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ABSTRACT

For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it
is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the
dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—
PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on
linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in
general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic.
Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in
solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect
of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-
empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the
polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration
method that has been appropriately modified for the problem at hand. We present numerical tests to validate the
CMF method and also discuss the accuracy and numerical instabilities associated with it.
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1. INTRODUCTION

High-resolution observations of the outer layers of the Sun
(namely, the chromosphere and transition region) show that
these layers are not quiet and homogeneous but dynamic, and
appear to change constantly on all observable scales (see e.g.,
Rutten 2007). Analysis of such a complex environment
requires detailed radiative transfer computations in dynamical
atmospheres especially for optically thick lines. The linear
polarization of radiation (which is produced by resonance
scattering processes in these layers) is significantly affected by
the dynamical nature of the solar (and in general stellar)
atmospheres (see e.g., Carlin et al. 2013; Carlin & Asensio
Ramos 2015).

In Sampoorna & Nagendra (2015a, 2015b) we studied the
effects of monotonic vertical velocity fields on the linear
polarization profiles formed in isothermal one-dimensional
atmospheres. The governing equations and the numerical
method of solution for solving the concerned problem of
polarized radiative transfer in the presence of a vertical
monotonic velocity field are presented in Sampoorna &
Nagendra (2015b, hereafter P1). There, we presented both the
observer’s frame and comoving frame (CMF) methods, which
are based on the concept of operator perturbation (see
Cannon 1973). More specifically we extended the CMF
method of Hauschildt & Baron (2004) to include polarization
and partial frequency redistribution (PRD)." We remark that,
unlike Hauschildt & Baron (2004), who consider a fully
relativistic CMF transfer equation in a spherical geometry, we
consider (i) a planar geometry and (ii) the CMF transfer
equation in the limit whereby only Doppler shifts are taken into
account (see Mihalas 1978). Thus P1 and the present paper can
handle only non-relativistic vertical velocity fields. The
advantages of the CMF method over the observer’s frame

! In P1, as an oversight it is mentioned that we extended the CMF method of

Baron & Hauschildt (2004) to include polarization and PRD; instead it should
be the second discretization scheme of Hauschildt & Baron (2004).

method are well known for the case of unpolarized radiative
transfer (see e.g., Noerdlinger & Rybicki 1974; Mihalas 1978;
Hubeny & Mihalas 2014, and the references cited therein). In
particular the CMF is the method of choice when (i) PRD in
line scattering is taken into account and/or (ii) when the
maximum Doppler shift in the plasma is much larger than the
Doppler width, which however does not prevail in the solar
atmosphere. The advantages of using the CMF method turn out
to be even greater when polarization and magnetic fields are
included in the current problem. This is because the PRD
function required for the unpolarized case has to be replaced by
a PRD matrix that requires larger memory and is also
computationally expensive (see the Appendix in P1).

In the present paper we suitably modify the CMF method
presented in P1 to include non-monotonic vertical velocity
fields. To this end we again follow the CMF method of
Hauschildt & Baron (2004). The CMF transfer equation is a
partial integro-differential equation involving both spatial and
frequency derivatives. Thus this equation represents an initio-
boundary value problem. In the case of planar geometry the
choice of the initial condition in frequency is unique and
depends only on the sign of the velocity gradient (see Mihalas
et al. 1976; Mihalas 1978), irrespective of the nature of the
velocity field. This is not the case for spherical geometry (see
Appendix A of Mihalas et al. 1975). Thus the CMF method of
P1 can be applied to handle non-monotonic velocity fields with
small modifications that are detailed in Section 2 below.

For a planar geometry, the CMF method using a Feautrier-
type elimination scheme was developed by Noerdlinger &
Rybicki (1974) and Mihalas et al. (1976) for solving
respectively unpolarized line transfer with complete frequency
redistribution (CRD) and the type-I angle-averaged PRD
function of Hummer (1962). Their methods could handle both
monotonic and non-monotonic velocity fields. For a spherical
geometry, the CMF methods for solving the unpolarized line
transfer have been developed by several workers in the field.
We refer only to those papers whose methods of solution have
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been suitably adopted in P1 and the present paper. A CMF
method based on operator perturbation was developed by
Hauschildt (1992) to solve the fully relativistic, spherically
symmetric unpolarized radiative transfer equation in the CMF
including monotonic velocity fields. The discretization scheme
used by Hauschildt (1992), referred to as a first discretization
scheme by Hauschildt & Baron (2004) for the frequency
derivative term of the CMF transfer equation, although fully
implicit, was somewhat less accurate and did not allow one to
include the effects of the frequency derivative in the
construction of the approximate lambda operator used in the
operator splitting method. These difficulties were overcome by
Hauschildt & Baron (2004) who introduced a second
discretization scheme which led to significantly less numerical
diffusion than the earlier scheme of Hauschildt (1992). The
CMF method presented in P1 is actually based on this second
discretization of Hauschildt & Baron (2004). In Baron &
Hauschildt (2004), the second discretization was further
generalized to handle non-monotonic velocity fields.

