical methods to solve polarized PRD line transfer problems

in multi-dimensional atmospheres is reviewed in Anusha & Nagendra (2014, see

also Anusha & Nagendra 2013 and references therein).

1.6 Outline of the thesis

The present thesis is concentrated on two important aspects of studies concerning

polarized radiative transfer. The first is the studies about observations and modeling

of SSS which will help us understand the solar atmosphere in a better way. The

second is the studies concerning basic tool required to study the polarized radiation

i.e. redistribution matrix. These studies are presented as three parts in the thesis.

The Part I of the thesis (Chapter 2) is dedicated to the CLV observations and

modeling of the Ca I 4227 Å line. The observational details concerning CLV of the

Ca I 4227 Å line is presented in this chapter. Also the challenges and procedure

followed to undertake simultaneous CLV modeling of the intensity and linear po-

larization spectra are described. At the end we describe a solar model atmosphere

independent analysis to obtain an estimate of the depth dependence of the turbulent

weak magnetic fields in the solar atmosphere.

The Part II of the thesis is dedicated to a series of studies concerning angle-

dependent PRD problems. In this part of the thesis we consider different problems
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and study the impact of using angle-dependent PRD on emergent Stokes profiles in

each of those cases. In Chapter 3 we consider the problem of studying the effect

of electron scattering redistribution on atomic line polarization in the non-magnetic

regime. For our studies we have considered angle-dependent atomic redistribution

and non-coherent electron scattering. We have proposed new and efficient numerical

methods based on PALI and SEM to handle this problem. In this chapter we also

present a set of parametric studies to understand the effects of electron scattering in

a better way. In Chapter 4 we study the combined effects of angle-dependent PRD

and the quantum interference phenomena arising either between the fine structure (J)

states of a two-term atom or between the hyperfine structure (F ) states of a two-level

atom. We consider collisionless line scattering on atoms in the non-magnetic regime

for our studies. We propose SEM to solve this problem and finally compare the emer-

gent Stokes profiles obtained when angle-averaged and angle-dependent PRD func-

tions are used. In Chapter 5 our concentration is on the effects of angle-dependent

PRD matrix in the presence of weak magnetic fields (Hanle effect). We propose

efficient decomposition technique, and the numerical method to solve this problem.

We adopt proper methodology to incorporate frequency domain logic of Bommier

(1997a,b) to solve angle dependent Hanle transfer problem. We finally consider

different examples of micro-turbulent and vertical magnetic fields to establish the

efficiency of our proposed method compared to the previous approximate methods.

In the last part of the thesis (Chapter 6) we address another important problem

concerning the development of a polarized radiative transfer theory including the ef-

fects of LLP and PRD. In this chapter we first derive the collisionless redistribution

matrix including the effects of LLP and PRD for a general magnetic case. Then

we appropriately obtain the different elements of the radiative transfer equation for

the problem at hand starting from the quantum field theory of Stenflo (1994). We

finally use the derived collisionless redistribution matrix in the non-magnetic regime

(Appendix A) to numerically solve the radiative transfer equation and study the com-

bined effects of LLP and PRD. Based on the results we obtained we also propose a

simpler numerical method to solve this problem. Appendix A describes the type II

redistribution matrix with LLP for the non-magnetic case. Appendix B describes

the validation of the absorption matrix elements obtained from quantum field theory

of Stenflo (1994). Finally Appendix C gives the details of the numerical method

we have followed to solve the problem of polarized radiative transfer with LLP and

PRD. The Summary and future prospects are described in Chapter 7.
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center-to-limb observations





Chapter 2

Modeling the center-to-limb

observations of the Ca I 4227 Å line*

An Overview

The observed center-to-limb variation (CLV) of the scattering polarization in differ-

ent lines of the Second Solar Spectrum (SSS) can be used to constrain the height

variation of various atmospheric parameters, in particular the magnetic fields via the

Hanle effect. In this chapter we explain our attempt to model the nonmagnetic CLV

observations of the Q=I profiles of the Ca I 4227 Å line recorded with the Zurich

Imaging Polarimeter-3 at Istituto Ricerche Solari Locarno (IRSOL). For modeling,

we use the polarized radiative transfer (RT) with partial frequency redistribution

(PRD) with a number of realistic one-dimensional (1D) model atmospheres. We

find that all the standard Fontenla-Avrett-Loeser (FAL) model atmospheres, which

we used, fail to simultaneously fit the observed (I ,Q=I) at all the limb distances (�).

However, an attempt is made to find a single model which can provide a fit to at

least the CLV of the observed Q=I instead of a simultaneous fit to the (I ,Q=I) at

all �. To this end we construct a new 1D model by combining two of the standard

models after modifying their temperature structures in the appropriate height ranges.

This new combined model closely reproduces the observed Q=I at all � but fails to

reproduce the observed rest intensity at different �. Hence we find that no single

1D model atmosphere succeeds in providing a good representation of the real Sun.

This failure of 1D modeling approach can probably be overcome by using multi-

dimensional modeling which is computationally expensive. To eliminate an even

wider choice of 1D models, we also attempted to simultaneously model the CLV

of the (I ,Q=I) spectra using the Fontenla-Curdt-Haberreiter-Harder-Tian (FCHHT)

solar model atmospheres which are updated and recent versions of the FAL models.

*The contents of this chapter are based on Supriya et al. (2014b, 2015)
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However these models also failed to provide a simultaneous fit to the (I ,Q=I) at all

�. This failure of 1D models does not however, cause an impediment to the magnetic

field diagnostic potential of the Ca I 4227 Å line. To demonstrate this we deduce the

field strength at various � positions without invoking the use of RT.

2.1 Introduction

One of the commonly observed and well-studied lines in the SSS is the strong, chro-

mospheric Ca I 4227 Å line (see, e.g., Stenflo et al., 1980; Stenflo, 1982; Gandorfer,

2002). This is a normal Zeeman triplet line arising due to the transition between the

atomic states with total angular momentum J = 0 ! 1 ! 0. It exhibits the largest

scattering polarization among all the lines in the Sun’s visible spectrum (Stenflo

et al., 1980). The core of the Ca I 4227 Å line is formed around a height of about

1000 km above the photosphere, making it chromospheric in nature. The Hanle ef-

fect in the core of the Ca I 4227 Å line was first observed by Stenflo (1982). Further

details on the various observational and modeling efforts of this line is described in

Section 1.3 of Chapter 1.

To better understand the physics of scattering and to exploit it for various di-

agnostic purposes, we need to systematically study the CLV of the SSS. This will

help us sample the height information of the atmospheric parameters and magnetic

fields, as observations made at different lines of sight sample different heights in the

solar atmosphere. A few attempts have been made so far in detailed modeling of the

CLV observations of (I , Q=I) spectra of atomic and molecular lines in the SSS. The

most challenging aspect of such CLV modeling is to find a single model atmosphere

which can fit both I and Q=I at all limb distances � (= 
os �) simultaneously. One

such attempt was made by Holzreuter & Stenflo (2007a) to model CLV of the Ca II

K line. They discuss the possibility of constructing a two-component atmospheric

model (using a combination of a hot and a cool atmospheric component) to achieve

a fit to the observed CLV profiles. A height-dependent mixing ratio was required

in order to simultaneously fit the I and Q=I spectra at all limb distances. The au-

thors also demonstrate that a single atmospheric model with optimized temperature

structure can be used to achieve a fit to the Ca II K line CLV data. However, the

authors find that different extents of modification in the temperature structure are

required for different limb distances. Another paper in which such CLV studies have

been done is that of Shapiro et al. (2011) who consider the molecular CN violet sys-

tem. They discuss the general problems involved in obtaining a simultaneous fit to

the I and Q=I profiles using the standard 1D single atmospheric model as well as

two-component atmospheric models. They finally construct an anisotropy-modified

single 1D atmospheric model to simultaneously fit I and Q=I at all �.
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The CLV of the Ca I 4227 Å line away from the active regions was first observed

by Stenflo et al. (1980) and analyzed by Auer et al. (1980). The CLV of the line cen-

ter polarization observed by Stenflo et al. (1980) was later used by Faurobert-Scholl

(1994) to study the Hanle effect due to the magnetic field canopies in the chromo-

sphere. The CLV observations of this line were also done by Bianda et al. (1998,

1999). In this chapter we attempt a detailed simultaneous modeling of the observed

CLV of both I andQ=I profiles of the Ca I 4227 Å line. For this purpose we solve the

polarized RT equation by taking account of PRD effects in the non-magnetic regime.

Standard 1D atmospheric FAL models (Fontenla et al., 1993; Avrett, 1995) are used

to obtain a fit to the (I; Q=I) spectra. We find that it is not possible to achieve a si-

multaneous (I; Q=I) fit to the CLV observations with a single 1D model atmosphere.

If we consider the CLV ofQ=I alone, then we find it necessary to modify the original

temperature structure of the standard FAL atmospheric models to obtain a fit. Such

modifications of the original temperature structure were also used in previous works

by Holzreuter & Stenflo (2007a); Smitha et al. (2012a, 2013b). In the present chap-

ter, the original temperature structure of the standard FAL-A atmosphere is modified.

Later, the modified FAL-A (FALA) is combined with FAL-X atmospheric model to

construct a single component model. It turns out that this newly constructed com-

bined model can closely reproduce the observedQ=I at different limb distances. The

combined model though provides a fit to the observed CLV of the Q=I , it fails to fit

the CLV of the rest intensity and of the continuum intensity. This suggests that the

next step would be to use the multi-dimensional modeling, which is computationally

expensive. Before arriving at this conclusion we also tried simultaneously modeling

the CLV of the (I ,Q=I) spectra using the FCHHT (Fontenla et al., 2009) solar 1D

model atmospheres. We expect that these kind of studies will help us to eliminate

or justify the 1D modeling approach before proceeding towards multi-dimensional

modeling.

In Section 2.2 we give the details of the CLV observations. Section 2.3 is de-

voted to the modeling procedure and the results obtained using FAL model atmo-

spheres. Section 2.4 gives the details of the results obtained using FCHHT model

atmospheres. Section 2.5 explains why a two-component modeling approach cannot

be used in the present case. Section 2.6 describes the observational analysis to de-

termine the depth dependence of magnetic fields. Concluding remarks are given in

Section 2.7.

2.2 Observational details

The CLV observations of the Ca I 4227 Å line presented in this chapter were obtained

with the Zurich Imaging Polarimeter-3 (Ramelli et al., 2010) at IRSOL in Switzer-
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land on 2012 October 16. The observations were taken at 14 different � positions

(0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90 and 1.0),

starting from the heliographic north pole at � = 0:1 up to the disk center at � = 1.

Figure 2.1 shows the CCD images of the Ca I 4227 Å line at five selected positions on

the solar disk. The polarization modulation was done with a piezo-elastic modulator.

The spectrograph slit was 60 �m wide, corresponding to a spatial extent of 0.5ar
se


on the solar disk. The CCD covered 190ar
se
 along the slit. The CCD images have

140 effective pixel resolution elements in the spatial direction, with each element

corresponding to 1.38ar
se
, and 1240 pixels in the wavelength direction, with one

pixel corresponding to 5.30 mÅ.

Figure 2.1: CCD images of I (only for � = 0:1) and Q=I at five selected � values of the Ca
I 4227 Å line. The observations were taken on 2012 October 16 at IRSOL in Switzerland.

To keep the solar image position stable, the primary image guiding system is

used (Küveler et al., 2011). In addition, below � = 0:35 a rotating glass tilt plate

is used to keep the distance between the spectrograph slit and the solar limb image

under control. The slit jaw image is digitized by a dedicated CCD camera. An

algorithm recognizes the solar limb and the spectrograph slit position on the image.

This allows the calculated desired distance between the limb and the slit to be set

by automatic control of the tilt plate. Note that this plate is set after the polarization

analyzer and hence does not introduce spurious polarization signatures. At each �
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position a measurement is obtained by adding 300 single frames, each of which are

obtained with an exposure time of 1 sec. Therefore the effective integration time is

8 minutes. The precision of the pointing at a chosen � position over 8 minutes using

the tilt plate is limited to about 1ar
se
, which is less than the size of 1 pixel.

An improvement of these measurements is related to the absolute precision which

we could reach in measuring Q=I . Previously, the zero polarization value needed to

be defined manually was based on indirect considerations (e.g., the CLV of the con-

tinuum polarization). For the data set described in this chapter we could reach an

absolute precision of about 5 � 10

�5. This is mainly due to (1) the precise control

of limb distance, allowed by the tilt plate system described above; (2) the improved

control of the rotation of the optical devices, including the polarization analyzer in

front of the slit (to compensate for the image rotation originated by the Gregory

Coudè telescope); and (3) the optical compensation of the instrumental linear polar-

ization, which is a source of variable offset effects, with an oriented glass plate set

in front of the polarization analyzer. It was thus possible to subtract the polarization

level measured at disk center in a quiet region from every measurement done at a

defined � position. For symmetry reasons the linear polarization in the continuum

is expected to be zero at the disk center. In this way all residual instrumental linear

polarization signatures are taken into account.

2.2.1 Stray light correction

The observed profiles contain a contribution from the spectrograph stray light which

is about 2% of the continuum intensity. Here we correct both the intensity and polar-

ization profiles for stray light. The effect of stray light, including both its intensity

and polarization, was treated in Stenflo (1974). Below are the details of the proce-

dure we have followed.

In the absence of stray light but with instrumental polarization (crosstalk from

I(�)), the I(�) and Q(�) parameters after polarization calibration are I 0(�) = I(�)

andQ0

(�) =Q(�)+M
21

I(�), if we assume that the Mueller matrix has been normal-

ized (M
11

= 1), there is no telescope depolarization or it has been calibrated away

(M
22

= 1), and that polarization crosstalk from U and V can be disregarded. M
21

is

the spectrally flat instrumental polarization, which for convenience will be renamed

p

z

, since it represents a flat offset of the zero point of the polarization scale.

In the presence of stray light with an intensity that is a fraction s of the continuum

intensity I



and has a polarization p
s

, the apparent or observed Stokes parameters are

I

obs

(�) = I(�) + sI




;

Q

obs

(�) = Q(�) + p

z

(I(�) + sI




) + p

s

sI




: (2.1)
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We now introduce the notation r(�) = I(�)=I



and r
obs

(�) = I
obs

(�)=I

obs;


for the rest

intensities. For clarity we attach a � to the quantities that are spectrally structured,

in contrast to the three free parameters of our problem, namely, s, p
s

, and p
z

, which

are constant and spectrally flat. Then

r(�) = (1 + s)r

obs

(�)� s: (2.2)

Similarly, we define the intrinsic polarization p(�) = Q(�)=I(�) and the apparent

polarization p
obs

(�) = Q

obs

(�)=I

obs

(�). One can easily show that

p(�) =

�

1 +

s

r(�)

�

[p

obs

(�)� p

z

℄�

s

r(�)

p

s

: (2.3)

To calculate p(�) from the observations we need to insert the expression for r(�)

from Equation (2.2) into Equation (2.3).

The intrinsic polarization that contributes to the stray light, as averaged over

the wide spectral range, is represented by p
s

. Grating ghosts that sample discrete

wavelengths spread over a large wavelength range are a major source of spectrograph

stray light. In the absence of other information, the best estimate of p
s

is probably

p

s

� p




, i.e., to set it equal to the continuum polarization.

The determination of p
z

is best made for a disk center recording that is done

immediately before or after the measurement at the given � position (so that one can

assume that the instrumental polarization has not changed). At disk center the solar-

scattering polarization is zero, so the apparent polarization that we see is simply p
z

(in contrast to measurements of disk center, where p
z

is mixed with intrinsic solar

polarization).

It is important to realize that the problem of correcting for the zero point of the

polarization scale is entirely decoupled from the stray light issue. It is the first step

to be done, and it gives us the spectrum

p

0

(�) = p

obs

(�)� p

z

; (2.4)

which would equal to p(�) in the absence of stray light. To correct p0(�) for stray

light we do not need to refer to p
z

or disk center observations. The way in which the

stray light correction enters can be seen by rewriting Equation (2.3) as

p(�) = p

0

(�) +

s

r(�)

(p

0

(�)� p

s

): (2.5)

If the stray light were unpolarized, then the stray light scaling factor s=r(�), which

is large where the rest intensity r(�) is low, acts to amplify the polarization ampli-

tudes p0(�). In the presence of stray light polarization, however, the scaling factor
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only acts on the amplitude with respect to the p
s

level rather than with respect to

the zero level. The stray light polarization therefore reduces the effect of the stray

light correction. For polarization amplitudes that is equal to p
s

(which represents a

broadband polarization background that may be approximated with the continuum

polarization level p



), the stray light correction does not have any effect at all. For

the Ca I 4227 Å line, however, the core polarization is usually larger than p



. In this

particular case the stray light polarization becomes a second-order effect (since sp



is a product of two small quantities). The parameter s is determined exclusively by

fitting the Fourier Transform Spectrum of Kurucz et al. (1984), in the same context

as the spectral broadening is determined. The above considerations give us a rather

well-defined procedure to determine (within the framework of our idealized model)

unique estimates of the parameters s, p
z

, and p
s

. Using these estimates we can cor-

rect both the I(�) and Q(�)=I(�) spectra for stray light. In other sections we have

dropped the � dependence of I and Q for notational simplicity. While the observed

spectra are corrected for stray light, they have not been corrected for spectral broad-

ening, because the instrumental profile is not known with the precision that is needed

to allow a deconvolution. The theoretical spectra, on the other hand, which are used

for comparison with the observed spectra, need to be spectrally broadened to emu-

late the observations. However, one should not apply stray light to the theoretical

spectra, since one can easily do the correction to the observed spectra itself. In this

way we keep the presentation of the theoretical results independent of the particular

properties of the instrument used for the observations, with the single exception of

spectral broadening.

2.3 Modeling of the center-to-limb variation observa-

tions using FAL model atmospheres

In this section we describe the modeling procedure we have followed to model the

CLV of the Ca I 4227 Å line. We started with the aim of finding a single 1D atmo-

sphere model that can simultaneously fit (I , Q=I) CLV of the Ca I 4227 Å line. As

a first step towards this, we begin the modeling of the observed profiles by solving

the polarized RT equation for a two-level atom. The 1D polarized RT equation along

with the other necessary equations in the non-magnetic regime used in this chapter

are described in detail elsewhere (see Anusha et al., 2010). The elastic collision

rates used in this chapter are computed following the theory presented in Barklem

& O’Mara (1997). Additionally, the modeling is done using a two-stage process

wherein the intensities are computed using a PRD capable MALI (Multi-level Ap-

proximate Lambda Iteration) code of Uitenbroek (2001) in the first stage. In the
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second stage, the polarization profiles are computed perturbatively by solving the

polarized transfer equation. The details of such a two-stage modeling procedure is

described in Holzreuter et al. (2005, see also Anusha et al. 2010). The atom model

of the Ca I used in the present chapter is the same as the one discussed in Anusha

et al. (2010); hence we do not repeat the details here.

FALA +FALX

FAL-C

FAL-X

FAL-A

FAL-F

Figure 2.2: Temperature structure of the four standard models, FAL-A, FAL-C, FAL-F, and
FAL-X, used in our studies. Along with these standard models the temperature structure of
the new model atmosphere FALA+ FALX is also shown.

In our studies we use four standard 1D model atmospheres of the Sun, namely,

FAL-A, FAL-C, FAL-F (Fontenla et al., 1993), and FAL-X (Avrett, 1995). The

temperature structure of these models are shown in Figure 2.2. Along with the

standard models, the temperature structure of our newly constructed model FALA+

FALX is also shown in the figure, details of which will be discussed in Section 2.3.2.

2.3.1 center-to-limb variation behavior at three wavelength posi-

tions using FAL model atmospheres

The observed Q=I profiles of the Ca I 4227 Å line show three prominent features:

the line center at 4226.7 Å, the blue wing PRD peak at 4226.2 Å and the red wing

PRD peak at 4227.1 Å. While the line center of the Ca I 4227 Å line is formed within

38



Chapter 2. Modeling the center-to-limb observations of the Ca I 4227 Å line

a height range of 700––1000 km (covering 0:9 6 � 6 0:1), the blue and red wing

PRD peaks are formed at a height of 150––250 km above the level where the vertical

continuum optical depth at 5000 Å is unity. To get an idea of the behavior of the

polarized spectra as a function of �, we plot the angular dependence of intensity

(only at the line center) and linear polarization at these chosen wavelength positions

in Figure 2.3, computed using the standard 1D model atmospheres. As expected, it

can be seen from Figure 2.3 that the degree of linear polarization decreases to zero

toward the disk center due to symmetry in the scattering geometry.

Figure 2.3: Observed (solid line) and calculated intensity and polarization signals as a func-
tion of � (observed at 14 points) at three different wavelength positions in the line profile.
The spectra are calculated for the standard models, FAL-X, FAL-C, FAL-A, and FAL-F.

Panels (a) and (b) of Figure 2.3 show a comparison of the observed and theoret-

ical CLV of I and Q=I , respectively, at the line center wavelength. We see that the

hottest model FAL-F (dot-dashed line) is more suited for modeling the CLV of the

line center intensity. However, the same model is not at all good for Q=I . Instead,

it is the coolest model, FAL-X, which provides the closest fit to the observed Q=I .

This contrasting behavior seems to point at the fact that we need two different tem-

peratures to simultaneously fit I and Q=I at the line center. From Figure 2.3 (b) we

see that the theoretical profile computed using FAL-A also falls close to the observed

CLV profile of Q=I . We consider the FAL-X atmosphere rather than FAL-A to pro-

vide a better fit to the observedQ=I at the line center for the following reasons: at the
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line center and when � is small, we always expect the non-magnetic Q=I amplitude

to be larger as compared with the observed Q=I , because the observed Q=I includes

depolarization by magnetic fields. As we go to larger �, the magnetic fields may

enhance the core polarization amplitude. Such behavior was noted by Faurobert-

Scholl (1994), who points out that there are enhancement effects due to magnetic

fields when � > 0:4 (this will be discussed in detail in Section 2.3.3). We found

the FAL-X model to better satisfy this behavior. Thus we see from Figure 2.3 (b)

that the theoretical values of Q=I at the line center when computed with FAL-X are

larger than the observed Q=I for � < 0:4, while FAL-A shows this behavior only

for � < 0:25. Besides this, the theoretical Q=I computed with FAL-A falls much

below the observed Q=I as we move toward larger values of �. For these reasons we

consider FAL-X to give a consistent overall fit to the observed CLV of Q=I at the

line center, while FAL-A does not.

On the other hand, Figures 2.3 (c) and (d) show the CLV profiles of Q=I at the

blue and red wing PRD peak wavelength positions, respectively. We notice that both

FAL-F and FAL-X model atmospheres fail to provide a fit to the PRD peaks. It is the

theoretical CLV profiles from the FAL-A model that fall closest to the observed CLV

of Q=I . Thus we do not find a single 1D atmospheric model which can provide a fit

to the entire Stokes (I , Q=I) profiles simultaneously. As a next step we explore the

possibility of obtaining a fit to the CLV of the Stokes profiles through a small mod-

ification of the temperature structure of the original FAL models at the appropriate

heights.

2.3.2 Theoretical fit to the center-to-limb variation of the linear

polarization profiles using FAL model atmospheres

From Figures 2.3(c) and (d) we see that although the theoretical profiles from the

model FAL-A fall closest to the observed CLV of Q=I , this model fails to provide

a satisfactory fit to the Q=I observations. In order to obtain a better fit to the ob-

served CLV of Q=I profiles, we adopt modification of temperature structure at the

heights where PRD peaks are formed. We focus our attention only on the fit to the

Q=I profiles. Since the FAL-A model atmosphere provides the closest fit to the ob-

served Q=I profiles, we choose this model for further modifications. Accordingly,

the temperature of the FAL-A standard model at these heights is reduced by about

200 K. This newly constructed model is denoted as FALA. This new model provides

a better fit to the wing PRD peaks at all the limb distances.

After achieving a fit to the PRD peaks, we concentrate on obtaining a fit to the

linear polarization at the line center. From Figure 2.3(b) we see that it is the FAL-X

model atmosphere which fits the observed profiles the closest. Thus, to obtain a satis-
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Figure 2.4: Comparison between the observed (solid line) and the theoretical (dotted
line) Stokes profiles (I ,Q=I) at different limb distances. The combined model atmosphere
FALA + FALX is used to compute the theoretical profiles.
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factory fit to the entireQ=I profile we need to combine these two model atmospheres

(FALA and FAL-X) at the appropriate heights. The two models are combined such

that the new model atmosphere has the temperature structure of FALA up to a height

of 400 km and the temperature structure of FAL-X at heights above 400 km. The

temperature structure of the new combined model atmosphere (FALA + FALX) is

shown as the solid line in Figure 2.2. The results obtained using this combined model

atmosphere are discussed below.

2.3.3 Results from the new combined model atmosphere

The theoretical profiles obtained using FALA+FALX model atmosphere are shown

in the Figure 2.4 (dotted line). In addition, a comparison between the observed and

theoretical Q=I CLV curves at the blue and red wing PRD peaks and at the line

center wavelength using the combined model is shown in Figure 2.5 (dotted line).

These theoretical profiles show that we obtain an overall satisfactory fit to the Q=I

profiles at all the � positions using the combined model atmosphere. The theoretical

profiles computed using the combined model atmosphere in Figures 2.4 and 2.5 in-

clude suitable spectral smearing. This is done by convolving the theoretical spectra

with a Gaussian profile having a FWHM of 50 mÅ. The smearing accounts for both

the instrumental broadening (40 mÅ) and the broadening by macroturbulent velocity

fields (30 mÅ). The macroturbulent smearing corresponds to a velocity of 1.28 km

s�1. For deep lines such as the Ca I 4227 Å, the effects of the stray light corrections

(the stray light correction procedure is described in Section 2.2.1) are much more im-

portant than the smearing. The intensity (I) profiles from the combined model seem

to fit the observed data at all the � positions, with the exception of the line core,

where we fail to get a satisfactory fit. At the formation heights of the line center,

a rest intensity fit requires a hotter atmospheric model such as the FAL-F, which is

not suitable for achieving a good fit to the Q=I profile––which indeed requires cooler

models such as the FAL-X. In spite of the carefully determined stray light correction

(by s = 2%) to the observed Stokes I profiles, the central line depth still does not

come close to reproducing the very deep theoretical I profiles. We have also carried

out tests with the use of different microturbulent and macroturbulent velocities, and

we found that the choice of turbulent velocity does not significantly affect the rest

intensity of the Stokes I profiles.

From Figures 2.4 and 2.5 we notice that for � 6 0:35 the observed line center

Q=I is less than the theoretical value, and for � > 0:35 it is greater than theQ=I pre-

dicted theoretically. Such a discrepancy was also encountered by Faurobert-Scholl

(1994) while modeling the CLV of the line center Q=I of the Ca I 4227 Å line. The

author found that the ratio of (Q=I)
obs

and (Q=I)

theory

at the line center was close to
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unity for smaller � values (� < 0:4) and much greater than one for larger � values.

However, her treatment did not include the stray light corrections. We recall that the

observed profiles in Figure 2.5 are corrected for the stray light. In Faurobert-Scholl

(1994), although an explanation of the physical mechanism behind this enhancement

in polarization for larger � values was anticipated based on accelerated motions in

the chromosphere, it was not completely justified.

Figure 2.5: CLV of linear polarization at three chosen wavelength positions. The model
atmosphere used to obtain the theoretical profiles (dotted line) is the new combined model
FALA + FALX.

