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We demonstrate novel features in the behavior of the second- and third-order nonlinearity parameters of

the curvature perturbation, namely fNL and gNL, arising from nonlinear motion of the curvaton field. We

investigate two classes of potentials for the curvaton—the first has tiny oscillations superimposed upon the

quadratic potential. The second is characterized by a single ‘‘feature’’ separating two quadratic regimeswith

different mass scales. The feature may either be a bump or a flattening of the potential. In the case of the

oscillatory potential, we find that, as the width and height of superimposed oscillations increase, both fNL
and gNL deviate strongly from their expected values from a quadratic potential. fNL changes sign from

positive to negative as the oscillations in the potential become more prominent. Hence, this model can be

severely constrained by convincing evidence from observations that fNL is positive. gNL, on the other hand,

acquires very large negativevalues. Further, thismodel can give rise to a large running of fNL, with respect to

scale. For the single-feature potential, we find that fNL and gNL exhibit oscillatory behavior as a function of

the parameter that controls the feature. The running of fNL with respect to scale is found to be small.
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I. INTRODUCTION

The inflationary paradigm [1] has become an important
ingredient of modern cosmology. Inflation provides a natu-
ral explanation for the production of the first density per-
turbations in the early Universe, which seeded the
formation of the large-scale structure in the distribution
of galaxies and the temperature anisotropies in the cosmic
microwave background radiation [2]. However, the precise
details of the mechanism for generating the primordial
curvature perturbation are not fully established. The stan-
dard mechanism is via the quantum fluctuations of the
inflaton field. An alternative scenario that frees the inflaton
from the job of generating perturbations, besides giving
rise to inflation, is the curvaton scenario [3–5]. In this
scenario, an additional scalar field, called the curvaton,
which is assumed to be very light, is invoked to generate
the curvature perturbations. It is assumed to be frozen
during inflation and begins evolving at the end of inflation.
Its energy density is assumed to be subdominant during
inflation, but it can share a significant part of the total
energy in the Universe before its decay. The entropy per-
turbations caused by the curvaton field subsequently get
converted into adiabatic perturbations.

A large number of light scalar fields are expected to be
present in any fundamental theory that goes beyond the

standard model of particle physics. During the inflationary
era, these fields would have had the same amplitude of
quantum fluctuations. It is plausible that at least some of
them played important roles in the early Universe: for
example, as the curvaton field. An important distinguishing
property of the curvaton scenario as the generating mecha-
nism for primordial perturbations, from the standard single
slow-rolling field picture, is the possibility for the primor-
dial perturbations to have large deviations from Gaussian
distribution. This property becomes very attractive in the
light of the recent result from WMAP that suggests that
primordial non-Gaussianity may be large [6]. The non-
Gaussianity generated in the curvaton scenario must have
a local shape, because it is generated on superhorizon
scales. Then, the curvature perturbation can be expanded
at the same spatial point to nonlinear orders, as

�ðxÞ ¼ �gðxÞ þ 3
5fNL½�2gðxÞ � h�2gi� þ 9

25gNL�
3
gðxÞ þ . . . ;

(1)

where fNL and gNL are the so-called non-Gaussianity
parameters. The WMAP 7-yr result implies a constraint
on the size of local form bispectrum, as fNL ¼ 32� 21 at
the 1� � level. The limits on gNL are �3:5� 105 <
gNL < 8:2� 105 (at a 95% confidence level) from the
large-scale structure [7], and comparable limits are ob-
tained from cosmic microwave background data from
WMAP 5-yr data [8], as well. A convincing detection of
the local form non-Gaussianity will rule out all single-field
inflation in a model-independent way.
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In the simplest case, the curvaton potential is assumed to
have a quadratic form, and the typical size of the bispec-

trum is bounded by the tensor-scalar ratio, as fNL <

103r1=4 [9]. Since the curvaton field evolves linearly in
this case, the size of the trispectrum is linearly related to
that of the bispectrum, as

gNL ’ �10
3 fNL: (2)

