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Bianda, M., Ramelli, R., Anusha, L. S., Stenflo, J. O., Nagendra, K. N.,

Holzreuter, R., Sampoorna, M., Frisch, H., & Smitha, H. N. 2011, A&A, 530L,

13

In refereed conference proceedings

1. The Role of Quantum Interference and Partial Redistribution in the Solar Ba II

D2 4554 Å Line
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Abstract

One of the primary causes for the occurrence of observed features on the Sun is its

magnetic field. The traditional way of measuring the solar magnetic fields is through

the Zeeman effect. Over the decades, as the precision of the observing instruments has

improved, our understanding of the solar magnetic fields has deepened. We now know

that there exist fields on the Sun which remain invisible to the Zeeman effect. This

apparent invisibility of the fields can be due to their lower strength, orientation, or their

tangled nature. However, these fields can still be detected with the help of the Hanle

effect.

In the absence of magnetic fields, the Sun’s radiation is linearly polarized due to

the coherent scattering processes, and the resulting spectrum is known as the “Second

Solar Spectrum”. It contains a wealth of richly structured atomic and molecular lines

arising from a variety of atomic systems and atmospheric conditions. In the presence of

weak magnetic fields, this linearly polarized spectrum gets modified by the Hanle effect.

This modification is in the form of a decrease or an increase in the linear polarization

(Q/I) depending on the scattering geometry. In addition to this, the Hanle effect also

rotates the plane of polarization generating a U/I signal. Understanding the physics

of light scattering on atoms and the measurement of weak magnetic fields requires a

detailed forward modeling of the spectral line profiles. For this, adequate theoretical

tools which can handle the physical processes involving complex atomic systems are

needed. Of particular interest are the quantum interferences occurring between the

atomic states. There are several lines in the Second Solar Spectrum which are governed

by this phenomenon and their analysis demands a proper theoretical treatment of the

quantum interferences. This thesis is devoted to exploring the quantum interferences

between the fine structure states (J) and hyperfine structure states (F ), followed by

application of the theoretical derivations to the actual solar observations.

The thesis is divided into three parts. In the first part, we derive the redistribution

matrix taking account of the J-state interference effects which occurs in atoms with

non-zero electron spin S (Chapter 2). For the first time, we derive this matrix semi-

classically starting from the Kramers-Heisenberg formula by taking full account of the

effects of partial frequency redistribution (PRD) in the presence of magnetic fields,
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Abstract

and present the expressions both in the atomic and laboratory frames. The J-state

interference acts in the wings between the lines arising from the transitions involving

fine structure states. The redistribution matrix relates the Stokes vector of the incident

ray and that of the scattered ray. It contains the physics of line scattering. The matrix,

derived in Chapter 2, holds good only in the linear Zeeman regime of magnetic fields. In

this regime, the magnetic substates (m) belonging to different J-states do not overlap.

For the range field strengths found in the solar atmosphere, this theory holds good in

most of the cases.

The redistribution matrix is then included in the polarized radiative transfer equation

and solved for one-dimensional isothermal constant property atmospheric slabs in order

to understand the nature of the redistribution phenomenon in the non-magnetic (Chap-

ter 3) and magnetic cases (Chapter 4). We present a heuristic approach of including

different types of collisions into the J-state interference theory (Chapter 4). We then

apply this theory to the modeling of Stokes (I, Q/I) profiles of the Cr I triplet around

5206 Å observed near the solar limb (Chapter 5). The theoretical (I, Q/I) profiles com-

puted from our theory match closely with the observed profiles, especially at the cross

over points in Q/I which are due to the J-state interference effects. We demonstrate

the importance of the PRD effects. Clearly, the profiles computed under the assumption

of complete frequency redistribution (CRD) fail to reproduce the observed profiles. To

obtain a good match at the far wings, we find it necessary to slightly modify the temper-

ature structure of one of the standard one-dimensional (1-D) model atmospheres. With

such a small modification, we are able to reproduce the Q/I profile not only at the line

core but also in the continuum.

In the second part of the thesis, we extend the above formalism to the case of F -state

interference which occurs in atoms with non-zero nuclear spin Is. Unlike the J-state

interference, the F -state interference acts only in the line core. It causes a decrease in

the line core polarization. Like in the previous case, we include the redistribution matrix

into the polarized transfer equation and study the nature of the emergent Stokes profiles

(Chapter 6), confining our attention to the non-magnetic case. By taking example of the

Ba II D2 line profile, we test our theory by reproducing the observed (I, Q/I) profiles

(Chapter 7). Barium is a complex atomic system with seven isotopes. Only two out

of these seven are odd and exhibit F -state interference. The rest are even isotopes

whose atomic levels do not undergo hyperfine structure splitting. The observed (I, Q/I)

profiles have contributions from both the odd and the even isotopes in ratio 18:82 (as

established from solar abundance studies). The two odd isotopes are treated using the

F -state interference theory and the five even isotopes are treated using the simple two-

level atom theory. These are then combined in their respective ratios in the scattering

integral while solving the transfer equation. However to obtain a good match with the

observed profiles at the line core, we find it necessary to slightly modify the temperature
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structure of a standard 1-D model atmosphere. We also show that it is not possible to

model this line using CRD alone.

We consider another example, namely the Sc II 4247 Å line which also is governed

by the F -state interference (Chapter 8). The core of this line is composed of thirteen

hyperfine transitions which are to be accounted for while modeling it. These thirteen

transitions are due to the five upper and five lower F -states resulting from hyperfine

structure splitting of the upper and lower J = 2 states. From our efforts so far, we find

it difficult to reproduce the triple peak structure seen in the observed Q/I profiles, and

also the rest intensity. We get a good match at the wing PRD peaks and at the near wing

continuum but the central peak seems to be completely suppressed due to enhanced

depolarization by the F -state interference. We suspect that the lower level Hanle effect,

which is not accounted for in our treatment, might be playing a role since it can increase

the line core polarization when the fields are weak. We are yet to develop the theory of

lower level Hanle effect including PRD. This derivation is extremely complex, although

in principle it is achievable. Therefore we feel that the Q/I spectra of the Sc II 4247 Å

line has remained enigmatic to us. It would be very interesting to investigate it in the

near future.

In the last part of the thesis, we combine the theories of J-state and F -state inter-

ference effects and derive a unified redistribution matrix which can handle both these

effects simultaneously. In atoms with non-zero S and Is, the atomic states undergo fine

structure and hyperfine structure splitting, and exhibit both kinds of interferences. We

confine our attention to the collisionless non-magnetic regime, and study the Stokes

profiles formed in a 90◦ single scattering event (Chapter 9). Finally, the work presented

in this thesis is summarized and the possibilities of extending it to measure the solar

magnetic fields is discussed in the last chapter (Chapter 10).
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1
Introduction

1.1 The Solar magnetic fields

The story of the Sun’s magnetic field began in 1908, with George Ellery Hale predicting

the presence of magnetic fields in Sunspots. Quoting from Hale (1908a),

“Soon after the discovery of the vortices associated with sun-spots, it occurred to me

that if a preponderance of positive or negative ions or corpuscles could be supposed

to exist in the rapidly revolving gases, a magnetic field, analogous to that observed

by Rowland in the laboratory, should be the result. An equal number of positive and

negative ions, when whirled in a vortex, would produce no resultant field, since the effect

of the positive charges would exactly offset that of the negative charges. But Thomson’s

statement regarding the possible copious emission of corpuscles by the photosphere,

and the tendency of negative ions to separate themselves, by their greater velocity, from

positive ions, led to the belief that the conditions necessary for the production of a

magnetic field might be realized in the solar vortices.”

With this opened up a new area of research dedicated to the understanding of so-

lar magnetic fields. Although the mechanism for the production of magnetic fields in

sunspots is more clearly understood now, the intuitive picture given by Hale (1908a)

represents the first attempt to think about magnetic fields on the Sun.

The Sun is the only star whose disk can be observed in great detail and the features

appearing on it be well resolved. Some of these features include the sunspots, flares,

granules, supergranules, bright points, plages, etc. One of the principal elements influ-
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encing the dynamics of these features is the magnetic field. Few of the longstanding

problems like the coronal heating, solar wind acceleration are also probably related to

the magnetic fields. Hence it is of profound importance to study and understand their

nature. The most commonly used method to measure the solar magnetic fields is by

studying the Zeeman pattern of the spectral lines. Hale (1908b) was the first to ob-

serve these patterns in the spectra of sunspots. Since then several ground based and

space based instruments like the HINODE, SOHO, SDO, etc., are dedicated to the solar

magnetic field studies.

The magnetic fields on the Sun vary over a wide range of field strengths from a few

tens of gauss up to a few kilogauss. Some of the larger magnetic structures known to us

extend up to a few hundred megameters in size while the smaller magnetic structures

are still being discovered. With the help of Zeeman effect it is possible to measure both

strength and orientation of the magnetic fields. The longitudinal Zeeman effect pro-

duces circular polarization which responds to the line-of-sight component of the mag-

netic fields. The transverse Zeeman effect produces linear polarization and responds to

the component perpendicular to the line-of-sight. Thus from the linear and circular po-

larization measurements, it is possible to measure the vector magnetic fields. However

it is not possible to detect all the different kinds (see below) of fields by the Zeeman

effect alone. Howard & Stenflo (1972) showed that more than 90% of the magnetic flux

in the photosphere exists in the form of strong fields but occupy only a tiny fraction

on the solar surface, and the average observed fields are the order of a few gauss (see

also Stenflo, 1973, 1976). With this emerged a topological picture that nearly 99.8%

of the solar photosphere is filled with turbulent, mixed polarity, small-scale magnetic

fields whereas the rest is filled with networks of strong magnetic fields (see Stenflo,

1982). Detection of the turbulent magnetic fields is limited by the spatial resolution of

the observing instrument. Fields smaller than this limit remain invisible to the Zeeman

effect. A valuable alternative which can be used for the detection of turbulent fields is

the Hanle effect.

1.2 The Second Solar Spectrum and the Hanle effect

Radiation gets polarized when the spatial symmetry is broken in the physical process

generating it. In the Sun, such a symmetry breaking can be caused by the magnetic

fields or by scattering. The scattering polarization is maximum at the limb and zero

at the disk center (due to symmetry reasons). The solar spectrum including the lines

and the continuum is polarized by coherent scattering processes in the solar atmosphere

(for details on the continuum polarization see Section 1.4). When an atom is illuminated

anisotropically, and if there exists a phase relation between the absorption and emission

process, then the scattered light is polarized. This is known as coherent scattering. It

2
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becomes incoherent when the scattering atom suffers a collision and the phase relation

is wiped out. In this case, no polarization is generated. Understanding the processes by

which the line polarization is generated allows us to diagnose the physical conditions in

the magnetic elements on the Sun.

The linearly polarized spectrum of the Sun produced due to coherent scattering

processes appears completely different from the ordinary intensity spectrum and carries

a wealth of information about the physics of line scattering (Stenflo & Keller, 1996,

1997). This spectrum was named as the “Second Solar Spectrum” by Ivanov (1991).

In the presence of a weak magnetic field, the degree of linear polarization is reduced

and the plane of polarization is rotated. This is due to the Hanle effect. It is named after

Wilhelm Hanle who provided a correct explanation to this effect in 1924. This effect

was first observed in the laboratory by R. W. Wood in 1912 and later by Lord Rayleigh

in 1919 who measured different polarizations in the 253.7 nm line of mercury from

different experiments. Wood & Ellett (1923a,b) realized that the degree of polarization

depends on the orientation of the experimental setup with respect to the earth’s mag-

netic field. Hanle (1924) gave the first explanation to these observations using both the

classical, and quantum theory. Classically, this effect can be explained in terms of the

rosette motion of an electron in the presence of a magnetic field (for details see Moruzzi

& Strumia, 1991). Quantum mechanically, this effect can be understood using a simple

atomic picture shown in Figure 1.1. The magnetic field removes the degeneracy be-

Hanle effect

Ju=1

Jl=0

Γ
R

gω
L

m=1

m=0

m=-1

I

Q

U

~
~

Figure 1.1: Atomic level diagram illustrating the partial removal of degeneracy of the

magnetic substates by a weak magnetic field, giving rise to the Hanle effect. In the

figure, g, ωL, and ΓR are the Landé g-factor, Larmor frequency and radiative width

respectively. J and m are the total angular momentum quantum number and magnetic

quantum number respectively.

tween the magnetic substates of a given atomic state. The corresponding polarization

of the radiation scattered off from such an atom depends on the extent of departure from

degeneracy. In other words, the Hanle depolarization depends on the ratio between the

Zeeman splitting and the damping width of the atomic states. If these two quantities are

comparable to each other, in magnitude, then the splitting sensitivity is maximum and

we are in the Hanle regime. The range of field strengths at which this occurs depends on
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the atomic system under consideration. When the Zeeman splitting is much larger than

the damping width, then we are in the Hanle saturated regime (Stenflo, 1994; Trujillo

Bueno, 2001; Sampoorna et al., 2007a).

The Hanle effect complements the Zeeman effect by serving as a diagonistic tool

to detect magnetic fields invisible to the Zeeman effect. When the fields are tangled

with random orientation of field vectors, the net depolarization due to Hanle effect is

still seen, whereas the polarization due to the Zeeman effect cancels out. However,

the Hanle effect is sensitive only when the magnetic field has a horizontal component.

This limitation can be overcome with the Zeeman effect which can measure vertical

fields. The diagonistic potential of the Hanle effect to measure weak magnetic fields in

the Sun has been explored in several works such as Leroy (1985); Moruzzi & Strumia

(1991); Faurobert-Scholl et al. (1995); Faurobert-Scholl (1996); Trujillo Bueno (1999);

Faurobert (2000); Trujillo Bueno (2001); Stenflo (2002); Faurobert (2003, 2012).

To exploit the magnetic field diagonistic potential of the Hanle effect, we need

highly sensitive spectropolarimeters which can measure them. The scattering polariza-

tion is dependent on the angular anisotropy, which is due to the Sun’s limb darkening.

This anisotropy is quite small at visible wavelengths (Stenflo, 2005). Hence the scatter-

ing polarization is also small. In the presence of a magnetic field, it is further reduced

by the Hanle effect. The spectropolarimeters thus needed should have the sensitivity to

measure these small polarization signals. The ZIMPOL is one such instrument, working

of which will be discussed briefly in the section below.

1.3 Measurement of Stokes parameters

The polarization properties of light are measured in terms four Stokes parameters

S =




I

Q

U

V




, (1.1)

which were first introduced by Sir. George Stokes in 1852 and later brought to ex-

tensive usage by Chandrasekhar (1950). Here, I, Q, U and V are a measure of the

intensity, linear polarization, inclination of the plane of polarization and circular polar-

ization respectively. They can be graphically represented as shown in Figure 1.2. The

main advantage of this description is its ability to define partially polarized light. To

know the polarization information about a photon, we need to measure its four Stokes

parameters. However there are several difficulties involved in measuring them.
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Figure 1.2: Pictorial representation of the Stokes parameters. I0, I90, I45 and I135 are

the intensity components measured at 0◦, 90◦, 45◦, and 135◦ respectively with respect

to the observer facing the radiation source. I ′45 and I ′135 are the components measured at

45◦ and 135◦ with a retarder (quarter-wave plate) in between the observer and source.

1.3.1 Difficulties in polarimetry

In polarimetry the desired task is to image the full Stokes vector, i.e., to record four si-

multaneous images of the four Stokes parameters, I, Q, U and V . This is a challenging

task, because we need to image a four component vector from a scalar (the intensity).

In addition to this, most of the interesting polarization signatures have very small am-

plitudes which are difficult to measure. The main challenge is to eliminate as far as

possible the various sources of noise that generate spurious polarization, while working

with large detector arrays.

A polarization image, e.g. Stokes Q/I , is formed from the difference between two

images that represent orthogonal polarization states as shown in Figure 1.2. If I0 and

I90 are the two orthogonal components then the degree of linear polarization is

Q/I =
I0 − I90
I0 + I90

. (1.2)

The incident intensity beam can be split into two orthogonal components using a beam

splitter. If these two images are recorded simultaneously, then the seeing noise, aris-

ing due to the air turbulence, will in principle subtract out. However the noise due to

the different pixel sensitivities which is known as the gain-table noise will remain. To

eliminate gain-table noise one needs to use the same detector area for the orthogonally

polarized images. This can be done by modulating the polarization state. By modu-

lation, the images are temporally (instead of spatially) separated and they will contain

different seeing noise. To eliminate the seeing noise, the temporal separation between
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the two images must be less than the intensity fluctuation arising due to seeing, i.e. less

than a few milliseconds. Therefore the modulation has to be in the kHz range. The

problem with this is that large CCD arrays have a slow read out, far slower than what

would be needed to beat the seeing frequency. This problem is solved in the ZIMPOL.

1.3.2 The ZIMPOL camera

The Zurich Imaging Polarimeter (ZIMPOL) is a highly sensitive imaging polarimeter

with a sensitivity of 10−5, developed by the Institute of Astronomy at ETH, Zurich.

Over the past two decades, the instrument has been developed from its first version

ZIMPOL-I to the current version ZIMPOL-III to achieve higher accuracies. A detailed

description of the working of this instrument can be found in Povel (1995, see also

Stenflo 1984, 1985; Stenflo & Povel 1985; Povel et al. 1990).

The problem of fast modulation and slow readout has been solved in the ZIMPOL

camera where masked CCD is used as a synchronous demodulator. This technique

was first realised in ZIMPOL-I (Povel et al., 1990). Here, every second row of the

CCD was covered with an opaque mask (see first panel of Figure 1.3). The masked

area served as temporary storage rows which allowed to separate the photons generated

in two different phases of the modulation. The charges were shifted back and forth

along the column, in sync with the modulation. The complete CCD was read out after

integration over several modulation cycles. The demodulation was done by calculating

the difference between the two corresponding rows. Thus synchronous demodulation

of the fast intensity modulations was made possible with the CCDs. However this

allows measurement of one Stokes parameter at a time (Stenflo, 2007). With ZIMPOL-

II all the four Stokes parameters can be measured simultaneously (Povel, 1995, 2001).

For this, four image planes are created within the CCD with one exposed and three

masked rows (second panel of Figure 1.3). The photo charges are cycled between the

four image planes at a rate of kHz which helps in synchronous demodulation of the

modulated beam. This is repeated for many thousand modulation cycles till CCD has

been filled and then it is read out. The readout then contains the four simultaneous

images that represent different polarization states. Through simple linear combinations

of these four images, the images of the four Stokes parameters are obtained. The gain

table noise entirely divides out while obtaining the fractional polarizations Q/I, U/I

and V/I (Stenflo, 2007).

However, with the above method of masking three out of four pixel rows, 75% of

the light falling on the CCD is wasted. To overcome this, in ZIMPOL-III, the CCD

surface is covered with cylindrical microlenses which focuses the light falling on the 3

masked pixel rows onto the unmasked pixel row. In this way, the efficiency increases

by a factor of 4 (Ramelli et al., 2010).
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Figure 1.3: Principle of CCD demodulator. First panel: The crossection of CCD with

every alternate pixel rows being masked. This is used in ZIMPOL-I (taken from Povel,

1995). Second panel: The crossection of CCD with three out of four rows masked which

is used in ZIMPOL-II. In ZIMPOL-III, the CCD surface is covered with microlenses

(taken from Stenflo, 2007).

Thus, using such an advanced and a highly sensitive spectropolarimeter, it is possi-

ble to measure even the smallest polarization signals and record their spectrum (linear

and circular). An example of the observations of the CN molecular lines taken with the

ZIMPOL at NSO/Kitt Peak in March 2005 is shown in Figure 1.4. The image on the

left is observed in a quiet region and hence does not show much variation in Q/I along

the slit, and no U/I signal. The image on the right is observed near a sunspot. The Q/I

shows variations along the slit. Prominent Zeeman signatures are seen in Q/I, U/I and

V/I between 30′′ − 50′′. In order to use such a spectrum to understand the physics of

line scattering; the nature of solar magnetic fields; the solar atmosphere; etc., we need

to develop powerful tools to analyze it. The two well known methods are the inversion

technique and the forward modeling. In this thesis, we develop some tools which are
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Figure 1.4: CCD image of the Stokes spectra around 3773 Å region which is mostly

dominated by the CN molecular lines. The observation on the left is taken in a quiet

region and that on the right near a sunspot (taken from Stenflo 2009b).

used in forward modeling of the observed Stokes profiles in the Second Solar Spectrum.

1.4 Modeling the Second Solar Spectrum

The Second Solar Spectrum contains several molecular and atomic lines, linearly po-

larized by coherent scattering processes. An atlas of this spectrum observed at µ = 0.1

in a quiet region covering a range of wavelengths from the UV to the visible has been

developed by Gandorfer (2000, 2002, 2005). Some of the lines like the Ca I 4227 Å,

Sr I 4607 Å, Na I D1 (5896 Å) & D2 (5890 Å), Ba II D1 (4934 Å) & D2 (4554 Å), Ca II

H (3965 Å) & K (3933 Å), etc., have been well known for their prominent polarization

signals and form good candidates for modeling. Forward modeling of these line pro-

files involves the computation of the theoretical profiles accounting for the necessary

atomic physics and atmospheric effects, and comparing them with the observations. A

mismatch between the two indicates possible deficiencies in the atomic physics and/or

the atmospheric models used. These deficiencies are identified and corrected for till we
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get a close match with the observed profiles. With each such iteration, we get closer

to an actual representation of the physical processes giving rise to the observed solar

spectra.

Modeling the observed spectrum involves reproducing both the line as well as the

continuum profiles. In the Second Solar Spectrum, the continuum is also polarized due

to coherent scattering processes. The dominant contribution to this comes from scatter-

ing in the far wings of the Lyman series of hydrogen. Though the Lyman lines fall in the

UV region of the spectrum, their far wings extend to the visible wavelengths. Due to the

high abundance of hydrogen in the Sun, the scattering probability is sufficiently large

even in the far wings, making it the primary source of continuum polarization. The other

source of continuum polarization is the Thomson scattering on free electrons. Both po-

larizing and non-polarizing spectral lines are superposed on this polarized continuum

background. The polarizing lines appear as emission lines and the non-polarizing lines

appear as absorption lines. More details on this can be found in Stenflo (2005, 2009a).

Each spectral line observed in the Second Solar Spectrum is unique in its own ways.

They arise from atoms with varying complexities; they are formed at different heights in

the atmosphere; they have varying sensitivity to magnetic fields, collisions, temperature

variations, etc. Here we broadly classify these lines into two categories. In the first

category are the lines which can be modeled using a simple two level atom picture like

the Ca I 4227 Å, Sr I 4607 Å, etc. In the second category are the lines which arise from

fine structure splitting and hyperfine structure splitting like the Na I D1 & D2, Ba II D1

& D2, Ca II H & K, etc., that are relatively difficult to model.

The present thesis is dedicated to the development of the theory, and modeling of

lines in the second category. Before discussing the details of these complex systems, in

the section below we briefly describe some of the works dedicated to the modeling of

spectral lines in the first category, by taking the example of the Ca I 4227 Å line.

1.4.1 The Ca I 4227 Å line

Among the atomic lines in the visible wavelengths, the Ca I 4227 Å line has the largest

degree of linear polarization which makes it one of the most observed and studied lines.

It arises due to the J = 0 → 1 → 0 scattering transition, where J is the total angu-

lar momentum quantum number (see Figure 1.5). This atomic system known as the

normal Zeeman triplet is the only system which can be fully described in terms of time-

dependent classical oscillator theory. One of the earliest observations of this line was

by Brückner (1963), later followed by Stenflo (1974); Wiehr (1975). One of the earli-

est attempts to understand the resonance polarization of this line was by Dumont et al.

(1973). Since then this line has attracted the attention of several, who have extensively

used it to observe and study, for example, the physics of line scattering on a two-level
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atom; to determine the depth dependence of turbulent magnetic fields; to measure vec-

tor magnetic fields on the solar surface; to constrain realistic 1D model atmospheres by

modeling its center-to-limb variation (CLV), etc. To name a few: Stenflo (1974); Auer

et al. (1980); Stenflo (1982); Faurobert-Scholl (1992, 1994); Bianda et al. (1998, 2003);

Holzreuter et al. (2005); Sampoorna et al. (2009); Anusha et al. (2010); Bianda et al.

(2011); Anusha et al. (2011b); Supriya et al. (2014).

J=1

J=0

m=1

m=0

m=-1

m=0

Ca I 4227 A
0

Figure 1.5: Left Side: Level diagram representing the atomic system of the Ca I 4227 Å

line. In the presence of a magnetic field, the J-states are split into magnetic substates

(m). Right Side: CCD image of Ca I 4227 Å line observed at IRSOL using ZIMPOL-II

by Anusha et al. (2010).

In the next section, we describe the properties of the lines belonging to the second

category, namely those governed by the quantum interference phenomenon - which are

studied in detail in this thesis.

1.5 Quantum mechanical interferences

There are several lines in the Second Solar Spectrum which cannot be understood in

terms of the simple two level atom model described above. This is because, they arise

from atoms with more complex atomic structures. The fine structure splitting and hy-

perfine structure splitting are two such complexities. Radiation scattered on such atoms

carry imprints of the fine structure and/or hyperfine structure splitting in their spectrum.

1.5.1 Fine structure splitting and J-state interference

When an atom has a non-zero electron spin S, the atomic states with orbital angular

momentum quantum number L undergoes coupling with S and splits into J-states.

Such an atom is known as a “two-term atom” where transitions involve an upper and a
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lower term1 (see left panel in Figure 1.6). Such an atomic system gives rise to a set of

spectral lines known as multiplets, rather than a single line. These spectral lines show

up in the spectrum, and was first observed by Michelson & Morley (1887) in the Hα

line. However an explanation to this splitting was given much later by Sommerfeld

(1915, 1916a,b)

Some of the well known examples in the solar spectrum which arise due to fine

structure splitting are the Na I D1 & D2, Ca II H & K, Ba II D1 & D2, Mg II h & k,

Cr I triplet around 5206 Å, Lyα lines of H I and He II, O I triplet around 7773 Å, Mg I

b-lines, etc. When the Ca II H & K lines were first observed with a high resolution spec-

tropolarimeter by Stenflo et al. (1980, see also Stenflo 1980), the authors noticed a very

interesting polarization feature in Q/I in the form of a “double S” extending over more

than 100 Å around the H & K lines. These observations are shown in Figure 1.6 (right

panel). It was demonstrated by Stenflo (1980) that this feature can be explained only in

terms of the quantum mechanical interferences between the upper J-states. The H & K

lines are separated by 35 Å and yet they cannot be treated as two independent lines but

need to be treated as one single unit. The interference between the J-states is known

as the “J-state interference”. In optics, interference is a well known phenomenon and

J=3/2

J=1/2

J=1/2

L=1, S=1/2

L=0, S=1/2

 3933 A3965 A
o o

KH

Two-term atom

Ca II

Figure 1.6: Left Side: Level diagram representing the atomic system of the Ca II H & K

line system. Right Side: Linear polarization profiles of Ca II H & K observed by Stenflo

(1980).

optical fields obey the principle of superposition. The amplitude of field A at any given

point is the sum of the amplitudes Ai from other sources at that point. Assuming that

the fields are coherent, the resulting amplitude of the field is

W = A2 = |
∑

i

Ai|2 =
∑

i

|Ai|2 +
∑

i 6=k

AiA
∗
k 6=

∑

i

|Ai|2, (1.3)

where
∑

i 6=k AiA
∗
k represents the interference term. The principle of superposition is

also valid in quantum mechanics which results in interference of atomic states and has

been studied since the 1950’s and 1960’s (Podgoretskiĭ & Khrustalev, 1964; Penny,

1969). We now know that the Hanle effect, which was known since the 1920’s (Hanle,

1A term is a group of J-states with same L and S quantum numbers
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1924), is also an interference effect. It arises due to the quantum mechanical interfer-

ences between the magnetic substates m and is known as the m-state interference.

These interferences can also be understood as being analogous to the photons pass-

ing through the double-slit. For the creation of the interference pattern, it is important

that the photons pass through both the slits at the same time. Similarly, the observed

“double S” in the Q/I profiles of the Ca II H & K lines is due to the photons getting

scattered from both the upper J = 1/2 and J = 3/2 states at the same time. The re-

sulting scattering amplitude is a linear superposition of the scattering amplitudes of the

H & K transitions. When the scattering amplitude is squared to compute the scattering

probability, we get cross terms between the H and K scattering amplitudes. These cross

terms represent the interferences, and can take negative values. This gives rise to the

crossover seen in between the H & K lines in Figure 1.6. The crossover in the Q/I

spectrum between the two fine structure components is the most prominent signature

of J-state interference. Figure 1.7 shows the (I, Q/I) profiles of the Na I D1 & D2

where the cross over is clearly visible in the Q/I spectrum whereas the intensity spec-

trum shows only the fine structure components D1 & D2 and no interference signatures.

An interesting explanation to the quantum interferences in terms of the Schrödinger cat

states is given in Stenflo (2009b).

Figure 1.7: Stokes (I, Q/I) profiles of the Na I D1 & D2 observed by Stenflo & Keller

(1997).
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1.5.2 Hyperfine structure splitting and F -state interference

The F -state interference arises between the hyperfine structure states which are due to

the coupling between the J-states and the nuclear spin (Is) of the atom. The hyperfine

structure splitting was first observed by Michelson in 1881 in Sodium which was later

published in Michelson (1891). He could not explain the observed splitting of the Na

line into large number of components and noted the radiation to be ‘defective’. Later,

this splitting was first explained by Pauli (1924) in terms of the small magnetic moment

associated with the spinning nucleus. The Na I D2, Ba II D2, Sc II 4247 Å are some

of the well known lines governed by this phenomenon. The F -state interference acts

only in the core of the line unlike the J-state interference which acts in the wings of the

lines. It causes a depolarization, i.e., reduces the polarization, in the line core. In the

intensity it leads to a broadening of the line profile.

Modeling lines governed by interferences provides a check on our current under-

standing of the atomic physics and quantum mechanical scattering theory in such atomic

systems. In the section below, we describe the various stages involved in modeling the

(I, Q/I) profiles observed in the Second Solar Spectrum.

1.6 Modeling the quantum interference signatures

Studying the quantum interference signatures in the spectral line profiles observed in

the Second Solar Spectrum has been taken up in several earlier works using different

formalisms.

In Stenflo (1980, 1994); Stenflo & Keller (1997); Stenflo (1997), the authors com-

pute the atomic polarizability factor W2(λ) which contains the physics of quantum in-

terference, and computes the Stokes profiles using a parametrized atmospheric model,

bypassing the detailed radiative transfer. The computed profiles are then compared with

the observed profiles.

Using the density matrix formalism developed in Landi Degl’Innocenti & Landolfi

(2004), analysis of the spectral lines governed by quantum interferences has been car-

ried out recently by Belluzzi et al. (2007, 2009); Belluzzi (2009); Belluzzi & Trujillo

Bueno (2011, 2012).

In most of the papers mentioned above, the effects of radiative transfer and partial

frequency redistribution (PRD) are neglected. In this thesis, we study the spectral lines

by accounting for quantum interferences with PRD and radiative transfer. The steps in-

volved in such a study includes the computation of the scattering matrix, incorporating

it into the polarized radiative transfer equation, and solving the transfer equation using

appropriate numerical methods. While doing so, a suitable model atmosphere repre-

sentative of the solar atmosphere and a model atom representing the atomic system are

13



1.6. Modeling the quantum interference signatures

given as inputs.

1.6.1 Redistribution matrices

The redistribution matrix, also known as the scattering matrix, contains the physics of

line scattering and transforms the incident Stokes vector to the scattered Stokes vector.

There are different ways of deriving this matrix. One is the classical approach and

the other is the QED approach. A simple system like the normal Zeeman triplet with

J = 0 → 1 → 0 scattering transition can be described completely in terms of the

classical theory. For other complex systems we need the QED approach. A historical

account on the development of the theory of light scattering on atoms is presented in

Sampoorna (2008, see also Section 2.1).

For the atomic systems considered in this thesis, we use the semi-classical approach

of Stenflo (1994, 1998). In this approach we start from the Kramers-Heisenberg disper-

sion formula to compute the scattering amplitude

a f

b

[wαβ ]b ∼
∑

b

〈f |r · eα|b〉 〈b|r · eβ|a〉
ωbf − ω − iγ/2

, (1.4)

where the scattering is from a → b → f . This formula was developed by Kramers

& Heisenberg (1925) based on the correspondence principle. The quantum mechanical

derivation of this was later given by Dirac (1927a,b).

The wαβ in Equation (1.4) forms elements of the w matrix called the Jones scatter-

ing matrix (Stenflo, 1994). To compute the scattering probability which is the square

of scattering amplitude, we determine the bilinear product wαβw
∗
αβ which gives us the

W matrix. This can be converted to the Mueller matrix M by applying suitable trans-

formations (see Equation (7) of Stenflo, 1998). The Mueller matrix is analogous to the

redistribution matrix.

The redistribution matrix so derived is then written in terms of the irreducible spher-

ical tensors for polarimetry T K
Q (i,n) introduced by Landi Degl’Innocenti (1984). The

index i takes values 0,1,2 and 3 representing four Stokes parameters I, Q, U and V re-

spectively. n represents the direction of the scattered radiation.The index K takes val-

ues K = 0, 1 and 2 with −K ≤ Q ≤ +K. Expressing the redistribution matrix in terms

of T K
Q (i,n) helps in factorizing the terms dependent on the incoming and outgoing ray

directions, n′ and n respectively. A detailed procedure to carry out this factorization is

given in Sampoorna et al. (2007b). The significance of the irreducible spherical tensors

T K
Q (i,n) and the advantages of introducing them in the scattering matrix is given in

Section 4.3.1.

In the derivation of the redistribution matrix, we take account of the effects of PRD.

This accounts for a proper description of the correlations between the incident and
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scattered radiation. The redistribution matrix is a 4 × 4 matrix R(λ′,n′, λ,n), and

carries a dependency over B if there is a magnetic field. It relates the wavelength

and direction (λ′,n′) of the incident radiation to that of the scattered radiation (λ,n).

Other than PRD, the redistribution matrix can also be derived under the assumption of

complete frequency redistribution or frequency coherent scattering. In the former, the

correlation between the incident and scattered radiation is assumed to be completely

destroyed by collisions. In the latter, the incident and scattered radiation are assumed

to have the same frequency and differ only in the direction. Both these assumptions are

far from reality, except in certain special conditions. It is the PRD theory that represents

an actual scattering event, the closest. The importance of accounting for PRD effects

in realistic modeling of the spectral lines has been highlighted in several works (see

for e.g., Rees & Saliba, 1982; Faurobert-Scholl, 1992, 1994; Sampoorna et al., 2009;

Faurobert et al., 2009; Anusha et al., 2010; Smitha et al., 2012a, 2013b).

The redistribution matrix contains the necessary atomic physics. However the ob-

served line profiles are significantly modified by the atmospheric effects which are

broadly referred to as the radiative transfer effects. To account for this, we have to

incorporate the redistribution matrix into the polarized radiative transfer equation and

solve it using suitable numerical methods.

1.6.2 Polarized radiative transfer equation

The radiative transfer equation is a mathematical expression for the conservation of

radiant energy along a ray. This is written for the polarized case as

µ
∂I(λ,n, z)

∂z
= −ktot(λ, z) [I(λ,n, z)− S(λ,n, z)] , (1.5)

where I = (I, Q, U, V ) is the Stokes vector, ktot is the total opacity and S is the total

source vector. µ = cos θ with θ being the heliocentric angle with respect to the line of

sight and n defines the ray direction and z is the geometric height in the atmosphere.

The total source vector is given by

S(λ,n, z) =
kl(z)φ(λ, z)Sl(λ,n, z) + σc(λ, z)Sc(λ,n, z) + kc(λ, z)Sth(λ, z)

ktot(λ, z)
. (1.6)

Here Sth is the thermal source vector which is same as the Planck function, Sc is the

continuum source vector, and Sl is the line source vector. kl, kc are the line and contin-

uum opacities respectively. σc is the continuum scattering coefficient. The line source

vector can be written as

Sl(λ,n, z) = ǫSth(λ, z) +

∫ +∞

0

∮
R(λ,n, λ′,n′, z,B)

φ(λ, z)
I(λ′,n′, z)

dn′dλ′

4π
, (1.7)
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1.6. Modeling the quantum interference signatures

where R(λ,n, λ′,n′, z,B) is the redistribution matrix described in Section 1.6.1.

The source vector S and the Stokes vector I depend on n = (θ, φ), with θ, φ being

the colatitude and azimuth of the scattered radiation respectively. Frisch (2007) showed

that it is possible to decompose I and S into six cylindrically symmetric components

IK
Q and SK

Q using the irreducible spherical tensors T K
Q . The resulting Stokes vector I

is independent of φ and the source vector S is independent of n, and these vectors are

said to be in the reduced basis. Computationally it is advantageous to work in such a

reduced basis. Transformation of the Stokes vectors to such a reduced basis is referred

to as the decomposition of the Stokes vectors.

1.6.3 Numerical methods

Fast and efficient numerical methods for solving the radiative transfer equation have

been developed over the past few decades. One of the most commonly used methods

is the Approximate Lambda iteration (ALI) method which is based on the concept of

operator perturbation. This was first developed by Olson et al. (1986). The ALI method

can be used to solve only the scalar radiative transfer equation. In order to solve the

polarized transfer equation discussed in Section 1.6.2, the ALI method was extended

to the polarized case. This is known as the polarized ALI or the PALI method. The

PALI method was first developed for the CRD case in the absence of a magnetic field

by Faurobert-Scholl et al. (1997). This was extended to the case of PRD by Paletou

& Faurobert-Scholl (1997). The PALI method to handle the Hanle effect but for the

case of CRD was developed by Nagendra et al. (1998) and later extended for PRD by

Nagendra et al. (1999); Fluri et al. (2003b). For a detailed review on the PALI meth-

ods see Nagendra (2003a); Nagendra et al. (2003); Trujillo Bueno (2003); Nagendra &

Sampoorna (2009); Nagendra et al. (2009). The PALI method to solve the polarized

radiative transfer equation which has been decomposed using the irreducible spherical

tensors for polarimetry (as described in Frisch, 2007) is developed in Sampoorna et al.

(2008a).

An important simplification done while solving the transfer equation is replacing

the angle dependent redistribution matrix with its angle averaged version. Though such

a simplification is consistent while solving only for the intensity, it is rather not com-

pletely justified when computing the Stokes vector, particularly in the presence of a

moving media. The differences in the emergent Stokes profiles for the angle aver-

aged and angle dependent cases for different physical problems are studied in Fau-

robert (1987, 1988) and Nagendra et al. (2002). In a series of papers Frisch (2010);

Sampoorna et al. (2011); Sampoorna (2011b); Nagendra & Sampoorna (2011); Supriya

et al. (2013a), the authors have devised numerical methods which can take account of

the angle dependence in the PRD matrix for physical processes of increasing complex-
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ity and overcome the approximation of angle averaged PRD . However in Supriya et al.

(2013b), the authors demonstrated that the angle averaged versions are accurate enough

for all practical purposes.

In most of the papers mentioned above, the radiative transfer equation is solved for

the case of an isothermal constant property atmospheric slabs. However, while mod-

eling the actual spectral line profiles observed in the Sun, it is important to consider

realistic atmospheric models which can mimic the solar atmosphere as closely as possi-

ble. In addition to this, an atom model which represents the atomic system under study

also needs to be given as an input. In the section below we briefly describe the model

atom and the model atmospheres.

1.6.4 Model atmospheres and model atoms

A model atmosphere is a realistic empirical model which represents the solar atmo-

sphere. One dimensional (1-D) model basically contains information on the depth de-

pendence of various atmospheric quantities like the temperature, mass column, turbu-

lent velocity, electron and hydrogen densities, etc. A three dimensional (3-D) model

contains the variations of these quantities along three dimensions. In all the results

presented in this thesis we use 1-D models. To use two-dimensional (2-D) or 3-D

models we need the theory of polarized radiative transfer in multi-dimensional geome-

tries and suitable numerical methods to solve them. Such works have been carried out,

for example, by Auer et al. (1994); Fabiani Bendicho et al. (1997); Manso Sainz &

Trujillo-Bueno (1999); Shchukina & Trujillo Bueno (2009); Trujillo Bueno & Shchuk-

ina (2009). Recently more powerful and elegant methods have been developed by

Anusha & Nagendra (2011a); Anusha et al. (2011a); Anusha & Nagendra (2011b,c,

2012, see also Štěpán & Trujillo Bueno 2013).

There are several 1D models which have been built over the last few decades, to

name a few – Kurucz (1969, 1973); Vernazza et al. (1973, 1976); Kurucz (1979); Ver-

nazza et al. (1981); Machado et al. (1980); Avrett et al. (1984); Maltby et al. (1986);

Fontenla et al. (1990, 1991, 1993); Avrett (1995); Gu et al. (1997); Fontenla et al. (2002,

2006, 2007); Avrett & Loeser (2008); Fontenla et al. (2009). The 1-D realistic models

used in this thesis are taken from Fontenla et al. (1993) and Avrett (1995).

A fine comparison between the various 1-D and 3-D model atmospheres and a de-

tailed study on how closely they represent the real solar atmosphere has been presented

in Pereira et al. (2013). They find the 3-D models to be best suited. Thus, in general,

it is difficult to model the observed Stokes profiles using 1-D model atmospheres. In

Chapters 5 and 7, we find it necessary to slightly modify the existing 1-D standard

model atmosphere to obtain Stokes profiles that match closely with the observed ones.

Recently Supriya et al. (2014) have also tried to model the CLV observations of the
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Ca I 4227 Å line profiles and find that it is not possible to simultaneously reproduce the

intensity and polarization profiles at all limb distances, using 1-D model atmospheres.

Though the authors construct combined model by placing one atmosphere above the

other, they find it difficult to model the CLV. Thus going beyond the 1-D models has

now becoming inevitable if we need a better understanding of the processes occurring

in the Sun.

In addition to the model atmosphere, a model atom is also needed for the compu-

tation of the Stokes profiles. This model atom contains the information on the atomic

levels of our interest and the ones coupled to them radiatively and/or collisionally. The

model includes realistic inputs on bound-bound and bound-free transitions arising from

these atomic levels and the photo-ionization cross sections. An interesting paper on

the various atmospheric and atomic data required to study the solar spectrum and the

available resources is by Kurucz (1990).

1.7 Thesis outline

In this thesis we have derived the redistribution matrices for complex atomic systems

with fine and hyperfine structure splitting by taking account of the quantum interfer-

ences occurring between the split levels. Our treatment includes the effects of PRD and

a heuristic inclusion of collisions. We have extended the polarized radiative transfer

equation for a two-level atom to the case of a two-term atom and also suitably modi-

fied the existing numerical methods to solve this equation. Finally, we have tested our

theory by modeling the Stokes profiles of some of the atomic lines observed in the Sun.

The thesis is divided into three parts. First part is devoted to the study of J-state in-

terference. In the second part we treat the case of F -state interference. In the third part,

we combine the two parts and derive the redistribution matrix for a system governed by

both J and F -state interferences.

1.7.1 Part-I

Part-I of this thesis is dedicated to the understanding and development of the theory of

J-state interference. In Chapter 2, we derive the redistribution matrix accounting for the

quantum interference between J-state, the effects of PRD and magnetic fields. However

we confine our attention to the collisionless regime. The derived redistribution matrix

holds good in the linear Zeeman regime of field strengths where the magnetic substates

(m) of different J states do not overlap. For the field strengths found in the solar

atmosphere, this is valid in most cases. Using this redistribution matrix, we compute

the Stokes profiles resulting from a 90◦ single scattering event. This is because at 90◦,

the degree of polarization is maximum. We assume the scattering to be occurring on
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a hypothetical atomic system with Lupper = 1, Llower=0 and S = 1/2. The transitions

from the fine structure states are assumed to be centered at 5000 Å and 5001 Å. The

Stokes profiles are computed for different magnetic field strengths and also for different

separations between the fine structure states.

In Chapter 3, we incorporate the above derived redistribution matrix into the polar-

ized radiative transfer equation but consider only the non-magnetic case. We extend the

commonly used two-level atom transfer equation to the case of a two-term atom. The

transfer equation is then solved using the PALI method after decomposing the Stokes

vector into the reduced basis. The method of short characteristics is used to compute

the formal solver and the frequency by frequency (FBF) method is used to compute the

source vector corrections. The model atmosphere is assumed to be an isothermal con-

stant property plane-parallel slab. We study the nature of the emergent Stokes profiles

by varying different properties of the atmosphere such as its optical thickness, ther-

malization parameter, continuum opacity, etc. Finally, we compare our redistribution

matrix approach with the W2(λ) approach of Stenflo and find that they provide identical

results.