To examine this discrepancy further, we plot the variation exhibited byQ=I along

the spectrograph slit at the line center (solid line) and compare it with theQ=I in the

blue wings (dotted line) in Figure 2.6. The observed line center Q=I values are

smoothed over a rectangular box corresponding to 5ar
se
 to reduce contribution

from noise. These smoothed values of the observed Q=I at the line center are used

for all further computations. From Figure 2.6 we see that the Q=I at the line center

shows more variation along the slit than at the blue wing peak. This indicates the

presence of varying horizontal magnetic fields and their possible role in modifying

the line center Q=I . These varying magnetic fields can in turn be used to under-

stand the observed line center Q=I which are greater than the theoretically predicted

values. One possible explanation for this discrepancy could be that observed line

center Q=I for � > 0:35 is enhanced due to the Hanle effect by these varying fields

(see also Faurobert-Scholl, 1994). This enhancement is very prominent in case of

the near-disk-center observations (see Anusha et al., 2011). However, in our case,

it sets in for � > 0:35 and increases as � ! 1. This is clear evidence for highly

structured, resolved, oriented magnetic fields (predominantly horizontal) in the solar

atmosphere. However, the dotted line in Figure 2.6 (for the blue wing) do not exhibit

the type of spatial fluctuations that is seen for the line center (solid line). This is be-
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Figure 2.6: Variation of Q=I values along the slit for each � position (marked over the
plots). The solid and the dotted lines correspond to the Q=I value at the line center and at
the blue wing peak, respectively.

cause the Hanle effect is absent in the wings. We also note that the spatial variation

close to the limb in the blue wing is not really spectrally flat. The details regarding

this will be discussed in Section 2.6.

2.3.4 Impact of temperature structure modifications on the stan-

dard model atmospheres

In the previous section we described the necessity of constructing a new model in

order to obtain a fit to the CLV of the Stokes profiles. To this end, a new model was
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constructed by combining two standard models after modifying their temperature

structures at the desired heights. The new combined model thus constructed will

provide a fit to the CLV of the observed Q=I . The physical consistency of the newly

constructed atmospheric model with the modified temperature structure has been

checked by verifying that it satisfies the hydrostatic equilibrium at all heights.

Figure 2.7: Comparison between the observed data for the CLV of continuum intensity from
Neckel & Labs (1994) for a range of wavelengths and the theoretical values from different
model atmospheres including FALA + FALX.

Next we examine the fit to the CLV of the continuum intensity over a wavelength

range spanning from the visible to the infrared. The theoretical continuum intensity

obtained using the new model should fit the observed data at all the limb distances

and for a range of wavelengths. Figure 2.7 shows the limb-darkening function com-

puted using the standard models and our new model atmosphere FALA + FALX for

a range of wavelengths and � values. The theoretical values from different models

are compared with the observed data from Neckel & Labs (1994). The dash-triple-

dotted line represents the theoretical values from the new model FALA + FALX. We

see that the best fit to the observations is provided by the FAL-C model. Although

the combined model is successful in providing a CLV fit to the observed Q=I and

satisfies the equilibrium conditions, it does not provide the best fit to the observed

CLV of the limb-darkening function and to the observed CLV intensity.

This leads us to the conclusion that it is indeed not possible to obtain a simultane-

ous fit to all the various types of data with a single 1D model atmosphere; a different

atmosphere is needed for each observable. To eliminate an even wider choice of

1D models, in the next section we describe our efforts in modeling the CLV of the

Ca I 4227 Å line using FCHHT models.
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Figure 2.8: Temperature structure of the standard models FCHHT-B, FCHHT-D, FCHHT-F,
FCHHT-H, and FCHHT-P used in our studies. Along with these models the temperature
structure of the combined model atmosphere FALA + FALX is also shown.

2.4 Modeling of the center-to-limb variation observa-

tions using FCHHT model atmospheres

The temperature structures of the FCHHT models (Fontenla et al., 2009) used are

shown in Figure 2.8. These models are more recent and updated versions of the FAL

models. Along with the standard FCHHT models, the temperature structure of the

combined model FALA+FALX is also shown. It was the FALA+FALX model that

provided a fit to the observed Q=I profiles at all the limb distances as described in

the previous section (Supriya et al., 2014b). We follow a similar modeling procedure

as described in the previous section but now using the FCHHT model atmospheres.

Figure 2.9 shows the angular dependence of the intensity (only at the line center)

and the linear polarization at three chosen wavelength positions. The theoretical

CLV profiles are computed using the standard FCHHT model atmospheres. Panel

(a) of Figure 2.9 shows a comparison between the observed and the theoretical CLV

in I and Q=I at the line center wavelength. We see that the model FCHHT-P (long

dashed line) is more suited for modeling the CLV of the line center intensity. But

46



Chapter 2. Modeling the center-to-limb observations of the Ca I 4227 Å line

the same model is not suitable to reproduce the CLV of the observed Q=I at the line

center. Instead it is the model FCHHT-B that provides the closest fit to the CLV of

the observed Q=I at the line center. The model FCHHT-B also closely fits the CLV

profiles of the Q=I at the blue and red wing PRD peaks as seen from Figures 2.9

(b) and (c), respectively. Thus we do not find a single FCHHT atmospheric model

which can provide a fit to the CLV of the Stokes (I , Q=I) spectra simultaneously

throughout the line profile.

2.4.1 Comparison of the theoretical Stokes profiles from FCHHT-

B and combined model atmospheres

In Figure 2.10 we compare the observations with the theoretical profiles computed

using the FCHHT-B model (which provides the closest fit among the FCHHT mod-

els) and also the FALA+FALX combined model. We see that the theoretical profiles

computed using the FALA+FALX model indeed provides a better fit to theQ=I pro-

files at different limb distances as compared to those computed using the FCHHT-B

model atmosphere. It was pointed out in the previous section (see also Supriya et al.,

2014b) that the FALA + FALX model is successful in providing a good fit to the

Q=I profiles at all limb distances, but it fails to fit the rest intensity. However, from

Figure 2.10 we see that the FCHHT-B model provides a good fit for the rest intensity

at � = 0.1, but it does not match the rest intensity for � > 0.3. Also the FCHHT-B

model only reproduces the shape of the observed Q=I but does not provide a good

fit to the CLV of the observed Q=I . From Figure 2.10 we see that the theoretical

profiles computed using the FCHHT-B model atmosphere (dotted line) has a dou-

ble peak structure in the Q=I at the line center for � > 0.1. We would like to note

that this double peak cannot be smoothened even after appropriately smearing the

theoretical profiles obtained using the FCHHT-B model, unlike in the case of the

theoretical profiles obtained using the FALA + FALX model atmosphere. Next we

examine the fit to the CLV of the continuum intensity over a wavelength range span-

ning from the visible to the infrared. Figure 2.11 shows the limb darkening function

computed using the FCHHT model atmospheres for a range of wavelengths and �

values. The theoretical values from different models are compared with the observed

data from Neckel & Labs (1994). We see that the best fit to the observations is pro-

vided by the FCHHT-F model. The FCHHT-B model which provides closest fit to

the CLV of the observed Q=I does not provide the best fit to the observed CLV of

the limb-darkening function. This leads us to the same conclusion as in the studies

from FAL models that it is indeed not possible to obtain a simultaneous fit to all the

various observational constraints using single 1D model atmosphere. In search of a

single model which satisfies all the observational constraints, the next obvious step
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Figure 2.9: Observed (solid line) and calculated intensity and polarization signals as func-
tion of � (observed at 14 points) at three different wavelength positions in the line pro-
file. The theoretical spectra are calculated using standard models FCHHT-B (dotted line),
FCHHT-D (dashed line), FCHHT-F (dot-dashed line), FCHHT-H (dash-triple-dotted line),
and FCHHT-P (long dashed line).

would be to use the two-component modeling approach with appropriate mixing ra-

tios, as done in Holzreuter & Stenflo (2007a). In the section below we discuss why

we cannot adopt such a procedure in modeling the CLV of the Ca I 4227 Å line.

2.5 Two-component modeling approach

In modeling the CLV observations of the Ca II K line, Holzreuter & Stenflo (2007a)

explored the possibility of constructing a two-component model atmosphere. This

was constructed by mixing the results obtained from two standard model atmo-

spheres in appropriate ratios. Such a method was adopted by making CLV plots

of the Ca II K line as shown in their Figure 1. As seen from their figure, the origi-

nal models FAL-X and FAL-C produce theoretical CLV curves which fall above and

below the observed CLV curve of Q=I , respectively. Hence the authors combine

results from these two standard models with appropriate mixing ratios to achieve the

required fit. In Figures 2.3 and 2.9 of the present chapter we make similar plots of

the CLV for the Ca I 4227 Å line. As seen from these figures, none of the stan-

dard model atmospheres produce a theoretical CLV curve in Q=I which falls above

the observed CLV curve. This does not allow us to apply the same kind of two-
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Figure 2.10: Comparison between the observed (solid line) and the theoretical Stokes pro-
files (I;Q=I) at different limb distances. The theoretical profiles are computed using com-
bined model FALA+ FALX (dashed line) and FCHHT-B (dotted line).
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Figure 2.11: Comparison between the observed data for the CLV of continuum intensity
from Neckel & Labs (1994) for a range of wavelengths and the theoretical values from dif-
ferent FCHHT model atmospheres.

component modeling procedure as described by Holzreuter & Stenflo (2007a). This

suggests that we need to go beyond 1D modeling in the direction of two-dimensional

or three-dimensional modeling to obtain a simultaneous fit to the (I; Q=I) at all the

limb distances. Such efforts are beyond the scope of our present studies. However,

1D models with modified temperature structures serve as a good initial step to such

elaborate computations. The failure of 1D modeling approach does not preclude the

use of a given line profile for purposes like magnetic field determination. To demon-

strate this fact, in the next section we perform observational analysis of the Ca I 4227

Å line to determine the field strengths for smaller �.

2.6 Determination of the field strength

In the present section we use an approach similar to that of Bianda et al. (1998, 1999)

to determine the field strength at different limb distances. Since the observed Q=I

is influenced by so many factors besides the magnetic field, it is imperative to apply

differential techniques to isolate the Hanle effect from the multitude of other effects.

This can be done by using the wing polarization as a reference, since it has been

well established that the Hanle effect only operates in the line core but is absent in

the wings.

If in Figure 2.6 we compareQ=I in the line core (solid lines) and in the blue wing

(dotted lines), we notice that the line core exhibits large spatial variations along the

slit, in contrast to the blue wing. Nevertheless, the blue wing polarization exhibits

large-scale slow drifts along the slit, which increase significantly as we approach the
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a=0.52%, b=0.060

a=0.60%, b=0.085

a=0.60%, b=0.055

a=0.40%, b=0.05

a=0.33%, b=0.02

Figure 2.12: CLV of Q=I at the blue wing PRD peak (top panel) and at the line center
(bottom panel). Plus sign represents the Q=I value at each pixel along the slit in the bottom
panel and spatially averaged value of Q=I in the top panel. The solid, dotted, and dashed
curves are obtained using the empirical relation given in Equation (2.7). The corresponding
value of the free parameters a and b are indicated in the figure.

limb. Much of this can be explained in terms of a geometric effect due to the limb

curvature. Since the solar limb is curved, while the slit is straight, the limb distance

(or �) will vary along the slit. This effect will increase in significance as we get

closer to the limb. It is an effect that is nearly identical for the line core and wing

(since the core and wing have nearly the same relative CLVs) and therefore can be

eliminated when forming the core-to-wing ratio. Similarly, any other unidentified

instrumental effect would ratio out. In principle, there may also be non-magnetic ef-

fects of solar origin, such as spatial variations of the radiation-field anisotropy, which
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2.6. Determination of the field strength

may be different between core and wings and therefore would not fully ratio out (al-

though they should be suppressed when forming the ratio, since the non-magnetic

fluctuations in the core and wings are not uncorrelated). However, with our rather

low spatial resolution and long integration times, these solar effects are expected to

be miniscule.

We therefore have strong reasons to believe that practically all the spatial fluctua-

tions that we see in theQ=I core-to-wing ratio are exclusively due to magnetic fields

via the Hanle effect. Instead of directly using this ratio as our differential measure,

we can scale it with the slit average of the wing polarization to express it in polar-

ization units. This scaling is equivalent to the assumption that the wing polarization

should be spatially flat after all effects of limb curvature, unidentified instrumental

effects, and solar non-magnetic effects have been corrected for. We thus correct the

line core polarization amplitude with the following relation:

(Q=I)
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blue wing peak for each pixel and < P
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> is the spatial average of
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b

along the slit. With this correction we plot in Figure 2.12 the CLV of the spatially

averaged Q=I at the blue wing and the corrected Q=I at the line center. Each “plus”

symbol in the bottom panel of Figure 2.12 represents the value of Q=I at each pixel

corresponding to the line center. We notice large spatial variations along the slit in

the corrected Q=I line center data. This effect is exclusively due to the magnetic

fields via the Hanle effect. In order to find the field strengths that contribute to such

spatial variation, we follow the method used in Bianda et al. (1998, 1999). We would

like to note that in both these papers, the authors use observations taken at different

periods for the data analysis. However, in our analysis we consider only one single

set of observations and the variation of Q=I along the slit in these observations. To

this end we construct the envelopes (continuous lines in Figure 2.12) to our data set,

using the analytical relation
Q

I

=

a(1� �

2

)

�+ b

: (2.7)

This relation was first introduced by Stenflo et al. (1997) where a and b are the best-

fit free parameters. For our studies we have chosen the same set of free parameters

as given in Bianda et al. (1998, 1999). From top panel of Figure 2.12 we see that the

dashed line (a = 0.33%, b = 0.02) gives a good fit to the spatially averaged observed

CLV profile in the blue wing. In the bottom panel of Figure 2.12 we use three differ-

ent set of free parameters a and b to construct envelopes for the line center data. The

envelopes constructed using the analytical relation given in Equation (2.7) represent

the “non-magnetic value”, and all the values lying below this envelope are consid-
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ered as the depolarized Q=I values due to the Hanle effect. From our modeling

efforts we know that the magnetic fields cause an enhancement in the polarization

value for � > 0:35 (see also Faurobert-Scholl, 1994). Hence this envelope-fitting

method is good for � 6 0:35 and becomes questionable for � larger than about 0.35.

However, the transition between the large-angle scattering and small-angle scattering

is gradual and smooth. For large �we gradually enter into the regime of the forward-

scattering Hanle effect, for which the kind of techniques developed by Anusha et al.

(2011) have to be adopted to derive the field strengths. Full RT modeling is naturally

needed for intermediate � values. Only for smaller � values it is possible to use a

method that avoids the need for RT. In this approach, we first extract an observed

depolarization factor via the envelope method and then convert this depolarization

into field strength.

Thus we first determine the ratio between the line center Q=I and the corre-

sponding envelope value. This ratio represents the depolarization factor caused by

the Hanle effect for each pixel. The conversion of this factor into field strength is de-

pendent on the choice of the envelope, since it represents a single observable, while

the magnetic field vector is characterized by three parameters (its spatial compo-

nents). The magnetic field is therefore underdetermined, so a conversion cannot be

unique, but it is still meaningful in a statistical sense, as explained in the following.

For photospheric spectral lines an interpretational model with a spatially aver-

aged microturbulent field distribution could be used to convert Hanle depolarization

into field strength (Stenflo, 1982, 1994), because the absence of U=I polarization in

combination with insignificant spatial variations (at resolved scales) in Q=I made

such a microturbulent interpretational model unavoidable (see also Stenflo, 2013).

The situation is, however, entirely different for strong chromospheric lines, such as

the Ca I 4227 Å line, which always exhibit large spatial line core variations in both

Q=I and U=I , such as those in Figure 2.6. As we have spatially resolved these vari-

ations, they should ideally be interpreted in terms of resolved, oriented fields rather

than angular distributions. However, since the field vector is underdetermined by the

single depolarization factor, we need to eliminate the ambiguity by using the statis-

tical approach, dealing with each depolarization factor as if it were obtained through

averaging over an ensemble of field elements. This approach will give field strength

values that are meaningful as averages in a statistical sense.

Vertical fields are immune to the Hanle effect; depolarization can only occur if

the field has a substantial inclination with respect to the vertical direction. Horizontal

fields give the largest depolarization. If we assume the fields to be horizontal, but

with orientations that are random in azimuth angle, and let the Hanle depolarization

be determined by an ensemble average over such a field distribution, then the field

strengths that we extract from this model can be considered to represent lower limits
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to the true average field strength (since there may exist less inclined fields that are

less “visible” to the Hanle effect).

Chromospheric fields are expected to be largely horizontal, forming a “canopy”

over the underlying photosphere. The Hanle depolarization factor k
H

for a horizontal

field distribution with random azimuths can be written as (Stenflo, 1982, 1994)

k

H

= 1� 0:75 sin

2

�

2

; (2.8)

where the Hanle mixing angle �
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B is the field strength to be determined, K = 1 or 2, k(K)




is the collisional branching

ratio for the 2K-multipole and B
0

is the characteristic field strength for the Hanle

effect.

Figure 2.13 shows the histograms of the field strengths obtained when using

Equations (2.8) and (2.9) for all pixels along the spatial direction. By definition, a

depolarization factor should be less than or equal to unity; otherwise, it is unphysical.

However, some points give an unphysical depolarization factor, both because there is

scatter of theQ=I values due to measurement noise and because the chosen envelope

may be too low. In such cases the field strength used for the histograms in Figure 2.13

is set to zero. The number of such zero field points depends on the choice of envelope

and increases as we move away from the limb because of the increasing contribution

from the forward scattering Hanle effect.

Figure 2.13 shows how the field strength fluctuations along the slit vary with

different limb distance. For the derivation of the CLV of the average field strength,

which is shown in Figure 2.14, we do not average the field strength histograms of

Figure 2.13, because they are affected by measurement noise in a nonlinear way

(including the truncation used for the unphysical values); instead we average the

measured Q=I along the slit (causing the Gaussian instrumental noise to get greatly

suppressed) and then convert the average Q=I to field strength. Since the height of

line formation increases with decreasing �, the � variation displayed by Figure 2.14

may be interpreted in terms of a height variation of the field. In view of the limited

statistical sample and the crudeness of the interpretational model, the minor varia-

tions with � in Figure 2.14, which are similar to the ones obtained by Bianda et al.

(1998, 1999), are not significant but are compatible with approximate constancy of

the average field strength over the height range covered by our � range.

Note that we have limited the � range in Figure 2.14 to 0.1––0.35, because as

previously mentioned the envelope method is not applicable for larger � values. Note
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μ = 0.1

μ = 0.2

μ = 0.3

μ = 0.4

Figure 2.13: Histogram of the field strength at different � positions. Field strengths are
computed for each depolarization value in the spatial direction. Different panels along the
row for each � correspond to field strengths obtained using different envelopes. The solid,
dotted, and dashed lines correspond to the solid, dotted, and dashed envelopes in Figure 2.12,
respectively.
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also how the derived mean field strength depends on the choice of envelope. In

spite of these uncertainties, the values are generally limited to the range 6––10 G. We

cannot choose envelopes significantly lower than the one represented by the solid

line (in the bottom panel of Figure 2.6), because one would then get an excessive

number of unphysical depolarization factors. Therefore the 6 G value can be seen as

representing a kind of lower limit for the average field strength.

Figure 2.14: Mean value of field strength (G) derived from averaged Q=I value along the
slit. The solid, dotted, and dashed lines correspond to the mean field strength derived from
the corresponding envelopes indicated in Figure 2.12.

2.7 Conclusions

To understand the depth dependence of various physical quantities in the Sun, such

as the magnetic fields, it is important to model the CLV observations of suitable

atomic and molecular lines. In this chapter we have attempted to model such CLV

observations of the well-known Ca I 4227 Å line. In our approach we take into

account the effects of PRD and RT. The observations of this line were carried out in

quiet regions on the Sun at 14 positions starting from the limb up to the disk center on

2012 October 16 at IRSOL in Switzerland. This line has the largest degree of linear

polarization in the visible region of the SSS and can be modeled by considering a

simple two-level atom picture. When trying to model this CLV data we find that none

of the standard atmospheric models, we first attempted, such as the FAL-F, FAL-A,
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FAL-C, and FAL-X models, could simultaneously fit the observed (I; Q=I) profiles

at all the limb distances. To model the CLV of the line center intensity we need

FAL-F model, which is the hottest, and to model the CLV of the linear polarization

at the line center we need the coolest model, FAL-X. In order to obtain a fit to the

observed Stokes profiles, modifications in the temperature structure of the standard

models become necessary. With suitable modifications in the desired height range,

we constructed FALA and later combined it with FAL-X. While the FALA model

gives a good fit to the PRD peaks, the FAL-X gives a good fit to the line center. The

combined model has the temperature structure of FALA up to 400 km and that of

FAL-X in the upper layers. This new combined model atmosphere gives a good fit

to the entire Q=I at all values of �. In modeling efforts we also found that the Hanle

effect not only depolarizes the line core of Q=I (which is true for smaller �) but

also enhances the line core Q=I for larger � values. This might be due to the highly

structured horizontal magnetic fields in the solar atmosphere.

Although the new combined model provides a fit to the CLV of the observedQ=I ,

it fails to reproduce the observed CLV of the continuum limb-darkening function and

the CLV of the observed line core intensity. Further in our studies to eliminate an

even wider choice of 1D model atmospheres, we attempted the use of recent and

updated FCHHT model atmospheres to obtain a simultaneous fit for the CLV of the

(I; Q=I) profiles of the Ca I 4227 Å line. We find that the FCHHT models also fail

to provide a simultaneous fit to the (I; Q=I) profiles of the Ca I 4227 Å line. This

failure of the 1D models in order to simultaneously fit the observed (I; Q=I) CLV

profiles does not restrain the use of the Ca I 4227 Å as a tool to map the magnetic

fields. To support this claim, we carried out observational analysis to determine field

strength using the Ca I 4227 Å for smaller � values.

To conclude, it appears that no single 1D atmosphere can completely provide

a good representation of the actual solar atmosphere. This shows that the solar at-

mosphere has a far more complex structure. To simultaneously satisfy the various

observational constraints it is therefore unavoidable to go beyond such 1D models––a

difficult problem that needs to be approached step by step. This conclusion is not

at all a technical failure, meaning that our inability to obtain a simultaneous perfect

fit to the CLV of the (I , Q=I) has nothing to do with the weakness of our approach

or the method followed in using 1D solar atmosphere models. Instead it is a “pro-

found failure” indicating that the atmosphere of the Sun has such a complexity that

it is not possible to represent it in terms of a single 1D atmosphere model. It could

mean that the use of 1D models for interpretations of the SSS may give results that

are physically incorrect (since they do not represent solar conditions), although the

results may formally be mathematically correct. However, 1D modeling efforts may

still provide a guideline to the more systematic and sophisticated modeling efforts.
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The Ca I 4227 Å line is one of the many lines in the SSS that we have considered

for our detailed study. However with the dramatic development in the polarimetric

instrumentation we are often confronted with a variety of new features in SSS that

demands sophistication in the existing theoretical approaches. The theoretical con-

centration has always been on studying one of the key parameters that contains the

physics of scattering namely the redistribution matrix. In the next two parts of the

present thesis our aim is to conduct a few studies by relaxing some of the approxima-

tions made in establishing the redistribution matrix and further see its implications

on the emergent Stokes profiles.
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Polarized line formation with
angle-dependent partial frequency

redistribution





Chapter 3

The effect of electron scattering

redistribution on atomic line

polarization*

An Overview

The polarization of spectral lines is generated by the scattering of angularly anisotropic

incident radiation field on the atoms in the stellar atmosphere. This atomic scattering

polarization is modified by frequency non-coherent scattering of line photons on free

electrons. With modern spectro-polarimeters of high sensitivity, it is possible to de-

tect such changes in the spectral line polarization caused by scattering on electrons.

We present new and efficient numerical techniques to solve the problem of line ra-

diative transfer with atomic and electron scattering frequency redistribution in planar

media. The evaluation and use of angle-dependent partial frequency redistribution

(PRD) functions (both atomic as well as electron scattering type) in the transfer

equation require a lot of computing effort. In this chapter, we apply a decomposi-

tion technique to handle this numerically difficult problem. This recently developed

technique is applied for the first time to the electron scattering partial redistribution.

This decomposition technique allows us to devise fast iterative methods of solving

the polarized line transfer equation. An approximate lambda iteration (ALI) method

and a method based on Neumann series expansion of the polarized source vector

are proposed. We show that these numerical methods can be used to obtain a solu-

tion of the problem, when both atomic and electron scattering PRD are considered

together. This is in contrast with the classical numerical methods which require a

great amount of computing time. We show the importance of electron scattering re-

distribution in the far wing line polarization, which has practical implications in the

*The contents of this chapter are based on Supriya et al. (2012, 2014a)
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analysis of polarized stellar or solar spectra, where non-coherent electron scattering

(NCES) controls the line wing transfer.

3.1 Introduction

The importance of electron scattering in stellar line formation problems has been

recognized for a long time. Dirac (1925) derived the angle-dependent redistribution

function for the scattering of low-energy photons (h� < m

e




2

) on thermal electrons.

He arrived at the conclusion that the shift of the lines cannot be produced by such a

scattering mechanism, but the broadening may be possible. In early type stars where

electron density is high, the scattering of radiation by electrons play an important

role. Electron scattering effects on spectral lines was investigated by Münch (1948)

for semi-infinite atmosphere in which an absorption line is formed, surrounded by a

finite layer of electrons. Since in this case, the photons are scattered from the con-

tinuum into the line core, he obtained line profiles with shallower core and broader

wings. Hummer & Mihalas (1967) emphasized the importance of treating electron

scattering as a redistribution process and its effects on line formation in O and B

stars. They show the dependence of angle-averaged electron scattering redistribu-

tion function on the frequency difference between outgoing and incoming photons,

and that the effect of NCES is to smoothen out the frequency dependence of the radi-

ation field at each depth. They show that near the boundary of the atmosphere, where

the mean intensity in the continuum is lower than in the line, this mechanism will be

effective in removing photons from the line, thereby leading to a wider and deeper

line than would be obtained if the electrons were completely ignored. The broad

emission-line wings observed in many Be stars were attributed to electron scatter-

ing of line photons (Marlborough, 1969). It was concluded by Bernat & Lambert

(1978) that the very broad H� emission wings in P Cyg were caused by electron

scattering. The �3483 line of N
IV

in the WN 6 star HD 192163 was observed to

have P cygni type of profile with large emission wings which was accounted for as

the non-coherent scattering on free electrons by Castor et al. (1970). Auer & van

Blerkom (1972) studied the influence of electron scattering in an expanding medium

and they obtained asymmetric line profiles extending preferentially in the red wing.

The influence of electron scattering on emission line profiles arising from stellar

winds in early-type stars was studied in detail by Hillier (1991). He noticed that

the use of electron scattering redistribution will noticeably affect the strength of line

wings. Chugai (2001) shows that large line width of broad narrow-topped emission

line by early-time spectra of SN 1998S originate as a result of multiple scattering of

the photons of the narrow line by the thermal electrons of the opaque circumstellar

shell gas. Reference to earlier work in this field can also be found in Rangarajan
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et al. (1991).

Studies on the combined effect of angle-averaged PRD and NCES on the polar-

ized resonance line transfer were done by Nagendra et al. (1993). The effects of

including angle-dependent PRD functions for the scattering by atoms and electrons

were studied by Rangarajan (1999). In the above two references, a discrete ordinate

method was used to solve the radiative transfer equation in the Stokes vector basis.

In this chapter, the polarized radiative transfer equation including angle-dependent

PRD and NCES are discussed. In resonance scattering in lines, there exist cor-

relations between the directions and the frequencies of the incident and scattered

photons, which is referred to as PRD. The line polarization is very sensitive to the

nature of the frequency redistribution mechanism. The scattering of line photons by

electrons can also make significant contribution in the far line wings.

