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ABSTRACT

We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field
generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by
using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by
turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study
the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models
have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two
symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the
upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is
then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s
polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale
pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.
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1. INTRODUCTION

The flux transport dynamo model, which started being
developed from the 1990s (Wang et al. 1991; Choudhuri
et al. 1995; Durney 1995), has emerged as an attractive
theoretical model for explaining the solar cycle and has been
extensively reviewed by several authors (Choudhuri 2011;
Charbonneau 2014; Karak et al. 2014). In any dynamo model,
the toroidal magnetic field is generated from the poloidal field
by the differential rotation, which has now been mapped by
helioseismology (Thompson et al. 1996). The distinctive
features of the Babcock—Leighton (BL) flux transport dynamo
model are that the meridional circulation plays a crucial role in
this model and the poloidal magnetic field is generated by the
Babcock-Leighton (BL) process involving the decay of tilted
bipolar sunspots. Bipolar sunspots are assumed to form due to
the buoyant rise of the toroidal magnetic flux through the
convection zone (Parker 1955b) and their tilts result from the
action of the Coriolis force on the rising flux tubes
(Choudhuri 1989; D’Silva & Choudhuri 1993; Fan
et al. 1993) leading to Joy’s law (Hale et al. 1919). When a
tilted pair of bipolar sunspots decays, turbulent diffusion
spreads the magnetic flux to produce a poloidal magnetic
component (Babcock 1961; Leighton 1964). An over-all
poloidal field develops from the contributions due to many
bipolar sunspots and is advected to the poles by the meridional
circulation, which is poleward in the upper layers of the
convection zone. The polar magnetic field of the Sun is built up
in this process.

The BL process—which involves the production of tilted
bipolar sunspot pairs and the generation of the poloidal field
from their decay—is an inherently 3D process and can be
modeled in 2D only through drastically simplified crude
approximations (Choudhuri & Hazra 2016). Still, an under-
standing of how the poloidal field builds up by the BL process
historically came from two distinct classes of 2D theoretical
models: the 2D flux transport dynamo model and the surface

flux transport (SFT) model. In the 2D flux transport dynamo
model, we average over the azimuthal direction ¢ and solve the
axisymmetric dynamo equation in the r—@ plane. On the other
hand, in the SFT model, we focus our attention only on the B,
component of the magnetic field at the solar surface spanned by
the 6—¢ coordinates and study its evolution on this surface
under the joint action of diffusion, meridional circulation and
differential rotation. Neither of these approaches provides a
fully satisfactory depiction of the BL process and each
approach has its own limitations.

If a tilted bipolar sunspot pair at the solar surface is averaged
over the azimuthal direction ¢, then we get two rings of
opposite magnetic polarity at slightly different latitudes.
Durney (1995, 1997) advocated the development of the flux
transport dynamo model by using such double rings as the
source of the poloidal component. However, a more popular
approach has been to introduce an a-coefficient reminiscent of
the a-effect of the mean field dynamo theory (Parker (1955a);
Steenbeck et al. (1966); Choudhuri (1998), Chapter 16),
although this now has a completely different interpretation.
The source term of the poloidal field is taken as the product of
this a-coefficient and the toroidal field that has risen from the
tachocline due to magnetic buoyancy. Choudhuri & Hazra
(2016) review how different authors achieve this, with
references to the original papers. Nandy & Choudhuri (2001)
showed that the double ring approach and the treatment
through «-coefficient give qualitatively similar results,
although Mufioz-Jaramillo et al. (2010) argued that the double
ring approach is more realistic. In any case, the 2D kinematic
dynamo models do not give a detailed picture of how the
poloidal field builds up from the contributions of many
individual bipolar sunspot pairs, since such pairs get smeared
over when we average over the azimuthal direction. Also, as
most of these dynamo models rely on a mean field approach,
flux tubes or sunspots are not handled properly in these models
(Choudhuri 2003).
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Starting from the pioneering work of Wang et al. (1989a,
1989b), the SFT model has been made more sophisticated in
several recent studies (van Ballegooijen et al. 1998; Schrijver
et al. 2002; Baumann et al. 2004, 2006; Cameron et al. 2010;
Jiang et al. 2014a, 2015; Upton & Hathaway 2014). In this
model, recently reviewed by Jiang et al. (2014b), one can study
in detail how individual sunspot pairs contribute in building up
the poloidal field and can address such questions as to how this
process depends on such factors as the latitudinal positions of
the sunspot pairs and the distribution in their tilt angles. The
main limitation of this model is that several important aspects
of physics get left out by ignoring the vectorial nature of the
magnetic field and by not including any subsurface processes.
By studying the time evolution of an axisymmetric poloidal
field, Dikpati & Choudhuri (1994, 1995) and Choudhuri &
Dikpati (1999) showed that the subduction of the poloidal field
by the meridional circulation sinking underneath the surface at
the polar region plays an important role in the dynamics of the
magnetic field. Since this process cannot be included in the
SFT models, flux of B, tends to get piled up in the polar regions
and has to be neutralized by flux of the opposite sign advected
there. If additional flux of the opposite sign is not brought
there, then the polar field may reach an asymptotic value, as
seen in Figure 6 of Jiang et al. (2014a). When one tries to
model several successive cycles through an SFT model, one
may get a “secular drift” of the polar field if the flux of the
succeeding cycle is unable to properly neutralize the polar flux
of the preceding cycle, as seen in Figure 1 of Baumann et al.
(2006). A way of fixing this problem proposed by Baumann
et al. (2006) involves adding an ad hoc decay term
corresponding to the radial diffusion not included in the SFT
model. In spite of the tremendously important historical role the
SFT model has played in elucidating the BL process, this
model has the inherent limitation that it cannot adequately
handle the magnetic field dynamics in the Sun’s polar region.

We believe that the next step forward is the 3D kinematic
flux transport dynamo model. In this model, the fluid motions
(differential rotation, meridional circulation) are specified and
the evolution of the magnetic field is calculated in 3D. Such a
model has the promise of incorporating the attractive features
of both the 2D flux transport dynamo model and the SFT
model, while being free from the limitations of both these
models. It can handle the BL process much more realistically
than the 2D flux transport dynamo model, where we average
over the azimuthal direction and cannot include tilted bipolar
sunspots properly. On the other hand, this model incorporates
the vectorial nature of the magnetic field and the subsurface
processes which are left out in the SFT models.

