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ABSTRACT

We present a model for a global axisymmetric turbulent dynamo operating in a galaxy with a corona that treats the
parameters of turbulence driven by supernovae and by magneto-rotational instability under a common formalism.
The nonlinear quenching of the dynamo is alleviated by the inclusion of small-scale advective and diffusive
magnetic helicity fluxes, which allow the gauge-invariant magnetic helicity to be transferred outside the disk and
consequently to build up a corona during the course of dynamo action. The time-dependent dynamo equations are
expressed in a separable form and solved through an eigenvector expansion constructed using the steady-state
solutions of the dynamo equation. The parametric evolution of the dynamo solution allows us to estimate the final
structure of the global magnetic field and the saturated value of the turbulence parameter αm, even before solving
the dynamical equations for evolution of magnetic fields in the disk and the corona, along with α-quenching. We
then solve these equations simultaneously to study the saturation of the large-scale magnetic field, its dependence
on the small-scale magnetic helicity fluxes, and the corresponding evolution of the force-free field in the corona.
The quadrupolar large-scale magnetic field in the disk is found to reach equipartition strength within a timescale of
1 Gyr. The large-scale magnetic field in the corona obtained is much weaker than the field inside the disk and has
only a weak impact on the dynamo operation.

Key words: dynamo – galaxies: evolution – galaxies: magnetic fields – magnetohydrodynamics (MHD) – plasmas
– turbulence

1. INTRODUCTION

Large-scale magnetic fields with strength of the order of
1–10 μG have been observed in disk galaxies (e.g., Beck
et al. 1996; Fletcher 2010; Beck 2012; Beck & Wiele-
binski 2013; Van Eck et al. 2015). The origin of these fields
can be explained through mean-field dynamo theory (Ruzmai-
kin et al. 1988; Beck et al. 1996; Brandenburg &
Subramanian 2005a; Kulsrud & Zweibel 2008). The conserva-
tion of magnetic helicity is one of the key constraints in these
models, and also leads to the suppression of the α-effect. The
operation of the mean-field dynamo automatically leads to the
growth of magnetic helicity of opposite signs between the
large-scale and small-scale magnetic fields (Pouquet
et al. 1976; Gruzinov & Diamond 1994; Blackman &
Field 2002). To avoid catastrophic suppression of the dynamo
action (α-quenching), the magnetic helicity due to the small-
scale magnetic field should be removed from the system
(Blackman & Field 2000, 2001; Kleeorin et al. 2000).
Mechanisms suggested to produce these small-scale magnetic
helicity fluxes are: advection of magnetic fields by an outflow
from the disk through the galactic fountain or wind (Shukurov
et al. 2006; Sur et al. 2007; Chamandy et al. 2014), magnetic
helicity flux from anisotropy of the turbulence produced by
differential rotation (Vishniac & Cho 2001; Subramanian &
Brandenburg 2004, 2006; Sur et al. 2007; Vishniac &
Shapovalov 2014), and through diffusive flux (Kleeorin
et al. 2000, 2002; Brandenburg et al. 2009; Mitra et al. 2010;
Chamandy et al. 2014). The outflow of magnetic helicity from
the disk through dynamo operation leads to the formation of a
corona (Blackman & Field 2000). According to Taylorʼs
hypothesis, an infinitely conducting corona would resistively
relax to force-free field configurations under the constraint of
global magnetic helicity conservation (Woltjer 1960; Tay-
lor 1974; Finn & Antonsen 1983; Berger & Field 1984;
Mangalam & Krishan 2000). In this paper, we include

advective and diffusive fluxes in a simple semi-analytic model
of a galactic dynamo that transfers magnetic helicity outside the
disk and consequently builds up a force-free corona in course
of time. We first solve the time-dependent dynamo equations
by expressing them as separable in variables r and z. The radial
part of the dynamo equation is solved using an eigenvector
expansion constructed using the steady-state solutions of the
dynamo equation. The eigenvalues of the z part of the solution
are obtained by solving a fourth-order algebraic equation,
which primarily depends upon the turbulence parameters and
the magnetic helicity fluxes. Once the dynamo solutions are
written out as parametric functions of these parameters, the
evolution of the mean magnetic field is computed numerically
by simultaneously solving the dynamical equations for α-
quenching and the growth of large-scale coronal magnetic
helicity. Since the large-scale magnetic field lines cross the
boundary between the galactic disk and the corona, the
magnetic helicity of the large-scale magnetic field in the disk
volume is not well defined. Hence we use the concept of gauge-
invariant relative helicity (Finn & Antonsen 1983; Berger &
Field 1984; Berger 1985) to estimate the large-scale magnetic
helicity in the disk and the corona. Here the gauge-invariant
relative helicity for the cylindrical geometry is calculated using
the prescription given in Low (2006, 2011). We then
investigate the dependence of the saturated mean magnetic
field strength and its geometry on the magnetic helicity fluxes
within the disk and the corresponding evolution of the force-
free field in the corona.
The organization of the paper is as follows. In Sections 2 and