The problem of angle-dependent PRD is characterized by the coupling between

the angle and frequency variables. This makes the evaluation of scattering integrals,

and the solution of polarized transfer equation a challenging problem. A decom-

position technique to reduce the non-axisymmetric Stokes vector transfer equation

to cylindrically symmetric one was developed by Frisch (2007). This technique

was extended by Frisch (2009) to handle angle-dependent PRD in the presence of a

magnetic field. In the absence of magnetic fields, the angle-dependent PRD prob-

lem simplifies as shown by Frisch (2010). In this case, the polarized radiation field

represented by the Stokes vector (I; Q) can be decomposed into four irreducible

components. In this chapter, we use a similar decomposition technique to handle

angle-dependent NCES.

Sampoorna et al. (2011) have presented three iterative techniques to solve the

polarized line transfer equation in the irreducible basis. These techniques were de-

veloped for the purpose of solving angle-dependent atomic redistribution problem.

Here we extend these techniques to study the combined effects of PRD by atoms

and non-coherent scattering by electrons, on polarized line formation. We present

two numerical methods to solve these problems. First one is the ALI type method

and the other is based on Neumann series expansion of the polarized source vector

component. In recent decades, the ALI methods introduced for scalar radiative trans-

fer problems have been generalized to solve Rayleigh scattering and the weak-field

Hanle effect transfer problem (see the reviews by Nagendra, 2003; Trujillo Bueno,

2003; Nagendra & Sampoorna, 2009). These methods have the advantage of be-

ing much faster while remaining as accurate as the traditional exact or perturbative

methods (see Nagendra et al., 1999).

The outline of the present chapter is as follows. In Section 3.2, we present the

relevant transfer equations. Here we extend the Fourier decomposition used for

atomic line scattering to treat the process of frequency redistribution by electrons.
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In Section 3.3 we present two different numerical methods, namely a polarized ALI

method, and the “scattering expansion method” (SEM) based on Neumann series

expansion. In Section 3.4, we present a detailed study of angle-dependent electron

scattering redistribution function and the corresponding azimuth-averaged redistri-

bution function. Results are presented in Section 3.5, where we discuss in detail

the angle-dependent PRD and electron scattering effects on the Stokes I and Q=I

profiles. Concluding remarks are presented in Section 3.6.

3.2 Governing equations

3.2.1 The transfer equation in the Stokes vector basis

We consider a one-dimensional isothermal planar atmosphere. The slab is assumed

to be self-emitting or irradiated on the lower boundary by an axisymmetric-radiation

field. Magnetic fields, when present are assumed to be micro-turbulent. Under these

assumptions, the radiation field is axisymmetric and can be described by two Stokes

parameters I and Q. The reference direction for negative Q is defined by electric

vector parallel to the surface of the atmosphere. For a concise presentation, we

denote I by I
0

and Q by I
1

in all the equations appearing in this chapter. However

in the figures we use the standard notation of (I; Q) to mean the Stokes parameters.

The polarized transfer equation for the Stokes parameters I and Q can be written

in component form as

�

�I

i

��

= ['(x) + �




+ �

e

℄ [I

i

(�; x; �)� S

i

(�; x; �)℄ ; i = 0; 1; (3.1)

where � = 
os �, with � being the co-latitude with respect to the atmospheric normal,

� the line optical depth defined by d� = �k

l

dz, with k
l

the frequency-integrated line

absorption coefficient and '(x) the normalized Voigt function. The frequency x is

measured in the units of Doppler width. The ratio of continuum to line absorption

coefficient is denoted by �




and the ratio of electron scattering coefficient to line

absorption coefficient is denoted by �
e

. The above transfer equation 3.1 is the same

as Equation 1.18 except that the contribution from electron scattering is now included

in Equation 3.1 through �
e

and the total source vector. The total source vector is now

given by

S

i

(�; x; �) =

'(x)S

l;i

(�; x; �) + �




S


;i

+ �

e

S

e;i

'(x) + �




+ �

e

; (3.2)

where S

;i

are the components of the unpolarized continuum source vector. We as-

sume that S

;0

= B, where B is the Planck function at the line center and S

;1

= 0.
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The line source vector can be written as

S

l;i

(�; x; �) = G

i

(�) +

Z I

X

j=0;1

R

ij;a

(x;
; x

0

;


0

)

'(x)

I

j

(�; x

0

; �

0

)

d


0

4�

dx

0

; (3.3)

where d


0

= sin �

0

d�

0

d�

0. The outgoing and incoming ray directions 
 and 
0

are defined, respectively, by their polar angles (�; �) and (�

0

; �

0

). For simplicity, we

assume that the primary source is unpolarized, namely that G
0

(�) = �B, where � is

the standard two-level atom thermalization parameter. The term R

ij;a

(x;
; x

0

;


0

)

denotes the elements of the redistribution matrix for Rayleigh scattering on atomic

bound states (Domke & Hubeny, 1988; Bommier, 1997a). A two-level atom model

with unpolarized lower level is assumed.

The electron scattering source vector can be written as

S

e;i

(�; x; �) =

Z I

X

j=0;1

R

ij;e

(x;
; x

0

;


0

)I

j

(�; x

0

; �

0

)

d


0

4�

dx

0

; (3.4)

where R
ij;e

(x;
; x

0

;


0

) denotes the elements of the electron scattering redistribu-

tion matrix. The angle-dependent electron redistribution matrix is written as

R

e

(x;
; x

0

;


0

) = P

R

(
;


0

) r

e

(x; �; x

0

; �

0

;�); (3.5)

where P R

(
;


0

) is the angular phase matrix for Rayleigh (resonance) scattering of

line photons on free electrons––which scatter according to the dipole scattering law.

The angle-dependent electron scattering redistribution function is given by

r

e

(x; �; x

0

; �

0

;�) =

1

2

p

�w sin(�=2)

exp

�

�(x� x

0

)

2

4w

2

sin

2

(�=2)

�

; (3.6)

where 
os� = 
os � 
os �

0

+ sin � sin �

0


os�, with � = � � �

0. The quantity w

denotes the ratio of electron to atomic Doppler widths. Further details and behavior

of r
e

(x; �; x

0

; �

0

;�) are discussed in Section 3.4.

In this chapter we present also the results for angle-averaged electron redistribu-

tion problem. The relevant redistribution matrix is written as

R

e

(x;
; x

0

;


0

) = P

R

(
;


0

) r

e

(x; x

0

); (3.7)

where a factorization of the polarized phase matrix and the redistribution function

is assumed (hybrid approximation). The expression for the angle-averaged electron

redistribution function is given in Equations (19)––(21) of Nagendra et al. (1993, see

also, Rangarajan et al. 1991; Auer & Mihalas 1968).
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3.2.2 The transfer equation in the irreducible spherical tensor

basis

According to the decomposition technique described in Frisch (2010), we can write

S

l;i

and I
i

(�; x; �) as

S

l;i

(�; x; �) =

X

K;Q�0

~

T

K

Q

(i; �)S

K

Q;l

(�; x; �); (3.8)

I

i

(�; x; �) =

X

K;Q�0

~

T

K

Q

(i; �) I

K

Q

(�; x; �); (3.9)

where i = 0; 1. The irreducible tensors ~

T

K

Q

(i; �) are defined in Frisch (2010)

and they are related to the spherical tensors for polarimetry introduced by Landi

Degl’Innocenti (1984, see also Landi Degl’Innocenti & Landolfi 2004). We have

four terms in the summation over K and Q corresponding to K = Q = 0, K = 2

with Q = 0; 1; 2. We remark that the index Q should not be confused with the

Stokes Q parameter. The irreducible line source vector components SK
Q;l

(�; x; �)

may be written as

S

K

Q;l

(�; x; �) = Æ

K0

Æ

Q0

G

0

(�) +

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

~

R

K

Q;a

(x; �; x

0

; �

0

)

'(x)

�

X

K

0

;Q

0

�0

~

�

KK

0

QQ

0

(�

0

) I

K

0

Q

0

(�; x

0

; �

0

); (3.10)

where
~

�

KK

0

QQ

0

(�

0

) =

X

j=0;1

~

T

K

Q

(j; �

0

)

~

T

K

0

Q

0

(j; �

0

): (3.11)

The coefficients ~

�

KK

0

QQ

0

(�) are given in the appendix of Frisch (2010). The functions
~

R

K

Q;a

in Equation (3.10) take the form

~

R

0

0;a

= �~r

(0)

II

+

�

�

(0)

� �

�

~r

(0)

III

; (3.12)

~

R

2

Q;a

= W

2

�

2

n

�~r

(Q)

II

+

�

�

(2)

� �

�

~r

(Q)

III

o

; (3.13)

whereQ = 0; 1; 2 andW
2

(J

l

; J

u

) is the atomic polarizability factor depending on the

angular momentum of the lower and upper levels of the transition. The coefficients

� and �(K) (Bommier, 1997b) are the branching ratios:

� =

�

R

�

R

+ �

I

+ �

E

(3.14)
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and

�

(K)

=

�

R

�

R

+ �

I

+D

(K)

; (3.15)

where �

R

is the radiative rate, �
I

and �

E

are the inelastic and elastic collisional

rates, respectively, and D(K) is the collisional depolarization rate such that D(0)

=

0. The coefficient �
2

takes into account the effects of a microturbulent magnetic

field. It depends on the magnetic field probability density function (see e.g., Landi

Degl’Innocenti & Landolfi, 2004, p.215) and is unity in the absence of magnetic

fields. The ~r(Q)
X

(with X = II or III) are theQth-order azimuthal Fourier coefficients

of the PRD functions r
II

and r
III

of Hummer (1962). They are defined by

~r

(Q)

X

(x; �; x

0

; �

0

) =

2� Æ

0Q

2�

�

Z

2�

0

r

X

(x; �; x

0

; �

0

;�) 
os (Q�)d�: (3.16)

A decomposition technique similar to that of line source vector can be applied also

to the electron scattering source vector. It can be written as

S

e;i

(�; x; �) =

X

K;Q�0

~

T

K

Q

(i; �)S

K

Q;e

(�; x; �); (3.17)

with i = 0; 1. The irreducible components of the electron scattering source vector

are given by

S

K

Q;e

(�; x; �) =

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

~r

(Q)

e

(x; �; x

0

; �

0

)

�

X

K

0

;Q

0

�0

~

�

KK

0

QQ

0

(�

0

) I

K

0

Q

0

(�; x

0

; �

0

): (3.18)

In the case of electron scattering the profile function is unity, and there is no thermal

emission unlike the scattering on atoms. The azimuthal Fourier coefficients have the

same form as Equation (3.16), but with X replaced by e.

For computational purposes, we define a new quantity SK
Q;L

which is a weighted

sum of atomic and electron scattering irreducible source vectors. It is written as

S

K

Q;L

(�; x; �) =

'(x)S

K

Q;l

(�; x; �) + �

e

S

K

Q;e

(�; x; �)

'(x)

: (3.19)

Substituting Equations (3.10) and (3.18) in the above equation, we can write SK
Q;L

as

S

K

Q;L

(�; x; �) = Æ

K0

Æ

Q0

G

0

(�) +

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

[

~

R

K

Q

(x; �; x

0

; �

0

)℄='(x)

�

X

K

0

;Q

0

�0

~

�

KK

0

QQ

0

(�

0

) I

K

0

Q

0

(�; x

0

; �

0

); (3.20)
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where

~

R

K

Q

(x; �; x

0

; �

0

) = [

~

R

K

Q;a

(x; �; x

0

; �

0

) + �

e

~r

(Q)

e

(x; �; x

0

; �

0

)℄: (3.21)

Now the total source vector in the irreducible basis is given by

S

K

Q

(�; x; �) =

'(x)S

K

Q;L

(�; x; �) + �




S

K

Q;


(�)

'(x) + �




+ �

e

; (3.22)

with the continuum source vector SK
Q;


= Æ

K0

Æ

Q0

B. The components IK
Q

corre-

sponding to SK
Q

satisfy a transfer equation similar to Equation (3.1). We intro-

duce the four-component vectors S(�; x; �) = fS

0

0

;S

2

0

;S

2

1

;S

2

2

g

T and I(�; x; �) =

fI

0

0

; I

2

0

; I

2

1

; I

2

2

g

T. Then we can re-write Equation (3.20) in vector form as

S

L

(�; x; �) = G(�) +

Z

+1

�1

Z

+1

�1

~

R(x; �; x

0

; �

0

)

'(x)

�(�

0

)I(�; x

0

; �

0

)

d�

0

2

dx

0

:

(3.23)

The primary source vector G(�) = fG

0

(�); 0; 0; 0g

T, where G
0

(�) = �B with � =

�

I

=(�

I

+ �

R

). The 4� 4 matrix ~

R is diagonal, namely

~

R = diag [

~

R

0

0;a

+ �

e

~r

(0)

e

;

~

R

2

0;a

+ �

e

~r

(0)

e

;

~

R

2

1;a

+ �

e

~r

(1)

e

;

~

R

2

2;a

+ �

e

~r

(2)

e

℄: (3.24)

The 4 � 4 matrix � is a full matrix with elements ~

�

KK

0

QQ

0

. Owing to its symmetry,

it has only ten independent elements (see Equation (3.11) and also Frisch, 2010).

When ~

R is independent of � and �

0 (complete frequency redistribution or angle-

averaged PRD), only the two components of the source vector corresponding to the

index Q = 0 are non-zero.

3.3 Numerical methods of solution

We present two iterative methods to solve the problem of angle-dependent PRD

and angle-dependent NCES. First one is an ALI-type method and the second one

is SEM. These methods for the particular case of scattering on atoms are presented

in Sampoorna et al. (2011). Here we generalize these methods to include NCES.

3.3.1 The polarized approximate lambda iteration approach

The formal solution of the transfer equation for the four-component irreducible vec-

tor I can be written as

I

x�

= �

x�

[S

x�

℄ + T

x�

: (3.25)
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The explicit dependence of I and S on � is neglected and their dependence on x

and � appear as subscripts. T
x�

is the directly transmitted part of the intensity vector

and�
x�

is the frequency- and angle-dependent 4� 4 integral operator. The operator

�

x�

can be written as

�

x�

= �

�

x�

+

�

�

x�

��

�

x�

�

; (3.26)

where ��
x�

is the diagonal approximate operator (see Olson et al., 1986). We can

setup an iterative scheme by writing

S

n+1

x�

= S

n

x�

+ ÆS

n

x�

; S

n+1

L;x�

= S

n

L;x�

+ ÆS

n

L;x�

; (3.27)

where n is the iteration index. Combining Equations (3.26) and (3.27) with Equa-

tion (3.23), we derive an equation for the total line source vector corrections

ÆS

n
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�
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+1

�1

Z

+1

�1

~
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p

x

0

�

�

x
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�

0

�

ÆS

n

L;x

0

�

0

�

d�

0

2

dx

0

= r

n

x�

; (3.28)

where p
x

= '

x

=('

x

+ �




+ �

e

) and rn
x�

= G(�)+J

n

x�

�S

n

L;x�

, which is the residual

vector. The mean intensity is given by

J

n
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=

Z
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�1

Z

+1

�1

~

R
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�
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'
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�
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�
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�

S

n

x

0
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0

�

d�

0

2

dx

0

: (3.29)

To compute the source vector corrections, we use a frequency-angle by frequency-

angle (FABFA) method discussed in Sampoorna et al. (2011). It is extended in

this chapter by including angle-dependent electron scattering redistribution func-

tion along with the angle-dependent PRD functions. Equation (3.28) can be written

formally as

A ÆS

n

L

= r

n

: (3.30)

At each depth point, rn and ÆSn

L

are vectors of length 4N

x

2N

�

, where N
x

is the

number of frequency points in the range [0; x

max

℄ and N

�

is the number of angle

points in the range [0 < � � 1℄. The matrix A thus has dimensions 4N
x

2N

�

�

4N

x

2N

�

. For a given x, x0, �, and �

0, the matrix A can be decomposed into

N

x

2N

�

� N

x

2N

�

of 4 � 4 blocks. In each block, denoted by A, the elements

may be written as

A = Æ

mn

Æ

��

E� w

�

p

n

g

m�;n�

�

�

�

�

n�

; (3.31)

where m = 1; : : : ; N

x

, n = 1; : : : ; N

x

0 , � = 1; : : : ; 2N

�

, and � = 1; : : : ; 2N

�

0 , and

E is the identity operator. The coefficients w
�

denote the �0 integration weights and

g

m�;n�

are defined by

g

m�;n�

=

~

R

m�;n�

'

m

�w

n

; (3.32)
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where �w

n

are the frequency integration weights. This method requires computation

of the matrixA�1 before the iteration cycle.

3.3.2 Scattering expansion method

This method is based on Neumann series expansion of the components of the source

vector contributing to the polarization. This series amounts to an expansion in the

mean number of scattering events (see Frisch et al., 2009). Its first term yields the

so-called single scattering solution. Here, following Frisch et al. (2009), we include

higher order terms. The computation using SEM involves following steps.

(i) Neglecting polarization, first calculate Stokes I which is given by the compo-

nent I0
0

. This is the solution of the non-local thermodynamic equilibrium unpolar-

ized radiative transfer equation, which is calculated using scalar version of the ALI

described in Section 3.3.1. The redistribution function to be used is [ ~R0

0;a

+ �

e

~r

(0)

e

℄.

(ii) Using I0
0

, calculate the single scattered source term for each component S2

Q;L

(Q = 0; 1; 2). It may be written as

h

~

S

2

Q;L

i

(1)

(�; x; �) '

Z

+1

�1

Z

+1

�1

~

R

2

Q

(x; �; x

0

; �

0

)

'(x)

~

�

20

Q0

(�

0

) I

0

0

(�; x

0

; �

0

)

d�

0

2

dx

0

:

(3.33)

The superscript 1 stands for single scattering.

(iii) The radiation field
h

~

I

2

Q

i

(1)

corresponding to each
h

~

S

2

Q;L

i

(1)

is calculated by

calling a formal solver.

(iv)
h

~

I

2

Q

i

(1)

serves as a starting point for calculating the higher order terms. For

order (n),

h

~

S

2

Q;L

i

(n)

'

h

~

S

2

Q;L

i

(1)

+

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

~

R

2

Q

(x; �; x

0

; �

0

)

'(x)

�

X

Q

0

�0

~

�

22

QQ

0

(�

0

)

h

~

I

2

Q

0

i

(n�1)

(�; x

0

; �

0

): (3.34)

The iteration is continued until a convergence criteria is satisfied. The component

I

0

0

is calculated only once in step (i).

Figure 3.1 shows the variation in maximum relative change of the Stokes I source

vector component (
0
0

)

n and of the surface polarization 
n
p

as a function of iteration

number. The quantities (
0
0

)

n and 
n
p

are defined as (see Sampoorna et al., 2011)

(


0

0

)

n

= max

�

d

;x;�

(

j(S

0

0

)

n+1

x�

(�

d

)� (S

0

0

)

n

x�

(�

d

)j

(S

0

0

)

n+1

x�

(�

d

)

)

; (3.35)
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Figure 3.1: Maximum relative change of the Stokes I source vector component (
0
0

)

n (solid
line) and of the surface polarization 


n

p

(dotted line) as a function of the iteration number.
Model parameters are (T , a, �, �




, �
e

, �
E

=�

R

) = (104, 10�3, 10�4, 0, 10�4, 0). The panels
(a) and (b) correspond to the polarized ALI method and the SEM, respectively.

with n the iteration index, �
d

a depth-grid point and




n

p

= max

x;�

�

jP

n+1

x�

� P

n

x�

j

jP

n+1

x�

j

�

; (3.36)

where P = Q=I is the degree of linear polarization at the surface. The convergence

behavior of the polarized ALI and SEM is not much affected by the electron scat-

tering redistribution. It remains somewhat similar to the corresponding pure atomic

redistribution.

3.4 Electron Scattering Redistribution

Electron scattering is known to affect the shapes of the intensity profiles formed in

early-type stars. The inclusion of the electron scattering as a redistribution mecha-

nism would be necessary particularly when the polarization of lines is considered.

In this section, we discuss the nature of the electron scattering redistribution and its

rapid numerical evaluation.

3.4.1 Angle dependent electron scattering redistribution function

Dirac (1925) derived the angle-dependent redistribution function for scattering of

low-energy photons (h� < m

e




2

) on electrons. Chandrasekhar (1950) drew at-
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3.4. Electron Scattering Redistribution

Figure 3.2: Surface plots of angle-dependent electron scattering redistribution functions for
different incoming frequencies x0. The X-axis represents the outgoing frequency x, and the
Y -axis the scattering angle �. Notice that the X-range in panels (a), (b) and (c) are different.
These panels correspond, respectively, to incoming frequencies x0 = 0, 100, and 500.

tention to the possibility of line-broadening by electron scattering and he assumed

the anisotropy of the scattered radiation according to Rayleigh’s phase function and

arrived at the following expression (see Chandrasekhar, 1950, p.336) for angle-

dependent electron scattering redistribution function

r

e

(�; �

0

;�) =

s

m

e




2

4�kT�

2

(1� 
os�)

exp

�

�m

e




2

(� � �

0

)

2

4kT�

2

(1� 
os�)

�

; (3.37)

where � 0 and � are the frequencies of incident and scattered radiation, respectively,

� is the scattering angle, k is the Boltzmann constant, 
 the velocity of light, and

m

e

and T are the electron mass and temperature, respectively. We provide be-

low the laboratory-frame expression for the angle-dependent electron redistribution
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function in atomic Doppler width units. Substituting the electron Doppler width

W = (�

0

=
)

p

2kT=m

e

, and �� = � � �

0, with � = �

0

(Chandrasekhar, 1950), in

Equation (3.37), we obtain

r

e

(�; �

0

;�) =

1

2

p

�W sin(�=2)

exp

�

�(��)

2

4W

2

sin

2

(�=2)

�

: (3.38)

Let x = (� � �

0

)=��

D

, where ��
D

= (�

0

=
)

p

2kT=m

A

, is the atomic Doppler

width in standard notation. The electron redistribution function in these units can

now be written as

r

e

(x; x

0

;�) = (��

D

)

2

r

e

(�; �

0

;�)

=

��

D

2

p

�w sin(�=2)

exp

�

�(x� x

0

)

2

4w

2

sin

2

(�=2)

�

; (3.39)

wherew is the ratio of electron to atomic Doppler widths and is given byw ' 43

p

A,

with A being the atomic weight of the atom under consideration. For a helium atom,

w is nearly equal to 80. The redistribution function obtained in Equation (3.39)

should be normalized to profile function, which in the case of electron scattering

is unity. Thus, the normalized angle-dependent redistribution function for electron

scattering is simply the expression given in Equation (3.6). In Figure 3.2, we show

surface plots of r
e

(x; x

0

;�) as a function of the scattered frequency x and the scat-

tering angle � for incoming frequencies x0 = 0, 100 and 500. The surface plots

show double peak (forward and backward scattering) type of behavior for all cho-

sen x0 values. We see a sharp peak at x = x

0 and � = 0. From Equation (3.39),

it can be seen that r
e

(x; x

0

;�) becomes a delta function for this choice of param-

eters. The forward-scattering peak has a value larger than the backward-scattering

peak. The reason for this is that when � = �, the function takes finite values, unlike

the forward-scattering case. For � other than 0, the function r
e

(x; x

0

;�) behaves

like a Gaussian function centered at x = x

0, with a full width at half-maximum of

4w sin(�=2)

p

ln 2.

3.4.2 The Fourier azimuthal averages and coefficients of electron

redistribution functions

The numerical methods described in Section 3.3 involve the azimuthal Fourier co-

efficients ~r

(Q)

e

for Q = 0; 1; 2. The moments of order Q = 0 are normalized to

unity when integrated over all the incoming frequencies and angles, while the mo-

ments of orders Q = 1 and 2 are normalized to zero. In order to ensure an accurate

normalization of ~r(Q)
e

functions, we subdivide each frequency interval of a typical
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3.4. Electron Scattering Redistribution

Figure 3.3: Surface plots of azimuth averaged electron redistribution functions with Q =

0; 1; 2. The X-axis represents the outgoing frequency x, and the Y -axis the outgoing direc-
tion �. The incoming direction �0 = 0:3. The left-hand column corresponds to the incoming
frequency x

0

= 0, the middle column to x

0

= 100, and the right-hand column to x

0

= 500.
Notice that Q = 1; 2 components can take negative values.
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Figure 3.4: Azimuth averaged electron scattering redistribution function, plotted as a func-
tion of the outgoing frequency x, for different choices of �, �0 and x

0. Solid, dotted, and
dashed curves correspond, respectively, to Q = 0; 1; and 2.
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line radiative transfer frequency grid into a fine mesh of Simpson quadrature points.

A seven-point Gaussian quadrature formula is used for the angular grid. In order

to handle the peaks that occur in the forward-scattering situations (see Figures 3.3

and 3.4) we proceed in the following way. We consider a cut-off scattering angle

�


ut�o�

= 10

�6 radians and assume that the NCES redistribution function keeps

a constant value, given by its value at the cut-off, when � < �


ut�o�

. We have

verified that using a solid angle of 10�6 radians (or even 10

�3 radians) the cut-off

domain very insignificantly affects the normalization properties. The same property

holds also for the emergent Stokes parameters. Therefore, the choice of this cut-off

angle is not critical to the correctness of the results presented in this chapter. The

tests performed with the cut-off angle show that 10�6 radians is a resonable choice.

In Figure 3.3, we show the surface plot of ~r

(Q)

e

as a function of the outgoing

frequency x and the outgoing direction � for the incoming frequencies x0 = 0, 100

and 500, when the incoming direction �0 = 0:3. The functions ~r(0)
e

show frequency

coherent peaks at x = x

0 for all � values. The widths of these peaks remain nearly

constant for all values of x0 and a given choice of � and �0. Further the ~r

(0)

e

function

has narrow peak at � = �

0. The first and second moments (Q = 1; 2) also exhibit

similar behavior, except that they can take negative values. Figure 3.4 shows ~r

(Q)

e

for all the three values Q = 0; 1; 2 as a function of the outgoing frequency x for

different choices of (�; �0) and for different incoming frequencies x0. The frequency

x

0

= 0 and 355 are representative of the line center and wing behaviors, respectively.

Figure 3.4 clearly shows the sharp peaks that appear in Figure 3.3 for all values of

Q. From Figures 3.4(a) and 3.4(b), we observe that the coefficients ~r(Q)
e

decrease in

magnitude with increasing Q. However, for the special case of backward-scattering

(Figure 3.4(c)), the Fourier coefficients for Q = 1 and 2 can become larger than the

corresponding Q = 0 coefficient.

3.5 Results and discussion

In this section, we present the results of computation using parametrized models. We

consider isothermal self emitting constant property planar slabs characterized by (T ,

a, �, �



, �
e

, �
E

=�

R

) in the standard notion. T and a give optical thickness and damp-

ing parameter, respectively. Each subsection pertains to the effect of an important

parameter on the line formation. We illustrate our results through emergent intensity

and polarization profiles. Also we relate them to important macroscopic quantities

that are representative of a given model, namely the optical depth dependence of the

intensity source function S
I

and polarized source function S
Q

. The ratio S
Q

=S

I

is

a measure of the local anisotropy prevailing at different optical depths within the

atmosphere.
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For thick slab case by employing the Eddington-Barbier relation (see Faurobert,

1988; Nagendra et al., 1993), the emergent Stokes parameters can be obtained as

I(� = 0; x; �) = S

I

(� = �='(x); x; �); (3.40)

and

Q(� = 0; x; �) = S

Q

(� = �='(x); x; �); (3.41)

where S
I

and S
Q

are the Stokes source components S
0

and S
1

which are defined in

Equation (3.2). The percentage of polarization is given (approximately) by

p(� = 0; x; �) =

S

Q

(� = �='(x); x; �)

S

I

(� = �='(x); x; �)

� 100: (3.42)

Since S
I

(� = �='(x); x; �) in Equation (3.42) is always positive, the sign of polar-

ization depends on the sign of S
Q

(� = �='(x); x; �) only. Thus, the limb-darkened

radiation field gives negative polarization and the limb-brightened radiation field

gives positive polarization.