Efforts to construct 3D kinematic flux transport dynamo
models began only within the last few years. In a landmark
paper, Yeates & Muifoz-Jaramillo (2013) developed a method
of treating the buoyant rise of a flux tube in their 3D dynamo
model by simultaneously applying a radially outward velocity
and a vortical velocity to a localized part of an azimuthal flux
tube at the bottom of the convection zone. Although they did
not present a self-excited dynamo solution, they simulated a
solar cycle by incorporating bipolar sunspot eruptions by this
method at the actual locations where bipolar sunspots were
observationally seen. Miesch & Dikpati (2014) succeeded in
producing a self-excited dynamo by identifying the locations
(in latitude and longitude) at the bottom of the convection zone
where the toroidal field was the strongest (in the theoretical
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model) and then putting tilted bipolar sunspot pairs above those
locations with loop-like magnetic structures both above and
below the surface (by using an algorithm which they named
SpotMaker). More details of this model have been given by
Miesch & Teweldebirhan (2016). After a part of the toroidal
flux tube rises to the surface to produce bipolar sunspots, the
magnetic field underneath these sunspots has to be detached at
some stage from the bottom of the convection zone before the
magnetic flux of the sunspots is dispersed freely by diffusion
and carried poleward by the meridional circulation (Longcope
& Choudhuri 2002). Our lack of understanding of this process
is the main difficulty in constructing realistic 3D dynamo
models at the present time. Presumably, the approach of Yeates
& Muioz-Jaramillo (2013) captures the physics of the early
phase soon after the bipolar sunspots emerge, whereas the
approach of Miesch & Dikpati (2014) is more appropriate for
the later phase when the magnetic field below the sunspot pairs
has become detached from the bottom of the convection zone.
The aim of the present paper is to use a modified version of
the model of Miesch & Dikpati (2014) to study the build-up of
the Sun’s polar magnetic field by the BL process in more detail.
The model of Miesch & Dikpati (2014) uses values of
parameters (such as turbulent diffusion) which are probably not
very realistic for the Sun. We use the same dynamo code
named STABLE (i.e., Surface Flux Transport And Babcock—
LEighton Model) to first construct a model of the solar dynamo
based on more realistic values of parameters and then use this
model for our study. Since the BL process has been studied
most extensively by the SFT models, we especially address the
question whether the insights gained about various aspects of
this process from the SFT models are borne out by the 3D
model or have to be revised significantly. We shall see that the
accumulation of magnetic flux at the poles seen in the SFT
models does not occur when the low-latitude advection and
emergence of oppositely signed radial flux is taken into
account. Thus, the problem of “secular drift” is automatically
eliminated. One insight from the SFT models is that the fluxes
of leading sunspots at lower latitudes get canceled across the
equator and the fluxes from the following sunspots are then
advected to the poles, building up a dipole moment of the Sun.
We shall see that this insight also will have to be modified
significantly. SFT models indicate that even a few large
sunspot pairs with anti-Hale or wrong polarity (i.e., opposite of
what is expected of sunspot pairs in that cycle) may have
significant effect on the polar field (Jiang et al. 2015). We shall
be able to study this effect more realistically in our 3D model.
After discussing the mathematical formulation of the
problem in the next section, the standard model of the solar
dynamo which we shall use is presented in Section 3. Then the
build-up of the polar field is studied in Section 4, while the
effects of large anti-Hale sunspot pairs are discussed in
Section 5. Our conclusions are summarized in Section 6.

2. MATHEMATICAL FORMULATION

In this section, we explain the basic formulation of the
STABLE dynamo model which is first reported in Miesch &
Dikpati (2014) and in more detail in Miesch & Teweldebirhan
(2016). This model is a 3D generalization of the pre-existing
axisymmetric 2D flux transport dynamo models and it solves
the induction equation in full 3D rotating spherical shell with
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radius ranges from r = 0.69R to r = R of the Sun:

%—?sz(va—nthB)—i—S(Q,(ﬁ,t) 1)
where v is the velocity field, 7,(r) is the turbulent diffusion in
the solar convection zone, and S(0, ¢, 1) is the source function
which captures the effect of the BL mechanism. As we shall
discuss in detail later, the source function S(0, ¢, 1) is of the
nature of an impulsive forcing term which becomes non-zero
only at the instants when we allow a bipolar sunspot pair to be
put at the solar surface. Though this model is fully 3D and no
axisymmetric assumption is considered, still this model is
kinematic and we provide the velocity field motivated from
helioseismology and observations. We solve Equation (1) using
anelastic spherical harmonic (ASH) code (Miesch et al. 2000;
Brun et al. 2004). ASH is a well-established pseudospectral
code which has been used extensively for 3D solar and stellar
convection simulations, instabilities, tachocline confinement
and many other aspects of solar and stellar internal dynamics.
The ASH code has the capability to solve the velocity equation
and magnetic induction equation together but for our kinematic
model we bypass the velocity equation solver and only solve
the induction equation by providing observationally motivated
velocity fields. The version of the code used for 3D kinematic
dynamo modeling is STABLE (i.e., Surface Flux Transport
And Babcock-LEighton Model).

The mean velocity field v in the Sun can be written as the
summation of the part from differential rotation {2 and the
meridional circulation v,. Whereas the exact differential
rotation is mapped from helioseismology quite well (Schou
et al. 1998), the structure of the meridional circulation in the
solar convection zone is still under study. Recently, different
helioseismology groups have reported substantially different
structures of the meridional circulation in the solar convection
zone (Schad et al. 2013; Zhao et al. 2013; Rajaguru &
Antia 2015). In response to these observational claims, Hazra
et al. (2014) carried on calculations with different types of
meridional circulation structure and showed that the flux
transport dynamo works quite well as long as there is an
equatorward flow at the bottom of the convection zone.
Recently, Karak & Cameron (2016) showed that in the
presence of appropriate profile of downward pumping in the
solar convection zone, the flux transport solar dynamo works
with even shallow meridional circulation. Since there is still no
compelling reason (Rajaguru & Antia 2015) to give up the
simple single-cell profile of meridional circulation used by
many previous authors (Chatterjee et al. 2004, Miesch &
Dikpati 2014), we use a single cell profile of the meridional
circulation having a poleward flow at the surface and an
equatorward return flow at the bottom of the convection zone.
The stream function corresponding to the meridional circula-
tion which we use here is

Wrsinf = o(r — Ry)sin TR Ny ey
(R —Rp)
X {1 — efar@=7/2)}) p=(—=ro)/T)? )

with 6 = 03 x 107"%em™, 3, = 05 x 107 %em ™!, ¢ =
2.0000001, ry = (R — Ry)/4.0, T = 3.5 x 10'°cm, R, =
0.69 R. The value of 1), determines the amplitude of the
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Figure 1. (a) Differential rotation profile with color table ranging from
350480 nHz from blue to red; (b) streamlines for the meridional flow. Blue
and red contours show the poleward flow at the surface and an equatorward
flow at the bottom of the convection zone in northern and southern hemisphere
respectively. The amplitude of the meridional circulation is taken as
2040 m s~ on the surface and 1.64 ms™' at the lower convection zone.

-50 0 50 06 07 08 08 1.0
latitude /R

Figure 2. Variation of latitudinal component of meridional circulation V, with
latitude on the surface (a) and with radius at 45° latitude (b).

meridional circulation. On taking vy = 12.0, the poleward flow
near the surface at mid-latitudes peaks around vy = 20.40 m
s~ '. The contour plot for the meridional circulation is shown in
Figure 1(b) and the variation of Vj, with latitude on the surface
and variation V, with radius at mid-latitude (45°) are shown in
Figures 2(a) and (b), respectively. For differential rotation we
have used the analytical formula given in (Dikpati &
Charbonneau 1999) which is a good fit to the observational
data (Figure 1(a)).

Turbulent diffusivity is another important parameter. After
the BL process generates the poloidal field near the solar
surface, it has to reach the tachocline where the differential
rotation acts on it to produce the toroidal field. This can happen
in two ways. The poloidal field may first be advected by the
meridional circulation to the pole and then underneath the
surface to the mid-latitude tachocline from where the first
sunspots of cycle rise. The timescale for this is close to 20 years
for a reasonable profile of the meridional circulation. The
second possibility is that the poloidal field diffuses from the
surface to the bottom of the convection zone to be acted upon
by the differential rotation of the tachocline. The Green’s
function for the diffusion equation suggests that the diffusion
time across a length L is L2/477, (see, for example, Parker
(1979), p. 32). If the turbulent diffusivity within the convection
zone is assumed to be 5 x 10" cm?s™" as we shall do, then
this diffusion time turns out to be about 7 years if we take L to
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Figure 3. High diffusivity profile used for most of our simulation is shown in
blue solid line and the profile used for advection-dominated regime is shown in
black solid line.

be the thickness of the convection zone. The value of the
turbulent diffusivity determines whether the poloidal field is
transported across the convection zone primarily by meridional
circulation or by turbulent diffusion, and the behavior of the
dynamo is very different in the two situations (Jiang et al. 2007;
Yeates et al. 2008). Over the years, we have got more and more
evidence that the turbulent diffusivity has to be sufficiently
high to make the poloidal field transport primarily by diffusion
in order to explain many aspects of the solar cycle, such as the
dipolar parity (Chatterjee et al. 2004; Hotta & Yokoyama 2010),
the lack of significant hemispheric asymmetry (Chatterjee &
Choudhuri 2006; Goel & Choudhuri 2009), the observed
correlation between the polar field at the cycle minimum and
the strength of the next cycle (Jiang et al. 2007), and the
Waldmeier effect (Karak & Choudhuri 2011). Such a value of
turbulent diffusivity is also consistent with mixing length
arguments (Parker 1979, p. 629) and the theory of mean flows
(Miesch et al. 2012).

