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Abstract

We construct two classes of magnetohydrostatic (MHS) equilibria for an axisymmetric vertical flux tube spanning
from the photosphere to the lower part of the transition region within a realistic stratified solar atmosphere subject
to solar gravity. We assume a general quadratic expression of the magnetic flux function for the gas pressure and
poloidal current and solve the Grad–Shafranov equation analytically. The solution is a combination of a
homogeneous and a particular part where the former is separable by a Coulomb function in r and exponential in z,
while the particular part is an open configuration that has no z dependence. We also present another open field
solution by using a self-similar formulation with two different profile functions and incorporating stratified solar
gravity to maintain the magnetohydrostatic equilibria, which is a modification of earlier self-similar models with a
twist. We study the admitted parameter space that is consistent with the conditions in the solar atmosphere and
derive the magnetic and thermodynamic structures inside the flux tube that are reasonably consistent with the
photospheric magnetic bright points for both open and closed field Coulomb function and self-similar models as
estimated from observations and simulations. The obtained open and closed field flux tube solutions can be used as
the background conditions for the numerical simulations for the study of the wave propagation through the flux
tubes. The solutions can also be used to construct realistic magnetic canopies.

Key words: magnetohydrodynamics (MHD) – Sun: activity – Sun: magnetic fields – Sun: photosphere – Sun:
transition region

1. Introduction

The small-scale magnetic structure in the solar photosphere
plays an important role in several phenomena, such as the
evolution of active regions (Muller & Mena 1987; Aschwanden
et al. 2000; Centeno et al. 2007), heating of the corona through the
dissipation of waves (Ruzmaikin & Berger 1998; Srivastava et al.
2017), and reconnection between flux tubes (van Ballegooijen
1986; Muller et al. 1994). Magnetic flux tubes span from the
photosphere to the higher atmosphere and are observed in the form
of small-scale magnetic structures. The topological rearrangement
of these flux tubes due to the motion of the photospheric footpoints
gives rise to magnetic reconnection, leading to energy release in
the solar corona (Parker 1988; Peter et al. 2005; Thalmann et al.
2013). Therefore, modeling of the proverbial flux tube is a key
aspect of understanding the various phenomena on the solar
surface and the Sun’s outer atmosphere.

There have been several previous attempts to construct a
model of flux tubes for both twisted and untwisted magnetic
fields. Schlüter & Temesváry (1958) studied a two-dimensional
(2D) axisymmetric flux tube model without twist for sunspots
using self-similar structure, where a self-similar parameter was
defined as a combination of r and z, and the relative vertical
magnetic field strength at any arbitrary point with respect to the
magnetic field strength at the axis is scaled with a Gaussian
profile function of the self-similar parameter. This model is
valid for open field lines in which the magnetic lines of force
rise from a horizontal plane and do not return in the model
domain. Yun (1971) implemented a twist in the self-similar
structure to model the sunspots. In this model, an empirical
form of the azimuthal magnetic field strength B r z,f ( ) was
taken from the data obtained from observations (Stepanov
1965). By solving for the variation of the pitch angle and
gradient of the pitch angle, the thermodynamic quantities with
the depth were calculated. Motivated by the model and the

self-similar structure proposed by Schlüter & Temesváry
(1958), Osherovitch (1982) assumed a quadratic form of the
flux function for the gas pressure to model a closed field flux
tube, where the magnetic lines of force rise and return to the
same horizontal plane.
Steiner et al. (1986) numerically studied a 2D model of an

open single flux tube with a twist using the standard boundary
conditions (BCs) including sheet current to study the magnetic
field line structure within and outside the flux tube. The
magnetic and thermodynamic structure for both single and
multiple flux tubes that span from the photosphere to the
corona have been studied for the case of an untwisted magnetic
field (Gent et al. 2013, 2014), in which an empirical form of the
magnetic field components is motivated by a self-similar
construction. A numerical model of flux tubes was studied by
Murawski et al. (2015), where an empirical form of magnetic
flux function was assumed; this was followed by a model to
study the propagation of the MHD waves through flux tubes
with an azimuthal velocity perturbation. The steady structure of
the 2D flux tube was used as a background initial condition to
study the propagation of the MHD waves. For example,
Vigeesh et al. (2009) assumed an empirical form of gas
pressure for investigating the wave propagation and energy
transport through the flux tube. Other interesting results of
wave behavior in the solar atmosphere have been presented by
several authors. Fedun et al. (2009) studied the propagation of
the acoustic wave through the solar atmosphere due to the
periodic drivers at the photosphere, and Shelyag et al. (2010)
modeled the wave propagation through the photospheric
magnetic bright points (MBPs).
In this work, we have constructed two different models of

flux tubes with twisted magnetic field for open and closed field
lines by solving the Grad–Shafranov equation (GSE; Grad &
Rubin 1958; Shafranov 1958). We have assumed a quadratic
form of the flux function for the gas pressure and poloidal
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current, which has previously been used to study the
equilibrium solution of terrestrial plasma (Atanasiu et al.
2004), and we extend it to solar flux tubes. As the MHD waves
follow the magnetic field lines, it is important to model flux
tubes with open field lines, so that MHD waves propagate
through the flux tube and dissipate in the upper atmosphere,
which is a key aspect of the coronal heating. A main goal of
this paper is to show that the closed field model, reported in
Sen & Mangalam (2018; hereafter SM18), is a special case of
the open field model with a twisted field line. The flux tube we
build is axisymmetric in structure and spans vertically upward
from the photosphere to the transition region. The case of a
linear form of the flux function for the gas pressure and
poloidal current, an equilibrium solution near the magnetic axis
of a plasma torus, was reported by Solov’ev (1968). SM18
studied the homogeneous solution of GSE, which is a special
case of the general solution of the quadratic case, to model a
flux tube with closed field lines with a twist. Here, we present
the full solution of the GSE, including both homogeneous and
particular parts, to model a twisted open field flux tube. The
other model we have built is a self-similar magnetic structure
with twist, with a generalized Gaussian (or power law)
incorporated into the magnetic shape functions; the gas
pressure and poloidal current are taken to be quadratic
functions of the flux function. The self-similar flux tube model
expands with height, which spans from the photosphere to the
transition region. After building the solutions semianalytically
and applying appropriate BCs, we calculate the magnetic field
structure and thermodynamic quantities inside the flux tube. As
MBPs observed in the photosphere (Muller & Mena 1987;
Centeno et al. 2007; Lagg et al. 2010; Shelyag et al. 2010) are
likely to be flux tubes, we compare our model with the existing
observations and simulations of MBPs.

The paper is organized as follows. In Section 2, we apply the
GSE to the cylindrical flux tube case and describe the common
BCs that are physically realistic and used in the modeling of
our flux tubes. In Section 3, we present the Coulomb function
model for open and closed fields, the appropriate BCs, and
show how the open field Coulomb model generalizes the
Coulomb field closed model. The solution of the self-similar
model and the appropriate BCs are presented in Section 4. In
Section 5, the results of our simulations and the variation of the
magnetic and thermodynamic profile functions are presented
for Coulomb function and self-similar models, and in
Section 6, the results obtained from the models are applied to
the existing observations of MBPs and the simulations for other
solar flux tubes. In Section 7, we compare the Coulomb
function and self-similar models and find the regime of
validity; we also discuss the advancements we have made
and how the models for open and closed field flux tubes are
useful for building realistic structures. Finally, in Section 8, we
summarize and highlight the major points of the work and
conclude how our findings may be useful for future numerical
studies. A glossary of all the symbols used throughout the
paper is provided in Table 1.