3, we present the theoretical formulation of the nonlinear mean-
field dynamo and magnetic helicity transport. The solutions for
the steady-state dynamo equation are discussed in Section 4. In
Section 5, we present the semi-analytic formulation of the time-
dependent problem and set up the equations for the evolution of
the small-scale magnetic helicity in the disk and the large-scale
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coronal field. The solutions of the time-dependent dynamo
equation are presented in Section 6, where we present their
parametric dependences, and discuss the strength and geometry
of the saturated mean field along with its dependence on the
magnetic helicity flux terms. Finally, the summary and
conclusions of the paper are discussed in Section 7. In
addition, the detailed equations for magnetic helicity dynamics,
derivations of various equations used in the main text, and
discussions on the gauge invariance of absolute magnetic
helicity for cylindrical geometry and magnetic helicity balance
are presented in Appendices A–G.

2. NONLINEAR MEAN-FIELD DYNAMO AND
MAGNETIC HELICITY DYNAMICS

The magnetic and velocity fields in mean-field magnetohy-
drodynamics (Krause & Rädler 1980) can be written as the sum
of their mean and fluctuating parts:

B B b U U u; 1( )= + = +

with u 0= and b 0.= The overbar formally denotes ensemble
averaging, but for all practical purposes it can be thought of as
spatial averaging over scales greater than the turbulent scale
and less than the scale of the system (Germano 1992; Gent
et al. 2013). The mean magnetic field generated from small-
scale turbulent motion is then described by the mean-field
induction equation (Moffatt 1978; Krause & Rädler 1980):

B
U B J

t
, 2( ) ( )h

¶
¶

=  ´ ´ - +

where the ohmic magnetic diffusivity is given by η and

J B

0
=

m
´ is the current density, with μ0 being the magnetic

permeability of free space (hereafter we adopt units such that
μ0=1). Also, u b B J ,t a hº ´ = - is the mean turbulent
emf with turbulent transport coefficients α and ηt. Following
the closure models, such as EDQNM (Pouquet et al. 1976) and
τ-approximation (Blackman & Field 2002; Rädler et al. 2003;
Brandenburg & Subramanian 2005b), we represent the effect of
the small-scale magnetic field on the α-effect as k ma a a= +
(e.g., Gruzinov & Diamond 1994; Brandenburg &
Subramanian 2005a), where u uk

1

3
·a t= -  ´ represents

the kinetic α-effect related to the mean helicity of the random
flow u u,·  ´ and j bm

1

3
1 ·a r t= - is the magnetic con-

tribution to the α-effect. The fluid density is given by ρ, and τ

is the correlation time of the turbulent flow u.
The magnetic helicity dynamics using the above construction

can be represented by equations for the evolution of the large-
scale magnetic helicity A BH dVd V

·ò= and the mean

small-scale magnetic helicity a bh dV .d V
·ò= The equations

for the evolution of Hd and hd can be written as (see
Mangalam 2008, also see Appendix A for a derivation)

B

J B F

dH

dt
dV

dV n dS

2

2 3

d

V

V S
∮

·

· · ˆ ( )

ò
ò h

=

- -

B

j b f

dh

dt
dV

dV n dS

2

2 , 4

d

V

V S
∮

·

· · ˆ ( )

ò
ò h

=-

- -

where n̂ represents the normal to the surface S enclosing
volume V. The surface fluxes for Hd and hd are given by F and
f respectively, which can be written as