There is, however, no reason for the above relation to hold,
in general, from the viewpoint of fundamental theory, since
the curvaton potential could be different from the quadratic
form. Case-by-case studies of different curvaton potentials
have been done in the literature. These studies have fo-
cused on potentials that deviate from the quadratic form at
large field values but tend to the quadratic form at small
field values. The predictions of such models, particularly
the level of non-Gaussianity, are then compared with those
from the quadratic potential so as to understand their
distinguishing features. Clearly, the distinctions become
more prominent for large initial curvaton-field values. A
distinct signature of departure of the curvaton potential
from the quadratic form is a breakdown of the relation
(2). If the curvaton self-interaction term becomes domi-
nant, giving rise to higher-order corrections in the curvaton
potential, the order of magnitude of gNL can be Oðf2NLÞ
[10–13]. The predictions for models with nearly quadratic
potential are investigated in [14–17], where the nonlinear
evolution of the curvaton after inflation but prior to its
oscillation is taken into account. Another promising
curvaton candidate is the pseudo-Nambu-Goldstone
boson-axion, whose potential significantly deviates from
the quadratic form around the top of its potential. A nu-
merical analysis of the axion-type curvaton model is dis-
cussed in [18,19]. From the viewpoint of fundamental
theory, one can generically expect multicurvaton models,
and such a model is investigated in [20,21]. While the
discussion, thus far, has ignored the scale dependence of
the bispectrum and the trispectrum, it is possible that, in the
future, such scale dependence may become accessible to
experimental observation and, hence, important [22–25].
The scale dependence of fNL can be quantified by its
spectral index, nfNL , which is defined by

fNLðkÞ ¼ fNLðkpÞ
�
k

kp

�
nfNL

; (3)

where kp is some suitable pivot scale. The forecast of 1� �

uncertainty for nfNL that can be reached by Planck [26] and

CMBPol [27] for the local form bispectrum is as follows
[28]:

�nfNL ’ 0:1
50

fNL

1ffiffiffiffiffiffiffiffi
fsky

p for Planck; (4)

and

�nfNL ’ 0:05
50

fNL

1ffiffiffiffiffiffiffiffi
fsky

p for CMBPol; (5)

where fsky is the sky fraction. Other relevant papers are

[29–34].
In this paper, we discuss two new curvaton models that

are different from the ones described above. The first is a
potential that has tiny oscillations superimposed on the
quadratic form. Such oscillatory corrections could arise,
for example, if we consider instanton corrections to the
potential of the Goldstone boson with a shift symmetry.
The curvaton experiences the small bumps of the oscilla-
tions in the potentials as it undergoes oscillations about the
minimum of the potential. As a consequence, the curvaton
evolution during this stage is nonlinear (the curvaton equa-
tion of motion is not that of a damped simple harmonic
oscillator), making it significantly different from the case
of the quadratic potential. Our goal is to calculate the
nonlinear curvature perturbation up to cubic order and
obtain the predictions for non-Gaussianity from such a
model. We find very interesting new implications for the
nonlinearity parameters fNL and gNL arising in this model.
First, fNL is no longer restricted to have positive values.
Depending on the amplitude and the frequency of the
superimposed oscillations on the potential, it can take a
wide range of both positive and negative, with a switch of
sign from positive to negative. gNL, on the other hand,
remains negative and can take large negative values. The
sign switch of fNL brings up the possibility that the most
important contribution to primordial non-Gaussianity
could come from the gNL term, with fNL being negligibly
small.
The second model we discuss is a class of potentials

characterized by a single feature separating two quadratic
regimes with different mass scales. The feature depends on
a single parameter, and, depending on the sign of the
parameter, it can be either a single bump or a flattening
of the slope of the quadratic potential at some character-
istic scale. Such features in the scalar-field potentials are
expected in supergravity theories and have been studied in
the context of inflaton perturbations [35]. We find that the
effect of the feature on fNL and gNL is rather dramatic,
causing them to oscillate with increasing amplitude as the
strength of the feature increases.
This paper is organized as follows: in Sec. II, we

briefly summarize the method for computation of the
nonlinear curvature perturbation using the �N formalism
and the curvaton equation of motion. In Sec. III, we
describe the specific forms of the curvaton potentials
we are considering here and display our results for the
nonlinear corrections to the curvature perturbations. In
Sec. III A, we discuss the case of the washboard potential,
while in Sec. III B, we discuss the single-feature poten-
tial. We end with a summary of our results and comments
in Sec. IV. A brief description of the curvaton with
quadratic potential is given in the Appendix to highlight
the differences from our study and the novelty of our
results.
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II. THE NONLINEAR CURVATURE
PERTURBATION

