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MOND, MONG, MORG as alternatives to dark matter and dark energy,
and consequences for cosmic structures
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Abstract. In view of the negative results from various dark matter detection experiments, we propose alternate
models by postulating a minimal field strength (minimal curvature) and also a minimal acceleration. These
postulates lead to modified Newtonian dynamics, modified Newtonian gravity, and modified relativistic gravity.
Through these postulates, we show that the observed flat rotation curves of galaxies can be accounted for. This
can also set constraints on the size of large scale structures such as galaxies and clusters, which are consistent
with observations. This minimum curvature in general relativity, and consequently the modification of the
Hilbert action leads naturally to a term equivalent to cosmological constant. This model thus neatly ties up,
with these two postulates: the observed flat rotation curves and the accelerated expansion of the universe.

Keywords. Dark matter—dark energy—modified Newtonian dynamics—modified Newtonian gravity—
modified relativistic gravity.

1. Introduction

The nature of dark matter (DM) and dark energy (DE),
which is supposed to constitute more than 95% of the
energy density of the universe, is still uncertain. DM
is supposed to be in the form of unknown weakly
interacting massive particles. The manner in which the
velocities vary with radius gives the distribution of mass
in the galaxy. A solid disk would rotate such that the
velocity increases linearly with radius. If the mass is
concentrated at the centre, the velocity decreases with
the square root of the radius (Keplerian case). A flat
rotation curve, that is, one in which the velocity is con-
stant over some range of radii, implies that the mass
is still increasing linearly with radius. Most galactic
rotation curves have two regions. The inner region indi-
cates that the velocity increases linearly with radius near
the centre, while the other (outer) region indicates a
constant (or gradually rising) velocity rotation in the
outer parts. The typical rotation curve of galaxies is
given in Figure 1, where rmax is the distance from the
galactic centre beyond which the rotation curve flattens
out.

Now, for a distance r � rmax (i.e., close to the
galactic centre), for a constant density (ρ0), the mass
is given by M (r) = 4

3πr3ρ0, which gives the velocity

as v = (4
3πGρ0

)1/2
r , i.e., a velocity varying linearly

with distance up to a certain distance rmax, which is in
agreement with the observation (i.e., region I of the rota-
tion curve of the galaxy (cf. Figure 1)). For r � rmax
(i.e., in the region II of the rotation curve of the galaxy),
the velocity becomes constant. This flat rotation curve
indicates nonluminous matter (dark matter) holding the
galaxy together.

Several experiments to detect DM, that is, six times
more abundant than baryonic matter, have yielded no
positive results so far. Results from PandaX-II dark mat-
ter experiment reported that no DM candidates have
been observed (Tan et al. 2016). Even the upgraded
XENON1T has set most stringent limits on DM inter-
action cross-section but detection still remains elusive
(Aprile et al. 2017).

Another unsolved mystery in cosmology is that 70%
of the energy density of the universe is unaccounted
for. The dimensionless quantity, i.e., the deceleration
parameter which measures the cosmic acceleration of
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Figure 1. Rotation curve of a typical galaxy.

the universe’s expansion is given by q0 = − R̈R
R2 =

�M
2 − ��, where �M = ρM/ρc and �� = ρ�/ρc, ρM

and ρ� are the densities of matter and DE respectively,

R is the scale factor, and ρc = 3H2
0

8πG is the critical density,
where H0 is the present Hubble constant (for cosmolog-
ical constant �, ρ� = �c2

8πG ). The negative value of q0,
deduced from the measurements of Type Ia supernovae
(Perlmutter et al. 1999; Riess et al. 1998) indicates
an accelerated expansion of the universe with a repul-
sive gravity and negative pressure. By measuring their
flux with redshift, q0 is determined to be −0.55. This
together with the fact that the universe is flat (from cos-
mic microwave background radiation (CMBR)) gives
(Ade et al. 2016) �M ≈ 0.316, which includes both
baryonic and DM, and �� ≈ 0.684, i.e., in some exotic
form which is dubbed dark energy (Sivaram 2009).

Various models for DE have been proposed, out of
which the simplest is the cosmological constant origi-
nally introduced by Einstein in 1917 as an addition to his
theory of general relativity (GR). Though the cosmolog-
ical constant as DE is supported by many observations,
it has two major problems. One being the problem of
fine tuning and the other is the coincidence problem,
i.e., why are the matter and vacuum energy densities
approximately equal at the present epoch? As there has
been no direct detection of DM (in two decades) and the
nature of DE is unclear, alternate models for DM and
DE need to be taken seriously (Arun et al. 2017, 2018).