In most of the SFT models, a constant diffusivity
(2.5-3.0) x 10?cm?s™ on the surface is used (Jiang
et al. 2014b). The turbulent diffusivity is expected to be less
within the convection zone and falls drastically at its bottom
where convection is less vigorous. Except when stated
explicitly otherwise, the calculations of this paper assume the
diffusivity to be given by

Mmid " — Tda
=n.+—|1 +erf|2——
R R ]

L} B Y 13 3)
2 dy

where 1. = 2 X 10"%cm?s !, Nmid = 5 X 10" em?s7 !, Vo =

0.725 R, rg, = 0.956 R, and d;, = 0.05R. In Figure 3 we have
shown the diffusivity profile by the blue solid line. For
comparison, the diffusivity profile used by Miesch & Dikpati
(2014) is shown by the black solid line. It may be noted that
some groups (Dikpati & Charbonneau 1999; Dikpati & Gilman
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2006), over the years, used a rather low value of diffusivity. As
seen in Figure 3, Miesch & Dikpati (2014) and Miesch &
Teweldebirhan (2016) followed these authors in using a
diffusivity which was, within the body of the convection zone,
about one order of magnitude smaller than what we are using.
In our case the diffusivity 7,y in the convection zone is
5 x 10" em?s™!, whereas Miesch & Dikpati (2014) and
Miesch & Teweldebirhan (2016) use 5 x 10'cm’s™". Such a
lower value of diffusivity would make the diffusion time across
the convection zone of the order of 70 years and the advection
by the meridional circulation would clearly be the dominant
process for the transport of the poloidal field. Miesch & Dikpati
(2014) presented a self-excited dynamo solution for this
situation. For the value of diffusivity we are using, the
diffusion across the convection zone is the primary process for
bringing the poloidal field from the solar surface to the
tachocline. We believe that we are the first to obtain a self-
excited 3D kinematic dynamo solution for this case, which we
contend is closer to reality.

We now discuss how the source term S(, ¢, ) in (1) is
specified with the help of the SpotMaker algorithm to treat the
BL process. This algorithm is mainly a 3D generalization of the
Durney’s double ring algorithm (Durney 1995, 1997). In this
algorithm, two suitable opposite-polarity spots are placed on
the surface of the Sun in response to the dynamo-generated
field near the base of the convection zone and then they are
allowed to decay in the presence of mean flows (meridional
circulation and differential rotation) and diffusivity. The first
aim of this algorithm is to find out the suitable position for
these spots to be placed on the surface. To do so, we calculate
the mean toroidal flux B(f, ¢) near the bottom of the
convection zone averaged over the tachocline thickness
(Miesch & Teweldebirhan 2016) and find out where this field
is crossing the threshold value B,. It is believed that if magnetic
fields near the bottom of the convection zone are stronger than
the threshold value B, then they become magnetically buoyant
and create the bipolar sunspots on the surface (Parker 1975). So
the latitude and longitude of the spot pair is chosen randomly
from all grid points where the mean toroidal flux exceeds B;,
subject to a mask that suppresses spots at high latitudes. When
we are able to find the 6, and ¢, where the dynamo-generated
toroidal field is more than the threshold value B,, we put two
spots on the surface at that position. Once the position of the
bipolar sunspots is decided, the next step is to specify the
magnetic field there, by putting some tilt angle between the two
sunspots according to Joy’s law. For that we use the
polynomial profile as given in Miesch & Dikpati (2014) and
for tilt angle we follow the procedure given in Stenflo &
Kosovichev (2012). We choose the tilt angle to be
6 =32%1cosf. We do not want to put these spots at each
time step of our simulation. There are always certain time
differences between the appearances of different sunspot
groups. So we have used a time delay probability density
function which allows us to put successive sunspot pairs having
a random time delay between their appearances (Miesch &
Teweldebirhan 2016). Another thing we should mention here is
that, as seen in the observed butterfly diagram, sunspots are
found mostly on the lower latitudes and in our model we
artificially suppress the sunspot formation at higher latitudes
using the masking function as given in Equation (3) of the
Miesch & Dikpati (2014). The flux content in the spots and the
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Figure 4. Time-latitude plot of longitudinally averaged radial magnetic field on the surface (r = R) of the Sun. Color table is set at £10 kG.

strength of the radial field are chosen based on the dynamo-
generated field B and the observed strength of the sunspots as
given below.

1B(6;, ¢y, 1) 1023
—~ Mx
B, 1+ (B, ¢)/B,)?

where B = g(#)B is the toroidal field after using the masking
function g(f) to suppress sunspots at high latitude and B, is the
quenching field strength. Here, e is the parameter which
determines whether the dynamo will be sub-critical or super-
critical. Our ultimate aim would be to make the dynamo work
with opor = 1 so that the flux in a particular BMR will have a
value of 10** Mx as observed in case of the subsurface field
strength equivalent to the quenching field strength. But if the
subsurface field at the bottom of the convection zone is not
close to the quenching field, then we have to increase the value
of arepoe in order to get a working dynamo with bigger spots. In
case of the diffusion-dominated dynamo, we are able to get a
working dynamo with agpee = 100. While creating sunspot
pairs by the SpotMaker algorithm, once the total flux is fixed
by (4), we have the freedom of selecting either the magnetic
field strength or the size. We choose the magnetic field strength
inside the sunspots to be 3000 G, which fixes the size.

Since we are solving magnetic fields in a 3D spherical shell,
we must specify the subsurface structure of the sunspots which
are put on the surface using the SpotMaker algorithm. As it is
argued by Longcope & Choudhuri (2002) and Schiissler &
Rempel (2005) that the sunspots get quickly disconnected from
the parent flux tube, we make a very simple potential field
approximation for the sunspot fields (see Figures 2(a), (b) of
Miesch & Teweldebirhan 2016). We ensure that the radial field
becomes zero at some penetration depth (r = 0.90R) and it is
equal to the imposed sunspot field at the surface (r = R). For
the upper boundary condition, we take the magnetic field to be
radial at the solar surface. Throughout our simulation we use N,
= 200, Ny = 256, and Ny = 512. All of the cases where we
show the field lines above the solar surface (r = R) are the
extrapolated fields using a free potential approximation.

¢ = 2asp0t 4)

3. OUR REFERENCE MODEL

Now we present a self-excited solution from our reference
model with parameters as prescribed in the previous section. To
the best of our knowledge, this is the first self-excited 3D

kinematic dynamo solution in which the diffusivity has been
assumed sufficiently high to make sure that the poloidal field is
transported from the surface to the tachocline primarily by
diffusion. The earlier results presented by Miesch & Dikpati
(2014) and Miesch & Teweldebirhan (2016) were obtained
with a diffusivity one order of magnitude smaller and the
transport of the poloidal field was due to the meridional
circulation.