F J U B A B2 51 1( ) ( )h j j= - ´ - -  ´ -

f a B u a u B a U b

a b U a u b a b u

a j a a b2 , 62 2

( ) ( )· ( · ) ·

( · ) ( · ) ( · )
( ) h j j

= - -

+ - +
+ ´ + ´ -  ´ -

where j1 and j2 are scalar functions of space, representing the
gauge freedom for the large- and small-scale magnetic vector
potentials respectively. Below, we discuss some terms in
Equation (6) that have been identified and found to be
significant in numerical simulations and we leave the
investigation of the remaining terms in Equations (5) and (6)
for future studies aided by numerical simulations. The relative
contribution from each term in Equation (6) to the small-scale
magnetic helicity transport equation has been explored recently
through numerical simulations (Ebrahimi & Bhattacharjee
2014; Vishniac & Shapovalov 2014). Vishniac & Shapovalov
(2014) found that the advective flux, a b U( · ) , is the most
dominant term in Equation (6), contributing about 80% of the
helicity flux. The next most dominant term in their analysis was
a B u,( · ) which is part of the Vishniac–Cho flux (Vishniac &
Cho 2001), arising from the anisotropy of the turbulence. Apart
from this, a term relating to a Fickian diffusion, ∼κ∇αm

(Kleeorin et al. 2002; Brandenburg et al. 2009), has been
argued to exist on physical and phenomenological grounds. It
has been found in direct numerical simulations that κ≈0.3ηt
(Mitra et al. 2010; Candelaresi et al. 2011; Hubbard et al.
2011). In this paper, we consider only the advective and
diffusive flux terms. The effect of inclusion of the other flux
terms from Equation (6) will be taken up in later studies.
Usually, αm is amplified in the dynamo action with a sign

opposite to αk, which balances the kinetic α-effect leading to
saturation of the mean magnetic field. To constrain αm, we
write the transport equation for small-scale magnetic helicity
density χ using the magnetic helicity conservation equation
given by (Shukurov et al. 2006; Subramanian & Brandenburg
2006; Sur et al. 2007; Chamandy et al. 2014)

B j b f
t

2 2 , 7· · · ( )c
h

¶
¶

= - - - 

where χ is approximately equal to a b,· and a is the vector
potential for b in the Coulomb gauge. The small-scale magnetic
flux density is given by f (Equation (6)) and j b.=  ´ We
can relate χ to αm by arguing that αm is mainly contributed by
the integral scale of turbulence, l

k0
2

0
= p (Shukurov et al. 2006;

Sur et al. 2007), which gives j ab l b0
2· ·- and

.m l

1

3 0
2a t c

r
 Introducing a reference (equipartition) magnetic

field uBeq
2 2rº and the magnetic Reynolds number as Rm

t= h
h

2
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gives ,m l B
t

0
2

eq
2a ch where u .t

1

3
2h t We can rewrite Equa-

tion (7) in terms of αm (Sur et al. 2007) as

B
t l B R

2
. 8m t m

m0
2

eq
2

· · ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ a h a¶

¶
= - + - 

Here f
l B

t

0
2

eq
2 = h

is flux density of αm taken as (Chamandy

et al. 2014):

, 9a d ( )  = +

where a is the advective flux density given by (Shukurov
et al. 2006; Sur et al. 2007; Heald 2012)

U , 10a m ( ) a=

and d is the diffusive flux density given by (Kleeorin
et al. 2002; Brandenburg et al. 2009)

, 0.3 . 11d m t ( ) k a k h= -  »

As the dynamo operates within the disk, we allow for the
large-scale magnetic helicity flux to be redistributed by
advection in the disk but not escape (see Section 5.1 for
details). The small-scale magnetic helicity flux on the other
hand escapes through the vertical efflux and diffusion. As the
adjustment timescale in the corona is small due to high
conductivity, the corona is expected to be in a relaxed force-
free state according to Taylorʼs hypothesis (Taylor 1974;
Mangalam & Subramanian 1994). This is also motivated by the
corona of the Sun, where the magnetic field structure is
dominated by nonlinear force-free fields (Prasad et al. 2014).
We use the term “corona” instead of the more commonly used
term “halo” to emphasize that we are geometrically dividing
the region into parts where the dynamo does and does not
operate. In our formulation, we consider an extended disk
dynamo with a corona where the large-scale magnetic field is
built entirely through reconnection of the small-scale magnetic
field fluxes emerging from the galactic disk.