2. Modification of Newtonian dynamics

One such alternative picture, the Modification of New-
tonian Dynamics (MOND) was initially proposed as an
alternative to account for the flat rotation curves of spiral

galaxies, without invoking DM in the halo by Milgrom
(1983a, b). The theory required an ad hoc introduction
of a fundamental acceleration a0 ≈ 10−8 cm/s2. When
the acceleration approaches a0, the Newtonian law giv-
ing the field strength is modified as

a = (GMa0)
1/2

r
, (1)

where a is the acceleration, r is the radial distance and
M is the central mass. This gives a constant velocity,
i.e., flat rotation curve for the galaxies, with the constant
velocity, vc, at the galactic outskirts given by

vc = (GMa0)
1/4 . (2)

These results can also be arrived at by considering a
minimum acceleration given by de Sabbata and Sivaram
(1993):

amin = GM

r2
max

. (3)

Here rmax is the radius of the structure corresponding
to the minimum acceleration and it sets the limit for
the size of large scale structures, which follows from
equation (3) as

rmax =
(
GM

amin

)1/2

. (4)

Substituting for rmax (from Equation (4)) in the usual
expression for the velocity of stars in the galactic out-
skirts, we have

v2
c = GM

rmax
= GM

√
GM
amin

. (5)

From Equation (5), we get

vc = (GMamin)
1/4 . (6)

This velocity is independent of r beyond rmax, which
is consistent with observation. In the case of the Milky
Way, this constant velocity from Equation (6) is ∼300
km/s which is the same order as that observed. For clus-
ters of galaxies, such as Virgo (M ≈ 1.25 × 1015M�)

and Coma (M ≈ 7 × 1014M�) clusters, the velocity
(from Equation (6)) is found to be ∼1500 km/s which
is again in accordance with what is observed.

This is same as the velocity in the galactic outskirts
as proposed by MOND (i.e., Equation (2)), where the
minimum acceleration amin ∼ a0. Equation (4) sets
constraints on the size of large scale structures such
as galaxies, clusters and super clusters, i.e., rmax =(
GM
amin

)1/2
. The size constraint from Equation (4) closely

matches with observations, as can be seen in Table 1.
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Table 1. Observed and calculated sizes of clusters and
superclusters.

Large scale structure rlim (cm) robs (cm)

Virgo cluster 2.28 × 1024 7.09 × 1024

Coma cluster 2.16 × 1025 9.46 × 1024

Omega Centauri 1.6 × 1018 8.13 × 1019

Saraswati supercluster 1.15 × 1025 2 × 1026

Laniakea supercluster 2.58 × 1025 2.36 × 1026

Horologium supercluster 2.5 × 1025 5 × 1026

Corona Borealis supercluster 7.47 × 1025 3.1 × 1026

These constraints on the size of large scale structures
are seen to be within the observed scales for smaller
clusters such as Virgo cluster, Omega Centauri, etc. In
the case of larger structures, like the superclusters, there
is an order difference in the limit set by Equation (4)
and the observed sizes. This could be due to disparity
in observation where the outermost structures of these
superclusters may not be bound to them (Rebecca et al.
2018).

It was also discussed in recent papers that the require-
ment that the attractive gravitational binding self-energy
density of large scale structures (such as galaxies, clus-
ters, super clusters, etc.) should at least be equal to
the background repulsive DE density which implies a
mass–radius relation of the type (Sivaram et al. 2013;
Sivaram & Arun 2012, 2013)

M

r2 = c2

G

√
� ≈ 1 g/cm2 (7)

for the observed value of � ∼ 10−56 cm−2, where M
and r correspond to mass and radius of these various
structures. This relation holds true for primeval galax-
ies as well as those at present epoch as shown in Rebecca
et al. (2018). This relation can also be obtained by rear-
ranging Equation (3), i.e.,

M

r2
max

= amin

G
≈ 1 g/cm2 , (8)

where the minimum acceleration is amin ∼ 10−8 cm/s2.