On the other hand, in the thin-slab case when the monochromatic optical depth

of the medium is very small (T '(x)=�� 1), the main contribution to the intensity

and polarization at the surface comes from the center of the slab (Faurobert, 1987).

In other words

I(� = 0; x; �) = S

I

(� = T=2; x; �)

T '(x)

�

; � > 0 (3.43)

and

Q(� = 0; x; �) = S

Q

(� = T=2; x; �)

T '(x)

�

; � < 0; (3.44)

for those frequencies that satisfy T '(x)=� � 1. The percentage of polarization is

given(approximately) by

p(� = 0; x; �) '

S

Q

(� = T=2; x; �)

S

I

(� = T=2; x; �)

� 100: (3.45)

The � parameter affects the line formation physically through inelastic collisional

de-exitation of atoms. On the other hand, �



affects spectral lines through absorption

and emission of line radiation in overlapping continuum. Addition of �
e

(electron

scattering) introduces redistribution of line photons and hence quantitative difference

in the wing polarization.
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Figure 3.5: A comparison of emergent Stokes profiles at � = 0:11 for angle-dependent (solid line) and angle-averaged (dashed line) atomic PRD and NCES
redistribution functions. The model parameters used are (a, �, �




, �
e

, �
E

=�

R

) = (10�3, 10�4, 0, 10�4, 0.05). Panels (a), (b) and (c) show the results for T = 1,
100, and 104, respectively.
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Figure 3.6: Plots of S
I

and S

Q

=S

I

for T = 1; 100, and 10

4. Solid and dashed lines represent angle-dependent and angle-averaged cases. The thin lines
correspond to x = 0, and the thick lines to the frequency of far wing secondary maxima in Q=I shown in Figure 3.5. The secondary peak occurs approximately
at x = 100; 500, and 800 for T = 1; 100, and 10

4, respectively. The other model parameters are the same as in Figure 3.5. The inset in panel (c) shows the
variation in S

Q

=S

I

near the surface layers (not visible in the scale adopted for the main figure).
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3.5.1 Stokes profiles with angle-averaged and angle-dependent

partial frequency redistribution and electron scattering

In Figure 3.5, we compare the emergent I and Q=I profiles at � = 0:11 for angle-

dependent and angle-averaged atomic PRD and NCES functions. Both the solutions

are calculated using the SEM discussed in Section. 3.3.2. The PRD used is a mixture

of atomic r
II

and r
III

with �

E

=�

R

=0.05. The depolarizing elastic collision rate D(2)

= 0.5 �

E

. Figures 3.5(a) and (b) clearly show that the angle-averaged and angle-

dependent solutions differ considerably, and in a potentially measurable way. Further

the angle-averaged emergent polarization is smaller or larger than the corresponding

angle-dependent cases, depending on the value of the optical thickness T of the slab.

This difference is seen in pure atomic case also, and the reasons for the differences

are discussed in Sampoorna et al. (2011). As in the pure atomic case, the angle-

averaged and angle-dependent solutions differ only in the thin-slab case. For thick

slabs, the differences are small (see Figure 3.5c). Hence, in practical applications

one can work with angle-averaged functions.

The differences between the results for angle-averaged, and angle-dependent

NCES was pointed out by Rangarajan (1999). Our computations confirm his conclu-

sions. However, we consider the effects of collisions in atomic redistribution through

a combination of r
II

and r
III

using an exact treatment of collisional frequency re-

distribution (according to the formulation of Domke & Hubeny, 1988; Bommier,

1997a). Further we consider large frequency bandwidths (x
max

' 1500 atomic

Doppler widths), so that the far wing behavior of NCES is clearly seen. The inner

parts of the line (x < 10) seem to be controlled by atomic redistribution, whereas

the wings of the (I; Q=I) profiles (x > 10) are controlled by NCES. The I profiles

have a characteristic behavior of double slopes––in the wings––one due to atomic and

the other due to electron scattering. The appearance of the line center peak and the

near wing PRD peak in Q=I depend on the optical thickness of the medium.

In our computations with angle-averaged and angle-dependent NCES, we have

obtained a secondary maxima with higher polarization, occurring in the very far

wings (x & 100). The amplitude and the width of these peaks in Q=I depend

sensitively on �
e

and T . Such peaks are noticable in the pure line case without a

background continuum, and no radiation incident on the boundaries. Incidentally,

such peaks were not noticed in the very far wings in the earlier works by Nagendra

et al. (1993) and Rangarajan (1999) on NCES, possibly because of short frequency

bandwidths, small �
e

and imposition of unpolarized radiation as the boundary con-

dition, which they used in their calculations. In order to understand quantitatively

the appearance of these peaks in Q=I , we have made plots of S
I

and the anisotropy

factor S
Q

=S

I

in Figure 3.6. A comparison of angle-averaged and angle-dependent
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Figure 3.7: The effect of including the electron scattering parameter �
e

on line polarization. Panel (a) is for a slab of optical thickness T = 10

4 and panel (b) is
for T = 10

8. The other model parameters are (a, �, �



, �
e

) = (10�3, 10�4, 10�8 , 10�5). Different line types are as follows: solid line––pure r
II

case, dashed line
––r

II

PRD function and NCES, dot-dashed line ––a combination of r
II

and r
III

with �
E

=�

R

= 0.05, and dash-triple-dotted ––PRD with (r
II

, r
III

) and NCES.
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results is shown for the line center frequency and also for the frequency at which the

secondary maximum of polarization occurs due to NCES. Angle-dependent S
Q

=S

I

shows a slight asymmetry about the slab center at the frequency positions of far wing

peaks.

It is unlike the pure atomic redistribution where S
Q

=S

I

remains symmetric in

a self-emitting constant property media. The symmetry is also maintained in the

angle-averaged case, with and without NCES. From Figure 3.6 we can see that the

value of Q=I at secondary maxima satisfies the relation given in Equation (3.45), to

a good approximation, whenever the condition T '(x)=�� 1 holds good.

3.5.2 Effect of non-coherent electron scattering

Figure 3.7 shows the effect of including NCES and its influence on atomic line po-

larization for slabs of different thickness. From Figure 3.7(a), we see that electron

scattering has similar effects as that of r
III

function (i.e. collisional redistribution)

in the near wing region, x � 5 � 6. Electron scattering behaves like a depolarizing

mechanism, as in the case of r
III

function. However, r
III

does not produce a far wing

peak, electron scattering produces a peak in the frequency range 190 < x < 320.

In the thick-slab case, the appearance of the secondary peak is related to the elec-

tron scattering optical depth (T

e

= �

e

T ) satisfying the condition 0:1 . T

e

. 1.

However, the appearance of secondary peaks in thin-slab cases need not satisfy this

condition (see e.g. Figures 3.5a, b).

From Figure 3.7(b), we can see that the shape of the Q=I profiles is completely

controlled by the electron scattering for all frequencies x & 8. The solid and dot-

dashed curves in Figure 3.7 show that in the pure atomic case r
III

controls the shapes

of (I; Q=I) wing profiles in a collision-dominated plasma. On the other hand, the

electron scattering, when it becomes significant, completely controls the shapes of

the (I; Q=I) wing profiles, irrespective of the atomic redistribution mechanism, or

the presence of collisions (see dashed and dash-triple-dotted curves in Figure 3.7).

In the very far wings, the electron optical depth dominates over the monochromatic

line optical depth resulting in the complete dominance of NCES in the line forma-

tion process, producing characteristic changes in the (I; Q=I) profiles as described

above. The frequency coherence of PRD localizes photons in these far wing frequen-

cies, which are in turn scattered by free electrons. The electron scattering process

Doppler-redistributes these line photons during successive scattering events. Each

electron scattering imparts a large frequency shift to the scattered photon and helps

a line core photon to escape through a wing frequency.

In Figure 3.8, we show the intensity and polarization profiles for angle-averaged

atomic PRD (r
II

) and NCES when the parameter �
e

is varied. It clearly shows the
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Figure 3.8: The effect of varying the parameter �
e

. Panel (a) is for optical thickness T = 10

4 and panel (b) is for T = 10

8. The other model parameters are
(a, �, �




, �
E

=�

R

) = (10�3, 10�4, 10�8, 0). Different line types are solid line (�
e

= 10

�8), dotted line (�
e

= 10

�6), dashed line (�
e

= 10

�5), dot-dashed line
(�

e

= 10

�4), dash-triple-dotted line (�
e

= 10

�3).
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Figure 3.9: The convergence history of the polarization Q=I in the SEM. The dotted line
represent the single scattered solution. The model parameters used are the same as those for
the dot-dashed line in Figure 3.8(a).

effects of NCES in the wing region. The panel (a) is for optical thickness T = 10

4

and the panel (b) is for T = 10

8. As �
e

is increased, i.e. when the electron scattering

is made more dominant, with respect to atomic scattering we see a gradual decrease

in the polarization of the near wing PRD peak, and a shift of the peak towards the

line center. In Figure 3.8(a), we see the secondary peak in the range 190 < x < 320

when the condition 0:1 . T

e

. 1 is satisfied. An analogous behavior is observed,

when �
e

is kept fixed and T is varied. In Figure 3.8(b), for the semi-infinite case,

we see a prominent and nearly constant value of polarization of around � 2% in

the far wing region (x > 300 ) when �

e

= 10

�8 namely for which �

e

T � 1.

Also for this case, the background continuum opacity �



is the same as that of �
e

.

Hence instead of a peak structure, we see a constant value of polarization in the far

wings. However, in both cases (see, Figures 3.8a and b) as �
e

is increased from

10

�8 to 10

�3, the intensity profiles become more deeper. When electron scattering

is a dominant scattering mechanism (as for example in the atmospheres of early-

type stars or supernova ejecta), �
e

can take values like 10�3. In such cases electron

scattering affects not only the wings, but also the entire line profile (see e.g. the

dash-triple-dotted curve in Figure 3.8).

The secondary peak arising due to NCES is seen for all optical thickness satisfy-

ing the condition 0:1 . T

e

. 1. Our numerical experiments with a range of values
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Figure 3.10: Effect of �
E

=�

R

. The emergent I and Q=I profiles at � = 0:11 are computed
for the angle-averaged PRD and NCES. Different line types are solid line (�

E

=�

R

= 0:05),
dotted line (�

E

=�

R

= 0:1), dashed line (�
E

=�

R

= 1), dot-dashed line (�
E

=�

R

= 5) and
dash-triple-dotted line (�

E

=�

R

= 10). Other model parameters are (T , a, �, �
e

, �



) = (104,
10

�3, 10�4, 10�5, 0).

of �
e

and T , which satisfy the above said condition, show that the amplitude of the

secondary peak in the Q=I profile decreases with an increase in optical thickness.

However, the width of the peak increases as we go to higher optical thicknesses. In

order to explore the presence of a strong secondary Q=I peak in the very far wings,

we show in Figure 3.9 the convergence history of the ratioQ=I obtained using SEM.

It also illustrates the convergence properties of the SEM. The single scattered solu-

tion is close to the converged solution except for very large frequencies and a few

iterations are needed to reach the converged solution. The amplitude of the sec-

ondary peak that arises due to NCES is fairly weak in the single scattered solution

(dotted line in Figure 3.9). Thus, the secondary peak is mainly due to transfer effect

(multiple scattering).

3.5.3 Effect of elastic collisions

As the value of �
E

is changed, the relative contributions of r
II

and r
III

also changes.

Nagendra (1994) and Nagendra et al. (2002) have shown that the wings of intensity

I and the linear polarization profiles are quite sensitive to the depolarizing colli-

sions. Figure 3.10 shows the Stokes parameter I and the ratio Q=I calculated with
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the SEM using the angle-averaged redistribution functions and NCES. The factor

�

E

=�

R

is varied from 0.05 to 10. For D(2) we assume the relation D(2)

= 0:5� �

E

.

The polarization amplitude at the line center and the PRD peak in the near wing

region decreases with increase in �

E

=�

R

which is also seen in the pure atomic case

(Nagendra et al., 2002). However, the polarization of the secondary peak arising

due to NCES also shows a similar behavior. Further we see a shift in the position

of the secondary Q=I peak towards lower frequencies as the ratio �

E

=�

R

increases.

The intensity profiles are sensitive to the collisions only in the far wing frequency

regions near and beyond the secondary peak position in Q=I . This is in contrast to

the pure atomic case, where the effects of �
E

=�

R

are felt right from the near wing

frequencies onwards (see Figure 7 of Nagendra et al., 2002).

3.5.4 Effect of non-coherent electron scattering on intrinsically

unpolarized atomic lines

Figure 3.11 shows the emergent I and Q=I profiles at � = 0:11 computed with

angle-dependent atomic PRD and NCES functions. The PRD used is a mixture of

atomic r
II

and r
III

with �

E

=�

R

=0.05. The depolarizing elastic collision rate D(2) =

0.5 �

E

. In Figure 3.11 we consider atmospheric slab of different optical thickness

and the corresponding electron scattering parameter �
e

is chosen such that electron

scattering optical depth T

e

= �

e

T = 1. Further we study three different cases

namely, a) polarized atomic line with NCES (solid line), b) intrinsically unpolarized

atomic line with NCES (dotted line), and c) polarized atomic line without NCES

(dashed line). From Figures 3.11(a), (b) and (c) we see that the secondary peak in

Q=I arises purely as an effect of NCES irrespective of whether the atomic line is

polarized or not. In the thin slab case (optical thickness T 6 100) the inclusion

of NCES affects not only the wings but also the line center. In Figures 3.11(a)

and (b) when the intrinsic polarization of the atomic line is zero and the effects of

NCES are included (the dotted lines) then we see that the emergent polarization is

zero for frequencies x . 3 and is non-zero for other frequencies. Further, for the

thick slab case Figure 3.11(c) though the electron scattering parameter is very small

(�
e

= 10

�8) its effects are seen at frequencies x & 200.

3.5.5 Effect of non-coherent electron scattering and continuum

absorption

Figure 3.12 shows the effect of NCES and continuum absorption coefficient (�



) on

line polarization. We consider unpolarized atomic line for this study so that the ef-

fects of NCES and continuum can be clearly seen. In Figure 3.12 we fix the value
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b) T = 104
, �e= 10-4

c) T = 108
, �e= 10-8

a) T = 100, �e= 10-2

Figure 3.11: A comparison of emergent Stokes profiles at � = 0:11 for different optical
thicknesses. The angle-dependent atomic PRD and NCES redistribution functions are used.
The model parameters used are (a, �, �




, �
E

=�

R

, B) = (10�3, 10�4, 0, 0.05, 1). Panels (a),
(b) and (c) show the results for different optical thickness T and �

e

. See Section 3.5.4 for
line types and details.

of �
e

(= 10

�4) and vary �



. We notice that the shapes of the Stokes profiles are con-

trolled by the relative values of �
e

and �



whichever is dominant. Rangarajan (1999)

showed that even the value of Q=I at the line center of the polarized atomic line is

sensitive to �



. However, in our case, as the atomic line is intrinsically unpolarized,

�




does not affect the line core region. From Figure 3.12 we see that when �




is

dominant it depolarizes the wing polarization originally created by NCES. However,

when �
e

is dominant it polarizes the atomic line in the far wing region.

3.6 Conclusions

The effects of electron scattering on atomic line polarization are studied. The de-

composition technique developed by Frisch (2010) has been extended to the case of
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Figure 3.12: Effect of variation of the parameter �



. The other model parameters are (T , a, �,
�

e

, �
E

=�

R

, B) = (104, 10�3, 10�4, 10�4, 0.05, 1). Different line types correspond to: solid
line (�




= 10

�2), dotted line (�



= 10

�4), dashed line (�



= 10

�6), and dash-triple-dotted
line (�




= 10

�8).

electron scattering. Two numerical methods, namely an ALI-type method and the

other one based on Neumann series expansion, have been developed to solve the

transfer equation including electron scattering. The SEM is of great use particularly

in problems of large dimensionality (very large number of frequency, angle, and

depth grid points). The NCES problem is one such example, which requires a large

number of frequency and angle points. The problem becomes particularly difficult

when angle-dependent PRD and electron scattering are considered. The SEM takes

less computing time and memory as compared to the conventional ALI-type meth-

ods. Both these new methods are far superior (in terms of memory and computing

time) to the traditional solution methods used so far for solving the same problem. A

systematic study of the polarized line formation in a standard two-level picture, but

including an exact treatment of electron scattering mechanism is undertaken. When

electron scattering becomes important, it drastically affects the line profile, in par-

ticular, the line wings. An interesting feature of electron scattering is the generation

of a strong secondary maxima in the Q=I profile (several hundred Doppler widths

away), which can be interpreted in terms of radiative transfer effects. For T � 1

this peak appears when the electron optical depth lies between 0.1 and 1. Our study

clearly shows that a correct treatment of electron scattering redistribution becomes

necessary (either through the use of angle-averaged or angle-dependent functions),

when modeling stellar spectral line polarization, where electron scattering forms an

important source of opacity.

For the studies in this chapter we considered a simple two-level atomic system.

In the next chapter we undertake studies with two-term atomic system and two-level

system with interference between hyperfine levels. We study the impact of using
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angle-dependent redistribution functions in these cases by comparing the emergent

Stokes profiles obtained when angle-averaged functions are used.
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Chapter 4

Quantum interference with

angle-dependent partial frequency

redistribution*

An Overview

Angle-dependent partial frequency redistribution (PRD) matrices represent the phys-

ical redistribution in the process of light scattering on atoms. For the purpose of

numerical simplicity, it is a common practice in astrophysical literature to use the

angle-averaged versions of these matrices, in the line transfer computations. The

aim in this chapter is to study the combined effects of angle-dependent PRD and the

quantum interference phenomena arising either between the fine structure (J) states

of a two-term atom or between the hyperfine structure (F ) states of a two-level atom.

We restrict our attention to the case of non-magnetic and collisionless line scattering

on atoms. A rapid method of solution based on Neumann series expansion is devel-

oped to solve the angle-dependent PRD problem including quantum interference in

an atomic system. We discuss the differences that occur in the Stokes profiles when

angle-dependent PRD mechanism is taken into account.

4.1 Introduction

The Second Solar Spectrum (Stenflo, 1996a; Stenflo & Keller, 1997; Gandorfer,

2000, 2002, 2005) shows several lines which are polarized due to scattering of

anisotropic radiation on atoms. Some of the strong lines such as Ca II H and K,

Mg II h and k and the Ca I 4227 Å serve as probes of the scattering processes tak-

ing place in the solar atmosphere. We know that the physics of light scattering on

*The contents of this chapter are based on Supriya et al. (2013b)
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atoms is fully contained in a quantity called PRD matrix. It describes the correla-

tions between the frequency, angle, and polarization of the incoming and outgoing

radiation. The PRD effects are considerably strong in the wings of the lines. For the

sake of numerical simplicity, angle-averaged versions of the PRD functions are often

used in line transfer computations. However, a correct treatment of line scattering

requires the use of angle-dependent PRD functions which retain the angle-frequency

correlations intact.

The use of angle-dependent PRD functions in the line transfer equation dates

back to Dumont et al. (1977) and Faurobert (1987), who considered the non-magnetic

resonance scattering on atoms. The angle-dependent PRD functions in the case of

magnetic scattering (Hanle effect) were considered by Nagendra et al. (2002, 2003).

These authors solved the transfer problem in the Stokes vector basis. The treatment

of angle-averaged PRD allows certain level of simplification. Basically, the con-

cerned redistribution matrix (RM) that describes line scattering can be written as

a product of a phase matrix (which describes the full polarization and the angular

correlations), and the angle-averaged redistribution function (which contains the fre-

quency correlations). Such a factorized form for the RM (called hybrid approxima-

tion) allowed considerable numerical simplification. Nevertheless, the use of Stokes

vector basis kept the inextricable coupling in polarization between the incoming

and outgoing rays, making the solution of the concerned transfer problem a time-

consuming process. Frisch (2007) introduced an efficient decomposition method

based on the expansion of the phase matrix in terms of the so-called irreducible

spherical tensors for polarimetry introduced by Landi Degl’Innocenti (1984). This

decomposition technique is similar to the earlier methods proposed by Faurobert-

Scholl (1991) and Nagendra et al. (1998) based on the Fourier azimuthal expansion

of the phase matrix. However, the decomposition technique of Frisch (2007) is math-

ematically more elegant and algebraically less tedious. Such a decomposition tech-

nique allowed the application of the polarized approximate lambda iteration method

to obtain rapid solution of the concerned transfer problem in the irreducible basis

(see e.g. Nagendra et al., 1998).

Frisch (2009) presented a decomposition technique for the Hanle scattering prob-

lem with angle-dependent PRD. This technique makes use of both the irreducible

spherical tensor expansion of the Hanle phase matrix and the Fourier azimuthal ex-

pansion of the angle-dependent PRD function. The corresponding non-magnetic

case was discussed in Frisch (2010). Recently these powerful techniques were used

by Sampoorna et al. (2011), Sampoorna (2011b), Nagendra & Sampoorna (2011),

and Supriya et al. (2012) to solve different problems of polarized line formation with

angle-dependent PRD. These techniques, in a modified form (suitable to handle scat-

tering in multi-D media, as well as explicitly angle-dependent PRD), are presented
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in Anusha & Nagendra (2011b, 2012). They are subsequently used in Supriya et al.

(2013a) to solve the Hanle transfer problem in 1D media.

All the papers mentioned above considered the case of a two-level atom model.

In this chapter, we extend the above-mentioned techniques to the case of two types

of atomic systems. One of them is a two-term atom arising due to fine structure

splitting of atomic states, which result in a multiplet. The other atomic system is a

two-level atom with hyperfine structure splitting (HFS) of both the upper and lower

J-levels taken into account. The scattering in a two-term atom is affected by the

interference between the fine structure states - known as J-state interference. The

relevant RM that takes into account J-state interference in the upper term was de-

rived by Smitha et al. (2011b) which is essentially an angle-dependent PRD matrix.

However, an angle-averaged version of this matrix was used by Smitha et al. (2011a)

in line transfer computations in the absence of a magnetic field. The scattering in

a two-level atom with HFS is affected by the interference between the F -states. In

Smitha et al. (2012b), the relevant RM was derived taking into account the inter-

ference between the F -states of the upper J-level, but an angle-averaged version of

this matrix was used in Smitha et al. (2012b) in the line transfer computations. The

purpose in this chapter is to solve the transfer problem using angle-dependent RM

derived for the processes of the J-state interference as well as F -state interference.

In Smitha et al. (2011a), an operator perturbation method was used to solve the

transfer problem. In recent years, a faster method of solving the polarized transfer

equation is developed based on Neumann series expansion (see Frisch et al., 2009). It

is known as scattering expansion method (SEM). Sampoorna et al. (2011); Nagendra

& Sampoorna (2011); Sowmya et al. (2012); Supriya et al. (2012) have applied this

method to a variety of theoretical problems. In Smitha et al. (2012b) an, angle-

averaged version of the SEM was used to solve the transfer equation. In the present

chapter, we propose to apply the SEM to solve the radiative transfer equation with

angle-dependent RM derived for the J-state interference as well as the RM derived

for the case of F -state interference.

In Section 4.2, we present the governing equations of the problem. In Section

4.3, we present the SEM applied to the problem at hand. Section 4.4 is devoted to a

description of the results. In Section 4.5, we present the conclusions.

4.2 Governing Equations

In this section, we describe basic equations necessary to compute Stokes profiles for

the scattering on an atomic system with an unpolarized lower level. The relevant
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transfer equation for the non-magnetic case in the vector form is given by

�

�I(�; x; �)

��

= [�(x) + r℄[I(�; x; �)� S(�; x; �)℄; (4.1)

where � = 
os � with � being the colatitude measured with respect to the normal in a

slab atmosphere. I = (I; Q)

T and S = (S

I

; S

Q

)

T are the Stokes vector and the total

source vector respectively. The Stokes Q is positive when electric vector vibrations

are perpendicular to the solar limb. r is the ratio of continuum to the frequency-

integrated line absorption co-efficient. �(x) is the combined profile function for the

atomic system under investigation. For the case of a two-term atom, it is given by

Equation (10) of Smitha et al. (2011a). For the case of a two-level atom with HFS,

�(x) is given by Equation (7) of Smitha et al. (2012b). � is the line optical depth

scale defined by d� = �k

M

dz, where k
M

is the frequency-integrated line absorption

coefficient for the multiplet. k
M

is given by Equation (8) of Smitha et al. (2011a)

in the case of a two-term atom and by Equation (6) of Smitha et al. (2012b) in the

case of a two-level atom with HFS. x is the reduced frequency expressed in Doppler

width units. The total source vector S can be expressed as

S(�; x; �) =

�(x)S

l

(�; x; �) + rS




�(x) + r

; (4.2)

where S



is the unpolarized continuum source vector represented by S



= BU , with

B the Planck function and U = (1; 0)

T. S
l

is the line source vector given by

S

l

(�; x; �) = �BU +

1

�(x)

Z

+1

�1

dx

0

I

d


0

4�

R(x;
; x

0

;


0

)I(�; x

0

; �

0

); (4.3)

where � = �

I

=(�

I

+ �

R

) is the probability per scattering that a photon is destroyed

by collisional de-excitation. �
R

and �

I

are, respectively, the radiative and inelastic

collisional de-excitation rates from the upper J-states or the upper F -states to the

corresponding lower states. To a first approximation, we assume these rates to be the

same for all the fine structure and HFS states of the upper term. The lower terms are

assumed to be infinitely sharp. 
(�; ') and
0

(�

0

; '

0

) represent the directions of the

outgoing and incoming rays, respectively, in the atmospheric co-ordinate system. '

represents the radiation field azimuth and d
 = sin � d� d'. The RM for an atomic

system in the collisionless regime and in the absence of a magnetic field is denoted

byR(x;
; x0;
0

). The elements of this RM can be expressed as

R

ij

(x;
; x

0

;


0

) =

X

KQ

R

K

(x;
; x

0

;


0

)(�1)

Q

T

K

Q

(i;
)T

K

�Q

(j;


0

); (4.4)
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where i; j = 0; 1 are the Stokes parameter indices. T K

Q

(i;
) are the irreducible

spherical tensors for polarimetry with K = 0; 2 and �K 6 Q 6 +K. Following

Frisch (2007), we can write

T

K

Q

(i;
) =

e

T

K

Q

(i; �)e

iQ'

: (4.5)

Substituting Equation (4.5) in Equation (4.4) we obtain

R

ij

(x;
; x

0

;


0

) =

X

KQ

e

iQ('�'

0

)

R

K

(x;
; x

0

;


0

)(�1)

Q

e

T

K

Q

(i; �)

e

T

K

�Q

(j; �

0

): (4.6)

The RK

(x;
; x

0

;


0

) for the case of J-state interference is given by

R

K

(x;
; x

0

;


0

) =

3(2L

b

+ 1)

2S + 1

X

J

a

J

f

J

b

J

b

0

(�1)

J

f

�J

a


os �

J

b

0

J

b

�[
os �

J

b

0

J

b

(h

II

J

b

;J

b

0

)

J

a

J

f

� sin �

J

b

0

J

b

(f

II

J

b

;J

b

0

)

J

a

J

f

℄(2J

a

+ 1)(2J

f

+ 1)

�(2J

b

+ 1)(2J

b

0

+ 1)

(

L

a

L

b

1

J

b

J

f

S

)(

L

a

L

b

1

J

b

J

a

S

)(

L

a

L

b

1

J

b

0

J

f

S

)

�

(

L

a

L

b

1

J

b

0

J

a

S

)(

1 1 K

J

b

0

J

b

J

a

)(

1 1 K

J

b

0

J

b

J

f

)

: (4.7)

L

a;b

are the orbital angular momentum quantum numbers of the lower and upper

terms, respectively, and S is the spin. J
a;f

and J
b;b

0 are, respectively, the total angu-

lar momentum quantum numbers of the lower and upper term fine structure states.