There have been previous attempts, in which the galactic
disk is considered to be embedded in a spherical halo (of radius
∼15 kpc), where the dynamo operation takes place in both the
disk and the halo (Brandenburg et al. 1992, 1993; Moss &
Sokoloff 2008; Moss et al. 2010). Brandenburg et al. (1992)
find that a turbulent dynamo can generate a magnetic field on
the scale of the halo, but these fields generally have a dominant
toroidal field and do not attain a steady state during the Hubble
time (due to the large turbulent diffusivity considered for the
halo). In order to obtain a global dominance of the poloidal
field above the galactic disk, Brandenburg et al. (1993) include
turbulent diamagnetism, anisotropy of the α-effect, and galactic
winds in their model and obtain fields that are compatible with
observations. In more recent simulations, Moss & Sokoloff
(2008) study the coexistence of odd and even parities in the
magnetic fields of the disk–halo system. They find that, in cases
where the dynamo action in the disk is dominant, the magnetic
fields are symmetric in the disk as well as the halo, whereas in
cases where the halo is more active, both the disk and the halo
favor antisymmetric fields. However, by including a galactic
wind, Moss et al. (2010) obtain an approximate even-parity
magnetic field in the disk and odd-parity magnetic field in the
halo. We plan to consider the more complete halo models in the
future. But this would entail further detailed treatment of
turbulence in the halo, which is beyond the scope of this paper.

In this work, however, we adopt an ansatz, in which the
coronal magnetic field can be described by a linear force-free
field with a dynamic force-free parameter μ(t). The strength of
field in the corona is much smaller than in the disk and we find
that the chosen prescription of the coronal field does not affect
the overall results within the disk. Since the small-scale
magnetic helicity in the corona grows with the advective flux of
the magnetic helicity generated within the disk, it has the same
sign as that of the small-scale magnetic helicity in the disk hd,
but opposite to that of the mean-field helicity in the disk, H .d

Due to magnetic reconnection events occurring in the corona, a
fraction, Rc of this small-scale magnetic helicity gets converted
to the large-scale magnetic helicity of the corona given by Hc

(see Section 5.1 for details). Thus the total magnetic helicity of
the corona is given by H R .c c The conservation of total
magnetic helicity for disk and corona combined together can be
written as

H H h
H

R
, 12d d0

c

c
( )= + +

where H0 is the initial magnetic helicity of the system
contributed entirely by the mean field in the disk. Equation (12)
can be differentiated with respect to time to obtain an equation
for the rate of change of large-scale magnetic helicity in the
corona. Using Equations (3) and (4), in the absence of large-
scale magnetic helicity fluxes, this gives

f
dH

dt
R

dH

dt

dh

dt
R dV

R
l B

dV , 13

d d

V

V t

c
c c

c
0
2

eq
2

( · )

· ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ò

ò h

=- + = 

= 

where V represents the volume of the corona.

3. THE DYNAMO EQUATIONS

We represent the axisymmetric mean magnetic field B , in
terms of its poloidal BP and toroidal BT components, using the
scalar stream functions y and T in cylindrical coordinates as

B

P

B r B z
r

r z
r

r r
z

1

1 1
14

P r zˆ ˆ ˆ

ˆ ˆ ˆ ( )
⎛
⎝⎜

⎞
⎠⎟

y f

y y

= + =  ´

=
- ¶

¶
+

¶
¶

º

and

B
T

r
. 15ˆ ( )f=f

Upon substituting Equations (14) and (15) into Equation (2),
we get (Mangalam & Subramanian 1994)

U
t

T 16P t· ( )⎜ ⎟⎛
⎝

⎞
⎠h y a

¶
¶

+  - L =

3
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U
t

T

r
r

U

r T
U

r
T

1

17

P t

P
t

2
2

· ·

· ·

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

h a y a y

y

h

¶
¶

+  - L =- L -  

+  ´ 

-  +  

f

where the operator Λ is defined as

r
r

r
r r r z

1
182

2

2

2
· ( )⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠L º 


=

¶
¶

¶
¶

+
¶
¶

andU ,P Uf are the poloidal and toroidal components of velocity.
The right-hand side (rhs) of Equation (16) represents the
generation of poloidal fields from toroidal fields and the rhs of
Equation (17) contains terms representing the generation of
toroidal fields from poloidal fields through the α-effect, shear,
compression, transport, and advection of T due to varying ηt.
The term representing field transport is on the left-hand side
(lhs) of both equations. We consider a mean flow consisting of
differential rotation and vertical advection given as
U U U0, , ,z( )= f where

U r r r
r

r
; . 190 0( ) ( ) ( )= W W =

W
f

For the inputs r0=4 kpc and Ω0 = 62.5 km s−1 kpc−1, this
gives U 250=f km s−1 = constant. Since there is no radial
component of velocity, the fourth term on the rhs of