Chapter 4 is an extension of Chapters 2 and 3 to include the collisional redistribu-

tion. In this chapter we present a heuristic approach of including the effects of collisions

into the J-state interference theory by making a few assumptions which are listed in the

chapter. We then compute the 90◦ single scattered profiles like in Chapter 2. We also

propose a method to handle the polarized radiative transfer equation with the J-state in-

terference redistribution matrix in the presence of weak magnetic fields. We then solve

this transfer equation and study the nature of the emergent Stokes profiles.

In Chapter 5, we apply the theory and the numerical techniques developed in the

previous three chapters to model the Cr I triplet around 5206 Å observed at a quiet re-

gion near the solar limb. These observations were taken by us using the ZIMPOL-III

polarimeter at IRSOL, Switzerland. We find that in order get a good match with the ob-

servations, we need to modify the temperature structure of a standard model atmosphere

in the deeper layers. We get a good fit to both the intensity and the linear polarization

profiles with the modified model.

1.7.2 Part-II

In Part-II of the thesis, we extend the above developed theory of J-state interference to

the case of F -state interference. In Chapter 6, we present the redistribution matrix and

use it in the polarized radiative transfer equation. We compare the PALI method and

the Scattering expansion method (SEM). We compute the emergent Stokes profiles for

an isothermal constant property atmospheric model and study their nature.

In Chapter 7, we take the example of the Ba II D2 line and use the F -state in-
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terference theory to model its Stokes profiles. We take account of the contributions

from different isotopes and their isotopic shifts. Once again, to obtain a good fit to the

observed profiles, we find it necessary to reduce the temperature of a standard model

atmosphere at the heights where the line center is formed. Though, the modified model

provides a good fit to the limb observations (µ = 0.1), it fails at other limb distances

µ > 0.1.

In Chapter 8, we consider another example, the Sc II 4247 Å line which is governed

by F -state interference effects and apply our theory to model its observed profiles. None

of the model atmospheres tried by us provides a match. We suspect the role of lower

level Hanle effect in shaping the observed profiles, which is not accounted for in our

treatment.

1.7.3 Part-III

In Part-III of the thesis, we derive the redistribution matrix taking account of both J-

state and F -state interferences in the collisionless, non-magnetic regime. We compute

the 90◦ single scattered profiles by assuming a hypothetical atomic system and study

their behaviour.

The overall summary of the thesis is presented in Chapter 10 followed by future

outlook in this area. A few appendices are added at the end of the thesis giving some

specialized aspects of the derivations presented in the thesis.
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Polarized line formation with J-state

interference

Chapters 2-5

21





Based on:

Smitha, H. N., Sampoorna, M., Nagendra, K. N., & Stenflo J. O. 2011, ApJ, 633, 4

2
Collisionless redistribution in the

presence of magnetic fields

An Overview

Quantum interference phenomena play a fundamental role in astrophysical spectra that

are formed by coherent scattering processes. In this chapter (Smitha et al., 2011b), we

derive a partial frequency redistribution (PRD) matrix that includes J-state interference

in the presence of magnetic fields of arbitrary strength. Here, we focus on the collision-

less regime, which in the traditional PRD terminology is referred to as Hummer’s type

II scattering. By limiting the treatment to the linear Zeeman regime, for which the Zee-

man splitting is much smaller than the fine structure splitting, we formulate analytical

expressions for the PRD matrices. In the special case of non-magnetic scattering we

recover the redistribution matrix derived from an independent QED formulation based

on the metalevel theory.

2.1 Introduction

The interpretation of Second Solar Spectrum requires the use of advanced theories of

scattering in the presence of magnetic fields. The Rayleigh (non-magnetic) scattering

phase matrix for a J = 0 → 1 → 0 scattering transition was derived by Chandrasekhar

(1950) using classical electrodynamics. The phase matrix for arbitrary (namely, a
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Ja → Jb → Ja) scattering transition was derived by Hamilton (1947) using quan-

tum mechanics. A classical electrodynamic expression of the Hanle phase matrix for

polarized light scattering on atoms in the presence of weak magnetic fields was given

by Stenflo (1978). The QED theory of polarized scattering on atoms in the presence of

arbitrary strength magnetic fields was formulated in Bommier & Sahal-Brechot (1978)

and Landi Degl’Innocenti (1983, 1984, 1985), under the assumption of complete fre-

quency redistribution (CRD).

The interpretation of observed linear polarization in resonance lines often requires

the use of PRD in scattering. The problem of frequency redistribution in resonance

lines for non-magnetic and weak magnetic field cases was formulated by Omont et al.

(1972, 1973) using a quantum approach. Based on this work Domke & Hubeny (1988)

derived an explicit form of the polarized PRD matrix for resonance scattering. Using

a master equation theory, Bommier (1997a,b) derived the polarized PRD matrices for

scattering in non-magnetic and arbitrary strength magnetic fields. Her theory can handle

an arbitrary scattering transition Ja → Jb → Ja, with Ja and Jb being the angular

momentum quantum numbers of the lower and the upper states, respectively. The lower

level in this theory is assumed to be unpolarized.

A classical PRD theory for the scattering of polarized radiation in the presence of

arbitrary strength magnetic fields was developed by Bommier & Stenflo (1999). They

solved the time-dependent oscillator equation, in combination with a classical model for

collisions (see Stenflo, 1994, Chapter 10). However, Bommier & Stenflo (1999) present

the polarized PRD matrices in the atomic rest frame. The corresponding laboratory

frame redistribution matrices were derived in Sampoorna et al. (2007a). For the partic-

ular case of a J = 0 → 1 → 0 scattering transition, Sampoorna et al. (2007b) showed

that the QED theory of Bommier (1997b) and the classical oscillator theory give iden-

tical results. Following the suggestion given in Section 5 of Sampoorna et al. (2007a),

Sampoorna (2011a) has extended the classical theory to treat atomic transitions with

arbitrary J-quantum numbers. This extension proceeds in a phenomenological way,

drawing on the analogy between the Kramers-Heisenberg scattering amplitude for line

scattering in quantum mechanics and the Jones matrix for classical polarized scattering.

The PRD matrices derived from such a semi-classical approach are in agreement with

those derived by Bommier (1997b). The complex problem of polarized line formation

in multilevel atoms taking account of the PRD effects has recently been addressed by

Sampoorna et al. (2013).

Stenflo (1980, 1994, 1997) formulated the quantum theory of J-state interference

for frequency coherent scattering. A QED theory for the multi-term atom (that in-

cludes also the J-state interference) under the assumption of CRD is given in Landi

Degl’Innocenti & Landolfi (2004). A metalevel theory (also including J-state inter-

ference) has been formulated by Landi Degl’Innocenti et al. (1997) to deal with PRD
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problems in the presence of magnetic fields of arbitrary strength in the absence of col-

lisions.

In the present chapter, based on the Kramers-Heisenberg scattering formula, we de-

rive polarized PRD matrices including the J-state interference. Here we restrict our

attention to scattering in the absence of collisions (the so-called type-II scattering of

Hummer, 1962). Our formulation however has the advantage that it allows elastic col-

lisions to be taken into account by following an approach similar to that described in

Sampoorna et al. (2007a), in the context of m-state interference phenomenon. We con-

sider an La → Lb → Lf scattering transition, where La, Lb and Lf denote the orbital

angular momentum quantum numbers of the initial, intermediate, and final levels, re-

spectively, but limit ourselves here to the case of resonance scattering with common

initial and final states, La = Lf , which is known as a two-term atom (see Figure 2.1)

Due toL−S coupling, a given (L, S) state splits into several J-states, with |L−S| ≤
J ≤ |L + S|. Here we account for interference between the Jb-states belonging to a

given excited Lb-state. This includes the interference between the magnetic substates

of different Jb-states. However, the present treatment is limited to the regime where

the Zeeman splitting is much smaller than the fine-structure splitting. Therefore, the

Paschen–Back regime is not covered and the level crossings are not dealt with. Thus, in

the linear Zeeman regime of relatively weak fields, the interference between magnetic

substates belonging to different J-states takes place mainly in the line wings, outside

the Doppler cores. The Paschen–Back theory that covers the regime of relatively strong

fields but under the assumption of CRD is given in Landi Degl’Innocenti & Landolfi

(2004). The PRD theory of J-state interference in the Paschen–Back regime is now

developed in Sowmya et al. (2014a).

La , S

Jb'Jb

Ja Jf

Lb , S } Upper term

Lower term

,

,

( )

( )

Lb+S

Lb-S

La+S

La-S
}

Figure 2.1: Schematic Level diagram of a two-term atom. The lower term is assumed

to be infinitely sharp whereas the upper term is radiatively broadened.

In Section 2.2 we recall the expressions of the Kramers–Heisenberg formula and the

Mueller scattering matrix. In Section 2.3 we derive the elements of the redistribution

matrix in both the atomic and the laboratory frames. In Section 2.4 we rewrite the

redistribution matrix derived in Section 2.3 in terms of the irreducible spherical tensors.

In Section 2.5, we derive the analytical expressions for the L = 0 → 1 → 0 transition.
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The Stokes profiles obtained from single scattering are discussed in detail in Section 2.6.

The concluding remarks are given in Section 2.7.

2.2 The Muller scattering matrix

The complex probability amplitude for scattering from a given initial magnetic substate

a to a final substate f via all possible intermediate substates b is given by the Kramers–

Heisenberg formula (see Stenflo, 1998)

wαβ ∼
∑

b

〈f |r · eα|b〉 〈b|r · eβ |a〉
ωbf − ω − iγ/2

, (2.1)

where ω = 2πξ is the angular frequency of the scattered radiation in the atomic rest

frame, ~ωbf is the energy difference between the excited and final states, and γ is the

damping constant that accounts for the broadening of the excited state, while the initial

and final states are assumed to be infinitely sharp. The damping parameter is assumed

to be same for all the magnetic substates of the excited state. The matrix elements

appearing in Equation (2.1) can be expanded using the Wigner–Eckart theorem (see

Stenflo, 1994, pp. 145 and 199). This gives us

wαβ(JfµfJaµa) ∼
∑

Jbµb

(−1)q−q′
√
(2Ja + 1)(2Jf + 1)(2Jb + 1)(2La + 1)

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}(
Jb Ja 1

−µb µa −q′

)(
Jb Jf 1

−µb µf −q

)

×Φγ(νJbµbJfµf
− ξ)εα∗q εβq′, (2.2)

where µb represents the magnetic substates of the upper level b with total angular mo-

mentum quantum number Jb, orbital angular momentum quantum number Lb, and spin

S. The total angular momentum quantum numbers of the initial and final states are

Ja and Jf with orbital angular momentum quantum number La, spin S, and magnetic

substates µa and µf , respectively. The quantities ε are the geometrical factors (see Equa-

tions (2) and (27) of Stenflo, 1998) with α and β denoting the outgoing and incoming

rays, respectively. In Equation (2.2), q and q′ satisfy

q = µf − µb; q′ = µa − µb. (2.3)

The frequency-normalized profile function is given by

Φγ(νJbµbJfµf
− ξ) =

1/(πi)

νJbµbJfµf
− ξ − iγ/(4π)

, (2.4)
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where

νJbµbJfµf
= νJbJf + (gbµb − gfµf)νL. (2.5)

Here hνJbJf is the energy difference between the upper state Jb and lower state Jf in

the absence of magnetic fields, gb,f are the Landé factors of the Jb and Jf states, and

νL is the Larmor frequency. Equation (2.2) refers to the frequency-coherent scattering

case. The Mueller matrix M that describes the transformation from the incident to the

scattered Stokes vector is of the form (see Equation (7) of Stenflo, 1998)

M = TWT
−1, (2.6)

where

W =
∑

Jaµa

ρµaµa

∑

Jfµf

w(JfµfJaµa)⊗w
∗(JfµfJaµa). (2.7)

The symbol ⊗ stands for the tensor product. ρµaµa
represents the relative populations

of the initial magnetic substates µa (diagonal elements of the density matrix for the

initial state, normalized such that the sum over ρµaµa
is unity). Without initial-state

polarization, all the ρµaµa
are equal and can therefore be absorbed in the normalization

constant for the Mueller matrix M. In Equation (2.6), T and T
−1 are purely mathe-

matical transformation matrices, and their explicit forms are given in Equation (9) of

Stenflo (1998).

2.3 The type-II redistribution matrix

The matrix form of the tensor product w(JfµfJaµa)⊗w
∗(JfµfJaµa) in Equation (2.7),

which is needed for the computation of the redistribution matrix, is given by Equa-

tion (10) of Stenflo (1998). Bilinear products wαβ(JfµfJaµa)w
∗
α′β′(JfµfJaµa) make up

this matrix. The profile function Φγ(νJbµbJfµf
− ξ) appearing in Equation (2.2) for out-

going frequency (ξ) may be replaced by Φ′
γ(νJbµbJaµa

−ξ′) for incoming frequency (ξ′),

through an application of energy conservation (see Equation (9.10) of Stenflo, 1994).

The profile function Φ′
γ(νJbµbJaµa

− ξ′) is given by Equation (2.4) with ξ replaced by

ξ′, while νJbµbJfµf
is replaced by νJbµbJaµa

which is defined similar to Equation (2.5).

Thus the bilinear product wαβ(JfµfJaµa)w
∗
α′β′(JfµfJaµa) can be written in the atomic

frame as

wαβ(JfµfJaµa)w
∗
α′β′(JfµfJaµa) ∼

∑

JbµbJb′µb′

(−1)q−q′(−1)q
′′−q′′′εα∗q εα

′

q′′ε
β
q′ε

β′∗
q′′′

× cos βJb′µb′Jbµb
eiβJ

b′
µ
b′

Jbµb Φγ
JbµbJb′µb′Jaµa

(ξ′)δ(ξ − ξ′ − νJaµaJfµf
)(2Ja + 1)

×(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}
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2.3. The type-II redistribution matrix

×
{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}(
Jb Ja 1

−µb µa −q′

)(
Jb′ Ja 1

−µb′ µa −q′′′

)

×
(

Jb Jf 1

−µb µf −q

)(
Jb′ Jf 1

−µb′ µf −q′′

)
. (2.8)

In the above equation we have introduced the delta-function term δ(ξ− ξ′ − νJaµaJfµf
),

which is simply the statement of energy conservation (see Equations (9.7) and (9.10)

of Stenflo, 1994). This term is essential as we are dealing with type-II scattering which

represents coherent scattering in the atom’s rest frame. The νJaµaJfµf
appearing in the

delta function is given by

νJaµaJfµf
= νJaJf + (gaµa − gfµf)νL, (2.9)

where hνJaJf is the energy difference between the states Ja and Jf in the absence of a

magnetic field.

The angle βJb′µb′Jbµb
(arising due to the combined effects of the J-state and m-state

interferences) is defined by

tan βJb′µb′Jbµb
=

ωJb′Jb
+ (gb′µb′ − gbµb)ωL

γ
, (2.10)

where ~ωJb′Jb
represents the energy difference between the Jb′ and Jb states in the ab-

sence of a magnetic field. When Jb = Jb′ , the angle βJb′µb′Jbµb
describes the m-state

interference (see Stenflo, 1994, pp. 87) and when Jb 6= Jb′ , it characterizes the J-state

interference. In the present chapter (see also Smitha et al., 2011b) we limit the treat-

ment to the linear Zeeman regime, in which the Zeeman splitting is much smaller than

the fine structure splitting. When Jb 6= Jb′ , the contribution from the second term with

ωL in Equation (2.10) to the angle βJb′µb′Jbµb
can therefore be ignored, because it is

insignificant in comparison with the first term.

The “generalized profile function” is defined as

Φγ
JbµbJb′µb′Jfµf

(ξ) =
1

2

[
Φγ(νJbµbJfµf

− ξ) + Φ∗
γ(νJb′µb′Jfµf

− ξ)
]
. (2.11)

When deriving Equation (2.8), we have made use of the following relation

Φγ(νJbµbJfµf
− ξ)Φ∗

γ(νJb′µb′Jfµf
− ξ) =

4 Φγ
JbµbJb′µb′Jfµf

(ξ)

γ − i(ωJb′µb′Jfµf
− ωJbµbJfµf

)
. (2.12)

Equation (2.8) can be transformed to the laboratory frame following exactly the same

steps as described in Section 2.2 of Sampoorna et al. (2007a) (see also Section 3.3

of Bommier, 1997b). Thus in the laboratory frame, the bilinear product is given by
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

Equation (2.8), but with the following replacement:

Φγ
JbµbJb′µb′Jaµa

(ξ′)δ(ξ − ξ′ − νJaµaJfµf
) −→

[
(hII

Jbµb,Jb′µb′
)JaµaJfµf

+ i(f II
Jbµb,Jb′µb′

)JaµaJfµf

]
, (2.13)

where

(hII
Jbµb,Jb′µb′

)JaµaJfµf
=

1

2

[
RII,H

JbµbJaµaJfµf
+RII,H

Jb′µb′JaµaJfµf

]
, (2.14)

(f II
Jbµb,Jb′µb′

)JaµaJfµf
=

1

2

[
RII,F

Jb′µb′JaµaJfµf
− RII,F

JbµbJaµaJfµf

]
, (2.15)

and the magnetic redistribution functions of type II are given by

RII,H
JbµbJaµaJfµf

(xba, x
′
ba, Θ) =

1

π sinΘ
exp

{
−
[
xba − x′

ba + xJaµaJfµf

2 sin(Θ/2)

]2}

×H

(
a

cos(Θ/2)
,
vJbµbJaµa

+ v′JbµbJaµa
+ xJaµaJfµf

2 cos(Θ/2)

)
, (2.16)

and

RII,F
JbµbJaµaJfµf

(xba, x′
ba, Θ) =

1

π sinΘ
exp

{
−
[
xba − x′

ba + xJaµaJfµf

2 sin(Θ/2)

]2}

× 2F

(
a

cos(Θ/2)
,
vJbµbJaµa

+ v′JbµbJaµa
+ xJaµaJfµf

2 cos(Θ/2)

)
. (2.17)

In the above equations, H(a, x) and F (a, x) are the Voigt and Faraday-Voigt functions

defined by

H(a, x) =
a

π

∫ +∞

−∞

e−y2dy

(x− y)2 + a2
; F (a, x) =

1

2π

∫ +∞

−∞

e−y2(x− y)dy

(x− y)2 + a2
. (2.18)

The scattering angle between the incident and scattered rays is denoted by Θ (see Fig-

ure 2.2). The dimensionless quantities appearing in Equations (2.16) and (2.17) are

given by

xba =
ν0ba − ν

∆νD
; vµbµf

= x+ (gbµb − gaµf)
νL
∆νD

; a =
γ

4π∆νD
,

xJaµaJfµf
=

νJaµaJfµf

∆νD
; vJbµbJaµa

= xba + (gbµb − gaµa)
νL
∆νD

, (2.19)

where xba, a and ∆νD are the emission frequency, damping parameter, and Doppler

width, respectively. We note that (f II
Jbµb,Jb′µb′

)JaµaJfµf
is zero when both Jb = Jb′ and

µb = µb′ .

Substituting Equation (2.8) in Equations (2.6) and (2.7), we obtain the Hanle - Zee-
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2.4. The redistribution matrix in terms of irreducible spherical tensors

man redistribution matrix with the J-state interference included appropriately.

ϕ
B

ϑϑB

Z

ϕ ϕ

ϑ

B

                                                        

                                                                     

    

Θ
n

n

Figure 2.2: Illustration of the scattering geometry in a coordinate system where the

magnetic field makes an angle ϑB with the polar z-axis and has an azimuth ϕB . (ϑ′, ϕ′)

refer to the incident ray and (ϑ, ϕ) to the scattered ray defined with respect to the z-axis.

Θ is the scattering angle.

2.4 The redistribution matrix in terms of irreducible

spherical tensors

The irreducible tensors T K
Q (i,n) have been introduced by Landi Degl’Innocenti (1984)

to deal with problems in polarized radiative transfer. Here index i refers to the Stokes

parameters (i = 0, 1, 2, 3), while K = 0, 1, 2 with −K ≤ Q ≤ +K. In the following

we will express the redistribution matrix in terms of T K
Q , which allows it to be written as

a sum of its multipolar (K) components. The details are presented in Appendix A. We

will need this form in particular for the collisional redistribution matrix (type III). Fur-

thermore, in the weak field limit the expansion in terms of T K
Q allows us to express the

Stokes intensity and source vectors in terms of the respective ‘cylindrically symmetric’

irreducible components IKQ and SK
Q (see Frisch, 2007).

We start by expressing the equations given in Sections 2.2 and 2.3 in terms of the

irreducible spherical tensors for polarimetry, following Appendix C of Sampoorna et al.

(2007b) (see also Landi Degl’Innocenti & Landolfi, 2004). In Appendix A, we show

that for the non-magnetic case we recover the fine-structure scattering phase matrix

derived in Landi Degl’Innocenti & Landolfi (2004, see their Equation (10.132)). Fol-

lowing the same procedure as described in this appendix, we can express the magnetic

PRD matrix of Section 2.3 in terms of T K
Q . After some algebra, we can write the mag-
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

netic redistribution matrix in the Stokes vector formalism as (see Appendix A)

R
II
ij(ξ,n; ξ

′,n′,B) =
2

3

∑

K ′K ′′QJaµaJfµfJbµbJb′µb′

√
(2K ′ + 1)(2K ′′ + 1)

×(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2(−1)q
′′+q′+QcosβJb′µb′Jbµb

×eiβJ
b′

µ
b′

Jbµb Φγ
JbµbJb′µb′Jaµa

(ξ′) δ(ξ − ξ′ − νJaµaJfµf
)

(
Jb Ja 1

−µb µa −q′

)

×
(

Jb Jf 1

−µb µf −q

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb′ Jf 1

−µb′ µf −q′′

)(
1 1 K ′′

q −q′′ −Q

)

×
(

1 1 K ′

q′′′ −q′ Q

){
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×(−1)QT K ′′

−Q (i,n)T K ′

Q (j,n′). (2.20)

Using Equation (C2) of Sampoorna et al. (2007b) and Equation (2.13) we can write the

normalized type-II redistribution matrix in the laboratory frame as

R
II
ij(x,n; x

′,n′,B) =
3(2Lb + 1)

2S + 1

∑

K ′K ′′QJaµaJfµfJbµbJb′µb′

√
(2K ′ + 1)(2K ′′ + 1)

×(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(−1)q
′′+q′+QcosβJb′µb′Jbµb

eiβJ
b′

µ
b′

Jbµb

×
[
(hII

Jbµb,Jb′µb′
)JaµaJfµf

+ i(f II
Jbµb,Jb′µb′

)JaµaJfµf

]( Jb Ja 1

−µb µa −q′

)

×
(

Jb Jf 1

−µb µf −q

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb′ Jf 1

−µb′ µf −q′′

)(
1 1 K ′′

q −q′′ −Q

)

×
(

1 1 K ′

q′′′ −q′ Q

){
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×(−1)QT K ′′

−Q (i,n)T K ′

Q (j,n′). (2.21)

In Section 2.6 we present the results computed using Equation (2.21). When the mag-

netic field is set to zero in Equation (2.21), it takes a particularly simple form given

by

R
II
ij(x,n; x

′,n′) =
3(2Lb + 1)

2S + 1

∑

KQJaJfJbJb′

(−1)Jf−JacosβJb′Jb
eiβJ

b′
Jb (2Ja + 1)

×(2Jf + 1)
[
(hII

Jb,Jb′
)JaJf + i(f II

Jb,Jb′
)JaJf

]
(2Jb + 1)(2Jb′ + 1)

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
{

1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}
(−1)QT K

Q (i,n)T K
−Q(j,n

′). (2.22)
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The quantities appearing in Equation (2.22) are given by Equations (2.10) and (2.14)-

(2.17), but with νL = 0. We have verified that Equation (2.22), when written in the

atomic rest frame, is identical to the redistribution matrix given in Landi Degl’Innocenti

et al. (1997) based on the metalevel approach (see their Equation (15)).

2.5 Analytical Expressions for the L = 0 → 1 → 0

transition

To gain a physical insight, we have derived the analytical form of the Hanle-Zeeman

redistribution matrix for the case when La = Lf = 0 and Lb = 1, and for a co-ordinate

system in which the polar axis is along the magnetic field. The incident ray is defined

by polar and azimuth angles θ′ and φ′, the outgoing ray by θ and φ (see Figure 2.2). The

redistribution matrix for arbitrary orientations of vector magnetic fields can be obtained

by using the Mueller rotation matrices (see Appendix D in Sampoorna et al., 2007b).

Following Stenflo (1998), we simplify the expressions by introducing the following

auxiliary quantities:

(cIIJbµbJb′µb′
)JaµaJfµf

= cosβJb′µb′Jbµb

[
cos[(µb′ − µb)(φ− φ′)]

×
{
cosβJb′µb′Jbµb

(
hII
JbµbJb′µb′

)
JaµaJfµf

− sinβJb′µb′Jbµb

(
f II
JbµbJb′µb′

)
JaµaJfµf

}

+ sin[(µb′ − µb)(φ− φ′)]
{
sinβJb′µb′Jbµb

(
hII
JbµbJb′µb′

)
JaµaJfµf

+ cosβJb′µb′Jbµb

(
f II
JbµbJb′µb′

)
JaµaJfµf

}]
, (2.23)

and

(sIIJbµbJb′µb′
)JaµaJfµf

= cosβJb′µb′Jbµb

[
sin[(µb′ − µb)(φ− φ′)]

×
{
cosβJb′µb′Jbµb

(
hII
JbµbJb′µb′

)
JaµaJfµf

− sinβJb′µb′Jbµb

(
f II
JbµbJb′µb′

)
JaµaJfµf

}

− cos[(µb′ − µb)(φ− φ′)]
{
sinβJb′µb′Jbµb

(
hII
JbµbJb′µb′

)
JaµaJfµf

+ cosβJb′µb′Jbµb

(
f II
JbµbJb′µb′

)
JaµaJfµf

}]
. (2.24)

When Jb 6= Jb′ and µb = µb′ ,

(cIIJbµbJb′µb′
)JaµaJfµf

= 2 cosβJb′µb′Jbµb

[
cosβJb′µb′Jbµb

(
hII
JbµbJb′µb′JaµaJfµf

)

− sinβJb′µb′Jbµb

(
f II
JbµbJb′µb′JaµaJfµf

)]
. (2.25)
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

Since for the case of L = 0 → 1 → 0 transition with S = 1/2, Ja = Jf = 1/2, we

make the following replacement to simplify the notations

(cIIJbµbJb′µb′
)JaµaJfµf

= (cIIJbµbJb′µb′
)µaµf

; (sIIJbµbJb′µb′
)JaµaJfµf

= (sIIJbµbJb′µb′
)µaµf

.(2.26)

Notice that the above auxiliary quantities obey the symmetries

(cIIJbµbJb′µb′
)µaµf

= (cIIJb′µb′Jbµb
)µaµf

; (sIIJbµbJb′µb′
)µaµf

= −(sIIJb′µb′Jbµb
)µaµf

. (2.27)

For the particular case of Ja = Jf = 1/2 and Jb = 1/2, µa, µf and µb take values

+1/2 and −1/2, while for Jb = 3/2, µb takes the values +3/2, +1/2, −1/2 and −3/2.

To simplify the appearance of quantities like (cIIJbµbJb′µb′
)µaµf

and (sIIJbµbJb′µb′
)µaµf

, we

replace the subscripts Jb, µb, Jb′, µb′, µa and µf by twice their actual values. Note that

such a replacement is made only for notational simplicity. In the computations the

actual values of both the total angular momentum and magnetic quantum numbers must

of course be used.

2.5.1 Normalisation

The general Hanle-Zeeman redistribution matrix for an L = 0 → 1 → 0 transition can

be written as,

R
II(x,n; x′,n′,B) = N.C ×M, (2.28)

where M is the Mueller matrix (see Equation (2.6)) and N.C is the normalization con-

stant.

M = Mλ1λ1 +Mλ2λ2 +Mλ1λ2 , (2.29)

where Mλ1λ1 , Mλ2λ2 are the Mueller matrices for the J = 1/2 → 1/2 → 1/2 and

J = 1/2 → 3/2 → 1/2 transitions, and Mλ1λ2 represents the interference term between

the two upper J-states. We determine the normalization constant by going to the non-

magnetic case. When the magnetic field is zero, the Hanle angles βJb′µb′Jbµb
= 0 when

Jb′ = Jb. In the absence of a magnetic field the frequency redistribution part remains

the same for all the elements of the redistribution matrix. Therefore the angular phase

matrix P of the redistribution matrix can be normalized independently of the frequency

redistribution. This implies a “flat normalization”, which means that the phase matrix

elements are normalized to the same value for all the frequency points covering the

bandwidth of the multiplet. Using Equation (8.38) of Stenflo (1994), we get

N.C

4π

∫ +1

−1

(P)11dµ
′dφ′ =

N.C

4π

∫ +1

−1

dµ′dφ′
[
(Pλ1λ1)11 + (Pλ2λ2)11 + (Pλ1λ2)11

]

= 1. (2.30)
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The terms containing cos[(µb′ − µb)(φ − φ′)] and sin[(µb′ − µb)(φ− φ′)] become zero

when integrated for µb′ 6= µb. We therefore obtain

N.C ×
{4
9
f 2

1
2

1
2
+

2

9
f 2

1
2

3
2
+ 0
}
= 1, (2.31)

N.C =
9

2
× 1

2f 2
1
2

1
2

+ f 2
1
2

3
2

, (2.32)

where f 1
2

1
2

and f 1
2

3
2

are the oscillator strengths for the absorption transitions J = 1/2 →
1/2 and J = 1/2 → 3/2, respectively. They are defined in Equation (8.51) of Stenflo

(1994). We note that the 6 − j symbols appearing in Equation (2.2) can be written in

terms of oscillator strengths (see Equations (9.48) and (9.74) of Stenflo, 1994). Using

Equation (2.32), we can rewrite Equation (2.28) as

R
II(x,n; x′,n′,B) =

9

2
× 1

2f 2
1
2

1
2

+ f 2
1
2

3
2

M. (2.33)

The explicit form of RII is given in Appendix B.

2.6 Results and Discussions

To illustrate the general behavior of the redistribution matrix we present the Stokes pro-

files resulting from a single 90◦ scattering event for an L = 0 → 1 → 0 scattering

transition with S = 1/2. The J quantum numbers of the lower and upper levels are

Ja = Jf = 1/2 and Jb = 1/2, 3/2, which give rise to a doublet. Well-known examples

of such doublets are the Na I D1 and D2, Ca II H and K, and Mg II h and k lines. The

Na I D1 and D2 lines, in particular, are in addition affected by the presence of hyperfine

structure, which would have to be taken into account for modeling purposes, but which

is not dealt with here. Instead, a pair of hypothetical lines is used for the theoretical

studies in the present chapter. We study the influence of the field strength, the wave-

length separation between the doublets, and the effect of a background continuum on

the Stokes profiles. The magnetic field orientation is defined by angles ϑB and ϕB with

respect to the polar z-axis (see Figure 2.2). For all the figures presented here, ϑB = 90°

and ϕB = 45◦. The incident radiation is assumed to be unpolarized ([Iin = 1, 0, 0, 0]T )

and spectrally flat (frequency independent). It is assumed to be incident in the vertical

direction (parallel to the polar z-axis). Note that the PRD effects are contained in the

redistribution matrix and manifest themselves irrespective of the spectral shape of the

incident spectrum. The use of a flat spectrum is only a convenient choice. The singly

scattered Stokes vectors are then determined exclusively by the first column of the re-

distribution matrix. As the elements of the redistribution matrix depend explicitly on λ
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

Figure 2.3: Profiles of the intensity I and the fractional polarizations Q/I, U/I , and

V/I plotted for a hypothetical doublet at 5000 Å and 5006 Å with field strength pa-

rameter vH = 0 for the solid line, vH = 0.004 for the dotted line, vH = 0.1 for the

dashed line, and vH = 0.5 for the dash-dotted line. The fine structure splitting is 6 Å.

Single 90◦ scattering is assumed at the extreme limb (µ = 0). The model parameters

are a = 0.00143, ϑB = 90◦, and ϕB = 45◦. The Doppler width ∆λD = 0.025 Å. These

profiles characterize scattering exclusively in the line pair without any background con-

tinuum.

and λ′, an integration over λ′ is necessary to obtain the scattered Stokes profiles at λ.

The magnetic field strength is parametrized by the splitting parameter vH given by

vH =
λ2
0e0B

4πmc2
× 1

∆λD

, (2.34)

where B is the field strength, e0 is the charge of the electron and m is its mass. ∆λD

is the Doppler width. The radiative widths of both the lines are represented by a single

damping parameter a, which is assumed to be 0.00143. The Doppler widths of both

lines are 0.025 Å. Figures 2.3, 2.4 and 2.5 show I, Q/I, U/I and V/I profiles for a

range of field strengths and for three values of wavelength separations between the
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2.6. Results and Discussions

doublets. The direction of the positive Stokes Q for the incident and scattered beams

lie on the respective meridian planes shown in Figure 2.2. If λ1 and λ2 denote the line

center wavelengths of the two lines, then δλ = |λ1−λ2| denotes the separation between

them. We have chosen δλ = 6 Å, 1 Å and 0.1 Å, respectively, for Figures 2.3, 2.4 and

2.5. Different line types correspond to different values of vH. Note the characteristic

signature of J-state interference in Q/I , namely, a polarization profile with two sign

reversals, one between the two lines, the other at the center of the J = 1/2 → 1/2 →
1/2 transition line. In the absence of a background continuum, Q/I in the far wings

approaches unity on both sides of the lines (see the solid line in the top left panel of

Figure 9.2 in Stenflo, 1994).

The wavelength dependence of J-state interference signature in the non-magnetic

Q/I profile (based on the assumption of frequency coherent scattering in a doublet

transition) is discussed in detail in Stenflo (1994). A wavelength-dependent depolariz-

ability factor W2(λ) was introduced in that approach to conveniently describe the profile

shape. In contrast, the present approach includes PRD in the doublet transition. The

wavelength-dependent depolarizability of the line pair is implicitly built into the redis-

tribution matrix. For the single scattering case presented in Figure 2.3, the Q/I profile

computed with our PRD theory (solid line) gives results similar to the Q/I profile (solid

line) in the top left panel in Figure 9.2 of Stenflo (1994).

In the weak field regime (vH = 0.004), the shapes of the (Q/I, U/I) profiles are

governed by the Hanle effect (depolarization in Q/I with respect to the non-magnetic

case, and creation of a non-zero U/I signature). When the fields are sufficiently strong

(for example for vH = 0.1), signatures of the transverse Zeeman effect show up in the

cores of the two lines. In the core of the J = 1/2 → 1/2 → 1/2 transition line,

the contribution from scattering polarization is zero (because W2 = 0). As the field

strength increases, one can clearly notice the characteristic Q/I profiles typical of the

transverse Zeeman effect (see the dash-dotted lines in Figures 2.3, 2.4, and 2.5). The

J-state interference (scattering) effects dominate the Q/I profiles outside the line cores.

As δλ decreases, interesting signatures begin to show up in U/I more strongly (see

the inset panels in Figures 2.3, 2.4, and 2.5). For the sake of discussion, let us consider

the δλ = 1 Å case. The signatures seen at the centers of both the lines at 5000 Å and

5001 Å for vH = 0.1 and 0.5 appear to be entirely due to the J-state interference effects

(because the contribution from the Zeeman effect to U is zero for the chosen geometry).

However, the shapes of the U/I profiles are different from each other near the centers

of the two lines. They can be understood in terms of the explicit expressions derived

for the case of L = 0 → 1 → 0 scattering transition. For the particular geometry used

for Figure 2.4, these expressions take the following simple form:

U(λ, λ′) =
3

16
√
2
(f 1

2
3
2
)2Uλ2 +

3

4
√
2
(f 1

2
1
2
f 1

2
3
2
)Uλ1λ2 , (2.35)
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

Figure 2.4: Same as Figure 2.3 except for the fine structure splitting, which is 1 Å

here. Note the shape of the U/I profiles (due to the increased magnitude of the J-state

interference).

where f 1
2

1
2

and f 1
2

3
2

are the oscillator strengths for the absorption transitions J = 1/2 →
1/2 and J = 1/2 → 3/2, respectively. They are defined in Equation (8.51) of Stenflo

(1994). We note that the 6 − j symbols appearing in Equation (2.2) can be written in

terms of oscillator strengths (see Equations (9.48) and (9.74) of Stenflo, 1994). Uλ2 and

Uλ1λ2 appearing in Equation (2.35) are given by

Uλ2 =

[
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+
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, (2.36)

Uλ1λ2 = cosβ 3
2
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[
(hII

1
2

−1
2
, 3
2

3
2
) 1
2

1
2
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1
2

−3
2
, 1
2

1
2
)−1

2
−1
2

]
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1
2

−1
2
, 3
2

3
2
) 1
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+ (f II

3
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1
2
)−1

2
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2

]
. (2.37)

Since Ja = Jf = 1/2 for the L = 0 → 1 → 0 scattering transition, we have omitted the
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2.6. Results and Discussions

Figure 2.5: Same as Figure 2.3 except for the fine structure splitting, which is now 0.1

Å. The polarization profiles overlap substantially, greatly enhancing the impact of the

J-state interference.

subscripts Ja and Jf on the hII and f II type functions appearing in the above equations.

Stokes U(λ) is obtained by integrating Equation (2.35) over λ′. In Equation (2.37) the

dependence of β on µb and µb′ is dropped, because it is insignificant when Jb 6= Jb′

(see the discussion below Equation (2.10)). Let us consider the behavior of U/I near

λ1 = 5001 Å line. Here the dominant contribution to U(λ, λ′) comes from Uλ1λ2 , the

J-state interference term. For δλ = 1 Å, the angle β 3
2

1
2

is 89.993°, so that sinβ 3
2

1
2
≃ 1

and cosβ 3
2

1
2

is of order 10−4. Away from the line center the Faraday-Voigt functions

decline more slowly than the Voigt functions. A few Doppler widths away from λ1 the

hII functions are of order 10−5, while the f II functions are of order 10−1. Hence the

terms containing cosβ 3
2

1
2
sinβ 3

2
1
2

and cos2β 3
2

1
2

both contribute significantly to U . At the

line center (λ1=5001 Å) these two terms cancel each other to give U(λ, λ′) = 0. The

S shape of the U/I profile at λ1 can be understood from the wavelength dependence of

Uλ1λ2 .

Next let us consider the behavior of U/I near λ2 = 5000 Å. In this case both Uλ2
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

Figure 2.6: Profiles of the intensity I and the fractional polarizations Q/I, U/I , and

V/I , plotted for a hypothetical line at 5000 Å (of a line pair with the other line at 5006

Å) with field strength parameter vH = 0.00008 for the solid line, vH = 0.0008 for

the dotted line, vH = 0.004 for the dashed line, vH = 0.1 for the dash-dotted line,

vH = 0.5 for the dash-triple-dotted line, and vH = 2.5 for the thin solid line. Single 90◦

scattering is assumed at the extreme limb. The other model parameters are the same

as in Figure 2.3. As before these profiles characterize scattering exclusively in the line

without any background continuum.

and Uλ1λ2 contribute significantly to U(λ, λ′). Uλ2 at vH = 0.5 has a box-like shape

similar to that for vH = 0.004 (see the dotted line in Figure 2.4) but with a much

smaller amplitude (due to Hanle saturation, see Figure 3 of Stenflo, 1998). As Uλ1λ2 is

significant and contributes to an S-shaped U/I profile, the original box-shaped profile

at λ2 = 5000 Å gets modified into a double peaked U/I profile, due to the superposition

of both Uλ2 and Uλ1λ2 in Equation (2.35).

Note that for the line separation 0.1 Å (see Figure 2.5), the near-wings of the two

lines overlap. This results in Q/I and U/I profiles with more complex shapes. How-

ever, it is possible to understand the shapes of these profiles again from Equation (2.35).

Note also that the J-state interference effects change the shape of the V/I profiles

(asymmetric S-shaped profiles) for a closely spaced doublet (see Figure 2.5).
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2.6. Results and Discussions

Figure 2.7: Profiles of the intensity I ′/I ′c (see Equation (2.39)) and the fractional po-

larizations p′Q, p
′
U , and p′V (see Equation (2.38)) plotted for the doublet at 5000 Å and

5006 Å in the presence of a background continuum. The field strength parameter used

is vH = 0.004. Different strengths of the background continuum are represented by

c = 1×10−8 for the solid line, 1×10−6 for the dotted line, and 1×10−2 for the dashed

line. The limb-darkening parameter β = 0.5, and b = 0.1 for Q, while b = 0 for U and

V . The other model parameters are the same as in Figure 2.3.

Extensive theoretical work and modelling of the J-state interference in the well

known D1 and D2 lines of Na I (including also the hyperfine structure and lower level

polarization, but without PRD) have been carried out by Trujillo Bueno et al. (2002),

and Casini & Manso Sainz (2005). Our emphasis in the present chapter is to study the

J-state interference effects in a hypothetical doublet when PRD effects are accounted

for. In Figure 2.6 we show the effect of the magnetic field on the Stokes profiles in

the core of the 5000 Å line of the doublet for a wide range of field strengths. Here

the doublet separation is chosen to be 6 Å. Therefore the J-state interference effect is

extremely weak at the core of the line and shows up only in the wings (see the thick solid

line in the Q/I panel). As the field strength increases from vH = 0.00008 (B ∼ 0.1 G)

to vH = 2.5 (B ∼ 4 kG), the weak field Hanle scattering signatures make way for
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

the strong field Zeeman signatures. The values of the Hanle Γ(= ωL/γ) parameter that

correspond to the chosen set of vH values are respectively 0.03, 0.28, 1.4, 7, 35, and 175.

For Γ ≤ 7 the shapes of the polarization profiles are typical of the Hanle effect. For

Γ > 7 we have entered the Zeeman regime, and the shapes of the polarization profiles

become typical of the Zeeman effect. A comparison of Figure 2.6 for the J = 1/2 →
3/2 → 1/2 transition with Figure 3 of Stenflo (1998) for the J = 0 → 1 → 0 transition

shows that the field-strength dependence is similar. Note that the (a,∆λD)=(0.00143,

0.025 Å) chosen by us is different from the corresponding values (a,∆λD)=(0.004,

0.03 Å) chosen in Stenflo (1998). Due to our choice of relatively smaller (a,∆λD)

values we enter the Zeeman regime already for vH = 0.1. In the real solar spectrum

Figure 2.8: Same as Figure 2.7, but with vH = 0.5, which represents a strong field

regime (B ∼ 900 G). The Zeeman effect dominates in the line cores. J-state interfer-

ence effects are responsible for the shapes of (Q/I, U/I) in the line wings.

the line emission is superposed on a background continuum that is weakly polarized.

The relative importance of the line emission scales as I/(I + c), where I is the line

scattering probability and c is a constant representing the background continuum (see

Stenflo, 1998). The observed fractional polarization p′ in the presence of a continuum
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is given by

p′ =
I

(I + c)
p+

c

(I + c)
b , (2.38)

where p is the fractional polarization given by −Q/I,−U/I , and V/I . The contin-

uum polarization is represented by b (see Equation (58) in Stenflo, 1998). In the

presence of continuum, the Stokes I can be modeled by assuming LTE and using a

Milne–Eddington model (see Stenflo, 1998, for more details). With this assumption,

one can show that (see Equation (61) of Stenflo, 1998)

I ′

I ′c
= 1− β +

c

(I + c)
β , (2.39)

where β is the limb-darkening parameter (see Equation (61) of Stenflo, 1998), I ′ is the

total intensity of scattered radiation, and I ′c is the intensity of the background contin-

uum. Figures 2.7 and 2.8 show the Stokes profiles in the presence of a continuum for

various values of c and for two values of vH. Similar to Stenflo (1998) we choose the

limb darkening parameter β = 0.5 and continuum polarization b = 0.1 for Q and b = 0

for U and V . As the contributions from the background continuum increase, Stokes

I takes the shape of a deep absorption line. The linear polarization Q/I approaches

the continuum polarization level in the far wings. As the continuum parameter c in-

creases from 10−8 to 10−2, the J-state interference effects nearly vanish in the line

wings. While the wings are dominated by the continuum polarization, the line core po-

larization is dominated by the Hanle or Zeeman effects depending on the field strength,

irrespective of the strength of the background continuum. This can be seen from the

inset figure in the Q/I panels of Figures 2.7 and 2.8.