The (h

II

J

b

;J

b

0

)

J

a

J

f

and (f

II

J

b

;J

b

0

)

J

a

J

f

are auxiliary functions defined in Equations (14)

and (15) of Smitha et al. (2011b). The angle �
J

b

0

J

b

is defined in Equation (10) of

Smitha et al. (2011b). The RK

(x;
; x

0

;


0

) corresponding to the case of F -state

interference can be obtained by making the following replacements in Equation (7)

above (see Smitha et al., 2012b, for more details)

L! J ; J ! F ; S ! I

s

; (4.8)

where F is the total angular momentum quantum number resulting from the angular

momentum addition of J and I

s

, with I

s

being the nuclear spin of the atom un-

der consideration. In Smitha et al. (2011a) as well as in Smitha et al. (2012b), the

angle-averaged versions of RK was used. However, in the present chapter we con-

sider full angle-dependence of theseRK components. Substituting Equation (4.6) in

Equation (4.3), we obtain for the line source vector components

S

l;i

(�; x; �) = G

i

(�) +

1

�(x)

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

X

KQ

e

R

K

Q

(x; �; x

0

; �

0

)
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�(�1)

Q

e

T

K

Q

(i; �)

X

j=0;1

e

T

K

�Q

(j; �

0

)I

j

(�; x

0

; �

0

); (4.9)

where S
l;i

= (S

l;I

; S

l;Q

) and G
i

(�) = �B(1; 0) for i = 0; 1. The eRK

Q

(x; �; x

0

; �

0

)

are the Fourier azimuthal components of RK

(x;
; x

0

;


0

) and defined as

e

R

K

Q

(x; �; x

0

; �

0

) =

1

2�

Z

2�

0

R

K

(x;
; x

0

;


0

)e

iQ('�'

0

)

d('� '

0

): (4.10)

Regrouping terms with the same value of jQj, we get

e

R

K

Q

(x; �; x

0

; �

0

) = C

Q

Z

2�

0

R

K

(x;
; x

0

;


0

) 
os [Q('� '

0

)℄ d('� '

0

);(4.11)

where C
Q

= (2� Æ

Q0

)=2�. Following Frisch (2010) we can decompose the Stokes

source vector S and Stokes vector I in terms of the irreducible spherical tensors.

Such a decomposition provides numerical advantage because the decomposed vec-

tors (called the reduced vectors) are easier to compute. Using the decomposition

I

i

(�; x; �) =

X

KQ>0

e

T

K

Q

(i; �)I

K

Q

(�; x; �); (4.12)

for the Stokes vector I
i

= (I; Q) and a similar decomposition for the primary Stokes

vectorG(�)

G

i

(�) =

X

KQ>0

Æ

K0

Æ

Q0

e

T

K

Q

(i; �)G

K

Q

(�); (4.13)

and substituting in Equation (4.9), the line source vector components can be ex-

pressed as

S

l;i

(�; x; �) =

X

KQ>0

e

T

K

Q

(i; �)S

K

l;Q

(�; x; �); (4.14)

where the irreducible line source vector components take the form

S

K

l;Q

(�; x; �) = Æ

K0

Æ

Q0

G

K

Q

(�) +

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

�

e

R

K

Q

(x; �; x

0

; �

0

)

�(x)

X

K

0

Q

0

>0

�

KK

0

QQ

0

(�

0

)I

K

0

Q

0

(�; x

0

; �

0

): (4.15)

The �KK

0

QQ

0

(�

0

) which appears in the above expression has the form

�

KK

0

QQ

0

(�

0

) =

X

j=0;1

e

T

K

Q

(j; �

0

)

e

T

K

0

Q

0

(j; �

0

): (4.16)

The explicit forms of �KK

0

QQ

0

(�

0

) are given in Frisch (2010).
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4.3 Numerical method of solution

In this section we present an iterative method called SEM to solve the problem of

angle-dependent PRD including quantum interference. SEM is based on Neumann

series expansion of the components of the source vector contributing to the polar-

ization. This Neumann series leads to an expansion in terms of the mean number of

scattering events (see Frisch et al., 2009) and the first term yields the single scattered

solution. The computation using SEM, in the first step, involves the calculation of

Stokes I which is allowed to be given by the dominant component I0
0

. This is the

solution of the non-local thermodynamic equilibrium unpolarized radiative transfer

equation, which is solved using an approximate lambda iteration (ALI) method. The

corresponding source function is given by

S

0

l;0

(�; x; �) = �B +

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

e

R

0

0

(x; �; x

0

; �

0

)

�(x)

I

0

0

(�; x

0

; �

0

): (4.17)

Then the single scattered source term for each component S2

l;Q

(Q = 0; 1; 2) is cal-

culated using I0
0

. It may be written as

�

S

2

l;Q

�

(1)

(�; x; �) '

Z

+1

�1

dx

0

Z

+1

�1

d�

0

2

e

R

2

Q

(x; �; x

0

; �

0

)

�(x)

�

20

Q0

(�

0

)I

0

0

(�; x

0

; �

0

):(4.18)

The superscript ‘1’ stands for single scattering. The radiation field
�

I

2

Q

�

(1)

corre-

sponding to each
�

S

2

l;Q

�

(1)

is calculated by calling a formal solver.
�

I

2

Q

�

(1)

serves as

a starting point for calculating the higher order terms. For order (n),

�

S

2

l;Q

�

(n)

'

�

S

2

l;Q

�

(1)

+

Z

+1

�1
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): (4.19)

The iteration is continued until a convergence criterium is satisfied. We note that the

component I0
0

is calculated only once, which in turn simplifies the computation.

4.4 Results and Discussion

In this section we present the emergent Stokes profiles computed using the angle-

dependent RM for the cases of J-state interference and F -state interference phe-

nomena individually. We consider an isothermal, self-emitting constant property

medium characterized by (T; a; �; r; B). T is the optical thickness of the slab and a

is the damping parameter. The Planck function is set to unity. The grid used for com-
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4.4. Results and Discussion

Figure 4.1: A comparison of emergent Stokes profiles for angle-dependent (solid lines) and
angle-averaged (dotted lines) PRD including J-state interference at � = 0.0254. A planar
slab model with parameters (a, �, r, B) = (10�3, 10�4, 0, 1) are used. Panels (a) and (b)
correspond to optical thickness T = 2 and T = 10

3 respectively.

putations is specified by (N
d

, N
x

, N
�

, N
'

). N
d

denotes the number of depth points

per decade in a logarithmically spaced � -grid with the first depth point at �
1

= 10

�2.

N

x

gives the number of frequency grid points which are very closely and equally

spaced in the line cores and in between the lines, and are sparsely but equally spaced

in the wings of the lines. N
�

, and N
'

specify the number of colatitudes �(�) and az-

imuth angles ', respectively, for both of which we use Gauss-Legendre quadratures.

4.4.1 Fine structure state interference with angle-dependent par-

tial frequency redistribution

A two-term atom with an L = 0 ! 1 ! 0 scattering transition and spin S = 1=2

is considered. The lower and upper terms split into fine-structure levels with J-

quantum numbers J
a

= J

f

= 1=2 and J
b

= 1=2; 3=2 respectively. The allowed tran-

sition between the J-states give rise to a doublet at 5000 Å and 5001 Å. It is assumed

that Doppler widths of both these lines are the same and equal to 0.025 Å. The grid
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Figure 4.2: A comparison of emergent IK
Q

for angle-dependent (solid lines) and angle-
averaged (dotted lines) PRD including J-state interference at � = 0.0254. Slab model pa-
rameters for the panels (a) and (b) are the same as those of Figure 4.1.

used for computation is given by (N
d

,N
x

,N
�

,N
'

) = (5, 308, 7, 15). In Figure 4.1 we

compare the Stokes I profile and the ratio Q=I computed using angle-averaged and

angle-dependent PRD functions including J-state interference effects for different

values of optical thickness T . The difference in Q=I obtained using angle-averaged

and angle-dependent PRD is quite sensitive to T and nearly vanish for very thick

slabs (like T > 10

4). For the cases presented in Figure 4.1, the angle-dependent

effects are largest in the PRD wing peaks of 5000 Å line. The antisymmetric PRD

peaks about the 5001 Å line and the wavelength region in between the two lines are

insensitive to angle-dependent effects and are purely controlled by J-state interfer-

ence effects. In the case of T = 10

3, the angle-dependent effects seem to reduce

the asymmetry between the wing PRD peaks of 5000 Å line (brought about by the

J-state interference effects), when compared to the corresponding angle-averaged

case.

The differences between angle-averaged and angle-dependent solutions can be

analyzed using irreducible components IK
Q

of the Stokes vector as done for a standard

two-level atom case in Sampoorna et al. (2011). Same arguments hold good in the

present case also. The Stokes vectors I and Q in terms of the components IK
Q

which
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Figure 4.3: A comparison of emergent Stokes profiles for angle-dependent (solid lines) and
angle-averaged (dotted lines) PRD including F -state interference at � = 0.0254. A planar
slab model with parameters (a, �, r, B) = (2� 10

�3, 10�4, 0, 1) are used. Panels (a) and (b)
correspond to optical thickness T = 2 and T = 10

3 respectively.

depend on � , x, and �, can be written as
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In Figure 4.2, we show a plot of the components IK
Q

corresponding to the atmo-

spheric models used in Figure 4.1. We see that for angle-averaged PRD functions

the components Q 6= 0 are zero. The component I0
0

is the dominant component

contributing to the Stokes I , which is insensitive to the type of PRD function used,

namely angle-averaged or angle-dependent (see the top panels of Figure 4.1). From

Figure 4.2, we see that the component I0
0

is insensitive to the choice of the PRD

function, while the components I2
Q

are quite sensitive and hence the sensitivity of

Q=I to angle-dependent PRD. We have verified that at the disk center the angle-

dependent functions become azimuthally symmetric and hence the angle-dependent

polarization profiles closely match with the corresponding angle-averaged profiles.
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4.4.2 Hyperfine structure state interference with angle-dependent

partial frequency redistribution

We consider a two-level atom with J = 1=2 ! 3=2 ! 1=2 scattering transition

and nuclear spin I
s

= 3=2. Due to HFS, the upper J-state with J

b

= 3=2 splits

into four F -states with F
b

= 0; 1; 2; 3 and the lower J-state with J
a

= 1=2 splits

into two F -state with F
a

= 0; 1. There are six allowed radiative transitions between

these F -states which satisfy selection rule �F = 0;�1 and are given in Table 1 of

Smitha et al. (2012b). Doppler widths of all the lines are again taken to be 0.025

Å. The grid used for the computations is given by (N
d

, N
x

, N
�

, N
'

) = (5, 417, 7,

15). In this section, we present the studies analogous to those performed in the case

Figure 4.4: A comparison of emergent IK
Q

for angle-dependent (solid lines) and angle-
averaged (dotted lines) PRD including F -state interference at � = 0.0254. Slab model pa-
rameters for the panels (a) and (b) are the same as those of Figure 4.3.

of J-state interference. Therefore, Figures 4.3 and 4.4 are analogous to Figures 4.1

and 4.2, but for the case of F -state interference. Like in the case of two-term atom

with J-state interference and two-level atom with zero nuclear spin, in the present

case of F -state interference the difference inQ=I computed with angle-averaged and

angle-dependent PRD are mainly seen in the wing PRD peaks (see Figure 4.3) for

slabs with T 6 10

3. For slabs with still larger thickness, angle-dependent effects are
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negligible and therefore angle-averaged PRD functions can safely be used. Again,

these differences can be analyzed by studying the irreducible spherical components

I

K

Q

shown in Figure 4.4. Further, we have verified that the behavior of center-to-

limb variation of I and Q=I profiles for F -state interference case is similar to the

corresponding J-state interference case.

4.5 Conclusions

We solve the non-magnetic line transfer problem taking into account both the angle-

dependent PRD and the effects of quantum interference (J-state and F -state interfer-

ences individually), and test the validity of using the angle-averaged approximation

of the PRD (as done in Smitha et al. 2011a, 2012b) to solve this problem. The studies

have been carried out for two types of atomic system (namely a two-term atom with

zero nuclear spin and a two-level atom with non-zero nuclear spin) in a collisionless

regime and with unpolarized lower level. The decomposition technique developed by

Frisch (2010) to solve line transfer problem with angle-dependent PRD for the case

of standard two-level atom with zero nuclear spin is now extended to the case when

quantum interference effects are included. This technique helps us to decompose

the polarized radiation field into four components that are cylindrically symmetric

and satisfy the standard transfer equation. Further, this decomposition technique al-

lows us to solve the transfer equation with angle-dependent PRD including quantum

interference phenomena using an efficient numerical technique called SEM.

Numerical results for polarized line transfer problem including J-state interfer-

ence as well as F -state interference are presented. The differences between angle-

averaged and angle-dependent solutions in both the cases are noticed particularly in

the near wing PRD peaks. The quantum interference signatures in Q=I are not af-

fected by the angle-dependent effects because these effects arise more from atomic

physics than from radiative transfer. In both the J-state and F -state interference

cases, the differences between angle-averaged and angle-dependent solutions remain

sensitive to the optical thickness T of the slab. The differences are particularly large

for slabs of smaller optical thickness (like T 6 10

3), but vanish for very thick slabs.

However, over the whole optical depth range the differences never get large enough

to be of practical importance for the theoretical modeling of observational data.

There is therefore generally no need to invoke the much more computer-intensive

angle-dependent PRD, since the angle-averaged version is accurate enough for all

practical purposes.

The studies done in Chapters 3 and 4 were concerned with the effects of us-

ing angle-dependent redistribution function in two-different problems in the non-

magnetic regime. In the next chapter we study the effects of angle-dependent PRD
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functions in the presence of weak magnetic fields i.e., the Hanle effect. The problem

of using the angle-dependent PRD functions in presence of magnetic fields is nu-

merically expensive and in the next chapter we discuss about the efficient numerical

techniques to handle this complex problem.
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Chapter 5

An efficient decomposition technique

to solve angle-dependent Hanle

scattering problems*

An Overview

Hanle scattering is an important diagnostic tool to study weak solar magnetic fields.

Partial frequency redistribution (PRD) is necessary to interpret the linear polariza-

tion observed in strong resonance lines. Usually angle-averaged PRD functions are

used to analyze linear polarization. However, it is established that angle-dependent

PRD functions are often necessary to interpret polarization profiles formed in the

presence of weak magnetic fields. Our aim is to present an efficient decomposition

technique, and the numerical method to solve the concerned angle-dependent line

transfer problem. Together with the standard Stokes decomposition technique, we

employ Fourier expansion over the outgoing azimuth angle to express in a more con-

venient form, the angle-dependent PRD function for the Hanle effect. It allows the

use of angle-dependent frequency domains of Bommier to solve the Hanle transfer

problem. Such an approach is self-consistent and accurate compared to a recent ap-

proach where angle-averaged frequency domains were used to solve the same prob-

lem. We show that it is necessary to incorporate angle-dependent frequency domains

instead of angle-averaged frequency domains to solve the Hanle transfer problem

accurately, especially for the Stokes U parameter. The importance of using angle-

dependent domains has been highlighted by taking the example of Hanle effect in the

case of line transfer with vertical magnetic fields in a slab atmosphere. We have also

studied the case of polarized line formation when micro-turbulent magnetic fields

are present. The difference between angle-averaged and angle-dependent solutions

*The contents of this chapter are based on Supriya et al. (2013a)
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is enhanced by the presence of micro-turbulent fields.

5.1 Introduction

We know that the polarization of line radiation is caused by resonance scattering

on bound atomic levels and a modification of this process by external magnetic

fields is called the Hanle effect. The linear polarization of strong resonance lines is

particularly sensitive to the type of the frequency redistribution mechanism used in

their evaluation especially in the presence of magnetic fields. The differences of the

diffuse radiation field between the linear polarization (Q=I) profiles computed us-

ing angle-averaged and angle-dependent PRD functions are illustrated in Faurobert

(1988) and Sampoorna et al. (2011) in the non-magnetic (Rayleigh) case. Nagendra

et al. (2002) showed that Stokes U profiles computed in planar slabs, for the case of

Hanle effect, using the angle-averaged PRD functions differ significantly from those

computed using angle-dependent PRD functions.

In the case of angle-dependent PRD functions, the strong coupling that exist be-

tween the incoming and scattered radiation makes their evaluation and subsequent

use in transfer equation numerically expensive. The use of decomposition tech-

nique, developed by Frisch (2009) for the Hanle effect and Frisch (2010) for the

Rayleigh case, simplifies this numerically expensive problem. In the non-magnetic

case, Sampoorna et al. (2011) used this decomposition technique and developed nu-

merical methods to solve the polarized transfer problem with angle-dependent PRD

functions . They also present a detailed historical account of the works on angle-

dependent PRD in spectral line polarization. In Sampoorna (2011b) Hanle transfer

problem with angle-dependent PRD was solved using single scattering approxima-

tion. Further in Nagendra & Sampoorna (2011, hereafter, NS11) the full Hanle

transfer problem with angle-dependent PRD functions was solved by including mul-

tiple scattering terms and using scattering expansion method (SEM). It may be noted

that SEM was first formulated by Frisch et al. (2009) for solving the polarized line

transfer equation with complete frequency redistribution (CRD).

In all the above mentioned papers, a Fourier-expansion of the angle-dependent

PRD function over azimuth angle difference (���0) is employed, where � and �0 are

the azimuth angles of the outgoing and incoming rays. This technique was first intro-

duced by Domke & Hubeny (1988) and was further developed by Frisch (2009) for

the Hanle transfer problem. The decomposition technique of Frisch (2009) allowed

the Hanle transfer problem to be solved in an azimuth independent Fourier basis.

In NS11 this decomposition technique was used together with the angle-averaged

frequency domains (approximation III of Bommier, 1997b) to solve the Hanle trans-

fer problem with angle-dependent PRD functions. As one has to use in principle,
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angle-dependent domains themselves for angle-dependent PRD transfer problems,

the approach taken in NS11 is inconsistent. Such an approximate approach was

taken, because it allowed to work in an azimuth independent Fourier basis. Clearly

in an axisymmetric Fourier basis, one cannot apply angle-dependent frequency do-

mains as they explicitly depend on azimuth difference (���0). This inconsistency is

at the base of the slight differences in the angle-dependent Hanle solutions presented

in NS11 (see Figure 4 in that paper), and those presented in Nagendra et al. (2002).

Indeed, Anusha & Nagendra (2012) pointed out that the use of angle-averaged fre-

quency domains for the angle-dependent Hanle transfer problem (as done in NS11)

results in a loss of information.

To overcome this inconsistency, we adopt the technique of the Fourier expan-

sion of angle-dependent Hanle PRD matrix over only the outgoing azimuth an-

gle � as suggested in Anusha & Nagendra (2012, see also Anusha & Nagendra

2011b). Such an expansion was proposed to solve polarized transfer problems in

multi-dimensional media, where the radiation field is non-axisymmetric even in the

absence of a magnetic field. In this chapter we apply the decomposition proposed

by them to the simpler case of polarized transfer in one-dimensional media, and in

the presence of a magnetic field. We show that an expansion only over � allows to

incorporate angle-dependent frequency domains for angle-dependent PRD functions

‘self consistently’ to solve the transfer problem in the magnetic case.

In Section 5.2, we describe the decomposition technique employed for the Hanle

effect with angle-dependent PRD. In Section 5.3, we discuss the behavior of az-

imuthal Fourier components of redistribution matrix elements. In Section 5.4, we

give the equations of the SEM to solve the Hanle transfer problem. In Section 5.5,

we discuss the results obtained by considering our new method of azimuth expan-

sion. A comparison with the results obtained from the perturbation method described

in Nagendra et al. (2002) and those obtained by using angle-averaged domains (in

NS11) is done. In the same section we also revisit the well known problem of ver-

tical field Hanle effect which arises only due to the angle-dependent PRD in line

scattering. Further, we discuss in detail the role of micro-turbulent magnetic fields

on line transfer using angle-averaged and angle-dependent versions of the redistri-

bution matrix. Conclusions are presented in Section 5.6.

5.2 The decomposition technique

The polarized transfer equation for the Stokes vector can be written in the component

form as

�

�I

i

��

= ['(x) + r℄ [I

i

(�; x;
)� S

i

(�; x;
)℄ ; (5.1)
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where i = 0; 1; 2 refer to the Stokes parameters (I; Q; U) respectively. The ray

direction is given by 
 = (�; �), with � = 
os

�1

(�) and � being the polar angles.

x is the frequency in non-dimensional units. The line optical depth is denoted by �

and '(x) is the normalized Voigt function H(a; x), where a represents a constant

damping parameter. The ratio of continuum to the line absorption coefficient is

denoted by r. The total source vector is given by

S

i

(�; x;
) =

'(x)S

l;i

(�; x;
) + r S


;i

'(x) + r

; (5.2)

where S

;i

are the components of the unpolarized continuum source vector. We

assume that S

;0

= B

�

0

, where B
�

0

is the Planck function at the line center, and

S


;1

= S


;2

= 0. The line source vector can be written as

S

l;i

(�; x;
) = G

i

(�) +

Z

+1

�1

I

2

X

j=0

^

R

ij

(x;
; x

0

;


0

;B)

'(x)

I

j

(�; x

0

;


0

)

d


0

4�

dx

0

;

(5.3)

where 
0

(�

0

; �

0

) is the direction of the incoming ray defined with respect to the at-

mospheric normal. The solid angle element d


0

= sin �

0

d�

0

d�

0 where �0 2 [0; �℄

and �0 2 [0; 2�℄. The primary source is assumed to be unpolarized, so that G
0

(�) =

�B

�

0

and G
1

(�) = G

2

(�) = 0. Here, ^

R

ij

(x;
; x

0

;


0

;B) is the Hanle redistribution

matrix with angle-dependent PRD, and B represents an oriented vector magnetic

field. The thermalization parameter � = �

I

=(�

R

+�

I

), with �

I

and �

R

being the in-

elastic collisional de-excitation rate and the radiative de-excitation rate, respectively.

The Equations 5.1 - 5.3 is the same as Equations 1.18 - 1.20. They are repeated here

for clarity.

In the decomposition method used in this chapter, the Stokes vector (I; Q; U) is

first decomposed into a set of six irreducible components IK
Q

, using which we can

construct an infinite set of integral equations for their Fourier coefficients. Follow-

ing Frisch (2009) we can decompose the Stokes source vector into six irreducible

components SK
Q

as

S

i

(�; x;
) =

X

K=0;2

Q=+K

X

Q=�K

T

K

Q

(i;
)S

K

Q

(�; x;
); (5.4)

with a similar decomposition for the Stokes vector I
i

in terms of IK
Q

. The T K

Q

(i;
)

are irreducible spherical tensors for polarimetry introduced by Landi Degl’Innocenti
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(1984). The irreducible line source vector components are then given by

S

K

l;Q
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dx
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where � [= 
os

�1

(
:


0

)℄ is the scattering angle, GK

Q

(�) = (�B

�

0

; 0; 0; 0; 0; 0)

T, and

R

KK

0

QQ
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are the elements of angle-dependent Hanle redistribution matrix given by
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In this chapter we use approximation II of Bommier (1997b) according to which the

redistribution matrix is written as a product of magnetic kernel NK

QQ

0

(m;B) and the

angle-dependent redistribution functions R
II;III

(x; x

0

;�) of Hummer (1962). Here

the index m (= 1; 2; 3; 4; 5) stands for different frequency domains which depend

on (x, x0, �). The coefficients �
KQ
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;K

0

Q

00

(


0

) are defined by
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The irreducible components IK
Q

and SK
Q

and the coefficients �
KQ

0

;K

0

Q

00 are complex

quantities. For practical computations, we prefer working with the real quantities.

In order to transfer complex quantities into the real space, we follow the procedure

given in Frisch (2007). First we define

I

K;x

Q

(�; x;
) = Re fI

K

Q

(�; x;
)g;

I

K;y

Q

(�; x;
) = Im fI

K

Q

(�; x;
)g: (5.8)

Using these real components, it can be shown thatSr

= (S
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; S
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1

; S

2;y

1

; S
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2

; S
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)

T

and the corresponding intensity vector Ir satisfy the transfer equation given in Equa-

tion (5.1) with S
i

and I
i

replaced bySr and Ir, respectively. Now using the ^T matrix

given in Section 5.3 of Frisch (2007) the irreducible line source vector in terms of

the real quantities can be written as

S
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HereRr;KK

0

QQ

00

has the same form as Equation (5.6) withNK

QQ

0

and �

KQ

0

;K

0

Q

00 replaced

by N r;K

QQ

0

and �

r

KQ

0

;K

0

Q

00

. The Q indices take values [0;+K℄. The elements of ma-

trix �

r

KQ

0

;K

0

Q

00

(


0

) are listed in Appendix D of Anusha & Nagendra (2011a). The

explicit form of N r;K

QQ

0

(m;B) can be found in Appendix A of Anusha et al. (2011)

where they are denoted by M (i)

(B) with i playing the role of m in our notation.

The formal solution of the transfer equation can now be written as
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; for � < 0: (5.10)

The irreducible components of the line source vector in Equation (5.9) continue to be

non-axisymmetric, because of the presence of angle-dependent redistribution func-

tion. It is computationally advantageous to express Sr;K

l;Q

in terms of axisymmetric

irreducible components. This can be achieved through the introduction of Fourier

azimuthal expansion of the angle-dependent PRD functions. In this chapter we use

approximation II of Bommier (1997b), the expressions of which for the frequency

domains depend on the scattering angle �, and hence on
 and
0. Therefore, to be

consistent, we apply Fourier decomposition to the redistribution matrix which con-

tains the angle-dependent frequency domain information (see Anusha & Nagendra,

2012). This can be done as follows:
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where the Fourier coefficients are given by
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(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B) =

Z

2�

0

d�

2�

e

�ik�

R

r;KK

0

QQ

00

(m; x; x

0

;�;B): (5.12)

The angle-dependent PRD functionsR
II;III

(x; x

0

;�) are periodic functions of �with

a period 2� because of which each element of the redistribution matrix eR(k)KK

0

QQ

00

is

2�-periodic. We remark that in the previous attempts on Fourier decomposition, the

expansion of angle-dependent functions R
II;III

(x; x

0

;�) over (���0) was tradition-

ally used (see Domke & Hubeny, 1988; Frisch, 2009, 2010). We show below that an

expansion over � of the angle-dependent redistribution matrix (as done in Anusha

& Nagendra, 2012), provides a consistent way of including ‘angle-dependent fre-
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quency domains’ when performing angle-dependent PRD computations. The matrix

elements eR(k)KK

0

QQ

00

are studied in detail in Section 5.3. Similar azimuthal Fourier

expansions for the primary source term G

K

Q

(�) can be written as

G

K

Q

(�) =

k=+1

X

k=�1

e

ik�

~

G

(k)K

Q

(�); (5.13)

with

~

G

(k)K

Q

(�) =

8

<

:

G

0

(�) if k = 0;

0 if k 6= 0:

(5.14)

Inserting the Fourier azimuthal expansions of Rr;KK

0

QQ

00

(m; x; x

0

;�;B) and G

K

Q

in

Equation (5.9), we obtain an expansion for Sr;K

l;Q

which can be expressed as

S

r;K

l;Q

(�; x;
) =

k=+1

X

k=�1

e

ik�

~

S

(k)K

l;Q

(�; x; �); (5.15)

with

~

S

(k)K

l;Q

(�; x; �) =

~

G

(k)K

Q

(�) +

Z

+1

�1

dx

0

I

d


0

4�

1

'(x)

�

X

K

0

=0;2

Q

00

=+K

0

X

Q

00

=0

e

R

(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B) I

r;K

0

Q

00

(�; x

0

;


0

): (5.16)

Substituting from Equation (5.15) for Sr;K

l;Q

in formal solution we get

I

r;K

Q

(�; x;
) =

k=+1

X

k=�1

e

ik�

~

I

(k)K

Q

(�; x; �); (5.17)

where

~

I

(k)K

Q

(�; x; �) =

Z

+1

�

e

�(�

0

��)'(x)=�

~

S

(k)K

Q

(�; x; �)

'(x)

�

d�

0

; for � > 0;

~

I

(k)K

Q

(�; x; �) = �

Z

�

0

e

�(�

0

��)'(x)=�

~

S

(k)K

Q

(�; x; �)

'(x)

�

d�

0

; for � < 0: (5.18)

Thus from Equations (5.16) and (5.17) we get an expression for azimuthal Fourier

source vector components as

~

S

(k)K

l;Q

(�; x; �) =

~

G

(k)K

Q

(�) +

Z

+1

�1

dx

0

I

d


0

4�

1

'(x)
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�

X

K

0

=0;2

Q

00

=+K

0

X

Q

00

=0

e

R

(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B)

k

0

=+1

X

k

0

=�1

e

ik

0

�

0

~

I

(k

0

)K

0

Q

00

(�; x

0

; �

0

): (5.19)

Notice that the Fourier indices k and k0 are not coupled to Q and Q00 unlike in the

case of decomposition over (�� �

0

) (see Frisch, 2009, NS11).