The effects of vertical velocity fields on the linear
polarization profiles are presented in detail in Carlin et al.
(2012, 2013) for the case of CRD and in Nagendra (1996) and
Sampoorna & Nagendra (2015a, 2015b) for the case of PRD.
However it is important to note that the basic effects of the
vertical velocity fields on linear polarization depend on the
relation between the angular-dependent Doppler shifts and the
radiation field anisotropy, and not on the type of frequency
redistribution used. It is well known that PRD effects are
generally significant mainly in the line wings than in the line
core. For a chromospheric line (such as the Cal 4227 A
resonance line), the PRD wings are mainly formed in the sub-
chromospheric layers (see e.g., Faurobert-Scholl 1992;
Holzreuter et al. 2005). In the real solar atmosphere, the
velocities are generally significantly reduced in those layers
where PRD wings are formed. Therefore the effects of velocity
may not be crucial when considering linear polarization in the
PRD wings. However, if under certain conditions a spatially
confined shock-like transition in velocity gradient occurs in
these sub-chromospheric layers, then such velocities will
certainly have an effect on the linear polarization of the PRD
wings. Thus here we study the effects of non-monotonic
vertical velocity fields on the linearly polarized line profiles
that are governed by PRD, although the velocity field and the
model atmosphere chosen are far from realistic.

Traditionally, the solar atmosphere has been represented
through one-dimensional hydrostatic models which include a
sophisticated radiative transfer treatment (see e.g., Vernazza
et al. 1981; Fontenla et al. 1993, 2009). These models have
been quite successfully used to reproduce the spatially and
temporally averaged observed linearly polarized spectra of
several important spectral lines formed in the solar atmosphere
(see e.g., Anusha et al. 2010, 2011; Supriya et al. 2014; Smitha
et al. 2015). Therefore these models can be assumed to
reasonably represent the average properties of the solar
atmosphere. In this paper we assume a plane-parallel one-
dimensional atmosphere with a temperature structure given by
the model-C (hereafter VALC) of Vernazza et al. (1981).
Assuming the temperature structure to be unaffected by the
velocity field, we consider time-dependent or time-independent
non-monotonic vertical velocity fields.

The paper is organized as follows. In Section 2 we briefly
recall the basic equations and present the necessary
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modifications made in the formal solution to handle the non-
monotonicity of the velocity field. The atomic and atmospheric
models, and the different types of velocity fields used in our
computations, are discussed respectively in Sections 3 and 4.
Numerical validation of the CMF methods presented in P1 and
in this paper is discussed in Section 5. The linear polarization
profiles formed in the VALC model atmosphere are presented
in Section 6 for the non-magnetic case. Our conclusions are
presented in Section 7.

2. STATEMENT OF THE PROBLEM AND PROCEDURE
FOR ITS SOLUTION

We consider a one-dimensional planar atmosphere with
velocity fields along the atmospheric normal, and a two-level
atom model with infinitely sharp and unpolarized lower level.
For computational simplicity, we consider only the case of
angle-averaged PRD. Further, we recall only those equations
which are necessary to incorporate non-monotonic nature of the
velocity field. In the presence of a weak magnetic field the
polarized radiation field is represented by the three-component
Stokes vector I = (I, Q, U)T, which is in general non-
axisymmetric. The positive Q direction is defined to be
perpendicular to the nearest limb. It is possible to decompose
this non-axisymmetric Stokes vector into six irreducible
components that are cylindrically symmetric (Frisch 2007).
From here on we present all the basic equations in this
irreducible basis (see P1 for more details).

The CMF transfer equation for unpolarized intensity in
planar atmospheres and for non-relativistic velocity fields is
given in Equation (14.99) of Mihalas (1978). When polariza-
tion and magnetic fields are taken into account the CMF
transfer equation takes the form:

OZL(T, x, t)

=Z(r, x, p) — S(r, x) — 8(r, x, ), (1)
or

where Z is a six-component, cylindrically symmetric intensity
vector and p = cosf with 6 the co-latitude. The mono-
chromatic optical depth along the ray is given by
dr = [p(x) + rldn/u, where d7 is the line integrated optical
depth and r denotes the ratio of the continuum to the line-
integrated absorption coefficient. The absorption profile func-
tion is ¢ (x) = H (a, x), where a is the damping parameter and
x = (v — vy)/Avp (with 1y being the line center frequency
and Avp the Doppler width). The CMF term S(r, x, ) is
given by

8(r, x, p) = —u[ a @)

1 dv, OZL(r, x, 1)
@) +r vy dm '

Ox

where v, is the vertical velocity field and vy, is the thermal
velocity. For an isothermal atmosphere vy, is a constant. We
now define the non-dimensional velocity V = v,/vy,. Thus the
term in the square brackets of Equation (2) simplifies to dV /dr
as in Equation (14) of P1. For an atmosphere with temperature
gradient, vy, (as well as Avp) will vary with depth, and
therefore we retain this term as it is in Equation (2). The total
source vector is given by