On sufficiently large scales, the curvature perturbation
on the uniform density slicing can be calculated by using
the so-called �N formalism [36–40]. Starting from any
initial flat slice at time tini, on the uniform density slicing,
the curvature perturbation is

�ðt;xÞ ¼ �N � Nðt;xÞ � N0ðtÞ; (6)

where Nðt;xÞ ¼ lnaðt;xÞ=aðtiniÞ describes the local expan-
sion of our Universe, and N0ðtÞ ¼ lnaðtÞ=aðtiniÞ is the
unperturbed amount of expansion. In the curvaton model,
the difference between local expansion and the unper-
turbed expansion is caused by the quantum fluctuations
of the curvaton field during inflation. Therefore,

� ¼ N;���þ 1
2N;����

2 þ 1
6N;�����

3 þ . . . ; (7)

where N;� ¼ dN=d�, N;�� ¼ d2N=d�2, and N;��� ¼
d3N=d�3. Considering �� ¼ H�=2�, the amplitude of
the power spectrum generated by the curvaton is

P�� ¼ N2
;�

�
H�
2�

�
2
; (8)

and the non-Gaussianity parameters are given by

fNL ¼ 5

6

N;��

N2
;�

; (9)

gNL ¼ 25

54

N;���

N3
;�

; (10)

where H� is the Hubble parameter during inflation. At
third-order perturbation, there is actually one more pa-
rameter, �NL, which measures another aspect of the local
form trispectrum. However, when the curvature perturba-
tion is only produced by the curvaton field, �NL is not an
independent parameter, and it is related to fNL by

�NL ¼ ð65fNLÞ2: (11)

The amplitude of the tensor perturbation depends only on
the inflation scale, as

PT ¼ H2�=M2
p

�2=2
: (12)

Thus, the tensor-scalar ratio r is given by

r � PT=P�� ¼ 8

N2
;�M

2
p

: (13)

In this work, we consider the simplest version of the
curvaton scenario, where only the quantum fluctuations
of the curvaton field contribute to the total curvature
perturbation.

After inflation, the equations of motion are

H2 ¼ 1

3M2
p

ð�r þ ��Þ; (14)

_� r þ 4H�r ¼ 0; (15)

�� ¼ 1
2 _�

2 þ Vð�Þ; (16)

€�þ 3H _�þ dVð�Þ
d�

¼ 0; (17)

where �r and �� are the energy densities of the radiation
and the curvaton, respectively, and Vð�Þ is the curvaton
potential. In order to numerically solve the above differ-
ential equations, we define the reduced curvaton field ~�
and the reduced curvaton potential Vð~�Þ as follows:

~� ¼ �=��; (18)

Vð~�Þ ¼ Vð�Þ
m2�2�

; (19)

where �� is the vacuum expectation value of the curvaton
field in the inflationary era. The equations of motion can be
simplified as

N0 ¼
�
�e�4N þ �2�

3M2
p

�
1

2
~�02 þ Vð~�Þ

��
1=2

; (20)

~� 00 þ 3N0 ~�0 þ dVð~�Þ
d~�

¼ 0; (21)

where NðxÞ ¼ lnaðtÞ, � ¼ �r;ini

3M2
pm

2 ¼ H2
ini=m

2, the prime de-

notes the derivative with respect to the dimensionless time
coordinate x � mt, and the Hubble parameter becomes

H ¼ mN0: (22)

The solution for the subdominant curvaton with quadratic
potential is analytically discussed in the Appendix.
Using the reduced curvaton field ~�, the non-Gaussianity

parameters are given by

fNL ¼ 5

6

N;~� ~�

N2
; ~�

; (23)

gNL ¼ 5

6

N;~� ~� ~�

N3
; ~�

: (24)