The advantage of working in real irreducible basis is that we can reduce the

computational time by restricting the values of azimuthal Fourier index k to positive

space using conjugate symmetry relations as shown below. This simplification is

analytically complicated in complex basis. From Equation (5.12) we can see that the

components eR(k)KK

0

QQ

00

satisfy the symmetry relation

e

R

(k)KK

0

QQ

00

=

�

e

R

(�k)KK

0

QQ

00

�

�

: (5.20)

Using the above relation in Equation (5.11), we get

R

r;KK

0

QQ

00

(m; x; x

0

;�;B) = Re

�

k=+1

X

k=0

(2� Æ

k0

) e

ik�

e

R

(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B)

�

:

(5.21)

Notice that the Fourier series constitutes only the terms with k > 0 which is use-

ful in practical computations. With this simplification and following as in Equa-

tions (5.15)-(5.19), we get

S

r;K

l;Q

(�; x;
) = Re

"

k=+1

X

k=0

(2� Æ

k0

) e

ik�

~

S

(k)K

l;Q

(�; x; �)

#

(5.22)

and

I

r;K

l;Q

(�; x;
) = Re

"

k=+1

X

k=0

(2� Æ

k0

) e

ik�

~

I

(k)K

l;Q

(�; x; �)

#

: (5.23)

The ~

S

(k)K

l;Q

(�; x;
) now takes the form

~

S

(k)K

l;Q

(�; x; �) =

~

G

(k)K

Q

(�) +

Z

+1

�1

dx

0

I

d


0

4�

1

'(x)

X

K

0

=0;2

Q

00

=+K

0

X

Q

00

=0

�

e

R

(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B)Re

"

k

0

=+1

X

k

0

=0

(2� Æ

k

0

0

)e

ik

0

�

0

~

I

(k

0

)K

0

Q

00

(�; x

0

; �

0

)

#

:(5.24)
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5.3 Azimuthal Fourier components of the redistribu-

tion matrix elements

In this section, we present the azimuth angle dependence of the Fourier decomposed

matrix elements of the redistribution matrix, namely e

R

(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B).

From Equation (5.21), it is clear that the value of k extends from 0 to +1. For

numerical evaluation it is necessary to truncate this infinite series. Our studies show

that the series can be truncated at k = 4. We compute Fourier components eR(k)KK

0

QQ

00

numerically. This we do by numerical integration ofRKK

0

QQ

00

over the azimuth angle �

using a Gauss-Legendre quadrature with 32 grid points between [0; 2�℄.

Figure 5.1 shows the eR(k)20

00

element of the redistribution matrix as a function of

x

0 and �0 for a given set of x, �, �0 and the magnetic field parameters. The main

feature is that the k = 0 component is the dominant term. Even though k 6= 0

terms depend sensitively on �0, their magnitudes are several orders smaller than the

k = 0 component. For this reason, we can truncate the Fourier azimuthal expansion

of the redistribution matrix elements to the fifth term itself without causing signif-

icant errors. In fact for practical computation one can truncate the series at k = 2

itself. This would help in rapid computation of the angle-dependent PRD problems

in practical applications. However, in the theoretical studies presented in the chapter

we use k = 4. From Figure 5.1 it follows that the higher order components show

several harmonics as �0 varies from 0 to 2�. This behavior is confined to x0 . 3

when x = 0. For larger values of x0, the components approach the value zero. We

have verified that the above conclusions remain valid for arbitrary choice of x, �, �0

and the magnetic field parameters and for other combinations of K, K 0, Q, Q00.

5.4 Scattering expansion method for Hanle effect with

angle-dependent partial frequency redistribution

In Section 5.3, we showed that the azimuthal Fourier expansion of the redistri-

bution matrix (see Equation 5.21) can be truncated to the fifth term. Thus, for

k = 0; 1; 2; 3; 4, we obtain a finite set of 54 coupled integral equations. The di-

mensionality of the problem increases to 54 complex quantities from 54 real quan-

tities when we work in full space (i.e. �4 6 k 6 +4). Thus working in positive

half space is computationally advantageous. In this section we present an iterative

method to solve this set of coupled equations. This method is based on Neumann

series expansion of the components of the source vector contributing to the polar-

ization. Sampoorna et al. (2011) applied this method to solve the transfer problem

with angle-dependent PRD in the non-magnetic case and named it as SEM. These
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authors also show the efficiency of SEM over the core-wing-based polarized approx-

imate lambda iteration (ALI) method. NS11 employed SEM to solve Hanle trans-

fer problem with angle-dependent PRD. The results obtained by them showed slight

inconsistency as compared to the results obtained from perturbation method (Nagen-

Figure 5.1: Fourier azimuthal components of the type II redistribution matrix elements are
shown as a function of x0 and �0 for x = 0, � = �=2, �0 = � and (�, �

B

, �
B

) = (1, 30°, 0°).

The first five panels from left to right correspond to the real part of e

R

(k)20

00

and the remaining

panels refer to the imaginary part of e

R

(k)20

00

.
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dra et al., 2002). This might be due to the use of angle-averaged frequency domains

(approximation III) to solve the Hanle transfer problem with angle-dependent PRD

functions. Consistency in the results can be obtained by actually using the angle-

dependent frequency domains (approximation II).

In SEM, first neglecting polarization we calculate Stokes I . We assume that

Stokes I is cylindrically symmetric and is given by the component ~

I

(0)0

0

itself to

an excellent approximation. This approximation yields k0 = K

0

= Q

00

= 0 in

Equation (5.24). The resulting component is the solution of a non-local thermody-

namic equilibrium unpolarized radiative transfer equation with the line source func-

tion given by

~

S

(0)0

l;0

(�; x; �) = �B

�

0

+

Z

+1

�1

dx

0

I

d


0

4�

1

'(x)

�

e

R

(0)00

00

(m; x; x

0

; �;


0

;B)

~

I

(0)0

0

(�; x

0

; �

0

): (5.25)

Equation (5.25) can be solved using a scalar ALI method based on a core-wing

approach. Keeping only the contribution of ~

I

(0)0

0

on the RHS of Equation (5.24) to

the K = 2 coefficients and k = 0; 1; 2; 3; 4, each component ~

S

(k)2

l;Q

can be written

as

h

~

S

(k)2

l;Q

(�; x; �)

i

(1)

'

Z

+1

�1

dx

0

I

d


0

4�

1

'(x)

�

e

R

(k)20

Q0

(m; x; x

0

; �;


0

;B)

~

I

(0)0

0

(�; x

0

; �

0

): (5.26)

The superscript 1 stands for the single scattering approximation to the polarized

component of the source vector. The corresponding radiation field
h

~

I

(k)2

Q

i

(1)

for

k = 0; 1; 2; 3; 4 is calculated with a formal solver and it serves as a starting solu-

tion for calculating the higher-order terms. The higher-order terms can be obtained

by substituting for ~

I

(k

0

)2

Q

00

appearing in the RHS of Equation (5.24), from
h

~

I

(k)2

Q

i

(1)

.

We see that indices k; k0; Q and Q0 are now decoupled whereas they were coupled

in the case of Fourier decomposition over (�� �

0

). Correspondingly the number of

non-zero
h

~

I

(k)2

Q

i

(1)

has increased from 25 to 54 when changing from Fourier expan-

sion over (� � �

0

) to that over �. As a result the dimensionality of the problem has

increased in the single-scattered solution computation.

In the computation of higher order scattering terms, apart from keeping the cou-

pling of (K = 2; Q) components with other polarization components (K 0

= 2; Q

00

),

we also keep the coupling of k with all other k0 terms. We recall that in NS11 cou-

pling of k with k0 = 0 terms were only retained. Thus ~

S

(k)2

l;Q

at order n are now given
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by

h

~

S

(k)2

l;Q

(�; x; �)

i

(n)

'

h

~

S

(k)2

l;Q

(�; x; �)

i

(1)

+

Z

+1

�1

dx

0

I
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1

'(x)

Q

00

=2

X

Q

00

=0

�

e

R

(k)22

QQ

00

(m; x; x

0

; �;


0

;B)Re

�

k

0

=+1

X

k

0

=0

(2� Æ

k

0

0

) e

ik

0

�

0

h

~

I

(k

0

)2

Q

00

(�; x

0

; �

0

)

i

(n�1)

�

:

(5.27)

From Figure 5.1 it can be seen that k = 0 component of the redistribution matrix

elements dominate over the higher order terms (k 6= 0). For this reason, despite

a strong dependence of eR(k)KK

0

QQ

00

on �0, it is sufficient in the summation over k0 to

retain the leading term (namely k0 = 0) in practical computations. The inclusion of

higher order terms k0 > 0 do not affect the solutions significantly. Using only k0 = 0

term also saves great amount of computing effort.

Figure 5.2: Stokes profiles at � = 0:112 computed using three numerical methods, namely
the perturbation method (solid line), the NS11 approach (dotted line), and the self consistent
approach used in this chapter (dashed line). Model parameters are (T , a, �, r, B

�

0

) = (10,
10

�3, 10�3, 0, 1). The magnetic field parameters are taken as (�, �
B

, �
B

) = (1, 30°, 0°).
The left panel shows the results computed using pure R

II

function and the right panel is for
a combination of R

II

and R
III

functions with �
E

=�

R

= 1.
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5.5 Results and discussions

We compare the Stokes parameter I and the ratios Q=I and U=I computed from our

present approach with the perturbation method of Nagendra et al. (2002) and NS11

approach. The perturbation method treats linear polarization as a perturbation to

the scalar intensity, and computes the polarization in a two-step process, wherein an

accurately computed Stokes I is used as an input in the evaluation of the polarized

scattering integral. In successive perturbations, the Stokes Q and U are computed

more and more accurately until convergence is reached. The NS11 approach is dis-

cussed in Sections 5.1 and 5.5.1. We consider self-emitting plane-parallel, isother-

mal atmospheres with no incident radiation at the boundaries. The slab models are

characterized by (T , a, �, r, B
�

0

, �
E

=�

R

), where T is the optical thickness of the

slab, and �

E

is the elastic collision rate. The depolarizing collision rate D(2) is set

to �

E

=2. The plank function B
�

0

is taken as unity at the line center. The polariz-

ability factor W
2

is taken as unity (i.e. we consider a J = 0 ! 1 ! 0 scattering

transition with J being the total angular momentum quantum number). The vector

magnetic field in the Hanle scattering problem is defined through the field strength

parameter � = g!

L

=�

R

, with g being the Landé factor of the upper level and !
L

the

Larmor frequency; the field inclination (�

B

; �

B

) defined with respect to the atmo-

spheric normal. For angle and frequency discretization, we have used quadratures of

the same order as those used by NS11. Therefore, we do not elaborate here on the

computational aspects.

5.5.1 A comparison with previous approaches to solve the angle-

dependent Hanle transfer problem

In this section we present the Stokes profiles of the lines formed in a magnetized slab

scattering according to Hanle PRD matrix formulated by Bommier (1997b). In the so

called approximation II and III of Bommier (1997b), the switch over from the Hanle

phase matrices (in the core) to the Rayleigh phase matrix (in the wings) is achieved

through the use of angle-dependent and angle-averaged frequency domains, respec-

tively. It is shown by Bommier (1997b) that the use of frequency domains simplifies

the numerical evaluation of the redistribution matrices.

It is natural that in angle-dependent radiative transfer computations involving

angle-dependent functions, one should use approximation II involving angle-dependent

functions. However, as already discussed in Sections 5.1 and 5.4, in NS11 angle-

averaged domains were used in computing the angle-dependent redistribution ma-

trix. Although such an approach is inconsistent, it provides a rapid means of solv-

ing the Hanle angle-dependent PRD problems. In the present chapter we test their

119



5.5. Results and discussions

approach by actually using angle-dependent frequency domains while computing

angle-dependent redistribution matrix (which is fully consistent). In Figure 5.2, we

show a comparison of results obtained by the NS11 and the present approach, along

with those obtained from the simple perturbation method of Nagendra et al. (2002),

which is also consistent, like the present approach. The left panels in Figure 5.2

show the Stokes profiles computed using pure R
II

function. One can clearly see that

the NS11 approach differs from the present approach particularly in the frequency

range 3 . x . 5. The present approach and perturbation method give same results.

The impact of the approximation used in the NS11 is more severe on the Stokes U

parameter. The right panels in Figure 5.2 show the results computed using the same

model as in the left panels, but for the introduction of elastic collisions (a combina-

tion of R
II

and R
III

). One can clearly see that the differences between NS11 and the

present approach still exist, although the collisions decrease these differences. The

present approach, unlike the approximate treatment followed in NS11, thus provides

a self-consistent approach to compute the redistribution matrix (i.e. the use of angle-

dependent domains to compute angle-dependent redistribution matrices), at the same

time requiring manageable computing resources . This has practical implications in

realistic modeling of the observed Stokes profiles.

Table 5.1 shows a comparison of computing resources required by three numerical

Table 5.1: Comparison of CPU time taken by different methods for radiative transfer com-
putations. The model parameters used for the computation are (T , a, �, r, B

�

0

, �
E

=�

R

) =
(2� 10

6, 10�3, 10�3, 0, 1, 1)

Method Time (minutes) Memory
Present approach 28 13GB

Perturbation method 112 7.6GB
NS11 approach 33 226MB

methods. Compared to the perturbation method that requires large computing time

(112 minutes to obtain a solution), the approximate method of NS11, and the present

method are less expensive. In spite of being inconsistent, the approximate method

of NS11 requires far less computing memory compared to the other two methods.

This is because in NS11 the polarized transfer equation is solved in a azimuth inde-

pendent Fourier basis, which thereby avoids introducing azimuth angle grids. The

present approach requires larger memory because we now need to discretize the az-

imuth angle �0 and store the huge matrix eR(k)KK

0

QQ

00

(m; x; x

0

; �;


0

;B). The memory

requirement of the present approach is even larger than that of perturbation method

because the former involves solving 54 coupled integral equations in Fourier basis,

while the later involves solving 3 coupled integral equations in Stokes basis. How-

ever, unlike the present approach the convergence is not always guaranteed in the
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perturbation method, as angle-frequency coupling is more intricate in Stokes basis

than in Fourier basis.

Figure 5.3: A comparison of emergent Stokes profiles computed by three numerical methods
discussed in the text. The profiles are presented for � = 0:112 and for a vertical magnetic
field (�, �

B

, �
B

) = (1, 0°, 0°). Different line types represent same cases as in Figure 5.2.
The slab model parameters are (T , a, �, r, B

�

0

, �
E

=�

R

) = (2� 10

4, 10�3, 10�3, 0, 1, 1).

5.5.2 The vertical field Hanle effect

It is expected that when the magnetic field is parallel to the symmetry axis of the slab

(the atmospheric normal), the Hanle effect should vanish. In other words the Stokes

U parameter should be zero in this case. This characteristic behavior is satisfied

when we work with angle-averaged redistribution functions. When angle-dependent

redistribution function is used this behavior is not satisfied. In other words, Stokes

U does not vanish, in spite of the field being vertical, as long as the angle-dependent

redistribution function is used. The non-zero emergent Stokes U is due to coupling

of Stokes U to Stokes I through the components eR(k)KK

0

QQ

0

for k 6= 0. The reason for

this unexpected behavior is also discussed by Frisch et al. (2001) and numerically
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demonstrated in Nagendra et al. (2002). We revisit this interesting problem in Fig-

ures 5.3 and 5.4. In Figure 5.3 we show the Stokes profiles computed using NS11 and

the present approach, and compare it with the results from the perturbation method.

The differences between the NS11 and the present approach are drastic in Stokes

U parameter. The Stokes U in the frequency range 3 . x . 5 has opposite signs.

The present approach produces Stokes U consistent with the perturbation method.

The NS11 approach for approximation II seems to be inadequate in computing U in

this particular problem. Such a large difference between the results obtained from

NS11 approach and the perturbation method prompts us to conclude that it is safer

to use angle-dependent frequency domains to solve angle-dependent Hanle transfer

problems.

Figure 5.4 shows the center-to-limb variation of linear polarization for a vertical

magnetic field. The intensity exhibits the characteristic limb darkening in the line

core and limb brightening in the wings. The Q=I shows limb brightening through-

out the line profile. The dependence on � is non-monotonic in the core region in

U=I . Since the angle-dependent functions become azimuthally symmetric at the

disk center the U=I approaches zero as the line of sight approaches the disk center.

In the line wings, U=I tend to zero for all �’s which is due to the Rayleigh scattering

in the line wings, that produces U=I = 0 by axisymmetry.

5.5.3 The Hanle effect with micro-turbulent magnetic fields

It is known that the presence of a weak turbulent magnetic field in the solar at-

mosphere can be detected using Hanle effect. In the case of CRD, Frisch et al.

(2009) showed that the polarization obtained using Hanle effect is quite sensitive to

the choice of field strength distribution and in general, micro-turbulence is a safe

approximation to represent weak turbulent magnetic fields. For a micro-turbulent

magnetic field, the scale of variation of the field is small compared to the mean free

path of the photons, and this allows to replace all the field dependent physical pa-

rameters by their averages over the magnetic field vector probability density function

(PDF). In our problem this condition leads to the averaging of the magnetic kernel

N

rK

QQ

0

(m;B) over the magnetic field vector PDF. In the present chapter we use a

PDF corresponding to the isotropic distribution of field orientation (�
B

, �
B

) and a

single value of the field strength. As shown in Stenflo (1982, 1994) the Hanle prob-

lem with this choice of PDF reduces then to a resonance polarization problem, with

a modified value of Q=I . In other words, the micro-turbulent averaged magnetic

kernel namely



N

rK

QQ

0

(m;B)

�

becomes diagonal, and only



N

r2

00

(m;B)

�

element

is of relevance. The explicit form of



N

r2

00

(m;B)

�

is given by (see Appendix B of
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Figure 5.4: Stokes I and ratios Q=I and U=I for different emergent angles (� = 
os

�1

�)
computed for a vertical magnetic field. The atmospheric model is same as in Figure 5.3.
Different line types are: solid line, � = 0.025; dotted line, � = 0.129; dashed line, � = 0.297;
dot-dashed line, � = 0.50; dash-triple-dotted line, � =0.702; long-dashed line, � = 0.871; and
thick solid line, � = 0.974.

Frisch et al., 2009)
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(m)
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2

(m)

1 + 4�

2

(m)

; (5.28)

where �(m) denotes the Hanle �-parameter in different frequency domains. We re-

fer the reader to Equations (89) of Bommier (1997b) for the explicit form of �(m)

in different frequency domains where the Hanle effect is operative. In frequency do-

mains where the Rayleigh scattering is present, �(m) = 0. Figure 5.5(a) shows the

ratio Q=I obtained using the present approach and the NS11 approach in the pres-

ence of micro-turbulent magnetic field. The difference between the results obtained

using these different methods mainly exists in the transition region 3 . x . 5. Fig-

ure 5.5(b) shows the comparison ofQ=I profiles computed using angle-averaged and

angle-dependent redistribution matrices. For angle-averaged computations, we use
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Figure 5.5: Stokes Q=I for emergent angle � = 0:112 computed for the case of micro-
turbulent magnetic field. The atmospheric model is (T , a, �, r, B

�

0

, �
E

=�

R

) = (10, 10�3,
10

�3, 0, 1, 0). Panel (a) shows the comparison of the present approach (solid line) and
NS11 approach (dotted line). Panel (b) shows the comparison of angle-averaged and angle-
dependent cases. Different line types are : non-magnetic case, solid lines; deterministic mag-
netic field, dashed lines; and micro-turbulent magnetic field, dot-dashed lines. The thick and
thin lines represent angle-averaged and angle-dependent cases respectively. For the micro-
turbulent magnetic field case, � = 1 and for the deterministic magnetic field case, (�, �

B

,
�

B

) = (1, 30°, 0°).

redistribution matrices computed in angle-averaged domains (approximation III of

Bommier, 1997b), and for angle-dependent computations the corresponding angle-

dependent redistribution matrices are computed in angle-dependent domains (ap-

proximation II of Bommier, 1997b). Three different sets of results are presented in

Figure 5.5(b), namely non-magnetic, deterministic field, and micro-turbulent field

results. We see that in the case of the Hanle effect with micro-turbulent magnetic

field, there is depolarization in the line core and in the near wing frequencies as

compared to the other two cases. Our studies show that in the case of the Hanle

effect with micro-turbulent magnetic field, the differences between angle-averaged

and angle-dependent results are prominent in thin slab cases and reduce considerably

in thick slab cases. These differences between angle-averaged and angle-dependent

results, especially in the 3 . x . 5 region (apart from the line core), were already

noticed by Nagendra et al. (2002), for the deterministic magnetic field case. It is

interesting to note that such differences get enhanced in the presence of a micro-

turbulent magnetic field. This is probably because of the localization of line photons

within the micro-turbulent scattering eddies, resulting in a relatively larger number
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of scattering. These differences can be clearly seen from Figure 5.5(b).

5.6 Conclusions

In this chapter we have solved the angle-dependent Hanle scattering problem us-

ing the angle-dependent PRD theory (approximation II of Bommier, 1997b). This

computationally expensive problem is solved using an iterative method based on

the Neumann series expansion (SEM). Following Anusha & Nagendra (2011a) we

decompose the Stokes parameters in terms of azimuthally symmetric Fourier coeffi-

cients, by expanding the Hanle redistribution matrix in terms of the radiation azimuth

�. Only such a decomposition allows the use of angle-dependent frequency domains

for solving the angle-dependent Hanle scattering problems. In contrast a decompo-

sition, based on the expansion in terms of (�� �

0

), as done in NS11, does not allow

the use of angle-dependent domains to solve the angle-dependent Hanle scattering

problem. For this reason a simpler approach was suggested by NS11 which used

angle-averaged frequency domains (approximation III of Bommier, 1997b), to solve

the angle-dependent Hanle transfer problem. We show that their approach does not

always hold good. We have carried out a numerical study to show the differences

between the solutions obtained by NS11 approach and the self-consistent approach

used now in this chapter. The U=I profiles in particular show significant differences

in the core to wing transition region (3 . x . 5) of the line. The special case of

vertical field Hanle effect is considered as a case study, and the differences between

the NS11 and the present approach are examined. It is shown that the present method

offers a self-consistent and accurate method of solving the difficult problem of angle-

dependent partial redistribution with Hanle scattering. The interesting behavior of

Q=I profiles in the presence of micro-turbulent magnetic fields is also examined. We

show that the differences between angle-averaged and angle-dependent solutions are

enhanced by the presence of a micro-turbulent field. The differences are noticed in

both the line core and near wing regions (3 . x . 5).

In the next part of the thesis we relax another important approximation generally

made in studying the effects of redistribution function on polarized line formation

namely, the effects of the polarization of the lower level. Generally in the standard

methods to study the polarized radiative transfer, the lower level is assumed to be

unpolarized. In the next part of the thesis we consider the case of a two-level atom

with polarized lower level. We derive the appropriate redistribution matrix and study

the influence of lower-level polarization on the polarized line profiles formed under

PRD.
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Chapter 6

Polarized line formation with

lower-level polarization and partial

frequency redistribution *

An Overview

In the well-established theories of polarized line formation with partial frequency re-

distribution (PRD) for a two-level and two-term atom it is generally assumed that the

lower level of the scattering transition is unpolarized. However the existence of un-

explained spectral features in some lines of the Second Solar Spectrum (SSS) points

toward a need to relax this assumption. There exists a density matrix theory that ac-

counts for the polarization of all the atomic levels, but it is based on the flat-spectrum

approximation, corresponding to complete frequency redistribution (CRD). In the

present chapter we formulate a theory for magnetized media that includes both the

effects of PRD and the lower level polarization (LLP) for a two-level atom. First we

derive a collisionless redistribution matrix that includes the combined effects of the

PRD and the LLP. We then formulate the relevant transfer equation and solve it using

a two stage approach. For the purpose of illustration we consider two case studies in

the non-magnetic regime, namely, the J
a

= 1, J
b

= 0 and J
a

= J

b

=1, where J
a

and

J

b

represent the total angular momentum quantum numbers of the lower and upper

states respectively. Our studies show that the effects of LLP are significant only in

the line core. This leads us to propose a simplified numerical approach to solve the

concerned radiative transfer problem.

*The contents of this chapter are based on Supriya et al. (2016)
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6.1 Introduction

We know that the linear polarization of the spectral lines is produced due to the ab-

sorption, emission and scattering of radiation in the solar atmosphere. The anisotropic

illumination of the atom induces atomic alignment, which in turn gives rise to the po-

larization of the radiation (scattering polarization). There are two important theoret-

ical approaches developed so far to study the physics of scattering polarization. The

first one is the self-consistent approach developed by Landi Degl’Innocenti (1983)

using the density matrix formalism, starting from the principles of quantum electro-

dynamics. One of the main advantages of this “density matrix” approach is that it

allows one to take into account the polarization of all the levels of the atomic system

under consideration. This naturally allows to take into account the LLP. The density

matrix formalism is developed under the flat spectrum approximation and hence its

main limitation is the difficulty to take into account the effects of PRD. The sec-

ond theoretical approach is the semi-classical one, which provides the advantage

of including the effects of PRD by means of redistribution matrices (Stenflo, 1994,

hereafter S94). Using this “redistribution matrix” approach, our understanding of

the physics of resonance scattering has improved greatly and the effects of PRD

have been studied extensively. The limitation of this theory is that using it we can

deal with only two-level and two-term atoms with unpolarized, infinitely sharp lower

levels.

The many anomalous spectral structures in the SSS (Stenflo & Keller, 1997;

Stenflo et al., 2000) casts doubt on the general assumption made in the standard

theoretical formulation that, the anisotropic illumination of atoms in the solar atmo-

sphere induces population imbalances only in the upper level and the lower level is

assumed to be unpolarized. Except for the case when the total angular momentum*

of the lower level is J
a

= 0 or 1=2, the assumption of unpolarized lower level is ques-

tionable particularly when the lower level is different from the ground state. Trujillo

Bueno & Landi Degl’Innocenti (1997) studied the influence of lower level atomic

polarization on the scattering line polarization for the case of a two-level atom with

J

a

= 1 and J
b

= 0. This is an example where the resulting polarization is completely

due to the population imbalances in the sublevels of the lower atomic level. They

used the density matrix approach and solved simultaneously the statistical equilib-

rium equations (SEEs) neglecting stimulated emission and the transfer equation un-

der CRD. Later this theory was applied to explain many spectral features in the SSS.