3. Modifications of Newtonian gravity

The flat rotation curves can also be explained by con-
sidering Modifications of Newtonian Gravity (MONG).
By adding a gravitational self-energy term to the Pois-
son’s equation, we get

∇2φ + K (∇φ)2 = 4πGρ, (9)

where φ
(∼ GM

r

)
is the gravitational potential and the

constant K ∼ G2/c2. The gravitational self-energy
density is given by K (∇φ)2, and also contributes to
the gravitational field along with the matter density ρ.
For small values of the density ρ (for e.g., at the outskirts
of galaxies), we have

∇2φ + K (∇φ)2 = 0. (10)

The solution of this equation yields

φ = K ′ln r

rmax
, (11)

where K ′ = GM
rmax

is a constant. This gives the force of
the form

F = K ′′

r
, (12)

where K ′′ = (GMamin)
1/2, which is again a constant.

The balance of the centripetal force and gravitational
force then gives

v2

r
= K ′′

r
. (13)

Thus Equation (13) implies the independence of v on r
(i.e., flat rotation curve v2 = K ′′, which is a constant)
for larger distances from the centre of the galaxy (i.e., for
r > rmax). For DE given by the cosmological constant
�, the Newtonian modification is

∇2φ − �c2 = 0. (14)

Including both gravitational self-energy and DE densi-
ties, the Poisson’s equation now takes the form

∇2φ + K (∇φ)2 − �c2 = 0. (15)

The general solution (for the potential φ) can be written
as

φ = GM

r
+ K ′ln r

rmax
+ �r2c2. (16)

We now make use of this general solution for different
regimes of interest in the galaxy structure. Where matter
density dominates, i.e., r < rmax, φ ≈ GM

r (solution of
∇2φ = 4πGρ) which gives a velocity varying linearly
with distance. For r > rmax, (∇φ)2 term dominates, and
φ goes as K ′ln r

rmax
, (giving a constant velocity) account-

ing for the DM (solution of ∇2φ + K (∇φ)2 = 0). For
r � rmax, φ goes as �r2c2, DE dominates (i.e., the cos-
mological constant term). The above are the boundary
conditions. In the case of the Milky Way, the velocity
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Figure 2. Galaxy rotation curve (for Milky Way) from
modified Newtonian gravity.

flattens out beyond ∼ 2 kpc, which is what is obtained
from the above results, which is plotted in Figure 2.
Other galaxies also show similar typical rotation curves,
with MONG matching with observation.

4. Modification of relativistic gravity

The relativistic theory of MOND gives a new theory
called Tensor–Vector theory (TeVe theory (Bekenstein
2004)) like MORG—Modification of Relativistic Grav-
ity. These theories have severe constraints from CMBR
anisotropy and lensing. In TeVe theories, vector and
scalar fields are also present in addition to tensor
fields. In f (R) theories, we replace Einstein’s action
∫ R

√−gd4x by a function of curvature f (R), i.e.,
∫ f (R)

√−gd4x . Here R is the curvature scalar and
g is the determinant of the metric tensor gμν. This gives
the field equations

f ′(R)Rμν − 1

2
gμν f (R) = 8πG

c4 Tμν, (17)

where prime denotes derivative with respect to R, Rμν

is the Ricci tensor, Tμν is the energy-momentum ten-
sor, as in the usual GR notation. f (R) theories are not
equivalent to TeVe theories (they do not have a vector
field), however f (R) theories with suitable transfor-
mations can be put in the form of scalar–tensor theories
(Sivaram & Campanelli 1992).

The idea of minimum field strength can be extended
to GR by incorporating a minimum curvature, even
in the absence of matter, since in GR, curvature and
field strength are equivalent. A possible function f (R)

involving a minimum curvature Rmin can have the form

f (R) = R
(

1 − aRmin
R

) , (18)

where a is a dimensionless constant that can be con-
strained by observation. Here we have modified the
usual action so as to include a minimum curvature,
Rmin). So we have the field equations

2Rμν
(

1 − aRmin
R

)2 − Rμν(
1 − aRmin

R

) = 8πG

c4 Tμν. (19)

Equation (18) need not be a unique function of the cur-
vature. The motivation for choosing this function f (R)

(given by Equation (18)) is to obtain the usual field equa-
tions in the limit of Rmin tending to zero, as in GR there
is no minimum limit to curvature, i.e., when Rmin → 0,
Equation (19) becomes Rμν = 8πG

c4 Tμν. This is one of
the simplest possibilities.