Quoting the formula in [23–25], the spectral index of fNL is
given by

nfNL ¼ ~�3

N;~�

N;~� ~�

; (25)

where

~� 3 ¼ �mmV
000ð~�Þj~�¼1; (26)

�mm ¼ m2=3H2� , and V000ð~�Þ ¼ d3Vð~�Þ=d~�3. Since �NL ¼
ð65 fNLÞ2, we obtain n�NL ¼ 2nfNL . In this paper, we will
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show our results in terms of the rescaled variable
nfNLfNL=�mm, which is given by

nfNLfNL
�mm

¼ 5

6N;~�

V 000ð~�Þj ~�¼1: (27)

Note that, for the quadratic potential, fNL is exactly scale-
invariant.

The scale factor can be rescaled to satisfy aðtiniÞ ¼ 1, or
equivalentlyNðtiniÞ ¼ 0. For numerical calculation, we also
need to input the value of �. If the vacuum energy of the
inflaton suddenly decays into radiation, a reasonable choice
is � ¼ H2

inf=m
2, which is much larger than 1. However, we

do not know its exact value. But as long as � is large
enough, it does not affect our numerical result, because
the curvaton field almost does not move when the Hubble
parameter is much larger than its mass. For example, it is
reasonable to assume that the Hubble parameter at the
inflationary era is at least 1 order of magnitude larger than
the curvaton mass, and then we set � ¼ 102 in this paper.

III. THE MODELS

In this section, we consider two new curvaton models,
which have some small features around the exactly
quadratic form of the curvaton potential. We can expect
that these features will introduce nonlinear effects to the
oscillating curvaton field and, consequently, affect the non-
Gaussianity parameters. Our aim is to calculate these pre-
cise effects. Note that these effects are different from what
was considered in [14–17], where the nonlinear evolution of
the curvaton after inflation but prior to its oscillation was
considered. Since the nonlinear nature of the curvaton
motion makes analytic solutions extremely difficult to ob-
tain, we rely on numerical methods to get our results. We
solve Eqs. (20) and (21) as a coupled set of differential
equations for each potential under consideration.

A. Washboard curvaton model

A good candidate for the curvaton is the Goldstone
boson with shift symmetries � ! �þ � [18,19]. Con-
sidering the instanton correction, the potential of � can
be written as

Vð�Þ ¼ �4

�
1� cos

�

f

�
þ ~�4

�
1� cos

�

f=n

�
þ . . . ; (28)

where n is an integer. Usually, the scale ~� is suppressed
by a UV scale Mð� �Þ, compared to �, and then, the
second term is taken as a small correction to the potential.
For a large n and � � f, the above potential can be
expressed by

Vð�Þ ¼ 1

2
m2�2 þ V0

�
1� cos

�
�

F

��
; (29)

where V0 � V� ¼ 1
2m

2�2�. We call it the washboard

potential. The potential expressed in terms of ~� is

Vð~�Þ ¼ 1
2 ~�

2 þ 	½1� cosð~�=�Þ�; (30)

where

	 ¼ V0

m2�2�
; � ¼ F

��
: (31)

	 measures the size of the correction, and � characterizes
the period of oscillation of the correction term in Eq. (30).
The reduced potential is shown in the left panel of Fig. 1
for easy visualization. Note that when ~� � ffiffiffi

	
p

, the
potential is almost quadratic. If ~� � �, then Vð~�Þ ’
1
2 ð1þ 	=�2Þ~�2, which is roughly quadratic but with a

deformed mass.
The dynamics of the curvaton field after inflation are

governed by

~� 00 þ 3

2x
~�0 þ ~�þ 	

�
sinð~�=�Þ ¼ 0: (32)

Even though the correction to the potential is small,
the curvaton-field dynamics can become significantly