Landi degl’Innocenti (1998) attempted to explain the peaks in the linearly polarized

profiles of both the Na I D
1

and D
2

lines by accounting for the optical depopulation

*
J

a

and J

b

represent total angular momentum quantum numbers of the lower and upper levels
respectively.
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pumping of the split lower levels. Trujillo Bueno (1999) showed the importance of

LLP in the case of Mg I b
2

line. Also he pointed out the importance of the depolar-

izing elastic collisions and their role in decreasing the alignment of the atomic levels

(see also Casini et al., 2002). Trujillo Bueno et al. (2002) demonstrated the operation

of the ground-level Hanle effect and importance of the selective absorption from the

ground level to the generation of the polarization in the He I triplet system. Also the

importance of atomic polarization of the metastable lower level of the Ca II infrared

triplet was presented by Manso Sainz & Trujillo Bueno (2003b, 2010). However in

all the above mentioned studies the effects of the PRD were neglected. In Nagendra

(2003) the effects of PRD on linear polarization profiles have been reviewed and the

limitations of CRD approximation are pointed out (see also Nagendra, 2014, 2015).

It is well know that CRD approximation is sufficient in describing the line core po-

larization, whereas the PRD effects are important in the wings of strong resonance

lines.

Formulation of a general self consistent theory for radiative transfer problem

including the effects of PRD and LLP is a complex theoretical problem. Landi

degl’Innocenti et al. (1997) has formulated a theory for coherent scattering which

takes into account the LLP. This theory is based on the concept of ‘metalevels’.

Based on this theory, Belluzzi et al. (2015) have recently derived the collisionless

redistribution matrix for a two term atom with hyperfine structure splitting in the

non-magnetic regime by including the polarizability of the lower hyperfine levels

(F levels). They have applied this theory to the problem of Na I D lines. In their

studies they have treated the LLP factor as a free parameter. Note that in the present

chapter we treat this factor self consistently but for a two-level atom. Also Casini

et al. (2014) have presented a new quantum scattering theory with which they have

derived a generalized redistribution function for a polarized two-term atom with hy-

perfine structure splitting. As an alternative attempt, in the present chapter, we try

to formulate a general theory for a two-level atom by combining the redistribution

matrix approach and the density matrix approach. Using the redistribution matrix

approach we derive the collisionless PRD matrix (the so called type II redistribu-

tion matrix in the nomenclature of Hummer, 1962) including the effects of LLP. In

the process the density matrix elements of the lower level are appropriately incorpo-

rated in to the PRD matrix derived starting from the Kramers-Heisenberg scattering

formulation. We remark that only the population imbalances among the sublevels

of the lower level are taken into account, while the coherences among them are ig-

nored. This is consistent with the assumption of infinitely sharp lower level. The

lower level density matrix elements are obtained by solving the SEEs that are de-

rived using the density matrix approach. The type II redistribution matrix so derived

is then included in the radiative transfer equation. To this end we use the quantum
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field theory approach given by S94 to obtain the transfer equation for the problem

at hand. We further apply this theoretical formulation to the cases of 1�0�1 and

1�1�1 transitions in the non-magnetic regime.

In Section 6.2 we derive the collisionless redistribution matrix for a two-level

atom with PRD and LLP mechanisms properly taken into account. In Section 6.3

the radiative transfer equation for solving the concerned problem is formulated. Sec-

tion 6.4 concerns a discussion on the influence of LLP on the polarized line profiles

formed under PRD. In Section 6.5 we propose a simple alternative approach to solve

the same problem. The conclusions are presented in Section 6.6. In Appendix A the

collisionless non-magnetic redistribution matrix is presented. Appendix B is dedi-

cated to a verification of the expressions for the absorption matrix elements derived

from the quantum field theory approach of S94. The two-stage numerical procedure

used to solve the transfer equation and SEEs is described in Appendix C.

6.2 Redistribution matrix with partial frequency re-

distribution and lower-level polarization

6.2.1 Type-II redistribution matrix in the atomic frame

As a first step in our theoretical approach we derive the redistribution matrix includ-

ing the effects of PRD and LLP. We consider a general case of J
a

! J

b

! J

a

scattering transition. We follow the Kramers-Heisenberg approach as given in Sten-

flo (1998) but include the contribution from the lower level density matrix elements.

In Stenflo (1998) these elements were assumed to be the same for different magnetic

sublevels of the lower level. We relax this assumption here and thereby take into ac-

count the population imbalances among the lower level. We start from Equations (7)

and (8) of Stenflo (1998) which are given by

M = TWT

�1

; (6.1)

W =

X

�

a

�

�

a

�

a

X

�

f

w(�

f

�

a

)
 w

�

(�

f

�

a

); (6.2)

where M is the Mueller scattering matrix and W is the coherency matrix. They ba-

sically give scattering cross-sections for polarized scattering. In the above equations

�’s denote the magnetic substates of a given J-state. The relative populations of the

initial magnetic substates �
a

are denoted by �
�

a

�

a

. They can be obtained by solving

the polarized SEEs as given in Equations (10.1) and (10.2) of Landi Degl’Innocenti

& Landolfi (2004, hereafter LL04). SEEs given in LL04 take into account both popu-
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lation imbalances and coherences while the coherency matrix given above takes into

account only the population imbalances. When LLP is included the coherency ma-

trix W not only depends on the bilinear product of the transition amplitudes (w
w�)

but also on the �
�

a

�

a

. The expression for transition amplitude is given by

w
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: (6.3)

The above expression is obtained from Kramers-Heisenberg formula (see Equation

(3) in Stenflo, 1998) for the scattering from a given initial magnetic substate with

quantum numbers J
a

and �
a

to a final magnetic substate with quantum numbers J
a

and �
f

via all the possible intermediate magnetic substates �
b

of the upper level J
b

(see also Equation (1) in Sampoorna, 2011a). In the above expression "��
q

and "�
q

0

are the geometrical factors for the outgoing and incoming radiation respectively. f
ab

denotes the absorption oscillator strength and r
ab

its sign (see S94, pp. 192 and 199).

The area-normalized profile function �
�

b

�

f

is given in Equation (3) of Sampoorna

(2011a), where it is denoted as �



(�

�

b

�

f

� �) . In order to derive the expression for

redistribution matrix in terms of irreducible spherical tensors TK

Q

(i;n)

† of LL04 now

including the effects of LLP we follow the same procedure as given in Appendices

A and B of Sampoorna et al. (2007b). After an elaborate algebra we obtain the

expression for the type II redistribution matrix with LLP in the atomic frame as
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All the different symbols appearing in the above equation are the same as Sam-

poorna (2011a) and therefore we do not elaborate on them. The profile function

�(�

J

b

�

b

;J

a

�

a

� �) is defined in Equation (40) of Sampoorna (2011a). Note that Equa-

†Here i = 0; 1; 2; 3 are the indices of Stokes parameters I , Q, U , V respectively, the multi-
polar index K = 0; 1; 2 with Q 2 [�K;+K℄, and n denotes the ray direction with respect to the
atmospheric normal.

133



6.2. Redistribution matrix with partial frequency redistribution and lower-level
polarization

tion (6.4) is the same as Equation (47) of Sampoorna (2011a) except for the absence

of elastic collisions (because we are dealing with collisionless redistribution) and for

the presence of the new term �

�

a

�

a

which arises due to the contribution from the

LLP. Now writing �
�

a

�

a

in terms of its multipolar components using Equation (3.99)

of LL04 we get
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The above expression gives the RII redistribution matrix in the atomic frame for a

general J
a

! J

b

! J

a

transition including the effects of LLP. The multipolar index

K

L

= 0; 2; 4; ::::2J

a

with Q

L

2 [�K

L

;+K

L

℄ is associated with the lower level

having total angular momentum J

a

. We notice that the first 3j symbol which arises

due to the inclusion of LLP restricts the value of Q
L

to 0. Clearly the LLP is taken

into account through population imbalances while the coherences in the lower level

are neglected. TheRII given in Equation (6.5) is unnormalized. Its normalization is

discussed in the next section.

6.2.2 Normalization of the type-II redistribution matrix

In astrophysics one always requires normalized redistribution matrices. The normal-

ization condition for theRII matrix (cf. Equation (6.5)) is given by
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After some algebra using the properties of 3j and 6j symbols we get the normaliza-

tion constant (N:C:) as
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The above equation can be written in a simpler form in terms of �
�

a

�

a

(using Equa-

tion (3.99) of LL04) as
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It is easy to verify that when we set �
�

a

�

a

= 1 in Equation (6.8), the normalization

constant for a general J
a

! J

b

! J

a

transition with unpolarized lower level reduces

to 2(2J

a

+ 1)

2

=9(2J

b

+ 1) which is expected as in (see Sampoorna, 2011a).

6.2.3 Type-II redistribution matrix in the laboratory frame

We now transform the atomic frame RII matrix (Equation (6.5)) to the laboratory

reference system. Following Section 4 of Sampoorna (2011a) we obtain the elements

of the normalized type II redistribution matrix in the laboratory frame as
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0

); (6.9)

where hII and f II are the auxiliary functions which are defined in Equations (22) and

(23) of Sampoorna (2011a). The above expression takes a particularly simple form

in the absence of magnetic field (see Appendix A). In the next section we include the

type II redistribution matrix derived above for a two-level atom with LLP, into the

radiative transfer equation.

6.3 Radiative transfer equation for a two-level atom

with lower-level polarization

We remark that in the density matrix approach of LL04 the transfer equation is writ-

ten in terms of emission and absorption coefficients. These emission and absorption

coefficients depend on the density matrix elements of the upper and lower levels

respectively. On the other hand in the redistribution matrix approach the transfer

equation for a two-level atom without LLP is written in terms of a source vector that
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depends on the scattering integral. The scattering integral basically contains the re-

distribution matrix for the problem at hand. However the transfer equation of LL04

(which can handle two-level atom with LLP) cannot be used for our purposes be-

cause the emission vector is not written in terms of the scattering integral involving

the redistribution matrices. Therefore we need to extend the transfer equation in the

redistribution matrix approach to include the effects of LLP.

In order to derive the radiative transfer equation for a two-level atom with LLP

we follow the quantum field theory approach of S94 (see his Chapters 7 and 8). In

this section we first recall the necessary equations from S94 which are originally

written in coherency matrix formalism. We then present the transformation of this

radiative transfer equation from coherency matrix formalism to Stokes vector for-

malism. The notations have the same meaning as in S94 unless specified. From

Equation (8.15) of S94 the radiative transfer equation can be written as

dD

��

0

ds

= �

X

�

f(g

��

� f

��

)D

��

0

+D

��

(g

y

��

0

� f

y

��

0

)g+

h�

3




2

(f

��

0

+ f

y

��

0

):(6.10)

The components of the g and f matrices are given by Equations (8.94) and (8.95) of

S94 respectively which are

g
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=
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�
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; (6.11)

and
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: (6.12)

In S94 the total angular momentum quantum numbers of the lower and upper levels

are denoted by J
�

and J
m

respectively. However to be consistent with the notations

used in the present chapter, we denote them by J

a

and J

b

. Further, the magnetic

quantum numbers �, �0, m and m0 of S94 respectively are replaced by �
a

, �0
a

, �
b

and

�

0

b

. Also the subscripts of the geometrical factors " are denoted by �
b

�

a

instead of

(�
b

��

a

). The above stated Equations (6.10) - (6.12) are derived in S94 for a general

transition in a multi-level system. In Section 6.2 we derived the redistribution matrix

for a two-level atomic system with LLP under the following assumptions: (1) We
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neglect the off-diagonal terms of the lower level density matrix. This means that we

consider only the populations imbalances in the lower level and neglect the coher-

ences between the magnetic substates. In other words only �
�

a

�

a

terms contribute to

the transfer equation; (2) We consider the case of Rayleigh scattering i.e., J
a

= J

f

.

With these assumptions Equations (6.11) and (6.12) can be re-written as

g
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;

(6.13)

and
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: (6.14)

The elements of the g matrix in the first two terms of the RHS of Equation (6.10)

represent radiative absorption. The f matrix elements in the first and second term

represent the stimulated emission and those in the last term represent the spontaneous

emission. The spontaneous emission term is simplified in Section 8.10 of S94 in

terms of scattering amplitude. Considering all the assumptions made so far, the

expression for the spontaneous emission term for a two level system turns out to be

(see Equation 8.112 of S94)

h�

3




2

(f

��

0
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: (6.15)

If we transform the sum over k into integrals using Equation (7.44) of S94, we get

h�
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�
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f
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w

��

w

�

�

0

�

0

D

��

0

: (6.16)

From Equations (8.113) and (8.114) of S94 and the explanation that follows we see

that the terms inside the summation in Equation (6.16) can be written as Mueller

matrixM = TWT

�1 for the scattering of the Stokes vector S
k

. In this manner the

spontaneous emission term can be transformed from the coherency matrix formalism

to the Stokes vector formalism. This transformation has to be applied also to the

absorption and stimulated emission terms in the radiative transfer equation (6.10).

The procedure followed for achieving this is described below.
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6.3.1 The absorption and stimulated emission matrices

We can rewrite Equation (6.10) as

dD

��

0

ds

= �

X

�

[(g

��

D

��

0

+D

��

g

y

��

0

)� (f

��

D

��

0

+D

��

f

y

��

0

)℄ + F




; (6.17)

where F



represents the spontaneous emission term in the coherency matrix formal-

ism. Before we proceed with the transformation of radiative absorption and stimu-

lated emission terms we recall the necessary equations from chapter 2 of S94 which

are used for the simplification. According to Equation (2.43) of S94 the relation

between Stokes parameters S
k

(k = 0, 1, 2, 3) and the coherency matrix is given by

S

k

= Tr (�

k

D) =

X

��

0

(�

k

)

�

0

�

D

��

0

; (6.18)

where �
k

’s are the Pauli spin matrices given by (cf. Equation (C12) of Sampoorna

et al., 2007b)

�

0
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1 0

0 1

!
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1
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0 �1

�1 0

!

;

�

2

=

 

0 i

�i 0

!

; �

3
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�1 0

0 1

!

: (6.19)

The inverse of Equation (6.18) in the component form can be written as (see Equation

(2.46) of S94)
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k
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: (6.20)

From Equations (6.17) and (6.18) we get
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g:

(6.21)

Substituting from Equation (6.20) in the above equation and using the conjugation

relation (�

k

)

�

��

0

= (�

k

)

�

0

�

and the cyclic properties of trace, we get

dS

k

ds

= �

X

j

fRe [Tr (�

j

�

k

g)℄S

j

� Re [Tr (�

j

�

k

f)℄S

j

g + F

S

k

; (6.22)

where the components of the matrices g and f are given by Equations (6.13) and

(6.14) respectively. F

S

k

is the spontaneous emission coefficient in Stokes vector

formalism which in turn can be written in terms of the scattering integral. The co-
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efficient of S
j

in the first term of RHS of Equation (6.22) represents the radiative

absorption term in the Stokes vector formalism whose elements can be explicitly de-

rived. Let us denote Re [Tr (�
j

�

k

g)℄ = A
kj

, which are the elements of the radiative

absorption matrix �A. The matrix �A is given by
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; (6.23)

where

�

A
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12
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= Im (g

11

� g
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): (6.24)

Similarly we can obtain the expression of stimulated emission matrix using the re-

lation Re [Tr (�

j

�

k

f)℄ = A

S

kj

. The elements of the stimulated emission matrix �S

have the same expressions as those for �A but for g
��

replaced by f
��

.

The absorption matrix derived above has a form similar to that derived in LL04

(see Section 6.7, p.271). However, the elements of the matrix appear to be different

from those given in LL04. This is because the Pauli spin matrices (which in turn

depend on the choice of the linear polarization unit vectors) involved in the trans-

formation from the coherency matrix formalism to Stokes formalism are different in

the present chapter and LL04. The Pauli spin matrices used here differ by a complex

conjugate from the corresponding matrices given in LL04 and we see the similar dif-

ference in the absorption matrix elements. However we expect the final expression of

the absorption matrix elements to be the same in both the cases when simplified for

any given transition with corresponding eigen vectors. This verification is described

in Appendix B.

Thus the radiative transfer equation in Stokes vector basis can now be written as
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;

(6.25)

139



6.3. Radiative transfer equation for a two-level atom with lower-level
polarization

whereM
kj

are the elements of the Mueller scattering matrix. For the problem at hand

namely, a two-level atom with LLP this matrix is simply the type II redistribution

matrix given in Equation (6.9).

6.3.2 Contribution from thermal emission

The transfer equation (6.25) derived in Section 6.3.1 does not take into account the

contribution from the thermal emission. Thus the transfer equation obtained in Equa-

tion (6.25) represents only pure scattering. For practical applications however, we

need to take into account the contribution from the thermal emission. For this pur-

pose we follow the procedure given in Section 6.9 of S94 to calculate the contribution

from thermal emission.

Thermal emission is nothing but a limiting case in which the scattering atom has

completely lost its memory about how it was excited (see Stenflo, 1998). Hereafter

we neglect the contribution from the stimulated emission (the second term on the

right hand side of Equation (6.25)). The radiative transfer equation including the

contribution from thermal emission (jthermal
k

) can be written as

dS

k

ds

= �
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S
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+ j

thermal

k

: (6.26)

Generally the thermal emission is given by the absorption matrix times the Planck

function (B
�

o

). However for the problem at hand it is necessary to distinguish the

processes of absorption and thermal emission. While the LLP is relevant for radiative

absorption it is irrelevant for the thermal emission. Therefore to distinguish these

two processes we define the emission profile matrix as �emi and absorption profile

matrix as �abs. The absorption profile matrix is related to the absorption matrix �A

derived starting from quantum field theory of S94 through

�

A

= k

L

�

abs

; (6.27)

where k
L

is the line averaged absorption coefficient (for the case when stimulated

emission is neglected) defined as

k

L

=

h�

4�

N

J

a

B

J

a

J

b

: (6.28)

The expression of the absorption profile matrix �abs in the atmospheric reference

frame is the same as the expression under the summation K;Q;K
l

; Q

l

of Equation

(7.15a) of LL04. In the line of sight reference frame this matrix is the same as
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Equation (6.59) of S94 which is given by
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where
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)℄; (6.30)

with corresponding expressions for  abs
Q;U;V

where �
q

is replaced by  
q

, the anoma-

lous dispersion profile. In the above expressions 
 and � denote the inclination and

azimuth of the magnetic field with respect to the line of sight. Since the transfer

equation is solved in the frame where the z-axis is along the atmospheric normal

we need to convert the angles 
 and � in the line of sight frame to the atmospheric

reference frame. This can be done following Appendix B of Anusha et al. (2011).

The expression for �abs
q

is given by (see Equation (6.52) of S94)

�

abs
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)H
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: (6.31)

In Equation (6.31) the contribution from the population imbalances in the lower level

to the absorption processes is included via �
�

a

�

a

. The transition strength S
q

(�

a

; �

b

)

is given by (see Equation (6.33) of S94)

S

q

(�

a

; �

b

) = 3

 

J

a

J

b

1

��

a

�

b

q

!

2

: (6.32)

In the case of thermal emission, the emission processes are independent of the ab-

sorption. Therefore, we define a separate profile matrix (�emi) to account for the

emission processes. The matrix elements of the �emi matrix are now independent

of the population imbalances in the lower level. The expression for �emi
q

is given by
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(see Equation (6.37) of S94)
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)H
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: (6.33)

The form of the emission profile matrix �emi is same as the absorption profile ma-

trix �abs with the elements �abs
I;Q;U;V;�

replaced by �emi
I;Q;U;V;�

. The thermal emission

consists of contributions from incoherent scattering j
i


(for which the phases of the

upper level magnetic sublevels are scrambled by collisions) and the non-scattering

emission processes j
ns

. The expressions for j
i


and j
ns

are derived in Sections 5.17

and 6.9 of S94. For the problem at hand the total thermal emission term is

j
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ns
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1; (6.34)

where 1 = (1; 0; 0; 0 )

T and �
x

is the area normalized profile function and is equal

to �emi
q

when q=0. In the above equation the coherent scattering fraction k



is given

by k



= A

ba

=(A
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) and � is the fraction of the scattering process given by
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The quantity e is given by

e =
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(6.36)

The line source function S
ba

takes the following simple form when stimulated emis-

sion is neglected :
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J
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J
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J
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: (6.37)

By defining d� = �k

L

ds we can rewrite the transfer equation (6.26) including the

unpolarized continuum as

dI

d�

= (�

abs

+ rE)I � (rB
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0

1+ S

s
att

)

�[1� � + (1� k
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dx℄S
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1; (6.38)

where I = [S

0

; S

1

; S

2

; S

3

℄

T = [I; Q; U; V ℄

T, r is the ratio of continuum to line aver-

aged opacity, and E is a 4 � 4 unit matrix. The scattering source vector S
s
att

is
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given by

S

s
att

=
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d
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(x;n; x
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;n

0

;B)I(x

0

;n

0

): (6.39)

The above equations take a simpler form in the absence of magnetic fields. These

equations are given in the next section.

6.3.3 The non-magnetic case

To numerically solve the problem of polarized radiative transfer including the effects

of LLP we restrict our attention to the non-magnetic case. For this particular case

the Stokes V is zero and for the planar geometry Stokes U is zero. Therefore the

dimension of the problem reduces from 4� 4 to 2� 2. The emission profile matrix

�

emi which contributes to the thermal emission can be simplified further for this

case. In the absence of magnetic field, Equation (6.33) reduces to

�

emi

q

=

H

p

���

D

= �

x

: (6.40)

Therefore �emi
�

= 0 (cf. Equation (6.30)). Thus �emi
I

is the only non-zero term in the

emission profile matrix�emi, which takes the form

�

emi

=

 

�

emi

I

0

0 �

emi

I

!

: (6.41)

From Equations (6.34) and (6.41) we see that the thermal emission contributes only

to the Stokes I . Equation (6.38) can thus be re-written as

dI

d�

=KI � [rB

�

0

1 + S

l

℄; (6.42)

whereK = �

abs

+ rE. The elements of the line source vector S
l

= (S

I;l

S

Q;l

)

T can

be written as

S

I;l

=

1

2

Z

d�

0

Z

dx

0

[R

II
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(x; �; x

0

; �

0

)I(x

0

; �

0

) +R

II

01

(x; �; x

0

; �

0

)Q(x

0

; �

0

)℄

+[1� �+ (1� k




)�e=

Z

�

x

J

x

dx℄S

ba

�

emi

I

;

S

Q;l

=

1

2

Z

d�

0

Z

dx

0

[R

II

10

(x; �; x

0

; �

0

)I(x

0

; �

0

) +R

II

11

(x; �; x

0

; �

0

)Q(x

0

; �

0

)℄:

(6.43)

To solve the problem of polarized line formation including PRD and LLP we follow

a two stage approach. In the first stage we solve the SEEs and the transfer equation

simultaneously for given J
a

and J
b

taking into account the effects of the polarization
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of the lower level but in the limit of CRD. The density matrix elements obtained as

an output from the first stage is used as an input to compute the redistribution matrix

that enters the second stage (cf. Equation (6.43)). In the second stage we solve the

radiative transfer equation (see Equation (6.42)) including the effects of PRD and

LLP. Further details on the numerical method adopted are described in Appendix

C. In this two stage approach, the density matrix elements are computed neglecting

the effects of PRD and they are kept fixed when computing the polarized PRD line

profiles. Such an approach is valid since the density matrix elements represent a

property of the atom (acquired through the process of optical pumping), and has

nothing to do with the frequency of the photons that are being scattered on that

atom. The photon scattering process is not responsible for any optical pumping, the

pumping has been done before. Hence �’s are the same regardless of whether the

scattering takes place in the limit of CRD or PRD.

6.4 Polarized line profiles with partial frequency re-

distribution and lower-level polarization in the ab-

sence of magnetic fields

For our studies we consider two cases namely J

a

= 1, J
b

= 0 and J

a

= J

b

=1 to

illustrate the effects of LLP on the polarized line formation. The governing equa-

tions and the concerned numerical method of solution are described for the J
a

=

J

b

=1 case in Appendix C. A similar procedure can be followed for deriving corre-

sponding expressions for the J
a

= 1, J
b

= 0 case (see also Trujillo Bueno & Landi

Degl’Innocenti, 1997). For our computations we have considered a plane parallel

isothermal atmospheric slab with effective temperature of 6000 K with no incident

radiation at the boundaries. Background continuum opacity is assumed to be zero.

For all the results presented in this chapter we consider a thick slab of total optical

thickness T = 10

12. The effect of depolarizing elastic collisions is neglected and k



is set to 1.

6.4.1 The case of 1�0�1 transition

We consider a two-level atom with J
a

= 1 and J
b

= 0. The concerned SEEs and

the transfer equations are given in Trujillo Bueno & Landi Degl’Innocenti (1997).

Because of the cylindrical symmetry of the problem, only three density-matrix el-

ements are needed to fully specify the excitation state of the atoms, namely, �0
0

(a),

�

0

0

(b) and �2
0

(a). For this particular case we consider the example of a hypothetical

line at 5000 Å whose Einstein coefficient for spontaneous emission is A
ba

= 10

8

s

�1
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and downward inelastic collisional rate is C
ba

= 10

4

s

�1. Figure 6.1 shows the emer-

PRD + LLP

CRD + LLP

Figure 6.1: Emergent intensity and polarization for � = 0:11 computed using the two stage
approach. The case of 1�0�1 transition is considered with the effects of LLP. Solid line
represents the case of PRD and the dotted line that of CRD. Other input parameters are
A

J

b

J

a

= 10

8

s

�1; C
J

b

J

a

= 10

4

s

�1. No background continuum opacity is used.

gent (I , Q=I) at � = 0:11 for 1�0�1 transition. Here we compare the results

obtained under the limits of PRD and CRD when LLP is taken into account. We see

that the intensity profiles show the typical signatures of PRD and CRD mechanisms.

The Q=I profiles are identical for the PRD and CRD limits. This is because, for this

particular transition in the non-magnetic regime only the elements RII

00

and RII

01

of

the redistribution matrix are non-zero and all the other elements are zero (see Equa-

tion (A.2)). Hence the line source vector corresponding to the polarization (S
Q;l

) is

always zero (see Equation (6.43)). This implies that the contribution to the emitted

polarization for this case does not come from the redistribution processes but only

from the dichroic absorption (see Trujillo Bueno & Landi Degl’Innocenti, 1997).

In order to understand the combined effects of PRD and LLP in a better way we

consider another case study with J
a

= J
b

= 1.
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6.4.2 The case of 1�1�1 transition

For the case when J
a

= J

b

= 1, even in the absence of LLP, since the upper level

is polarized a finite amount of emergent polarization is generated unlike the case of

J

a

= 1, J
b

= 0. For all the computations of this particular transition (J
a

= J

b

= 1)

we again consider the hypothetical case like that described for J
a

= 1, J
b

= 0. In

this case there are four density matrix elements to be determined namely, �0
0

(a),

�

2

0

(a), �0
0

(b) and �2
0

(b) when polarizability of both the levels are taken into account.

Figure 6.2 shows the emergent (I , Q=I) at � = 0:11 for the 1�1�1 transition.

PRD + LLP

CRD + LLP

PRD + ULL

CRD + ULL

Figure 6.2: Emergent intensity and polarization for � = 0:11 computed using the two stage
approach for 1�1�1 case. The different line types correspond to: solid line - PRD + LLP,
dotted line - CRD + LLP, dashed line - PRD + ULL, and the dot-dashed line - CRD +
ULL. The abbreviation ULL stands for unpolarized lower level. Other input parameters are
A

J

b

J

a

= 10

8

s

�1; C
J

b

J

a

= 10

4

s

�1. No background continuum opacity is used. The inset in
Q=I panel shows the Q=I profiles for a shorter frequency bandwidth for the sake of clarity.