Figure 4 shows a butterfly diagram obtained by putting the
longitude-averaged B, in a time-latitude plot. One clearly sees
the butterfly diagram of sunspots at lower latitudes and the
poleward advection of the magnetic field by the meridional
circulation at higher latitudes. Superficially, this resembles
Figure 6(a) of Miesch & Teweldebirhan (2016), although our
solution is for the diffusion-dominated case in contrast to the
solution of Miesch & Teweldebirhan (2016) obtained for the
case dominated by advection due to the meridional circulation.
The differences between the two cases become clear on looking
at the distribution of the magnetic field. Figure 5 shows the
evolution of the toroidal and the poloidal fields during a cycle.
Comparing with Figure 8 of Miesch & Teweldebirhan (2016),
we see some obvious differences. In the solution of Miesch &
Teweldebirhan (2016), the oppositely directed toroidal fields
on the two sides of the equator almost pressed against each
other. Due to the low diffusivity, there would not be much
diffusion of the toroidal field even when two opposite bands are
brought so close to each other. In our model with higher
diffusivity, however, there would be more diffusion of the
toroidal field across the equator, making sure that the bands of
concentrated opposite polarity are kept somewhat apart, as seen
in Figure 5.

The solar magnetic field is predominantly dipolar. One
requirement of a theoretical solar dynamo model is that it
should have dipolar parity. We have run our reference model
for several cycles to ensure that the dipolar parity persisted.
One important question is, under what circumstances we would
expect dipolar parity. This question has been studied
thoroughly by Chatterjee et al. (2004) and Hotta & Yokoyama
(2010) for the 2D kinematic dynamo model. A full study of this
question requires running the code for many different
combinations of parameters and running it for a large number
of cycles for each such combination. This would require a huge
amount of computer time for the 3D model. Because of the
limited computer time available to us, we have not been able to
study this question exhaustively. However, we have made a
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Figure 5. Mean toroidal and poloidal field lines are shown for a particular solar cycle at five different times: = 60.0 (a), (f), 62.0 (b), (g), 64.0 (c), (h), 66.0 (d), (i),
and 68.0 yr (e), (j). Frames (a)—(e) show mean toroidal fields with red and blue lines indicating eastward and westward field, respectively. Filled color also represents
the mean toroidal fields. Color table is set in this case at £500 kG. Frames (f)-(g) represent poloidal magnetic potential with potential field extrapolation above the
surface (up to r = 1.25R) where red and blue lines represent clockwise and anticlockwise directions. The maximum and minimum contour level is set corresponding to

the poloidal field strength of +49 kG

limited number of runs to explore the issue of parity a little bit.
The best way to look at the issue of parity is to make a butterfly
diagram of longitudinally averaged B, at the bottom of the
convection zone, as done in Figure 7(a) of Chatterjee et al.
(2004). In Figure 6(a) we show such a plot for our reference
model, whereas Figure 6(b) shows a similar plot for the case in
which the value of diffusivity within the convection zone has
been changed from 5 x 10" cm?s™' to 7 x 10" em?s™!
while keeping all the other parameters exactly the same as in
our reference model. We clearly see in Figure 6(b) that the
nature of the solution is changing from a dipolar parity to a
quadrupolar parity.

The surprising fact is that we now seem to get a result which
is the opposite of what Chatterjee et al. (2004) and Hotta &
Yokoyama (2010) obtained for the 2D kinematic dynamo
model. These authors found that the dipolar parity is preferred
on increasing the diffusivity, whereas we now are finding the
opposite of that. Let us look at the physics of the problem. In a
dipolar mode, the poloidal magnetic field lines connect across
the equator, whereas the toroidal field on the two sides of the
equator has to be directed oppositely. In order for this to
happen, we need diffusivity to have a big effect on the poloidal
field, but not much effect on the toroidal field. In the model of

Chatterjee et al. (2004), any strong toroidal field within the
convection zone was removed by magnetic buoyancy and the
toroidal field at the bottom of the convection zone was also
depleted continuously to account for flux loss due to magnetic
buoyancy. As a result, the toroidal magnetic field near the
equator was naturally weak and the effect of diffusion was
more important on the poloidal field than on the toroidal field.
This ensured that higher diffusivity favored the dipolar mode.
In the present calculation, the situation is rather different. The
strong parts of the toroidal field are now allowed to hover in the
middle of the convection zone and near the equator. On
increasing diffusivity, the quadrupolar mode in which the
toroidal field on the two sides of the equator has the same sign
is favored. Here, we should mention that the magnetic pumping
can play a very important role to promote dipolar parity
(Guerrero & de Gouveia Dal Pino 2008). Another point to note
is that Chatterjee et al. (2004) used a lower diffusivity of the
toroidal field compared to the poloidal field, to account for the
quenching of turbulent diffusion due to the stronger toroidal
magnetic field. This could be done in a 2D mean field model in
which the evolution equations for the toroidal and poloidal
fields neatly separate out, and one could use different values of
diffusivity in the two equations. Since it is not possible to do
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Figure 6. Azimuthal averaged toroidal fields By at the bottom of the convection zone (r = 0.71R) for two different values of diffusivity 7mq at the convection zone (a)

5 x 10" em? s ! and (b) 7 x 10" cm?s~'. Color table is set at +400 kG.

this in a 3D non-axisymmetric model in which the equations
for the toroidal and poloidal components do not split in this
way, we have used a single diffusivity. It is possible that the
weaker diffusivity of the toroidal field in Chatterjee et al.
(2004) helped in producing a dipolar parity by allowing
toroidal fields of opposite sign to exist on the two sides of the
equator more easily. One way of capturing the physics of this
in a 3D non-axisymmetric model may be to include a
quenching of turbulent diffusivity in the regions of strong
magnetic field. We plan to explore the effect of this in future.

With these two opposite results at hand, one crucial question
is: which of the two results is closer to reality? Although we
cannot assert this with confidence at this stage, we believe that
the 2D kinematic dynamo result that the dipolar parity is
preferred on increasing diffusivity is the more appropriate
result. Although in this paper we are taking account of the 3D
nature of magnetic buoyancy and, in that sense, treating
magnetic buoyancy more realistically, we still have not taken
account of flux depletion from the convection zone and its
bottom in an appropriate way. This is probably one important
reason why our results are not matching with the results of
previous 2D models (Chatterjee et al. 2004; Hotta &
Yokoyama 2010). We are right now exploring possible
schemes to take account of the flux depletion due to magnetic
buoyancy in a realistic way. We believe that this flux depletion
is quite important in the solar dynamo. Choudhuri & Hazra
(2016) found that the Waldmeier effect cannot be reproduced
from a theoretical dynamo model unless the flux depletion is
taken into account. We have a future plan of incorporating flux
loss due to magnetic buoyancy in a realistic way in our 3D

kinematic dynamo model and then studying the parity issue
more carefully.

Since we are interested in a dynamo solution which has
dipolar parity, we have converged on the reference solution
presented here. If we decrease diffusivity, then we are led to the
case where the meridional circulation provides the main
transport mechanism for the poloidal field. On the other hand,
if we increase diffusivity, then we obtain the quadrupolar
mode. This is what has led us to choose the value
5 x 10" cm?s™! for diffusivity inside the convection zone.

4. THE BUILD-UP OF THE POLAR FIELD

After constructing the self-excited dynamo model, we now
study how individual sunspot pairs contribute to the building
up of the polar field and address the question of whether our
understanding gained from this study necessitates the revision
of some insights we have from SFT models. For this study, we
shall put individual sunspot pairs on the solar surface by hand
and look at the evolution of the magnetic field. In other words,
we shall now not try to construct self-excited periodic
solutions, although we shall keep using the same values of
different parameters that we had used for constructing the self-
excited periodic solution.