_ ST, 1) + 1S,

S e + 1

3
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Table 1
The Values of Coefficients p at Any Spatial Point O

dv; dvy.
(d_ﬂ)o >0 (dﬂ)o <0

0 1 0
Prm—1 X — Xm—1
(6} 1
pm.m Xm — Xm—1 Xm = Xm+-1
(6] 0 _
Ponm+1 X — Xt 1

where the continuum source vector S, = B, U, with B, the
Planck function at the line center and U = (1, 0, 0, 0, 0, O)T
and the line source vector has the form

+o00 ,1 +1 ,
sl<T,x>=g<T)+ﬁw deL du
o N'(x,x', B)

px)

Here G(7) = €B,,U is the primary source vector, with e being
the thermalization parameter. The explicit form of the 6 x 6
Hanle PRD matrix N’ (x, x’, B) and of the 6 x 6 Rayleigh
phase matrix W(u) are respectively given in Appendix A of
Sampoorna et al. (2008) and Frisch (2007).

We determine the formal solution of Equation (1) using the
short-characteristic method of Olson & Kunasz (1987). As
done in Hauschildt & Baron (2004, and also in P1), we use
parabolic interpolation (with coefficients Wy, ¥o, and ¥p) for S
and linear interpolation (with coefficients W’y and ¥’q) for the
CMF term 8. Thus at any spatial point “O” and frequency
point (say x,,) the polarized radiation field Z is given by

O (I, X', 1), “)

IO(-xm? ,U,) == eiATMOIM(xm’ ,[L)
+ UmSmxm) + YoSo(xm) + YpSp(xim)
+ \I’/M SM(xm» ,U/) + ‘IIIO S‘O(xm’ ,u)’ (5)

where M and P are the upwind and downwind points
respectively, and Anyo is the optical distance on the segment
MO. We remark that the CMF terms Sy; and 8¢, depend on the
monotonicity of the velocity field and on the kind of frequency
derivative scheme used for evaluating Equation (2).

The CMF transfer equation (Equation (1)) represents an
initial plus boundary value problem, wherein the initial
condition is uniquely defined for a planar geometry. For a
given depth point the initial condition in frequency depends
only on the sign of the velocity gradient and is independent of
the nature of the velocity field. Therefore the frequency
discretization scheme used in P1 (see their Equation (20)) can
also be applied to the present case of non-monotonic vertical
velocity fields. However to clearly reflect the change in the sign
of velocity gradient from one depth point to the other
(occurring due to the non-monotonic nature of the velocity
field) in the expressions for Sy and Sp, we define

oL
(—) =po  Lo(n—1, 11)
ax O,xp '

+ 59w LoCtms 1) + P2 i1 ZoGmis 1), (6)

where the coefficients p are listed in Table 1. We remark that
the frequency discretization scheme defined in Equation (6) is
the same as that defined in Hauschildt & Baron (2004) and
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Baron & Hauschildt (2004), namely a local upwind scheme.
Thus for a given depth point one of the coefficients p is always
zero and the other two take different values depending on the
sign of the velocity gradient (see Table 1).

For (dv,/dn)o > 0, we impose the initial condition>
(OZ/0x)o = 0 at x = —xy.. In other words all the coeffi-
cients p are set to zero at x = —xp,x and the frequency
integration proceeds from —Xxy.x tO +Xpa. In contrast, for
(dv,/dm)o < 0 all the coefficients p are set to zero at
X = +xmx and the frequency integration proceeds from
+Xmax 10 —Xmax . Clearly the initial condition 0Z/0x = 0 is
applied at all the depth points in the planar atmosphere, either
at x = +Xpax OF at X = —xp,x depending on the sign of the
velocity gradient. It is important to note that the initial
condition 0Z/0x = 0 should be applied at a very far-wing
frequency wherein the intensity and polarization have indeed
become flat. Otherwise numerical oscillations in the far-wing
solution would occur (see Nagendra 1996 for a discussion of
this point). For the isothermal model atmosphere considered
in P1, the initial condition at all depth points was imposed at
|*max] = 4000 Doppler widths and for the VALC model
atmosphere considered in this paper it is imposed at
|*max] = 200 Doppler widths (i.e., at 10 A from the line
center). We have verified that at these frequencies the intensity
and polarization reach the continuum value and are nearly flat.

Substituting Equation (6) in (2) and the resulting expression
in Equation (5), we obtain the short-characteristic formal
solution in a CMF as

1+ Wop| —E— 1 v PO [T 1)
(p(xm) + rvm dTl fo) e

= e 5™0 Ty (X, 1)
+ \IJMSM(xm) + \I/OSO(xm) + \I/PSP(xm)

+ W'y S, 1) — Vo u(#iﬁ)
o (xm) + 1 v dn )
< (D9 w1 ZoCm-1s 1) + P LoGmin 1. (1)

We remark that, when computing the Sy, 1), care should
be taken to use the appropriate coefficients p based on the sign
of (dv,/dm)m. When the velocity field has a known analytical
form its gradient dv,/d7; can also be computed analytically. For
an arbitrary velocity field, the gradient can be computed using a
highly accurate cubic spline interpolation subroutine.