2.7 Conclusions

In this chapter, we have derived a PRD matrix that includes J-state interference in a two-

term atomic framework. The present treatment is limited to the collisionless regime, and

assumes that the Zeeman splitting is much smaller than the fine-structure splitting. With

these restrictions we have derived laboratory frame expressions in the presence of mag-

netic fields of arbitrary strength and orientation (Hanle-Zeeman regime). A heuristic

approach to derive the collisional redistribution matrix will be discussed in Chapter 4.

In the non-magnetic case we recover the collisionless PRD matrix derived by Landi

Degl’Innocenti et al. (1997), who used a metalevel approach that can also treat J-state

interference in the presence of a magnetic field. We also reproduce the results computed

with the frequency coherent J-state interference theory of Stenflo (1994, 1997).

Examples of the Stokes profiles computed for the single scattering case are illus-

trated, with and without a background continuum. Due to the frequency coherent na-
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Chapter 2. Collisionless redistribution in the presence of magnetic fields

ture of the RII function in the wings, the (Q/I, U/I) profiles are quite similar to the

corresponding profiles computed with the pure coherent scattering theory of Stenflo

(1994). However, when the PRD matrices are used in radiative transfer computations,

we expect to find significant differences with respect to the pure coherent scattering

case, especially for optically thick lines.

As the fine-structure splitting decreases, the J-state interference effects show up

in the line wings as well as the line cores. The shapes of the Stokes profiles depend

strongly on the separation of the doublet. Interesting signatures appear in the U/I

profiles, particularly for strong fields.
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Based on:

Smitha, H. N., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O. 2011, A&A, 535, 35

3
Radiative transfer in a two-term atom in

the absence of magnetic fields

An Overview

In the previous chapter, we demonstrated the fundamental role played by the J-state

interference phenomenon in shaping the linearly polarized profiles resulting from scat-

tering on a two-term atom. In this chapter (see also Smitha et al., 2011a), we solve

the polarized radiative transfer equation for a two-term atom with an unpolarized lower

term, including the effect of the interference between the upper J-states and partial

frequency redistribution (PRD). We consider only the case of non-magnetic scattering.

The magnetic scattering will be discussed in Chapter 4. The PRD matrix for the J-

state interference derived in previous chapter is incorporated into the polarized transfer

equation. The standard form of the two-level atom transfer equation is extended to

a two-term atom. The transfer problem is then solved using a traditional polarized ap-

proximate lambda iteration method. We show how the PRD and the J-state interference

together affect the shapes of the (I, Q/I) profiles. We present the benchmark solutions

for isothermal, constant-property slabs of a given optical thickness. We consider a hy-

pothetical 2S − 2P doublet produced by an L = 0 → 1 → 0 scattering transition

with spin S = 1/2. We present the emergent (I, Q/I) profiles for different values of

(i) the line separation, (ii) optical thickness, (iii) thermalization parameter, and (iv) the

continuum opacity.
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3.1. Introduction

3.1 Introduction

To analyze the shapes of the spectral lines in the Second Solar Spectrum the solution

of the polarized line transfer equation is necessary. A quantum theory of upper J-state

interference for frequency coherent scattering in the laboratory frame was formulated

by Stenflo (1980, 1994, 1997). He introduced a wavelength-dependent polarizability

factor W2(λ) to describe the phenomenon of quantum interference. Stenflo (1980) used

this approach to model the observed scattering polarization signals in solar Ca II H and

K lines. He applied the concept of the last scattering approximation for this purpose.

The quantum interference theory of Stenflo (1980) was later included in the radiative

transfer computations along with PRD in Fluri et al. (2003a, see also Holzreuter et al.

2006). A PRD matrix for the J-state interference in a two-term atom with unpolarized

lower term and in the collisionless regime was derived in the atomic frame by Landi

Degl’Innocenti et al. (1997) using a meta-level approach. Smitha et al. (2011b) have

derived the same PRD matrix starting from the Kramers-Heisenberg scattering formula

and these results are presented in Chapter 2. In that chapter the expression for the

laboratory frame PRD matrix is given. In the present chapter (see also Smitha et al.,

2011a) we incorporate the PRD matrix derived in Chapter 2 into the polarized line

transfer equation. For this purpose we generalize the vector version of the standard

two-level atom NLTE line transfer equation (Mihalas, 1978; Stenflo, 1994) to the case

of a two-term atom. We restrict our attention to the non-magnetic case. The solution

of the polarized radiative transfer equation for a two-term atom, in the presence of a

magnetic field will be discussed in Chapter 4.

It is necessary to distinguish between linear and non-linear NLTE radiative transfer

problems for polarized radiation (e.g., Trujillo Bueno, 2003). An example of a linear

radiative transfer problem is the standard problem of scattering polarization and the

Hanle effect in a gas of two-level atoms assuming that the lower level is unpolarized

(e.g., Faurobert-Scholl, 1991; Nagendra et al., 2002; Sampoorna, 2011a, and the refer-

ences cited therein). Examples of non-linear problems are the problems of scattering

polarization and the Hanle effect in two-level or multilevel systems with atomic po-

larization in all levels (Trujillo Bueno & Landi Degl’Innocenti, 1997; Manso Sainz &

Trujillo Bueno, 2003, 2010). It is important to note that the two-term atom problem

with an unpolarized lower term considered in this chapter is essentially similar to the

two-level atom problem without lower-level polarization. In other words, it is a linear

problem that does not involve the simultaneous solution of the statistical equilibrium

and the Stokes-vector transfer equations. All couplings between different components

of the multiplet enter the transfer problem only through the PRD matrix.

Novel iterative schemes have been developed by Trujillo Bueno and coworkers (see

Trujillo Bueno, 2003, and references therein to their previous works) to solve the com-
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Chapter 3. Non-magnetic radiative transfer in a two-term atom

plete frequency redistribution (CRD) polarized NLTE transfer equation in multilevel

atoms with the polarization of all levels taken into account. A recent review by Trujillo

Bueno (2011) describes the modeling of scattering polarization and the Hanle effect in

some spectral lines. Reviews by Nagendra (2003a,b); Nagendra & Sampoorna (2009),

and Nagendra et al. (2009) list several exact and approximate numerical methods of

solving the polarized transfer equation for a two-level atom without lower level polar-

ization. The polarized approximate lambda iteration (PALI) methods based on the Ja-

cobi iterative scheme of Olson et al. (1986) have been developed to solve the two-level

atom polarized transfer equation (see e.g. Nagendra, 2003a). In the present chapter

we use one of the methods described in Nagendra & Sampoorna (2009) generalized

appropriately to the case of a two-term atom to solve the J-state interference problem.

In Section 3.2 we discuss the transfer equation for a two-term atom model. In Sec-

tion 3.2.1 we describe the decomposition of the Stokes vector I and source vector S into

the two cylindrically symmetric components to cast the Stokes vector transfer equation

in a reduced form. The numerical method of the solution is presented in Section 3.3.

The computed results are discussed in Section 3.4. In Section 3.5 we present the con-

clusions.

3.2 The polarized radiative transfer equation

The radiation field in a non-magnetic plane parallel atmosphere with axisymmetric

boundary conditions is axisymmetric. This axially symmetric polarized radiation field

can be described by the two Stokes parameters I and Q (see Chandrasekhar, 1950). The

relevant line transfer equation for the problem of resonance scattering polarization may

be written as

∂

∂s

(
I

Q

)
=

(
ǫI

ǫQ

)(
ηI ηQ

ηQ ηI

)(
I

Q

)
. (3.1)

Equation (3.1) is a special case of the general polarized transfer equation given by

Equation (8.2) of Landi Degl’Innocenti & Landolfi (2004), when the axial symmetry of

the polarized radiation field is imposed. In Equation (3.1) ∂s denotes the incremental

distance along the ray; ǫI,Q are the emission coefficients in the Stokes vector (I, Q)T

basis; and ηI,Q are the corresponding absorption coefficients. Under the assumption

that the lower level of the transition is unpolarized, ηQ = 0. In this case the (2 × 2)

absorption matrix becomes diagonal. For a line formed in the presence of a continuum

ηI = η0 + kc, (3.2)
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3.2. The polarized radiative transfer equation

where η0 is the line absorption coefficient, and kc the continuum absorption coefficient.

In the case of a standard two-level atom model, η0 = kLφ(x) where kL is the frequency

integrated line absorption coefficient, and φ(x) is the Voigt profile function for the re-

duced frequency x. The expression for η0 in the particular case of a two-term atom can

be derived starting from the general expressions for multi-term atom, given in Landi

Degl’Innocenti & Landolfi (2004, see Equation (7.47a)). Alternatively, η0 can also be

derived by generalizing to the case of a two-term atom, the standard expression for in-

tensity absorption coefficient of a two-level atom given in Mihalas (1978). Neglecting

the induced emission term, it can be written as

η0(Ja, Jb) =
hνJbJa
4π

B(Ja → Jb)N(Ja)φ(νJbJa − ν), (3.3)

where Ja and Jb are the total angular momentum quantum numbers of the lower and

upper level respectively. B(Ja → Jb) is the Einstein’s coefficient. N(Ja) is the number

density of atoms in the lower (Ja) level. νJbJa is the line center frequency for the

transition Jb → Ja. φ(νJbJa − ν) is the normalized Voigt profile function with line

center frequency at νJbJa . Equation (3.3) can be generalized to the case of two-term

atom by summing over various components of the multiplet, namely

ηM =
∑

JaJb

η0(Ja, Jb). (3.4)

A two-term atom is characterized by the orbital angular momentum La and Lb of the

lower and upper terms respectively with spin S. Owing to L − S coupling, a given

(L, S) state splits into several J-states, with |L − S| ≤ J ≤ |L + S|. The coefficient

B(Ja → Jb) is then related to B(La → Lb) through the expression

B(Ja → Jb) = B(La → Lb)(2La + 1)(2Jb + 1)

{
Lb La 1

Ja Jb S

}2

, (3.5)

(see Equations (8.43) and (9.74) of Stenflo, 1994). The populations of the lower J-

levels are related to the populations of the lower L-term through the relation

N(Ja) = (2Ja + 1)
N(La)

(2S + 1)(2La + 1)
, (3.6)

where the assumption of unpolarized lower term is made. Using Equations (3.3), (3.5),

and (3.6) in Equation (3.4), we obtain

ηM(ν) =
kM

(2S + 1)

∑

JaJb

(2Ja + 1)(2Jb + 1)

{
Lb La 1

Ja Jb S

}2

φ(νJbJa − ν), (3.7)
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where

kM =
hνJaJb
4π

N(La)B(La → Lb), (3.8)

is the frequency-integrated absorption co-efficient of the entire multiplet. In the case of

an L = 0 → 1 → 0 scattering transition with S = 1/2

ηM(ν) = kM

[
2

3
φ(ν 3

2
1
2
− ν) +

1

3
φ(ν 1

2
1
2
− ν)

]
. (3.9)

An expression analogous to that of the two-level atom can be recovered by introducing

a combined profile function that for 2S → 2P → 2S doublet is given by

φ(x) =

[
2

3
φ(ν 3

2
1
2
− ν) +

1

3
φ(ν 1

2
1
2
− ν)

]
. (3.10)

Notice that the combined profile function φ(x) is a weighted sum of Voigt profiles of

the two lines of the doublet. For the more general case of a La → Lb → La scattering

transition with spin S, Equation (3.7) has to be used to obtain explicit expressions for the

corresponding combined profile function. The combined profile function φ(x) can also

be derived using the theoretical framework of Stenflo (1997, see his Section 3.1). It is

also implicitly contained in the general definition for the intensity absorption coefficient

for a multi-term atom given in Landi Degl’Innocenti & Landolfi (2004).

Defining the optical depth scale as dτ = −kMdz, we can rewrite Equation (3.1) as

µ
∂I(τ, x, µ)

∂τ
= (φ(x) + r)[I(τ, x, µ)− S(τ, x, µ)], (3.11)

where µ = cos θ with θ being the colatitude with respect to the atmospheric normal.

I = (I, Q)T is the Stokes vector. S = (SI , SQ)
T is the total source vector given by

SI,Q =
ǫI,Q
ηI

. (3.12)

x is the scattered frequency in Doppler width units. r is the ratio of continuum to

the frequency-integrated line absorption co-efficient. The positive Stokes Q represents

electric vector vibrations perpendicular to the solar limb. The total source vector S is

given by

S(τ, x, µ) =
φ(x)Sl(τ, x, µ) + rSc

φ(x) + r
, (3.13)

where the unpolarized continuum source vector Sc = BU , with B being the Planck

function and U = (1, 0)T . The line source vector for a two-term atom has the form

Sl(τ, x, µ) = ǫBU +
1

φ(x)

∫ +∞

−∞

dx′

∫ 1

−1

dµ′

2
R(x, µ, x′, µ′)I(τ, x′, µ′), (3.14)
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3.2. The polarized radiative transfer equation

where x′ is the incoming frequency in Doppler width units and ǫ = ΓI/(ΓI + ΓR) is

the photon destruction probability per scattering with ΓI and ΓR being the inelastic and

radiative de-excitation rates of the upper term Lb. We assume that ΓI and ΓR are the

same for all fine structure levels of the upper term. The non-magnetic two-term atom

redistribution matrix is given by Equation (2.22).

Note that the redistribution matrix derived in Chapter 2 depends on incoming and

outgoing ray directions n′(θ′, ϕ′) and n(θ, ϕ) which are defined with respect to the at-

mospheric normal. The angular dependence appears not only in the phase matrix part

of the redistribution matrix, but also in the redistribution functions. To simplify the

problem, following Rees & Saliba (1982), we here replace the angle-dependent redis-

tribution functions by their angle-averaged analogues. The angle-averaged functions

can be computed from the angle-dependent functions by integrating over the scattering

angle between the incident and scattered ray (cf. Bommier, 1997b).

Owing to the azimuthal symmetry of the problem, one can then integrate the phase

matrix part of the redistribution matrix over the azimuths ϕ′ of the incoming radiation

to obtain R(x, µ, x′, µ′), which is given by

Rij(x, µ; x
′, µ′) =

∑

K

RK(x, x′)T̃ K
0 (i, µ)T̃ K

0 (j, µ′), (3.15)

where i, j = 0, 1 and T̃ K
0 (i, µ) are given by Equation (28) of Frisch (2007) with K =

0, 2. T̃ K
Q (i, µ) are related to the irreducible spherical tensors for polarimetry T K

Q (i,n)

introduced by Landi Degl’Innocenti (1984), through

T K
Q (i,n) = T̃ K

Q (i, µ)eiQϕ, (3.16)

with Q taking values −K ≤ Q ≤ +K.

The redistribution function components RK(x, x′) are given by

RK(x, x′) =
3(2Lb + 1)

2S + 1

∑

JaJfJbJb′

(−1)Jf−Ja(2Ja + 1)(2Jf + 1)(2Jb + 1)

×(2Jb′ + 1) cos βJb′Jb
[cos βJb′Jb

(hII
Jb,Jb′

)JaJf − sin βJb′Jb
(f II

Jb,Jb′
)JaJf ]

×
{

La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
{

1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}
, (3.17)

where La,b are the orbital angular momentum quantum numbers of the lower and upper

terms respectively and S is the spin. Ja,f are the total angular momentum quantum

numbers of the fine structure levels of the lower term and Jb,b′ are the total angular mo-
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mentum quantum numbers of the fine structure levels of the upper term. The auxiliary

functions (hII
Jb,Jb′

)JaJf and (f II
Jb,Jb′

)JaJf are defined in Equations (2.14) and (2.15) but are

used here for the non-magnetic case and with angle-averaged redistribution functions

of type-II. The angle βJb′Jb
is defined in Equation (2.10).

3.2.1 Stokes vectors decomposition

In general the source vector S and the Stokes vector I depend on the colatitude θ of the

radiation field. Computationally it is advantageous to work in a reduced basis, where

the source vector components do not depend on θ (see for e.g. Faurobert-Scholl et al.,

1997). Transformation of the Stokes vectors to such a reduced basis is referred to as the

“decomposition” of the Stokes vectors. Using T K
Q (i,n), Frisch (2007) has presented an

elegant decomposition technique for the case of the Hanle effect. It is straightforward

to apply this decomposition technique to the problem at hand. Here we briefly present

a few important equations of this decomposition.

Let us denote Ii = (I, Q) with i = 0, 1 as the components of the Stokes vector.

For the cylindrically symmetric case, the components Ii of the Stokes vector can be

decomposed in terms of two irreducible components IK
Q as follows

Ii(τ, x, µ) =
∑

K=0,2

T̃ K
0 (i, µ)IK

0 (τ, x, µ). (3.18)

Similarly, the source vector S can be decomposed in terms of two cylindrically sym-

metric components SK
0 , which become independent of even µ. T̃ K

0 (i, µ) are real for

K = 0, 2 and i = 0, 1, and thus IK
0 and SK

0 are also real. The spherical irreducible

tensors satisfy the conjugation relation

[T K
Q (i,n)]∗ = (−1)QT K

−Q(i,n). (3.19)

Since I is real, IK
Q also satisfies the above conjugation relation.

For the non-magnetic case, we define the two-component vectors I = {I0
0 , I2

0}T and

S = {S0
0 ,S2

0}T . From Equation (3.19), both T K
Q and IK

Q are real for Q = 0. After

such a decomposition S becomes independent of the ray direction and I becomes in-

dependent of the azimuthal angle ϕ. The transfer equation for I can now be written

as

µ
∂I(τ, x, µ)

∂τ
= (φ(x) + r)[I(τ, x, µ)− S(τ, x)]. (3.20)

The irreducible total source vector takes the form

S(τ, x) =
φ(x)Sl(τ, x) + rG(τ)

φ(x) + r
, (3.21)
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where G(τ) = {B, 0}T is the primary source vector. The irreducible line source vector

is given by

Sl(τ, x) = ǫG(τ) +

∫ +∞

−∞

R̃(x, x′)

φ(x)
J (τ, x′)dx′. (3.22)

Here R̃(x, x′) is a (2 × 2) diagonal matrix with elements R̃ = diag (R0,R2), where

RK are defined in Equation (3.17).

The mean intensity J (τ, x) for the non-magnetic case is a two-component vector

defined by

J (τ, x) =
1

2

∫ +1

−1

Ψ(µ′)I(τ, x, µ′)dµ′. (3.23)

The elements of the (2× 2) matrix Ψ(µ) are given in Landi Degl’Innocenti & Landolfi

(2004) (see also Appendix A of Frisch, 2007). In the following sections, for notational

brevity we specify the functional dependence of physical quantities as subscripts.

3.3 Solving the transfer equation

We solve the polarized line radiative transfer equation for non-magnetic (Rayleigh)

scattering on a two-term atom including the effects of J-state interference given in

Equation (3.20). We use the PALI method developed in Nagendra & Sampoorna (2009)

appropriately extended to handle the present problem. In the following subsections we

briefly describe this iterative technique.

3.3.1 The iteration scheme

The formal solution of the transfer equation may be stated in terms of the full lambda

operator as

J x = Λx[Sx], (3.24)

where Λx operates on the quantity within [ ]. By defining a local monochromatic ap-

proximate Lambda operator Λ∗
x as

Λx = Λ
∗
x + δΛx = Λ

∗
x + (Λx −Λ

∗
x), (3.25)

we can set up an iterative scheme to compute the source vectors, namely

S
(n+1)
x = S

(n)
x + δS(n)

x , (3.26)

S
(n+1)
l,x = S

(n)
l,x + δS

(n)
l,x , (3.27)
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where the superscript (n) refers to the nth iteration step. From Equations (3.25) and

(3.26) it follows, by keeping only terms up to the first order, that

J
(n+1)
x ≈ J

(n)
x +Λ

∗
x[δS

(n)
x ]. (3.28)

Inserting Equations (3.22) and (3.28) into Equation (3.27), we obtain a set of linear

equations for the corrections to the line source vector δS
(n)
l,x :

δS
(n)
l,x −

∫ +∞

−∞

R̃x,x′

φx
px′Λ

∗
x′[δS

(n)
l,x′]dx

′ = r
(n)
x . (3.29)

In deriving the above equation we have used the relation

Λ
∗
x[δS

(n)
x ] = pxΛ

∗
x[δS

(n)
l,x ], (3.30)

where px = φx/(φx + r) is a scalar quantity defining the fractional line absorption and

Λ∗
x is a linear operator. The frequency dependent residual vector is given by

r
(n)
x = S

(n)
FS,l,x − S

(n)
l,x . (3.31)

The formal line source vector is obtained from

S
(n)
FS,l,x = ǫG(τ) +

∫ +∞

−∞

R̃x,x′

φ(x)
J

(n)
x′ dx

′, (3.32)

where the mean intensity J
(n)
x = Λx[S

(n)
x ] is computed using a short characteristic

formal solver.

3.3.2 Source vector corrections

The important step of the iterative method is the calculation of the source vector cor-

rections δS
(n)
l,x . Here we use the frequency by frequency (FBF) method of Paletou &

Auer (1995) to compute these corrections, suitably generalized to the vector case (see

also Sampoorna et al., 2008a). The system of linear equations (Equation (3.29)) can be

organized in the matrix form as

AδS l = r, (3.33)

where the vector r is the right-hand side of Equation (3.29). At each depth point, for the

non-magnetic case, A is a 2Nx × 2Nx matrix with Nx the number of frequency points,

and r has a length 2Nx. Each element of A corresponding to a given value of x and x′
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is a 2× 2 block denoted by A
2, which is given by

A
2
ij = δi,jE− R̃i,j

φi
pjΛ

∗
j ; i, j = 1, 2, 3, ..., Nx. (3.34)

Here E is the 2 × 2 identity matrix. δi,j is the Kronecker’s delta. The indices (i, j)

refer to discretized values of (x, x′), respectively. The matrix A is computed only once

because it does not change during the iteration.

We note that the polarized radiative transfer equation and its method of solution

presented in Sections 3.2 and 3.3 are valid for any scattering transition of the type

La → Lb → La in a two-term atom. In Section 3.4 we present the results only for an

L = 0 → 1 → 0 scattering transition with S = 1/2, which corresponds to a doublet.

The absorption profile function φ(x) for this doublet is given in Equation (3.10).

3.4 Results and discussions

In this section we present the emergent Stokes profiles obtained by solving the polarized

line radiative transfer equation for a hypothetical doublet at 5000 Å and 5001 Å. They

arise from an L = 0 → 1 → 0 scattering transition with spin S = 1/2 and include the

effects of J-state interference. We consider isothermal constant property slabs with a

given optical thickness T to perform the tests. T is varied from optically thin (T ≪ 1) to

optically thick (T ≫ 1) slabs. The slabs are assumed to be self-emitting unless stated

otherwise. The slabs are illuminated at the lower boundary when they are assumed

as pure scattering media (ǫ = 0). The atmospheric model parameters used for the

computations are represented by (T, a, ǫ, r), where a is the damping parameter. The

Planck function B is taken as unity. The Doppler width for both lines are assumed to

be the same and equal to 0.025 Å. The grid resolution in the physical variables is given

by the values of (Nd, Nx, Nµ). The quantity Nd represents the number of depth points

per decade in a logarithmically spaced τ -grid. Unless stated otherwise, the first depth

point τmin = 10−2 and Nd = 5. The frequency grid points are very closely and equally

spaced near the cores of the two lines as well as in between the two lines, and sparsely

but equally spaced in the wings of the two lines. The total number of frequency points

Nx = 308. We use a Gauss-Legendre quadrature for colatitude θ (µ) with Nµ=5 points.

3.4.1 Optically thin slab case

To mimic a single scattering event from a radiative line transfer problem with PRD, we

consider an optically thin slab illuminated at the lower boundary by an unidirectional

unpolarized beam of radiation, namely, I(τ = T, x′, µ′ = 0.995) = U . The other

parameters used are (T = 2 × 10−2, a = 10−3, ǫ = 0, r = 0). The first depth point
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Figure 3.1: Emergent Stokes profiles formed in an optically thin medium shown as a

function of wavelength for nearly tangential emergence µ = 0.47× 10−2 (dotted line).

The model parameters are T = 2× 10−2, a = 10−3, ǫ = 0, and r = 0. A nearly vertical

beam of radiation incident at µ′ = 0.995 is used as the lower boundary condition. In

this case, the intensity is scaled up by a factor of 102 for comparison with the single

scattered solution. The dashed line shows the emergent Stokes profiles computed for

the single scattering case with the same value of scattering angle.

is τmin = 10−4 and Nµ = 17. The optical thickness is chosen to be very small so

that the emergent diffuse radiation field is dominated by single scattered photons. The

choice of parameters ǫ = 0 and r = 0 represents a purely scattering medium without

any continuum absorption. In Figure 3.1 we compare emergent profiles computed from

the line transfer problem that mimics a nearly 84◦ single scattering event (dotted line)

with the profiles computed for the exact 84◦ single scattering case (dashed line). The

intensity computed from the transfer code has been scaled up by a factor of 102 (dotted

line), to match with intensity obtained from the single scattering case. The scaling factor

depends on the optical thickness of the slab. For a slab of thickness T = 2 × 10−4 the

scaling factor would be 104. This is because, in the transfer problem we have taken 17

colatitudes (Nµ), and the intensity gets distributed among these 17 angles. The profiles

are however plotted for one single value of µ. In order to compare the results computed

from the transfer code with those from the actual single scattering case, such a scaling

of the emergent intensity is necessary.

From Figure 3.1 we see that the shape of the profiles computed with the transfer
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code are very similar to the profiles for the single scattering case. They are similar

to the single scattered Q/I profiles of Stenflo (1980, see also Figure 10.17 of Landi

Degl’Innocenti & Landolfi 2004). This verifies that the R matrix has been correctly

incorporated into the line transfer code. We plot −Q/I only in Figure 3.1 to facilitate a

quick comparison with the corresponding single scattered profiles presented in Stenflo

(1980, see also Chapter 2)

3.4.2 Stokes profiles with and without J-state interference

Figure 3.2: Emergent Stokes profiles computed without J-state interference (dotted

line) and with J-state interference (dashed line) at µ = 0.047 for an optical thickness

T = 2× 104. The other model parameters are (a, ǫ, r) = (10−3, 10−4, 0).

Figure 3.2 shows a comparison between the Stokes profiles computed with and with-

out the effects of J-state interference. The effects of J-state interference in a doublet

(or even a multiplet) system can be neglected by simply setting Jb = Jb′ in the RHS

of Equation (3.17), so that there is only one summation over Jb. These profiles are

plotted for an atmosphere with T = 2 × 104, a = 10−3, ǫ = 10−4, and r = 0. It is

well known from the single line two-level atom transfer computations that owing to the

effects of PRD, two symmetric wing peaks appear in the Q/I profiles on either side of

the line center. These peaks are referred to as the PRD peaks. For a doublet without the

effect of J-state interference, or in other words, two non-interacting lines, these sym-
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metric PRD peaks are visible around the lines at 5000 Å and 5001 Å (see dotted line

in Figure 3.2). Q/I at the 5001 Å line (arising from the 1/2 → 1/2 → 1/2 scatter-

ing transition) is zero because the polarizability factor W2 is zero for this line. If one

includes J-state interference effects between the two lines, the near wing PRD peaks

around the 5000 Å line become asymmetric (see the dashed line). The amplitude of the

PRD peak at 4999.8 Å is increased, whereas the amplitude of the PRD peak at 5000.2

Å is decreased. Moreover, the symmetric PRD peaks around 5001 Å are converted into

anti-symmetric peaks by the J-state interference effects. The amplitudes of these peaks

are also enhanced. Comparing the dotted line with the dashed line, it is evident that

these effects are caused by J-state interference.

The prominent signature of the J-state interference is the sign reversal in Q/I in

the region of interference between the two lines. This is clearly visible in the dashed

line, which includes this effect, but not in the dotted line which represents the case of

the non-interacting lines.

Though there are striking differences between the Q/I for the two cases - with and

without J-state interference, the intensity I is unaffected by this phenomenon.

3.4.3 Effects of optical thickness T

In Figure 3.3 we present the Stokes profiles for slabs with different values of optical

thickness T . For all examples, T ≥ 2×102 with the thermalization parameter ǫ = 10−4.

The chosen values of T represent a wide variety of the scattering media ranging from

those that are effectively thin (ǫT = 2 × 10−2, for T = 2 × 102) to those that are

effectively thick (ǫT = 2 × 104, for T = 2 × 108). The other model parameters are

(a = 10−3, r = 0).

The variation of I and Q/I with T in the case of a doublet is similar to that of a

single-line case. This can be seen from the inset panels in I and Q/I in Figure 3.3 and

in turn comparing them with the left panel in Figure 10 (dashed lines) of Sampoorna

(2011a). In the inset panels I and Q/I are plotted as a function of the non-dimensional

frequency (x), which is measured from the center of the line at 5000 Å. As the optical

thickness increases, the magnitudes of Q/I at the PRD peaks initially increase and then

decrease. This decrease is caused by the influence of multiple scattering. The thicker

the atmosphere, the more isotropic is the radiation field because of multiple scattering.

Accordingly, the polarization is reduced (see Rees, 1978).

Furthermore, as T increases, the PRD peaks shift away from the line centers of the

two lines. For T = 2 × 106 and T = 2 × 108, the PRD peaks occur far away from the

centers of the two lines. For instance, at the wing frequencies between the two lines,

the interference effects dominate over PRD-effects, resulting in suppression of the PRD

peaks. Hence, there are no PRD peaks visible in between the two lines for these two
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Figure 3.3: Emergent Stokes profiles at µ = 0.047 computed for optical thickness

T = 2 × 102 (thick solid line), T = 2 × 104 (dotted line), T = 2 × 106 (dashed line)

and T = 2 × 108 (dot-dashed line). The thin solid line represents a profile without

J-state interference for T = 2 × 108. The other model parameters are the same as in

Figure 3.2. The insets are plotted as functions of the non-dimensional frequency (x),
measured from the line at 5000 Å to compare with the single line results (see Figure 10

of Sampoorna, 2011a).

values of T . However, their counterpart PRD peaks are visible on the outer sides of

the two lines that are away from the region of interference between the two lines. For

T = 2× 108 the PRD peaks occur so far out in the wings that they cannot be shown in

the scale adopted for Figure 3.3.

For T = 2 × 108, an interesting feature is visible in the region of interference

between the two lines. The Q/I profile displays a bump in the interference region

between them (see the dot-dashed line). This behavior can be understood by comparing

it with the thin solid curve that represents the result for the same model atmosphere, but

without the effects of J-state interference, namely for the case of two non-interacting

lines (shown only in the Q/I panel). The bump arises because of the sign reversal in

Q/I that is in turn caused by the J-state interference effects. For two non-interacting

lines, as seen from the thin solid curve, the Q/I between the two lines is negative. The

J-state interference effects flip the sign of Q/I in this region which causes this bump, as

seen in the dot-dashed curve. A smaller bump visible at 5000.8 Å for T = 2× 106 can

also be understood in a similar way (the corresponding curve for two non-interacting
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lines is not shown in the figure).

3.4.4 Effects of the thermalization parameter ǫ

In Figure 3.4 we present the Stokes profiles for different values of the thermalization

parameter ǫ. The optical thickness of the medium is fixed at T = 2× 104. The value of

ǫ is varied from 10−2 to 0, which covers effectively thick to effectively thin slabs. The

other model parameters are a = 10−3 and r = 0.

For ǫ = 0, there are no internal sources of photons. This is an example of a pure

scattering medium. We give I00 (τ = T, x, µ) = 1 as the boundary condition at the lower

boundary. In this case, the emergent intensity is an absorption profile. The variation of

Figure 3.4: Same as Figure 3.3 but for various values of the thermalization parameter

ǫ = 0 (solid line), ǫ = 10−6 (dotted line), ǫ = 10−4 (dashed line) and ǫ = 10−2

(dot-dashed line). The remaining parameters are (T, a, r) = (2× 104, 10−3, 0).

I and Q/I with ǫ in the case of a doublet is similar to that of the single line case. This

can be seen from the inset panels in I and Q/I in Figure 3.4. As ǫ increases from 10−6

to 10−2, the intensity increases and the degree of linear polarization Q/I decreases in

the line core and near wings of both the lines. For ǫ 6= 0, the emergent intensity profiles

become self-reversed emission lines. This behavior is similar to that of the single line

case as can be seen from the right panel in Figure 10 (dashed lines) of Sampoorna

(2011a).
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It is worth noting that the wavelength region between 5000.3 Å to 5000.7 Å is

insensitive to the variation in ǫ, except when ǫ = 0 (in which case Q/I approaches

zero). The J-state interference effects show up most prominently in this wavelength

region in between the two lines. For ǫ = 0, the emergent radiation in the wings approach

the incident radiation which is unpolarized (see Sampoorna et al., 2008a). The curve

for two non-interacting lines (not shown in the figure) for this case nearly coincides

with the curve including the effects of J-state interference (solid line) except for the

two small PRD peaks on either side of the line at 5001 Å, which are slightly enhanced

because of this effect, as discussed above.

3.4.5 Effect of the unpolarized background continuum

The results shown in the previous sections were obtained without a background contin-

uum (r = 0). In Figure 3.5 we show the Stokes profiles for different values of the con-

tinuum strength r. The other model parameters are (T = 2× 104, a = 10−3, ǫ = 10−4).

r is varied from 10−10 to 10−4 in steps of 10−2. When r increases, we observe a signif-

icant decrease in the amplitude of the near wing PRD peaks in Q/I . Also the J-state

interference effects vanish for r = 10−4 away from the line cores (see the dot-dashed

line in Figure 3.5). The insets in Figure 3.5 show a behavior similar to the single line

case seen in Figure 11 (dashed lines) of Sampoorna (2011a). As r increases, the inten-

sity profile evolves from a ‘self-reversed emission line’ to an absorption line.

3.4.6 Effect of separation between fine structure components

In Figure 3.6 we present the scattered Stokes profiles for three different values of the

separation between the lines. The model parameters are (T = 2 × 104, a = 10−3, ǫ =

10−4, r = 0). The line separations used are 1 Å, 3 Å and 6 Å (measured from the 5000 Å

line). Evidently, the Q/I amplitudes of the near wing PRD peaks about the lines at 5001

Å, 5003 Å and 5006 Å decrease with the increase in line separation. This behavior is

expected, because the polarizability factor W2 = 0 for the 1/2 → 1/2 → 1/2 transition,

producing no polarization at the line center. J-state interference together with PRD in

scattering is responsible for polarization signals near the resonance frequency of this

line component. As the separation of the 1/2 → 1/2 → 1/2 component increases, the

J-state interference effects naturally decrease, resulting in successively weaker signals.

It is useful to note that although characteristic signals are generated near the 1/2 →
1/2 → 1/2 resonance frequency, Q/I = 0 at the actual line center. As the figure shows,

PRD along with the effects of J-state interference can indeed generate Q/I signals

near the centers of multiplet components with W2 = 0, but these signatures have an

anti-symmetric shape with a zero crossing at the exact line center. These antisymmetric

polarization signals can also be produced at the 1/2 → 1/2 → 1/2 transition using
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Figure 3.5: Same as Figure 3.3 but for different values of the continuum parameter

r = 10−10 (solid line), r = 10−8 (dotted line), r = 10−6 (dashed line) and r = 10−4

(dot-dashed line). The other model parameters are (T, a, ǫ) = (2×104, 10−3, 10−4). The

insets are plotted as functions of the non-dimensional frequency (x), measured from

the line at 5000 Å to compare with the single line results (see Figure 11 of Sampoorna,

2011a).

CRD (see Trujillo Bueno et al., 2002; Casini & Manso Sainz, 2005, where also the role

of hyperfine structure and lower term polarization are investigated).

3.4.7 Redistribution matrix approach vs the W2(λ) theory of

Stenflo

In this section we compare our redistribution matrix approach and the quantum inter-

ference theory of Stenflo (1980, see also Stenflo 1997). The comparison is shown in

Figure 3.7. The solid line shows the profile computed with the exact J-state interference

theory presented in Section 3.2. We refer to this as the redistribution matrix approach.

The dotted line shows the profiles computed from an independent line transfer code. In

this code, in place of RK(x, x′) we use

WK(ν)[R
II−A(3/2 → 1/2) +RII−A(1/2 → 1/2)],
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Figure 3.6: Effect of line separation between the doublets. Three different line separa-

tions are chosen, namely 1 Å (solid line), 3 Å (dotted line), and 6 Å (dashed line). The

model parameters are (T = 2× 104, a = 10−3, ǫ = 10−4, r = 0).

where RII−A(Jb → Ja) are the angle-averaged frequency redistribution functions of

Hummer (1962) for the line with center frequency at νJbJa corresponding to the Jb → Ja

transition. The polarizability factor W0(ν) = 1, and W2(ν) is the frequency-dependent

W2 factor derived by Stenflo (1980).

The frequency-dependent W2(ν) contains the quantum interference effects and is

given by the formula (see Equation (19) of Stenflo, 1997)

W2(ν) =
(ν2 − ν)−2 + 2(ν1 − ν)−1(ν2 − ν)−1

(ν1 − ν)−2 + 2(ν2 − ν)−2
. (3.35)

Thus we use W2(ν) instead of a constant W2. Also φ(x) is taken as the sum of the

absorption profiles of the individual lines. From Equation (3.35) one can see a dou-

ble resonance at ν1 and ν2 and an interference in between these two resonances, which

shows up in the emergent Q/I profiles shown in Figure 3.7. Clearly, both these inde-

pendent approaches give nearly the same results. The J-state interference effects along

with PRD effects have been included in realistic modeling of the observed Q/I profiles

of the Na I D1 and D2 lines by Fluri et al. (2003a) based on the quantum interference

theory of Stenflo (1980, 1997). Our results computed using the isothermal slab atmo-
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Figure 3.7: Same as Figure 3.3 but with the solid line computed using the redistribution

matrix approach and the dotted line computed with the quantum interference theory

that uses a wavelength-dependent W2(λ) factor. The model parameters are (T = 2 ×
104, a = 10−3, ǫ = 10−4, r = 0).

spheres show a similar behavior.

3.5 Conclusions

In this chapter, we have presented the non-magnetic line transfer equation for a two-

term atom including the effects of J-state interference for an arbitrary La → Lb →
La scattering transition. We have showed that the decomposition technique of Frisch

(2007) that was devised for a two-level atom case can be applied to the more difficult

case of a two-term atom. This technique allows us to write a polarized approximate

lambda iteration method to solve the concerned transfer problem. Numerical results are

presented for a doublet taking the example of an L = 0 → 1 → 0 scattering transition

with S = 1/2.

We find that the J-state interference produces asymmetric near wing PRD peaks

around the center of the 1/2 → 3/2 → 1/2 scattering transition. Also, anti-symmetric

peaks are produced near the center of the 1/2 → 1/2 → 1/2 transition. We have

showed that the J-state interference effects sensitively depend on the optical thickness

of the medium. At the line core and near wings the variation of (I, Q/I) with respect
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to various atmospheric parameters is similar to the behavior of a single line. The wave-

length region in between the two lines is somewhat insensitive to the variation in ǫ for

T = 2 × 104. In the presence of a strong background continuum the PRD as well

as J-state interference effects become suppressed. Finally, as the line separation (fine

structure splitting) increases, the J-state interference effects decrease strongly as one

moves away from the 1/2 → 3/2 → 1/2 transition at 5000 Å.

The present extension of polarized radiative transfer theory to include two-term

atoms with J-state interference is a significant step to develop the theoretical tools that

are needed to interpret the wealth of polarized structures that are observed in the second

solar spectrum, so that they can be used to diagnose the magnetized solar atmosphere

in ways not accessible by other means. These supplementary theoretical tools required

for such a diagnostic purpose will be developed in the forthcoming chapters.
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4
Collisional redistribution in the presence

of magnetic fields: A heuristic treatment

An Overview

After having derived the redistribution matrix for type-II in Chapter 2 and incorporating

it in to the polarized radiative transfer equation in Chapter 3, we now derive an expres-

sion for the collisional redistribution matrix in the presence of magnetic fields (see also

Smitha et al., 2013a). In our treatment, the influence of collisions (both elastic and in-

elastic), and an external magnetic field on the scattering process are taken into account.

The lower term is assumed to be unpolarized and infinitely sharp. The linear Zeeman

regime in which the Zeeman splitting is much smaller than the fine structure splitting

is considered. The inelastic collision rates between the different levels are included

in our treatment. We account for the depolarization caused by the collisions coupling

the fine structure states of the upper term, but neglect the polarization transfer between

the fine structure states. When the fine structure splitting goes to zero, we recover the

redistribution matrix that represents the scattering on a two-level atom (which exhibits

only m-state interference — namely the Hanle effect). The way in which the multipo-

lar index of the scattering atom enters into the expression for the redistribution matrix

through the collisional branching ratios is discussed. The properties of the redistribution

matrix are explored for a single scattering process for an L = 0 → 1 → 0 scattering

transition with S = 1/2 (a hypothetical doublet centered at 5000 Å and 5001 Å). Fur-

ther, a method for solving the Hanle radiative transfer equation for a two-term atom in
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the presence of collisions, partial frequency redistribution, and J-state interference is

developed. The Stokes profiles emerging from an isothermal constant property medium

are computed.

4.1 Introduction

In order to interpret the wealth of information imprinted in the Second Solar Spectrum,

it is necessary to develop adequate theoretical tools that can later be used for the polar-

ized line formation calculations. One such tool is the collisional redistribution matrix

which is derived by accounting for different kinds of collisions that affect the Second

Solar Spectrum.

In Chapter 2, (see Smitha et al., 2011b) we derived the polarized partial frequency

redistribution (PRD) matrices for a two-term atom with an arbitrary La → Lb → La

scattering transition, taking into account the effects of J-state interference between the

fine structure components of the split upper term Lb (see Figure 2.1). However, these

expressions were limited to the collisionless regime. In the present chapter, where the

results from Smitha et al. (2013a) are discussed, we generalize the semi-classical theory

of Sampoorna (2011a) to include J-state interference for a two-term atom in the pres-

ence of collisions. In Smitha et al. (2012a), a simpler version of this theory has been

applied to model the non-magnetic linear polarization observations of J-state interfer-

ence phenomena in the Cr I triplet. These results will be discussed in Chapter 5.

Collisions play a vital role in determining the polarization properties of the scat-

tered radiation. For the case of a two-level atom with unpolarized lower level, Omont

et al. (1972) developed the quantum theory of polarized scattering in a non-magnetic

medium, including PRD effects. They describe in detail the role played by elastic and

inelastic collisions. The effects of magnetic fields were considered in Omont et al.

(1973). An explicit form of the polarized PRD matrix for resonance scattering on a

two-level atom was derived by Domke & Hubeny (1988), based on the work of Omont

et al. (1972), assuming that the lower level is unpolarized. Under the same assumption, a

more elegant form of the PRD matrix for both the non-magnetic and magnetic cases was

derived in pioneering papers by Bommier (1997a,b, 2003) using the master equation

theory. The equivalence between the QED theory of Bommier (1997b) and the semi-

classical theory was demonstrated in Sampoorna et al. (2007b) for a J = 0 → 1 → 0

scattering transition, and in Sampoorna (2011a) for an arbitrary Ja → Jb → Ja scat-

tering transition. An alternative PRD theory based on the concept of metalevels has

been developed by Landi Degl’Innocenti et al. (1997) for the collisionless case. This

formulation can also deal with J-state interference in the presence of magnetic fields.

In this chapter, starting from the Kramers-Heisenberg formula, we derive the ex-

pressions for the collisional PRD matrices including the effects of J-state interference
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for a two-term atom. The following assumptions are made:

1. Infinitely sharp lower term.

2. Unpolarized lower term.

3. Weak radiation field limit (i.e., stimulated emission is neglected in comparison

with the spontaneous emission).

4. Hyperfine structure is neglected.

5. The effects of inelastic collisions that couple the fine structure states are treated

approximately (see below).

6. The depolarizing elastic collisions that couple m-states belonging to a given fine

structure state Jb are taken into account, but are assumed to be independent of the

J-quantum number for the sake of mathematical simplicity.

7. We restrict our attention to the linear Zeeman regime of magnetic field strengths.

The assumption of an unpolarized lower term is made for the sake of mathematical

simplicity, but can often be justified when the lower term represents the ground state of

the atom. In the stellar atmospheric conditions the ground state is generally two orders

of magnitude more long lived than the excited state, which makes it correspondingly

much harder for any ground state polarization to survive collisional and magnetic de-

polarization, as compared with the excited states (see Kerkeni & Bommier (2002)). We

also ignore the induced emission, because in scattering problems it acts as a negative

absorption and only affects the radiation in the exact forward direction (scattering angle

exactly zero). The induced emission probability is nearly three orders of magnitude

smaller than the spontaneous emission probability (see Kerkeni & Bommier (2002)).