We start our simulation by putting a single pair of bipolar
sunspots in the northern hemisphere at different emergence
angles Aeme and let it evolve under the axisymmetric mean
flows and diffusion to see the development of the polar field.
We have chosen magnetic flux of 1 x 10** Mx in each spot
and its radius is taken to be 21.71 Mm (somewhat larger than
actual sunspot radii, to make the results of the simulation more
clearly visible) throughout our simulations. In the next set of
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Figure 7. Time evolution of radial fields on the surface of the Sun with a single pair in the northern hemisphere for (a) 0.025 yr, (b) 0.25 yr, (c) 1.02 yr, (d) 2.03 yr, (e)
3.05 yr, and (f) 4.06 yr. Here, white color shows the outward-going radial field and black color represents inward-going radial field. The color scale is set at +
maximum values of the magnetic fields for each case. For example +4.66 G is the color scale for (a) and £0.10 G is the color scale for (f).

our simulations, we shall put two pairs of sunspots symme-
trically in the two hemispheres, which have the same amount of
flux and radius as in the case of the single pair, to see the
effects of cross-equator diffusion of magnetic flux.

4.1. Polar Field from One Sunspot Pair

We use the SpotMaker algorithm to put one sunspot pair at
latitude 20° with tilt angle 40°. Then, we allow our code to
evolve the magnetic field from this sunspot pair leading to the
build-up of the polar field. Figure 7 shows snapshots of B, on
the solar surface at different times during the evolution process.
This figure can be compared with Figure 6 of Yeates &
Muiioz-Jaramillo (2013). Although Yeates & Muifoz-Jaramillo
(2013) assumed the sunspot pair to be initially connected to the
toroidal flux system at the bottom of the convection zone,
eventually this connection would be disrupted and the
evolution of the magnetic field on the surface due to the
sunspot pair in the northern hemisphere appears to be very
similar to the evolution that we get by assuming a disconnec-
tion from the very beginning. The following sunspot at the
higher latitude has the positive polarity and we clearly see that
this positive polarity is preferentially transported to the higher
latitudes. This positive polarity region gets stretched by the
differential rotation into a belt going around the polar axis.
When this belt reaches sufficiently high latitude, we see that it
is followed by a belt of negative polarity coming from the
leading sunspot which was taken at a lower latitude. The
meridional circulation takes about 3 years to bring the flux of B,
to create a positive patch on the pole surrounded a ring of
negative polarity. The formation process of the negative
polarity ring is clearly visible in Figure 7(d), but at later times
it becomes weaker due to the action of diffusion and is not
clearly visible. Since the meridional circulation sinks down-
ward at the polar region, eventually both the positive and
negative polarity magnetic fields are advected simultaneously
below the surface. This becomes clear from the field line plots
shown in Figure 8. At certain instants of time, we have
averaged B, and By over the azimuthal direction ¢ to obtain the
field lines.

It may be noted that the color scale for each plot in Figure 7
is set at + maximum values of the magnetic field in each case.
This was necessary because the magnetic field becomes weak

with time. Had we used the color scale of Figure 7(a) for all
cases shown in Figure 7, then the magnetic field would be
completely invisible for the plots at later times. Though the
magnetic fields in the sunspot pair remain concentrated for a
shorter time than one may suspect from a casual look at
Figure 7, the sunspots in our simulations nevertheless live
longer than real sunspots. This is expected because we have
assumed the sizes of sunspots in our calculation to be larger
than real sunspots. If sunspots decay by the action of turbulent
diffusion, then a simple application of the diffusion equation
suggests that the lifetime should go as the square of the size. A
hypothetical sunspot 5 times larger than a real sunspot should
live 25 times longer than a real sunspot.

It should be kept in mind that f B.dS integrated over the
whole solar surface has to be zero at any time (since V.B = 0).
This means that, during any time interval, equal amounts of
positive and negative magnetic fluxes have to disappear below
the surface due to the subduction process. As a result, we see in
Figure 7 that the white patch at the pole (representing positive
flux) remains there till all fluxes disappear and is not replaced
by the poleward migrating dark ring (representing negative
flux, which gets subducted along with the positive flux). In the
real Sun undergoing successive cycles, the polar field reverses
only when fluxes of the following sunspots from the next cycle
reach the pole. This subduction process has been seen before in
axisymmetric Babcock—Leighton/flux-transport dynamo mod-
els but has not been well studied within the context of SFT
models (though see Cameron et al. 2012; Yeates & Mufioz-
Jaramillo 2013). It relies on the upward advection of poloidal
flux near the equator, which leads to the emergence of
oppositely signed radial field, as shown in Figures 8(f)—(j). This
changes the net radial flux through the surface in each
hemisphere and eats away at the polar field as it is advected
poleward. Without this low-latitude emergence, the subduction
of poloidal flux at the poles could not change the net flux
through the outer surface.

In the SFT model also, a tilted sunspot pair gives rise to a
polar field with the polarity of the following sunspot
surrounded by a belt of the opposite polarity. However, since
the low-latitude emergence and subsequent subduction of the
mean poloidal field is not included in the model, the net flux
through each hemisphere can only change by means of cross-
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Figure 8. Axisymmetric toroidal field lines (a)—(e) and axisymmetric poloidal field lines (f)—(j) are shown for 5 different times. Time spans are (a), (f) = 1.02 yr, (b),
(g) = 3.05 yr, (c), (h) = 5.08 yr, (d), () = 7.11 yr, and (e), (j) = 9.15 yr. Frames (a)—(e) represent (B,) (azimuthal averaged) with red and blue indicating eastward and
westward fields, respectively. Filled contour also represents the mean toroidal fields. Here color scale is set at 1.5 G. Frames (f)—(j) represent the square root of
poloidal magnetic potential with potential field extrapolation above the surface (up to » = 1.25R) and blue color contours denote the clockwise direction of the field.
Maximum and minimum contour levels are set corresponding to potential field strength of £0.3 G, respectively.

equatorial transport and diffusion. In a model of the solar
magnetic field dynamics with realistic values of various
parameters, usually the diffusion time for neutralizing the
opposite magnetic polarities turns out to be much longer than
the time for their disappearance due to low-latitude emergence
and subduction by the meridional circulation. As we see in
Figure 8, the magnetic fields tend to sink below the surface
while they diffuse and the disappearance of the magnetic fields
at the surface takes place in a timescale shorter than the
diffusion timescale. We thus see that the evolution of the polar
field in our 3D model is qualitatively different from what it is in
the SFT model.

Figure 8 also shows the toroidal field generated in the
convection zone. Since the poloidal field has not yet reached
the tachocline to be acted upon by the radial differential
rotation there, it may be worthwhile to comment how the
toroidal field is generated. As soon as we put a sunspot pair on
the surface by the SpotMaker algorithm, some toroidal field
arises below the surface at once because the magnetic loop
connecting the two sunspots below the surface would have a
toroidal component. Additionally, more toroidal field is
produced by the latitudinal differential rotation within the
convection zone. It has been known that the latitudinal
differential rotation can play an important role in generating

the toroidal field (Guerrero & de Gouveia Dal Pino 2007). In
reality, any strong magnetic field generated within the
convection zone is expected to be quickly removed by
magnetic buoyancy which is particularly effective within the
convection zone (Parker 1975; Moreno-Insertis 1983). Since
we do not allow magnetic buoyancy to remove the toroidal
field in the present version of the code, the toroidal field
remains where it is created. However, it may be noted that
some fully dynamical simulations suggest persistent rings of
toroidal flux within the convection zone (Brown et al. 2010).