2. GSE for the Cylindrical Flux Tube

In a magnetic medium of field strength B, with gas (or
plasma) pressure p and mass density ρ, the magnetohydrostatic

(MHS) pressure balance equation is given by

B B gp
1

4
0, 1

p
r- +  ´ ´ + =( ) ( )

where g denotes the acceleration due to gravity at the solar
surface. The individual components of B can be expressed in
terms of the poloidal flux function, r z r B r z dr, ,

r
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where Ip represents the poloidal current. These forms of B B,r f
and Bz automatically ensure the solenoidal condition for B.
Using the axisymmetric condition we split the MHS equili-
brium Equation (1) into the r- and z-directions and plug in the
forms of magnetic field components from Equation (2), to find
two scalar partial differential equations
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where we assume the form of the gas pressure to be

p r z p p z, ; 41 2= Y +( ) ( ) ( ) ( )

this form is required in order to have a non-zero density
(see SM18). The f part of Equation (1) gives ∇Ψ×∇Ip=0,
which implies I Ip p= Y( ). We have the following form from
Equations 3(a), (4) for the GSE to be given by:
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From Equations 3(b), (4) we find
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Following SM18, by multiplying r4 z2p ¶
¶Y

on both sides of
Equation (6) and using Equation (5), we obtain

z
g

dp z
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1
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We will see later that the prescription of p2(z) will lead ρ to be a
positive quantity, hence the density within the flux tube is
independent of the radial distance r but varies with height z.
The temperature, T, inside the flux tube is calculated by the
ideal gas law according to the following form:

T r z
p r z

R z
,

,
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g

m
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where, R 8.314g = J mol−1 K−1 represents the gas constant and

z
z dz

1
1.12 9

t

z

e
0

t

òm m= =¯ ( ) ( )

is the mean effective molar mass from the photosphere to
the transition region given by the empirical relation,

z 1.288 1 0.535e
z

2.152

3
m = -

⎡
⎣⎢

⎤
⎦⎥( )( ) (Solov’ev & Kirichek

2015), in the domain of 0<z<2.152Mm. The formularies
of the derived functions for the Coulomb function helical flux
tube model are summarized in the Table 6. In Sections 3 and 4,
we reduce the GSE for different models of flux tubes with open
or closed field line structures. A flowchart of the obtained
solutions of the two different flux tube models is shown in
Figure 1.

Before we solve for the various cylindrical structures, we
discuss the BCs that are crucial to the models, applicable to
both open and closed field flux tubes. The magnetic field lines
that rise from a horizontal plane and do not return to the same

plane within the domain of interest are called open field lines
(see Figures 6, 12, 13). The field lines that rise and return to the
same horizontal plane are called the closed field lines (see
Figure 7). We take an idealized case in which the flux tube is
embedded in a magnetic field free region where there is no
current outside the flux tube. We apply the following standard
BCs that have been used by several authors (e.g., Mangalam &
Krishan 2000; Solov’ev & Kirichek 2015; Sen & Mangalam
2018): B r z0, 0r = =[ ( ) , B r z0, 0= =f ( ) ], which implies
that the magnetic field line is vertical at the axis of the flux
tube. At the boundary, the radial component vanishes, i.e.,
B r R z, 0r = =( ) . We also use BCs for which the total
pressure at the boundary of the flux tube matches with the
external pressure and the radial average of the internal gas
pressure at the transition region (z=zt) is equal to pt, where
the pressure at the photosphere (z= 0) outside the flux tube is
taken to be p 1.228 100

5= ´ dyne cm−2 and at the transition
region (z 2t = Mm), it is pt=0.1488 dyne cm−2; these are
taken from the Avrett–Loeser model (Avrett & Loeser 2008).
We specify the appropriate BCs to model both the open and

Table 1
Glossary of Symbols Used in the Different Flux Tube Models

Symbols common to all the models

r Radial coordinate in cylindrical geometry f Azimuthal coordinate in cylindrical geometry
z Vertical coordinate in cylindrical geometry Br Radial component of the magnetic field strength
Bf Azimuthal component of the magnetic field strength Bz Vertical component of the magnetic field strength
B0 Magnetic field strength at the center of the flux tube Ip Poloidal current
Ψ Total flux function Ψb Flux at the boundary
k Scale factor of the pressure-scale height p Gas pressure
pT Total pressure inside flux tube p0 Gas pressure at the photosphere
pe Pressure outside the flux tube in the solar atmosphere pt Pressure at the transition region
zt Height of the transition region from the photosphere ρ Gas density inside the flux tube
T Temperature inside the flux tube g Acceleration due to gravity at the photosphere
Rg Universal gas constant μe Effective molar mass
m̄ Mean effective molar mass

Coulomb function model

a, α, b, β, κ Parameters of the GSE ψh Homogeneous solution of GSE, same as C
Cy

s Radial part of the homogeneous solution Z Vertical part of homogeneous solution
ψp Particular solution of GSE C

Xy General Coulomb solution of the GSE

C
Oy Coulomb function open field solution C

Cy Coulomb function closed field solution

jf Sheet current along azimuthal direction at flux tube
boundary

jz Sheet current along vertical direction at flux tube
boundary

p20 Gas pressure at the center of the flux tube R Radius of the flux tube
rb Cutoff radius inside the flux tube

Self-similar model

ξ Self-similar parameter DX Shape function of the flux function
Bz0¢ Vertical gradient of magnetic field at the center of the

flux tube
c̄ Dimensionless twist parameter of the field lines

f̄ Dimensionless shape function parameter pc Gas pressure at the center of the flux tube

S
Oy Self-similar open field flux R90 Radius of the flux tube where 90% of the flux is

enclosed

Generalized Gaussian flux tube
model

ψG Flux function DG Shape function of the flux function
nG Power index of shape function profile RG Radius of the flux tube

Power-law flux tube model

Py Flux function DP Shape function of the flux function
nP Power index of the shape function profile RP Radius of the flux tube

3
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closed field flux tubes below:

B r zBC1: 0, 0, 10ar = =( ) ( )

B r zBC2: 0, 0, 10b= =f( ) ( )
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p R z p zBC4: , , 10dT e=( ) ( ) ( )

R
p r z dr pBC5:
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The BCs that distinguish between the closed and open field flux
tubes are as follows:

B R z,
0; closedfield
0; openfield,

11
=
¹f

⎧⎨⎩( ) ( )

which reduces to the condition,

R z,
0; closedfield
0; openfield,

12bY = Y
=
¹
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which is derived in Section 3. The open (general) solution is
obtained in Section 3 and it is reduced to the special case of the
closed solution by taking Ψb=0, as presented in Section 3.

3. Coulomb Function Solution of the Helical Flux Tube
Model

For magnetohydrostatic equilibria with uniform solar gravity
and axisymmetric conditions, we have split p r z, =( )
p r z p z,1 2Y +( ( )) ( ) in order to have a non-zero density
(SM18). If we take the form of p1(Ψ) as a linear function of
Ψ, we find that BCs 1–5 (Equations 10(a)–(e)), which are
crucial for our model, will not be satisfied for arbitrary R
values. On the other hand, the quadratic function of Ψ, which is
more general than the linear form, is the simplest allowed form
for p1 and Ip, satisfying all the BCs (Equations 10(a)–(e)), in
which R becomes a free parameter, and can be can be any
chosen value within the domain of our interest. Therefore, we
assume p1(Ψ) and Ip