3. THE ATOMIC AND ATMOSPHERIC MODELS

We consider a two-level atom model with lower and upper
level total angular momentum quantum numbers 0 and 1
respectively. In particular, we consider a resonance line with a
line center wavelength at 4226.7 A which is representative of
the well-known Cal 4227 A line. The radiative width
corresponding to this line is Tx = 2.18 x 108 s~ '. The Doppler
width is given by

Vo 2kBT 2
Avp = — + Vb » 8
D c Mu turb ( )

For isothermal atmospheres the initial condition is imposed based on the
sign of dV /dm at each depth point. Therefore, in P1, below Equation (20),
dV /dt should read as dV /dm;.

2
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where c is the speed of light, kg is the Boltzmann constant, and
M, is the mass of the Cal atom. A constant micro-turbulent
velocity vy = 2 km s~ ! is assumed.

We consider a depth-varying planar atmosphere given by the
VALC model (Vernazza et al. 1981). Clearly, the non-
dimensional frequency grid x and the damping parameter
a = Ij /(47 Avp) are depth dependent in our calculations. The
other atmospheric parameters, namely, » and ¢, are assumed to
be constant and given by 107> and 10~ respectively. The
depolarizing elastic collisions are neglected.

We use a trapezoidal height grid with a spacing of
Az = 15km, which corresponds to approximately 20 points
per decade in the 7-scale. For the wavelength grid, namely
(A = Ao), we have about 141 points in the range —10A to
+10A. In the range —0.4 A to +0.4 A, the grid is equally
spaced with a spacing of 0.01 A. Outside this range the
wavelength grid is unequally spaced. For the angle grid, we use
a seven-point Gauss-Legendre quadrature in the range
[0 < u < 1]. The above-mentioned grid specifications are
used for most of the figures presented in this paper, unless
specified otherwise.

4. THE MODELS OF THE VELOCITY FIELDS

We consider two types of non-monotonic velocity fields.
One represents a vertical velocity wave in the atmosphere. The
other is the same as presented in Figure 6 of Carlin et al.
(2012), namely, a positive monotonic velocity field v,
increasing linearly with different constant gradient (v,) from
the lower spatial boundary. We refer to this type of velocity
field as the linear velocity field. In this case, the non-
dimensional velocity V (=v,/vy) is non-monotonic purely
due to the depth dependence of the mean thermal velocity
through temperature.

To represent the wave motion, we consider a propagating
damped sine wave. Although such a representation of the wave
motion is too crude to allow any detailed modeling, it however
serves to illustrate some interesting effects in the time evolution
of the linearly polarized line profiles. The effect of such a
velocity wave on linearly polarized line profiles under the limit
of CRD was studied by Rangarajan (1997, 1999, and references
therein). Here we consider the case of line profiles formed
under PRD.

In a dynamical solar atmosphere, acoustic and magneto-
acoustic (Alfvén) waves are commonly found. These are topics
of great interest as they are partly responsible for explaining the
well-known problem of coronal heating (Parker 2007; Taroyan
& Erdélyi 2009). Therefore it is necessary to understand the
details of propagation of these waves in the entire solar
atmosphere. To simulate a damped adiabatic acoustic wave,
Scharmer (1984) proposed a vertical velocity field represented
by a damped sine wave:

V= Yo sin[zw(z - C”t)], 9)

1+ /7" P

where 7. is the continuum optical depth, 7* is the depth at
which the amplitude of the wave saturates to Vj, z is the vertical
height in the atmosphere, ¢ is the time measured from initial
time point t = 0's, ¢, is the propagation speed of the wave, and
P is its period. For an exponentially stratified atmosphere
7, = 2.2 exp(—z/H) with scale height H = 120 km. For all our
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damped sine wave
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Figure 1. A vertical damped sine wave as a function of continuum optical
depth 7. in a VALC model atmosphere. From bottom to top, different curves
show the velocity wave from O to 100 s in steps of 5s. In order to clearly
illustrate the time evolution, a constant upward shift is given to curves at
different time points. Thus the ordinate values for only the bottom-most curve
can be read. The amplitude (V,)) of the wave is —3 Doppler units, the period (P)
is 100 s, the propagation speed (c,) is 7 km s~ and 7* = 1073,

computations, we have chosen Vj = —3 Doppler units,
P =100s, ¢, = 7kmsfl, and 7% = 1073. We remark that
the velocity gradient can be determined by analytically
differentiating Equation (9).

Figure 1 shows the variation of the vertical velocity wave
given by Equation (9) with continuum optical depth for
different time points. The velocity field variation is given for
every five seconds, covering one full wave period.

5. NUMERICAL VALIDATION

In this section we discuss the numerical tests performed to
validate the CMF methods presented in P1 and the present

paper.