Finally, Figure 9(a) shows B, (averaged over ¢) as a function
of latitude for different times, whereas Figure 9(b) shows B, as
a function of time at different latitudes. A careful scrutiny of
Figure 9(a) makes it clear that the poleward meridional
circulation transports the magnetic flux to higher latitudes with
time. After about 3 years, the polar field starts building up. It is
clear that the polar field becomes much stronger than the fields
at mid-latitudes. This is purely a geometrical effect. Since
magnetic flux from different longitudes is brought by the
meridional circulation to the pole where it converges, it is
natural that the magnetic field becomes stronger at the pole. It
is also to be noted that we only have the polar field with
polarity corresponding to the polarity of the following sunspot
at the higher latitude (positive in the present case). Turning to
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Figure 9. (a) Behavior of radial field with latitude is plotted for different times. Radial field just after the emergence of the sunspot (at 20° latitude) is shown as a black
line at time # = 0.51 yr. Magenta dotted, green dashed, red dash dotted, and blue solid lines represent variation of radial magnetic field with latitude at time 1.02 yr,
3.05 yr, 5.08 yr, and 7.11 yr, respectively. (b) Time variations of radial magnetic field for different latitudes are plotted. Solid black, red dotted, green dashed,
blue dash dotted and magenta solid lines are for latitude 15°09, 30°53, 45°26, 64°91, and 80°35, respectively. All units of magnetic fields are given in Gauss.

Figure 9(b) now, we first look at the plots corresponding to the
mid-latitudes (/~30°-65°). At a mid-latitude, first the magnetic
field corresponding to the polarity of the following sunspot
(positive in the present case) is brought by the meridional
circulation, followed by the magnetic field with opposite
polarity from the leading sunspot (negative in the present case)
a little bit later. This is seen in all the mid-latitude plots in
Figure 9(b). But we should pay a special attention to the plots
for latitudes 15° and 80°. At the latitude of 15°, the positive
magnetic field from the following sunspot is never seen,
because the following sunspot appeared at a higher latitude and
the meridional circulation transported the flux from its decay
toward the pole. On the other hand, at the latitude of 80°, we
see only the positive magnetic field which has been brought
there from the following sunspot. The negative magnetic field
from the leading sunspot forms a negative polarity belt around
the pole, as we have already seen, and then it sinks below the
surface, so the negative magnetic field is never seen at
sufficiently high latitudes. Also, note that, although the peak
value of the positive polarity field at 65° is less than that at 45°
(due to the action of diffusion while the magnetic field is
transported to higher latitudes), the positive polarity field
again becomes strong at 80° due to the geometrical effect of
converging flow bringing magnetic flux from different
longitudes.

4.2. Polar Fields from Two Sunspot Pairs in Two Hemispheres

The results of the 3D model differ more dramatically from
the results of the SFT model when we put two pairs of sunspots
located symmetrically in the two hemispheres. If the two pairs
are sufficiently close to the equator, then magnetic fluxes of the
two leading sunspots get canceled by diffusion across the
equator. In the SFT model, only the fluxes from the following
polarities are advected to the two poles and we eventually get
polar patches which are not surrounded by rings of opposite
polarity, as we found in the case of the single sunspot pair.

10

When the outward spreading of magnetic field from the polar
patches by diffusion is eventually balanced by the inward
advection by the meridional circulation, we reach an
asymptotic steady state in the SFT model, with an asymptotic
magnetic dipole which does not change with time. This is seen
in Figure 6 of Jiang et al. (2014a). As we shall discuss now, we
get a completely different result from the 3D model.

We see in Figure 10 that polar magnetic patches form with
the polarity of the succeeding sunspots. A careful look at this
figure, shows some evidence of opposite polarity (i.e., opposite
of what we see in the poles) at mid-latitudes even when we start
from two sunspots placed symmetrically at sufficiently low
latitudes in both the hemispheres. The physics of what is
happening becomes clear from the plot of field lines shown in
Figure 11. After the fluxes from the leading sunspots near the
equator cancel, we see that initially we get poloidal field lines
spanning both the hemispheres. A look at the field line plots
makes it clear that we shall have B, only at high latitudes in the
early stages of the evolution of the magnetic field. As the
meridional circulation drags the poloidal field toward the poles,
we find that eventually the polar fields in the two hemispheres
get detached, as a result of which B, again appears at lower
latitudes having the opposite polarity of B, at high latitudes.
This is purely a result of the 3D structure of the magnetic field
and cannot happen in the SFT model. There would not be a
source for creating B, at low latitudes in the SFT model and
such fields would never appear in that model. Because of the
breakup of the poloidal field in the two hemispheres and the
appearance of B, with opposite polarity in the low latitudes, it is
possible for the poloidal magnetic field in the 3D model to be
subducted below the surface as the meridional circulation sinks
downward in the polar regions. Thus, in contrast to the SFT
model in which polar fields have nothing to cancel them and
therefore persist, the polar field disappears after some time in
the 3D model.
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Figure 10. Same as Figure 7 but for sunspot emergence in two hemispheres at +5° latitudes. In this figure color scale is set at = maximum value of the magnetic

fields for each case.

\ \

Figure 11. Same as Figure 8 but for two pairs at two hemispheres at +5° latitudes. Color scale for toroidal fields is set at 1.5 G and contour levels corresponding to
the poloidal fields strengths of £0.02 G are set as maximum and minimum, respectively.

Though this result is notable, it may be offset to some extent
by efficient magnetic pumping. Using a 2D (axisymmetric)
model Karak & Cameron (2016) have shown that downward
magnetic pumping due to strongly stratified convection in the
solar surface layers can suppress the upward diffusion and
advection of toroidal and poloidal fields. This, in turn, can

11

produce steady polar fields that might persist indefinitely. We
will investigate the role of magnetic pumping in future work.

Figure 12(a) is similar to Figure 9(a) except that latitudes
now cover from —90° to 90°. In this figure, we clearly see that
around 1year, we had only positive B, in the northern
hemisphere and negative B, in the southern hemisphere, but



THE ASTROPHYSICAL JOURNAL, 835:39 (16pp), 2017 January 20

HazrA, CHOUDHURI, & MIESCH

N L L R B A T 1
(a) '
[ 0.04 | i
0.04 i
0.02 0.0z \ R
o
=~ 0.00 0.00 s
®" R
L -y
[
-0.02 _,,-[ _002k |
MY | S
B t = 1.02 yr «cooeeeeeens = 53 e
—0.04_-5 !=3.05§:——-— r A =4526 - - - -
1 t =508y — == —0.04F A= 6491 —m-mom .
B t= 701y —ooomens | A= 80.35 ——--
f A P B A R R R [ L1
-50 0 350 2 4 6 8 10
Latitude (deq) Time (years)
Figure 12. Same as Figure 9 but with two pairs in two hemispheres at +5° latitudes.
0.20 T T T T T
F xl""':zg N
—~ .l"l Mg =40 — — -
39 1
< 1.5 4
A5 | 1
0.15 x -
— 1 1
~—~ — i 1 1
s g ol ]
0.10F S 1.0fH
m” - ° .
] L N
N F 1 M
L ° » \\
0.05 € o5p AN -
L [¢) - BN .
4 Ly s '"r*,,.' 4
T S, i
0.00 0.0 s /—-N.‘:: A il
2 4 6 8 10

Time (years)

Figure 13. Polar field evolution with time for different emergence angle Aepe
of sunspot pairs in both hemispheres. Black solid, red dotted, green dashed,
blue dash dotted, and magenta long dash dotted lines represent the polar field
for the sunspot emergence at 5°, 10°, 20°, 30°, and 40°, respectively. Magnetic
field is in Gauss and time is given in years.

afterwards very weak B, having sign opposite to the sign at the
high latitudes developed at low latitudes. Figure 12(b), which is
similar to Figure 9(b), shows that eventually B, disappears at
the surface in this 3D model, exactly similar to what happens
when we put only one sunspot pair on the solar surface.