2 Y( ) to be polynomials of Ψ up to second
order (Atanasiu et al. 2004),

p
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Figure 1. The two families of solutions presented in the text: the Coulomb function model and the self-similar model, shown along with the applicable boundary
conditions.
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where the parameters a b I, , , , 0a b¢ ¢ ¢ ¢ are to be determined by
appropriate BCs and the function p z2 ( ) will be evaluated later.
Plugging Equations 13(a), (b) into Equation (5) we obtain a
second order scalar linear partial differential equation:

r r r z
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introducing the scaling relations,

r R R z
a

B
a

a R

a
b

b

B a

R

, , ,
4

,

4
, , , 15

b
b

b

0
0

4

0

2

v t y

a
a

b
b

= = =
Y ¢

=
¢

=
¢

¢
=

¢

¢
=

¢
Y

( )

where Ψb, R, B0 are the boundary flux, radius and the magnetic
field strength at the center of the flux tube, respectively, and
z z z0=¯ , where z0 is a constant. To solve this equation, we
split by = Y Y into homogeneous ψh and particular part ψp,
i.e., h py y y= + . We plug ψ into Equation (14) and separate
out the homogeneous and particular parts to obtain the
following dimensionless equations:
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The solution of Equation (16) is separable and given by
z s Z z,hy v v=( ¯) ( ) ( ¯), which has been shown in SM18 to be

given by

s cF a a, with 0 , 180
2 2v a k v= - - >( ) ( ) ( ) ( )

where F a,0
2 2a k v- -( ) represents the Coulomb function

(Abramowitz & Stegun 1972) and ,kR

a2 2 1 4k = where the value

of k is evaluated later. The z-part solution of Equation (16) is
given by
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power=series solution
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A similar but different homogeneous solution that is oscillatory
along the z-direction has been used for the cases of both
D-shaped and toroidally diverted laboratory plasma (Atanasiu
et al. 2004). The general solution of the GS Equation (14) is
given by ψ=ψh+ψp. Since z,y v( ¯) and z,*y v( ¯), its
complex conjugate, are the valid solutions of Equation (14), we
construct a real solution of Equation (14) by redefining
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The solution ψh alone gives the closed field structure of the flux
tube (SM18), which we denote as ;C

Cy the general solution is a
combination of ψh and ψp and we denote the open field flux
tube structure as C

Oy .
The total flux function z,C

Xy v( ¯) is given by

z s Z z, , 22C
X

py v v y v= +( ¯) ( ) ( ¯) ( ) ( )

where s(ϖ) and py v( ) are given by Equations (18) and (21),
respectively. Now, z,C

Xy v( ¯) has to be zero at the axis (i.e.,
ϖ=0) for all z̄ , to keep the field finite at the origin. Since
s(0)=0, which satisfies the BC 1 (Equation 10(a)), we obtain
from Equation (22), 0 0py v = =( ) . From Equation (21), we

have 0p 8
y v = = - b
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( ) . Therefore, we obtain β=0. From

Equation (21), py v( ) reduces to
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From Equations (2) and (22) we have
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The steps to obtain Equation (25) are given in Appendix A.
From Equations (2), (22) we have
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Applying BC 3 (Equation 10(c)) and using Equation (26), we
find s 1 0v = =( ) . From BC 2 (Equations 10(b)) and 13(b)
we find I0=0. We assume that the external pressure from
photosphere to transition region decreases exponentially as

p z p kzexp 2 , 30e 0= -( ) ( ) ( )

where k is the pressure-scale height, which is determined by the

relation, k ln 3.405
z

p

p
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2 t t

0= =( ) Mm−1, where p0=1.22×

105 dyne cm−2, pt=0.148 dyne cm−2, and zt=2Mm. By
matching the pressure-scale heights inside and outside the flux
tube, we see that p2(z) follows
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where p20 is evaluated later. Finally, the expression of p r z,( )
from Equations (4), 13(a) is given by
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where p p B20 20 0
2=¯ , and s Z z, , pv y v( ) ( ¯) ( ) are given by

Equations (18), (19), (23), respectively. We now calculate the total
pressure at the boundary of the flux tube that includes the
contribution due to gas pressure and the magnetic forces due to the
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presence of the sheet currents jf (SM18) and jz. The pressure and
radial component of the MHS force balance Equation (1) yields
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The sheet currents jf and jz take the forms
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where [...]R denotes the jump condition at the boundary and
B p,i i{ } and B p,e e{ } are the internal and external magnetic fields
and gas pressures in the flux tube, respectively. To calculate j sf
and jzs, we assume an infinitesimal current loop of vertical
height L and radial extent R - to R + placed at the
boundary of the flux tube (see Figure 2), and by applying the
line integral along the loop, we obtain
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The total internal magnetic field is given by B Bi r
2 2= +

B Bz
2 2+f . Applying the BC 3 (Equation 10(c)) and Be=0,

from Equation (37) we obtain
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Figure 2. Geometry of the flux tube at the boundary showing sheet currents.
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p z d p, . 44et t
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ò v v =( ¯ ) ( )

The explicit forms of Equations 44(a)–44(e) are given
by Equations (79)–(83) in Appendix B. The five Equations
(79)–(83) consist of seven unknown variables, a b, , , ,ba y{
p R B, , ;0¯ } so there is a unique solution to the Coulomb
function open field model for a given pair of unknown
variables. Equations (79) and (80) contain three variables, a, α,
and R, and we use these two equations to obtain a(R) and α(R).
From Equation (83), we calculate R B b, ,b 0y ( ) and then find
b R B, 0( ) from Equation (82), and hence R B,b 0y ( ), and then
evaluate p R B, 0¯ ( ) from Equation (81). As a result, the complete
solution for the open field flux tube depends only on R and B0,
which are the free parameters of the model. Per BC1–BC5
(Equations 10(a)–10(e)), which are used for the open field flux
tube model, the magnetic field component at the boundary of
the flux tube is given by

B z
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If we demand additionally that B z1, 0v = =f ( ¯) , then from
Equation 44(d), ψb=0; also, Equation 44(d) gives b=0.
Therefore, from Equation (23) we obtain

0. 46py v =( ) ( )

This represents the solution of the homogeneous part ψh of
GSE, which has been discussed in SM18, and is applicable for
the closed field flux tube model. Therefore, we need to solve
Equations 44(a), (c), (e), which are given in their explicit forms
by Equations (79), (81), (83) (with b=ψb=0), numerically
to find the parameters a, α, and p̄ in terms of R B, 0{ }, which
are the free parameters of the closed field model. The
formularies of the derived functions for the Coulomb function
helical flux tube model are summarized in Table 6. We discuss
the various configurations of the Coulomb function open and
closed field structure of flux tubes in Section 5.1.

4. Self-similar Model

The basic formulation of a self-similar model of a flux tube is
based on Schlüter & Temesváry (1958; hereafter ST58). For an
axially symmetric cylindrical geometry (r, f, z), where f is
ignorable, the magnetic field components are given by

Equation (2). The coordinates r and z are combined together
into a new dimensionless variable ξ, which is called the self-
similar parameter and as a consequence, the flux function Ψ can
be expressed only as a function of ξ, i.e., r z, xY = Y( ) ( )
(ST58). We define the dimensionless parameters (in the LHS)
by introducing the scaling relations
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where, Ψb, R, B0 are the boundary flux, radius, and magnetic
field strength at the center of the flux tube, respectively, and
z z z0=¯ , where z0 is a constant length. From ST58, the self-
similar parameter ξ is defined by

z , 48x z v= ( ¯) ( )

which describes the radial size distribution of the flux tube with
height from the base. Plugging in Equation (48), we can rewrite
the GS Equation (5) in the form
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and the z-part of GS Equation 3(b) gives the expression of ρ,
Equation (7), which is self-consistent for both the Coulomb
function and self-similar models. We define a quantity that is
called the magnetic shape function given by

D
d

d

1
. 50X x

x
y
x

=( ) ( )

Plugging Equation (50) into Equation (49) we obtain

D
d

d
D

d

d
D

dI

d

p

2

2

1

2
4 , 51

b
X

b
X

b
X

p

2

2
2

2

2
2 2 2

2

4
2 4

2

2
2 1

y
t

x x zz
y
t x

x x z

y
t x

x z
x x

z p
x

 + ¢

+ + = -
¶
¶

( ) [ ( )]