The inelastic collisions between the upper and lower terms are treated exactly while

the inelastic collisions between the upper fine structure states are treated approximately.

The inelastic collisions between the upper fine structure states (denoted by ΓIJbJb′
) man-

ifest themselves in two different ways, (i) through a depolarization of state Jb and (ii)

through a transfer of alignment and orientation between Jb and Jb′ .

Since the colliding particles are isotropically distributed around the radiating atom,

they destroy the alignment and thereby depolarize the levels. Therefore the inelastic

collisions that take the atom away from the state Jb always depolarize Jb. They also

contribute to the inverse lifetime of Jb under consideration. In this chapter we take into

account such inelastic collisions between the fine structure states Jb and Jb′ by adding

these inelastic collision rates (ΓIJbJb′
) to the inelastic collision rate ΓIJbJf (where f is

the final state). The depolarizing effects of these inelastic collisions are similar to the

depolarizing effects of elastic collisions. Thus we merge these two effects and define a

67



4.1. Introduction

common damping rate γb for the Jb state.

The inelastic collisions between polarized fine structure states can lead to a trans-

fer of alignment and orientation between them (hereafter referred to as the transfer of

polarization). This is similar to optical pumping by radiative transitions. The only dif-

ference is that the radiative transitions between the fine structure states Jb and Jb′ are

not allowed. Taking account of such transfer rates caused by inelastic collisions actu-

ally involves formulating the statistical equilibrium equations for the concerned states

including the atomic polarization of the various states. This is outside the scope of our

present thesis. A formulation of statistical equilibrium equation including these colli-

sions but neglecting the redistribution effects in scattering has been presented in Kerkeni

(2002) and Kerkeni & Bommier (2002). They derive the expressions to calculate these

rates taking examples of few atomic systems of relevance to the analysis of the second

solar spectrum. Our present treatment of inelastic collisions is basically heuristic and

only takes into account the depolarizing effects of ΓIJbJb′
.

The frequency redistribution function that describes the effect of collisions in un-

polarized radiative transfer is the well known type-III (or RIII) function of Hummer

(1962). Here we describe the matrix generalizations of this standard collisional redis-

tribution function, brought about by the magnetic fields and the J-state interference.

Using the method described in Appendix C of Sampoorna et al. (2007b), we rewrite the

PRD matrices in terms of the irreducible spherical tensors for polarimetry. We discuss

in detail the procedure to identify the multipolar index K, which needs to be assigned

to the branching ratios that govern the effect of the depolarizing collisions. We illus-

trate the effects of collisions on the Stokes (I, Q/I, U/I, V/I) profiles of the scattered

radiation for the 90° single scattering case. Then we present the technique of incorpo-

rating this Hanle redistribution matrix for the two-term atom into the polarized radiative

transfer equation, and solve it for an isothermal constant property atmospheric slab. In

the collisionless case, the relevant redistribution matrix derived in Chapter 2 was in-

corporated into the transfer equation in Chapter 3 and solved for a constant property

isothermal media in the absence of a magnetic field. The same method of solution pre-

sented in Chapter 3 is also used here, but including the collisional redistribution in the

presence of a magnetic field.

In Section 4.2 we derive the elements of the ensemble averaged coherency matrix

both in the atomic and laboratory frames for a La → Lb → La scattering transition

taking into account the elastic collisions. In Section 4.3 we express the type-III redis-

tribution matrix in terms of the irreducible spherical tensors both for the non-magnetic

and magnetic cases. The important question of identifying the multipolar index K that

describes the transfer of angular momentum in a scattering event affected by the de-

polarizing collisions is discussed in detail. The laboratory frame expression for the

collisional redistribution matrix is also derived in this section. The procedure to incor-
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porate this redistribution matrix into the polarized radiative transfer equation for both

the magnetic and non-magnetic cases is discussed in Section 4.4. The Stokes profiles

resulting from a single 90◦ scattering event and from multiple scattering in an isother-

mal atmospheric slab are presented in Section 4.5. Concluding remarks are given in

Section 4.6. Finally, in Appendix C we give the expressions for the magnetic redistri-

bution functions of type-III.

4.2 An approximate treatment of collisions

4.2.1 Polarized PRD matrix from a semi-classical approach

The Mueller matrix M that describes the transformation from the incident to the scat-

tered Stokes vector is given by

M = TWT
−1, (4.1)

where T and T
−1 are purely mathematical transformation matrices. Their explicit

forms are given in Equation (9) of Stenflo (1998). The W-matrix is defined in Equa-

tion (2.7). The elements of this matrix contain the bilinear products of the complex

probability amplitude wαβ(JfµfJaµa). These amplitudes for transition from an initial

state a to final state f via all intermediate states b are given by the Kramers-Heisenberg

formula as

wαβ ∼
∑

b

〈f |r . eα|b〉 〈b|r . eβ |a〉
ωbf − ω − iγb/2

, (4.2)

where ω = 2πξ is the angular frequency of the scattered radiation in the atomic rest

frame, ~ωbf is the energy difference between the excited and final states, and γb is

the damping constant that accounts for the broadening of the excited state b, while the

initial and the final states are assumed to be infinitely sharp. The damping parameter is

assumed to be the same for all the magnetic substates of the excited state. The matrix

elements appearing in Equation (4.2) can be expanded using the Wigner-Eckart theorem

as

wαβ(JfµfJaµa) ∼
∑

Jbµb

(−1)q−q′
√
(2Ja + 1)(2Jf + 1)(2Jb + 1)(2La + 1)

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}(
Jb Ja 1

−µb µa −q′

)(
Jb Jf 1

−µb µf −q

)

×Φγb(νJbµbJfµf
− ξ)εα∗q εβq′, (4.3)

where µb represents the magnetic substates of the upper state b with total angular mo-

mentum quantum number Jb, orbital angular momentum quantum number Lb, and spin
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S. The quantities Ja and Jf are respectively the total angular momentum quantum

numbers of the initial and final states a and f with orbital angular momentum quantum

number La, and magnetic substates µa and µf . The quantities ε are the geometrical fac-

tors (see Equations (2) and (27) of Stenflo, 1998), with α and β denoting the outgoing

and incoming radiation, respectively. In Equation (4.3), q = µf − µb and q′ = µa − µb.

In the rest of the chapter we denote the indices as follows for the sake of convenience

Jb = b, Ja = a, Jf = f ; Jbµb = bm, Jaµa = am, Jfµf = fm,

Jb′µb′ = b′m, Jbµb′′ = b′′m, Jb′µb′′′ = b′′′m. (4.4)

The frequency-normalized profile function is given by

Φγb(νbmfm−ξ) =
1/(πi)

νbmfm − ξ − iγb/(4π)
with νbmfm = νbf +(gbµb−gfµf )νL. (4.5)

Here hνbf is the energy difference between the upper (Jb) and lower (Jf ) states in the

absence of magnetic fields, gb, gf are the Landé factors of these states, and νL is the

Larmor frequency. Equation (4.3) refers to the case of frequency-coherent scattering in

the atomic rest frame.

The phenomenological extension of Equation (4.3) to the case of PRD is achieved

by treating each radiative emission transition between magnetic substates µb and µf

in terms of a damped oscillator that is truncated by collisions (see Sampoorna et al.,

2007a). In other words, in Equation (4.3) we make the following replacement for the

profile function :

Φγb(νbmfm − ξ) −→ (r̃bm)amfm , (4.6)

where the Fourier-transformed solution of the time-dependent oscillator equation is

given by (see Bommier & Stenflo, 1999)

(r̃bm)amfm = (r̃statbm )amfm + C (r̃transbm )amfm . (4.7)

Here we have omitted the unimportant phase factor, as it vanishes in the bilinear product

(r̃bm)amfm(r̃
∗
b′m

)amfm . The constant C in Equation (4.7) defines the relative amplitudes

of the stationary and the transitory parts of the solution, which are given by

(r̃statbm )amfm = Φγb(νbmam − ξ′)δ(ξ − ξ′ − νamfm), (4.8)

(r̃transbm )amfm = Φγb(νbmam − ξ′)Φγb(νbmfm − ξ)
[
1− e−i(ωbmfm−iγb/2−ω)tc

]
. (4.9)

Here ξ′ denotes the frequency of the incoming photon in the atomic rest frame, tc is

the time between two successive collisions, ωbmfm = 2πνbmfm . The profile function

Φγb(νbmam−ξ′) is given by Equation (4.5) with ξ replaced by ξ′, while νbmfm is replaced
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by νbmam that is defined similar to Equation (4.5). In Equation (4.8), νamfm appearing

in the delta function is demanded by energy conservation (see Equation (9) of Stenflo,

1994), and is given by

νamfm = νaf + (gaµa − gfµf)νL, (4.10)

where hνaf is the energy difference between the states Ja and Jf in the absence of a

magnetic field.

4.2.2 Coherency matrix in the atomic rest frame

The elements of the ensemble averaged coherency matrix 〈r̃bm r̃∗b′m〉amfm can be derived

starting from Equations (4.8) and (4.9), applying the same steps that are described in

detail in Bommier & Stenflo (1999). These elements are contained in the bilinear prod-

uct wαβ(fmam)w
∗
α′β′(fmam). In the atomic rest frame ensemble averaged coherency

matrix elements are given by

〈r̃bm r̃∗b′m〉amfm = Abb′ cos βb′mbm eiβb′mbm Φ
γbb′+γc
bmb′mam

(ξ′)δ(ξ − ξ′ − νamfm)

+Bbb′ cos βb′mbm cosαb′mbme
i(βb′mbm

+αb′mbm
)Φ

γbb′+γc
bmb′mam

(ξ′)Φ
γbb′+γc
bmb′mfm

(ξ), (4.11)

where the angles βb′mbm and αb′mbm (arising due to the combined effects of the J-state

and m-state interferences) are defined respectively by

tanβb′mbm =
ωb′b + (gb′µb′ − gbµb)ωL

γb′b + γc
;

tanαb′mbm =
ωb′b + (gb′µb′ − gbµb)ωL

γb′b + γc/2
, (4.12)

with γbb′ given by

γbb′ =
γb + γb′

2
= γb′b. (4.13)

Here γc is the collisional damping constant, while ~ωb′b is the energy difference between

the Jb′ and Jb states in the absence of a magnetic field. The elastic collisional rates are

in general different for each fine structure component (Jb) of the upper term. However,

for simplicity we assume them to be independent of the J-quantum numbers.

Abb′ and Bbb′ are the branching ratios for a two-term atom. The explicit expressions

for them will be defined later in Section 4.3.1.

Like in Chapter 2, we limit the treatment to the linear Zeeman regime, in which the

Zeeman splitting is much smaller than the fine structure splitting. When Jb 6= Jb′ the

contributions from the second terms with ωL in Equation (4.12) to the angles βb′mbm and

αb′mbm can therefore be ignored, because they are insignificant in comparison with the
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first terms. The classical generalized profile function is defined as

Φ
γbb′
bmb′mfm

(ξ) =
1

2

[
Φγb(νbmfm − ξ) + Φ∗

γb′
(νb′mfm − ξ)

]
, (4.14)

in the same way as in Bommier & Stenflo (1999).

4.2.3 Coherency matrix in the laboratory frame for type-III

redistribution

We transform the ensemble averaged coherency matrix defined in Equation (4.11) to the

laboratory frame using the same steps as described in Section 2.2 of Sampoorna et al.

(2007b) and it is given by

〈r̃bm r̃∗b′m〉amfm = Abb′ cos βb′mbme
iβb′mbm

[
(hII

bm,b′m)amfm + i(f II
bm,b′m)amfm

]

+Bbb′ cos βb′mbm cosαb′mbme
i(βb′mbm

+αb′mbm
)
[
hIII
bmam,b′mfm + if III

bmam,b′mfm

]
. (4.15)

The various auxiliary quantities for type-II redistribution are defined in Section 2.3.

Hence we do not repeat them here. Hereafter we confine our attention to the collisional

redistribution (type-III). The corresponding derivation for pure radiative (collisionless)

redistribution (type-II) is given in Chapter 2. The auxiliary quantities for type-III redis-

tribution that appear in Equation (4.15) are defined by

hIII
bmam,b′mfm =

1

4

[
RIII,HH

b′mam,b′mfm
+RIII,HH

b′mam,bmfm
+RIII,HH

bmam,b′mfm
+RIII,HH

bmam,bmfm

]

+
i

4

[
RIII,FH

b′mam,b′mfm
+RIII,FH

b′mam,bmfm
−RIII,FH

bmam,b′mfm
− RIII,FH

bmam,bmfm

]
, (4.16)

f III
bmam,b′mfm =

1

4

[
RIII,HF

b′mam,b′mfm
− RIII,HF

b′mam,bmfm
+RIII,HF

bmam,b′mfm
− RIII,HF

bmam,bmfm

]

+
i

4

[
RIII,FF

b′mam,b′mfm
−RIII,FF

b′mam,bmfm
− RIII,FF

bmam,b′mfm
+RIII,FF

bmam,bmfm

]
. (4.17)

The magnetic redistribution functions of type-III appearing in the above equations are

defined in Appendix C.

4.3 The redistribution matrix expressed in terms of

irreducible tensors

The importance of expressing the PRD matrices in terms of the irreducible spherical

tensors introduced by Landi Degl’Innocenti (1984) has been discussed in Chapter 2.
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The definition and properties of irreducible spherical tensors are described in detail in

Landi Degl’Innocenti & Landolfi (2004). The way to incorporate these tensors in the

analytic form of the PRD matrix derived from a semi-classical approach has been de-

scribed in Sampoorna et al. (2007b) (see also Section 2.4). Applying the same method

we have obtained an expression for the type-III redistribution matrix in terms of irre-

ducible spherical tensors. The case of the type-II redistribution matrix has been dis-

cussed in Section 2.4.

As in Chapter 2, we now express the type-III PRD matrix derived in Section 4.2

in terms of T K
Q (i,n), where i = 0, 1, 2, 3, and K = 0, 1, 2 with −K ≤ Q ≤ +K.

Following the same procedure as discussed in Section 2.4, the matrix T S
µν,ρσ of Equa-

tion (A.3), which describes the transformation of the elements of the coherency matrix,

can be written in the atomic rest frame as

T S
µν,ρσ(ξ,n; ξ

′,n′,B) = (2La + 1)2
∑

amfmbmb′m

G Z6Z3 (−1)q−q′+q′′−q′′′

×ES
qq′′(µ, ν,n)ES

q′′′q′(σ, ρ,n
′) cosβb′mbm eiβb′mbm Φ

γbb′+γc
bmb′mam

(ξ′)

×
{
Abb′δ(ξ − ξ′ − νamfm) +Bbb′ cosαb′mbme

iαb′mbmΦ
γbb′+γc
bmb′mfm

(ξ)
}
, (4.18)

where

G = (2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1),

Z6 =

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}
,

Z3 =

(
Jb Ja 1

−µb µa −q′

)(
Jb Jf 1

−µb µf −q

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb′ Jf 1

−µb′ µf −q′′

)
.

(4.19)

In Equation (4.18), ES
qq′′(µ, ν,n) is a reducible spherical tensor. After transforming

to the Stokes formalism (see Section 2.4), the redistribution matrix for J-state interfer-

ence can be written in symbolic form as

Rij(ξ,n; ξ
′,n′,B) = R

II
ij(ξ,n; ξ

′,n′,B) +R
III
ij (ξ,n; ξ

′,n′,B), (4.20)

where the pure radiative part of the redistribution matrix is given by branching ratio Abb′

times Equation (2.22), and the collisional frequency redistribution is taken into account

through

R
III
ij (ξ,n; ξ

′,n′,B) =
2

3
(2La + 1)2

∑

K ′K ′′Qafbb′

G Z6 Bbb′

√
(2K ′ + 1)(2K ′′ + 1)
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×
{ ∑

µaµfµbµb′

Z3 (−1)q
′′+q′+Q

(
1 1 K ′′

q −q′′ Q

)(
1 1 K ′

q′′′ −q′ −Q

)

×1

4

[
Φγb+γc(νbmam − ξ′) + Φ∗

γb′+γc(νb′mam − ξ′)
]

×
[
Φγb+γc(νbmfm − ξ) + Φ∗

γb′+γc(νb′mfm − ξ)
]

×cosβb′mbm cosαb′mbme
i(βb′mbm

+αb′mbm
)

}
(−1)QT K ′′

Q (i,n)T K ′

−Q(j,n
′). (4.21)

Note that in the formal expression for R the branching ratios are built into the R
II and

R
III components. As the collisional branching ratio Bbb′ depends on index K, our next

task is to determine the explicit form of this dependence.

4.3.1 Identification and physical significance of the multipolar

index K in the collisional branching ratios

It is well known that the spherical unit vectors form a natural basis to decouple the clas-

sical oscillator equation. Fano (1957) suggested that a convenient basis to be used when

dealing with scattering problems in quantum mechanics, is the irreducible tensorial ba-

sis instead of the standard |JM〉 basis of Hilbert space. This is due to the fact that

irreducible tensors transform under co-ordinate rotations like the spherical harmonics

(Ylm) and are thus suited for a study of rotationally invariant processes. With irreducible

tensorial operators one can express the scattering matrix such that it formally looks the

same in the magnetic (with the polar z-axis along B) and the atmospheric (with the

polar z-axis along the atmospheric normal) reference frames. This is the advantage of

going to the irreducible tensorial basis (hereafter called the KQ basis). A more detailed

historical background for the irreducible tensorial operators is given in Sahal-Brechot

et al. (1977).

Thus the geometrical factors associated with the scattering problem, and also the

density matrix for the atomic levels in question, should be transformed to the KQ basis.

The transformation of the geometrical factors to the KQ basis is described in Chapter

5 of Landi Degl’Innocenti & Landolfi (2004) and is used in Sampoorna et al. (2007b).

The density matrix is first written in the standard |JM〉 basis and then transformed to the

KQ basis (see Equation (3.97) of Landi Degl’Innocenti & Landolfi 2004), which is then

called ‘multipole moments’ of the density matrix, or ‘irreducible statistical tensors’. In

the case of the radiation field, the multipole index K has the following interpretation :

K = 0 means isotropic scattering, K = 1 is related to the circular polarization, while

K = 2 is related to the linear polarization. In the case of the atomic levels, K = 0

represents the population of the level under consideration, K = 1 is related to the ori-

entation of the atom, while K = 2 is related to the alignment of the atom (this physical
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interpretation can be found in pp. 128 and 129 of Landi Degl’Innocenti & Landolfi

(2004), Section 10.4 of Stenflo (1994), and in Trujillo Bueno (2001)).

In the case of radiation field an irreducible tensor T K
Q (i,n) is constructed by form-

ing a suitable linear combination of the direct product of two geometrical factors. Since

geometrical factors basically contain unit polarization vectors of rank one, their direct

product represents a second rank tensor, with K taking values 0, 1, and 2. Note that

these values of K can also be obtained through angular momentum addition of two

tensors of rank 1. In the case of the density matrix of the atom, the value of K is de-

termined by the addition of angular momenta J and J ′. For example for a two-level

atom with unpolarized ground level the value of K relating to the statistical tensor of

the upper level is given by angular momentum addition of Jb and Jb′ . Further, Q takes

values −K to +K in steps of one, and is related to the magnetic quantum numbers of

the upper level.

We can denote K ′ as the multipole component of the incident radiation field, K as

the multipole moment of the upper level of the atom, and K ′′ as the multipole compo-

nent of the scattered radiation. The scattering process can be understood as a transfer of

the K ′ multipole component of the incident radiation to the K multipole moment of the

atom’s upper level through an absorption process, followed by a transfer of the K multi-

pole moment of the atom’s upper level to the K ′′ multipole component of the scattered

radiation through spontaneous emission. The depolarizing collisions that govern the

branching ratios and the magnetic field that governs the Hanle angles affect the upper

level of the atom directly and modify the K multipole moment of the atom, but they in-

fluence the scattered radiation only indirectly, through spontaneous emission from the

level that has been directly affected. Thus it is the K index of the upper level of the

atom that needs to be assigned to the branching ratios and the Hanle angles, and not the

multipole component of the incident or the scattered radiation. In the absence of mag-

netic fields or in the presence of weak magnetic fields (Hanle effect), K ′ = K = K ′′.

In the presence of a magnetic field of arbitrary strength (Hanle-Zeeman regime) all

the three K’s are distinct. This is due to the distinction preserved through the profile

functions, which become different for the different Zeeman components. However, in

weakly magnetic cases (when the Zeeman splitting is much smaller than the effective

line width) the distinction is so small that it can be ignored.

From the above discussion it is clear that for a correct identification of K for the

branching ratio we need to know the density matrix of the upper level in the KQ basis.

Since the density matrix does not appear directly in the Kramers-Heisenberg approach

that we use, we need to indirectly identify K either by drawing analogy with the den-

sity matrix theory, or by using a suitably defined quantum generalized profile function.

Such a function was defined by Landi Degl’Innocenti et al. (1991) for the special case

of a two-level atom (without J-state interference). The multipole moment K of the
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upper level is built into this function through the third 3 − j symbol appearing in the

following definition :

ΦK,K ′

Q (Ja, Jb; ξ
′) =

√
3(2Jb + 1)(2K + 1)(2K ′ + 1)

∑

µbµb′µapp′

(−1)Jb−µa−1+Q

×
(

Jb Ja 1

−µb µa p

)(
Jb Ja 1

−µb′ µa p′

)(
Jb K Jb

−µb Q µb′

)(
1 1 K ′

−p p′ Q

)

×1

2

[
Φγb+γc(νJbµbJaµa

− ξ′) + Φ∗
γb+γc(νJbµb′Jaµa

− ξ′)
]
. (4.22)

The ΦK,K ′

Q defined above can be seen as a frequency-dependent coupling coefficient

that connects the (K ′, Q) multipole component of the incident radiation field with the

(K,Q) multipole moment of the atomic density matrix (see Landi Degl’Innocenti &

Landolfi, 2004, p. 525). In the non-magnetic and weak field limits, the νL dependence

of the profile function Φγb+γc can be neglected, which gives us

limνL→0Φ
K,K ′

Q (a, b; ξ′) = δKK ′w
(K)
ba φ(ν0 − ξ′), (4.23)

where w
(K)
ba is defined in Equation (10.11) of Landi Degl’Innocenti & Landolfi (2004),

and φ denotes the usual non-magnetic profile function. In this limit we have K ′ = K.

In the case of J-state interference a suitable quantum generalized profile function

has not been defined yet, but we can define it here in analogy with the two-level atom

case. It has the following form for the incoming radiation:

ΦK,K ′

Q (a, b′, b; ξ′) = (2Ja + 1)
√

3(2Jb′ + 1)(2Jb + 1)(2K + 1)(2K ′ + 1)

×
∑

µbµb′µaq′q′′′

(−1)1+Jb−µb′+q′

(
Jb Ja 1

−µb µa −q′

)(
Jb′ Ja 1

−µb′ µa −q′′′

)

×
(
Jb Jb′ K

µb −µb′ −Q

)(
1 1 K ′

q′′′ −q′ −Q

)
cos βb′mbme

iβb′mbm

×1

2

[
Φγb+γc(νbmam − ξ′) + Φ∗

γb′+γc(νb′mam − ξ′)
]
, (4.24)

with a similar expression for the outgoing radiation when Ja and µa are replaced re-

spectively by Jf and µf , and angle βb′mbm is replaced by αb′mbm . Notice that unlike the

two-level atom case we now have included the angles βb′mbm and αb′mbm in the defini-

tion of the quantum generalized profile function, as they cannot be taken outside the

summation over the magnetic substates. Using the orthogonality relation of the 3 − j

symbols, it is easy to verify that

∑

K

ΦK,K ′

Q (a, b′, b; ξ′)ΦK,K ′′

Q (f, b′, b; ξ) = 3G
√
(2K ′ + 1)(2K ′′ + 1)
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×
∑

µbµb′µaµf qq′q′′q′′′

Z3 (−1)q
′+q′′+Q

(
1 1 K ′′

q −q′′ Q

)(
1 1 K ′

q′′′ −q′ −Q

)

×1

2

[
Φγb+γc(νbmam − ξ′) + Φ∗

γb′+γc(νb′mam − ξ′)

]

×1

2

[
Φγb+γc(νbmfm − ξ) + Φ∗

γb′+γc(νb′mfm − ξ)

]

× cos βb′mbm cosαb′mbme
i(βb′mbm

+αb′mbm
), (4.25)

which is a useful relation that helps in the identification of the multipolar index K. An

equivalent relation, but for the case of m-state interference, is Equation (22) of Bommier

(1997b).

Comparing the terms in the flower brackets of Equation (4.21) with the RHS of

Equation (4.25), we can see that they are the same (except for some factors). Therefore

after substituting the terms in the flower brackets of Equation (4.21) with the LHS of

Equation (4.25), we assume γc/2 = D(K) as a reasonable approximation (see Stenflo,

1994), where D(K) is the 2K multipole collisional destruction rate. Further, following

Bommier & Stenflo (1999), we identify γb = ΓRb + ΓIb and γc = ΓE , where ΓRb is

the radiative width of the fine structure state Jb. ΓIb is the total inelastic collision rate

defined for the state Jb. It is given by

ΓIb =
∑

f

ΓIbf +
∑

b′ 6=b

ΓIbb′. (4.26)

Here ΓIbf couple the upper state Jb to the lower state Jf and ΓIbb′ couples the two fine

structure states Jb and Jb′ . Indeed such a definition of total inelastic collision rates

can be found in Omont et al. (1972) and also in Equations (2.15)-(2.20) of Heinzel &

Hubený (1982). ΓE is the elastic collision rate and D(K) represent the depolarizing

elastic collisions that couple the Zeeman substates (m-states) of a given Jb-state. In

general D(K) may be different for each of the fine structure components with quantum

number Jb. However, as an approximation we assume them to be independent of the

J-quantum number. Thus Equation (4.21) can be rewritten as

R
III
ij (ξ,n; ξ

′,n′,B) =
2

9
(2La + 1)2

∑

KK ′K ′′Qafbb′

B
(K)
bb′ Z6

× (−1)QT K ′′

Q (i,n)T K ′

−Q(j,n
′)ΦK,K ′

Q (a, b′, b; ξ′)ΦK,K ′′

Q (f, b′, b; ξ), (4.27)

where B
(K)
bb′ is the collisional branching ratio defined as

B
(K)
bb′ =

Γ
bb′

R

Γ
bb′

R + Γ
bb′

I +D(K)

ΓE −D(K)

Γ
bb′

R + Γ
bb′

I + ΓE

. (4.28)
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Also, the branching ratio Abb′ can be written as

Abb′ =
Γ
bb′

R

Γ
bb′

R + Γ
bb′

I + ΓE

, (4.29)

where

Γ
bb′

R =
ΓRb + ΓRb′

2
; Γ

bb′

I =
ΓIb + ΓIb′

2
, (4.30)

with ΓIb defined in Equation (4.26). The total damping rates that appear in the branch-

ing ratios are the same as those that appear in the denominator of the Hanle angles (see

Equations (4.12) and (4.34)). Therefore the JbJb′ dependence of the branching ratios

defined now for a two-term atom is self-consistent. We have verified that when we set

Jb = Jb′ and Ja = Jf (the case of a two-level atom with only m-state interference) in

Equation (4.27), we recover Equation (49) of Bommier (1997b).

4.3.2 Redistribution matrix R
III in laboratory frame

We convert Equation (4.27) into the laboratory frame using the same procedure as de-

scribed in Section 2.2 of Sampoorna et al. (2007b). The resulting expression for the

normalized type-III redistribution matrix in the laboratory frame can be written as

R
III
ij (x,n; x

′,n′,B) =
2Lb + 1

2S + 1

∑

KK ′K ′′Qafbb′

Z6B
(K)
bb′

×(−1)QT K ′′

Q (i,n)T K ′

−Q(j,n
′)RK ′′,K,K ′

Q,III (x, x′,Θ,B), (4.31)

where RK ′′,K,K ′

Q,III (x, x′,Θ,B) is the laboratory frame redistribution function obtained

after transformation of the atomic frame functions ΦK,K ′

Q (a, b′, b; ξ′)ΦK,K ′′

Q (f, b′, b; ξ).

The factors (2Lb+1)/(2S+1) result from the renormalization of Equation (4.27). The

function RK ′′,K,K ′

Q,III has the following form :

RK ′′,K,K ′

Q,III (x, x′,Θ,B) =
∑

µaµfµbµb′µb′′µb′′′ qq
′q′′q′′′

3

4
G(2K + 1)

√
(2K ′ + 1)(2K ′′ + 1)

×(−1)1+Jb−µb′+q′(−1)1+Jb−µb′′′+q cos βb′mbm cosα
(K)
b′′′mb′′m

e
i
(

βb′mbm
+α

(K)

b′′′mb′′m

)

×
(

Jb Ja 1

−µb µa −q′

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb Jb′ K

µb −µb′ −Q

)(
1 1 K ′

q′′′ −q′ −Q

)

×
(

Jb Jf 1

−µb′′ µf −q

)(
Jb′ Jf 1

−µb′′′ µf −q′′

)(
Jb Jb′ K

µb′′ −µb′′′ −Q

)(
1 1 K ′′

q′′ −q −Q

)

×
{[

RIII,HH
b′mam,b′′′mfm

+RIII,HH
b′mam,b′′mfm

+RIII,HH
bmam,b′′′mfm

+RIII,HH
bmam,b′′mfm

]

+i
[
RIII,FH

b′mam,b′′′mfm
+RIII,FH

b′mam,b′′mfm
− RIII,FH

bmam,b′′′mfm
−RIII,FH

bmam,b′′mfm

]
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+i
[
RIII,HF

b′mam,b′′′mfm
−RIII,HF

b′mam,b′′mfm
+RIII,HF

bmam,b′′′mfm
−RIII,HF

bmam,b′′mfm

]

−
[
RIII,FF

b′mam,b′′′mfm
− RIII,FF

b′mam,b′′mfm
− RIII,FF

bmam,b′′′mfm
+RIII,FF

bmam,b′′mfm

]}
. (4.32)

The results presented in Section 4.5 are computed using Equation (4.31) for the type-III

and Equation (2.22) for the type-II redistribution matrix. The total redistribution matrix

in the laboratory frame is the same as Equation (4.20). In the non-magnetic case

R
III
ij (x,n; x

′,n′) =
3(2Lb + 1)

2S + 1

∑

KQafbb′

G Z6 (−1)Jf−JaB
(K)
bb′ cos βb′b cosα

(K)
b′b

×e
i
(

βb′b+α
(K)

b′b

)[
hIII
ba,b′f + if III

ba,b′f

]{ 1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}

×(−1)QT K
Q (i,n)T K

−Q(j,n
′). (4.33)

The angle βb′b and the auxiliary functions hIII
ba,b′f and f III

ba,b′f are defined respectively in

Equations (4.12), (4.16) and (4.17), but with νL = 0. The angles α
(K)
b′b and βb′b (arising

exclusively from J-state interference) are defined as

tanα
(K)
b′b =

ωb′b

Γ
b′b

R + Γ
b′b

I +D(K)
; tanβb′b =

ωb′b

Γ
b′b

R + Γ
b′b

I + ΓE

, (4.34)

with Γ
b′b

R = Γ
bb′

R and Γ
b′b

I = Γ
bb′

I (see Equation (4.30)). These branching ratios can be

recovered from the more general two-term atom expressions given in Equations (4.28)

and (4.29) by neglecting ΓIbb′ . This is equivalent to setting Jb = Jb′ in Equations (4.28)

and (4.29). The angle-averaged redistribution matrices corresponding to the angle-

dependent redistribution matrices presented in Equations (4.31)-(4.33) can be recov-

ered by replacing the angle-dependent redistribution functions (Equations (C.1)-(C.4))

by their angle-averaged analogues. These angle-averaged functions are obtained by nu-

merical integration of the angle-dependent functions over the scattering angle Θ (see

Equation (C.6)).

4.4 The polarized radiative transfer equation

The polarized radiative transfer equation for the Stokes vector I in a one-dimensional

planar medium for the Hanle scattering problem can be written as

µ
∂I(τ, x,n)

∂τ
= (φ(x) + r)[I(τ, x,n)− S(τ, x,n)], (4.35)

where the notations are the same as those used in Chapter 3, with the positive Stokes Q

representing electric vector vibrations perpendicular to the solar limb. This definition is
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4.4. The polarized radiative transfer equation

opposite to the way in which the positive Stokes Q is defined in the observed spectra.

This can easily be accounted for (through a sign change), when comparing the observed

spectra with the theoretical results. n = (ϑ, ϕ) defines the ray direction where ϑ and

ϕ are the inclination and azimuth of the scattered ray with µ = cosϑ (see Figure 2.2).

In the weak magnetic field limit, the Stokes vector I = (I, Q, U)T and the Stokes

source vector S = (SI , SQ, SU)
T. In this limit, the transfer equation for Stokes V

decouples from that of the Stokes vector (I, Q, U)T. This is known as the weak field

approximation. In Equation (4.35), the Stokes vector I and the Stokes source vector

S depend on n. In the case of angle-averaged redistribution, it was shown by Frisch

(2007) that one can decompose S and I into six cylindrically symmetric components

IK
Q and SK

Q with the help of the irreducible spherical tensors for polarimetry (See Landi

Degl’Innocenti (1984)). Here, K = 0, 2 and −K ≤ Q ≤ +K. Such a decomposition

results in a reduced Stokes vector I which is independent of ϕ and a reduced source

vector S which is independent of both ϑ and ϕ. We denote the quantities in the reduced

basis by calligraphic letters and in Stokes basis by Roman. In such a reduced basis the

transfer equation can be written as

µ
∂I(τ, x, µ)

∂τ
= (φ(x) + r)[I(τ, x, µ)− S(τ, x)]. (4.36)

The reduced source vector is defined as

S(τ, x) =
φ(x)Sl(τ, x) + rG(τ)

φ(x) + r
, (4.37)

where G(τ) = {B, 0, 0, 0, 0, 0}T is the primary source vector. The reduced line source

vector is given by

S l(τ, x) =
∑

bb′

[
ǫbb′G(τ) +

∫ +∞

−∞

Rbb′(x, x
′,B)

φ(x)
J (τ, x′)dx′

]
, (4.38)

where Rbb′(x, x
′,B) is the redistribution matrix for a two-term atom, with the summa-

tion over Jb and Jb′ not yet performed. The thermalization parameter is given by

ǫbb′ =
Γ
bb′

I

Γ
bb′

R + Γ
bb′

I

. (4.39)

The computation of the above defined reduced line source vector is very expensive

because of the summations over Jb and Jb′ which need to be performed at each iteration.

However for all practical applications, we can assume ǫ to be the same for all the JbJb′

states, which is a good approximation. Such an approximate ǫ is constructed by taking

an average value of ΓIb for all transitions involving Jb, Jb′ and Jf , and an average value
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of ΓR for all the upper fine structure states. Under such an approximation,

S l(τ, x) = ǫG(τ) +

∫ +∞

−∞

R(x, x′,B)

φ(x)
J (τ, x′)dx′. (4.40)

The mean intensity J (τ, x) is defined by

J (τ, x) =
1

2

∫ +1

−1

Ψ(µ′)I(τ, x, µ′)dµ′. (4.41)

The elements of the Ψ(µ) matrix are given in Landi Degl’Innocenti & Landolfi (2004)

(see also Appendix A of Frisch (2007)). R(x, x′,B) appearing in Equation (4.38) is a

(6×6) diagonal matrix. The explicit form of this redistribution matrix with and without

the presence of magnetic fields is defined in the following sections. In the absence of a

magnetic field, only the I0
0 and I2

0 components contribute to the Stokes vector. Hence

the (6 × 6) problem reduces to a (2 × 2) problem. The transfer equation defined in

Equation (4.36) is solved using the traditional polarized accelerated lambda iteration

technique presented in Chapter 3.

4.4.1 The redistribution matrix for the non-magnetic case

In the absence of a magnetic field the redistribution matrix in Equation (4.38) becomes

independent of B and reduces to a (2×2) diagonal matrix with elements R(x, x′)=diag

(R0,R2). The elements RK are defined as

RK(x, x′) =
3(2Lb + 1)

2S + 1

∑

bb′af

GZ6(−1)Jf−Ja

{
1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}

×
{
Abb′ cos βb′b eiβb′b

[
(hII

b,b′)af + i(f II
b,b′)af

]

+B
(K)
bb′ cos βb′b cosα

(K)
b′b ei(βb′b+α

(K)

b′b
)
[
hIII
ba,b′f + if III

ba,b′f

]}
. (4.42)

The (hII
b,b′)af and (f II

b,b′)af are auxiliary functions for type-II defined in Equations (2.14)

and (2.15) and the auxiliary functions for type-III are defined in Equations (4.16) and

(4.17). They are used here for the non-magnetic case and with the angle-averaged

redistribution functions of type-II and type-III. In the limit of a two-level atom model

(Jb = J ′
b and Ja = Jf ), the (hII

b,b′)af and hIII
ba,b′f go respectively to RII and RIII functions

of Hummer, whereas the (f II
b,b′)af and f III

ba,b′f and the angles βb′b and α
(K)
b′b go to zero.

4.4.2 The redistribution matrix for the magnetic case

The redistribution matrix for a two-term atom defined in Equation (4.20) involves sum-

mations over the total angular momentum quantum numbers and the corresponding
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magnetic quantum numbers. This does not allow direct decomposition to go from the

Stokes vector basis to the reduced basis (see Section 4.4 for details on these two ba-

sis). Such a decomposition is possible in the non-magnetic case. This is because in

the absence of a magnetic field, the summations over the magnetic quantum numbers

can be analytically performed using Racah algebra as shown in Chapter 2 for type-II

redistribution and Equation (4.33) for type-III redistribution. However in the magnetic

case, all the summations remain intact and have to be performed numerically. This is

very expensive. Because of these difficulties, we need to resort to the weak field ap-

proximation which allows us to apply the decomposition technique. In this regard, the

summations over the J-quantum numbers can be split into three different terms namely

R(x, x′,B) =
∑

b=b′,a=f

R
A
b,a(x, x

′,B) +
∑

b6=b′,a,f

R
B
b,b′,a,f(x, x

′,B)

+
∑

b=b′,a6=f

R
C
b,a,f (x, x

′,B). (4.43)

The first term represents the case of ‘Resonance’ scattering in a two-level atom

model with a summation over all the lines of the multiplet (see Figure 4.1a). This

contributes mainly to the cores and near wings of the lines within the multiplet. Its weak

field analogue has already been derived in Bommier (1997b) and can be expressed as

R
A(x, x′,B) =

∑

ab

R
A
b,a(x, x

′,B) =
∑

ab

Wb,aR
H
b,a(x, x

′,B). (4.44)

Here R
H
b,a(x, x

′,B) is the Hanle redistribution matrix for a two-level atom with

Ja → Jb → Ja scattering transition as presented in Bommier (1997b). This is also the

same redistribution matrix defined in Appendix A of Anusha et al. (2011b), but for a

Ja → Jb → Ja scattering transition. The details of the domain based decomposition of

this matrix are also given in the above paper. In the reduced basis, RA(x, x′,B) is a

(6 × 6) matrix. Wb,a are the weights for each line component of the multiplet (derived

from Equation (4.42) with Jb = Jb′ and Ja = Jf ) and are given by

Wb,a =
(2Lb + 1)

2S + 1
(2Ja + 1)2(2Jb + 1)2

{
La Lb 1

Jb Ja S

}4

. (4.45)

The second term represents only the J-state interference between different lines of

the multiplet (see Figure 4.1b). It includes both the ‘Resonance’ and the ‘Raman’ scat-

tering parts and is effective mainly in the wings between the lines. This term is quite

insensitive to the strength of the magnetic field. This can be seen from Figures 2.3 and

2.4 where the magnetic field effects are confined mainly to the line cores. Hence in

this component we can set the magnetic field equal to zero as a good approximation.
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(
A

R abJ J ),

aJ

J
b J

b

J
b

fJ

C

R (Jb , ,aJ fJ )

=

=Jb

J
b
=J

b

aJ J= f

(a) (b)

(c)

Jf

aJ

+

B
Jb

J
b

J
b

R (Jb , , aJ )

aJ

fJ,

Jf

Figure 4.1: The schematic level diagrams representing the three components of the

J-state redistribution matrix. Panels (a), (b), and (c) represent respectively the two-

level atom resonance scattering, J-state interference, and Raman scattering (resonance

fluorescence).

This makes the evaluation of both the Resonance and the Raman scattering parts simi-

lar to that performed in Chapter 3. In the reduced basis this term is simply given by a

(6 × 6) matrix R
B(x, x′) which is equal to diag(R0,R2, 0, 0, 0, 0). Here RK are the

redistribution functions which include the effects of collisions and the J-state interfer-

ence between different line components in a multiplet defined in Equation (4.42). Only

Jb 6= J ′
b terms are retained in the summations appearing in this equation. The Jb = Jb′

contributions are contained in the first term. However in some of the well known ex-

amples in the second solar spectrum like the Mg II h and k, Ca II H and K and the Cr I

triplet, the initial and the final states are the same. Also for the case of the hypothetical

doublet considered in this chapter, arising due to an L = 0 → 1 → 0 scattering transi-

tion with spin S = 1/2, the initial and the final states are the same. Hence the Raman

scattering part does not play a role.

The third term represents the case of only Raman scattering without the J-state in-

terference, where the initial and the final states are different (see Figure 4.1c). A deriva-

tion of the weak field analogue of this component (in a way similar to that of Bommier

(1997b)) is yet to be performed. Recently Sampoorna et al. (2013) have proposed an

approximate method to solve the polarized radiative transfer equation in case of Raman

scattering. Again for some of the well known examples mentioned above, this compo-

nent does not contribute. Thus the final expression for the redistribution matrix that is

used in Equation (4.38) is

R(x, x′,B) ≈ R
A(x, x′,B) +R

B(x, x′). (4.46)
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4.5 Results and discussion

In this section, we study the effects of collisional redistribution matrix on the emer-

gent Stokes profiles for the case of single scattering and also multiple scattering in an

isothermal atmospheric slab. All the profiles presented in this chapter are computed

for a hypothetical doublet line system with the line center wavelengths at 5000 Å and

5001 Å arising due to an L = 0 → 1 → 0 scattering transition with spin S = 1/2. The

J quantum numbers of the lower and upper states are Ja = Jf = 1/2 and Jb = 1/2, 3/2.

In Section 4.5.1 we present the scattered Stokes profiles resulting in a single 90◦ scat-

tering case. In Section 4.5.2 we present the multiply scattered Stokes profiles emerging

from an isothermal constant property atmospheric slab with and without the presence

of a magnetic field.

4.5.1 The single 90◦ scattering case

To explore the general behavior of the redistribution matrix in the presence of collisions

we illustrate the Stokes profiles that result from single 90◦ scattering event. We examine

the influence of the elastic collisions on the Stokes profiles in the presence of a magnetic

field. The magnetic field orientation is given by ϑB = 90◦ and ϕB = 45◦ where the

colatitude ϑB and azimuth ϕB characterize the magnetic field orientation with respect

to the polar z-axis (see Figure 2.2). We consider an unpolarized (Iin = [1, 0, 0, 0]T)

and spectrally flat (frequency independent) radiation field that is incident in the vertical

direction (parallel to the polar z-axis). The singly scattered Stokes vectors are then ex-

clusively determined by the first column of the angle-dependent redistribution matrix by

integrating over the incident wavelengths. However in the multiple scattered solutions

discussed in Section 4.5.2, we restrict our attention only to the angle-averaged redis-

tribution matrix. The magnetic field strength is parametrized by the splitting parameter

vH given by

vH =
λ2
0e0B

4πmc2
× 1

∆λD

, (4.47)

where B is the magnetic field strength, e0 is the charge of the electron and m its mass.

∆λD is the Doppler width and is assumed to be 0.025 Å for both the lines. The radiative

width of the upper state is parametrized as aRb = ΓRb/(4π∆νD). It is assumed to be the

same for both the lines and is chosen to be 0.001. The radiative width aRb is related to

the total damping parameter through

ab = aRb

[
1 +

(ΓIb + ΓE

ΓRb

)]
. (4.48)

We assume the inelastic collision rate ΓIb to be zero.