5.1. Comparison of Emergent Profiles Computed Using
Comoving and Observer’s Frame Methods

The CMF method can be validated by comparing the
resulting emergent Stokes profiles with those from the
observer’s frame method. Such a comparison is presented in
Figure 2 for a linear velocity field with v, = 20.07 m s~ 'km™!
(panel (a)) and for a damped sine wave at t = 10 s (panel (b)).
The dotted curve represents the emergent solution from the
observer’s frame method and the dashed curve represents the
CMF method. Clearly, the profiles from both methods coincide
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(b) damped sine wave
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Figure 2. Comparison of emergent (I, Q/I) profiles at ;o = 0.13 computed using the observer’s frame (dotted curves) and CMF (solid and dashed curves) methods.
The VALC model atmosphere is used for the computation. Panel (a) corresponds to the case of a linear velocity field having a constant velocity gradient
vy = 20.07 m s~'km™', and panel (b) to the case of a damped sine wave at # = 10's (see Figure 1).

in the case of a linear velocity field. Small differences are seen
around the line core region in the case of a damped sine wave
(see panel (b)). These differences can be understood by
considering that the emergent profiles from the CMF and
observer’s frame methods are computed using the spatial,
wavelength, and angular grids specified in Section 3. Although
these grids are sufficient for the CMF method (compare the
solid and dashed curves), they are not precise enough for the
observer’s frame method. This is because in the latter method
the inextricable coupling between spatial, wavelength, and
angular points brought about by the velocity field places a
severe demand on these grids (see e.g., Mihalas 1978).
Obtaining an “exact solution” from the observer’s frame
method using very fine grids in all three variables is beyond the
scope of the available computational facilities (see e.g., Table 1
in P1). Therefore we compute such a solution using the CMF
method. The solid curve in Figure 2 is computed using this
method with a 40 point per decade spatial grid, 281 point
wavelength grid, and 35 point angular grid. Clearly, the solid
and dashed curves for both velocity fields nearly coincide,
thereby validating the accuracy of the solution obtained on a
lower-resolution grid from the CMF method.

5.2. Numerical Accuracy of the CMF Method

Numerical accuracy of a converged numerical solution on a
given grid is determined by the truncation error or the relative
true error 7, (Auer et al. 1994). In Figure 3 we show the
variation of relative true error corresponding to the SY and S3
with the iteration number at the surface grid point for the CMF
method. We recall that in the non-magnetic case the source
vector S comprises two non-zero components, namely S§
and S2.

To compute the true error on a spatial grid of 20 points per
decade, a wavelength grid of 141 points, and 7 point angular
grid, we compute the true solution on a 40 point per decade

spatial grid, 281 point wavelength grid, and 35 point angular
grid. For linear velocity fields, the surface true error of both
source vector components are smaller than or comparable to the
corresponding static case. For the case of a damped sine wave,
the true error of S is nearly the same as the static case, while
that of Sj is larger than the static case. This slightly larger true
error can be attributed to the non-monotonic nature of the
damped sine wave, which is perhaps not well represented by
the local upwind scheme used for the frequency deriva-
tive term.

5.3. Numerical Instability of the CMF Method

Our numerical tests with very large velocity gradients, which
give rise to maximum non-dimensional velocity V larger than
1000 Doppler widths within the atmosphere, show that the
CMF methods presented in Pl and this paper become
numerically unstable. This is particularly true for the strong
line case considered in this paper, namely r = 107>. We remark
that the CMF code does converge (in fact within 20-30
iterations) for such large velocity gradients, but the converged
solution shows numerical oscillations. This is illustrated in
Figure 4 for a strong line with 7 = 107 (panels (a) and (b)) and
for a weaker line with » = 1072 (panel (c)). A linear velocity
field with v, =1600 m s~'km ™' is considered. For such high-
velocity fields, both the strong and weaker lines are in emission
due to extreme Doppler brightening.

For this study, we consider four types of wavelength grids
with different spectral resolution within the range [—100, +100]
A, so that the non-dimensional frequency x grid extends to about
10,000 Doppler widths. It is necessary to go to such large values
Of Xmax , because for v, = 1600 m s 'km ! the maximum non-
dimensional velocity within the VALC atmosphere is about
1250 Doppler widths. We divide the wavelength grid into three
ranges, namely [—0.4, +0.4] A,[—10, +10] A (which excludeos
the first range), and the remaining range up to =100 A
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Figure 3. Surface true error of S (top panels) and of SO (bottom panels)
computed with the CMF method. The VALC model atmosphere is considered.
leferent curve types dre static case (solid curve), a hnear Velocity field with
=223ms 'km™! (dotted curve), Ve =2892ms “km™! (dashed curve),
=1561m s*‘ km" (dotted—dashed curve), v, = 20. 07 ms~ ' km ™' (dash-
mple dotted curve), and a damped sine wave at ¢ = 30 s (long-dashed curve).