( ( ))
¯ ¯ ( )

and integrating Equation (51) with respect to ξ from 0 to¥ we
write

D d D

D D

dI

d
d

p
d

2

2
0

2

1
4 . 52

b
X

b
X

b
X X

p

2

2 0

2
2 2

2
2 2

0

2 4

4
2 2

2

0 2

2

0

1

ò

ò ò

y
t

zz x x x
y z
t

x x

y z
t

z
x x

x p
x

x

 +
¢

+ ¥ -

+ = -
¶
¶

x

¥

=
¥

¥ ¥

( ) [ ( )]

[ ( ) ( )]

¯ ¯ ( )

Following ST58, we define

y z
D

z , 53b2 0 2y
t

z=( ¯) ( ¯) ( )

Table 2
Expression of the Integrals in Equation (59) and λX in Equation (60), for
Generalized Gaussian (X = G), and Power-law (X = P) Shape Function,
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Next, using Equations (52) and (53), we obtain

yy

D
D d

y

D
D

y

D
D D

y

D

dI

d
d

p
d

2

2

2

1
4 . 54

b
X

b
X

X

b

p

0 0

2
2

0

2 2
0

4

0
2 2

2
0
2

2

0 0 2

2

0

1

ò

ò ò

y
t

x x x
y
t

x x

t

t
y x x

x p
x

x


+

¢

+ ¥ -

+ = -
¶
¶

x

¥

=
¥

¥ ¥

( ) [ ( )]

[ ( ) ]

¯ ¯ ( )

To solve Equation (54), we need to specify the functional form
of p1, Ip, and DX x( ) to study the flux tube model with twisted
magnetic field under the similarity assumption. The functional

form of p f
1 2

2= Y is taken from Osherovitch (1982), where f is
the shape function parameter, and the poloidal current, Ip,
defined by Yun (1971) and Osherovitch (1979), and motivated
from the observations of Stepanov (1965). Hence, the form of
gas pressure p and poloidal current Ip are taken to be
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for the positivity of ρ(z) at all z, which is given by Equation (7).
Here, p z p kzexp 2c2 = -( ) ( ) denotes the gas pressure at the
flux tube axis, with pc being the pressure at the center of the

flux tube, and
B

rB

2

z
c = f( ) being a constant pitch angle

parameter. We deviate from (Yun 1971; Osherovitch 1982)
by employing the extra term, p kzexp 2c -( ), with p1 in
Equation (55), to maintain the hydrostatic vertical pressure
balance condition under the influence of solar gravity, with two
options for the shape function DX x( ) specified by
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Table 3
Numerical Values of the Different Parameters Obtained from the Coulomb Function Open Field Flux Tube Model for Different Combinations of R and B0 Are Shown;

the Units of the Various Quantities Are in the Square Brackets at the Top

Run # B0 [kG] R [km] by 10 3-[ ] a α 10 2-[ ] κ [106] b 10 3-[ ] p̄

C1 1 100 2.57 9.390 2.74 4.85 1.350 0.109
C2 1.2 100 2.22 9.390 2.74 4.85 1.170 0.105
C3 1.5 100 1.80 9.390 2.74 4.85 0.949 0.104
C4 1 120 1.92 9.388 2.54 6.99 1.008 0.159
C5 1.2 120 1.62 9.388 2.54 6.99 0.849 0.165
C6 1.5 120 1.31 9.388 2.54 6.99 0.692 0.163
C7 1 130 1.69 9.389 2.43 8.21 0.880 0.184
C8 1.2 130 1.42 9.389 2.43 8.21 0.744 0.181
C9 1.5 130 1.15 9.389 2.43 8.21 0.603 0.182
C10 1 140 1.50 9.383 2.31 9.52 0.783 0.205
C11 1.2 140 1.25 9.383 2.31 9.52 0.661 0.204
C12 1.5 140 1.00 9.383 2.31 9.52 0.535 0.208
C13 1 150 1.38 9.378 2.18 10.93 0.723 0.233
C14 1.2 150 1.16 9.378 2.18 10.93 0.606 0.235
C15 1.5 150 0.94 9.378 2.18 10.93 0.492 0.237
C16 1 160 1.31 9.388 1.98 12.43 0.665 0.276
C17 1.2 160 1.11 9.388 1.98 12.43 0.577 0.276
C18 1.5 160 0.89 9.388 1.98 12.43 0.465 0.279
C19 1 180 1.14 9.395 1.72 15.73 0.587 0.402
C20 1.2 180 0.96 9.395 1.72 15.73 0.497 0.407
C21 1.5 180 0.78 9.395 1.72 15.73 0.405 0.409

Figure 3. Radial variation of the flux function, normalized with respect to the
maximum value, obtained from the Coulomb function open field model for run
C4 in Table 3. The horizontal axis is scaled with respect to the total radius R.
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Table 4
Different Combinations of the Input Parameters and the Dimensionless Parameters for the Self-similar Model where RG and RP Represent the Radii of the Flux Tubes

for the Generalized Gaussian and Power-law Profiles, Respectively

Run # bY B0 pc Bz0¢ χ f nG nP by f̄ Bz0¢¯ c̄ RG RP

1017( Mx) (kG) (105 dyne cm−2) (G km−1) (cm−2) 10 30-( cm−4) (km) (km)

S1 1 1 1 1 10−16 4.56 2 3 0.01 456 1 1 214 261
S2 1 1 1 1 10−14 4.56 2 3 0.01 456 1 100 214 261
S3 1 1 0.8 1.5 10−18 8.56 2.5 3.5 0.01 856 1.5 0.01 196 138
S4 1 1 0.5 2 10−16 14.56 3 4 1 1456 2 1 186 100
S5 1 2 1 1 10−14 4.56 2 3 0.005 456 0.5 100 151 184
S6 1 2 0.8 1.5 10−18 8.56 2.5 3.5 0.005 856 0.75 0.01 139 98
S7 1 2 0.5 2 10−16 14.56 3 4 0.005 1456 0.25 1 131 71
S8 5 1 1 1 10−14 0.182 2 3 0.005 18.2 1 100 479 584
S9 5 1 0.8 1.5 10−18 0.342 2.5 3.5 0.005 34.2 1.5 0.01 439 308
S10 5 1 0.5 2 10−16 0.582 3 4 0.005 58.2 2 1 416 225
S11 5 2 1 1 10−14 0.182 2 3 0.025 18.2 0.5 100 339 413
S12 5 2 0.8 1.5 10−18 0.342 2.5 3.5 0.025 34.2 0.75 0.01 310 218
S13 5 2 0.5 2 10−16 0.582 3 4 0.025 58.2 0.25 1 294 159
S14 10 1 1 1 10−14 0.0456 2 3 0.1 4.56 1 100 678 826
S15 10 1 0.8 1.5 10−18 0.0856 2.5 3.5 0.1 8.56 1.5 0.01 621 436
S16 10 1 0.5 2 10−16 0.145 3 4 0.1 14.56 2 1 589 318
S17 10 2 1 1 10−14 0.0456 2 3 0.05 4.56 0.5 100 479 584
S18 10 2 0.8 1.5 10−18 0.0856 2.5 3.5 0.05 8.56 0.75 0.01 439 308
S19 10 2 2 0.5 10−16 0.145 3 4 0.05 14.56 0.25 1 416 225

Table 5
The Values of the Magnetic Field Strength and Thermodynamic Quantities Obtained from the Coulomb Function Open Field Flux Tube Model for the Parameter Set
of Run C4 in Table 3, where rb=84 km; and the Self-similar Model with Gaussian Profile, where RG=214 km, and Power-law Profile, with nP=3, where

RP=261 km, for the Parameter Set of Run S1 Corresponding to Table 4, Are Shown

Models r z (Mm) Bz(G) p (dyne cm−2) ρ (g cm−3) T (K)

0 0 1000 1.030 105´ 2.44 10 7´ - 5656
Coulomb function open field 0 2 2.61 0.234 5.56 10 13´ - 5656

rb 0 0 1.04 105´ 2.44 10 7´ - 5690
rb 2 0 0.2445 5.56 10 13´ - 5890

0 0 103 1.0 105´ 2.37 10 7´ - 5630
Generalized Gaussian 0 2 3.44 0.227 5.44 10 13´ - 5630

RG 0 6.73 1.17 105´ 2.37 10 7´ - 6620
RG 2 2.2 1.54 5.44 10 13´ - 38000

0 0 103 1.0 105´ 2.37 10 7´ - 5630
Power law 0 2 75 0.227 5.44 10 13´ - 5630

RP 0 50 1.17 105´ 2.37 10 7´ - 6620
RP 2 19 1.75 5.44 10 13´ - 43000

Figure 4. Radial variation of Br, Bf, and Bz, normalized with respect to the
maximum values of Br∣ ∣, Bf∣ ∣ and Bz∣ ∣, respectively, obtained from the Coulomb
function open field model, for run C4 in Table 3. The horizontal axis is scaled
with respect to the total radius R.