Equation (17) becomes r T T .U

r

U

z
2 P z

2( )· = ¶
¶

We neglect the

first and second terms on the rhs of Equation (17), as they are
much smaller than the shear term, i.e., we take the dynamo to
be of the a w- type. For mathematical simplification, we also
neglect the last term on the rhs of Equation (17) as it is of the
order (z/r)2 times smaller than the z diffusion terms. Thus
keeping only the dominant terms on the rhs of Equations (16)
and (17), we get a simplified set of equations as

t
U

z
T 20z t ( )

⎛
⎝⎜

⎞
⎠⎟h y a

¶
¶

+
¶
¶

- L =

t
U

z
T r

d

dr z
T

U

z
. 21z t

z ( )
⎛
⎝⎜

⎞
⎠⎟h

y¶
¶

+
¶
¶

- L = -
W ¶

¶
-

¶
¶

In order to estimate the turbulence parameters α and ηt, we
investigate two possible scenarios for turbulence in the disk:
magneto-rotational instability (MRI)-driven turbulence and
supernovae (SNe)-driven turbulence.

The details for these cases are given below.

1. MRI-driven turbulence: weak magnetic fields can gen-
erate turbulence in a differentially rotating disk (Veli-
khov 1959; Chandrasekhar 1960; Balbus &
Hawley 1991). Such MRI-driven turbulence can be
responsible for the amplification of magnetic field in
the outer parts of the galaxy (Sellwood & Balbus 1999).
The turbulence parameters in this case can then be
defined as (see Pudritz 1981; Mangalam &

Subramanian 1994; Arlt & Rüdiger 1999)

h h
, , 22t

2 2

MRI
0

2

MRI
( ) 

h
t

a
t

= =

where r2 r

rMRI
2

0 0
( )t p= W = p

W
is the rotational time

period at radius r. Here, the Mach number, , is
calculated as u

c

u

h r rs 0( )
 = ~

W =
(Pudritz 1981; Man-

galam & Subramanian 1994), with u and cs being the
velocities of turbulence and sound respectively, and h
being the half-width of the galactic disk. From Equa-
tion (22), we note that both the turbulence parameters ηt
and α0 vary as 1/r over the disk.

2. SNe-driven turbulence: the turbulence parameters ηt and
α are defined in this case as (see Ruzmaikin et al. 1988;
Shukurov 2004)

h l

h
, , 23t

2 2

SN
0

2
0 ( )

h
t

a= =
W

where the correlation time τSN is taken as the time
interval between supernova shocks (McKee & Ostri-
ker 1977; Cox 1990; Shukurov 2004). The expression for
α0 given in Equation (23) assumes that Rossbyʼs number
Ro

u

l
º

W
exceeds unity (which is satisfied for r>2.5 kpc

in our case). If Ro<1, then the expression for α0 is
scaled by a factor of Ro

1 2 (Ruzmaikin et al. 1988).
However, for mathematical simplification, we use
Equation (23) for the entire disk. In order to estimate
the spatial dependence of τSN, we proceed as follows.
The locations of the SN stars tend to cluster in regions of
intense star formation (known as OB associations). The
occurrence of SNe is thus related to the star formation
rate (SFR) and τSN∝SFR (Shukurov 2004; Rodrigues
et al. 2015). The SFR depends on the density and the
dynamics of the interstellar gas, and is represented by a
Schmidt power-law relation SFR g

pµ S with the index
p=1.3±0.3 (Schmidt 1959; Kennicutt 1989). For
mathematical simplification, we take p∼1, which is
true for most of the galaxies that fall in the 1σ range of
this distribution. The mean gas surface density, Σg, is
related to the threshold surface density for gravitational
stability, Σc, as Σg∼0.7Σc (Kennicutt 1989). For a flat
rotation curve, the stability condition gives r

rc
0 0S µ W

(Toomre 1964; Cowie 1981). This implies that Σg and
hence the SFR can be expected to vary as 1/r over the
galactic disk. Thus, we write the expression for SNe
frequency as

r
r

r
1 , 24SN SN

0 SN0( ) ( )t n
n

= =

where νSN0=2.5Ω0 (see Shukurov 2004) is the
corresponding frequency at r0 = 4 kpc. Substituting
Equation (24) into Equation (23), we again find (similar
to the case for MRI-driven turbulence) that both the
turbulence parameters ηt and α0 vary as 1/r across
the disk.