FIG. 1 (color online). The washboard curvaton potential given
by Eq. (29) is shown on the top panel for visual comparison with
the corresponding quadratic one. The parameter values are 	 ¼
5� 10�4 and � ¼ 10�2. We have chosen a large value of 	 in
order to make the oscillations clearly visible. The bottom panel
shows the curvaton oscillations about the potential minimum for
the quadratic and washboard cases, with the same initial field
value given by ��=Mp ¼ 0:1. The parameter values for this plot

are 	 ¼ 10�4 and � ¼ 10�2.
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nonlinear, provided the period of the correction term is
small enough. We consider, here, the situation where the
dynamics of the curvaton are dominated by the mass term
at the commencement of its evolution. This implies that
	=� < 1. Once the amplitude of the curvaton oscillation
drops below 	=�, the curvaton evolves nonlinearly. On the
right panel of Fig. 1, we have plotted the oscillation of
the curvaton field about the minimum of the potential for
the quadratic and the washboard potential cases, for the
same initial field value given by ��=Mp ¼ 0:1. We can see

that the amplitude of oscillation in the washboard case
decreases faster than the quadratic case. Moreover, the
frequency of oscillation for the washboard curvaton is
time-dependent, as it oscillates about the constant fre-
quency of the quadratic case.

We now illustrate how the small features in the curvaton
potential play an important role for the non-Gaussianity
parameters. We solve for N;�, N;��, and N;��� and then

obtain fNL and gNL from them. In general, we need to scan
four independent parameters—namely, �=m, ��=Mp, 	,

and �—in order to satisfy observational constraints such as
the amplitude of perturbations and the limits on fNL and
gNL. Our strategy, here, is to fix �=m, ��=Mp, and � and

obtain fNL and gNL as functions of 	. Our results are
obtained for two values of �=m and � each, to understand
how these parameters systematically affect fNL and gNL. It
must be mentioned that, for the quadratic potential, �=m is
typically required to be of the order of 10�8 for the ampli-
tude of perturbations to be COBE normalized. Evolving
the equations numerically until the energy density of the
curvaton decreases to such a small value is prohibitively
time consuming. Moreover, for the purpose of capturing
the essential features of the dependence of fNL and gNL on
	 and �, it is enough to fix �=m at a relatively large value.

In Fig. 2, we have plotted fNL, gNL, and nfNLfNL=�mm as

functions of 	, for �=m ¼ 10�2 and 2� 10�2 and fixed
values of � ¼ 10�2 and ��=Mp ¼ 0:1. We can see that

�=m systematically changes the amplitudes of fNL and
gNL, but does not alter the essential functional shapes.
The correctness of the numerical calculations is tested by
ensuring that, in the limit 	 ! 0, fNL and gNL tend to their
analytically expected values for the quadratic potential, as
clearly seen in the figure. As 	 increases, fNL and gNL
become strongly affected and deviate from their expecta-
tion from the quadratic potential. fNL crosses over from
positive to increasingly negative values as 	 increases. On
the other hand, gNL remains negative throughout, but its
magnitude becomes very large as 	 increases. The inset in
the middle panel of Fig. 2, which shows gNL, zooms in to
the 	 ! 0 region to show it approaching the negative value
expected from the quadratic potential. The bottom panel
demonstrates that this model can have a large running of
fNL. nfNLfNL=�mm grows linearly with 	.

Next, in Fig. 3, we have plotted fNL, gNL, and
nfNLfNL=�mm for two different values of �. We have

chosen � ¼ 10�2 and 1:8� 10�2 and fixed �=m ¼ 10�2

and ��=Mp ¼ 0:1. We see that, for very small 	, varying �

has little effect on the behavior of fNL and gNL. This can be
explained by the fact that 	 ! 0 kills off the oscillations
superimposed on the potential, regardless of the frequency
of oscillations that is controlled by �. At relatively larger

FIG. 2 (color online). fNL, gNL, and nfNLfNL=�mm are shown
as functions of 	 for the washboard potential, for fixed values of
�, �=m, and ��=Mp. We have shown plots for two different

values of �=m in order to demonstrate the systematic variation as
we change �=m.

FIG. 3 (color online). Same as Fig. 2, but for two different
values of �, with �=m and ��=Mp kept fixed.
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values of 	, the effect of � becomes prominent. The
deviation of fNL and gNL from the quadratic potential
behavior increases as � decreases, due to the increase in
the frequency of the oscillations in the potential.

In Fig. 4, we have plotted gNL versus fNL at different
values of 	. The parameter values are �=m ¼ 10�2,
��=Mp ¼ 0:1, and � ¼ 10�2. As can be seen from the

figure, the relation between gNL versus fNL is roughly
linear with positive slope. In comparison, the quadratic
case has negative slope.