If R � Rmin, it reduces to the usual GR (for local
scales). On expanding Equation (18), we get

f (R) = R + aRmin + a2 R
2
min

R
+ · · · (20)

(we arrive at Equation (20) by expanding the action
f (R) in Equation (18) in powers of aRmin

R , as aRmin
R� 1).

The first term represents GR, the second term is a
background minimal curvature, which is now equiva-
lent to � (the cosmological constant), which shows the
presence of DE. The higher order terms can be neglected
since the minimum curvature (which is identified as
the cosmological constant), Rmin = � = 10−56 cm−2

is quite small. When the decreasing curvature of the
expanding universe approaches Rmin, DE dominates,
as at the present epoch.

The above action leads to GR with a constant
minimum background curvature (equivalent to a cos-
mological constant) in the limit when curvature of the
expanding universe tends to the minimum value. Here
we do not have an ad hoc cosmological constant, fine-
tuned to the present epoch. As is well known, the
Newtonian limit will now be

∇2φ − Rminc
2 = 0. (21)

So in Equation (15), how does the (∇φ)2 (that gives rise
to MOND) arise? So for this we have to consider the
corresponding energy-momentum tensor (self-energy
of the gravitational field) which is given by

T00 = K (∇φ)2 , (22)

where φ is the gravitational potential, T00 is the time
(static) component of the energy-momentum tensor, and
K is the same constant as in Equation (9).
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With this, on the RHS of the Einstein equation we
will have an extra contribution to the metric tensor, i.e.,
T00 = K (∇φ)2. This gives a correction term to the
metric of the order (Sivaram & Arun 2011; Sivaram
et al. 2016) of

G2M2

c4r2 = K (∇φ)2 . (23)

With this, the Newtonian limit now becomes

∇2φ + K (∇φ)2 − Rminc
2 = 0 (24)

which is same as Equation (15) above.

5. Similarity to the DGP model

In the DGP model (Dvali et al. 2000), which is a pop-
ular model as an alternative to DE, where gravity leaks
off a 4D Minkowski-brane into 5D space-time and on
small scales, gravity is bound to the 4D brane giving
Newtonian gravity. The Hubble expansion evolves as

H2 − H

RC
= 8πG

3
ρm. (25)

The crossover scale RC separates 5D and 4D regimes
and ρm is the matter density. This scale ∼1/H0 (H0 is
the present Hubble constant), and generates late-time
acceleration. Here in our model, we have RC ≈ Rmin,
hence

H2 − H

Rmin
= 8πG

3
ρm. (26)

Again, locally R � Rmin, hence the higher-order terms
of Rmin can be neglected. The present model is similar
to the DGP model, without the extra dimension.

6. Summary and conclusion

The introduction of a minimum acceleration in Newto-
nian dynamics leads to a MOND-like scenario. Simi-
larly, the introduction of a minimum curvature in GR
leads naturally to a term equivalent to a cosmological
constant. So by postulating separately a minimal field
strength (equivalent to minimal curvature) and a mini-
mal acceleration, we are able to get a model to account
for the observed evidence for both DM and DE.

The postulate of minimal acceleration leads to MOd-
ified Newtonian Dynamics (MOND) and MOdified
Newtonian Gravity (MONG), whereas the postulate of a
minimal curvature leads to MOdified Relativistic Grav-
ity (MORG). The modified action with its consequences
connecting these postulates are given by Equations

(17)–(19). Postulating limits to physical constants has
previously also led to new physics. For instance, a postu-
lated minimum action, �, led to quantum mechanics and
a maximum light speed limit, c, led to special relativity.
In this scenario, we are able to avoid introduction of DM
and an ad hoc fundamental acceleration (to account for
DM), since it naturally follows from the minimal accel-
eration. As shown, this minimal acceleration modifies
the Kepler’s law and gives a constant rotation veloc-
ity above a distance rmax, as follows from Equation
(6). This gives an alternate to DM and is equivalent
to MOND as shown.

To deal with DE, we separately postulate a minimal
curvature, which involves modifying the GR action. In
GR, there is no minimal curvature. As the Universe
expands, its curvature decreases and approaches this
minimal curvature, Rmin. This is equivalent to having a
cosmological constant term dominating and giving rise
to DE. So these two separate postulates give rise to flat
rotation curve and dark energy, dominated by a cosmo-
logical constant. DE could also arise through extended
gravity models as emphasised in Corda (2009), which
will lead to similar consequences.
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