The depolarizing collisional rates D(2) = 0.5ΓE , and D(0) = 0. For simplicity we
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set D(1) = D(2). However in general they can differ (for example, D(1) = 0.43ΓE and

D(2) = 0.38ΓE according to Berman & Lamb (1969)). We have verified that the Stokes

V/I is insensitive to the values of D(1). The collisional effects are built into the R

Figure 4.2: Effect of collisions: The profiles of the intensity I and the fractional po-

larizations −Q/I,−U/I and V/I are plotted for a hypothetical doublet at 5000 Å and

5001 Å with field strength parameter vH = 0.004. The coherence fractions used are

γcoh = 0.9 (thick solid line), γcoh = 0.5 (dotted line), and γcoh = 0.1 (dashed line). The

fine structure splitting is 1 Å. Single 90◦ scattering is assumed. The model parameters

are aR = 0.001, ϑB = 90◦ and ϕB = 45◦. The Doppler width ∆λD = 0.025 Å.

matrix derived in Section 4.3 through the branching ratios defined in Equations (4.28)

and (4.29). The elastic collision rate is parametrized through the coherence fraction γcoh

as γcoh = 1/[1 + (ΓE/Γ
bb′

R )]. In the present chapter we take ΓR to be the same for both

the upper fine structure states and γcoh to be the same for all JbJb′ combinations. When

γcoh = 1 the redistribution is entirely radiative (only R
II), whereas γcoh = 0 represents

purely collisional redistribution (only R
III). We consider a range of values γcoh ∈ [1, 0]

to represent an arbitrary mix of RII and R
III type redistribution.
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Figure 4.2 shows the Stokes (I, Q/I, U/I, V/I) spectra for a doublet. The polariza-

tion of the line at 5001 Å is zero because its polarizability factor W2 = 0. The collisions

affect the wavelength domain outside the line core region of this line. But for the line

at 5000 Å, the collisional effects are seen both in the line wings and the line core. In the

line core the collisional effects compete with the Hanle effect and in the wings it is an

interplay between the J-state interference and collisional redistribution effects.

The value γcoh = 0.9 corresponds to a mix with 90% of RII and 10% of RIII (see

the thick solid line in Figure 4.2). The profiles look similar to those for pure R
II (see

Figure 2.4). However, in Q/I there is a small depolarization, mainly in the wings, due

to the presence of collisions. The core of the line at 5000 Å seems to be less affected

than its wings. The Q/I at the 5001 Å line remains zero. In the presence of elastic

collisions, a small U/I signal is generated in the wings of the 5000 Å line. This non-

zero U/I wing polarization and the depolarization in the wings of Q/I are induced

by the elastic collisions in combination with the magnetic field and can together be

referred to as the ‘wing Hanle effect’. This effect arises because the elastic collisions

can transfer the Hanle rotation (of the plane of polarization) from the line core to the

line wings before spontaneous de-excitation intervenes. In other words, in the presence

of a small but significant elastic collision rate the Hanle effect does not vanish in the line

wings. If the elastic collision rate is large then the collisions completely depolarize the

scattered radiation throughout the line profile. This effect has been discussed in detail in

Sampoorna et al. (2007b) for the case of a J = 0 → 1 → 0 single scattering transition.

However, these effects do not survive when the radiative transfer effects with angle-

averaged PRD are explicitly taken into account. The collisional redistribution process

is more effective in the case of angle-dependent PRD than in the case of angle-averaged

PRD. Using the domain-based PRD theory of Bommier (1997b) this effect was noticed

even in the radiative transfer computations of Nagendra et al. (2002) (see also Nagendra

et al. (2003)). It remains as effective in a pair of interfering doublet lines as in the case

of a single line. However, in Sampoorna et al. (2009) it was shown that the wing Hanle

effect alone is insufficient to explain the observed wing signatures in the Q/I and U/I

profiles of the Ca I 4227 Å line.

As γcoh decreases to 0.5, which represents an equal mix of RII and R
III, the values

of Q/I in the wings of both the lines are significantly reduced (see dotted line in Fig-

ure 4.2). The collisional effects are now seen even in the core of the 5000 Å line. This

results in a decrease of the Q/I and U/I signals at the center of this line. The J-state

interference signatures in Q/I are also modified. When γcoh is further reduced to 0.1,

the effects of RIII start to dominate over those of RII and also over the J-state inter-

ference effects (see dashed line in Figure 4.2). As a result the signatures of the J-state

interference begin to fade away. The Q/I and U/I start to approach zero throughout the

line profiles. As γcoh is further decreased to 0.0001 (not shown in the figure), the colli-
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sional effects (through R
III) completely dominate the scattering process. This situation

corresponds to a regime of extremely large line broadening. As a result the amplitude

of I becomes much smaller compared to the other cases. Also, the Q/I, U/I , and V/I

approach zero level throughout the line profiles.

4.5.2 Polarized line profiles formed due to multiple scattering in

an atmospheric slab

Figure 4.3: Emergent Stokes profiles at µ = 0.047 computed for a slab of optical

thickness T = 2 × 104 in the absence of a background continuum. The other model

parameters are (a, ǫ) = (10−3, 10−4). The magnetic field strength is set to zero. The

coherence fraction is γcoh = 0.1 (solid line), γcoh = 0.5 (dotted line), γcoh = 0.9 (dashed

line), and γcoh = 1 (dot-dashed line).

In this section we present the emergent Stokes profiles computed by solving the

polarized radiative transfer equation for a two-term atom including the effects of J-

state interference and elastic collisions. For this we consider an isothermal constant

property atmospheric slab with a given optical thickness T . The slabs are assumed

to be self-emitting. The atmospheric model parameters used for the computations are

represented by (T, a, ǫ), where a is the damping parameter and ǫ is the thermalization

parameter defined in Equation (4.39) and the paragraph that follows.

The Planck function B is taken as unity. The Doppler width for both the lines are

assumed to be the same and equal to 0.025 Å. For more details on the structure of the

atmospheric slabs and the model parametrization we refer to Chapter 3.
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The non-magnetic case

Figure 4.3 shows the emergent Stokes profiles which include the effects of J-state inter-

ference, elastic collisions and radiative transfer computed for a model atmosphere with

parameters T = 2 × 104, a = 10−3 and ǫ = 10−4 in the absence of a background con-

tinuum. In these profiles the magnetic field is set to zero. Different line types represent

different values of the coherence fraction γcoh. A range of values of γcoh ∈ [1, 0] is con-

sidered. As seen from the Figure 4.3, a decrease in γcoh results in a gradual decrease in

Q/I in the line core as well as in the PRD peaks of the 5000 Å line. The intensity pro-

files are also quite sensitive to the effect of elastic collisions. As γcoh goes from 1 (pure

R
II case) to 0.1 (RIII dominated case), the self-reversed emission lines change over

to nearly true absorption lines (thick solid lines). In Q/I the effects of collisions are

confined only to the line core and the near wing PRD peaks. Specifically, it is shown by

Nagendra (1994) that the elastic collisions D(2) depolarizes the line core, and ΓE signif-

icantly depolarizes the line wing polarization (See Faurobert-Scholl (1992)). The same

conclusions are valid in the two-term atom model also. The interference region between

the two lines seems to be less sensitive to the effect of elastic collisions. However for

Figure 4.4: Same as Figure 4.3 but computed for an optical thickness T = 2× 108.

larger optical depths, significant dependence on γcoh is exhibited in the wavelength re-

gion between the two lines. This can be seen in Figure 4.4 which shows the effect of

elastic collisions in an optically thick atmospheric slab in the absence of a magnetic

field. The model parameters are the same as in Figure 4.3 but with T = 2 × 108. As

γcoh decreases, the collisions take over the line formation process. When γcoh = 0.1

(thick solid line), deep absorption lines are formed in I with broad wings. The Q/I at

the center of the 5000 Å line becomes very small like in Figure 4.3. The zero crossing
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point at 5000.3 Å remains the same for all the values of γcoh. In general a depolarization

in Q/I is seen throughout the line profile because the radiative transfer effect is signif-

icant at all the frequencies. As expected, the Q/I reaches zero very far in the wings

of both the lines after exhibiting a wing maximum nearly 10 Å away from their line

centers. The difference in behavior in the line core as well as in the line wings of the

Q/I profiles formed under RII dominated (dot-dashed line) and R
III dominated (thick

solid line) conditions are better seen for the T = 2 × 108 case when compared to the

T = 2× 104 case.

The magnetic case

Figure 4.5 shows a comparison between the emergent Stokes profiles computed with

(dashed line) and without (solid line) the presence of a weak magnetic field including

the effects of elastic collisions. The magnetic profiles are computed for a field strength

of vH = 0.004 with γcoh = 0.9. The model parameters are T = 2 × 104, ǫ = 10−4,

a = 10−3 in the absence of a background continuum. An external weak magnetic field

(through the Hanle effect) affects the multiply scattered Stokes profiles in a way similar

to the singly scattered Stokes profiles. The Hanle effect causes a depolarization in Q/I

at the center of the 5000 Å line and also generates a U/I signal at this line. We recall that

these effects are not seen at the 5001 Å line since its polarizability factor W2 = 0. Like

in the case of single scattered profiles, the magnetic field effects are confined only to

the line core and the J-state interference signatures remain unaffected by the magnetic

field. Also as discussed earlier, the wing Hanle effect in Q/I and U/I which were seen

in the case of single scattered profiles in Figure 4.2 now disappear due to the radiative

transfer effects.

4.6 Conclusions

In the present chapter, we have extended the theoretical framework for the J-state inter-

ference for type-II redistribution developed in Chapter 2 (see also Smitha et al., 2011b),

to include the effects of collisions (type-III redistribution). The collisional PRD matrix

is derived in the laboratory frame for a two-term atom with an unpolarized lower term

and in the presence of magnetic fields of arbitrary strengths. However, the treatment is

restricted to the linear Zeeman regime for which the Zeeman splitting is much smaller

than the fine-structure splitting. The inelastic collisions coupling the upper term and

the lower term and also the inelastic collisions coupling the fine structure states of the

upper term are taken into account. However, the latter has been treated approximately.

The approximation involves considering only the depolarizing effects of the inelastic

collisions but neglecting the polarization transfer rates between the fine structure states.
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Figure 4.5: Emergent Stokes profiles at µ = 0.047 computed for a magnetic field

strength of vH = 0 (solid line) and vH = 0.004 (dashed line) with a coherence frac-

tion γcoh = 0.9 in the absence of a background continuum. The model parameters are

(T, a, ǫ) = (2× 104, 10−3, 10−4).

The depolarization caused by the inelastic collisions has the same type of consequences

as the depolarization by elastic collisions. Therefore we can merge both these effects

into a common damping rate for the state Jb and appropriately redefine the branching

ratios and the thermalization parameter for a two-term atom. A proper treatment of the

inelastic collisions which cause polarization transfer requires formulating and solving

the polarized statistical equilibrium equations. This is outside the scope of the present

thesis. The approximate treatment presented in this chapter leads to slightly larger val-

ues of polarization in the line core as the inelastic collisions are not handled exactly.

A treatment involving the statistical equilibrium equation would yield correct values of

linear polarization. However in the line wings the formulation presented here becomes

accurate enough and would give the same result as a full treatment in terms of statistical

equilibrium equation, including PRD mechanism.

The collisional frequency shift is inherently built into redistribution matrix through

the type-III redistribution function and the branching ratios. We discuss in detail the

procedure of assigning the correct multipolar index K to the collisional branching ratio
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and depolarizing elastic collision rate D(K). This procedure requires a detailed under-

standing of the role played by the multipolar index K for both the atom and the radiation

field. We show how it becomes necessary to introduce a quantum generalized profile

function for the case of a two-term atom in order to assign appropriate index K to the

branching ratios and to D(K). In general D(K) is defined for each of the fine structure

components (by making it depend on the quantum number Jb). However in the present

treatment we assume it to be independent of the J-quantum number.

Examples of the Stokes profiles resulting from single 90° scattering are illustrated

for different values of the coherence fraction γcoh. The profiles look similar to the ones

presented in Chapter 2, which were computed using collisionless redistribution (the

case of pure R
II), except for the depolarization in the wings of the Q/I profiles, and

non-zero polarization in the wings of the U/I profiles. This interesting feature, which

we refer to as the wing Hanle effect, is discussed.

The effects of collisions are discussed by incorporating the newly derived collisional

redistribution matrix in the polarized radiative transfer equation, in the simpler case of

isothermal slab models. The technique of incorporating the Hanle redistribution matrix

with the J-state interference and collisions, into the polarized radiative transfer equation

for a two-term atom is presented. It is shown that the effects of elastic collisions in

a two-term atom are similar to those of the two-level atom case. The redistribution

matrices derived here have been used in the interpretation of the quantum interference

signatures seen in the limb observations of the Cr I triplet in Smitha et al. (2012a, which

will be discussed in Chapter 5). For simplicity the inelastic collisions between the fine

structure states are neglected in that realistic modeling effort.

With the present work we have further extended the theoretical tools that are needed

for modelling the various spectral structures arising due to the transitions between fine

structure states of an atom that have been observed in the Second Solar Spectrum so that

they can be used to diagnose magnetic fields in regimes not accessible to the Zeeman

effect. This will be used in realistic modeling of the Cr I triplet in the next chapter.
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5
Modeling the Cr I triplet at 5204-5208 Å

in the Second Solar Spectrum

An Overview

The scattering polarization in the solar spectrum is traditionally modeled with each

spectral line treated separately, but this is generally inadequate for multiplets where

J-state interference plays a significant role. In this chapter, through simultaneous ob-

servations of all the 3 lines of the Cr I triplet around 5206 Å, combined with realistic

radiative transfer modeling of the data, we show that it is necessary to include J-state

interference consistently when modeling lines with partially interacting fine structure

components. Polarized line formation theory developed in previous chapters is used to

model the observations. We show that the resonance polarization in the Cr I triplet is

strongly affected by the partial frequency redistribution (PRD) effects in the line core

and near wing peaks. The Cr I triplet is quite sensitive to the temperature structure

of the photospheric layers. Our complete frequency redistribution (CRD) calculations

in semi-empirical models of the solar atmosphere cannot reproduce the observed near

wing polarization or the cross-over of the Stokes Q/I line polarization about the con-

tinuum polarization level that is due to the J-state interference. When however PRD is

included, a good fit to these features can be achieved. Further, to obtain a good fit to

the far wings, a small temperature enhancement of the FALF model in the photospheric

layers is necessary.
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Figure 5.1: The term diagram showing transitions in the Cr I triplet. The diagram is not

drawn to scale.

5.1 Introduction

Modeling the Second Solar Spectrum requires the solution of the polarized radiative

transfer (RT) equation. It is well known that quantum interference between the fine

structure (J) levels is responsible for the formation of line pairs such as the Na I D1 and

D2, Ca II H and K, etc. A theoretical framework which includes the quantum interfer-

ence effects was developed in Stenflo (1980, 1997). This was used for RT modeling of

J-state interference in the Na I D1 and D2 lines by Fluri et al. (2003a). The J-state in-

terference theory used in the mentioned papers assumed frequency coherent scattering.

In Chapter 2 (see also Smitha et al., 2011b), we have extended the theory of Stenflo

(1997) to include PRD with J-state interference. It is restricted to the case of a two-

term atom and uses the assumption that the lower term is unpolarized. In Chapter 3

(see also Smitha et al., 2011a), the redistribution matrix for the J-state interference

derived in Chapter 2 was incorporated into the RT equation, which was solved for sim-

ple isothermal model atmospheres. Several theoretical aspects of RT in a hypothetical

doublet line system were studied. The purpose of the present chapter is to perform one-

dimensional RT modeling of the polarimetric observations of a multiplet where J-state

interference is relevant. For this we have selected the Cr I triplet at 5204.50 Å (line-1:

Jb = 1 → Ja = 2), 5206.04 Å (line-2: Jb = 2 → Ja = 2), and 5208.42 Å (line-3:

Jb = 3 → Ja = 2). Hyperfine splitting can be neglected because the most abundant

(90%) isotope of Cr I has zero nuclear spin.

Kleint et al. (2010a,b) have used the Cr I triplet for a synoptic program to explore

solar cycle variations of the microturbulent field strength. Recently, Belluzzi & Trujillo

Bueno (2011) applied the density matrix theory described in Landi Degl’Innocenti &

Landolfi (2004) (which is based on the CRD approximation) in order to perform a basic

investigation on the impact of J-state interference in several important multiplets in

the solar spectrum including also the Cr I triplet. In this work they have neglected RT

and PRD effects. However, they have included the effects of lower term polarization
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and the dichroism. They identify and explain qualitatively the observational signatures

produced by J-state interference in the Cr I triplet (i.e., the cross-over of Q/I about the

continuum polarization level occurring between the lines, and the Q/I feature around

the line-1 core).

In Section 5.2 we briefly present the basic equations required for realistic RT mod-

eling of lines in the two-term atom picture. In Section 5.3 we present the polarimetric

observations of the Cr I triplet. Section 5.4 is devoted to a description of realistic model-

ing of the observations. In Section 5.5 we present the main results. Concluding remarks

are given in Section 5.6.

5.2 Polarized line transfer equation for a two-term

atom

In a non-magnetic medium, polarization of the radiation field is represented by the

Stokes vector (I, Q)T, where positiveQ is defined to represent linear polarization that is

oriented parallel to the solar limb. In a medium that is axisymmetric around the vertical

direction, it is advantageous to use a formulation in terms of the reduced Stokes vector

I instead of the traditional Stokes vector (I, Q)T. The transformations between the two

can be found in Appendix B of Frisch (2007). The relevant line transfer equation for

the 2-component reduced Stokes vector is

µ
∂I(λ, µ, z)

∂z
= −ktot(λ, z) [I(λ, µ, z)− S(λ, z)] , (5.1)

in standard notation (see Anusha et al., 2011b). z is the geometric height in the atmo-

sphere. See Chapter 3 for details of Equation (5.1) and related quantities. The total

opacity ktot(λ, z) = ηM(λ, z) + σc(λ, z) + kc(λ, z), where σc and kc are the continuum

scattering and continuum absorption coefficients, respectively. The line absorption co-

efficient for the entire multiplet is

ηM(λ, z) = kM(z)φM(λ, z) =
∑

JaJb

kl(JbJa)φ(λJbJa, z), (5.2)

where kl(JbJa) is the wavelength averaged absorption coefficient for the Ja → Jb tran-

sition with the corresponding profile function denoted by φ(λJbJa, z). Jb and Ja are the

total angular momentum quantum numbers of the fine-structure levels for the upper and

lower terms (see Figure 5.1). kM(z) is the wavelength averaged absorption coefficient

for the entire multiplet. For our case of a two-term atom, we need to define a combined

profile function that determines the shape of the absorption coefficient across the whole

multiplet. It can be shown that for the Cr I triplet line system φM(λ, z) is given by (see
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Equations (3.7) and (3.8))

φM(λ, z) =
3φ(λ1 2, z) + 5φ(λ2 2, z) + 7φ(λ3 2, z)

15
. (5.3)

The reduced source vector is defined as

S(λ, z) =
kM(z)φM (λ, z)S l(λ, z) + σc(λ, z)Sc(λ, z) + kc(λ, z)Sth(λ, z)

ktot(λ, z)
, (5.4)

for a two-term atom with an unpolarized lower term. Here Sth = (Bλ, 0)
T , where Bλ

is the Planck function. The continuum scattering source vector is

Sc(λ, z) =
1

2

∫ +1

−1

Ψ̂(µ′)I(λ, µ′, z) dµ′. (5.5)

Since continuum polarization can be seen as representing scattering in the distant wings

of spectral lines (in particular from the Lyman series lines, cf. Stenflo, 2005), we are

justified to use the assumption of frequency coherent scattering for the continuum. The

matrix Ψ̂ is the Rayleigh scattering phase matrix in the reduced basis (see Frisch, 2007).

The line source vector

S l(λ, z) = ǫSth(λ, z) +

∫ +∞

0

dλ′

2

∫ +1

−1

R̃(λ, λ′, z)

φM(λ, z)
Ψ̂(µ′)I(λ′, µ′, z) dµ′. (5.6)

The thermalization parameter ǫ = ΓI/(ΓR + ΓI) where ΓR and ΓI are the radia-

tive and inelastic collisional de-excitation rates, respectively. R̃(λ, λ′, z) is a (2 × 2)

diagonal matrix with elements R̃ = diag (R0,R2), where RK are the redistribution

functions which include the effects of J-state interference between different line com-

ponents in a multiplet. RK represents a linear combination of redistribution functions

of type-II and type-III. In the reduced Stokes vector basis, the angular phase matrix

and the frequency redistribution functions are decoupled. The phase matrix part is built

into the transfer equation through the Ψ̂ matrix. The theory of redistribution matrices

for the J-state interference in two-term atoms for the collisionless case is presented in

chapter 2. This frequency redistribution part that includes J-state interference and the

collisional redistribution is given by Equation (4.42), which is

RK(x, x′) =
3(2Lb + 1)

2S + 1

∑

JaJfJbJb′

(−1)Jf−Ja〈r̃Jb r̃∗Jb′ 〉JaJf (2Ja + 1)(2Jf + 1)

×(2Jb + 1)(2Jb′ + 1)

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}

×
{

La Lb 1

Jb′ Ja S

}{
1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}
. (5.7)
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The ensemble averaged coherency matrix elements (see e.g. Bommier & Stenflo, 1999)

in the above equation are given by

〈r̃Jb r̃∗Jb′ 〉JaJf = A cos βJb′Jb
[cos βJb′Jb

(hII
Jb,Jb′

)JaJf − sin βJb′Jb
(f II

Jb,Jb′
)JaJf ]

+B(K) cos βJb′Jb
cosα

(K)
Jb′Jb

{
cos
(
βJb′Jb

+ α
(K)
Jb′Jb

) [
ℜ
(
hIII
JbJa,Jb′Jf

)
− ℑ

(
f III
JbJa,Jb′Jf

)]

− sin
(
βJb′Jb

+ α
(K)
Jb′Jb

) [
ℑ
(
hIII
JbJa,Jb′Jf

)
+ ℜ

(
f III
JbJa,Jb′Jf

)]}
. (5.8)

The (hII
Jb,Jb′

)JaJf and (f II
Jb,Jb′

)JaJf are the auxiliary functions defined in Equations (2.14)

and (2.15) but are used here for the non-magnetic case and with angle-averaged redistri-

bution functions of type-II. The auxiliary functions of type-II derived in Chapter 2 rep-

resents generalizations of the corresponding quantities appearing in Sampoorna (2011a,

see Equations (22) and (23)) using a semi-classical approach. The important difference

between the two in the presence of the magnetic field is that in case of J-state inter-

ference these auxiliary functions depend on both J and m quantum numbers, unlike

in case of m-state interference where they depend only on m. In the particular case

of non-magnetic J-state interference theory, these quantities depend only on J quan-

tum numbers, whereas the corresponding quantities in the m-state interference theory

simply reduce to the well known type-II redistribution functions of Hummer (1962).

Therefore for the notational brevity even in the J-state interference case we refer to

these auxiliary functions as RII hereafter (in the standard notation of Hummer, 1962).

The auxiliary quantities for type-III redistribution are given in Chapter 4 (see also Ap-

pendix C). The assumptions made in deriving Equation 5.8 are listed in Section 4.1.

Among these, the assumption of an unpolarized lower term is made for the sake of

mathematical simplicity. The inelastic collisions that transfer polarization between the

fine structure levels are neglected. This is justified because the colliding particles are

isotropically distributed around the radiating atom. This situation is similar to the case

of an atom immersed in an isotropic radiation field producing no atomic polarization

(scattering polarization). Neglecting such inelastic collisions is particularly valid in the

linear Zeeman regime in which we are interested. However these inelastic collisions do

cause population transfer between the fine structure levels, and are properly accounted

for in the calculations of line opacities (see Section 5.4).

The angle βJb′Jb
is defined in Equation (2.10). The angle α

(K)
Jb′Jb

is defined as

tanα
(K)
Jb′Jb

=
ωJb′Jb

ΓR + ΓI +D(K)
. (5.9)

Here ~ωJb′Jb
is the energy difference between the Jb′ and Jb states in the absence of

a magnetic field. D(K) is the 2K multipole depolarizing elastic collisional destruction
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rate. In general D(K) depend on the J quantum numbers of the fine structure states. As

a simplifying assumption, we take these rates to be the same for all the fine structure

states of the upper term, and use the classical value D(K) = ΓE/2 given by Stenflo

(1994) where ΓE is the elastic collision rate which is responsible for the broadening of

the atomic states. A and B(K) are the branching ratios which are given by

A =
ΓR

ΓR + ΓI + ΓE
; B(K) =

ΓR

ΓR + ΓI +D(K)

ΓE −D(K)

ΓR + ΓI + ΓE
. (5.10)

These branching ratios are the ones derived for a two-level atom model by Bommier

(1997b). For simplicity, we continue to use the same branching ratios for the two-term

atom case also.

The computation of angle-averaged type-III redistribution functions (that appear

in Equation (5.8)) is very expensive, especially for the case of a realistic model at-

mosphere. Therefore we prefer to use the approximation of CRD in place of type-III

redistribution functions (see Mihalas, 1978). We have verified by direct numerical com-

putations that this replacement is valid and gives results which are almost identical to the

explicit use of type-III redistribution functions. The necessary settings of the branching

ratios in order to go to the limit of pure CRD are A = 0 and B(K) = (1 − ǫ) (see also

Anusha et al., 2011b).

5.3 Observational details

The Q/I spectra of Cr I triplet were observed by Gandorfer (2000). In this chapter,

we present new observations of this triplet obtained with the ZIMPOL-III polarime-

ter (Ramelli et al., 2010) at IRSOL in Switzerland. Figure 5.2 shows the observations

recorded on September 6, 2011, at the heliographic north pole with the slit placed par-

allel to the limb at µ = 0.15. The polarization modulation was done with a piezo-elastic

modulator (PEM). The spectrograph slit was 60µm wide corresponding to a spatial ex-

tent of 0.5′′ on the solar image. The CCD covered 190′′ along the slit. The effective

pixel resolution in the spatial direction is 4 actual pixels wide, due to the grouping of

each four pixel rows covered by a cylindrical microlense, to allow simultaneous record-

ing of all four Stokes parameters in the ZIMPOL demodulation scheme. The resulting

CCD images have 140 such effective pixel resolution elements in the spatial direction,

each element corresponding to 1.38′′, and 1240 pixels in the wavelength direction, with

one pixel corresponding to 7.84 mÅ. In Figure 5.2 only the central part of the spectral

window, corresponding to 1050 pixels spanning 8.23 Å, is displayed. With the PEM it

was possible to measure simultaneously one linear and the circular polarization com-

ponent. Measurements of the linear polarization component Q/I were alternated with

measurements of the U/I component through mechanical rotation of the analyzer by
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45◦. In total we accumulated for both the components 2000 exposures of 1 second

each.

Figure 5.2: CCD image showing the (I, Q/I, U/I, V/I) of the Cr I triplet. The record-

ing was made on September 6, 2011, near the heliographic north pole at a limb distance

defined by µ = 0.15. The grey scale cuts span a range (from black to white) of 0.1 % in

Q/I and U/I , while for V/I the cuts are −0.2% (black) and +0.2% (white).

5.4 Modeling of Cr I triplet

To model the Cr I triplet the polarized spectrum is calculated by a two-stage process de-

scribed in Holzreuter et al. (2005, see also Anusha et al. 2010, 2011b). In the first-stage

a multi-level PRD-capable MALI (Multi-level Approximate Lambda Iteration) code of

Uitenbroek (2001, referred to as the RH-code) solves the statistical equilibrium equa-

tion and the unpolarized RT equation self-consistently and iteratively. The RH-code

is used to compute the unpolarized intensities, opacities and the collision rates. The

angle-averaged redistribution functions of Hummer (1962) are used in the RH-code to

represent PRD in line scattering. In the second stage the opacities and the collision rates

are kept fixed, and the polarized intensity vector I is computed perturbatively by solv-

ing the polarized RT equation with the redistribution matrices defined in Section 5.2,

which are derived for a two-term atom with an unpolarized lower term.

5.4.1 Model atom and model atmosphere

The Cr I atom model is constructed for 14 levels (13 levels of Cr I and the ground state of

Cr II), 11 line transitions, and 13 continuum transitions. The line transitions are shown

in Figure 5.3.
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5.4. Modeling of Cr I triplet

Figure 5.3: The grotrian diagram of Cr I atom. Thick solid line indicates the 5204 Å,

5206 Å, and 5208 Å transitions. Thick dotted lines are the other line transitions which

are included in the construction of atom model.

The line components of the 5S −5P triplet of Cr I are considered under PRD. The

values of the various physical quantities required to build the atom model are taken from

the NIST atomic data base1 and the Kurucz data base2. The data for the blend lines are

also obtained from the Kurucz data base. The photo-ionization cross sections are taken

from Bergemann & Cescutti (2010). The explicit dependence of these cross sections on

wavelength is computed under the hydrogenic approximation.

Figure 5.4a shows the temperature structure in some of the standard model atmo-

spheres of the Sun - namely FALA, FALC, FALF (Fontenla et al., 1993), and FALX

(Avrett, 1995), which we have used in our attempts to fit the observed (I, Q/I) spectra.

Models A, C and F of Fontenla et al. (1993) represent respectively the supergranular cell

center, the average quite Sun, and the bright network region in the solar atmosphere.

FALX represents the coolest model with a chromospheric temperature minimum lo-

cated around 1000 km above the photosphere. Our attempts to fit the observed (I, Q/I)

spectra using these standard models will be discussed in Section 5.5.2.

We show that a reasonable fit could be obtained only with a small enhancement

in the original temperature structure of the FALF model, in the height range of 100

km below the photosphere, extending up to 700 km above the photosphere (denoted

1www.nist.gov/pml/data/asd.cfm
2kurucz.harvard.edu/linelists.html
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(a)

(b)

(c)

Figure 5.4: Panel (a) shows the temperature structure of several standard model at-

mospheres. FALF represents a model with an enhanced temperature structure of the

original FALF model. In panel (b) we show the center to limb variation of the ‘limb

darkening function’, Ic(µ)/Ic(µ = 1), where Ic(µ) is the continuum intensity near the

Cr I triplet. Panel (c) shows the CLV of the continuum intensity for all wavelengths

covering the violet to the IR regions of the spectrum. The observed data are taken from

Neckel & Labs (1994).

by FALF). Such an enhancement does not affect the center to limb variation (CLV)

of the continuum intensity as shown in Figure 5.4b. While such a modification of the

temperature structure produces insignificant changes in the intensity spectra, Q/I turns

out to be quite sensitive to these changes in the temperature gradient.

In order to explore the effect of temperature enhancement in a given model atmo-

sphere used for computing line and continuous spectra, we have performed a simple

test (similar to the Figure 3 of Asplund et al., 1999, see our Figure 5.4c). It is expected

that 1D model atmospheres (like FALF in our case; or all the FAL class of models in

general) fit the observed CLV data of continuum intensity to a good accuracy. To verify

this, we have plotted the limb darkening function for the whole range of wavelengths,
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for different µ values. The theoretical limb darkening function fits the corresponding

observed data better for µ → 1. The fit is approximate in the limb positions (say

µ = 0.1). In Figure 5.4c we also show the theoretical curves computed for the FALF

model (dotted lines). As can be seen, the limb darkening function of FALF does not

greatly differ from that of the original FALF model atmosphere (a maximum relative

difference of 15% in the extreme limb). Therefore it justifies a slight modification of

temperature structure in a given model atmosphere to achieve a theoretical fit to the

Q/I observations.

5.5 Results and discussion

5.5.1 Comparison between PRD and CRD

Figure 5.5 shows the comparison between the Q/I profiles computed using only CRD

(to represent frequency non-coherent redistribution: solid line), only RII (dotted line),

and a combination of RII and CRD (dashed line) (see Section 5.2 for the definition of

CRD). As seen from the figure, the CRD profiles do not produce the wing peaks on ei-

ther side of the line center, which are clearly seen in the PRD profiles. Also, the J-state

interference signatures are more prominent in PRD than in CRD. A good fit to the ob-

served Q/I can only be achieved through the use of PRD (see Section 5.5.2). We have

verified that it is impossible to fit the observed near wing peaks with CRD alone. The

pure RII mechanism represents frequency coherent scattering in the line wings, the use

of which alone also fails to achieve a good fit (since it produces too large values of Q/I

throughout the wings). We find that a proper combination of RII and CRD is essential to

obtain a good fit to the observations. This can be seen more clearly in Figure 5.8, where

we present a comparison with the observed Q/I profile. It is well known that only such

a combination can correctly take into account the collisional frequency redistribution.

Therefore the (RII,CRD) combination is adopted for the computations.

The effect of elastic collisions is to cause significant depolarization in the line wings.

This can be seen from the dashed line in Figure 5.5a, which shows that due to elastic

collisions the line wing amplitudes of Q/I are greatly suppressed with respect to the

corresponding pure RII case (dotted line). The issue of elastic collisions is discussed in

some detail in Section 5.2.

Figure 5.5b shows the effect of spectral smearing that needs to be applied to the

theoretical profiles in order to compare them with the observed profiles, which are

broadened by the particular spectral resolution that was used in the observations. In

the absence of smearing the Q/I in the line core computed with RII and CRD differ

significantly (see Figure 5.5a). These differences decrease drastically after application

of spectral smearing. Although in isothermal atmospheric models Q/I computed with

102



Chapter 5. Modeling the Cr I triplet in the Second Solar Spectrum

(a)

(b)

Figure 5.5: (Q/I) of the Cr I triplet computed with CRD (solid line), RII (dotted line),

and a combination of CRD and RII (dashed line) for µ = 0.15. The positive Q rep-

resents linear polarization parallel to the solar limb. The thin solid line in Q/I at the

0.025 % level represents the continuum polarization. The microturbulent magnetic field

Bturb = 0. No spectral smearing is applied to the profiles in the panel (a). In the line

core the Q/I profiles computed with pure RII and with a combination of RII and CRD

nearly coincide (see the insets in the panel (a)). The panel (b) shows a comparison be-

tween the Q/I profiles computed with CRD and with RII when we also apply a spectral

smearing of 80 mÅ. The line types have the same meanings as in panel (a).

pure RII and with CRD are very similar in the line center region, the same cannot be

expected in computations with realistic atmospheres. Indeed Q/I computed with PRD

shows a double peak structure in the line core region with a dip at line center (see

Holzreuter et al., 2005, for details). The smearing wipes out the double-peaked core

structure that we see in Figure 5.5a.

5.5.2 Comparison with observations

In this section we compare the theoretical Stokes profiles computed using several stan-

dard atmospheric models of the Sun, with the observations. Figures 5.6 and 5.7 show

the I/Ic and Q/I spectra. From Figure 5.6 we can see that the I/Ic is not sensitive to

the choice of the model atmospheres, whereas Q/I is very sensitive. The reason for this

sensitivity is the angular anisotropy of the radiation field, which is different for different

atmospheres.

From Figure 5.4 it is clear that the temperature structure of these models are consid-

erably different from each other in the line formation region. We find that a modification

of the temperature structure at certain range in the atmosphere does not significantly af-

fect the emergent I/Ic profile. However Q/I is quite sensitive to such ‘modifications’
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(a)

(b)

(c)

(d)

Figure 5.6: Intensity spectra for a choice of model atmospheres. The dotted line

represents observations and the solid line represents the theoretical profiles. The line of

sight is represented by µ = 0.15.

in the temperature structure in the line formation region. The theoretical profiles (solid

lines) in Figure 5.7 are computed taking into account the effects of microturbulent mag-

netic fields (Bturb) with an isotropic angular distribution (Stenflo, 1994). Further, the

spectral smearing (see Anusha et al., 2010) is done using a Gaussian function with

FWHM of 80 mÅ. The use of Bturb is essential to obtain correct line center amplitudes

of Q/I . The values of Bturb for the three components of the Cr I triplet are differ-

ent. They are chosen to fit the observed line center amplitudes of Q/I using the FALF

model. In this way, the microturbulent magnetic field strength is only used as a free

parameter to improve the fit with the observations. We have made no attempt to achieve

a good fit to the line center amplitudes of the (Q/I) profile computed using FALA,

FALC, and FALX models. FALF provides a better fit to the observed Q/I profiles at

the cores of the three lines and in the interference regions in between them. However

the far wings still remain poorly fitted even by the FALF model. To achieve a good

fit to the far wing region of all the three lines, we found it necessary to enhance (see
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(a)

(b)

(c)

(d)

Figure 5.7: The polarized (Q/I) spectra computed at µ = 0.15 and for a choice of

model atmospheres. The line types are the same as in Figure 5.6. The dashed line

represents the level of continuum polarization. The observations are taken at µ = 0.15.

The Bturb values used for the theoretical profiles are given in Table 5.1.

Figure 5.4) the temperature in the layers where the far wings are formed.

Figure 5.8 shows a comparison between the profiles of the Cr I triplet computed with

the J-state interference theory (solid line) and the observed data (dotted line). This

solid line is same as the dashed line in Figure 5.5a, except that it now also includes the

contributions from Bturb and a spectral smearing of 80 mÅ to simulate the observations.

The best fit values of Bturb for the 3 components of the Cr I triplet are given in Table 5.1.

The approximate heights of formation given in Table 5.1 are the heights at which the

condition τ(λ0)/µ ≃ 1 is satisfied for µ = 0.15. The quantity τ(λ0) is the total optical

depth at line center for the FALF model.

The observed Q/I spectra of the Cr I triplet have two main characteristics, namely

(i) the presence of a triple peak structure in line-2 and line-3; (ii) the cross over in

Q/I about the continuum polarization level, occurring between the line components.

These two aspects are well reproduced in terms of the theoretical framework with the
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Figure 5.8: Comparison between the limb (µ = 0.15) observations (dotted line, rep-

resenting the Q/I spectrum of Figure 5.2 averaged along the slit) and the theoretical

profile (solid line). The centers of the 3 lines, the PRD peak positions of line-2 and

line-3, and the cross-over wavelength positions between the lines are marked with ver-

tical lines. The dashed line in Q/I at 0.025 % represents the continuum polarization

level. The solid line is the same as the dashed line of Figure 5.5a, except that we

have now introduced Hanle depolarization due to microturbulent magnetic fields (see

Table 5.1), and added spectral smearing of 80 mÅ to simulate the observations. The

smearing wipes out the double-peaked core structure that we see in Figure 5.5a.

redistribution matrix theory for J-state interference developed in Chapters 2, 3 and 4.

The small discrepancies between the observations and theoretical profiles in Q/I can

be attributed to the presence of blend lines. The blend lines are assumed to be formed

under LTE, and generally depolarize the wings of the main line as well as the contin-

uum polarization. To fit the observed I spectra the oscillator strengths of the blend lines

from the Kurucz data base are used unchanged, with the single exception of the Y II

line at 5205.75 Å, since the value from the data base for this line does not reproduce

the Stokes I spectrum at all. Therefore the oscillator strength for this line is changed

substantially to get a good Stokes I fit. As soon as the Stokes I fit becomes good, the

Q/I fit automatically becomes good as well around 5205.75 Å. Such enhancement of

the Y II line oscillator strength is also used in computing the theoretical profiles shown

in Figures 5.6 and 5.7. The discrepancy in the theoretically computed and observed

intensity spectra of other blend lines is slightly model atmosphere dependent, particu-

larly for the one at 5208.6 Å (see Figure 5.6 for details). We have not made a detailed

attempt to simultaneously fit the (I, Q/I) spectra of all the blend lines.
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Table 5.1: Microturbulent magnetic field strengths necessary to obtain a best fit to the

line center value of the observed Q/I using FALF

Line height at which (τλ/µ) = 1 Bturb

for µ = 0.15 (G)

5204.50 Å 845 km 4.0

5206.04 Å 884 km 6.0

5208.42 Å 953 km 4.5

The reasons for the lack of a good fit to the observed Q/I at the left-wing peaks of

line-2 and line-3 remain unclear and need further investigation. The deviations of the

model fit from the observations are possibly due to unidentified opacity sources. These

deviations however do not affect the diagnostic potential of the Cr I triplet.

5.6 Conclusions

In this chapter we have studied the importance of J-state interference phenomena with

realistic radiative transfer modeling of the Second Solar Spectrum. We have selected a

Cr I triplet for this purpose and made use of the PRD theory with J-state interference

developed in Chapters 2, 3, and 4 in the absence of lower term polarization. This theory

is used in combination with realistic atmospheres and a model atom for Cr I. Our results

demonstrate that it is indeed possible to obtain a good fit to the observed Q/I profiles

without the use of lower term polarization, and also clearly show that accounting for the

PRD mechanism is essential to model the observed scattering polarization in sufficient

detail. The CRD approach alone cannot be used to model the observed spectra. We note

that Belluzzi & Trujillo Bueno (2011) have carried out a basic investigation of the J-

state interference phenomenon on different multiplets, neglecting RT and PRD effects

(the theory they apply is based on the CRD assumption). Nevertheless, they were able

to identify and explain qualitatively the observational signatures produced by J-state

interference in the Cr I triplet (i.e., the cross over of Q/I about the continuum level

occurring between the lines, and the Q/I feature around the line-1 core), neglecting

and including the effects of lower-term polarization and dichroism.

Our observations were performed in quiet regions, but we find that microturbulent

magnetic fields with an isotropic angular distribution are needed to fit the line center

amplitudes of the Q/I spectra.

The near wing PRD peaks and the characteristic cross-overs in Q/I that are typi-

cal of J-state interference are well modeled only through a weighted combination of

partially coherent (through RII) and completely non-coherent (through CRD) scattering

processes. The weighting factors (branching ratios) are the ones used to represent the

collisional frequency redistribution in line scattering on a two-level atom, and they are
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properly accounted for in our RT calculations. We find that elastic collisions indeed

play a major role in modeling the wing polarization of the Cr I triplet. A hotter model

atmosphere (FALF) with a slight additional temperature enhancement is found to be

needed to obtain a good fit to the observed data, in particular for Q/I . This emphasizes

that the Q/I spectrum (together with the I spectrum) provides a much stronger con-

straint on the model atmosphere than the intensity spectrum alone. The Second Solar

Spectrum is thus not only useful for magnetic field diagnostics, but also for modeling

the thermodynamic structure of the Sun’s atmosphere.
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6
Collisionless partial frequency

redistribution in the non-magnetic regime

An Overview

In this chapter, we extend the redistribution matrix derived for the J-state interference to

the case of F -state interference and in subsequent chapters apply it to the Second Solar

Spectrum to model specific lines. Here, we incorporate the F -state interference redis-

tribution matrix into the polarized radiative transfer equation and solve it for isothermal

constant property slab atmospheres. The relevant transfer equation is solved using a po-

larized approximate lambda iteration (PALI) technique based on operator perturbation.

An alternative method derived from the Neumann series expansion is also proposed and

is found to be relatively more efficient than the PALI method. The effects of partial fre-

quency redistribution (PRD) and the F -state interference on the shapes of the linearly

polarized Stokes I and Q/I profiles are discussed. The emergent Stokes profiles are

computed for hypothetical line transitions arising due to hyperfine structure splitting

(HFS) of the upper J = 3/2 and lower J = 1/2 levels of a two-level atom model with

nuclear spin Is = 3/2. We confine our attention to the non-magnetic scattering in the

collisionless regime. Like in the previous case, we compare our redistribution matrix

approach with the W2(λ) approach.
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6.1 Introduction

An atom undergoes hyperfine structure splitting due to the coupling of electronic an-

gular momentum J and the nuclear spin Is (see Figure 6.1). Second solar spectrum

contains several lines which have signatures of F -state interference which arises due to

the coherent superposition of these hyperfine structure states. Examples of these lines

are Na I D2 at 5890 Å, Ba II D2 at 4554 Å, Mn I 8741 Å, Sc II 4247 Å etc. In this chapter

(see also Smitha et al., 2012b) we are concerned with the line formation studies involv-

ing the F -state interference process and PRD. The F -state redistribution matrix derived

in this chapter can be used for modeling the non-magnetic quiet region observations of

HFS in the lines mentioned above.

The F -state interference theory applicable to the frequency coherent scattering was

developed by Stenflo (1997). This theory, along with PRD, was applied by Fluri et al.

(2003a) and Holzreuter et al. (2005) in the polarized line transfer computations. In

Landi Degl’Innocenti & Landolfi (2004) the theory of F -state interference was devel-

oped under the approximation of complete frequency redistribution (CRD). The theory

of F -state interference in a magnetic field for multi-term atoms in the collisionless

regime and under the approximation of CRD is presented in Casini & Manso Sainz

(2005).