B. Single-feature curvaton model

Some features are expected in the scalar-field potential
from the supergravity theories [35]. In this subsection, we
are interested in how these features affect the non-
Gaussianity parameters in the curvaton model. For
simplicity, we parametrize the curvaton potential with a
feature as follows:

Vð�Þ ¼ 1

2
m2�2

�
1þ c

1þ ð�=MÞ2n
�
; (33)

where n > 0, and M is an energy scale that measures the
position of the feature. In the regime � � M or � � M,
the curvaton potential has a quadratic form, but, around
�	M, the potential deviates from the quadratic form. As
in the previous subsection, we define a reduced potential as
follows:

Vð~�Þ ¼ 1

2
~�2

�
1þ c

1þ ð~�=dÞ2n
�
; (34)

where

d ¼ M

��
: (35)

The reduced potential given by Eq. (34) is shown in Fig. 5
for n ¼ 2 and d ¼ 0:1. The nature of the feature depends
on the sign of c. If c is positive, then there is a bump,
whereas a negative c changes the slope of the potential to
make it flatter around some scale set by the parameter d.

The equation of motion for the reduced curvaton field
becomes

~� 00 þ 3N0 ~�0 þ
�
1þ c

1� ðn� 1Þð~�=dÞ2n
½1þ ð~�=dÞ2n�2

�
~� ¼ 0: (36)

We restrict our analysis, here, to n ¼ 2. If d � 1, and the
initial curvaton-field value is large enough, then the curva-
ton evolves linearly prior to its oscillation. We choose
d ¼ 0:1. As in the washboard curvaton model, we choose
��=m to be 10�2, and ��=Mp ¼ 10�1. Then, we solve for

fNL, scanning the parameter c.
In Fig. 6, we show fNL and gNL for the single-feature

potential. As seen in the figure, fNL oscillates about zero
with increasing amplitude as jcj increases. It flattens out
and approaches the expected value from the quadratic
potential as jcj ! 0. gNL also exhibits oscillatory behavior
as c varies. Similar to fNL, we can see the curve flattening
out near c ¼ 0 and agreeing with the value expected from
the quadratic potential (the inset in the bottom panel of the
figure zooms in around c ¼ 0). For this model, nfNLfNL=

�mm 	�10cd4 and is much smaller than 1 in the parame-
ter range considered here.
In Fig. 7, we have plotted gNL versus fNL at different

values of c. The parameter values are �=m ¼ 10�2,

FIG. 4 (color online). gNL versus fNL at different values of 	
for the washboard potential. The other parameter values are
�=m ¼ 10�2, ��=Mp ¼ 0:1, and � ¼ 10�2.

FIG. 5 (color online). The single-feature curvaton potential
given by Eq. (34) is shown on the left panel for comparison
with the corresponding quadratic one. d is fixed to be 0.1, and we
have plotted for c ¼ 2 and �1 to show how the nature of the
feature changes with the sign of c. The right panel shows the
corresponding curvaton oscillations about the potential mini-
mum, with the same initial field value given by ��=Mp ¼ 0:1.
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��=Mp ¼ 0:1, and d ¼ 0:1. The triangles and dots repre-

sent c values at which gNL versus fNL have been calcu-
lated. As can be seen from the figure, the relation between
gNL versus fNL is scattered about the quadratic expecta-
tion. The scatter is a consequence of the fact that the phase
of gNL is slightly shifted from that of fNL.