Figure 5. Radial variation of p normalized with the value at the center of the
flux tube p20, obtained from the Coulomb function open field model, for run C4
in Table 3. The horizontal axis is scaled with the total radius R.
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We see that both the shape functions (Equation (57)) vanish
asymptotically at ;x  ¥ hence from Equation (54) we obtain
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Next, we evaluate the integrals of Equation (59) for both
generalized Gaussian and power-law shape functions. We will
see later that, from Equation (66), the flux function Py x( ) varies
as n2 Px - , in the domain 0 ;x< < ¥ therefore ψP(ξ) will
converge to a finite value at x  ¥, if np>2. The results of
the integrals are provided in Table 2.

Using the values of the integrals from Table 2 and redefining
y z y0 0¢ = º ¢( ¯ ) , we reduce Equation (59) to the form
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in which B z
B z

B0
z0 0

0
¢ =

¢¯ , z0
2c c=¯ , and f fz0

4=¯ . The form of

Equation (60) is common for both generalized Gaussian
(X=G) and power-law (X= P) shape functions, where the
functions λX(n) for both shape functions are defined in Table 2.
Here we have used the notation B B 0, 0z z0¢ = ¢( ), which
represents the vertical gradient of B z0,z ( ) at the center. From

Figure 6. The 3D configuration of 50 different magnetic field lines for the open field flux tube obtained from the Coulomb function helical flux tube model. The left
and right columns show the side and top views of the configuration. The domain of the simulation box is −7�x�7, −7�y�7, where the x- and y-axes are scaled
in units of 20 km. The vertical domain is 0�z�14 where the z-axis is scaled in units of 150 km. The field line configurations for the bottom and top rows are
simulated for the parameter sets of runs C4 and C10, respectively, in Table 3.
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Equation (60), we have the following integral relation:
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where the function G(y) is given by
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We evaluate the integral (61) numerically, which gives
z z y=¯ ¯ ( ). Thereafter, inverting the function between z̄ and y,

we evaluate y y z= ( ¯). From Equations (48), (53) we obtain

D
y z . 63

b 0
x

t
y

v= ( ¯) ( )

Using the similarity assumption, B r z z D,z
B

X
2b0 z x= y

t
( ) ( ) ( )

(ST58), and Equations (2), (48), (63) we calculate the magnetic
field components, representing the most general self-similar
solution, to be,

B z
B

D
y z D, , 64az X

0

0

2v x=( ¯) ( ¯) ( ) ( )

B z
B

D
y z y z D, , 64br X

0

0
v

v
x= - ¢( ¯) ( ¯) ( ¯) ( ) ( )

Figure 7. The 3D configuration of 50 different magnetic field lines for the closed field flux tube obtained from the Coulomb function helical flux tube model. The left
and right columns show the side and top views of the configuration. The domain of the simulation box is −14�x�14, −14�y�14, where the x- and y-axes are
scaled in units of 10 km. The vertical domain is 0�z�15, where the z-axis is scaled in units of 150 km. The field line configurations for the bottom and the top rows
are simulated for the parameter sets of runs C4 and C10, respectively, in Table 3.
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The flux function for the self-similar model is obtained by
integrating the shape function
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Employing Equations (50), (57), we obtain the open flux
function for generalized Gaussian, ψG, and power-law, ψP,
models to be given by

From Equation (66) it is seen that Gy x( ) and Py x( ) converge to
unity for x  ¥. The structure of the self-similar model of a
flux tube is that the magnetic field decreases asymptotically in
the radial direction to zero at infinity. The flux tube does not
have any sharp boundary that can make a partition with the
external solar atmosphere. In other words, the self-similar flux
tube is embedded in a continuous magnetic medium that has a
maximum field strength at the base of the axis of the flux tube
and the radius of the flux tube is infinity. We take the effective
radius of the flux tube as the distance from the axis on the
z=0 plane, which makes a circular area where 90% of
the total flux is enclosed. We refer to this radius as R90. The
total flux is zero at the axis and it increases asymptotically
with r. The explicit forms of the magnetic field components,
obtained from Equations 64(a), (b), (c), using Equations (57),
58(a), (b), (63), are

The magnetic field components B z,r v( ¯) and B z,vf ( ¯) for the
self-similar model follow the BCs (1, 2, 3; Equations 10(a), (b),
(c)) for R = ¥. B z,z v( ¯) decreases monotonically with ϖ and
converges to zero at infinity. The total pressure far from the
flux tube axis is only due to the gas pressure p. We use BC 4
(Equation 10(d)) at z=0, for r  ¥, so

p r p, 0 . 700 ¥ =( ) ( )

From Equation (66), we see that the flux function for both a
generalized Gaussian and power law converges to unity at
v  ¥, i.e.,

1. 71S
Oy v  ¥ =( ) ( )

Using Equations (55), (70), we obtain

f p p2 , 72c0= -¯ ( ¯ ¯ ) ( )

and the explicit form of p z,v( ¯) for both the generalized
Gaussian and the power-law models is given by
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where p p B0 0 0
2=¯ and p p Bc c 0

2=¯ . The formularies of the
derived functions for the self-similar flux tube model are
summarized in Table 6. A flowchart of the solutions to the
Coulomb function and self-similar models is shown in
Figure 1.
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5. Results Obtained from the Models

5.1. Coulomb Function Helical Flux Tube Model

This magnetohydrostatic Coulomb function helical flux tube
model consists of the free parameters R and B0 and its
functional dependence through a(R), α(R), κ(R), b R B, 0( ),

R B,b 0y ( ), and p R B, 0¯ ( ). We choose the parameter ranges,
1 kG�B0�1.5 kG and 100 km�R�180 km, consistent
with the observations of MBP size and field strength
distributions (Utz et al. 2009, 2013). In Table 3, we show the
solutions for combinations of the free parameters R B, 0{ },
where we notice the following trends:

1. The boundary flux ψb decreases with R for the same B0,
and with B0 for the same R within the parameter space of
runs C C1 21- .

2. Due to the pressure balance at the boundary of the flux
tube, p̄ increases with R for the same B0, but there is no
fixed trend with B0 for the same R within the parameter
space of runs C C1 21- .

As an example, we show the solution of C
Oy , and the magnetic

and thermodynamic structure of the flux tube for run C4. The
radial variation of the solution of C

Oy , magnetic components,
and pressure inside the flux tube are shown in Figures 3–5,
respectively. Examples of 3D the configuration of the
magnetic field lines for open and closed field are shown in
Figures 6 and 7 for runs C4 and C10. A 2D vertical projection
of the magnetic field lines for C

Oy inside the flux tube along
r−z plane is shown in Figure 8. The density inside the flux
tube is constant along the radial direction, but it decreases
along z, whereas the temperature varies along the r-direction
and is nearly constant along the z-direction at the axis. The
vertical variations of Bz, p, and ρ are shown in Figure 9.
Conclusions from figures and tables are discussed in
Section 7.