In the present chapter, we extend the J-state interference theory presented in Chap-

ter 2 to the case of F -state interference. The F -state redistribution matrix is derived

here for the non-magnetic case and in the collisionless regime. The reason for con-

sidering the non-magnetic case, is that the formulation of Chapter 2 was confined to

the linear Zeeman regime of field strengths (the spacing between the Zeeman m-states

being smaller than the spacing between the fine structure states). In the present con-

text, the hyperfine splitting becomes comparable to the Zeeman splitting even for weak

magnetic fields, and we quickly enter the Paschen-Back regime of field strengths (level

crossing of the m-states belonging to different F -states), in which the formulation pre-

sented in Chapter 2 is not valid. Since the Paschen-Back effect is outside the scope of

our treatment, the results presented here is limited to the non-magnetic case. The ex-

tension to the Paschen-Back regime has been recently done by Sowmya et al. (2014b).

We further assume that the lower level is unpolarized and infinitely sharp. While this

assumption is made for the sake of mathematical simplicity, it is physically justified for

the long-lived ground states, which are correspondingly more vulnerable to collisional

depolarization.

Following Chapter 3, this PRD matrix is incorporated into the polarized line trans-

fer equation, and solved using an operator perturbation method. We also propose a new

method to solve the F -state interference problem. It is called the scattering expansion

method (SEM) and is described in Frisch et al. (2009); Sampoorna et al. (2011). Re-
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Figure 6.1: Level diagram representing the HFS in a two-level atom model.

cently, it has been applied to a variety of problems (see Sowmya et al., 2012; Supriya

et al., 2012). We compare the operator perturbation method and the SEM by applying

them to the problem at hand.

In Section 6.2 we derive the PRD matrix for F -state interference and incorporate

it into the line transfer equation. In Section 6.3 we describe the numerical methods

used to solve the transfer equation. Results are presented in Section 6.4. Section 6.5 is

devoted to the concluding remarks.

6.2 Basic equations

6.2.1 The redistribution matrix

In this section we present the redistribution matrix for the F -state interference, derived

starting from the Kramers-Heisenberg formula. We restrict our attention to the case of

a non-magnetic collisionless regime.

The redistribution matrix for the F -state interference can be derived through a

straightforward replacement of quantum numbers, in the J-state interference redistri-

bution matrix derived in Chapter 2. The replacements are as follows (see Stenflo, 1997;

Landi Degl’Innocenti & Landolfi, 2004):

L → J ; J → F ; S → Is, (6.1)

where L, J and S represent the orbital, electronic, and spin quantum numbers of a

given state. F is the total angular momentum and Is is the nuclear spin of the atom

under consideration. The expression for the F -state interference redistribution matrix

expressed in terms of irreducible spherical tensors can be written as

R
II
ij(x,n; x

′,n′) =
3(2Jb + 1)

2Is + 1

∑

KFaFfFbFb′

(−1)Ff−Fa cos βFb′Fb
eiβF

b′
Fb (2Fa + 1)

×(2Ff + 1)(2Fb + 1)(2Fb′ + 1)
[
(hII

Fb,Fb′
)FaFf

+ i(f II
Fb,Fb′

)FaFf

]{ Ja Jb 1

Fb Ff Is

}

113



6.2. Basic equations

×
{

Ja Jb 1

Fb Fa Is

}{
Ja Jb 1

Fb′ Ff Is

}{
Ja Jb 1

Fb′ Fa Is

}{
1 1 K

Fb′ Fb Fa

}

×
{

1 1 K

Fb′ Fb Ff

}
T K
0 (i,n)T K

0 (j,n′). (6.2)

In the above expression the angle βFb′Fb
is defined as

tan βFb′Fb
=

ωFb′Fb

γ
, (6.3)

where ~ωFb′Fb
represent the energy differences between the Fb′ and Fb states in the

absence of a magnetic field. γ is the damping parameter of the upper state. The lower

levels are assumed to be infinitely sharp and unpolarized. The h and f functions are the

auxiliary quantities defined in the same way as Equations (2.14) and (2.15), but with

the replacements given in Equation (6.1). T K
Q are the irreducible tensors for polarimetry

introduced by Landi Degl’Innocenti (1984). For the non-magnetic case presented in this

chapter, Q = 0. The indices i and j refer to the Stokes parameters (i, j = 0, 1, 2, 3) with

K = 0, 1, 2 and −K ≤ Q ≤ +K. The directions of the incoming and scattered rays

are given by n
′ and n respectively. n = (θ, ϕ) where θ is the colatitude and ϕ is the

azimuth of the outgoing ray. x′ and x are the incoming and scattered frequencies in

Doppler width units.

6.2.2 The polarized line transfer equation

The one dimensional radiative transfer equation for solving the line formation problems

with PRD and F -state interference in scattering in the absence of a magnetic field is

given by

µ
∂I(τ, x, µ)

∂τ
= (φHFS(x) + r)[I(τ, x, µ)− S(τ, x, µ)], (6.4)

where I = (I, Q)T is the Stokes vector and S = (SI , SQ)
T is the Stokes source vec-

tor. Equation (6.4) is valid for the case of a two-level atom with an infinitely sharp and

unpolarized ground level. µ = cos θ represents the line of sight. r is the ratio of con-

tinuum to the frequency-integrated line absorption coefficient. The positive Stokes Q

represents electric vector vibrations perpendicular to the solar limb. τ is the line optical

depth defined by dτ = −kLdz, where kL is the frequency-integrated line absorption

coefficient defined for a two-level atom with HFS. If ηL is the line absorption coeffi-

cient then for the standard two-level atom without HFS, ηL = kLφ(x) where φ(x) is the

Voigt profile function. In the presence of HFS, ηL is given by (see Equation (3.7))

ηL(ν) =
kL

(2Is + 1)

∑

FaFb

(2Fa + 1)(2Fb + 1)

{
Jb Ja 1

Fa Fb Is

}2

φ(νFbFa
− ν), (6.5)
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where

kL =
hνJbJa
4π

N(Ja)B(Ja → Jb), (6.6)

is the frequency-integrated absorption coefficient for all the F -states. Thus φHFS(x)

is the weighted sum of the individual Voigt profiles φ(νFbFa
− ν) representing each

Fa → Fb absorption.

For the particular case of the Ja = 1/2 → Jb = 3/2 → Jf = 1/2 transition with

Is = 3/2, φHFS(x) takes the form

φHFS(x) =

[
2

32
φ(ν0 1 − ν) +

5

32
φ(ν1 1 − ν) +

5

32
φ(ν2 1 − ν)

+
1

32
φ(ν1 2 − ν) +

5

32
φ(ν2 2 − ν) +

14

32
φ(ν3 2 − ν)

]
. (6.7)

We have verified that if the F -states are very closely spaced, then a single profile func-

tion φ(νJbJa − ν), corresponding to the Ja → Jb transition, can be used instead of

φHFS(x) (see Landi Degl’Innocenti & Landolfi, 2004).

The total source vector S in Equation (6.4) is given by

S(τ, x, µ) =
φHFS(x)Sl(τ, x, µ) + rSc

φHFS(x) + r
, (6.8)

where the unpolarized continuum source vector Sc = BU , where B is the Planck

function and U = (1, 0)T . The line source vector for a two-level atom with HFS is

given by

Sl(τ, x, µ) = ǫBU +
1

φHFS(x)

∫ +∞

−∞

dx′

∫ +1

−1

dµ′

2
R(x, µ; x′, µ′)I(τ, x′, µ′). (6.9)

Here ǫ = ΓI/(ΓI + ΓR) is the photon destruction probability per scattering also known

as the thermalization parameter, with ΓI and ΓR being the inelastic and radiative de-

excitation rates of the upper state Fb. To a first approximation these rates are assumed

to be the same for all the F -states. R(x, µ; x′, µ′) is the redistribution matrix defined

in Equation (6.2) but integrated over the azimuths ϕ′ of the incoming radiation. Such a

simplification is possible due to the azimuthal symmetry of the problem. This redistri-

bution matrix can be rewritten as

Rij(x, µ; x
′, µ′) =

∑

K

RK(x, x′T K
0 (i, µ)T K

0 (j, µ′). (6.10)

The redistribution function components RK(x, x′) are given by

RK(x, x′) =
3(2Jb + 1)

2Is + 1

∑

FaFfFbFb′

(−1)Ff−Fa(2Fa + 1)(2Ff + 1)(2Fb + 1)
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×(2Fb′ + 1) cosβFb′Fb
[cos βFb′Fb

(hII
Fb,Fb′

)FaFf
− sin βFb′Fb

(f II
Fb,Fb′

)FaFf
]

×
{

Ja Jb 1

Fb Ff Is

}{
Ja Jb 1

Fb Fa Is

}{
Ja Jb 1

Fb′ Ff Is

}

×
{

Ja Jb 1

Fb′ Fa Is

}{
1 1 K

Fb′ Fb Fa

}{
1 1 K

Fb′ Fb Ff

}
. (6.11)

For simplicity, we use angle-averaged versions of the auxiliary functions (hII
Fb,Fb′

)FaFf

and (f II
Fb,Fb′

)FaFf
.

6.2.3 Decomposition of the Stokes vectors into the reduced basis

Decomposition of the Stokes source vector S in the reduced basis makes it independent

of θ. The decomposition of S defined in Equation (6.8) can be carried out in a way

similar to the one presented in Section 3.2.1. Hence we do not repeat them here. The

transfer equation for the reduced Stokes vector I can be written as

µ
∂I(τ, x, µ)

∂τ
= (φHFS(x) + r)[I(τ, x, µ)− S(τ, x)]. (6.12)

The corresponding irreducible total and line source vectors are given by

S(τ, x) =
φHFS(x)S l(τ, x) + rG(τ)

φHFS(x) + r
, (6.13)

and

Sl(τ, x) = ǫG(τ) +

∫ +∞

−∞

R̃(x, x′)

φHFS(x)
J (τ, x′)dx′. (6.14)

Here R̃(x, x′) is a (2 × 2) diagonal matrix with elements R̃ =diag (R0,R2), where

RK are defined in Equation (6.11). G(τ) = (B, 0)T is the primary source vector, and

J (τ, x) is the mean intensity defined in Equation (3.23).

6.3 Numerical methods

Here we describe two numerical techniques to solve the reduced form of the transfer

equation. We compare their performance on some benchmark problems.

6.3.1 Operator perturbation method

The solution of the polarized line transfer equation defined in Equation (6.12) using

the polarized approximate lambda iteration (PALI) method is described in Sections 3.3.

The same equations also hold well for the present problem. Hence we do not repeat
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those equations here. The only difference is that the redistribution matrix for J-state

interference is now to be replaced by the corresponding redistribution matrix for the F -

state interference presented in this chapter. Also, the profile function is to be replaced

with φHFS(x).

6.3.2 Scattering expansion method

In recent years a new method based on Neumann series expansion of the polarized

source vector has been developed (see Frisch et al., 2009). It is applied to a variety of

astrophysical problems. Here we describe the application of this method to the problem

at hand.

In this method, the reduced line source vector defined in Equation (6.14) is rewritten

in the component form for the non-magnetic case as

SK
0 (τ, x) = G(τ)δK0δ00

+

∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′RK(x, x′)

φHFS(x)

∑

K ′

ΨKK ′

0 (µ′)IK
′

0 (τ, x′, µ′). (6.15)

ΨKK ′

0 are the components of the Rayleigh phase matrix in the reduced basis (see Ap-

pendix A of Frisch, 2007). We first consider the component S0
0 . Expanding the summa-

tion over K ′ on the right-hand side of Equation (6.15) we obtain

S0
0(τ, x) = G(τ) +

∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′R0(x, x′)

φHFS(x)
Ψ00

0 (µ′)I00 (τ, x
′, µ′)

+

∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′R2(x, x′)

φHFS(x)
Ψ02

0 (µ′)I20 (τ, x
′, µ′). (6.16)

The degree of linear polarization arising due to Rayleigh scattering is small because of

the small degree of anisotropy prevailing in the solar atmosphere. Hence the effect of

linear polarization on Stokes I can be neglected to a good approximation. Neglecting

the contribution from I20 , in Equation (6.16) we get

S̃0
0(τ, x) ∼ G(τ) +

∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′R0(x, x′)

φHFS(x)
Ψ00

0 (µ′)I00 (τ, x
′, µ′), (6.17)

where S̃0
0 denotes the approximate value of S0

0 . It is the solution of a non-LTE unpo-

larized radiative transfer equation and is computed using the Frequency-by-Frequency

(FBF) technique of Paletou & Auer (1995). The polarization is computed from the

higher order terms in the series expansion. The S2
0 component is given by
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S̃2
0(τ, x) ∼

∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′R2(x, x′)

φHFS(x)
Ψ20

0 (µ′)Ĩ00 (τ, x
′, µ′)

+

∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′R2(x, x′)

φHFS(x)
×Ψ22

0 (µ′)Ĩ20 (τ, x
′, µ′). (6.18)

Retaining only the contribution from Ĩ00 on the right-hand side of Equation (6.18), we

obtain the single scattering approximation to the polarized component of the source

vector as

[S̃2
0(τ, x)]

(1) ∼
∫ +1

−1

dµ′

2

∫ +∞

−∞

dx′R2(x, x′)

φHFS(x)
Ψ20

0 (µ′)Ĩ00 (τ, x
′, µ′). (6.19)

The superscript (1) denotes single (first) scattering. This solution serves as a starting

point for the computations of higher order scattering terms. Thus the iterative sequence

of SEM can be represented by

[S̃2
0(τ, x)]

(n) ∼ [S̃2
0(τ, x)]

(1) +

∫ +1

−1

dµ′

2

×
∫ +∞

−∞

dx′R2(x, x′)

φHFS(x)
×Ψ22

0 (µ′)[Ĩ20 (τ, x
′, µ′)](n−1), (6.20)

where the superscript (n) denotes the nth scattering. The iterative cycle is continued

until the required convergence criteria are met.

In the following we compare the performance of these two numerical methods by

plotting the maximum relative correction defined as

c(n) = max{c(n)1 , c
(n)
2 } < 10−8, (6.21)

where

c
(n)
1 = max τ,x,µ

{ |δS(n)
I (τ, x, µ)|

|S̄(n)
I (τ, x, µ)|

}
, (6.22)

and

c
(n)
2 = max x,µ

{
P (n)(x, µ)− P (n−1)(x, µ)

P (n−1)(x, µ)

}
, (6.23)

as a function of the iteration number as shown in Figure 6.2. In the above equations

P = [Q/I] is the degree of linear polarization and S̄
(n)
I = 1

2
[S

(n)
I + S

(n−1)
I ].

Figure 6.2 is computed for an isothermal constant property atmospheric slab with

the model parameters (T, a, ǫ, r, B) = (2 × 1010, 2 × 10−3, 10−4, 0, 1) where T is the

optical thickness of the self emitting slab and a is the damping parameter of the upper

level Jb. From the figure one can clearly see that the convergence rate of the SEM is

larger by several factors in comparison to the PALI method. The reason for the PALI

method being slow is that the source function corrections are computed iteratively from
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Figure 6.2: Comparison of PALI (solid line) and scattering expansion method (dotted

line). The model parameters are given in the text. A convergence criteria of 10−8 is

used.

an approximate initial guess and then the approximate lambda operator is perturbed un-

til the source function corrections fall below a convergence criterion. On the other hand,

the initial guess in the SEM for polarized line formation is the single scattered solution

itself (which already contains the physical characteristics of the scattering mechanism

under consideration). For this reason SEM takes just a few iterations to converge to the

same level of accuracy as the PALI method. Furthermore, SEM is easy to implement

for problems of any physical and/or numerical complexity. This makes the SEM the

method of choice. For a detailed comparison of PALI and SEM we refer the reader

to Sampoorna et al. (2011) and Supriya et al. (2012). The simple lambda iteration for

polarization and the SEM is essentially similar. In the lambda iteration, a source vector

correction is computed at each iteration, and the current source vector is updated until

convergence is reached. In the SEM, each iteration can be seen as contributing a higher

order scattering term to the series expansion of polarized component of the source vec-

tor. This component is updated by adding successively higher order terms in the scat-

tering expansion of the source vector. These points are clearly explained respectively in

Trujillo Bueno & Manso Sainz (1999, see the discussion following their Equation (28)),

and Frisch et al. (2009, see the discussion following their Equation (36)).

6.4 Results and discussion

In this section we present the results computed for a standard two-level atom model with

F -state interference using the PRD matrix presented in this chapter. Isothermal constant

property media characterized by (T, a, ǫ, r, B) are used. The slabs are assumed to be

self-emitting.

The results are presented for transitions centered at hypothetical wavelengths arising
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Table 6.1: Wavelengths (Å) of F -state transitions for a hypothetical atomic system

Fb = 0 Fb=1 Fb=2 Fb=3

Fa = 1 5000.96093 5000.96075 5000.96036 N.A

Fa = 2 N.A 5000.98125 5000.98086 5000.98018

due to HFS of the Jb = 3/2 and Ja = 1/2 levels of a two-level atom with nuclear

spin Is = 3/2. Due to the hyperfine interactions the upper J-state splits into four F -

states with Fb = 0, 1, 2, 3, and the lower J-state splits into Fa = 1, 2. Owing to the

selection rule ∆F = 0,±1, these F -states are coupled by six radiative transitions (see

Table 6.1). For simplicity the Doppler width of all the lines is taken to be constant at

∆λD = 25 mÅ. In the transfer computations, a grid resolution of (Nd, Nx, Nµ) = (5,

417, 5) is generally used, where Nd is the number of depth points per decade in the

logarithmically spaced τ−grid. The first depth point is taken as τmin = 10−2. Nx is

the total number of frequency points covering the full line profile. Nµ is the number of

co-latitudes θ(µ), taken as the 5 points of a Gauss-Legendre quadrature.

6.4.1 F -state interference effects in the case of single scattering

In this section we study the behavior of the F -state interference PRD matrix derived

in Section 6.2.1 by computing the scattered profiles in a single scattering event. The

results in Figure 6.3 are computed for a 90◦ single scattering event. This is done by

giving an unpolarized beam of light incident on the scattering atom at µ′ = −1 as input,

and observing the scattered ray at µ = 0 in the scattering plane (see Chapter 2 for

details on computing polarization profiles in a 90◦ single scattered event). The dashed

line in Figure 6.3 is computed by ignoring the interference effects, whereas the solid

line is computed by taking into account the interference effects between the F -states.

A profile similar to the solid line can also be seen in Fluri et al. (2003a) and Holzreuter

et al. (2005) where plots of the wavelength dependent polarizability factor W2(λ) are

shown. In the single scattering case, the profiles of the W2(λ) and the Q(λ)/I(λ) are

similar in shape and differ only in magnitude (see below).

Principle of spectroscopic stability for F -state interference

It is well known that the principle of spectroscopic stability provides a useful tool to

check any theory of quantum interference. This was first discussed in the context of

scattering polarization and applied, in detail, in Stenflo (1994) (see also Stenflo, 1997;

Landi Degl’Innocenti & Landolfi, 2004). In this chapter, we apply it to the case of

F -state interference arising due to nuclear spin Is. According to the principle of spec-

troscopic stability, in the limit of vanishing HFS in a two-level atom, the theory of
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Figure 6.3: The profiles of the intensity I and the fractional polarization Q/I , plotted

for a hypothetical line system with hyperfine structure splitting. Solid line represents

the Q/I with F - state interference and dashed line represents Q/I without F -state

interference. Single 90° scattering is assumed at the extreme limb (µ = 0). The model

parameters are a = 0.002, the Doppler width ∆λD = 0.025 Å.

F−state interference should reduce to the standard two-level atom theory without HFS.

This can be verified by computing the polarizability factor W2 and in turn the fractional

polarization Q/I in the limit of vanishing F -states. The value of W2 in this asymptotic

limit (which can be obtained by neglecting the Is) can be computed as described in

Stenflo (1997) with

(W2)asym =

{
1 1 2

Jb Jb Ja

}{
1 1 2

Jb Jb Jf

}

{
1 1 0

Jb Jb Ja

}{
1 1 0

Jb Jb Jf

} . (6.24)

For the particular case of Ja = 1/2 → Jb = 3/2 → Jf = 1/2 scattering transition,

(W2)asym = 0.5. Hence W2(λ) is expected to approach 0.5 in the very far wings (see

Figure 2 of Stenflo, 1997). In the 90◦ single scattering case, the Q/I and the W2(λ) are

related through the formula (see Landi Degl’Innocenti & Landolfi, 2004)

Q(λ)/I(λ) =
3W2(λ)

4−W2(λ)
. (6.25)

The above formula gives a value of Q/I = 0.428 for (W2)asym = 0.5 in the far wings.
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From Figure 6.3, we can see that the solid curve reaches an asymptotic value of

42.8% as demanded by the principle of spectroscopic stability, whereas the dashed line

reaches about 10% in the far wings, thereby violating the principle of spectroscopic

stability. These arguments show that in the formulation of the redistribution matrix, the

inclusion of interference effects between the F -states is essential.

6.4.2 Effects of F -state interference in multiply scattered Stokes

profiles

In this section we present the results obtained by solving the transfer equation including

the F -state interference. In the particular case of optically thin slabs, it can be shown,

by choosing appropriate geometric arrangement, that the multiply scattered solution

approaches single scattered solution and thus proving we have correctly incorporated

the F -state redistribution matrix in the line transfer code. See Chapter 3 for more details

regarding single scattering in a thin atmospheric slab.

When the optical thickness of the medium is large, multiple scattering effects come

into play. Figure 6.4 shows one such example, where the emergent Stokes profiles are

computed for different optical thicknesses. The dashed line in this figure is computed

by neglecting HFS. This is the standard two-level atom case which results in a single

radiative transition. The dotted line is computed with HFS but without interference

between the F -states. In this case the six radiative transitions arising due to HFS are

treated independently. The solid line is computed taking into account the F -state inter-

ference. This is comprised of six interfering radiative transitions between the F -states.

The three line types in this figure are quite similar to each other in shape but differ

prominently in amplitude.

For T = 2, the atmospheric slab is effectively thin and the Q/I profiles for both

solid and dotted lines have a structuring within the line core that is different from that

of the dashed line. This is due to the HFS of the given J-level. As the optical thickness

increases, such a structuring gets smoothed out and the shape (not the amplitude) of the

solid and dotted line profiles more closely resemble the dashed line profiles.

In the case of effectively thick atmospheric slabs (T > 2), two peaks are seen on

either side of the line center arising due to PRD effects and are known as PRD wing

peaks. In the line core, the solid and dotted lines nearly coincide whereas the dashed

line differs from these two. This shows that the depolarization in the line core is purely

due to HFS, irrespective of the interference effects between the F -states that are in-

cluded. In the wings, the solid and dashed lines coincide whereas the dotted line differs

significantly. Upon comparing the solid and dotted lines, it is evident that the interfer-

ence effects show up in the line wing PRD peaks as in the case of J-state interference.

However the J-state interference effects are seen even beyond the PRD wing peaks un-
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Figure 6.4: Comparison between the multiply scattered emergent Stokes profiles com-

puted for different atomic systems as indicated in panel 2. The model parameters are

(a, ǫ, r, B) = (2 × 10−3, 10−4, 0, 1). The line of sight is given by µ = 0.047. The

wavelength positions of the six components are given in Table 1. The spacing between

the hyperfine structure components is taken to be the same as those corresponding to

the Na I D2 line.

like the case of F -state interference. When F -state interference is taken into account

the Q/I in the wings reaches the value of the single line case as expected from the prin-

ciple of spectroscopic stability (see Section 6.4.1). But when interference is neglected,

the dotted and dashed lines differ considerably in the wings which can be seen as a

violation of the principle of spectroscopic stability. Thus the principle of spectroscopic

stability serves as a powerful tool to check the correctness of our formulation not only

in the case of single scattering but also in the radiative transfer computations.

Though such significant signatures of HFS and F -state interference are seen in Q/I ,

the intensity I remains unaffected by these effects.
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Figure 6.5: Comparison between the redistribution matrix theory (dotted line) and

wavelength dependent polarizability factor W2(λ) theory of Stenflo (dashed line). The

optical thickness of the atmospheric slab is T = 2 × 104. The other model parameters

are the same as in Figure 6.4.

6.4.3 Comparison with wavelength dependent polarizability

theory of Stenflo

In this section we compare our redistribution matrix approach and the wavelength de-

pendent polarizability W2(λ) theory for the case of F -state interference presented in

Stenflo (1997) which used in Fluri et al. (2003a) and Holzreuter et al. (2005). The com-

parison is shown in Figure 6.5. The dotted lines show the profiles computed using the

exact PRD F -state interference theory presented in Section 6.2. This is our redistri-

bution matrix approach. The dashed lines show the profiles computed using the W2(λ)

approach. The values of the W2(λ) are calculated from Equation (6.25) using the (Q/I)

plotted in Figure 6.3 (solid line).

To use the W2(λ) in radiative transfer computations we replace the redistribution

matrix RK(x, x′) in Equation (6.11) by WK(λ)[R
II−A(3/2 → 1/2)].

Here RII−A(Jb → Jf) is the angle-averaged frequency redistribution function of Hum-

mer (1962) for a line centered at λJbJf corresponding to the Jb → Jf transition. For

the hypothetical case under study, we have assumed the F -states to be very closely

spaced. Under such an assumption, a single redistribution function computed for the

J = 3/2 → 1/2 transition can be used to represent all the F -state transitions. However

if the F -states are far apart then the redistribution function needs to be computed for

each of the Fb → Ff transition. In such a case, the redistribution matrix RK(x, x′)
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takes a form WK(λ)
∑

FbFf
[RII−A(Fb → Ff )], in the W2(λ) approach.

The polarizability factor W0(λ) = 1, and W2(λ) is the wavelength-dependent W2

factor calculated from Equation (6.25). For the closely spaced F -states a common

absorption profile function φ(x) corresponding to the Ja = 1/2 → Jb = 3/2 transition

is used. But in the case of widely spaced F -states, the φ(x) has to be taken as the sum

of all the individual Fa → Fb absorption profile functions. As seen from Figure 6.5

both the redistribution matrix approach and the W2(λ) approach give nearly the same

results.

6.5 Conclusions

In this chapter (Smitha et al., 2012b) we have extended the J-state interference formu-

lation discussed in Chapters 2 and 3 to the case of F -state interference. The treatment is

restricted to the collisionless and non-magnetic regime. The decomposition technique

presented in Frisch (2007) is applied to the F -state interference problem. It helps to in-

corporate the F -state interference redistribution matrix into the reduced form of the line

radiative transfer equation. The transfer equation is solved using the traditional PALI

and the scattering expansion method by suitably adapting them to handle the F -state

interference problem. The SEM is found to be more efficient and faster than the PALI

method.

The Stokes profiles computed by taking into account HFS are similar to the profiles

of a single line arising from a two-level atom model without HFS. The HFS causes a

depolarization of Q/I in the line core irrespective of whether the F -state interference

is taken into account or not. Like the J-state interference, the F -state interference

affects mainly the line wing PRD peaks. We also show that when interference effects

are neglected, the principle of spectroscopic stability is violated in both single scattered

and multiple scattered profiles. Using the fractional polarization Q/I in the 90◦ single

scattering case, we can numerically estimate the wavelength dependent polarizability

factor W2(λ). The W2(λ) so computed can then be used in the transfer equation to

compare with our exact redistribution matrix approach. The two approaches are found

to give identical emergent Stokes profiles.
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7
Modeling the Ba II D2 4554 Å line in the

Second Solar Spectrum

An Overview

In previous chapters we have seen that quantum interference effects play a vital role

in shaping the linear polarization profiles of solar spectral lines. The Ba II D2 line at

4554 Å is a prominent example, where the F -state interference effects due to the odd

isotopes produce polarization profiles, which are very different from those of the even

isotopes that have no F -state interference. It is therefore necessary to account for the

contributions from the different isotopes to understand the observed linear polarization

profiles of this line. In this chapter (Smitha et al., 2013b) we do radiative transfer mod-

eling with partial frequency redistribution (PRD) of such observations while accounting

for the interference effects and isotope composition. The Ba II D2 polarization profile

is found to be strongly governed by the PRD mechanism. We show how a full PRD

treatment succeeds in reproducing the observations, while complete frequency redis-

tribution (CRD) alone fails to produce polarization profiles that have any resemblance

with the observed ones. However, we also find that the line center polarization is sen-

sitive to the temperature structure of the model atmosphere. To obtain a good fit to the

line center peak of the observed Stokes Q/I profile, a small modification of the FALX

model atmosphere is needed, by lowering the temperature in the line-forming layers.

Because of the pronounced temperature sensitivity of the Ba II D2 line it may not be a

suitable tool for Hanle magnetic-field diagnostics of the solar chromosphere, because
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there is currently no straightforward way to separate the temperature and magnetic-field

effects from each other.

7.1 Introduction

When an atom possesses a non-zero nuclear spin (Is) then the J states split into F states

which is known as the hyperfine structure splitting. The quantum interference between

the F states produces depolarization in the line core. Examples of lines governed by F -

state interference are the Na I D2, Ba II D2, and Sc II line at 4247 Å. The Ba II D2 line is

due to the transition between the upper fine structure level J = 3/2 and the lower level

J = 1/2 (see Figure 7.1(a)). In the odd isotopes of Ba, both the upper and lower levels

undergo hyperfine structure splitting (HFS) due to the nuclear spin Is = 3/2, resulting

in four upper and two lower F -states (see Figure 7.1(b)). The quantum interference

between the upper F -states needs to be taken into account in the modeling of the Ba II

D2 line. The odd isotopes contribute about 18% of the total Ba abundance in the Sun

(c.f. Table 3 of Asplund et al., 2009). The remaining 82% comes from the even isotopes,

which are not subject to HFS (because Is = 0).
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Figure 7.1: (a) represents the Ba II model atom for the even isotopes, while for the odd

isotopes the atomic model is modified by replacing two of the levels, 2P3/2 and 2S1/2,

with their hyperfine structure components, as shown in (b). In (b), Is is the nuclear spin.

The energy levels are not drawn to scale.

The intensity profile of the Ba II D2 line has earlier been studied extensively, for

example by Holweger & Mueller (1974) and Rutten (1978, and the references cited

therein). Some of these studies aimed at determining the solar abundance of Ba. Ob-

servations with the high precision spectro-polarimeter ZIMPOL by Stenflo & Keller

(1997) clearly revealed the existence of three distinct peaks in the linear polarization

(Q/I) profiles of the Ba II D2 line. The nature of these peaks could subsequently be

theoretically clarified by Stenflo (1997), who used the last scattering approximation to

model the Q/I profiles. It was demonstrated that the central Q/I peak is due to the
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even isotopes of Ba, while the two side peaks are due to the odd isotopes.

Using a similar last scattering approximation, the magnetic sensitivity of the Ba line

was explored by Belluzzi et al. (2007). Both these papers however did not account for

radiative transfer or PRD effects. The potential of using the Ba II D2 line as a diagnostic

tool for chromospheric weak turbulent magnetic fields and the important role of PRD

were discussed by Faurobert et al. (2009), but the treatment was limited to the even

Ba isotopes, for which HFS is absent. In contrast, our radiative-transfer treatment with

PRD in the present chapter includes both even and odd isotopes and the full effects of

HFS with F -state interferences (see also Smitha et al., 2013b).

The theory of F -state interference in the non-magnetic collisionless regime includ-

ing the effects of PRD was developed in Chapter 6 (see also Smitha et al., 2012b). In

that chapter, the PRD matrix was also incorporated into the polarized radiative trans-

fer equation. The transfer equation was then solved for the case of constant property

isothermal atmospheric slabs. In this chapter we extend the work of Chapter 6 to solve

the line formation problem in realistic 1-D model atmospheres in order to model the

Ba II D2 line profile observed in a quiet region close to the solar limb. Further we

present center-to-limb variation (CLV) observations of this line and our initial attempts

to model the same.

The outline of the chapter is as follows: In Section 7.2 we present the polarized

radiative transfer equation which is suitably modified to handle several isotopes of Ba.

In Section 7.3 we present the details of the observations. In Section 7.4 we discuss the

model atom and the model atmosphere used. The results are presented in Section 7.5

with concluding remarks in Section 7.6.

7.2 Polarized line transfer equation with F -state

interference

The polarization of the radiation field is in general represented by the full Stokes vector

(I, Q, U, V )T. However, in the absence of a magnetic field Stokes U and V are zero in

an axisymmetric 1-D atmosphere. Hence in a non-magnetic medium the Stokes vector

(I, Q)T is sufficient to express the polarization state of the radiation field. The transfer

equation in the reduced Stokes vector basis (see Smitha et al., 2012a) is

µ
∂I(λ, µ, z)

∂z
= −ktot(λ, z) [I(λ, µ, z)− S(λ, z)] , (7.1)

with positive Q defined to represent linear polarization oriented parallel to the solar

limb. The quantities appearing in Equation (7.1) are defined in the reference mentioned

above. However, we need to generalize the previous definitions of opacity and source
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vector to handle even and odd isotope contributions together.

The total opacity ktot(λ, z) = kl(z)φg(λ, z) + σc(λ, z) + kth(λ, z), where σc and

kth are the continuum scattering and continuum absorption coefficients, respectively. In

the present treatment, kth also includes the contribution from the blend lines, which are

assumed to be depolarizing and hence are treated in LTE. kl is the wavelength averaged

absorption coefficient for the Ja → Jb transition. Ja and Jb are the electronic angular

momentum quantum numbers of the lower and upper level, respectively. φg is the Voigt

profile function written as

φg(λ, z) = 0.822 φe(λ, z) + 0.178 φo(λ, z). (7.2)

φe(λ, z) is the Voigt profile function for the even isotopes of Ba II corresponding to

the Ja = 1/2 → Jb = 3/2 transition in the absence of HFS. The profile function for

the odd isotopes is φo(λ, z), which is the weighted sum of the individual Voigt profiles

φ(λFbFa
, z) representing each Fa → Fb absorption transitions. Here Fa and Fb are the

total angular momentum quantum numbers of the initial and the intermediate hyperfine

split levels, respectively. φo(λ, z) is the same as φHFS(λ, z) defined in Equation (6.7)

and is given by

φo(λ, z) =

[
2

32
φ(λ0 1, z) +

5

32
φ(λ1 1, z) +

5

32
φ(λ2 1, z) +

1

32
φ(λ1 2, z)

+
5

32
φ(λ2 2, z) +

14

32
φ(λ3 2, z)

]
. (7.3)

The 17.8% of φo(λ, z) in Equation (7.2) contains contributions from both the 135Ba

(6.6%) and 137Ba (11.2%) odd isotopes.

The reduced total source vector S(λ, z) appearing in Equation (7.1) is defined as

S(λ, z) =
kl(z)S l(λ, z) + σc(λ, z)Sc(λ, z)

ktot(λ, z)

+
kth(λ, z)Sth(λ, z) + ǫ kl(z)φg(λ, z)Sth(λ, z)

ktot(λ, z)
, (7.4)

for a two-level atom with an unpolarized lower level. For the case of Ba II D2 it was

shown by Derouich (2008) that any ground level polarization would be destroyed by

elastic collisions with hydrogen atoms (see also Faurobert et al., 2009).

In Equation (7.4), Sth = (Bλ, 0)
T , where Bλ is the Planck function. S l(λ, z) is the

line source vector defined as

S l(λ, z) =

∫ +∞

0

1

2

∫ +1

−1

R̃(λ, λ′, z)Ψ̂(µ′)I(λ′, µ′, z) dµ′ dλ′, (7.5)
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with

R̃(λ, λ′, z) = 0.822 R̃e(λ, λ
′, z) + 0.178 R̃o(λ, λ

′, z). (7.6)

Here R̃o(λ, λ
′, z) is a (2 × 2) diagonal matrix, which includes the effects of HFS for

the odd isotopes. Its elements are R̃o = diag (R0
o,R2

o), where RK
o are the redistri-

bution function components for the multipolar index K, containing both type-II and

type-III redistribution of Hummer (1962). The expression for RK is obtained by the

quantum number replacement L → J ; J → F ; S → Is in Equation (5.7) (see

also Smitha et al., 2013a). In our present computations, we replace the type-III redis-

tribution functions by CRD functions. We have verified that both of these give nearly

identical results (see also Mihalas, 1978; Smitha et al., 2012a) and such a replacement

drastically reduces the computation time. The redistribution matrix for the 17.8% of the

odd isotopes includes the contributions from the individual redistribution matrices for

the 135Ba and 137Ba isotopes.

R̃e(λ, λ
′, z) is also a (2 × 2) diagonal matrix for the even isotopes without HFS.

Its elements RK
e are the redistribution functions corresponding to the Ja = 1/2 →

Jb = 3/2 → Jf = 1/2 scattering transition. They are obtained by setting the nuclear

spin Is = 0 in R̃o(λ, λ
′, z). An expression for R̃e(λ, λ

′, z) can be found in Domke &

Hubeny (1988) and in Bommier (1997a, see also Nagendra 1994, Sampoorna 2011a) in

the Stokes vector basis. It is the angle averaged versions of these quantities that are used

in our present computations. As has been demonstrated in Supriya et al. (2013b), the

use of the angle-averaged redistribution matrix is sufficiently accurate for all practical

purposes.

Like in Chapter 5 we use the two branching ratios defined by

A =
ΓR

ΓR + ΓI + ΓE
; B(K) =

ΓR

ΓR + ΓI +D(K)

ΓE −D(K)

ΓR + ΓI + ΓE
. (7.7)

ΓR and ΓI are the radiative and inelastic collisional rates, respectively. ΓE is the elastic

collision rate computed from Barklem & O’Mara (1998). D(K) are the depolarizing

elastic collision rates with D(0) = 0. The D(2) is computed using (see Derouich, 2008;

Faurobert et al., 2009)

D(2) = 6.82× 10−9nH(T/5000)
0.40

+ 7.44× 10−9(1/2)1.5nH(T/5000)
0.38 exp(∆E/kT ), (7.8)

where nH is the neutral hydrogen number density, T the temperature, and ∆E the en-

ergy difference between the 2P1/2 and 2P3/2 fine structure levels. In the present treat-

ment we neglect the collisional coupling between the 2P3/2 level and the metastable
2D5/2 level. The importance of such collisions for the line center polarization of Ba II
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D2 has been pointed out by Derouich (2008), who showed that the neglect of such colli-

sions would lead to an overestimate of the line core polarization by ∼ 25%. This in turn

would cause the microturbulent magnetic field (Bturb) to be overestimated by ∼ 35%,

as shown by Faurobert et al. (2009). However, the aim of our work in this chapter is not

to determine the value of Bturb but to explore the roles of PRD, HFS, quantum inter-

ferences, and the atmospheric temperature structure in the modeling of the triple peak

structure of the Ba II D2 linear polarization profile.

Frequency coherent scattering is assumed in the continuum (see Chapter 5) with its

source vector given by

Sc(λ, z) =
1

2

∫ +1

−1

Ψ̂(µ′)I(λ, µ′, z) dµ′. (7.9)

The matrix Ψ̂ is the Rayleigh scattering phase matrix in the reduced basis (see Frisch,

2007). The line thermalization parameter ǫ is defined by ǫ = ΓI/(ΓR + ΓI). The

Stokes vector (I, Q)T can be computed from the irreducible Stokes vector I by simple

transformations given by (see Frisch, 2007)

I(λ, θ, z) = I0
0 (λ, µ, z) +

1

2
√
2
(3 cos2 θ − 1)I2

0(λ, µ, z),

Q(λ, θ, z) =
3

2
√
2
(1− cos2 θ)I2

0 (λ, µ, z), (7.10)

where θ is the colatitude of the scattered ray. The scattering geometry is shown in

Figure 1 of Anusha et al. (2011b).

7.3 Observational details

The observed polarization profiles of the Ba II D2 line that are used in this chapter for

modeling purposes were acquired by the ETH team of Stenflo on June 3, 2008, using

their ZIMPOL-II imaging polarimetry system (Gandorfer et al., 2004) at the THEMIS

telescope on Tenerife. Figure 7.2 shows the CCD images of the intensity and linear

polarization recorded at various distances from the heliographic north pole with the

spectrograph slit placed parallel to the limb. The polarization modulation was done

using Ferroelectric Liquid Crystal (FLC) modulators. The spectrograph slit was 1′′

wide and 70′′ long on the solar disk. The resulting CCD image has 140 pixels in the

spatial direction and 770 pixels in the spectral direction. The effective pixel size was

0′′.5 spatially and 5.93 mÅ spectrally. The observed profiles used to compare with the

theoretical ones have been obtained by averaging the I and Q/I images in Figures 7.2

over the suitable spatial intervals.

The recording presented in Figure 7.2 does not show much spatial variation along
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Figure 7.2: CCD image showing the I and Q/I spectra of the Ba II D2 line at different

limb distances on the solar disk. The observations were obtained on June 3, 2008, with

ZIMPOL-II at the French THEMIS telescope on Tenerife.

the slit, since it represents a very quiet region. However, recordings near magnetic

regions made during the same observing campaign with ZIMPOL on THEMIS exhibit

large spatial variations. It has long been known that all strong chromospheric scattering

lines (like the Ca I 4227 Å, Na I D2, Sr II 4079 Å line, etc) have such spatial variations.

Our observations confirm that the Ba II D2 line is no exception, which means that it is

sensitive to the Hanle effect like the other chromospheric lines. Observations of spatial

variations of this line have also been carried out by López Ariste et al. (2009) and

Ramelli et al. (2009).

7.4 Modeling procedure

To model the polarization profiles of the Ba II D2 line we use a procedure similar to

the one described in Holzreuter et al. (2005, see also Anusha et al. 2011b, Anusha

et al. 2010, Smitha et al. 2012a). It involves the computation of the intensity, opacity

and collisional rates from the PRD-capable MALI (Multi-level Approximate Lambda

Iteration) code developed by Uitenbroek (2001, referred to as the RH-code). The code

solves the statistical equilibrium equation and the unpolarized radiative transfer equa-

tion self-consistently. The opacities and the collision rates thus obtained are kept fixed,

while the reduced Stokes vector I is computed perturbatively by solving the polarized
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radiative transfer equation with the angle-averaged redistribution matrices defined in

Section 7.2.

Such a procedure requires a model atom and a model atmosphere as inputs to the

RH-code. The details of the model atom and the atmosphere are discussed in the next

subsections.

7.4.1 Model atom

Three different atom models are considered, two for the odd and one for the even iso-

tope. The atom model for the even isotope (138Ba) is given by the five levels of Fig-

ure 7.1(a), while for the odd isotopes (135Ba and 137Ba) the model is extended to include

the hyperfine splitting as described by Figure 7.1(b). We neglect the contribution from

other less abundant even isotopes. The wavelengths of the six hyperfine transitions

for the odd isotopes are taken from Kurucz’ database and are listed in Table 7.1. These

transitions are weighted with their line strengths given in Equation (7.3) (see Table 7.1).

Table 7.1: Wavelengths (Å) of the hyperfine transitions for the odd isotopes of Ba II

Fa Fb
135Ba 137Ba Line strength

1 0 4553.999 4553.995 0.15625

1 1 4554.001 4553.997 0.06250

1 2 4554.001 4553.998 0.15625

2 1 4554.046 4554.049 0.43750

2 2 4554.059 4554.051 0.15625

2 3 4554.050 4554.052 0.03125

7.4.2 Model atmosphere

We present the results computed for some of the standard realistic 1-D model atmo-

spheres, like FALA, FALF, FALC (Fontenla et al., 1993) and FALX (Avrett, 1995).

Among these four models FALF is the hottest and FALX the coolest. Their tempera-

ture structures are shown in the top panel of Figure 7.3. However, as will be discussed

below, we find that a model atmosphere that is cooler than FALX is needed to fit the

observed profiles. The new model, denoted FALX, is obtained by reducing the temper-

ature of the FALX model by about 300 K in the height range 500 – 1200 km above the

photosphere.

We have verified that such a modification of the FALX model does not significantly

affect the intensity spectra. In contrast, the Q/I spectra turn out to be very sensitive

to such temperature changes. Like in Chapter 5, we test the FALX atmosphere by

computing the limb darkening function for a range of wavelengths and µ values and
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FALF

FALA

FALC

FALX

FALX

Temperature structure

Figure 7.3: Top panel: The temperature structure of some of the standard model at-

mospheres. FALX represents the model for which the temperature is reduced by about

300 K over a 700 km range around the height of formation of the Ba II D2 line. Bottom

panel: Comparison between the observed center-to-limb variation (CLV) of the contin-

uum intensity and the predictions from different model atmospheres including FALX
for a wide range of wavelengths from the violet to the IR region of the spectrum. For all

the µ values the dashed and the dash-triple dotted lines are practically indistinguishable

as the models FALX and FALX produce nearly identical fits.

compare it with the observed data from Neckel & Labs (1994). This is shown in the

bottom panel of Figure 7.3. One can see that FALX and the standard FALX fit the

observed center-to-limb variation equally well. Therefore small modifications of the

temperature structure to achieve a good fit to the observed Q/I profile can be made

without affecting the model constraints imposed by the intensity spectrum.