(excluding the first two ranges). The first wavelength grid (grid 1
hereafter) has 1019 points with spectral resolution of 0.005 Ain
the first range, 0.025 A in the second range, and 20 A in the third
range. Grid 2 has 401 points, with spectral resolution of 0.005 A
in the first range, and unequal spacing in both the second and
third ranges. Grid 3 has 201 pomts with 0.01 A spacing in the
first range, and unequal spacing in the remaining ranges. Grid 4
has 149 points, with a spacing of 0.025 A in the first range, and
unequal spacing in the remaining ranges.

We first discuss the strong line case. In Figures 4(a) and (b),
we study the behavior of this numerical oscillation with the
number of wavelength grid points. This is because the
numerical oscillations originate from the frequency discretiza-
tion of the CMF term (see Equation (6)), which is in
disagreement with Hauschildt & Baron (2004). Figure 4(b) is
computed using the very fine wavelength grid, namely grid 1.
In Figure 4(a), the solid curve is computed using grid 2, dotted
curve using grid 3, and dashed curve using grid 4. We obtain
numerical oscillations in the case of all four wavelength grids.
These oscillations are largest for the finest grid (i.e., grid 1),
and reduce when the wavelength grid is more crude. However
the solutions from grid 3 and grid 4 nearly coincide (compare
the dotted and dashed curves in Figure 4(a)). We have verified
that these oscillations continue to exist irrespective of whether
we use PRD or CRD for the frequency redistribution.
Furthermore, these oscillations remain in the intensity profile,
even if we neglect polarization.

Hauschildt & Baron (2004) discuss such numerical instabil-
ity for the second discretization scheme, which is the one
adopted in P1 and in this paper. These authors show that this
numerical instability can be overcome using the first dis-
cretization scheme of Hauschildt (1992), or a mix of first and
second discretization schemes. We have also implemented both

SAMPOORNA & NAGENDRA

the first and mixed discretization schemes of Hauschildt &
Baron (2004) in our CMF code. However, we continue to
obtain numerical oscillations similar to those shown in
Figures 4(a) and (b) for both the first and mixed discretization
schemes. Unlike the second and mixed discretization schemes,
the first discretization scheme converges rather slowly as in this
case the effect of the CMF term is not included in the
approximate lambda operator (see Hauschildt 1992).

We now turn our attention to the weaker line case. In
Figure 4(c), the solid black curve is computed using grid 1 and
the dashed red curve with grid 3. Clearly, the numerical
oscillations are non-existent for grid 3, while some oscillations
are seen for grid 1 but with much reduced amplitudes compared
to the strong line case.

We remark that for v, less than 1600 ms™' km~' we do not
obtain any numerical oscillations in the converged solution.
Such high velocity fields are of relevance only to supernova
atmospheres. For solar- or stellar-type velocity fields (also
including those in stellar winds), the CMF methods presented
here and in P1 have been tested and found to be accurate.

6. STOKES PROFILES FORMED IN A NON-MAGNETIC
MOVING ATMOSPHERE

Figures 5 and 6 display the time evolution of the emergent
Q/I profiles at u = 0.1 and . = 0.9 respectively. Although the
linear polarization produced due to non-magnetic scattering is
highly reduced near the disk center (u = 0.9) due to the limb
brightening effect, the effect of the vertical velocity fields are
felt largest there. Therefore in Figure 6 we present the emergent
profiles for ;© = 0.9, to illustrate the effect of velocity fields.
The vertical velocity wave given by Equation (9) and shown in
Figure 1 is used for the computations. In the bottom Q/I panels
of Figures 5 and 6 the solution from a static atmosphere is
shown as a dotted curve. In Figure 5, we also present the
radiation anisotropy (J; /JO) for different wavelengths and at
time point = 30 s. We recall that the mean intensity vector is
given by the integral term in Equation (4). The J3/J9 for the
static case is shown as black curves. Because there exists
symmetry about the line center in the static case, the
anisotropies for (A — \g) coincide.

From Figures 5 and 6, we see that all the expected
dependences of the Q/I and the radiation anisotropy on the
vertical velocity gradients are correctly reproduced by our
CMF code in the limit of PRD. These include Doppler shifts,
asymmetries around the line center, and dependence of Q/I on
the anisotropy, namely enhancement of anisotropy in the higher
layers (compare the green and black solid curves in the left
panel of Figure 5) leading to enhancement in Q/I around the
line core region (compare for example the solid and dotted
curves in the bottom Q/I panels of Figures 5 and 6). Since
these known effects of the vertical velocity gradient are
discussed in detail in Carlin et al. (2012, see also P1) we do not
elaborate further on them.