5.2. Self-similar Model

The self-similar model we developed consists of the
dimensionless parameters B,b z0y ¢¯ , f̄ , and c̄, which are
the functions of the input parameter set B B p, , ,b z c0 0Y ¢{ , c}.
The self-similar flux tube solutions are spanned by these
parameters, but the structures remain similar. We use the values
of these input parameters in the range, 10 10b

17 18Y = – Mx
(Zhang et al. 1998; Hagenaar et al. 1999; Guglielmino et al.
2011), B0=1–2 kG (Zhang et al. 1998), and Bz0¢ in the range
1–2 G km−1 (Wittmann 1974; Pahlke & Wiehr 1990; Balthasar
& Schmidt 1993), p pc 0< (Shelyag et al. 2010 and SM18),
which are observed for small-scale magnetic structures in the
photosphere. The generalized Gaussian profile reduces to the
Gaussian profile for nG=2, and it has been shown in Section 4
that for the power-law profile, the flux function converges to a
finite value, at infinite radius, only for nP>2. We study the
different cases for nG=2–3, nP=3–4 and 0.01 100c =¯ – for
different combinations of the other parameter sets B,b z0Y ¢{ ¯ ¯ , f̄ },
which are shown in runs S1–S19 of Table 4. For the parameter
set of runs S1–S19, we find the following results:

1. For the same bY and B0, with the increase of nG and nP,
RG and RP decrease, respectively.

2. For the same nG, nP, and Ψb, with the increase of B0, RG

and RP decrease; whereas for the same nG, nP, and B0, RG

and RP increase with increasing Ψb.
3. For a fixed parameter set by{ , B z0¢¯ f̄ , c̄}, we see that

R RG P> for nG=2 and nP=3, but for values nG�2.5
and nP�3.5, RG<RP; this means that the radii of the
flux tubes for the power-law profiles fall off more quickly
than those of the generalized Gaussian profiles for higher
values of nG and nP.

As an example, we show the solution of S
Oy and the magnetic

and thermodynamic structures for run S1 in Table 4. The values
of the magnetic and thermodynamic quantities obtained from
the self-similar model are reported in Table 5, for both the
Gaussian and power-law shape function profiles. The radial
variations of the generalized Gaussian and power-law flux
function are shown in Figure 10 for different values of nG and
nP, and the variation along the r−z plane is shown in

Figure 9. Vertical distribution of Bz, p, and ρ, normalized with respect to the
values at the flux tube center, B0, p20, and ρ0, respectively, obtained from
Coulomb function open field model for the parameter set of run C4 in Table 3.
The horizontal axis is scaled in the units of Mm. The values of the scale factors
are B0=1 kG, p20=1.03×105 dyne cm−2 and ρ0=2.44×10−7 g cm−3.

Figure 8. Contour plot of the flux function corresponding to run C4 in Table 3,
obtained from the Coulomb function open flux tube model. The horizontal axis
is scaled to the radius R and the vertical axis is scaled to the pressure-scale
height h=162 km. The contours have been normalized with respect to the
maximum value of the flux function.
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Figure 11. The 3D configurations of the field lines for the
generalized Gaussian and power-law self-similar models are
shown in the Figures 12 and 13 for the parameter sets for runs
S1 and S2 given in Table 4. The radial and vertical distributions
of the magnetic field components are shown in Figures 14 and
15, respectively, for both the Gaussian and power-law models,
whereas the density inside the flux tube does not vary along the
r-direction but decreases along the z-direction which is shown
in the Figure 16. The variations of p and T in the r−z plane
obtained from the self-similar model are shown in Figures 19
and 20 for Gaussian and power-law shape function profiles.
Conclusions drawn from Figures 6, 7, 9, 12, 13, 16, 18, 19, 20,
21, and Tables 3–5 are discussed in Section 7.

6. Comparing Our Models with Observations

We compare our models with the observations reported by
high-resolution and high-cadence instruments. The small-scale
magnetic structures in the solar photosphere are often found in
the forms of MBPs, which are small-scale magnetic flux tubes
with open field lines (Berger et al. 1995; Centeno et al. 2007;

Lagg et al. 2010). Therefore, the MBPs are the best candidates
to compare our open field flux tube models with the
observations. MBPs can be identified by spectropolarimetric
measurements or they can be seen by the G-band filtergrams
(Utz et al. 2009, 2013; Yang et al. 2016). Next, we compare the
observed magnetic field strength, size, and thermodynamic
quantities of the MBPs with those obtained from our models.
The MBPs are observed as a region of the unipolar flux
concentration, therefore, in the Coulomb function model, we
construct a cylindrical boundary of cutoff radius rb inside the
total simulation domain, where the line-of-sight magnetic field
Bz vanishes. The magnetic field strength inside the cylinder of
the cutoff radius is always positive. From the recent
observations by Utz et al. (2009, 2013), it has been reported
that the MBPs’ number distribution for the size peaks in the
range 160–200 km and the magnetic field strength is at
∼1.4 kG. From Figure 4 we see that Bz vanishes at
rb=84 km, where R=120 km is the entire radial simulation
domain. We choose the parameter ranges, 1 kG�B0�1.5 kG
and 100 km�R�180 km, for which the magnetic and
thermodynamic quantities obtained from our model are in

Figure 10. Radial variation of the flux function, normalized with respect to the maximum values for different values of n for generalized Gaussian (left) and power-law
(right) shape functions for the parameter set of run S1 in Table 4. The horizontal axes are scaled with the total radius R.

Figure 11. Contour plots of the flux functions for Gaussian (left) and power-law (right) profiles for nP=3 for the parameter set of run S1 in Table 4. The horizontal
axes are scaled with the total radii RG=214 and RP=261 km, and the vertical axes are scaled with the pressure-scale height h=162 km. The contours are
normalized with respect to the maximum value of the flux function.
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reasonable agreement with the solar atmosphere (Vernazza
et al. 1981), and the selection of the R B, 0{ } parameter space is
also consistent with the observations of MBP size and field
strength distributions (Utz et al. 2009, 2013). The values of the
magnetic and thermodynamic quantities obtained from the
Coulomb function open field model are reported in Table 5. For
the self-similar model, the choice of the parameter space is
consistent with the MBPs. We take the flux value in the range
of 1017–1018 Mx which is a typical flux value for MBPs(Zhang
et al. 1998; Hagenaar et al. 1999; Guglielmino et al. 2011).
According to previous studies by Shelyag et al. (2010)
and SM18, the gas pressure at the axis of MBP is less than
its boundary gas pressure, so we have chosen the parameter
pc<p0. The field strengths of the magnetic footpoints

observed in the photosphere for MBPs are ∼1 kG, with a
distribution peak at 1.3 kG (Utz et al. 2013). Thus, we use the
value of B0 in the typical range of 1–2 kG (Zhang et al. 1998)
in our model. The vertical gradient of the magnetic field
strength at the photosphere is ∼1 G km−1 (Wittmann 1974;
Pahlke & Wiehr 1990; Balthasar & Schmidt 1993). Hence, we
use the value of Bz0 ¢ in the range of 1–2 G km−1 in our model.
We have reported combinations of the free parameters and
the corresponding input parameters in Table 4. Within the
parameter sets of runs S1–S19 in Table 4, we note that the
minimum and maximum radii of the flux tubes are 151 and
678 km, respectively, for the Gaussian model, and 71 and
826 km, respectively, for the power-law model, which are in
reasonable agreement with the observations of MBP size

Figure 12. The 3D configuration of 50 different open field lines inside the flux tube obtained from the self-similar model for the Gaussian profile. The left and right
columns show the side and the top views of the configurations, respectively. The domain of the simulation box is −10�x�10, −10�y�10 and 0�z�20,
where the x-, y-, and z-axes are scaled in units of 100 km. The field line configurations for the bottom and the top rows are simulated for the parameter values of
Table 4 corresponding to runs S1 and S2, respectively.
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distributions (Utz et al. 2009). The values of the magnetic and
thermodynamic quantities obtained from a self-similar model
are reported in Table 5, which is also in reasonable agreement
with the solar atmosphere reported by Vernazza et al. (1981).