7.5 Results

In the following we discuss the modeling details and the need for a model atmosphere

that is cooler than FALX. This helps us to evaluate the temperature sensitivity of the

Ba II D2 line and its usefulness for magnetic-field diagnostics. In addition we demon-

strate the profound role that PRD plays for the formation of the polarized line profile.
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7.5.1 Modeling the Ba II D2 line profile

Modeling details

From the three Ba II atom models described in Section 7.4.1 we obtain three sets of

physical quantities (two for the odd isotopes and one for the even isotope) from the RH

code. These quantities include line opacity, line emissivity, continuum absorption coef-

ficient, continuum emissivity, continuum scattering coefficient, and the mean intensity.

The mathematical expressions used to compute these various quantities for the even

isotopes are given in Uitenbroek (2001). For the odd isotopes, the profile functions in

these expressions are replaced by φo(λ, z) defined by Equation (7.3).

The three sets of quantities are then combined in the ratio of their respective isotope

abundances and subsequently used as inputs to the polarization code.

Temperature sensitivity

The polarization profiles thus computed for the various model atmospheres are shown

in Figure 7.4, displayed separately for the even, odd, and combined even-odd cases in

three different panels. The Stokes Q/I profiles in Figure 7.4 are computed by setting

the total abundance of Ba in the Sun equal to the abundance of even isotopes in the first

panel; the abundance of odd isotopes in the second panel; and a fractional abundance

of even (82%) and odd (18%) isotopes in the third panel. The profiles in the first panel

can be compared to the results presented in Figure 6 of Faurobert et al. (2009). As

seen from the first panel, the amplitude of the central peak for the even isotopes is very

sensitive to the temperature structure of the model atmosphere in contradiction with the

conclusions of Faurobert et al. (2009). Also in their paper, the amplitude of the central

peak obtained from the FALC model is larger than the one obtained from FALX, which

is opposite to our findings (although it could be that the version of the FALC model they

used is not identical to the one that we have used). However, the profile computed with

the FALX model in first panel of Figure 7.4 for the even isotopes is in good agreement

with the one given in their paper.

The profiles in the second panel of Figure 7.4, which represent the odd isotopes,

also exhibit a similar large sensitivity to the choice of model atmosphere. Therefore

the combined even-odd isotopes profiles in the third panel are also very sensitive to the

temperature structure.

For the sake of clarity, let us point out that the combined Q/I profiles in the bot-

tom panel of Figure 7.4 differ profoundly from what one would obtain from a linear

superposition of the corresponding profiles for the even and odd isotopes individually

in the two other panels, in proportion to their isotope ratios. The reason is that the com-

bination is highly non-linear, since the lines are formed in an optically thick medium
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(namely the radiative transfer effects). While the opacities and redistribution matrices

are combined in a linear way as described by Equations (7.2) and (7.6), the even and

odd isotopes blend with each other in the radiative transfer process, which makes the

combination as it appears in the emergent spectrum highly non-linear.

Figure 7.4: Comparison between the observed Q/I profile and the theoretical profiles

for some of the standard model atmospheres, separately displayed for the even, odd,

and combined even-odd cases. The theoretical profiles represent the non-magnetic case

and have been smeared with a Gaussian having a full width at half maximum (FWHM)

of 70 mÅ to account for instrumental and macro-turbulent broadening.

The drastic depolarization of Q/I in the line core has its origin in the polarizability
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factor W2 of the odd isotopes. It is well known that the trough like suppression of

W2 in the line core for Ba II is formed due to hyperfine structure for the odd isotopes

(see Stenflo, 1997). In our radiative transfer calculations we have a superposition (in

the proportion of the isotope ratios), of the trough-like scattering opacity of the odd

isotopes, with the peak-like scattering opacity of the even isotopes. The shape of the

Q/I profile depends on the details of radiative transfer and PRD (see Equations (7.2)-

(7.6)) namely on how these two scattering opacities non-linearly blend to produce the

net result for the emergent radiation in the optically thick cases.

Need for the FALX model

As seen from the last panel of Figure 7.4, the central peak is not well reproduced by

any of the standard model atmospheres. All the models produce a dip at line center.

Such a central dip is commonly due to the effects of PRD, caused by the properties of

the type-II frequency redistribution. In the case of Ba II D2, the contribution to this

central dip comes mainly from the even isotopes, as shown in Figure 7.5. The three

rows in this figure represent the even, odd and combined even-odd cases, respectively,

for the FALX model atmosphere. The first column shows the profiles computed with

only type-II redistribution, the second column those computed with CRD only. The

CRD profiles are obtained by setting the branching ratios A = 0 and B(K) = (1 − ǫ).

None of the CRD profiles shows a central dip.

Holzreuter et al. (2005) have explored in detail, the occurrence and nature of this

central dip. They show that its magnitude is strongly dependent on the choice of at-

mospheric parameters. This behavior is also evident from Figure 7.4. The cooler the

atmosphere, the smaller is the central dip. The dip is often smoothed out by instrumen-

tal and macro-turbulent broadening. However, the profiles in Figure 7.4 have already

been smeared with a Gaussian function having a full width at half maximum (FWHM)

of 70 mÅ. The dip could be suppressed by additional smearing, but such large smearing

would also suppress the observed side peaks of the odd isotopes and would make the

intensity profile inconsistent with the observed one. The value 70 mÅ has been chosen

to optimize the fit, but it is also consistent with what we expect based on the observing

parameters and turbulence in the chromosphere.

The failure of all the tried standard model atmospheres therefore leads us to in-

troduce a new model with a modified temperature structure, which is cooler than the

standard FALX model. The details of the new cooler FALX model has been given in

Section 7.4.2. This new model atmosphere succeeds in giving a good fit to both the

intensity and the polarization profiles, as shown in Figure 7.6.

To simulate the effects of spectrograph stray light on the intensity and polarization

profiles we have applied a spectrally flat unpolarized background of 4% of the contin-
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Figure 7.5: Theoretical Q/I profiles computed for the non-magnetic FALX model for

the even (first row), odd (second row), and combined even-odd (third row) isotopes,

with only type-II frequency redistribution (first column) and only complete frequency

redistribution CRD (second column). A prominent central dip is present for the type-II

redistribution profiles although they have been smeared with a Gaussian having FWHM

= 70 mÅ.

uum intensity level to the theoretical (I, Q/I) profiles. For a good Q/I line center fit,

we find that it is necessary to include Hanle depolarization from a non-zero magnetic

field. Our theoretical profiles are based on a micro-turbulent magnetic field of strength

Bturb with an isotropic angular distribution. Our best fit to the Q/I profile corresponds

to a field strength of Bturb = 2 G.
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Figure 7.6: Fit to the observed profile using the FALX model with and without a micro-

turbulent magnetic field Bturb. The theoretical profiles have been smeared using a Gaus-

sian with FWHM = 70 mÅ.

7.5.2 The importance of PRD

The importance of PRD in modeling the Ba II D2 line has already been demonstrated

in Faurobert et al. (2009), although by only considering the even isotopes. Figure 7.5

demonstrates the importance of PRD for both the odd and the even isotopes. As seen

from the second column of this figure, the Q/I profiles for the odd isotopes when com-

puted exclusively in CRD do not produce any side peaks, while the profiles computed

with type-II redistribution exhibits such peaks. Also, by comparing the Q/I profiles for

the even isotopes in the first row, we see that CRD fails to generate the needed line wing

polarization. A comparison between the observed profiles and the theoretical profiles

based on CRD alone (dotted line) and on full PRD (dashed line) for the FALX model is

shown in Figure 7.7. While the intensity profile can be fitted well using either PRD or

CRD, the polarization profile cannot be fitted at all with CRD alone. PRD is therefore

essential to model the Q/I profiles of the Ba II D2 line.
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Figure 7.7: Comparison between the observed Stokes profiles and the profiles computed

with CRD (dotted line) and PRD (dashed line) for the FALX model. The theoretical

profiles have been smeared with a Gaussian having FWHM = 70 mÅ. The strength of

the micro-turbulent magnetic field Bturb has been chosen to be 2 G for the PRD and

5 G for the CRD profiles. The dashed line in this figure is same as the dashed line in

Figure 7.6.

7.5.3 Modeling the CLV observations

The left panel of Figure 7.8 shows the CLV of the observed Q/I profiles. The right

panel of this figure shows the CLV of the theoretical Q/I profiles computed using the

FALX model atmosphere. As seen from the right panel, the newly constructed model

atmosphere, though successfully fits the observed profiles for µ = 0.1, fails to fit the

observations for µ > 0.1. In fact for µ > 0.1, we again obtain a central dip instead of a

peak in the Q/I profiles. The central dip becomes deeper as µ → 1. This behavior was

noticed also for the case of Na I D2 by Holzreuter et al. (2005). Thus the modification

in the temperature structure of the FALX model atmosphere, presented in this chapter,

helps only for µ = 0.1. For other µ positions, the temperature structure has to be further

modified. Thus we are unable to find a single 1D model atmosphere that fits the CLV
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observations of the Ba II D2 line.1

Observed CLV Theoretical CLV

μ=0.7
μ=0.3

μ=0.5 μ=0.1 μ=0.5

μ=0.7 μ=0.3

μ=0.1

Figure 7.8: Comparison between the observed center to limb variation (CLV) of the

Q/I profiles and the theoretically computed CLV. The theoretical profiles are computed

using the FALX model atmosphere.

7.6 Conclusions

In the present chapter we have for the first time tried to model the polarization profiles

of the Ba II D2 line by taking full account of PRD, radiative transfer, and HFS effects.

We use the theory of F -state interference developed in Chapters 4 and 6 in combination

with different atom models representing different isotopes of Ba II and various choices

of model atmospheres. Applications of the well known standard model atmospheres

FALF, FALC, FALA, and FALX fail to reproduce the central peak, and instead produce

a central dip mainly due to PRD effects. We have shown that in the case of Ba II D2 the

central dip is reduced by lowering the temperature of the atmospheric model. We can

therefore achieve a good fit to the observed polarization profile by slightly reducing the

temperature of the FALX model.

However the new model though successfully fits the observations for µ = 0.1, it

fails at other limb distances. Hence within the sample of the model atmospheres tested

by us, no single one dimensional, single component model atmosphere succeeds in

reproducing the observed Q/I profiles at all limb distances. This possibly indicates

1In fact the complexity of the problem is such that no single 1D model atmosphere fits the observations

of different lines, apart from observations of the same line at different µ positions. For example, when

modeling the Cr I triplet in Chapter 5, we had to modify the temperature structure of the FALF model

atmosphere in the deeper layers to obtain a fit to the (I,Q/I) observations at µ = 0.15.
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that multi-dimensional transfer effects are required to model the CLV observations of

this line.

In modeling the Ba II D2 line we account for the depolarizing effects of elastic

collisions with hydrogen atoms but neglect the alignment transfer between the 2P3/2

level and the metastable 2D5/2 level. It has been shown by Derouich (2008) that this

alignment transfer affects the line center polarization and is needed for magnetic field

diagnostics. The purpose of the present chapter is however not to determine magnetic

fields but to clarify the physics of line formation.

We demonstrate that PRD is essential to reproduce the triple peak structure and the

line wing polarization of the Ba II D2 line, but find that the line center polarization

is very sensitive to the temperature structure of the atmosphere, which contradicts the

conclusions of Faurobert et al. (2009), who find that the barium line is temperature

insensitive and therefore suitable for Hanle diagnostics. This contradiction illustrates

that a full PRD treatment as done in the present chapter, including the contributions

from both the even and odd isotopes, is necessary to bring out the correct temperature

dependence of the line. The large temperature sensitivity of the Ba II D2 line makes it

rather unsuited for magnetic-field diagnostics, since there is no known straightforward

way to separate the temperature and magnetic-field effects for this line.
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review

8
Quantum interference effects in the Sc II

4247 Å line of the Second Solar

Spectrum

An Overview

The Sc II 4247 Å line formed in the chromosphere is one of the lines well known,

like the Na I D2 and Ba II D2, for its prominent triple peak structure in Q/I and the

underlying quantum interference effects governing it. In this chapter, we try to study the

nature of this triple peak structure using the theory of F -state interference including the

effects of partial frequency redistribution (PRD) and radiative transfer (RT), developed

in Chapter 6 and 7. We compare our results with the observations taken in a quiet

region near the solar limb. In spite of accounting for PRD and RT effects it has not

been possible to reproduce the observed triple peak structure in Q/I . While the two

wing PRD peaks (on either side of central peak) and the near wing continuum can be

reproduced, the central peak is completely suppressed by the enhanced depolarization

resulting from the hyperfine structure splitting. Also, the theoretical intensity profiles

are much deeper than the observed ones. By conducting several tests we show that both

the rest intensity and the Q/I core peak are not too sensitive to the variations in the

model atmosphere. This leaves us with little hope even if we possibly go beyond the 1D

standard model atmospheres. Hence this system has presented us with an enigma and
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we suspect that there could be some fundamental aspect missing in our understanding

of the Sc atomic system.

8.1 Introduction

With the advent of highly sensitive spectropolarimeters like the Zurich Imaging Po-

larimeter (ZIMPOL) we now have access to the linearly polarized spectrum of the Sun

that is due to coherent scattering processes in the Sun’s atmosphere (and which has

nothing to do with the well-known transverse Zeeman effect), which is the “Second

Solar Spectrum” (Stenflo & Keller, 1996, 1997). It is richly structured with signatures

of different kinds of scattering processes taking place in atomic systems of varying

complexity. Of particular interest are the many often enigmatic signatures of quantum

interference effects between fine structure states, hyperfine structure states, and mag-

netic substates (Hanle effect).

Atoms with non-zero electron spin S undergo fine structure splitting and exhibit

J-state interference whereas the atoms with non-zero nuclear spin Is undergo hyper-

fine structure splitting (HFS) and show F -state interference. The Sc II 4247 Å line is

governed by F -state interference.

Here we extend our previous work on the Ba II D2 line (Chapter 7, see also Smitha

et al., 2013b), to study the Sc II line at 4247 Å. This line arises due to the transition

J = 2 → J = 2. Due to coupling with the nuclear spin (Is = 7/2) both the upper and

the lower J levels are split into five F -states each with 13 radiative transitions between

them.. The level diagram of this system is shown in Figure 8.1. We use the theory

of F -state interference presented in Chapters 6 and 7, which takes account of PRD

effects in the absence of magnetic fields. The results in this chapter do not include the

contributions from magnetic fields. The theory of F -state interference in the presence

of magnetic fields including the effects of PRD has been recently developed in Sowmya

et al. (2014b).

The 4247 Å line of Sc II is a chromospheric line with an approximate height of

formation between 900-1100 km above the photosphere. 45Sc is the only stable isotope

of scandium. It shows prominent triple peak structure in its Q/I spectra (see Gandorfer,

2002; Stenflo, 2003). Modeling of this triple peak structure using the last scattering

approximation was attempted by Belluzzi (2009). The effects of PRD and radiative

transfer were neglected in that work.

In the present chapter (see also Smitha et al., 2014b), by taking account of both

PRD and radiative transfer effects, we study the sensitivity of the (I, Q/I) profiles to

different atomic and atmospheric parameters. From our efforts we find it difficult to

reproduce the triple peak structure in Q/I and also the rest intensity. The central peak

in Q/I is suppressed due to depolarization from HFS. However the PRD peaks and
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the near wing continuum in the theoretical profiles match closely with the observed

profiles. Our tests suggest that the observed Stokes profiles cannot be reproduced by

modifications in the existing 1D standard model atmospheres. Hence we suspect the

role of other physical effects in shaping the observed profiles, which may not have been

accounted for in the present treatment. The lower level Hanle effect could qualify as

being one such effect which can increase the polarization of the central peak, but its

contribution is significant only for fields ≤ 1G (Belluzzi, 2009).

The details of the various tests conducted by us are discussed in the sections below.

F=11/2

F=9/2

F=7/2

F=5/2

F=3/2

F=11/2

F=9/2

F=7/2

F=5/2

F=3/2

J=2, Is=7/2

J=2, Is=7/2

Figure 8.1: Level diagram showing the hyperfine structure splitting of the 3d4s and

3d4p atomic levels of the Sc II atom.

8.2 Computing the theoretical profiles

The details of computing the Stokes profiles with F -state interference including the ef-

fects of PRD and radiative transfer using realistic 1D model atmospheres are presented

in Smitha et al. (2013b). We use the same here too and hence do not repeat them. How-

ever certain physical quantities need to be redefined to represent the Sc II 4247 Å line

system, and they are presented below.

The Voigt profile function: For the case of Sc II 4247 Å line, the Voigt profile function

defined in Equation (7.3) is to be replaced by

φ(λ, z) =

[
1
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φ(λ3 3, z)+

3

50
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3
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]
, (8.1)
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where φ(λFa Fb
, z) is the Voigt profile function for the Fa → Fb transition with Fa

and Fb being the initial and excited F -states respectively. For notational brevity, the

subscripts Fa and Fb in the φ terms are multiplied by 2 in the above equation.

The depolarizing elastic collision rate D(2): The branching ratios which describe the

contribution from type-II and collisional redistribution (type-III) are defined in Equa-

tion (7.7). The depolarizing elastic collision rate D(2) which enter through the branching

ratio B(2) can be computed using Equation (7.102) of Landi Degl’Innocenti & Landolfi

(2004)

D(K)(J) = C
(0)
E (J)− C

(K)
E (J), (8.2)

where C
(K)
E (J) is given by

C
(K)
E (J) = (−1)K

{
J J K

J J K̃

}

{
J J 0

J J K̃

}C
(0)
E (J), (8.3)

with C
(0)
E (J) = ΓE/(2J + 1).

If the interaction between the atom and the colliding particle is assumed to be of

dipolar type then K̃ = 1. In this case D(2)(J) = 0.1 ΓE. If the interaction is assumed

to be dipole-dipole in nature, then K̃ = 2. In this case D(2)(J) = 0.243 ΓE. We

have tested that both these values of D(2) give nearly identical emergent Q/I profiles.

This is because the Sc II 4247 Å line is formed at a height of 900-1100 km above the

photosphere. This can be seen from Figure 8.2 where the contribution functions are

plotted as a function of height for different model atmospheres. At these heights, the

branching ratio B(2) is nearly zero as seen from Figure 8.3. We choose D(2)(J) =

0.243 ΓE for further computations.

8.3 Observations

The observations of the Sc II 4247 Å line analyzed in this chapter were recorded on

September 15, 2012 at IRSOL, Switzerland using the ZIMPOL-III imaging polarimeter

(Ramelli et al., 2010). The photoelastic modulator (PEM) followed by a linear polarizer

(beam splitter) was used as the polarization analyzer.

Though the telescope is almost free from instrumental polarization and cross talk

effects around the equinox, to minimize residual instrumental signatures, a glass com-

pensation plate was inserted in the optical path between the calibration optics and the

analyzer. This also reduces the residual linear polarization offset. The optics was ad-

justed such that the positive Q represents the linear polarization parallel to the spec-
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Figure 8.2: Contribution functions CI and CQ computed from different model atmo-

spheres for µ = 0.1.

Figure 8.3: The branching ratios A and B(K), with K = 0 and 2, as a function of

height computed using the FALX and FALP model atmospheres.

trograph slit. An image derotator (Dove prism) placed between the analyzer and the

slit-jaw allowed to rotate the solar image, and compensate for the solar rotation. The

analyzer and the calibration optics were also rotated correspondingly. The observations

were performed at a quiet region with the spectrograph slit placed parallel to the solar

East limb. The spectrograph grating angle and a prefilter were selected to work with the

13th spectral order. On the CCD we got a resolution of 1.44′′ per pixel along the spatial

direction and 5.25 mÅ per pixel along the spectral direction. Three measurements were

obtained by placing the slit at 5′′, 15′′, and 25′′ from the solar limb. The observations

at each µ-position consisted of a sum of 1000 frames obtained with an exposure of 1

sec, making the total exposure time as 16 minutes. The image motion perpendicular to

the limb was compensated with a glass tilt-plate. The tilt of the plate was determined

automatically with a limb recognition software using the information in the slit jaw

image. The Stokes (I, Q/I) images shown in Figure 8.4 were obtained after the data
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Figure 8.4: CCD image showing (I, Q/I) for the Sc II 4247 Å line recorded on Septem-

ber 15, 2012 using the ZIMPOL spectropolarimeter at IRSOL, Switzerland.

reduction. We also did a flat-field recording by moving the telescope around the disk

center while recording 20 frames. The flat-field observations were used to correct the

intensity images.

The observed (I, Q/I) profiles used in this chapter were obtained after performing

a spatial averaging from 60′′ to 140′′ along the slit.

8.3.1 Determining the absolute zero level of polarization

The absolute zero level of polarization is determined using the blend lines as described

in Stenflo (2005, see also Stenflo et al. 1998). According to this method, the relative

line depths of the blend lines in Stokes I and Q/I are related with the following one-

parameter model as (
pc − p

pc

)
=

(
Ic − I

Ic

)α

, (8.4)

where Ic, pc are the intensity and polarization of the continuum, and I, p are the re-

spective quantities for the blend lines. α is a free model parameter that determines

the shape of the depolarizing lines. We choose α = 0.6 for further analysis. Fig-

ure 8.5 shows the comparison between the observed profile (solid line) and the profile

computed using Equation (8.4, second panel: dotted line). This dotted line represents

pc[1− (1− I
Ic
)0.6]− p0. Here p0 is a free model parameter that represents the apparent

level of the true zero point of the polarization scale. The blend line depth is sensitive to

the value of pc. To get the observed line depths we need pc = 0.15% (pc,obs). Also to

match the solid and the dotted profiles a shift of p0 = 0.07% has to be applied. As seen

from this figure, we obtain a good match between the solid and the dotted profiles for

this set of parameters.
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Figure 8.5: Fit to the blend lines around the Sc II 4247 Å line profile using Equa-

tion (8.4). The solid lines represent the observations, and dotted line in the second

panel represents pc[1 − (1 − I
Ic
)0.6] − p0. To obtain a fit we choose pc = 0.15% and

p0 = 0.07%. The dashed lines show the observed profiles corrected for 2% stray light.

The dashed and solid lines nearly overlap.

8.3.2 Stray light correction

Next, we applied a stray light correction of 2% of the continuum to both I and Q/I . For

correcting the Q/I profile we have used the value of pc determined above. The details

of the steps followed are given in Supriya et al. (2014). The comparison between the

observed profiles with stray light correction (dashed line) and without (solid line) is

shown in Figure 8.5. The stray light corrected observed profiles nearly overlap with the

profiles without this correction.

8.4 Comparing the theoretical and the observed Stokes

profiles

We compute the theoretical Stokes profiles using a procedure similar to the one de-

scribed in Holzreuter et al. (2005, see also Anusha et al. 2011b; Smitha et al. 2012a,

2013b, Chapters 5 and 7). The Sc II atom model is constructed with eight J-levels

which are coupled by six line transitions and ten continuum transitions.

To represent the solar atmosphere, we use the realistic 1D model atmospheres of

Fontenla et al. (1993) and Avrett (1995). While computing the Stokes profiles, we find
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that the theoretical continuum polarization (pc,th) from the standard model atmospheres

like the FALA, FALC, FALF, and FALX is greater than the value determined using

the blend lines (as in Section 8.3.1). This discrepancy between pc,th and pc,obs has

been studied in detail by Stenflo (2005). In that paper, the author points out that for

λ > 4000 Å, the pc,th > pc,obs (see Figure 6 of Stenflo, 2005). We also note that

a similar problem with pc,th and pc,obs was encountered while modeling the Cr I triplet

around 5206 Å in Chapter 5 (Smitha et al., 2012a), and the model atmosphere FALF had

to be modified in the deeper layers of the atmosphere, where the continuum is formed,

to fit the pc,obs. Here too we face a similar problem. Hotter the model atmosphere,

smaller is the value of pc,th. The FALX (cool) model gives pc,th = 0.22% and the FALF

(hot) model gives pc,th = 0.19%. The FALP model which is hotter than the FALF

gives pc,th = 0.16%. The temperature structure of this model in comparison with the

other FAL models is shown in Figure 8.6. In the next section, we compute the Stokes

(I, Q/I) profiles from all these five model atmospheres and compare them with the

observed profiles.

Figure 8.6: Temperature structures of some of the standard FAL model atmospheres.

Table 8.1: HFS constants in MHz
Level Experiment Theory

A B A B

Lower 128.2(8) -39(11) 146.8 -25.5

Upper 215.7(8) 18(7) 202.5 -10.8

8.4.1 The (I, Q/I) profiles from different model atmospheres

The theoretical (I, Q/I) profiles computed using the standard FAL model atmospheres

are shown in Figure 8.7. We have used the experimentally determined HFS constants

given in Table 8.4 to calculate the energies of the F -states. The profiles in this figure are

smeared using a Gaussian with FWHM=80 mÅ. This smearing contains contributions
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from both instrument and macroturbulent velocity fields. Instrumental broadening is

about 40 mÅ. The rest corresponds to a macroturbulent velocity of 2.9 km/s.

Figure 8.7: Theoretical (I, Q/I) profiles from the five standard model atmospheres.

The profiles are smeared using a Gaussian with FWHM=80 mÅ.

The observed Q/I profiles show prominent triple peak structure with the central

peak mostly governed by the F -state interference effects, and the peaks on either side

formed due to PRD. The theoretical profiles in Figure 8.7 do not show the triple peak

structure for any of the five model atmospheres. In addition, none of them provide a

match to the observed rest intensity. It is clear from this figure that the rest intensity

and the line core polarization are not very sensitive to the variations in the model at-

mospheres. This indicates that it is not possible to improve the fit by modifying any of

these standard 1D model atmospheres. Hence the solution to this problem might not be

from solar physics but from atomic physics.
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In the sections below, we conduct a few tests by varying other parameters. We use

the FALP model as it gives the closest match to the PRD wing peaks, and the continuum

compared to other models. Note that in all the figures, the horizontal thin solid line in

Q/I represents the value of pc,obs.

8.4.2 Studying the sensitivity of the (I, Q/I) profiles

Effects of F -state interference

It is well known that the decoherence caused by the hyperfine structure splitting of the

J states leads to depolarization in the core of the Q/I line profile. In the case of Sc II

4247 Å line, the splitting between them is quite large and hence the decoherence. This

results in an enhanced depolarization at the line core with a fully suppressed central

peak. When the nuclear spin Is = 0, we recover the triple peak structure in Q/I

as demanded by the principle of spectroscopic stability (Stenflo, 1994). Figure 8.8

shows the comparison between the profiles with and without HFS. Note that in all other

remaining figures, we show only the Q/I profiles. The intensity profiles do not show

much variation to the tests conducted below.

To better understand the large depolarization, we try to compare the F -state splitting

with the radiative widths of the upper levels. We recall that, in our treatment, the lower

levels are assumed to be infinitely sharp and hence do not interfere. The interfering

upper F -states, the splitting between them and the ratio (Ω) between the splitting and

the radiative width are given in Table 8.2, where the Einstein A co-efficient is taken

as 1.29 × 108/s. We know that when Ω is close to unity, the splitting sensitivity is

Table 8.2: Comparison between the F -state splitting and their radiative widths

Fu1 Fu2 ∆E (Hz) s = (∆λ)F (mÅ) Ω
3/2 5/2 5.3121× 108 2.605 25.874

3/2 7/2 1.27941× 109 6.274 62.296

3/2 9/2 2.24910× 109 11.029 109.542

3/2 11/2 3.44605× 109 16.89 167.844

5/2 7/2 7.48200× 108 3.669 36.442

5/2 9/2 1.71788× 109 8.424 83.672

5/2 11/2 2.91484× 109 14.293 141.972

7/2 9/2 9.69685× 108 4.755 47.230

7/2 11/2 2.16664× 109 10.624 105.518

9/2 11/2 1.19695× 109 5.869 58.297

maximum. But in case of the Sc II 4247 Å line system, we see from Table 8.2 that Ω

is much greater than one. This partly explains the large depolarization in Q/I at the

line center. When the HFS constants are rescaled by a factor of 50 or 100, such that

Ω approaches unity, the central peak rises up. This again is a proof of the principle of
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Figure 8.8: The (I, Q/I) profiles computed for the cases with and without hyperfine

structure splitting.

spectroscopic stability being satisfied. These profiles are shown in Figure 8.9. Rescaling

the HFS constants reduces the splitting between F -states and hence the decoherence.

Also, as seen from Equation (8.1) the Fb = 11/2 → Fa = 11/2 is the strongest

transition and it has maximum coupling with the Fb = 9/2 → Fa = 11/2 transition.

In other words, the shape of the emergent Q/I profile is controlled mainly by these

transitions and the interference between their upper levels. When the HFS wavelengths

of these two transitions are set equal to each other, we recover the central peak in Q/I

as shown in Figure 8.10. Such a modification, once again, reduces the decoherence and

hence the depolarization.

One can notice from Figure 8.10 that the width of theoretical Q/I profile and the

amplitude of the PRD peaks are larger than in the observed profile. Both of these are

155



8.4. Comparing the theoretical and the observed Stokes profiles

Figure 8.9: The Q/I profiles computed by reducing the HFS constants of the upper

level by factors of 50 and 100.

sensitive to the solar abundance of Sc. Zhang et al. (2008) discuss the uncertainty in

the abundance value of Sc in the Sun. Their study is based on modeling the observed

intensity profiles of different Sc lines. They find that different abundances are needed

to fit different lines and conclude that the abundance value is 3.07 ± 0.04. The long

dashed line in Figure 8.10 is the profile computed with an abundance of 2.90. With this

reduced abundance, the fit to the PRD peaks and the near wing continuum in the Q/I

profile improves.

Collisions

In addition to the HFS, collisions can significantly modify the line core polarization of

the observed profiles. The contribution from collisional redistribution depends on the

branching ratio B. In case of the Sc II 4247 Å line, this contribution is insignificant.

Figure 8.11 shows the individual contributions from type-II frequency redistribution

and complete frequency redistribution (CRD), with their corresponding branching ratios

being multiplied. We note that in our computations the type-III redistribution has been

replaced with CRD like in Chapters 5 and 7 (Smitha et al., 2012a, 2013b) to reduce the

computing time. This replacement does not affect the Stokes profiles.

The variation of the branching ratios A and B(K) as a function of height in the at-

mosphere for the FALP model is shown in Figure 8.3. B(K) takes a value close to zero

at higher layers in the atmosphere. Since the Sc II 4247 Å line is formed in the upper

chromosphere, the contribution to the line center is primarily from type-II redistribu-

tion. The Q/I profile B(K)× CRD goes nearly to zero at the line center (dotted line
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Figure 8.10: The Q/I profiles computed by modifying one of the HFS wavelengths and

by modifying the abundance of Sc.

in Figure 8.11). Thus we can exclude the possibility that an approximate treatment of

collisions might be contributing to the difficulties in reproducing the Q/I central peak.

Figure 8.11 also shows the Q/I profiles computed with type-II redistribution and

CRD alone (without A and B(K) multiplied). The two side peaks on either side of the

central peak are formed due to PRD and can be reproduced only by type-II redistribu-

tion. CRD alone cannot reproduce them. Thus a proper account of PRD is essential to

model this line.

Variation in µ

The observed profiles studied till now were recorded at a limb distance µ = 0.1. When

the line profiles were observed at nearby µ positions, they showed a large variation

in the polarization of the central peak. These profiles are shown in Figure 8.12. At

µ = 0.145, 0.175, the central peak is depolarized and only the two PRD side peaks

stand out. The larger CLV of the central peak as compared with the side peaks is to be

expected from spatially varying magnetic fields, since the Hanle effect can only operate

in the Doppler line core but not in the wings. This behavior is supported by the observed

spatial fluctuations along the spectrograph slit: we find the line core amplitude of Q/I

to vary much more than the side peaks. In contrast, the theoretical profiles computed

for different µ values in the absence of magnetic fields (cf. Figure 8.13) do not show a

variation of this kind.

There is therefore strong reasons to believe that the line core is greatly influenced by

magnetic fields via the Hanle effect. This influence is normally in the form of depolar-

157



8.5. Conclusions

Figure 8.11: The contributions to the Q/I profile from type-II frequency redistribution

and CRD. The profiles before and after multiplying the branching ratios are shown.
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Figure 8.12: The Q/I profiles of Sc II 4247 Å line observed at different limb distances.

ization, reduction of the polarization in the core. However, the Hanle effect may also go

in the opposite direction when the atomic polarization in the lower level is considered,

as found by Belluzzi (2009) for fields of order 1 G. It therefore remains a possibility that

the observed Q/I central peak that we are unable to reproduce with our non-magnetic

modeling could be due to the Hanle effect in the lower atomic level.

8.5 Conclusions

In this chapter, we have tried to study the Sc II 4247 Å line, the polarization profiles

of which are governed by the F -state interference effects. The observations, used by
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Figure 8.13: The theoretical Q/I profiles computed at various limb distances.

us, were taken at IRSOL using ZIMPOL-III polarimeter in September, 2012 in a quiet

region near the solar limb.

Due to its large nuclear spin, the upper and lower J-levels split into five F -states

each giving rise to thirteen radiative transitions between them. The decoherence be-

tween the F -states is quite large and the emergent polarization profiles are sensitive to

the energy difference between the F -states. We have investigated the sensitivity of the

theoretical Stokes profiles, in the absence of magnetic fields, to different atmospheric

and atomic parameters. All the five standard model atmospheres tried by us, fail to

reproduce the triple peak structure in Q/I and also the rest intensity. The PRD peaks

and the near wing continuum in the theoretical profiles match closely with the observed

ones. To model this line, a proper treatment of PRD is essential and CRD alone cannot

reproduce the PRD peaks.

The rest intensity and the Q/I core peak do not show much sensitivity to the varia-

tions in model atmosphere. Hence, we believe that multi dimensional radiative transfer

might not be the solution to the problem at hand. However the central peak in Q/I

is quite sensitive to the Hanle effect. There might be positive contributions from the

magnetic field to the central peak polarization through the lower level Hanle effect for

field strengths of order 1 G.

Thus, in spite of a detailed account of PRD, radiative transfer and HFS effects we

are unable to reproduce the central peak. All these results lead us to believe that there

might be other physical effects, unaccounted for in our treatment, playing a role in

shaping the Q/I profiles. One such effect is the mentioned lower-state Hanle effect, a

possibility that needs to be explored in the future.
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9
Collisionless partial frequency

redistribution in the absence of magnetic

fields

An Overview

In the previous chapters, we have derived the theory for the J-state interference, and

F -state interference phenomena. There are atomic systems which exhibit both these

effects simultaneously and it becomes necessary to account for both J and F -state in-

terferences together. Such is the case with most of the multiplets seen in the Second

Solar Spectrum. After having derived the redistribution matrix with partial frequency

redistribution (PRD) for the cases of J-state interference and F -state interference, we

now combine the two into a single theory which can handle both these effects simultane-

ously. We derive the PRD matrix for the non-magnetic case in the absence of collisions.

This matrix is studied by computing the (I, Q/I) Stokes profiles emerging from a 90◦

single scattering event. For this, we consider a hypothetical atomic system with two fine

structure components separated by 1Å. As expected, the emergent Stokes profiles show

signatures of J-state interference between the two lines, in the form of a cross over in

Q/I about the zero level, and F -state interference in the line cores through a depolar-

ization in Q/I . We also study the effects of an unpolarized background continuum on

the (I, Q/I) profiles.
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9.1 Introduction

An atom with a non-zero electron spin (S) undergoes fine structure splitting due to

(L, S) coupling. The atomic level with an orbital angular momentum L splits into fine

structure states with electronic angular momentum J . These J-states undergo quantum

interference referred to as the J-state interference. The signatures of these interfer-

ences get imprinted in the polarization profiles of the radiation scattered off from such

an atomic system. In order to study the polarization profiles, the redistribution matrix

which relates the Stokes vector of the scattered radiation to that of the incident radia-

tion needs to be derived. The redistribution matrix for polarized scattering at such an

atomic system including the effects of PRD and magnetic fields in the linear Zeeman

regime was developed in Chapters 2, 4 (Smitha et al., 2011b, 2013a, see also Landi

Degl’Innocenti et al. 1997). This was incorporated in the radiative transfer equation

and solved for the case of isothermal atmospheres in Chapter 3 (Smitha et al., 2011a).

Later this theory was tested by modeling the Cr I triplet profile at 5206 Å observed at

a quiet region near the solar limb in Chapter 5 (Smitha et al., 2012a). An extension of

this theory to include the non-linear effects like the Paschen-Back effect in the absence

of collisions is recently done in Sowmya et al. (2014a).

Further, if the atom has a non-zero nuclear spin Is then its coupling with the J-states

will split them into hyperfine structure states with total angular momentum F . The

PRD theory of J-state interference was extended to the case of F -state interference and

used in the radiative transfer equation with isothermal model atmospheres in Chapter 6

(Smitha et al., 2012b). Later this theory was used to model the observed Stokes profiles

of the Ba II D2 line in Chapter 7 (Smitha et al., 2013b). However this treatment was

restricted to the non-magnetic case. The PRD theory of F -state interference in the

presence of magnetic fields is developed in Sowmya et al. (2014b).

Multiplets like the Na I D1 & D2, Ba II D1 & D2, Li I D1 & D2, Cr I triplet at 5206 Å

etc., show signatures of both J and F -state interferences. In order to study the polarized

line formation in such multiplets, it is important to use a combined theory which can

handle both these effects. In this chapter (see also Smitha et al., 2014a), we derive the

necessary redistribution matrix for the combined case by taking account of PRD in the

absence of collisions. Our treatment is restricted to the non-magnetic case. Though the

current theory can easily be extended to include Hanle effect, it will be valid only in the

linear Zeeman regime of magnetic fields. However the atomic systems with hyperfine

structure splitting enter the non-linear Paschen-Back effect regime for fields of the order

of a few tens of gauss. This is because the F -states are separated by only a few mÅ

and even for small magnetic fields, the spectral lines arising from these states start to

show signatures of Paschen-Back effect. Deriving the theory of Paschen-Back effect

for the combined J and F -state interferences case is beyond the scope of this thesis.
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However, a combined theory for J and F -state interferences including the effects of

magnetic fields but using complete frequency redistribution in the absence of collisions

is developed in Casini & Manso Sainz (2005).

In this chapter, starting from the Kramers-Heisenberg formula we derive the redis-

tribution matrix in Section 9.2. This is re-written in terms of the irreducible spherical

tensors in Section 9.2.1. The Stokes profiles formed in a 90◦ single scattering event are

discussed in Section 9.3. Section 9.4 is devoted to concluding remarks.

Lb , S  

La , S  

Jb , Is

Ja , Is

Fb

Fa

}

}

Jb' , Is

Jf , I s

Fb'

Fb''

Fb'''

Ff

Figure 9.1: Level diagram representing an atomic system with fine structure and hyper-

fine structure splitting.

9.2 Redistribution matrix for J and F -state

interferences

To derive the redistribution matrix for the combined case of J and F -state interferences,

we start from the Kramers-Heisenberg formula which gives complex probability ampli-

tude for scattering from a given initial magnetic substate βaµa to a final substate βfµf

via all possible intermediate substates βbµb. This can be written as

wαβ ∼
∑

JbFbµb

〈βfµf |r . eα|βbµb〉 〈βbµb|r . eβ |βaµa〉
ωbf − ω − iγ/2

, (9.1)

where βf = JfIsFf , βa = JaIsFa, βb = JbIsFb. The subscripts a, b, f denote the initial,

excited and final atomic states respectively. Is is the nuclear spin. The summation

over JbFbµb accounts for the coherent superposition of all µb which are substates of Fb

belonging to Jb. The frequency of the scattered radiation in the atomic frame is given by

ω = 2πξ and ~ωbf is the energy difference between the excited (Fb) and final (Ff ) states.

The damping constant of the upper states is given by γ while the initial and the final

states are assumed to be infinitely sharp. µa,b,f represent the magnetic substates of the

Fa,b,f states respectively. These magnetic substates are degenerate since the magnetic

field is zero.

The matrix elements appearing in Equation (9.1) can be expanded using the Wigner-
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Eckart theorem (see Stenflo, 1994, pp. 145 and 199). This gives us

wαβ(JfFfµfJaFaµa) ∼
∑

JbFbµb

(−1)Ja+Jf+q−q′
√

(2Fa + 1)(2Ff + 1)(2Ja + 1)

×
√

(2Jf + 1)(2Jb + 1)(2Fb + 1)(2La + 1)

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}

×
{
Ja Jb 1

Fb Fa Is

}{
Jf Jb 1

Fb Ff Is

}(
Fb Fa 1

−µb µa −q′

)(
Fb Ff 1

−µb µf −q

)

×Φγ(νFbFf
− ξ)εα∗q εβq′. (9.2)

εα∗q , εβq′ are the geometrical factors defined in Equation (2) of Stenflo (1998) with q, q′

given by Equation (2.3).

In Equation (9.2), Φγ(νFbFf
− ξ) is the area-normalized profile function given by

Φγ(νFbFf
− ξ) =

1/(πi)

νFbFf
− ξ − iγ/4π

, (9.3)

with hνFbFf
being the energy difference between Fb and Ff in the absence of magnetic

fields.

To transform the incident Stokes vector to the scattered Stokes vector, we need the

Mueller matrix M defined as (see Equation (7) of Stenflo, 1998)

M = TWT
−1. (9.4)

T and T
−1 are purely mathematical transformation matrices defined in Equation (9) of

Stenflo (1998). W is the coherency matrix with

W =
∑

JaFaµa

∑

JfFfµf

w(JfFfµfJaFaµa)⊗ w
∗(JfFfµfJaFaµa). (9.5)

wαβ(JfFfµfJaFaµa)w
∗
α′β′(JfFfµfJaFaµa) are the bilinear products which form the

elements of the tensor product in the above equation. They are needed for the computa-

tion of the redistribution matrix and can be derived in the atomic frame using the steps

described in Chapter 2 as

wαβ(JfFfµfJaFaµa)w
∗
α′β′(JfFfµfJaFaµa) ∼

∑

JbFbµbJb′Fb′µb′

(−1)q−q′(−1)q
′′−q′′′

×εα∗q εα
′

q′′ ε
β
q′ ε

β′∗
q′′′ cos βFb′Fb

eiβF
b′

FbΦγ
FbFb′Fa

(ξ′)δ(ξ − ξ′ − νFaFf
)

×(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2Fa + 1)(2Ff + 1)

×(2Fb + 1)(2Fb′ + 1)(2La + 1)2

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}
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×
{
La Lb 1

Jb′ Ja S

}{
Ja Jb 1

Fb Fa Is

}{
Jf Jb 1

Fb Ff Is

}{
Ja Jb′ 1

Fb′ Fa Is

}{
Jf Jb′ 1

Fb′ Ff Is

}

×
(
Fb Fa 1

−µb µa −q′

)(
Fb′ Fa 1

−µb′ µa −q′′′

)(
Fb Ff 1

−µb µf −q

)(
Fb′ Ff 1

−µb′ µf −q′′

)
, (9.6)

δ(ξ − ξ′ − νFaFf
) is the energy conservation term (see Equations (9.7) and (9.10) of

Stenflo, 1994) with hνFaFf
being the energy difference between the states Fa and Ff in

the absence of a magnetic field. The angle βFb′Fb
is defined by

tan βFb′Fb
=

EFb′Fb

γ~
. (9.7)

Following Bommier & Stenflo (1999) we define the generalized profile function as

Φγ
FbFb′Ff

(ξ) =
1

2
[Φγ(νFbFf

− ξ) + Φ∗
γ(νFb′Ff

− ξ)]. (9.8)

To transform Equation (9.6) into the laboratory frame, we use the method described in

Section 2.2 of Sampoorna et al. (2007a, see also Section 3.3 of Bommier 1997b; Smitha

et al. 2011b, Chapter 2). This is done with the following replacement

Φγ
FbFb′Fa

(ξ′)δ(ξ − ξ′ − νFaFf
)
[
(hII

Fb,Fb′
)FaFf

+ i(f II
Fb,Fb′

)FaFf

]
, (9.9)

where

(hII
Fb,Fb′

)FaFf
=

1

2
[RII,H

FbFaFf
+RII,H

Fb′FaFf
], (9.10)

(f II
Fb,Fb′

)FaFf
=

1

2
[RII,F

Fb′FaFf
− RII,F

FbFaFf
], (9.11)

and the redistribution functions of type II are given by

RII,H
FbFaFf

(xba, x
′
ba, Θ) =

1

π sinΘ
exp

{
−
[
xba − x′

ba + xaf

2 sin(Θ/2)

]2}

×H

(
a

cos(Θ/2)
,
xba + x′

ba + xaf

2 cos(Θ/2)

)
, (9.12)

and

RII,F
FbFaFf

(xba, x′
ba, Θ) =

1

π sinΘ
exp

{
−
[
xba − x′

ba + xaf

2 sin(Θ/2)

]2}

× 2F

(
a

cos(Θ/2)
,
xba + x′

ba + xaf

2 cos(Θ/2)

)
. (9.13)
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In the above equations H(a, x) and F (a, x) are the Voigt and Faraday-Voigt functions

defined in Equation (2.18). The scattering angle between the incident and scattered

rays is denoted by Θ (see Figure 2.2). The dimensionless quantities appearing in Equa-

tions (9.12) and (9.13) are given by

xba = xFbFa
=

ν0FbFa
− ν

∆νD
; a =

γ

4π∆νD
; xaf = xFaFf

=
νFaFf

∆νD
, (9.14)

where xba, a and ∆νD are the emission frequency, damping parameter, and Doppler

width, respectively.