The effect of wave motion can be seen in the temporal
fluctuation of the Doppler shifts and Q/I amplitudes (see the
top Q/I panels of Figures 5 and 6) as already discussed in
Carlin et al. (2013). In particular the distortions in profile shape
produced by the velocity wave are significant for ;1 = 0.9 (see
the bottom Q/I panel of Figure 6), which seem to propagate in
wavelength space with an increase in time within a wave period
(see the top Q/I panel of Figure 6). The wave motion gives rise
to wavy patterns in the radiation anisotropy, which are mainly
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Figure 4. Numerical instability of the CMF method for very large velocity fields. The VALC model atmosphere with a linear velocity field having a constant velocity
gradient v, = 1600 m s~' km™" is used for the computation. Emergent intensity and linear polarization profiles at a line of sight of ;1 = 0.1 are shown. Panels (a) and
(b) correspond to a strong line with » = 10~>, and panel (c) corresponds to a weaker line with » = 10~2. See Section 5.3 for details.
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Figure 5. The left panel shows the radiation anisotropy (JZ/J9) vs. height in the VALC model atmosphere for the static case (black curves) and for a damped sine
wave at time point # = 30 s (colored curves). The solid curves correspond to the line center, dotted—dashed curves to the blue and red side core minima, and the dashed
curves to the blue and red side PRD wing peaks. For the static case the anisotropy corresponding to the blue and red side wavelength points coincide and are shown
with black curves, while in the velocity wave case they differ and are distinguished by blue and red curves. The top right panel shows the time evolution of the
emergent Q/I profiles at a line of sight of ;¢ = 0.1. The bottom right panel shows the corresponding line profiles for = 0 s (solid curve), t = 30 s (dashed curve), and
t = 60 s (dotted—dashed curve). The solution computed in a static atmosphere is shown as dotted curve for comparison. The vertical velocity wave used for the

computation is shown in Figure 1.

seen in the higher layers for line center wavelength and also in
the somewhat deeper layers for wavelengths away from the line
center (see the colored curves in the left panel of Figure 5).
In the case of PRD, the presence of a velocity gradient in the
line-forming region can give rise to asymmetric core minima
(namely, minima between the core peak and the wing PRD

peaks) and wing PRD peaks. This effect, discussed in detail
in P1, is, however, independent of the non-monotonicity of the
velocity field. In the case of a damped sine wave, we see only a
marginal asymmetry in the blue and red core minima for
1 = 0.1, while the wing PRD peaks are nearly symmetric about
the line center. This can be understood by comparing the values
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Figure 6. Time evolution of Q/I profiles formed in a VALC model atmosphere
at . = 0.9. Different curve types in the bottom panel have the same meaning as
in the bottom right panel of Figure 5.

Table 2
Height Corresponding to 7,,, = 1 for Line Center, Core Minima, and PRD
Wing Peaks for a Line of Sight of y = 0.1

Height in km at which 7, = 1

(A — Ao) in A
Static Damped sine Wave
t=30s)

—0.36 (blue PRD peak) 450 450
—0.11 (blue core minimum) 690 720
0 (line center) 1680 1680
0.11 (red core minimum) 690 675
0.36 (red PRD peak) 450 450

of radiation anisotropy between the blue and red wing PRD
peaks at the height where these peaks are formed. In Table 2 we
give the height at which the total monochromatic optical depth
for a given (A — Xg) (or x) and p (denoted here as 7., and
defined below Equation (1)) is equal to unity for the static case
and for the damped sine wave at t = 30 s. We have chosen the
values of (A — A\g) for the line center, blue and red core
minima, and blue and red PRD wing peaks keeping the static
case as the reference, although these values are different in the
presence of a velocity wave due to Doppler shift. However, for
p = 0.1 and ¢t = 30 s, this difference is minimal. From Table 2
we see that the wing PRD peaks are formed at a height of
450 km for both the static and damped sine wave. At this height
the anisotropies for the blue and red wing PRD peaks nearly
coincide (compare the blue and red dashed curves in the left
panel of Figure 5), thereby leading to the wing PRD peaks that
are nearly symmetric about the line center (see the bottom Q/1
panel in Figure 5).

Figure 7 shows the response of the Stokes profiles at
t = 10s to the variations in propagation speed ¢, of the
velocity wave. The period of the wave is held constant at
P = 100s. Therefore as c, increases, the wavelength of the
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Figure 7. Effect of propagation speed c, on the Stokes profiles for a nearly

horizontal ray g = 0.1. The emergent (I, Q/I) profiles computed with a

damped sine wave at the time point = 10 s are shown. Different curves are:

static case (solid curve), ¢, = 3 km s~! (dotted curve), ¢, = 7km s~ ! (dashed
curve), and ¢, = 11 km s~ ! (dotted—dashed curve).

wave \,, = ¢, P also increases. In other words, the number of
wavelengths or waves that cover the entire atmosphere
decreases. We remark that the resolution of the height grid is
15 km, while the shortest wavelength considered is 300 km.
Therefore the spatial grid is sufficiently fine to correctly handle
the case of a large number of waves within the atmosphere.
Indeed we have verified that the emergent profiles presented in
Figure 7 coincide with those computed with a height grid of
5 km resolution. In the case of ¢, = 3km sfl, wherein there
are large numbers of waves within the atmosphere, the opacity
also executes fluctuations more often within the atmosphere.
Therefore, the overall anisotropy of the radiation field increases
uniformly throughout the atmosphere. This results in a
considerable increase in the magnitude of the Q/I profiles in
the line core region. The Q/I profiles do not show any
systematic variation with c¢,. On the other hand the intensity
profiles are somewhat insensitive to variations in c,,.