IV. CONCLUSION AND DISCUSSION

We have studied two new curvaton models in this paper.
The first is the washboard model, where the potential has
tiny oscillations superimposed on the quadratic form, and
the second one has a potential with two quadratic regimes
having different mass scales separated by either a bump or
a flattening of the potential. For the washboard model, we
have investigated in detail how the two parameters that

control the oscillations—namely, the amplitude and the
frequency—affect the nonlinear corrections to the curva-
ture perturbation via their effect on fNL and gNL. We have
shown that the relation gNL / �fNL, which holds for the
quadratic potential, is no longer valid in this case. Rather,
we find that gNL / fNL, roughly. We also found that there
is a wide range of both positive and negative values for
fNL, while gNL remains negative, but its magnitude can be
very large depending on the model parameters. In com-
parison, the quadratic potential restricts fNL to be positive
and gNL to be negative. Moreover, we find that this model
can have a large running of fNL.
For the single-feature model, we have again calculated

fNL and gNL and demonstrated that they strongly depend
on the strength of the feature and oscillate as the strength
increases, with a phase shift between the two. The running
of fNL is small, in this case. The behavior of fNL and gNL is
similar to the results of [13], where they discuss potentials
with a transition from higher-order terms to a quadratic
one.
What is new in the models considered here is that the

curvaton motion as it oscillates about the potential mini-
mum is nonlinear, unlike other models that have been
considered so far in the literature. The results that we
have found have interesting implications for searches for
non-Gaussianity in observational data. The fact that fNL
can switch sign at some parameter values implies that it is
possible that the nonlinear contributions to the curvature
perturbation could be coming from gNL alone, with fNL
being close to zero. A similar result was obtained in [14] in
the context of the curvaton potential with nonlinear cor-
rections to the quadratic term. It is also possible that both
fNL and gNL contribute comparably with the same or
opposite signs. The present work, thus, throws up the
need to understand different sources of primordial non-
Gaussianity and how they can be distinguished in the
observational data. It is important to devise observables
that can distinguish them. Such studies have been initiated
in [41,42]. We also want to mention that fNL and gNL are
controlled by two independent geometric quantities that
characterize the hyper-surface in field space, on which
multifield inflation ends. This has the implication that all
of the possible results for fNL and gNL in curvaton models
can be realized by tuning these two independent geometric
quantities, as shown in [43–45].
In principle, the three free parameters in the washboard

model, �=m, 	, and �, can be constrained by using the
observational constraints on fNL, gNL, and the amplitude of
perturbations. The parameters c and d in the single-feature
model can be similarly constrained. However, such a full
scan of the parameter space is beyond the scope of the
present analysis. Our purpose in this paper has been to
understand the systematic behaviors of fNL and gNL as
functions of the model parameters. We will tackle the
problem of scanning the parameter space in a future work.

FIG. 6 (color online). fNL and gNL are shown as functions of c
for the single-feature potential, with d, �=m, and ��=Mp kept

fixed.

FIG. 7 (color online). gNL versus fNL at different values of c
for the single-feature potential. The other parameter values are
�=m ¼ 10�2, ��=Mp ¼ 0:1, and d ¼ 0:1.
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APPENDIX: CURVATON MODELWITH
QUADRATIC POTENTIAL

For the curvaton model with quadratic potential, from
[40], we have

fNL ¼ 5

4fD
� 5

3
� 5

6
fD; (A1)

gNL ¼ � 25

6fD
þ 25

108
þ 125

27
fD þ 25

18
f2D; (A2)

where

fD ¼ 3��;D

4���;D

: (A3)

After inflation, the Universe is dominated by radiation, and
the Hubble parameter is related to the cosmic time t by
H ¼ 1

2t . The equation of motion of the curvaton field with

quadratic potential becomes

~� 00 þ 3

2x
~�0 þ ~� ¼ 0; (A4)

whose solution is

~� ¼ 21=4�ð5=4Þx�1=4J1=4ðxÞ; (A5)

where J
ðxÞ is the Bessel function of the first kind.
Therefore, the energy density of the curvaton is given by

�� ¼ 1

2
m2�2�

�
~�2 þ

�
d~�

dx

�
2
�

¼ �2ð5=4Þffiffiffi
2

p m2�2�x�1=2½J21=4ðxÞ þ J25=4ðxÞ�: (A6)

Adopting the sudden decay approximation, we have

��;D ¼ ��ðxDÞ
3M2

p�
2
�

’ 0:35
�2�
M2

p

ffiffiffiffiffiffi
m

��

s
; (A7)

in the limit of xD ¼ 1
2

m
��

� 1. In the literature, ��;D ¼
�2�
6M2

p

ffiffiffiffiffi
m
��

q
, which is roughly half of our exact result.
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