Substituting Equation (9.6) in Equations (9.4) and (9.5), we obtain the redistribution

matrix for the combined case of J and F -state interferences.

9.2.1 Redistribution matrix in terms of irreducible spherical

tensors

Writing the redistribution matrix in terms of the irreducible tensors T K
Q (i,n) has sev-

eral advantages as already discussed in Frisch (2007, see also Smitha et al. 2011b, and

Chapter 2). For the non-magnetic case, the index i in T K
Q (i,n) takes values 0,1 rep-

resenting the Stokes parameters, while K = 0, 2 with Q = 0. We follow the steps

described in Appendix C of Sampoorna et al. (2007b). Using Equation (3.84) of Sten-

flo (1994) and Equations (C1) and (C2) of Sampoorna et al. (2007b), we can express

the electric field Eµ of the scattered ray in terms of the electric field of the incident ray

(E ′
ρ) as

Eµ ∼
∑

ρJbFbµb

(−1)Ja+Jf+q−q′(2Jb + 1)(2Fb + 1)(2La + 1)

×
√

(2Ja + 1)(2Jf + 1)(2Fa + 1)(2Ff + 1)

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}

×
{
Jf Jb 1

Fb Ff Is

}{
Ja Jb 1

Fb Fa Is

}(
Fb Fa 1

−µb µa −q′

)(
Fb Ff 1

−µb µf −q

)

×Φγ(νFbFf
− ξ) [eµ(n)]

∗

q [eρ(n
′)]q′ E

′
ρ, (9.15)

with indices µ and ρ taking values 1 and 2. [eµ(n)], [eρ(n)] are the polarization unit

vectors defined in Equation (C3) of Sampoorna et al. (2007b). The elements of the

coherency matrix may be written as

ISµν ∼
∑

JaFaµaJfFfµf

EµE
∗
ν . (9.16)
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Substituting for Eµ we obtain

ISµν ∼
∑

ρσ

T S
µν,ρσ(ξ,n; ξ

′,n′)I ′Sρσ, (9.17)

where

T S
µν,ρσ(ξ,n; ξ

′,n′) =
∑

JaFaµaJfFfµfJbFbµbJb′Fb′µb′

(−1)q−q′(−1)q
′′−q′′′ES

qq′′(µ, ν,n)

×ES
q′′′q′(σ, ρ,n

′) cosβFb′Fb
eiβF

b′
Fb Φγ

FbFb′Fa
(ξ′) δ(ξ − ξ′ − νFaFf

)(2Ja + 1)

×(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2(2Fa + 1)(2Ff + 1)(2Fb + 1)

×(2Fb′ + 1)

{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
{
Jf Jb 1

Fb Ff Is

}{
Ja Jb 1

Fb Fa Is

}{
Jf Jb′ 1

Fb′ Ff Is

}{
Ja Jb′ 1

Fb′ Fa Is

}(
Fb Fa 1

−µb µa −q′

)

×
(
Fb Ff 1

−µb µf −q

)(
Fb′ Fa 1

−µb′ µa −q′′′

)(
Fb′ Ff 1

−µb′ µf −q′′

)
. (9.18)

Here ES
qq′′(µ, ν,n) is a reducible spherical tensor (see Equation (C6) of Sampoorna

et al., 2007b). The transformation to the Stokes vector formalism from the coherency

matrix formalism is described in Appendix C of Sampoorna et al. (2007b). The scat-

tered Stokes vector in the laboratory frame is given by

Si =

1∑

j=0

R
II
ij(x,n; x

′,n′)S ′
j, (9.19)

where the normalized type-II redistribution matrix in the laboratory frame in the ab-

sence of magnetic fields is given by

R
II
ij(x,n; x

′,n′) =
3(2Lb + 1)

(2S + 1)(2Is + 1)

∑

KJaFaJfFfJbFbJb′Fb′

(−1)Ff−Fa

×cosβFb′Fb
eiβF

b′
Fb (2Jb′ + 1)(2Fb′ + 1)(2Ja + 1)(2Jf + 1)(2Jb + 1)

×(2Fa + 1)(2Ff + 1)(2Fb + 1)
[
(hII

Fb,Fb′
)FaFf

+ i(f II
Fb,Fb′

)FaFf

]

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
{
Jf Jb 1

Fb Ff Is

}{
Ja Jb 1

Fb Fa Is

}{
Jf Jb 1

Fb′ Ff Is

}{
Ja Jb 1

Fb′ Fa Is

}

×
{
1 1 K

Fb′ Fb Fa

}{
1 1 K

Fb′ Fb Ff

}
T K
0 (i,n)T K

0 (j,n′). (9.20)
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9.3 Stokes profiles from a 90
◦ single scattering event

To study the Stokes profiles of the radiation scattered off from an atom with fine and

hyperfine structure splitting, we consider a hypothetical 90° single scattering event.

The scattered radiation arises due to an L = 0 → 1 → 0 transition with S = 1/2 and

Is = 3/2. The lower L = 0 and upper L = 1 states split into fine structure states with

quantum numbers Ja = Jf = 1/2 and Jb = 1/2, 3/2 respectively. Due to coupling

with the nuclear spin, the lower J state splits into two F -states with F = 1, 2. The

upper J = 1/2 state splits into two (F = 1, 2) states and the upper J = 3/2 state splits

into four (F = 0, 1, 2, 3) states. We assume that the transition Jb = 3/2 → Jf = 1/2 is

centered at 5000 Å (Line-1) and Jb = 1/2 → Jf = 1/2 transition is centered at 5001 Å

(Line-2). The energy differences between the F -states are assumed to be same as those

in the Na I D1, D2 atomic system. An unpolarized spectrally flat radiation ([Iin =

1, 0, 0, 0]T ) is assumed to be incident on the atom in the vertical direction (parallel to

the polar z-axis). In all the figures, the damping constant a = 0.002 and the Doppler

width ∆λD = 33 mÅ.

The single scattered (I, Q/I) profiles for the combined case of J and F -state inter-

ferences are shown in Figure 9.2. The J-state interference acts in the wings in between

the two lines and the F -state interference acts in the cores of the two lines. The atomic

polarizability factor (W2) of Line-1 is 0.5 whereas that of Line-2 is zero. Thus Q/I

is zero at Line-2. The dotted and dashed curves respectively show the profiles with

J-state and F -state interferences which are the limiting cases. As expected, the J-state

interference results in a cross-over in Q/I about the zero level between the two spectral

lines (see Chapter 2, Smitha et al., 2011b). The F -state interference results in a depo-

larization at the core of Line-1 (Chapter 6, Smitha et al., 2012b). The combined profile

coincides with the J-state interference profile in the wings of the two lines. In the core

of Line-1, the combined profile coincides with the F -state interference profile. In Q/I ,

the dashed curve affects only the core of Line-1 and at other frequencies it remains

constant at a level corresponding to the Rayleigh scattering.

The third panel of Figure 9.2 shows a plot of W2 as a function of wavelength. The

W2(λ) is computed using Equation (6.25) which is

W2(λ) =
4(Q/I)

3 + (Q/I)
. (9.21)

The W2(λ) profiles in this panel can be compared with those in the left panel of Figure 3

in Fluri et al. (2003a). They are found to be identical.

In Figure 9.3 we show the Q/I profiles for three different separations between the

fine structure states. The separation is 0.1Å (4999.9 Å - 5000Å) in the first panel, 1Å

(5000Å - 5001Å) in the second panel and 4Å (4997Å - 5001Å) in the third panel re-
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Figure 9.2: The (I, Q/I) and W2(λ) profiles computed for the case of 90◦ single scatter-

ing. The profiles in the two limiting cases, J-state interference and F -state interference

are also shown.

spectively. As the two fine structure components get closer, the J-state interference

effects increases and the F -state interference effects remain unaffected since they act

only in the line core.

Figure 9.4 shows the effects of an unpolarized background continuum on the single

scattered (I, Q/I) profiles. The continuum is added following the procedure described

in Stenflo (1998, see also Chapter 2 and Smitha et al. 2011b). In this figure, I ′c represents

the intensity of the background continuum radiation and I ′ is the total intensity. P ′
Q

is the linear polarization which includes the contribution from unpolarized background

continuum. For all the three cases shown in this figure, the limb darkening function βc =

0.5, the continuum polarization b = 0, the constant c which represents the background

continuum is set to 1 × 10−8 (dashed line), 1 × 10−6 (solid line), and 1× 10−4 (dotted

line). These quantities are used in Equations (2.38) and (2.39) to compute I ′/I ′c and

P ′
Q. The Stokes profiles show a behaviour similar to the ones in Figure 2.7. In the

presence of a continuum, the intensity takes the shape of an absorption line. In Q/I , the

background continuum affects only the line wings and the line core remains unaffected.

As c increases, the continuum dominates over J-state interference in the wings. For
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Figure 9.3: The Q/I profiles with J and F -state interferences computed by varying the

separation between Line-1 and Line-2. The separations are: 0.1 Å, 1 Å and 4 Å in the

first, second, and third panels respectively.

c > 1× 10−4, the J-state interference signatures nearly vanish.

9.4 Conclusions

In this chapter, we have derived a partial frequency redistribution matrix that includes

both J-state and F -state interferences. There are several multiplets in the Second Solar

Spectrum which require a combined theory of J and F state interferences for their

interpretation. The present work is limited to the collisionless regime in the absence

of magnetic fields. We present the redistribution matrix in both atomic and laboratory

frames.

We have studied the nature of this redistribution matrix by computing 90◦ single

scattered Stokes profiles. We do this by considering a hypothetical atomic system with

two fine structure states separated by 1Å. The emergent Stokes profiles show signatures

of J-state interference in the line wings and F -state interference in the line core. In the

hypothetical atomic system considered by us, one of the lines has W2 = 0. This does

not show any Q/I at its line core and hence no F -state interference. We present the
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Figure 9.4: The 90◦ single scattered Stokes profiles with J and F -state interferences in

the presence of an unpolarized background continuum. The limb-darkening parameter

βc = 0.5 is kept constant and strength of the background continuum is varied.

Q/I profiles for three different separations between the fine structure states and show

that the J-state interference effects increases with the decrease in separation. Also, we

study the effects of an unpolarized background continuum of different strengths on the

Stokes I and Q/I profiles. The continuum acts only in the line wings and the line core

remains unaffected. We also find that stronger the background continuum, smaller is

the J-state interference signatures seen between the two lines.
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10
Summary and future work

10.1 Summary

In this thesis we have developed several theoretical tools which can be used in analyzing

the linear polarization profiles resulting from coherent scattering processes in the solar

atmosphere, which constitute the Second Solar Spectrum. In the absence of a magnetic

field, the observed Stokes (I, Q/I) profiles in the Sun not only depend on the prevailing

atmospheric conditions but also on the structure of the scattering atom. The solar atmo-

sphere consists of different elements from hydrogen to thorium (Asplund et al., 2009),

and several of their isotopes and ionized states. Atoms from each species have their

own unique atomic structures. This thesis is devoted to studying the scattering occur-

ring on atoms whose states undergo fine and/or hyperfine structure splitting. These split

states exhibit quantum mechanical interferences, and their signatures are imprinted in

the linear polarization profiles. In this thesis, we investigate the importance of taking

these interferences into account while studying the Second Solar Spectrum.

The thesis is divided into three parts. The first part deals with the atoms which

undergo fine structure splitting and exhibit J-state interference. In the second part this

is extended to the case of F -state interference occurring between the hyperfine structure

states. In the third part we combine both the cases to derive a general theory which can

handle both these effects simultaneously.

The primary theoretical tool needed to carry out the analysis is the redistribution

matrix. It relates the Stokes vector of the incident radiation to that of the scattered radi-
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ation. We derive this matrix using a semi-classical approach starting from the Kramers-

Heisenberg formula. The redistribution matrices for the case of J-state interference,

F -state interference and the combined case of J and F -states interferences are derived

in Chapters 2, 6, and 9 respectively. While the first one includes the effects of magnetic

fields, the latter two are derived in the absence of magnetic fields.

The radiation from the Sun gets multiply scattered before leaving the solar atmo-

sphere, and its effects are to be accounted for while analyzing the spectrum. This is

done by solving the polarized radiative transfer equation for the specific problem at

hand. This forms the second important tool. The redistribution matrices derived in

Chapters 2, 6, and 9 enter the radiative transfer equation through the line source vector.

The transfer equation is then solved using suitable numerical methods and the emergent

Stokes profiles are computed. This is done for the case of J-state interference in Chap-

ters 3, 4 and for the case of F -state interference in Chapter 6. In these chapters, for the

sake of simplicity and to understand the effects of multiple scattering, we consider the

atmosphere to be an isothermal constant property plane parallel slab.

In case of the Sun, the atmosphere is far from being isothermal. The gradients in its

temperature, densities, pressure etc have to be accounted for while modeling the actual

observed line profiles. This is taken up in Chapters 5, 7 and 8 where we consider the

examples of the Cr I triplet, Ba II D2 and the Sc II 4247 Å lines respectively. The Cr I

triplet around 5206 Å is governed by J-state interference, while the latter two by F -

state interference. In these chapters we solve the polarized radiative transfer equation

for a realistic 1D model atmosphere. In case of the Cr I triplet and the Ba II D2, we

get a good match with the observed (I, Q/I) profiles only after slight modifications

in the standard 1D model atmospheres. This shows that the actual solar atmosphere

cannot be represented by 1D model atmospheres, and that multi-dimensional radiative

transfer effects need to be considered. However in this thesis we confine our attention

to 1D model atmospheres. The Sc II line at 4247 Å poses an interesting challenge. Its

prominent triple peak structure in Q/I cannot be reproduced from our theory. While

the two side peaks on either side of the central peak which are formed due to the PRD

effects can be reproduced, the central peak gets completely suppressed due to the effects

of F -state interference. We suspect the role of some other physical effect, not accounted

for in our treatment to be playing a role in increasing the magnitude of polarization in

the core peak. The lower level Hanle effect could be one possibility. However further

studies are required to confirm this speculation.

Thus, in this thesis we have developed some important theoretical tools that will help

us in modeling certain class of spectral line profiles in the Second Solar Spectrum. For-

ward modeling using these tools is the key to understand the role of different physical

effects contributing to the dynamics of the solar atmosphere. A mismatch between the

theoretically computed and the observed profiles indicates either an incomplete quan-
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tum mechanical treatment of the atomic system or an inappropriate representation of

the solar atmosphere, and sometimes both. Simultaneous forward modeling of different

Stokes profiles will not only provide us with better constraints on the selection of the

model atmosphere, but also hints us on some of the fundamental aspects missing in our

understanding of the physics of line scattering, if any!

10.2 Future prospects

The next logical step would be apply the formalism presented in this thesis for the

measurement of solar magnetic fields. Each part of this thesis can be taken up indepen-

dently, or together, and exploited to understand the solar magnetism. Below we present

some of the interesting research problems that can be taken up as a continuation of the

results already established in this thesis.

The J-state interference theory including the effects of magnetic fields has already

been derived by us in Chapter 2 and 4. The theory holds good in the linear Zeeman

regime of magnetic fields where the magnetic substates of different J-states do not

interfere. In case of most of the multiplets observed in the Second Solar Spectrum, this

is valid upto a few kilogauss. Thus we can apply this theory to measure magnetic fields

with strengths ranging from a few G upto a few KG. If we choose a multiplet where the

lines arising from different fine structure states are formed at slightly different heights

in the solar atmosphere, then a simultaneous modeling of all the lines will help us

understand the depth dependence of the magnetic fields, and in turn, the evolution of

the magnetic fields over different atmospheric layers.

The polarized radiative transfer equation solved in the presence of a magnetic field

in Chapter 4 holds good in the weak field regime of field strengths, where the Stokes V

decouples from Stokes (I, Q, U). But when the fields are strong, this is no more valid

and the transfer equation needs to be solved for arbitrary strength magnetic fields. The

tools necessary for handling this problem are yet to be developed for the case of J-state

interference, and is a challenging problem to work on.

In Chapter 2, we saw that even when the magnetic fields are large (∼ KG), the

signatures of J-state interference remain unaffected since it acts only in the wings and

the magnetic fields control the line core polarization. It will be interesting to see if this

holds true even after the radiative transfer effects are taken into account. These results

can then be compared with the Stokes profiles observed close to an active region.

The collisions in case of both the J-state interference and F -state interference are

included in our treatment heuristically. For a better understanding of how collisions

affect the interferences, it is important to develop a detailed theory of collisional redis-

tribution. It will be interesting to study the importance of different kinds of collisions

at various heights in the atmosphere and identifying the spectral lines which need a
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detailed account of collisions and those which can be analyzed with an approximate

treatment like the one presented in this thesis.

Also, in case of the combined theory, the redistribution matrix derived in Chapter 9

can be included in the polarized radiative transfer equation and solved for a simple case

like an isothermal constant property atmospheric slab, and then extended to the case of

realistic model atmospheres. In addition, every sophistication to the individual cases of

J and F -state interferences can also be extended to the case of combined interference.

Most of the satellites observing the Sun and measuring its magnetic field, do so

using the photospheric lines. The magnetic maps developed from these are that of the

photosphere. In the chromosphere and corona, the magnetic field structures are not

completely understood. With the various tools developed in this thesis one can step

towards magnetic mapping of the chromosphere by forward modeling of the chromo-

spheric lines like the Cr I triplet. However before doing so, it is important to pick out the

right lines with magnetic field diagonistic potentials. It will be interesting to conduct a

survey of the chromospheric and coronal lines suitable for such purposes.

The above listed research problems will help us better understand the scattering in

solar atmosphere and also the solar magnetism.
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A
Rayleigh scattering phase matrix

including fine-structure splitting

A QED-theory for a multi-term atom in the presence of magnetic fields of arbitrary

strength is developed by Landi Degl’Innocenti & Landolfi (2004, hereafter LL04, see

their Chapter 7). Their theory covers a wide range of field strengths, including the

Paschen-Back effect regime, but it is restricted to the case of CRD. In their Section

10.16, they derive the Rayleigh (non-magnetic) phase matrix for a two-term atom with-

out lower-level polarization, but including J-state interference. They refer to such a

phase matrix as the “fine-structure scattering phase matrix”. The aim of this appendix

is to show that we can recover the fine-structure scattering phase matrix presented in

Equation (10.132) of LL04, starting from the semi-classical approach of Stenflo (1998).

We start by converting the expressions of Stenflo (1998) into the irreducible spherical

tensors for polarimetry, following the procedure given in Appendix C of Sampoorna

et al. (2007b). T K
Q (i,n) introduced by Landi Degl’Innocenti (1984), where i refers to

the Stokes parameters (i = 0, 1, 2, 3), and K = 0, 1, 2 with −K ≤ Q ≤ +K.

In the non-magnetic case the profile function Φγ(νJbµbJfµf
−ξ), though independent

of the magnetic sub-states µb and µf , still depends on the J-states Jb and Jb′ (see Equa-

tions (2.4) and (2.5)). Therefore, in the scattering amplitude wαβ(JfµfJaµa) given in

Equation (2.2), we can replace Φγ(νJbµbJfµf
− ξ) by the profile function Φγ(νJbJf − ξ)

that is independent of the magnetic sub-states.

Using Equation (3.84) of Stenflo (1994) and Equations (C1) and (C2) of Sampoorna
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et al. (2007b), we can express the electric field Eµ of the scattered ray as

Eµ ∼
∑

ρJbµb

(−1)q−q′
√

(2Ja + 1)(2Jf + 1)(2Jb + 1)(2La + 1)

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}(
Jb Ja 1

−µb µa −q′

)

×
(

Jb Jf 1

−µb µf −q

)
Φγ(νJbJf − ξ) [eµ(n)]

∗

q [eρ(n
′)]q′ E

′
ρ, (A.1)

where E ′
ρ is the electric field of the incident radiation, and indices µ and ρ take the

values 1 and 2. The above equation is written in the basis defined in Equation (C3) of

Sampoorna et al. (2007b). The elements of the coherency matrix may be written as

ISµν ∼
∑

JaµaJfµf

EµE
∗
ν . (A.2)

Inserting Equation (A.1) we obtain

ISµν ∼
∑

ρσ

T S
µν,ρσ(n,n

′, ξ)I ′Sρσ, (A.3)

where

T S
µν,ρσ =

∑

JaµaJfµfJbµbJb′µb′

(−1)q−q′(−1)q
′′−q′′′ [eµ(n)]

∗

q [eν(n)]q′′

× [eρ(n
′)]q′ [eσ(n

′)]
∗

q′′′ (2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)

×(2La + 1)2Φγ(νJbJf − ξ)Φ∗
γ(νJb′Jf − ξ)

{
La Lb 1

Jb Jf S

}

×
{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}(
Jb Ja 1

−µb µa −q′

)

×
(

Jb Jf 1

−µb µf −q

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb′ Jf 1

−µb′ µf −q′′

)
. (A.4)

Using Equation (C6) of Sampoorna et al. (2007b), the above equation can for the case

of frequency coherent scattering be rewritten as

T S
µν,ρσ(n,n

′, ξ) =
∑

JaµaJfµfJbµbJb′µb′

(−1)q−q′(−1)q
′′−q′′′ES

qq′′(µ, ν,n)ES
q′′′q′(σ, ρ,n

′)

×(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2 cosβJb′Jb
eiβJ

b′
Jb Φγ

JbJb′Jf

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}(
Jb Ja 1

−µb µa −q′

)
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×
(

Jb Jf 1

−µb µf −q

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb′ Jf 1

−µb′ µf −q′′

)
. (A.5)

Here βJb′Jb
and Φγ

JbJb′Jf
are given respectively by Equations (2.10) and (2.11) but with

ωL = 0, and ES
qq′′(µ, ν,n) is a reducible spherical tensor (see Equation (C6) of Sam-

poorna et al., 2007b). The transformation to the Stokes vector formalism from the

coherency matrix formalism is described in Appendix C of Sampoorna et al. (2007b).

The scattered Stokes vector is given by

Si =

3∑

j=0

Pij(n,n
′, ξ)S ′

j, (A.6)

where

Pij(n,n
′, ξ) =

1

2

∑

µνρσ

(σi)νµ(σj)ρσT
S
µν,ρσ(n,n

′, ξ). (A.7)

Inserting Equation (A.5) and then using Equations (C15) and (C18) of Sampoorna et al.

(2007b), we obtain

Pij(n,n
′, ξ) =

2

3

∑

KK ′QJaµaJfµfJbµbJb′µb′

(−1)q
′′+q′+Q

√
(2K + 1)(2K ′ + 1)

×(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2 cosβJb′Jb
eiβJ

b′
Jb Φγ

JbJb′Jf

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
(

Jb Ja 1

−µb µa −q′

)(
Jb Jf 1

−µb µf −q

)(
Jb′ Ja 1

−µb′ µa −q′′′

)(
Jb′ Jf 1

−µb′ µf −q′′

)

×
(
1 1 K

q −q′′ −Q

)(
1 1 K ′

q′′′ −q′ Q

)
(−1)QT K

−Q(i,n)T K ′

Q (j,n′). (A.8)

The six 3-j symbols appearing in the above equation can be contracted into two 6-j

symbols by first applying Equation (2.42) and then Equation (2.34) of LL04. After

some algebra we obtain

Pij(n,n
′, ξ) =

2

3

∑

KQJbJb′JaJf

(−1)Jf−Ja(−1)QcosβJb′Jb
eiβJ

b′
Jb Φγ

JbJb′Jf

×(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
{

1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}
T K
Q (i,n)T K

−Q(j,n
′). (A.9)
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As our aim is to recover Equation (10.132) of LL04, there is a need to relate our pro-

file function defined in Equation (2.4) to the one introduced by LL04 in their Equa-

tion (6.59). For notational brevity we denote their profile function as ΦL(νJbJf − ξ).

Comparing our Equation (2.4) with Equation (6.59) of LL04, it is easy to verify that

Φγ(νJbJf − ξ) = ΦL ∗(νJbJf − ξ). Interchanging Jb and Jb′ (necessary to obtain the

LL04 equation), and using the fact that βJbJb′
= −βJb′Jb

, we can rewrite Equation (A.8)

as

Pij(n,n
′, ξ) =

2

3

∑

KQJbJb′JaJf

(−1)Jf−JacosβJb′Jb
e−iβJ

b′
Jb
1

2

[
ΦL(νJbJf − ξ)

+ΦL ∗(νJb′Jf − ξ)
]
(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2

×
{
La Lb 1

Jb Jf S

}{
La Lb 1

Jb Ja S

}{
La Lb 1

Jb′ Jf S

}{
La Lb 1

Jb′ Ja S

}

×
{

1 1 K

Jb′ Jb Ja

}{
1 1 K

Jb′ Jb Jf

}
(−1)QT K

Q (i,n)T K
−Q(j,n

′). (A.10)

In order to obtain the scattering phase matrix, which is independent of frequency, we

follow LL04 and integrate Equation (A.10) over frequency ξ. As the profile function is

normalized to unity, the frequency ξ dependent terms in Equation (A.10) become unity

after frequency integration. It then becomes possible to perform the summation over Ja

and Jf using Equation (2.41) of LL04. Thus we get

Pij(n,n
′) =

2

3

∑

KQJbJb′

(2Jb + 1)(2Jb′ + 1)(2La + 1)2cosβJb′Jb
e−iβJ

b′
Jb

×
{

1 1 K

Lb Lb La

}2{
Lb Lb K

Jb Jb′ S

}2

(−1)QT K
Q (i,n)T K

−Q(j,n
′). (A.11)

We can write

cosβJb′Jb
e−iβJ

b′
Jb =

1

1 + 2πiνJb′Jb/ALbLa

, (A.12)

where ALbLa
is the Einstein coefficient for the transition Lb → La and is equal to γ.

Hence Equation (A.11) can be rewritten as

Pij(n,n
′) =

∑

KQ

WK(LaLb)(−1)QT K
Q (i,n)T K

−Q(j,n
′), (A.13)

with

WK(LaLb) =
3(2Lb + 1)

2S + 1

∑

JbJb′

(2Jb + 1)(2Jb′ + 1)
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×
{

1 1 K

Lb Lb La

}2{
Lb Lb K

Jb Jb′ S

}2
1

1 + 2πiνJb′Jb/ALbLa

. (A.14)

We have absorbed the factor 2(2S + 1)(2La + 1)2/[9(2Lb + 1)] into the normalization

constant. It is easy to verify that Equations (A.13) and (A.14) are identical to Equa-

tions (10.132) and (10.133) of LL04.
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B
Expression for the type II redistribution

matrix

After elaborate algebra, Equation (2.33) can be rewritten as

R
II(x,n; x′,n′,B) = R

II
λ1λ1(x,n; x

′,n′,B) +R
II
λ2λ2(x,n; x

′,n′,B)

+R
II
λ1λ2(x,n; x

′,n′,B), (B.1)

where RII
λ1λ1 , RII

λ2λ2
are the redistribution matrices for the J = 1/2 → 1/2 → 1/2 and

J = 1/2 → 3/2 → 1/2 transition, respectively, and R
II
λ1λ2

represents the interference

term. The redistribution matrix for J = 1/2 → 1/2 → 1/2 transition is given by

R
II
λ1λ1 =

f 2
1
2

1
2

2f 2
1
2

1
2

+ f 2
1
2

3
2

1

4

{
[
(cII1,−1,1,−1)1,1 ± (cII1,1,1,1)−1,−1

]
C

0
±

+
[
(cII1,1,1,1)1,1 + (cII1,−1,1,−1)−1,−1

]
C

0
0 +

[
(cII1,−1,1,−1)−1,1 ± (cII1,1,1,1)1,−1

]
D

±
01

+
[
(cII1,−1,1,−1)1,−1 ± (cII1,1,1,1)−1,1

]
D

±
10 + 2 sin θ sin θ′

{[
(cII1,−1,1,1)1,1

∓(cII1,−1,1,1)1,−1

](
F

(1)
1 + F

(1)
±3

)
+
[
(cII1,−1,1,1)−1,−1 ∓ (cII1,−1,1,1)−1,1

](
F

(1)
1 − F

(1)
±3

)

+
[
(cII1,−1,1,1)1,1 + (cII1,−1,1,1)1,−1 + (cII1,−1,1,1)−1,1 + (cII1,−1,1,1)−1,−1

]
F

(1)
2

+
[
± (sII1,−1,1,1)1,1 − (sII1,−1,1,1)−1,1

]
S
1
± +

[
(sII1,−1,1,1)−1,−1 ∓ (sII1,−1,1,1)1,−1

]
S
1
±

+
[
(sII1,−1,1,1)1,1 − (sII1,−1,1,1)−1,−1 + (sII1,−1,1,1)1,−1 − (sII1,−1,1,1)−1,1

]
S
(1)
3

}}
, (B.2)
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while the redistribution matrix for J = 1/2 → 3/2 → 1/2 transition is given by

R
II
λ2λ2 =

f 2
1
2

3
2

2f 2
1
2

1
2

+ f 2
1
2

3
2

{[(
(cII3,−1,3,−1)1,1 + (cII3,1,3,1)−1,−1

)
+ 9
(
(cII3,3,3,3)1,1

+(cII3,−3,3,−3)−1,−1

)]
C

0
+

64
+
[
(cII3,1,3,1)1,1 + (cII3,−1,3,−1)−1,−1

]C0
0

4
+
[
(cII3,−1,3,−1)1,−1

±(cII3,1,3,1)−1,1

]D±
10

16
+
[
(cII3,−1,3,−1)−1,1 ± (cII3,1,3,1)1,−1

]D±
01

16
+

[(
(cII3,−1,3,−1)1,1

−(cII3,1,3,1)−1,−1

)
+ 9
(
(cII3,−3,3,−3)−1,−1 − (cII3,3,3,3)1,1

)]
C

0
−

64
+
[
(cII3,−1,3,3)1,1

+(cII3,−3,3,1)−1,−1

]3C2
+

32
+
[
(sII3,−1,3,3)1,1 + (sII3,−3,3,1)−1,−1

]3S2
+

16

+ sin θ sin θ′
{[

± (cII3,1,3,3)1,1 + (cII3,−3,3,−1)−1,−1

]3C1
±

8
+
[
(cII3,−1,3,1)1,1

−(cII3,−1,3,1)1,−1

](F(1)
1 + F

(1)
+3

8

)
+
[
(cII3,−1,3,1)−1,−1 − (cII3,−1,3,1)−1,1

](F(1)
1 − F

(1)
+3

8

)

+
[
(cII3,−1,3,1)1,1 + (cII3,−1,3,1)1,−1

](F(1)
2 + F

(1)
−3

8

)
+
[
(cII3,−1,3,1)−1,1 + (cII3,−1,3,1)−1,−1

]

×
(
F

(1)
2 − F

(1)
−3

8

)
+
[
(sII3,1,3,3)1,1 + (sII3,−3,3,−1)−1,−1

]3S1
+

8
+
[
(sII3,−1,3,1)−1,1

−(sII3,−1,3,1)1,1
](S(1)

1 − S
(1)
3

8

)
+
[
(sII3,−1,3,1)1,−1 − (sII3,−1,3,1)−1,−1

](S(1)
1 + S

(1)
3

8

)

+
[
(sII3,−1,3,1)−1,−1 + (sII3,−1,3,1)1,−1 − (sII3,−1,3,1)1,1 − (sII3,−1,3,1)−1,1

]S1
−

8

+
[
− (sII3,1,3,3)1,1 + (sII3,−3,3,−1)−1,−1

]3S(1)
4

8

}}
. (B.3)

The interference term is given by

R
II
λ1λ2 =

f 1
2

1
2
f 1

2
3
2

2f 2
1
2

1
2

+ f 2
1
2

3
2

{
[
(cII1,1,3,1)1,1 + (cII1,−1,3,−1)−1,−1

]C0
0

2
+
[
(cII1,−1,3,−1)1,1

±(cII1,1,3,1)−1,−1

]C0
±

8
+
[
∓ (cII1,1,3,1)1,−1 − (cII1,−1,3,−1)−1,1

]D±
01

4

+
[
∓ (cII1,−1,3,−1)1,−1 − (cII1,1,3,1)−1,1

]D±
10

4
+
[
(cII1,−1,3,3)1,1 + (cII3,−3,1,1)−1,−1

]3C2
+

8

+
[
(sII1,−1,3,3)1,1 + (sII3,−3,1,1)−1,−1

]3S2
+

4
+ sinθ sinθ′

{[
(cII3,−1,1,1)1,1

±(cII1,−1,3,1)−1,−1

]C1
±

8
+
[
(cII3,−3,1,−1)−1,−1 ± (cII1,1,3,3)1,1

]3C1
±

8

+
[
(cII1,−1,3,1)1,1 ± (cII3,−1,1,1)−1,−1

]C1
±

2
+
[
(cII1,−1,3,1)−1,1 + (cII3,−1,1,1)−1,1

]

×
(
C

(1)
1 +C

(1)
2

4

)
+
[
(cII3,−1,1,1)1,−1 + (cII1,−1,3,1)1,−1

](C(1)
1 −C

(1)
2

4

)
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+
[
(sII3,−3,1,−1)−1,−1 ± (sII1,1,3,3)1,1

]3S(1)
±1

8
+
[
(sII3,−1,1,1)1,1 ± (sII1,−1,3,1)−1,−1

]S(1)
±1

8

+
[
(sII1,−1,3,1)1,1 ± (sII3,−1,1,1)−1,−1

]S(1)
±1

2
+
[
(sII3,−1,1,1)−1,1 + (sII1,−1,3,1)−1,1

]

×
(
S
1
+ + S

(1)
2

4

)
+
[
(sII1,−1,3,1)1,−1 + (sII3,−1,1,1)1,−1

](S1
+ − S

(1)
2

4

)}}
. (B.4)

The various 4 × 4 angular matrices appearing in Equations (B.2) to (B.4) are listed

below:

C
0
0 = (1− µ2)(1− µ′ 2)




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



, (B.5)

C
0
+ =




(1 + µ2)(1 + µ′ 2) −(1 + µ2)(1− µ′ 2) 0 0

−(1− µ2)(1 + µ′ 2) (1− µ2)(1− µ′ 2) 0 0

0 0 0 0

0 0 0 4µµ′



, (B.6)

D
+
10 =




(1− µ2)(1 + µ′ 2) −(1− µ2)(1− µ′ 2) 0 0

(1− µ2)(1 + µ′ 2) −(1− µ2)(1− µ′ 2) 0 0

0 0 0 0

0 0 0 0



, (B.7)

D
+
01 =




(1 + µ2)(1− µ′ 2) (1 + µ2)(1− µ′ 2) 0 0

−(1− µ2)(1− µ′ 2) −(1− µ2)(1− µ′ 2) 0 0

0 0 0 0

0 0 0 0



, (B.8)

C
2
+ =




(1− µ2)(1− µ′ 2) −(1 − µ2)(1 + µ′ 2) 0 0

−(1 + µ2)(1− µ′ 2) (1 + µ2)(1 + µ′ 2) 0 0

0 0 4µµ′ 0

0 0 0 0



, (B.9)

D
−
01 = 2µ(1− µ′ 2)




0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0



; D

−
10 = 2µ′(1− µ2)




0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0



, (B.10)
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C
0
− = 2




0 0 0 (1 + µ2)µ′

0 0 0 −(1− µ2)µ′

0 0 0 0

µ(1 + µ′ 2) −µ(1− µ′ 2) 0 0



, (B.11)

S
2
+ =

[



0 0 −(1− µ2)µ′ 0

0 0 (1 + µ2)µ′ 0

µ(1− µ′ 2) −µ(1 + µ′ 2) 0 0

0 0 0 0



, (B.12)

C
1
+ = µµ′




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



+ E33 + E44; C

1
− =




0 0 0 µ

0 0 0 µ

0 0 0 0

µ′ µ′ 0 0



, (B.13)

C
(1)
1 = µµ′

[



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



+ E33 − E44 ; C

(1)
2 = C

1
− (B.14)

F
(1)
1 = µµ′




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



+ E33 ; F

(1)
2 = E44, (B.15)

F
(1)
+3 = µ




0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0



; F

(1)
−3 = µ′




0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0



, (B.16)

S
(1)
1 =




0 0 −µ 0

0 0 −µ 0

µ′ µ′ 0 0

0 0 0 0



; S

(1)
2 = E43 + E34, (B.17)
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S
1
+ =




0 0 µ 0

0 0 µ 0

−µ′ −µ′ 0 0

0 0 0 0



; S

1
− = E34; S

(1)
+1 = S

1
+; S

(1)
−1 = S

(1)
4 , (B.18)

S
(1)
+1 = S

1
+, S

(1)
−1 = S

(1)
4 ; S

(1)
3 = E43; S

(1)
4 = E43 − E34. (B.19)

Here Eij denotes a matrix that has a single element

Eij = 1, while all the remaining elements are zero.
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C
Magnetic redistribution functions for

type-III redistribution

In this appendix we present the expressions for the magnetic redistribution functions of

the type HH, HF, FH and FF appearing in Equations (4.16) and (4.17). They are defined

as follows

RIII,HH
bmam,b′mfm

(xb′f , x
′
ba, Θ) =

1

π2 sinΘ

∫ +∞

−∞

du e−u2

[
ab

a2b + (v′bmam
− u)2

]

×H
( ab′

sin Θ
,
vb′mfm

sinΘ
− u cotΘ

)
, (C.1)

RIII,HF
bmam,b′mfm

(xb′f , x
′
ba, Θ) =

1

π2 sinΘ

∫ +∞

−∞

du e−u2

[
ab

a2b + (v′bmam
− u)2

]

×2F
( ab′

sin Θ
,
vb′mfm

sinΘ
− u cotΘ

)
, (C.2)

RIII,FH
bmam,b′mfm

(xb′f , x
′
ba, Θ) =

1

π2 sinΘ

∫ +∞

−∞

du e−u2

[
(v′bmam

− u)

a2b + (v′bmam
− u)2

]

×H
( ab′

sin Θ
,
vb′mfm

sin Θ
− u cotΘ

)
, (C.3)
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and

RIII,FF
bmam,b′mfm

(xb′f , x
′
ba, Θ) =

1

π2 sinΘ

∫ +∞

−∞

du e−u2

[
(v′bmam

− u)

a2b + (v′bmam
− u)2

]

×2F
( ab′

sin Θ
,
vb′mfm

sinΘ
− u cotΘ

)
. (C.4)

In the above equations H(a, x) and F (a, x) are the Voigt and Faraday-Voigt functions

(see Equation (2.18) for their definition). Θ is the scattering angle (the angle between

the incident and scattered rays; see Figure 2.2. The dimensionless quantities appearing

in Equations (C.1) to (C.4) are given by

xba =
ν0ba − ν

∆νD
; ab =

γb + γc
4π∆νD

; vbmam = xba + (gbµb − gaµa)
νL
∆νD

, (C.5)

where ν0ba is the line center frequency corresponding to a Ja → Jb transition in the

absence of magnetic fields, ab is the damping parameter of the excited state b, and ∆νD

is the Doppler width. In the limit of a two-level atom (obtained by setting Jb = J ′
b

and Ja = Jf ) and in the absence of a magnetic field the RIII,HH and RII,H (defined

in Chapter 2) reduce to the Hummer’s RIII and RII functions respectively (see also

Sampoorna et al., 2007a).

The angle-averaged analogues of Equations (C.1)-(C.4) are obtained through

RIII,XY
bmam,b′mfm

(xb′f , x
′
ba) =

1

2

∫ π

0

RIII,XY
bmam,b′mfm

(xb′f , x
′
ba, Θ) sinΘ dΘ, (C.6)

(see Equations (103) and (104) of Bommier (1997b) and Equations (30) and (31) of

Sampoorna et al. (2008b)), where X and Y stand for H and/or F.

A similar expression can be used for computing angle-averaged analogues of the type-II

functions.
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—. 2005, The Second Solar Spectrum: A high spectral resolution polarimetric survey

of scattering polarization at the solar limb in graphical representation. Volume III:
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López Ariste, A., Asensio Ramos, A., Manso Sainz, R., Derouich, M., & Gelly, B.

2009, A&A, 501, 729

Machado, M. E., Avrett, E. H., Vernazza, J. E., & Noyes, R. W. 1980, ApJ, 242, 336

Maltby, P., Avrett, E. H., Carlsson, M., Kjeldseth-Moe, O., Kurucz, R. L., & Loeser,

R. 1986, ApJ, 306, 284

Manso Sainz, R., & Trujillo-Bueno, J. 1999, in Astrophysics and Space Science Li-

brary, Vol. 243, Polarization, ed. K. N. Nagendra & J. O. Stenflo, 143–156

199



Bibliography

Manso Sainz, R., & Trujillo Bueno, J. 2003, in Astronomical Society of the Pacific

Conference Series, Vol. 307, Solar Polarization, ed. J. Trujillo-Bueno & J. Sanchez

Almeida, 251

Manso Sainz, R., & Trujillo Bueno, J. 2010, ApJ, 722, 1416

Michelson, A. A. 1891, Philosophical Magazine Series 5, 31, 338

Michelson, A. A., & Morley, E. W. 1887, Philosophical Magazine Series 5, 24, 463

Mihalas, D. 1978, Stellar atmospheres /2nd edition/

Moruzzi, G., & Strumia, F., eds. 1991, The Hanle Effect and Level-Crossing Spec-

troscopy

Nagendra, K. N. 1994, ApJ, 432, 274

Nagendra, K. N. 2003a, in Astronomical Society of the Pacific Conference Series, Vol.

288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 583

Nagendra, K. N. 2003b, in Astronomical Society of the Pacific Conference Series, Vol.

288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 611

Nagendra, K. N., Anusha, L. S., & Sampoorna, M. 2009, Mem. Soc. Astron. Ital., 80,

678

Nagendra, K. N., Frisch, H., & Faurobert, M. 2002, A&A, 395, 305

Nagendra, K. N., Frisch, H., & Faurobert-Scholl, M. 1998, A&A, 332, 610

Nagendra, K. N., Frisch, H., & Fluri, D. M. 2003, in Astronomical Society of

the Pacific Conference Series, Vol. 307, Solar Polarization, ed. J. Trujillo-Bueno &

J. Sanchez Almeida, 227

Nagendra, K. N., Paletou, F., Frisch, H., & Faurobert-Scholl, M. 1999, in Astrophysics

and Space Science Library, Vol. 243, Polarization, ed. K. N. Nagendra & J. O. Stenflo,

127–142

Nagendra, K. N., & Sampoorna, M. 2009, in Astronomical Society of the Pacific

Conference Series, Vol. 405, Solar Polarization 5: In Honor of Jan Stenflo, ed. S. V.

Berdyugina, K. N. Nagendra, & R. Ramelli, 261

Nagendra, K. N., & Sampoorna, M. 2011, A&A, 535, A88

Neckel, H., & Labs, D. 1994, Sol. Phys, 153, 91

Olson, G. L., Auer, L. H., & Buchler, J. R. 1986, JQSRT, 35, 431

200



Bibliography

Omont, A., Smith, E. W., & Cooper, J. 1972, ApJ, 175, 185

—. 1973, ApJ, 182, 283

Paletou, F., & Auer, L. H. 1995, A&A, 297, 771

Paletou, F., & Faurobert-Scholl, M. 1997, A&A, 328, 343

Pauli, W. 1924, Naturwissenschaften, 12, 741

Penny, C. M. 1969, J. Opt. Soc. Am., 59, 34

Pereira, T. M. D., Asplund, M., Collet, R., Thaler, I., Trampedach, R., & Leenaarts, J.

2013, A&A, 554, A118
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