7. Discussion of the Models

The main findings of our simulations are as follows:

1. The Coulomb function model is easier to implement for the
numerical studies, as it consists of two free parameters (R,
B0); on the other hand, the self-similar model consists of five
free parameters (Ψb, B0, pc, Bz0¢ , and χ). From Table 5, we
see that the rise of the gas pressure along the radial direction
from the axis to the boundary is higher for the self-similar
model than the Coulomb function model at higher z. The
density within the flux tube does not vary with r; hence, the

rise of the temperature from the axis to the boundary at
higher z is also higher for the self-similar model relative to
the Coulomb function model. For the Coulomb function
model, the radial boundary of the flux tube is defined as
where Bz vanishes; on the other hand, for the self-similar
model, Bz(R)¹0, whereas Bz reduces along the radial
direction from the axis to the boundary for the Gaussian
model faster than it does for the power-law model.

2. The radial size and the magnetic field strength at the
center of the flux tube are the free parameters in the
Coulomb function model. The magnetic and thermo-
dynamic structure of the flux tube remain similar for
different values of the free parameters, whereas the
magnitude of the magnetic and thermodynamic quantities
vary. We have explored the parameter space and note
that, in the domains of 100 km�R�180 km, and

Figure 13. The 3D configuration of 50 different open field lines inside the flux tube obtained from the self-similar model for the power-law profile with nP=3. The
left and right columns show the side and top views of the configurations. The domain of the simulation box is −10�x�10, −10�y�10 and 0�z�20, where
the x-, y-, and z-axes are scaled in units of 100 km. The field line configurations for the bottom and top rows are simulated for the parameter sets of runs S1 and S2,
respectively, corresponding to Table 4.
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1 kG�B0�1.5 kG, the magnetic and thermodynamic
quantities are in reasonable agreement with the solar
atmosphere (Vernazza et al. 1981), which also validates
the MBP size and magnetic field strength distribution
(Utz et al. 2009, 2013). For the self-similar model, the
radial sizes of the flux tubes depend on the choice of
the dimensionless input parameters f B, , ,b z0y c¢{ ¯ ¯ ¯ }.
In the domain of the selected parameter space (see
Table 4), the maximum and minimum radii of the flux
tubes are 678 and 151 km as obtained from the Gaussian
model, whereas for the power-law model with nP=3,
the maximum and minimum values of the radii are
calculated to be 826 and 184 km, respectively, which are
also in reasonable agreement with the observations of
MBP size distribution by Utz et al. (2009).

3. For the Coulomb function model, we note that the value
of α decreases with R (see Table 3), which lowers the
poloidal current Ip and the twist of the field lines. The 3D
geometries of the field lines for different twists are shown
in Figures 6 and 7 for open and closed field Coulomb
function models, respectively. In the self-similar model,
the twist of the field lines increases with c̄, as shown in
Figures 12 and 13 for the Gaussian and power-law
profiles, respectively, which follows from Equation (66).

4. The gas pressure for both the Coulomb function and self-
similar models increases along the radial direction from the
axis to the boundary (see Figures 14 and 17), whereas it
decreases along the vertical height from the photosphere to
the transition region (see Figures 18 and 19), which is
similar to the result obtained by Shelyag et al. (2010) for
MBPs, where the gas pressure inside the MBPs increases
radially though the change is not significant, and decreases
vertically. Gent et al. (2013, 2014) studied the cases of

single and multiple flux tubes, where the internal gas
pressure is nearly same along the radial distance but
decreases with height. The density within the flux tube does
not change radially but it decreases along z, for both
Coulomb function and self-similar models (see Figures 9
and 16). Our model predicts that the atmosphere inside the
flux tube is nearly plane-parallel, which is comparable to the
model obtained for MBPs by Shelyag et al. (2010).

5. In the solar atmosphere, the temperature in the transition
region rises perhaps because the shock dissipation of waves
plays a dominant role, which is not included in our model.
We have also not implemented the temperature profile by
Vernazza et al. (1981) (VAL model); however, our model is
self-consistent, obtained by solving the GSE without shock
heating. Therefore, we do not see the drastic rise of the
temperature with height. Our vertical simulation domain is
restricted from the photosphere to the transition region in
which our input external atmosphere model is valid. Both
the flux tube models we built are non-isothermal, and the
temperature increases along the radial direction for both
Coulomb function open field and self-similar models (see
Figures 17, 18, and 20). The vertical variation of the
temperature is constant at the axis, but it increases with
height away from the axis for the Coulomb function open
field and self-similar models (see Figures 18 and 20).

6. Hewitt et al. (2014), Uitenbroek & Criscuoli (2013), and
Riethmüller & Solanki (2017) reported the simulation
results of MBPs using MuRAM and Copenhagen-Stagger
code in which the obtained values of magnetic field
strength, pressure, density, and temperature inside the flux
tube are in reasonable agreement with our predictions.

7. The 2D simulations of the propagation of linear and non-
linear magnetoacoustic waves through an open magnetic

Figure 14. Radial distribution of the magnetic field components Bz, Br, Bf, and gas pressure p normalized with respect to the values at the flux tube center, B0, pc, for
Gaussian and power-law shape functions for the parameter set of run S1 in Table 4. The horizontal axes are scaled with the total radius of the flux tube R and the values
of the scale factors are B0=1 kG and pc=105 dyne cm−2.
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flux tube, embedded in the solar atmosphere from the
photosphere to the corona, were carried out by Fedun
et al. (2011). We can incorporate our solutions as the
background condition for such numerical studies of
waves and their kinematic properties by taking realistic
inputs of the field strength and pressure distribution
observed in the solar atmosphere.

8. The Coulomb function model gives both open and closed
field flux tube solutions, which can be co-added to build a
canopy structure. A cartoon diagram of the magnetic
canopy is shown in Figure 21, where the closed field lines
(red), C

CY , are present between the open field flux tubes
and obtained from the Coulomb function, where the open
field lines (blue), C

OY and S
OY , of the neighboring flux

tubes merge with each other to form a canopy structure.
This is similar to the structures assumed in the numerical
simulations by Gent et al. (2014), constructed by a
different self-similar flux tube solution. We can use our
solutions for inputs to simulations to build such canopy
structures. The self-similar flux tube model gives an open
field structure of the flux tube that is embedded in a
continuous magnetic medium and spans up to infinity in

the radial direction. The magnetic and thermodynamic
quantities we estimated from both Coulomb function and
self-similar models are nearly similar, whereas there are
some differences in the structures of the magnetic and
thermodynamic profiles.

More advanced observations of the magnetic and thermo-
dynamic structures of the MBPs will provide a better selection
of parameter inputs to discriminate between our models.

8. Summary and Conclusions

In this work, we have constructed two different models of
flux tubes with twisted magnetic fields, the Coulomb function
helical flux tube model and the self-similar model, by solving
GSE semianalytically. We tabulate the expressions of the
magnetic and thermodynamic functions for the Coulomb and
self-similar models in Table 6, and highlight the novel features
of this work as follows:

Figure 16. Vertical distribution of density, ρ(z), obtained from the self-similar
model for the parameter set of run S1 in Table 4, which is normalized with
respect to z=0 value, ρc, for both the Gaussian and power-law profiles.
The horizontal axis is scaled in units of Mm. The value of scale factor

2.37 10c
7r = ´ - g cm−3.

Figure 17. Vertical distribution of Bz, p, and T, normalized with respect to the
values at the center of the flux tube, B0, p20, and T0, respectively, from the axis of
the flux tube to the MBP boundary for rb=84 km at z=0, obtained from the
Coulomb function open flux tube model for the parameter set of run C4 in
Table 3. The horizontal axis is scaled in the units of 100 km and the values of the
scale factors are B0=1 kG, p 1.03 1020

5= ´ dyne cm−2 and T0=5656 K.