Solid line in Figure 6.2 represents the emergent profiles obtained when both the

effects of PRD and LLP are considered. In order to see the importance of both the

effects we have over-plotted the (I , Q=I) profiles obtained – when only the effects

of PRD are considered with unpolarized lower level (ULL - dashed line); when the

effects of LLP is considered in the limit of CRD (dotted line); and the case where

only the CRD effects are considered with ULL (dot-dashed line). Figure 6.2 clearly
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shows that the LLP effects appear only in the emergent polarization and the intensity

profiles remain unchanged whether LLP is taken into account or not. We see that

the LLP effects in the emergent Q=I are significant mainly in the core (up to � 2

Doppler widths, see inset in the lower panel of Figure 6.2) and in the wings the

effects of PRD are dominant (compare solid and dashed lines). The enhancement in

the emergent polarization at the line center when LLP is included is around 5%. Such

large enhancements are noticed only when the elastic collisions are not taken into

account namely, D(2)

J

a

= D

(2)

J

b

= 0. However when elastic collisions are included,

they reduce the alignment of the atomic levels, which in turn leads to depolarization

(see Trujillo Bueno, 1999), and hence a smaller enhancement.

The absence of the LLP effects in the line wings has perhaps to do with the

following reason. We know that all the transition rates that enter into the SEEs are

frequency-integrated quantities. Therefore all the redistribution effects are integrated

away. The contributions to the frequency-integrated scattering probability come al-

most entirely from the Doppler core. In optically thin media, the damping wings do

not play any role. It is only in situations when we have significant optical thickness

in the wings (leading also to core saturation) that we need to pay attention to the

wings, and then PRD effects are important, because they govern what happens in the

wings. This is however a radiative transfer effect. In contrast, in SEEs we compare

the individual transition rates for a given radiation field. For each individual tran-

sition the contributions of the wing photons are insignificant as compared with the

core photons. Since it is only the core photons that are relevant to SEEs, the effects

of LLP only show up in the core but are absent in the wings.

6.5 An alternative approach to include the effects of

lower-level polarization in lines formed under par-

tial frequency redistribution

The conclusion that LLP effects are only significant in the line core allows us to use

an alternative approach to solve the problem at hand. We refer to this approach as

the correction method. In this method we compute the line profiles taking account

of PRD neglecting LLP (in the standard 2-level approach) and later apply to it the

corrections due to the effects of LLP computed using the density matrix approach

with CRD. The actual procedure is described below.

(i) We solve the SEEs and the transfer equation simultaneously for a given J
a

and

J

b

taking into account the effects of polarized lower level in the limit of CRD. For

this purpose we use the relevant equations derived from the density matrix approach.

Also we neglect the stimulated emission. The Stokes Q parameter obtained through
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a simultaneous solution of SEEs and the polarized transfer equation is denoted by

Q

LLP

CRD

. For the numerical solution of this problem we use the Rybicki and Hummer

method (see Rybicki & Hummer, 1991) appropriately generalized to handle polar-

ized lower level. The governing equations and the details of the numerical procedure

followed are described in Appendix C.1.

(ii) We solve the same problem as above, but now neglecting the effects of LLP.

The resulting Stokes Q parameter is denoted by QULL

CRD

.

(iii) The difference between the solutions obtained with and without the effects

of LLP is

�Q

CRD

= Q

LLP

CRD

�Q

ULL

CRD

: (6.44)

We refer to �Q

CRD

as the correction term.

(iv) We now solve the transfer equation for the atomic system under considera-

tion using the standard 2-level atom approach including PRD. For this purpose we

use a polarized approximate lambda iteration (PALI) method (Nagendra et al., 1999).

The polarization thus obtained is referred to as QULL

PRD

.

(v) It is well known that the effects of PRD are noticeable mainly in the line

wings. Our studies show that the effects of polarized lower level of an atomic system

are confined to the line core region (see Figure 6.2). To a good approximation a

solution including the effects of PRD and also the LLP can be obtained from

Q

LLP

PRD

= Q

ULL

PRD

+�Q

CRD

: (6.45)

In Figure 6.3 we compare the Q=I profiles obtained using the simple correction

Two stage process

Correction method

Figure 6.3: Emergent polarization for � = 0:11 computed using the correction method
(solid line) and the two stage approach (dotted line). Other parameters are the same as in
Figure 6.2.
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method described above and the elaborate two stage approach proposed in this chap-

ter (see Appendix C). We see that the results from both the methods match closely.

Thus in order to simplify the computational efforts one can use the simple correction

method instead of the two stage approach.

6.6 Conclusions

In this chapter we attempted to develop a theoretical approach to solve the polarized

radiative transfer problem including the effects of PRD and LLP in the general case

of magnetic media. We have derived the general collisionless redistribution matrix

in the atomic frame including the effects of LLP for a two-level atomic system. For

this we have used the Kramers-Heisenberg approach as given in Stenflo (1998), now

including the contributions from the polarizability of the lower level. The collision-

less redistribution matrix thus obtained is transformed to the laboratory frame which

is now dependent on the density matrix elements of the lower atomic level. In or-

der to include this redistribution matrix in the transfer equation we formulated the

transfer equation including both the LLP and PRD. For this purpose we followed the

quantum field theory approach of S94. Subsequently the absorption matrix for this

problem is also derived.

A two stage approach is proposed to solve the polarized radiative transfer prob-

lem including the effects of PRD and LLP in the non-magnetic regime. In the

first stage we solve the SEEs and the transfer equation simultaneously under flat

spectrum approximation using the density matrix formalism developed by Landi

Degl’Innocenti (1983). The density matrix elements thus obtained from the first

stage are used as inputs to the second stage to compute the collisionless redistribu-

tion matrix elements. In the second stage we use the DELOPAR method to obtain

the formal solution. Furthermore we use the frequency-angle-by-frequency-angle

method to compute the source vector corrections. To demonstrate the effects of PRD

and LLP we consider two examples namely, 1�0�1 transition and 1�1�1 tran-

sition. The case of 1�0�1 transition does not show any signatures of PRD in the

emergent polarization profile. This is because in this particular case, in the non-

magnetic regime, the contribution to the emergent linear polarization does not come

from the scattering processes but only from the dichroic absorption from the lower

level. However in the 1�1�1 transition the PRD signatures in the emergent po-

larization profile can be clearly seen in the line wings. Our studies indicate that the

LLP effects are confined mostly to the line core region. The reason behind this might

be that the SEEs are solved under the flat spectrum approximation, which makes the

concerned transition rates frequency integrated quantities. This leads us to a com-

putationally simpler numerical approach called the “correction method” to study the

149



6.6. Conclusions

effects of PRD and LLP on polarized line formation. We have verified that for all

practical purposes this computationally simpler correction method represents a suf-

ficiently good approximation and is therefore useful in practical model calculations.
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Chapter 7

Summary and future work

7.1 Summary

The aim of the present thesis is to understand in a better way the Second Solar

Spectrum (SSS), which is the linearly polarized spectrum of the Sun formed due to

the coherent scattering process. In this regard, in Part I of the thesis we observe

and model the center-limb-variation (CLV) of the Stokes profiles of the Ca I 4227 Å

line and in Parts II and III we explore the properties of the fundamental tool of the

scattering polarization, the redistribution matrix by conducting a series of theoretical

studies.

In the recent years, with the availability of advanced polarimeters, the efforts

in understanding the SSS have increased and have lead to the development of so-

phisticated theories of polarized radiative transfer. One of the methods adopted to

understand the solar atmosphere is to model the CLV of the Stokes profiles. The

variation of the Sun’s spectrum from center-to-limb is governed by the underlying

temperature density structure. Thus by modeling the CLV of the Stokes profiles

we can infer further on the height dependence of various physical quantities in the

solar atmosphere like the magnetic field. Though there are many efforts in the lit-

erature to model the limb observations of the linear polarization profiles of different

lines, there have been very few attempts to understand and model the CLV of the

Stokes profiles. This is because of the complexity involved in finding a single so-

lar model atmosphere which can provide a simultaneous fit to the CLV of the (I ,

Q=I) profiles. In Chapter 2 we have attempted to model the CLV of the Stokes pro-

files of the famous Ca I 4227 Å line. This line is of particular interest as it exhibits

largest scattering polarization of all the lines in the visible spectrum of the Sun. The

CLV observations of the Ca I 4227 Å line were obtained from the Zurich Imaging

Polarimeter-3 at Istituto Ricerche Solari Locarno in Switzerland. All the solar one-

dimensional (1D) models attempted by us and also an appropriate combination of
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them failed to provide a simultaneous fit to the (I , Q=I) profiles of the CLV of the

Ca I 4227 Å line. However this doesn’t limit the use of the Ca I 4227 Å line as a

diagnostic tool to map the depth dependence of magnetic field. This is demonstrated

in Chapter 2. These studies point towards the necessity to use multi-dimensional

modeling to overcome the limitations of 1D modeling approach.

In the theoretical studies undertaken in the Chapters 3 - 6 of the thesis the efforts

are towards understanding the partial frequency redistribution (PRD) matrix which

contains all the physics of a scattering event. In Chapters 3 - 5 we study the effects

of using angle-dependent PRD on emergent Stokes profiles by comparing them with

the profiles obtained when angle-averaged PRD functions are used. We consider dif-

ferent examples in each of the chapters to highlight the importance of considering or

not considering the angle-dependent PRD effects. In Chapter 3 we study the effects

of electron scattering on atomic line polarization in non-magnetic regime. We have

considered angle-dependent redistribution functions for both electron and atomic

scattering. In Chapter 4 we consider the two-term and two-level atomic system, re-

spectively, with quantum interference between the fine structure states and hyperfine

structure states individually in the non-magnetic regime. We use the angle-dependent

PRD functions to compute the emergent Stokes profiles. The studies conducted in

Chapters 3 and 4 indicate that the effects of the angle-dependent PRD functions in

the non-magnetic regime is dependent on the thickness of the optical slab considered

for radiative transfer computations. The angle-dependent effects are important only

when optically thin slabs are considered and hence computationally simpler angle-

averaged PRD functions can be safely used for all realistic computations. In Chapter

5 we study the effects of angle-dependent PRD in weak magnetic field regime. We

consider different cases of vertical and turbulent magnetic fields to highlight the im-

portance of using angle-dependent PRD especially to study the Stokes U profiles.

The angle-averaged approximation is often made to reduce the computational com-

plexities. For each of the problem we have considered in Chapter 3 - 5 we have

developed efficient numerical techniques to handle the problem at hand.

Finally in Chapter 6 another important theoretical improvement necessary to un-

derstand different lines in the SSS, namely the polarization of the lower-level of the

atom involved in the transition is addressed. The theoretical frame work to handle

the lower-level polarization and PRD in a magnetic regime is developed. This the-

ory is applied to different atomic systems in the non-magnetic regime and the effects

of polarization of the lower atomic level is studied along with the effects of PRD.

It is noticed that the lower-level polarization affects only the line center while the

PRD effects are seen in the line wings. This conclusion also leads us to propose a

new simpler numerical method to solve the problem of polarized radiative transfer

including the effects of lower-level polarization and PRD.
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Thus the thesis addresses the challenges involved in both the observations and

modeling of the SSS (Part I) and in the theoretical formulation in deriving and using

the redistribution matrix for the radiative transfer problem (Parts II and III). These

studies guide us towards the further improvements necessary in both theoretical for-

mulation and modeling efforts of the SSS using the polarized radiative transfer.

7.2 Future work

The studies undertaken in the present thesis clearly point towards necessity to carry-

out further studies in order to understand the SSS. The conclusion from the part I of

the thesis i.e., 1D modeling of the center-to-limb observations of the Ca I 4227 Å line

clearly show that we need to go beyond 1D modeling efforts like multi-dimensional

modeling in order to obtain a simultaneous fit to the (I , Q=I) profiles of the Ca I

4227 Å line. However multi-dimensional modeling is computationally expensive. A

further step in 1D modeling efforts will be to impose additional constraints on the

1D solar model atmospheres. In Stenflo (2015a, see also, Ramelli et al. 2015) a new

spectra has been introduced called the third solar spectrum (SS3) which is the ratio

of limb to disk-center intensity. This new spectrum can be used as an observational

constraint to test and improve the structure of the existing solar atmospheric mod-

els. Also in Stenflo (2015a) an analytical model is proposed to model different lines

formed under local thermodynamic equilibrium (LTE) conditions in the SS3. Along

with this a full radiative transfer modeling of different LTE lines using the available

solar model atmosphere can be attempted, and checked for deviations of the ana-

lytical model results, if any, from the radiative transfer model results. This can be

further used to constrain the temperature modifications of the 1D solar model atmo-

sphere. Also modeling of the SS3 using the 1D solar models will help to eliminate

or justify the 1D modeling approach.

The theoretical studies presented in the Part III of the thesis opens up a new win-

dow to further study the effects of the polarization of the lower-level of the atom

involved in the scattering event. The theory presented in the thesis is for a colli-

sionless redistribution matrix for a two-level atom in the magnetic regime. The next

logical step would be to examine what will be the effects of elastic collisions on the

polarization contribution from the lower-level? The studies done in literature under

the complete frequency redistribution limit indicates that the collisions destroy the

atomic alignment in the lower-level and hence destroying the polarization generated

by the lower level (see Trujillo Bueno, 1999; Casini et al., 2002). It will be interest-

ing to study the effects of elastic collisions on lower-level polarization together with

the effects of PRD by formulating an appropriate theory starting from the Kramers-

Heisenberg scattering formulation. Also the numerical results presented in the part
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III of the thesis is for the non-magnetic regime. It will be interesting to conduct

similar studies in the presence of magnetic fields. But these studies are numerically

expensive hence an appropriate numerical method should be devised to conduct such

studies. Further the non-magnetic numerical results presented in the thesis are for

an hypothetical atomic system with J
a

= 1, J
b

= 0 and J
a

= J

b

=1, where J
a

and

J

b

represent the total angular momentum quantum numbers of the lower and upper

states respectively. As a next step we can consider a suitable solar line in SSS with

these transitions and carry out radiative transfer modeling with realistic solar model

atmospheres. This will further highlight the importance of accounting for polariza-

tion of the lower atomic level and PRD. The theoretical formulation presented in

Chapter 6 can also be extended from the case of a simple two-level atomic system

(the one described in the present thesis) to the complex system of two-term atom

with quantum interference effects. Though there are efforts in the literature in this

regard, they are still in early stages of development. This problem can be attempted

using the Kramers-Heisenberg scattering theory presented in this thesis. This kind

of studies may help us to account for many unexplained features in the SSS.
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Appendix A

Collisionless redistribution matrix

with lower-level polarization for the

non-magnetic case

In the absence of magnetic field (B = 0), the redistribution matrix expression given

in Equation (6.9) which accounts for the contribution from the lower-level can be

further simplified. The auxiliary functions become independent of the magnetic

sub-states and reduce to well known type II redistribution function represented by

R

II

(x; x

0

;�). The contraction property of 3j symbols can be used to simplify Equa-

tion (6.9) further and we get
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Of particular interest is the case of J
a

= 1 and J

b

= 0. This is because for this

transition the scattering polarization can be generated only through the population

imbalances in the lower level. For this case the non-magnetic RII matrix simplifies

to

R

II

0j
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We note that only the elements RII

00

and RII

01

are non-zero and all the other elements

go to zero for this particular case. For this reason the line source vector for the Stokes

Q parameter S
Q;l

is zero.
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Appendix B

Validation of the absorption matrix

elements derived from the quantum

field theory approach

As explained in Section 6.3.1, here we check the consistency of the radiative absorp-

tion matrix elements (A
kj

) derived in the Chapter 6 by comparing with the expres-

sions given in the literature for certain specific cases.

B.1 J

a

= 1 and J

b

= 0

In Trujillo Bueno & Landi Degl’Innocenti (1997) we find the expressions for the

radiative absorption coefficients �
I

and �
Q

(which correspond to �A
I

and �A
Q

respec-

tively in our notation) for J
a

= 1 and J
b

= 0 as

�
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Substituting in Equation (6.13) for J
a

and J
b

and taking into account that �
�

b

�

a

is

independent of magnetic quantum numbers in the non-magnetic case we get
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�: (B.2)

The geometrical factors are given by (see Equation (27) of Stenflo, 1998)

"

1

0

= � sin �; "

2

0

= 0;
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B.2. J
a

= 1 and J
b

= 1
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�i�

p
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: (B.3)

The multipolar components of the density matrix elements �
�

a

�

a

are given by (see

Equation (3.99) of Landi Degl’Innocenti & Landolfi, 2004)
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: (B.4)

Simplifying Equation (B.2) using Equations (B.3) and (B.4) and substituting in

Equation (6.24) results in the expression for �A
I

and �A
Q

as
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(a): (B.5)

Clearly, the expressions for �A
I

and �A
Q

match with �
I

and �
Q

for the particular case

of J
a

= 1 and J
b

= 0 as given in Trujillo Bueno & Landi Degl’Innocenti (1997) in

the non-magnetic regime.

B.2 J

a

= 1 and J

b

= 1

We follow the same kind of testing as described in the previous section but for the

case of J
a

= 1 and J
b

= 1. The expressions for the radiative absorption coefficients

�

I

and �
Q

for this particular case are (simplified starting from Equations (9) and (10)

of Trujillo Bueno, 1999)
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: (B.6)

Simplification of Equation (6.13) for J
a

= 1 and J
b

= 1 gives

g

��

0

=

3

2

h�

4�

NB

J

a

J

b

X

�

b

�

a

 

1 1 1

��

b

�

a

�

b

� �

a

!

2

"

�

0

�

�

b

�

a

"

�

�

b

�

a

�

�

a

�

a

�: (B.7)

Using again Equations (B.3) and (B.4), the above equation can be simplified and

substituted in Equation (6.24) to obtain �A
I

and �A
Q

as
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Appendix B. Validation of the absorption matrix elements derived from the
quantum field theory approach
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The expressions for �A
I

and �A
Q

match with �
I

and �
Q

for the case of J
a

= 1 and J
b

=

1 in the non-magnetic regime.
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Appendix C

Numerical method: two stage

approach

In this section we describe the two stage approach to solve the problem of polar-

ized line formation including lower-level polarization (LLP) and partial frequency

redistribution (PRD) for the non-magnetic case. In the first stage we solve the sta-

tistical equilibrium equations (SEEs) and transfer equation simultaneously in the

limit of complete frequency redistribution (CRD). For the numerical solution of this

problem we use the Rybicki and Hummer method (see Rybicki & Hummer, 1991)

appropriately generalized to handle polarized lower level (see also Trujillo Bueno,

2003). In the second stage we solve the polarized radiative transfer equation includ-

ing the effects of LLP (through the density matrix elements derived in the first stage)

and PRD.

C.1 Stage 1 of the two stage approach

The governing equations and concerned numerical method for the simultaneous so-

lution of the SEEs and transfer equation in the limit of CRD is illustrated here for

the 1�1�1 transition. For this particular transition the SEEs and transfer equations

are given in Trujillo Bueno (1999). For clarity we recall those equations here. For

this particular case there are four density matrix elements to be determined namely,

�

0

0

(a), �2
0

(a), �0
0

(b) and �2
0

(b) when polarizability of both the levels are taken into

account. The SEEs to be solved correspond to the K = 0 and 2 components of

the upper level, K = 2 component of the lower level density matrix and the num-

ber conservation equation. These equations can be derived starting from the general

equations (10.4) given in Landi Degl’Innocenti & Landolfi (2004) and they are
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(b) = 0;
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C.1. Stage 1 of the two stage approach
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(b) = 1: (C.1)

Here A
J

b

J

a

and B
J

a

J

b

are the Einstein coefficients for the spontaneous emission and

absorption respectively, C
J

a

J

b

and C
J

b

J

a

are the upward and downward inelastic col-

lisional rates, and D(2)

J

b

and D(2)

J

a

are the upper and lower level depolarizing elastic

collision rates. In the present case there is a contribution from the K = 2 multi-

pole component of the inelastic collision rates namely, C(2)

J

a

J

b

and C(2)

J

b

J

a

. The relation

between the Kth multipole component and zeroth component of different collision

rates is given in Appendix 4 of Landi Degl’Innocenti & Landolfi (2004). Using that

relation we get C(2)

J

a

J

b

= �C

J

a

J

b

=2 and C(2)

J

b

J

a

= �C

J

b

J

a

=2 for 1�1�1 transition

(we have taken eK = 1). There are two quantities related to the radiation field that

enter the SEEs. They are
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where I and Q are the Stokes parameters which are obtained by solving the transfer

equations
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Q

Q; (C.3)

dQ=ds = �
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Q: (C.4)

Here s is the geometrical distance along the ray. In the preceding equations, �
I

and

�

Q

are the emission coefficients which are given by
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: (C.5)

The expressions for the absorption coefficients �A
I

and �A
Q

are given by Equation (B.6).

Here N is the total number of atoms per unit volume. We note that �
Q

6= 0 whereas

it is equal to 0 in the case of 1 ! 0 ! 1 transition as the upper level with J
b

= 0
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Appendix C. Numerical method: two stage approach

cannot lead to the emission of polarized radiation.

From Equations (C.5) and (B.6) we see that �
I

, �
Q

, �A
I

and �

A

Q

depend on the

atomic density matrix elements, which in turn depend on the Stokes I and Q param-

eters (see Equations C.1 and C.2). Thus the problem becomes both nonlinear and

nonlocal. This is referred to as the non-local thermodynamic equilibrium (NLTE)

problem of the second kind (see Landi Degl’Innocenti & Landolfi, 2004). To solve

this problem, we use an iterative technique based on the approximate lambda itera-

tion (ALI) method.

From Equation (B.6) we see that when the lower level polarization is neglected

(i.e., �2
0

(a) = 0), the coefficient �A
Q

= 0. The transfer equations in this case get

decoupled and hence the numerical method of solution becomes simple. The details

of the �-iteration method to solve this NLTE resonance line transfer problem can

be found in Trujillo Bueno & Manso Sainz (1999). However when the effects of

polarization of the lower atomic level are considered, �A
Q

6= 0 and thus the transfer

equations are coupled (see Equation C.4). These coupled transfer equations can be

decoupled by working with I
+

= I +Q and I
�

= I �Q (see Trujillo Bueno, 2003).

The decoupled transfer equations can be written as
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; (C.6)
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. Thus we can

write the source functions S
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The formal solution of the transfer equations (C.6) and (C.7) can be written as

I

+

= �

+

[S

+

℄; (C.10)

I

�

= �

�

[S

�

℄; (C.11)

where �

+

and �

�

are the operators which depend on the optical distances between

the grid points. We use the short characteristics method (Olson & Kunasz, 1987) to

find the formal solution of the transfer equations (C.6) and (C.7).

Now, in order to linearize the SEEs (C.1), we introduce the approximate operator
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C.1. Stage 1 of the two stage approach

via the ALI approximation
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where the ‘y’ represent the quantities known from the previous iteration. Follow-

ing Olson et al. (1986), the approximate operators �

�

+

and �

�

�

are chosen to be

the diagonals of the respective actual lambda operators. Using Equations (C.12) in

Equation (C.2) we obtain
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where J0; eff
0

and J2; eff
0

are given by
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The components of the �� operator are given by
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In the computation of S
+

and S
�

in the first iteration, we need the values of �0
0

(a),

�

0

0

(b), �2
0

(a), and �2
0

(b). These are obtained by assuming the local thermodynamic

equilibrium populations. First we compute the number densities of the lower level
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Appendix C. Numerical method: two stage approach

(N
J

a

), upper level (N
J

b

) and the total density (N = N

J

a
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). From this, we

compute �0
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. We assume �2
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(a) = �
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(b) = 0 in

the first iteration. Substituting Equations (C.13) and (C.14) in Equations (C.1), and

preconditioning the quantity �0
0

(b)=�

0

0

(a) we can linearize these SEEs to obtain the

corresponding set of linearized equations
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J

b

J
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(b) = 0: (C.18c)

These equations are then solved for the density matrix elements �0
0

(a), �0
0

(b), �2
0

(a),

and �2
0

(b). In the subsequent iterations the source functions and the quantities J0
0

and J

2

0

are updated. The iteration sequence is continued until the convergence is

obtained over the density matrix elements. In this way we solve the SEEs and the

transfer equations simultaneously using the ALI method. The limit of unpolarized

lower-level is recovered by setting �2
0

(a) to zero in the above equations. It has to

be noted that the time evolution equation of the lower level will then be given by

�

K

Q

(a) = Æ

K0

Æ

Q0

�

0

0

(a), and therefore, the equation (C.18c) will vanish. The rest

of the iteration procedure remains the same, which then involves solving the SEEs

for the three unknowns namely, �2
0

(b), �0
0

(b), and �

0

0

(a). A similar procedure can

also be followed for the case of J
a

= 1 and J
b

= 0 which is simpler compared to

J

a

= J

b

= 1 case, with only three density matrix elements to be determined. The

SEEs and the transfer equation for this case (J
a

= 1 and J
b

= 0) in the non-magnetic

regime, is given in Trujillo Bueno & Landi Degl’Innocenti (1997).
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C.2 Stage 2 of the two stage approach

The density matrix elements obtained from the first stage described above are used

to compute the elements of the redistribution matrixRII

ij

(x; �; x

0

; �

0

) which is needed

in the the second stage. In this stage we solve the polarized transfer equation given in

Equation (6.42). By defining total optical depth d�
tot

= (�

abs

I

+r)d� we can simplify

Equation (6.42) as

dI

d�

tot

= I � S

eff

: (C.19)

Here, the effective source vector is

S

eff

= S

tot

�K

0

I; (C.20)

where we have redefined the total absorption matrix as

K

0

=

K

�

abs

I

+ r

�E: (C.21)

The total source vector is defined as

S

tot

=

1

�

abs

I

+ r

[rB

�

0

1 + S

l

℄: (C.22)

With these expressions we can apply the same steps as in Equations (19) - (26) of

Sampoorna et al. (2008c) to obtain the formal solution of the transfer equation using

DELOPAR method (see also Trujillo Bueno, 2003). The transfer equation (C.19) is

solved iteratively using an ALI method. To compute the source vector corrections

we use the so called frequency-angle by frequency-angle (FABFA) method, similar

to that given in Sampoorna et al. (2011).

However in the present case the thermal emission term (see Equation (6.34)) is

not a constant factor unlike in Sampoorna et al. (2011). Therefore we apply ALI for

the thermal term also and hence the corrections are computed over the total source

vector. Hereon the dependencies over x and � appear as subscripts. The formal

solution of the transfer equation (C.19) can be written as

I

x�

= �

x�

[S

tot;x�

℄: (C.23)

�

x�

is frequency and angle dependent integral operator which can be split as

�

x�

= �

�

x�

+ (�

x�

��

�

x�

); (C.24)
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where��
x�

represents the diagonal approximate operator. Now we can write the total

source vector as

S

n+1

tot;x�

= S

n

tot;x�

+ ÆS

n

tot;x�

: (C.25)

Here n represents the iteration index. Using Equations (C.22), (C.24), (C.25), and

(6.43) we obtain
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; (C.26)

where p
x�

= �

x

=(�

abs

I

+ r) and p

x�

= r=(�

abs

I

+ r). The mean intensity is given by

J

n

x�
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1

2
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0

Z

dx

0

R

II
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: (C.27)

In order to apply the ALI to the thermal emission term, we need to define matrix

X =

 

�

abs

I

�

abs

Q

0 0

!

; (C.28)

so that the scalar quantity e defined in Equation (6.36) can be rewritten as

e =

1

2

Z

d�

0

Z

dx

0

X

x

0

�

0

I

x

0

�

0

: (C.29)

Substituting Equations (C.23) and (C.24) in Equation (C.29) we obtain e for the

(n+ 1)

th iterate as

e

n+1

= e

n

+

1

2

Z

d�

0

Z

dx

0

X

x

0

�

0

�

�

x

0

�

0

[ÆS

n

tot;x

0

�

0

℄: (C.30)

The standard steps of FABFA as given in Sampoorna et al. (2011) can now be applied

to solve the system of linear equation (C.26) to obtain the corrections to the total

source vector (ÆS
tot;x�

) in the iteration process. In this way we solve using the ALI

method, the transfer equation which now includes the effects of PRD and LLP.
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