We carry on such calculations by putting two sunspot pairs
symmetrically at different latitudes in the two hemispheres.
Figure 13 shows how the polar field evolves with time for
sunspot pairs placed at different latitudes. When the sunspot
pairs are placed at high latitudes, the magnetic flux is brought
to the poles without too much diffusion and the polar field is
stronger. Eventually, the polar field disappears in all the cases
due to emergence and subduction by the meridional circulation,
as we have already discussed. This figure can be compared with
the left panel of Figure 6 of Jiang et al. (2014a). Such a
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Figure 14. Polar flux evolution with time for different emergence angle Acpmg of
sunspot pairs in both hemispheres. Black solid, red dotted, and green dashed
lines represent the percentage of normalized polar flux able to reach the pole for
the sunspot emergence at 5°, 20°, and 40°, respectively.

comparison makes the difference between the 3D model and
SFT model completely clear. In the SFT model, only if the
sunspot pairs are put at sufficiently high latitudes so that cross-
equatorial diffusion is negligible, fluxes of both polarity are
advected to the polar regions and eventually the axial dipole
moment becomes zero. If the sunspot pairs are put at low
latitudes in the SFT model, only the fluxes from the following
sunspots reach the poles and give rise to an asymptotic axial
dipole. The situation is completely different in the 3D model,
although we see that the polar field persists for a longer time
when the initial sunspot pairs are put at lower latitudes. So, in
that sense, sunspot pairs appearing in lower latitudes are
somewhat more effective in creating the polar field even in the
3D model. This is in agreement with the claim of Dasi-Espuig
et al. (2010) that we have a better correlation between the
average tilt of a cycle and the strength of the next cycle if more
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Figure 15. Same as Figure 10 but sunspot pairs are placed at longitude 90° in the northern hemisphere and at longitude 180° in the southern hemisphere.

weight is given to sunspot pairs at low latitudes when
computing the average tilt.

We have also calculated the polar magnetic flux for two
sunspot pairs emerging on the two hemispheres, to find out
how much flux from the sunspots reaches the poles. We
calculate the polar flux by integrating B, over only those
regions of the surface between 60° latitude and the pole where
B, has one sign (positive in the north pole). While positioning
the sunspot pairs by hand using the SpotMaker algorithm, we
injected 1 x 10> Mx flux in each spot. A normalized polar
flux is estimated by dividing the signed flux by the input flux
(1 x 10> Mx). In Figure 14, we have shown the percentage of
normalized polar flux with time for the spot pairs emerging at
different latitudes. It is evident from this figure that around
1.76% of the input flux can reach the pole when the spot pair
emerges at a high latitude like 40°, whereas 0.2% of the input
flux can reach the pole when the spot pair is at a low latitude
like 5°. Keeping in mind that we have used an unrealistically
high tilt of 40°, we point out that the flux reaching the poles
will be less for more realistic tilts. It is instructive to compare
our result with relevant observational data. Schrijver & Harvey
(1994) and Solanki et al. (2002) analyzed the NSO Kitt Peak
magnetograph data and estimated the maximum active regions
flux during solar maxima to be around 5 x 10** Mx. Mufioz-
Jaramillo et al. (2012) calibrated century long polar faculae
data from Mount Wilson Observatory and estimated the time
evolution of the J)olar flux, finding its maximum value to be
around 1.5 x 10" Mx for an average cycle. Although these
values are not from a single data set and many other
observational constraints should be taken into account, a
simple division of these values of flux quoted above suggests
that around 3% of the sunspots’ flux can contribute in the polar
flux. Our theoretical model gives a value having the same order
of magnitude, although our theoretical values are a little bit on
the lower side.

All the results presented so far for two sunspot pairs in
different hemispheres were obtained by putting both the pairs
in the same longitude. This helped in magnetic fluxes of the
two leading sunspots canceling each other by diffusing across
the equator. One important question is whether the final
outcome will be different if the two sunspot pairs in the two
hemispheres are widely separated in longitude. Figure 15
shows the surface evolution of magnetic flux in such a case,
which can be compared with Figure 10. We find that the
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magnetic fluxes from the following sunspots in the two
hemispheres are carried toward the pole exactly as in Figure 10.
However, the evolution of magnetic fluxes from the leading
sunspots is quite intriguing. Because of the gap in longitude,
these fluxes cannot cancel with each other across the equator so
easily. However, these fluxes still diffuse across the equator, as
seen in Figure 15, and, if we average over longitude, the
averaged values are found to be virtually identical with the
averaged values that we get in the case of Figure 10. When we
plotted figures similar to Figures 11 and 12 for this case, they
turned out to be indistinguishable from Figures 11 and 12.

5. THE CONTRIBUTION OF BIPOLAR SUNSPOTS NOT
OBEYING HALE’S LAW

Joy’s law for tilts of sunspot pairs is only a statistically
average law. We see a spread of tilt angles around Joy’s law.
This spread is believed to be caused by the action of turbulence
on rising flux tubes (Longcope & Choudhuri 2002; Weber
et al. 2011) and is one of the main sources of irregularity in the
solar cycle (Choudhuri et al. 2007; Choudhuri & Karak 2009;
Choudhuri 2014). It is well known that some bipolar sunspots
appear with wrong magnetic polarities not obeying Hale’s
polarity law. Because of the spread in tilt angles around Joy’s
law, it is certainly expected that a few outliers in this spread
would violate Hale’s law. Stenflo & Kosovichev (2012)
estimated that about 4% of medium and large sunspots violate
Hale’s law—see their Figure 7. Since the number of such
sunspots is small, it is not surprising that due to statistical
fluctuations, more of such sunspots violating Hale’s law may
appear in some particular cycles compared to other cycles. This
fact assumes significance in the light of the suggestion made by
Jiang et al. (2015) on the basis of their SFT calculations that a
few large “anti-Hale” sunspot pairs may significantly decrease
the strength of the polar field produced at the end of the cycle.
Especially, Jiang et al. (2015) suggested that the weak polar
field at the end of cycle 23 was caused by a few prominent anti-
Hale sunspot pairs present in that cycle. In contrast, they argue
that not too many such anti-Hale sunspot pairs appeared in
cycles 21 and 22, as a result of which such a decrease of the
polar field did not happen in those cycles.

Since we have seen that some insights gained from SFT
calculations have to be modified—especially results connected
with the build-up of the polar field—on the basis of more
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a

Figure 16. Radial magnetic field structures are shown for the case when the
“anti-Hale” sunspot pair appears at 40° latitude and at the middle phase of the
cycle. (a) Prior to 3 months before the anti-Hale sunspot pair appeared, (b)
during the emergence of the anti-Hale sunspot pair, and (c) 3 months after the
anti-Hale sunspot pair has emerged. Here, white shows the outward-going
radial fields and black represents inward-going radial fields. The color scale is
set at =100 kG for all three cases.

realistic and complete 3D kinematic dynamo calculations, we
now address the question whether anti-Hale sunspot pairs have
a large effect on the polar field even in 3D kinematic dynamo
models. We now use our reference model presented in
Section 3 and place a large anti-Hale sunspot pair by hand to
study its effect on the build-up of the polar field. To make its
effect visible, we take this anti-Hale sunspot pair to carry 25
times the magnetic flux carried by the other regular sunspots
and to have tilt angle 30°. We can say that the tilt angle is
—30°, if we define the tilt angle by following the convention
that its value is positive for sunspot pairs obeying Hale’s law.