In order to estimate the vertical advection, we note that the
energy input from the SNe produces a hot super-bubble that
can break away from the galactic disk (Tenorio-Tagle
et al. 1988). This gives rise to a vertical outflow of gas,
known as the galactic fountain (Shapiro & Field 1976;
Shukurov 2004). The radial variation of this advective flow

4
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is dependent on the SNe distribution and thus ∝ SFR
(Rodrigues et al. 2015). The vertical advection, having the
same radial dependence, can then be written as

U
U r

r
, 25z

0 0 ( )=

where U0 can vary between 0 and 2 km s−1 (see Shukurov
et al. 2006; Rodrigues et al. 2015). Note that the last term on
the rhs of Equation (21) goes to zero for this choice of Uz. We
now write α(r, z, t) as

r z t r t r t z, , , , , 26k m[ ]( ) ( ) ( ) ( ) ( )a a a= + Q

where z z z( ) [ ( ) ( )]q qQ = + - and θ(z) is the step function.
The terms αk(r, t) and αm(r, t) can be further split into r- and t-
dependent parts as r t r t,k k0( ) ( ) ˜ ( )a a a= and

r t r t, .m m0( ) ( ) ˜ ( )a a a= Following Sur et al. (2007), we assume
that αk is only modestly affected by the magnetic field and take

t 1.k˜ ( )a = Thus the time dependence of α is completely
ascribed to t .m˜ ( )a Thus we can write

r z t r t z, , 1 . 27m0 [ ]( ) ( ) ˜ ( ) ( ) ( )a a a= + Q

In the steady state, the time-dependent part is a constant and
can be written generally as .m m

sã a= It is then convenient to
define the following dimensionless parameters:

R
h

R
h

R
U h

, , . 28
t t

U
z

t

0
2

( )a
h h h

= =
W

=a w

Since the quantities α0, ηt, Ω, and Uz have similar 1/r radial
dependence, all the parameters defined in Equation (28) are
nearly independent of r. This greatly simplifies our formula-
tion. We now rewrite Equations (20) and (21) in dimensionless
form through the following substitutions:

r
r

h
z

z

h

t

t

T
hT

h

, , ,

, , , 29

d 0

0

2

0

˜ ˜ ˜

˜ ˜ ˜ ( )

t a
a
a

y
y

y
y

= = = =

= L = L =

where h B0
2

eqy = and td
h

r ht

2

( )
=

h =
is the diffusion timescale.

Here h = 400 pc is the half-width of the disk and the radius of
the galactic disk is taken as rd = 16 kpc. The equipartition field
strength is taken as Beq = 5 μG and the amplitude of the α-
effect is set by α0 given in Table 1. Dropping the tilde for the
sake of clarity, we get the dynamo equations in dimensionless

form as (see Appendix B for a detailed derivation)

r R
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A comparison of timescales of operation and the dynamo
parameters for both MRI- and SNe-driven turbulence scenarios
is presented in Table 1. As the turbulent parameters in both
cases have similar radial dependence, the two processes can
contribute toward the dynamo operation simultaneously. The
combined treatment of both scenarios, however, is beyond the
scope of this paper. We plan to address this in future studies as
it likely that a joint operation will make the amplification more
effective. However, we note that the MRI-driven dynamo
operates at a much slower rate than the SNe-driven dynamo
and has a lower dynamo number (see Table 1). Thus, the SNe-
driven dynamo is likely to be the dominant source of magnetic
field generation within the galactic disk and hence we present
the subsequent calculations only for the case of SNe-driven
turbulence.

4. SOLUTIONS TO THE STEADY-STATE DYNAMO
EQUATION

In this section, we first solve the global dynamo equations
for the steady state. The full time-dependent solutions are
presented in the next subsection. The steady-state solutions are
written assuming a separable form such that

r z Q r a z T r z Q r b z, , , , 31s s s s s s( ) ( ) ( ) ( ) ( ) ( ) ( )y = =

where the superscript s denotes steady-state solutions. Sub-
stituting Equation (31) into Equations (30a) and (30b) with the
time derivative term dropped, we get the following equations
upon simplification for the upper half of the galactic disk:

r
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Table 1
A Comparison of Parameters for MRI- and SNe-Driven Turbulence

Source of τMRI or τSN u cs  l0 ηt α0 Rα Rω RU td
Turbulence (Myr) (km s−1) (km s−1) (pc) (1026 cm2 s−1) (km s−1) (Myr)

MRI 98 10 25 0.4 100 0.786 0.64 1 6.25 0–3.14 61

SNe 6.25 10 80 0.125 100 1.2 1.56 1.6 64 0–2 40

Note.The characteristic timescales for MRI and SNe are given by τMRI and τSN respectively. The turbulent velocity and sound speed are denoted by u and cs,
respectively, while gives the Mach number. The length scales of turbulence and turbulent diffusivity are given by l0 and ηt respectively, while the strength of the α-
effect is set by α0. The dimensionless dynamo parameters Rα, Rω, and RU are defined in Equation (28). The range of values of RU is shown for U0=0–2 km s−1. The
diffusion timescale is given by td.
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where m
sa represents the steady-state value of αm. Dividing