The emergent (I, Q/I) profiles computed using the VALC
model atmosphere with the linear velocity field are shown in
Figure 8. As the velocity gradient v, increases the Doppler shift
(a blueshift in this case) of the profiles also increases. The
linear polarization initially increases and then saturates
followed by a small decrease. The increase in Doppler shift
is more dramatic for 4 = 0.9 than for . = 0.1. The profiles are
asymmetric about the line center. For x = 0.1 the core minima
and the PRD wing peaks exhibit considerable asymmetry about
the line center.

We now consider a very strong line (r =2 x 1077),
representative of the Call K line, to demonstrate that our
CMF code is able to handle such a difficult case. The other
model parameters are the same as those discussed in Section 3.
The left panel of Figure 9 shows the response of this very
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Figure 8. Emergent (I, Q/I) profiles at o = 0.1 (panel (a)) and 1 = 0.9 (panel (b)) formed in the VALC model atmosphere. A linear velocity field with constant
velocity gradient v, is used for the computation. Different solid curves with increasing (I, Q/I) values correspond to different values of velocity gradient v, starting
from 2.23 to 20.07 ms~' km™! (shown as the red curve) in steps of 2.23 m s~ ! km™~'. The solution computed in a static atmosphere is shown as the blue curve for

comparison.
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Figure 9. Stokes profiles of a very strong line ( = 2 x 1077) formed in a VALC model atmosphere for a nearly horizontal ray at ;2 = 0.1. The left panel shows the
time evolution of the emergent (I, Q/I) profiles computed using a damped sine wave. The right panel shows the emergent (I, Q/I) profiles computed using a linear

velocity field. Different curve types have the same meaning as in Figure 8(b).

strong line emergent at ¢ = 0.1 to a damped sine wave. The
nature of the intensity profile for such a strong line case has
been discussed in Shine et al. (1975) for the static case and by
Scharmer (1984) for the velocity wave case. Our CMF code is
able to reproduce the expected self-reversed absorption line
with symmetric emission peaks on either side of the line center
(see the blue curve in the right panel of Figure 9) for the static
case, and Doppler shifted asymmetric profiles in the presence

of velocity waves. Furthermore, our code is able to reproduce
the fluctuation of these emission peaks both in amplitude and in
their wavelength position for different time points of the wave,
as already noted by Scharmer (1984). As for the corresponding
Q/I profiles, a detailed study for the static case is presented in
Saliba (1985) and in Stenflo (1980), who discusses the effect of
the continuum parameter ». The bottom left panel of Figure 9
shows the effect of the vertical velocity wave on Q/I. Being a
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very strong line, this line forms high in the atmosphere, thereby
the effect of the velocity field can be felt over a larger
wavelength domain within the line.

The right panel of Figure 9 displays the emergent (I, Q/I)
profiles for the very strong line case computed using the linear
velocity field. As expected, Doppler shifted asymmetric
profiles are obtained as the velocity gradient v, increases.
Also, the emission peaks in the intensity profile decrease in
amplitude, the decrease being asymmetric and larger for the
blue emission peak. Such highly asymmetric intensity profiles
were obtained by Scharmer (1984). Apart from the Doppler
shift the Q/I profiles exhibit a non-linear variation in their
amplitude in and around the line core region.

7. CONCLUSIONS

In this paper we have considered the problem of polarized
line formation in planar media where non-relativistic, non-
monotonic vertical velocity fields exist. For this purpose, we
have suitably modified the CMF method presented in P1 to
handle non-monotonic vertical velocity fields. To this end, in
P1 and in this paper, we have applied the CMF method of
Hauschildt & Baron (2004) with the second discretization
scheme for the CMF term to include polarization and PRD.

In the first part of the paper we present several numerical
tests to validate the CMF method. We show that the CMF
method is sufficiently accurate and can be used for solar and
stellar applications. For velocities that prevail in supernova
atmospheres the CMF method becomes numerically unstable,
producing oscillations in the converged solution, particularly
for the case of optically thick lines. Therefore we conclude that
the CMF methods presented here and in P1 are reliable for
velocity gradients less than 1600ms ' km~'. For larger
velocity gradients our CMF method should be used with
caution, in particular for the strong line case.

In the second part of the paper we present the Stokes profiles
emerging from a VALC model atmosphere with (i) a vertical
velocity wave represented by a damped sine wave and (ii) a
linear velocity field. We show that our CMF code is able to
reproduce the expected behavior of emergent Stokes profiles
and radiation anisotropy with the variation in velocity gradient
(see Carlin et al. 2012, 2013; Sampoorna &
Nagendra 2015a, 2015b). As in the previous studies by the
above-cited authors, the present study also demonstrates that
the linear polarization profiles respond more sensitively to the
velocity fields than the intensity profiles. Therefore linear
polarization together with intensity provide a better diagnostic
tool to explore the nature of velocity fields in the internal layers
of solar or stellar atmospheres.
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