We want to understand how the effect of the anti-Hale
sunspot pair depends on the emergence latitude, as well as the
phase of the cycle, when it makes its appearance. So, we
consider four different cases. Since sunspots appear at high
latitudes in the early phase of the cycle and at low latitudes in
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the late phase, we consider one case by putting the anti-Hale
sunspot pair at the high latitude of 40° in the early phase and
another case by putting the pair at the low latitude of 10° in the
late phase. The two other cases considered involve putting the
large anti-Hale sunspot pair at 40° and 10° (in separate case
studies) in the middle phase of the cycle. The radial fields on
the surface in Mollweide projection is shown for a case where
an “anti-Hale” sunspot pair is placed at 40° latitude during the
middle phase of the cycle, in Figure 16. Figure 17 shows how
B, evolves in a time-latitude plot (a “butterfly diagram”) for
these four cases. The effect on the polar field can be seen more
clearly in Figure 18 where we plot the time evolution of the
polar field for these four cases, along with the reference case
without an anti-Hale sunspot pair.

It is clear from Figure 18 that even a very large anti-Hale
sunspot pair placed at a low latitude like 10° does not have
much effect on the polar field. Presumably, the opposite fluxes
from the two sunspots neutralize each other before they reach
the poles. This becomes quite apparent by looking at
Figures 17(b) and (d). We see that the sunspot pairs at low
latitudes produce a kind of “surge” behind them, but it does not
reach the poles. The effect of anti-Hale pairs at higher latitudes
is certainly much more pronounced. We see in Figures 17(a)
and (c) that the surges behind these anti-Hale pairs reach the
pole in these situations. If an anti-Hale sunspot pair appears at
40° in the early phase of the cycle, then we see in Figure 18 that
the build-up of the polar field is weakened and delayed, but
eventually the polar field reaches almost the strength we would
expect in the absence of the anti-Hale sunspot pair. However,
when the anti-Hale sunspot pair is put at 40° in the middle
phase of the cycle, it is clear from Figure 18 that the polar field
can be reduced by about 17%. But remember that we get this
large reduction by assuming the anti-Hale sunspot pair to be
unrealistically large. Our conclusion is that anti-Hale sunspot
pairs do affect the build-up of the polar field—especially if they
appear at high latitudes in the middle phase of the cycle—but
the effect does not appear to be very dramatic. As for the
suggestion of Jiang et al. (2015) that the weakness of the polar
field at the end of cycle 23 was due to the appearance of several
anti-Hale sunspot pairs, we feel that this is an interesting
suggestion which merits further detailed study in order to arrive
at a firm conclusion.

6. CONCLUSION

Historically the evolution of the Sun’s magnetic field with
the solar cycle has been studied extensively through two
classes of 2D theoretical models: the 2D kinematic dynamo
model and the surface flux transport (SFT) model. We argue
that the 3D kinematic dynamo model incorporates the attractive
aspects of both, while being free from the limitations of both.
On the one hand, this model can treat the Babcock—Leighton
mechanism more realistically in 3D, which is not possible in
the 2D kinematic dynamo model. On the other hand, it includes
the vectorial nature of the magnetic field and various subsur-
face processes which are left out in SFT models. Cameron et al.
(2012) have pointed out that the results of SFT model agree
with the results of 2D flux transport dynamo model on the
inclusion of a downward pumping.

In order to study the build-up of the Sun’s polar field with a
3D kinematic dynamo model, we first construct an appropriate
self-excited model. The poloidal field generated by the
Babcock-Leighton mechanism near the solar surface has to



THE ASTROPHYSICAL JOURNAL, 835:39 (16pp), 2017 January 20

= 50
()
>
[} 0
©
2
L2 50

84 86
time (years)

88

S 50
(0]
Z
([ 0
O
2
2 _50

84
time (years)

86 88 90

HazrA, CHOUDHURI, & MIESCH

(b)
i~ 50
[
Z
o 0
pe)
2
2 -50
82 84 86 88 90
time (years)
(d)
i~ 50
[
Z
) 0
©
2
o

|
w
o

84 86
time (years)

88

90

Figure 17. Butterfly diagram with an “anti-Hale sunspot pair at different latitudes and different phases of the solar cycle. (a) At early phase of the cycle and at 40°
latitude, (b) late phase of the cycle and 10° latitude, (c) middle phase and 40°, and (d) middle phase and 10° latitude. Color scale is set at =15 kG for all four cases.
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Figure 18. Polar field evolution with time for one complete solar cycle with the
“anti-Hale” sunspot pair at different locations and different times of the cycle.
Solid black line represents the regular cycle with no anti-Hale sunspot pair. Red
dotted line indicates the poloidal field evolution with an anti-Hale pair at 40°
latitude at an early phase of the cycle. Green dashed line represents poloidal
field with an anti-Hale pair at 10° and late phase. Blue dashed and magenta
long dashed lines indicate the poloidal field with an anti-Hale pair at the middle
of the cycle but at 10° and at 40° latitude, respectively.

be transported to the tachocline in order for the solar dynamo to
work. This transport can be achieved in two ways: (i) due to
advection by the meridional circulation; or (ii) due to diffusion
across the convection zone. There are reasons to believe that
(ii) is the appropriate transport mechanism inside the Sun. The
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earlier papers by Miesch & Dikpati (2014) and Miesch &
Teweldebirhan (2016) presented self-excited dynamo models
dominated by advection by the meridional circulation. We
believe that we are the first to construct self-excited 3D
kinematic dynamo model dominated by diffusion. We have
briefly looked at the question of parity, although the limitation
of computer time prevented us from an exhaustive study of the
subject.

We use this dynamo model to study how the polar field
builds up from the decay of one tilted bipolar sunspot pair and
two symmetrically situated bipolar sunspot pairs in the two
hemispheres. We find that the polar field which arises from
such sunspot pairs ultimately disappears due to the emergence
of poloidal flux at low latitudes and its subsequent subduction
by the meridional flow. This process is not included in the SFT
models, in which the polar field can only be neutralized by
diffusion with a field of opposite polarity. So we conclude that
SFT models do not capture the dynamics of polar fields
realistically and one has to be cautious in interpreting the SFT
results pertaining to polar magnetic fields. Our results differ
most dramatically from the SFT results when we put two
symmetric bipolar sunspot pairs in the two hemispheres very
near the equator. Then, the magnetic fields of the two leading
sunspots on the two sides of the equator cancel each other. At
the same time, the magnetic fields of the following sunspots
which formed at higher latitudes are advected by the meridional
circulation to the poles, ultimately causing a magnetic dipole of
the Sun. In the SFT model, this is the whole story and we get an
asymptotically steady dipole. In our 3D kinematic model, on
the other hand, magnetic field lines between the two hemi-
spheres can get detached when they are pulled by the



THE ASTROPHYSICAL JOURNAL, 835:39 (16pp), 2017 January 20

meridional circulation in the opposite directions. As a result,
radial magnetic fields with signs opposite to the polar fields
develop in the lower latitudes. This is not possible in the SFT
model in the absence of any source of radial magnetic field in
the lower latitudes. Finally, the detached magnetic loops in the
two hemispheres are subducted underneath the surface by the
meridional circulation, contradicting the SFT result that the
magnetic dipole of the Sun would be asymptotically steady in
this state. While the SFT models played a tremendously
important historical role in our understanding of how the
magnetic field on the solar surface evolves, we should keep in
mind that these models cannot capture certain aspects of the
dynamics of the Sun’s polar magnetic fields due the intrinsic
limitations of these models.

Finally, we look into the provocative question of whether a
few large sunspot pairs violating Hale’s law could have a large
effect on the strength of the polar field. We find that such anti-
Hale sunspot pairs do produce some effect on the Sun’s polar
field—especially if they appear at higher latitudes during the
mid-phase of the solar cycle—but the effect is not very
dramatic. The question of whether a few large anti-Hale
sunspot pairs could be the principal cause behind the weakness
of the polar field at the end of some cycles, for example
cycle 23, needs to be analyzed carefully.
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Fellowship awarded to A.R.C. by the Department of Science
and Technology, Government of India. G.H. thanks CSIR,
India for financial support.
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