Equation (32a) by Q r a zs s( ) ( ) and Equation (32b) by
Q r b z ,s s( ) ( ) and combining the resulting equations, we obtain
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Since the lhs of Equation (33) is a function of only the variable
r while its rhs is function of only the variable z, the equality can
hold only when both sides are actually equal to a constant
(taken to be −γ s). Rearranging the terms in Equation (33), we
obtain the following set of equations (see Mangalam &
Subramanian 1994):
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where we have introduced the subscript n to represent a set of
solutions {Q r ,n

s ( ) a z ,n
s ( ) b zn

s ( )} for a given value of local
growth rate n

sg that satisfies the radial and vertical boundary
conditions. Upon substituting Q r rf r ,n

s
n( ) ( )= Equation (34)

becomes

d f
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which is the well known Bessel differential equation, and the
general solution for 0n

sg > is given by
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From Equation (36), we obtain
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which is substituted into Equation (35) to obtain the following
differential equation for a zn

s ( ) (see Mangalam & Subrama-
nian 1994):
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The above fourth-order differential equation can be solved by
expanding an

s in terms of its four eigenfunctions with
eigenvalues λnj, written as

a z c zexp . 41n
s

j
nj nj

1

4

( )( ) ( )å l=
=

Substituting Equation (41) into Equation (40), we obtain a
fourth-order equation for λnj given by
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The dynamo solutions within the galactic disk depend
critically on the boundary conditions and the eigenfunctions
present in the corona. Here, we consider a scenario in which a
corona forms continuously around the galactic disk during the
course of dynamo action, due to the contributions from the
small-scale magnetic helicity fluxes as given in Equations (10)
and (11). We assume that the magnetic field topology in the
infinitely conducting corona quickly relaxes into a force-free
field, which minimizes the energy while conserving the global
magnetic helicity (Woltjer 1960; Taylor 1974; Finn &
Antonsen 1983; Berger & Field 1984; Mangalam &
Krishan 2000). Following the treatment in Mangalam &
Subramanian (1994), we consider that the coronal magnetic
field follows the linear force-free field configuration with a
parameter t( )m (which has no spatial dependence). Thus, we
write the following equations for the coronal magnetic field:

B B B, 0. 43· ( )m ´ =  =

Here μ=0 corresponds to a vacuum field outside the disk,
which is a likely initial condition. In the course of dynamo
action, as the corona builds up, we expect t∣ ( )∣m to take higher
non-zero values. Taking the curl of Equation (43), we obtain

B B. 442 2 ( )m = -

Splitting Equation (44) into poloidal, ψc, and toroidal, Tc,
components using the definitions given in Equations (14) and
(15), we can write (Mangalam & Subramanian 1994)

45c
2

c ( )y m yL = -

T T , 46c
2

c ( )mL = -

where Λ is defined in Equation (18). Here the subscript c
denotes coronal fields. The general solution to these equations
is given by (Mangalam & Subramanian 1994)

r z a p p z rJ pr dp, exp , 47c
2 2

1( )( ) ( ) ∣ ∣ ( ) ( )òy m= - -

T r z b q q z rJ qr dq, exp , 48c
2 2

1( )( ) ( ) ∣ ∣ ( ) ( )ò m= - -

where the amplitudes are related by b(k)=μa(k), which
follows from the force-free condition given in Equation (43).
For a galactic disk of radius rd, under the condition that the
solution goes to zero at r=rd, the functions ψc and Tc can be
written as (Mangalam & Subramanian 1994)

r z e rJ k r k z

T r z r z

, exp ,

, , , 49
n

N

n n nc
1

1
2 2

c c

( )( )( ) ∣ ∣

( ) ( ) ( )

åy m

my

= - -

=
=

where en are the coefficients to be evaluated from the boundary
conditions and knrd are the zeros of Bessel function J1. Due to
the symmetry of the solutions about the mid-plane of the disk,
we solve the equation only for the upper half of the disk and
use the symmetry to generate the solution for the lower half. A
description of the boundary conditions written for the top
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surface of the disk and the mid-plane is given as follows. The
poloidal flux ψ and the radial component of the magnetic field,