Figure 15. Vertical distribution of Bz at the axis of the flux tube, obtained from
the self-similar model for the Gaussian and power-law profiles for the
parameter set of run S1 in Table 4.
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1. By incorporating the form of gas pressure and poloidal
current we have solved GSE to obtain the flux function for
the Coulomb function model. The solution of the Coulomb
function model is the combination of a homogeneous part
and a particular part. The homogeneous part with closed
geometry is separable with a Coulomb function in r,
whereas the z-part decreases exponentially with height, and
the particular part with open geometry is a power series of
r that is independent of z.

2. Using appropriate BCs and employing the presence of the
sheet current at the boundary of the flux tube, we have
determined the parameters a(R), α(R), κ(R), b(R, B0),

R B,b 0y ( ) and p R B, 0¯ ( ) in terms of the input parameters
R B, 0{ }, which are the free parameters in the model, and k

is calculated from the pressure values at the photosphere
and transition region obtained from Avrett & Loeser
(2008) model. The values of the parameters for the
Coulomb function model are listed in Table 3.

3. In the Coulomb function model, the solution consisting of
homogeneous and particular parts together represents an
open field flux tube solution, where the field lines rise from
the photosphere. The homogeneous solution depicts a closed
field flux tube model, which is discussed in SM18. The
values of the magnetic field strength and thermodynamic
quantities inside the flux tube are calculated and are
summarized in Table 5. 3D visualizations of both the open
and closed field lines are shown in Figures 6 and 7 for the
parameter sets of runs C4 and C10 corresponding to Table 3.

Figure 18. The 2D variation of p (left) and T (right) in the r−z plane for rb=84 km obtained from the Coulomb function model for the parameter set of run C4 in
Table 3. The horizontal axes are scaled in the of 100 km and the vertical axes are scaled in units of Mm.

Figure 19. The 2D variation of p in the r−z plane obtained from the self-similar model for the Gaussian (left) and power-law (right) profiles with nP=3, for the parameter
set of run S1 in Table 4. The horizontal axes are scaled with total radii RG=150 and RP=130 km, and the vertical axes are scaled with pressure-scale height, h=162 km.
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4. In the self-similar model, we have employed an extra
term, p kzexp 2c -( ), with p1 in Equation (55), to maintain
the hydrostatic pressure balance under the influence of
stratified solar gravity, and taken two options for the
shape functions: DX x( ) from Equation (57), which is the
extension of previous models by ST58, Yun (1971), and
Osherovitch (1979, 1982). We have incorporated the
resulting two different shape functions, generalized
Gaussian and power-law profiles, to obtain open field
flux tube solutions. We have taken a range of the
parameters, Ψb, B0, pc, Bz0¢ , and χ (see Table 4), that is
consistent with the solar atmosphere, to study the
structure and the properties of the flux tubes. The size
of the flux tubes and the magnitude of the thermodynamic
and magnetic field strengths depend on the choice of the
input parameters, but the magnetic and thermodynamic
structures remain similar. We have calculated the
magnetic field strength and the thermodynamic quantities
inside the flux tube. These are given in Table 5, for the
parameter set of run S1 corresponding to Table 4.

5. Preliminary calculations using the constraint of relative
helicity based on the formulations given in Prasad et al.
(2014) and Prasad & Mangalam (2016), and applying
the constrained energy minimization principle (Taylor
1974; Finn & Antonsen 1983; Mangalam & Krishan
2000), indicate that stable configurations are possible
for some regions in the parameter space of B R,0{ }.
We plan a complete solution of this allowed region and
test it with numerical simulations in a paper in
preparation.

The flux tube models presented here give useful
estimates of the magnitude and the distribution of the
magnetic field strength and thermodynamic quantities,
from the photosphere to the transition region, that can
be verified by future observations. Work on self-similar
closed and twisted field structure is in progress. The
solutions we obtained for different flux tubes can be
used for the dynamical simulation of wave propagation
through the flux tubes, which is important for studying
coronal heating by waves.

Figure 21. Cartoon diagram of magnetic canopy structure, where the closed field lines (red), which are obtained by the Coulomb function closed field solution, C
CY ,

rise and fall back in the photosphere, present between two open field flux tubes. The open field lines (blue), obtained by the Coulomb function open field and self-
similar solution, Y

OY (Y = C, for Coulomb function, and Y = S, for self-similar models), of two neighboring flux tubes merge together to form magnetic canopy
structure (An improvised version of the illustration in Judge 2006).

Figure 20. The 2D variation of T in the r−z plane for the Gaussian (left) and power-law (right) profiles with nP=3 obtained from the self-similar model for the parameter set
S1 in Table 4. The horizontal axes are scaled with total radii RG=150 km and RP=130 km, and the vertical axes are scaled with pressure-scale height, h=162 km.
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Appendix A
Derivation of the Explicit form of Bz for the Coulomb

Function Model

The homogeneous solution s v( ) which is given by the
Equation (18), can be represented in terms of the Whittaker–M
function (SM18), where the Whittaker–M function can be
expressed in terms of the hypergeometric function by the
standard relation (Dixit & Moll 2015)
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Hence, from Equation (75), we obtain the explicit form for
B z,z v( ¯) that is given in Equation (25).
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Formularies of Different Functions Obtained for the Coulomb Function Helical

Flux Tube and Self-similar Model
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Note.Here, s v( ), Z z( ¯), and py v( ) are given by Equations (18), (19), (23),
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2=¯ . x is a self-similar parameter in which y z( ¯) is obtained by
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Appendix B
Explicit Forms of the BCs for Coulomb Function Model

The explicit forms of Equations 44(a)–44(e) are

F a F a, , 0, 790
2

0
2*a k a k- - + - - =( ) ( ) ( )

d

d
e

F n n i i a

n i n

e

F n n i i a

n i n

1

2, 1, 2 , 1 2

1

2,1, 2 , 1 2

1
0,

80

i a

n

n

i a

n

n

2
2

0

2
1 2

2

0

2
1 2

1

2

2

å

å

v v
v

a v
a

v

a v
a

+ + - -
+ -

-

+ + +
+ +

=

v

v

v

=

¥

-

=

¥

=

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( )( )
( ) !

( )( )
( ) !

( )

ib F i i

i

F i i

i

d

d
F a F a

pa

1
2

1, , 2 , 1

1

1, , 2 , 1

1

, ,

,
81

2
1

2
1 2

0
2 2

0
2 2

1

2
*

a a
a

a a
a

v
a k v a k v

-
- - -

-

-
+ -

=

- + -

=

v=⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

( )

( )

· [ ( ) ( )]

¯
( )

b
a2

1
6

, 82by a
= - +

⎛
⎝⎜

⎞
⎠⎟ ( )

e
ib F i i

i

F i i

i

F a F a

e
b

ib F i i

F i i

F a F a

b d p

1
2

1, , 2 , 1

1

1, , 2 , 1

1

, ,

8
2

1
2

1, , 2 , 1

1

1, , 2 , 1

1

, ,

4
83

b p p
b

b
p p b p p

0

1
2 2

1

2
1 2

0
2 2

0
2 2 2

2
1

2
1 2

0
2 2

0
2 2

2
2

t

t

*

*

*

* *

ò
a a

a

a a
a

a k v a k v

y y y
y

a a
a

a a
a

a k v a k v

y
y y y y y v

-
- - -

-

-
+ -

+

- - + - -

+ + +

-
- - -

-

-
+ -

+

- - + - -

+ + + + =

k

k

-

-

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

⎤
⎦⎥

( )

( )

· ( ( ) ( ))

· ( )

( )

· ( ( ) ( ))

( ) ( ) ¯ ( )

respectively, where, py v( ) is given by Equation (23), kzt tk = ,
and 1p by v y= =( ) .
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