B
z

,r r

1 y
= -

¶
¶

are continuous at the top boundary (z=1),

which means that

z
0; and 0, 50z

z
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⎦⎥y

y
=

¶
¶

==
=

where the square bracket represents the continuity of the field.
We have investigated the resulting solutions numerically and
found that Equation (50) can be approximated by

z
1 0, 51( ) ( )y¶

¶
=

which also means Br=0 at z=1. This is true because

z
k 0n r

c 2 2
c

d

cy
m y

¶
¶

= - - » »y
for the current choice of

parameters. Since the magnetic field generated in the galactic
disk matches the linear force-free field of the corona at the top
surface, the amplitudes of an and bn (at the top surface) satisfy
the same conditions as given in Equations (47) and (48). Thus

b a1 1 , 52n
s

n( ) ( ) ( )m=

where μ s denotes the steady-state value of μ. The equatorial
boundary conditions specify the symmetry of the solution. For
the quadrupolar mode, we write

a0 0 53( ) ( )y =

T

z
b0 0. 53( ) ( )¶

¶
=

and for the dipolar mode we write

z
a0 0 54( ) ( )y¶

¶
=

T b0 0. 54( ) ( )=

From Equations (38) and (49), we find that the radial part of ψ
has the same functional form for both the disk and the corona.
The requirement of continuity of ψ at the boundary, which is
valid even as r 0, implies that k .n n

sg= Thus, Equa-
tion (49) can now take the form
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, , . 55
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Upon substituting the expressions for ψ and T for the disk
(Equations (31), (38), and (41)) and the corona (Equation (55))
into the boundary conditions for quadrupolar symmetry
(Equations (51)–(53)), we find that the radial part of the
solution cancels out and the following equations are obtained
for the four eigenfunctions of an

s (see Appendix C for details):
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The above set of equations can be written in a compact form as
Oc 0,˜ ˜ = where Õ is a 4×4 matrix comprising the coefficients
cnj in Equation (56) and c̃ is a 4×1 column vector comprising
cnj. The condition for non-trivial solutions demands that the
determinant of Õ vanishes, Det O 0˜ = (see AppendixB in
Mangalam & Subramanian 1994). This condition is used to
evaluate n

sg as a function of inputs m
sa and .sm Since the scale of

the coefficients is arbitrary, we can set c 1n4 = without loss of
generality and solve for the other coefficients using the first
three equations in (56).
The steady-state solutions for advective flux RU=2 and

0.0958s s
1m g» = - (which is close to the final value of μ,

as presented later in Table 2) are shown in Figure 1 for
illustration. A formulation for time-dependent dynamo solu-
tions constructed using these steady-state solutions is presented
in the next section. In Figures 1(a) and (b), we show the vertical
distribution of ψ and T for different values of parameter n at a
radius r=8 kpc. The plots are scaled with respect to the
maximum values of ψ and T, so as to compare the relative
strengths of the different modes. The field lines are evidently
continuous across the vertical boundary (z=1). For all the
cases in Figure 1(a), the stream function ψ peaks around
z=0.4h and then falls off with increasing height. The
strengths of the different radial modes are comparable, with
n=1 being the most dominant mode in this case. The poloidal
current T, shown in Figure 1(b), starts with its maximum
strength at the mid-plane and then falls off sharply with
increasing height. The value of T is negligible outside the disk
as the force-free parameter μ s is very small in the corona (i.e.,
the force-free fields in the corona are very close to potential
fields). The variations of ψ and T with both r and z for n = 1
and 2 are shown in Figures 1(c)–(f). The contour plots have
been normalized with respect to their corresponding maximum
value for n=1 in order to compare the strength of the two
modes. As is clearly seen in the plots, the mode n corresponds
to the number of oscillations in the radial direction. In both
cases the strength of the n=1 mode is higher than that of the
n=2 mode. The quadrupolar nature of the fields is also quite
evident from these contour plots.

5. TIME-DEPENDENT FORMULATION

In order to set up the time-dependent formulation of the
dynamo equation, we use the closure principle offered by the
Sturm–Liouville theory and the completeness of the Bessel
functions to express the radial part of the time-dependent
solution as a linear combination of the various radial modes
obtained in the steady-state case. We express time-dependent ψ
and T with an implicit dependence on α and μ as

r z w Q r a z a, , ; , ; , ; , ; , 57( ) ( ) ( ) ( ) ( )y t a m t a m a m a m=

T r z w Q r b z b, , ; , ; , ; , ; , , 57( ) ( ) ( ) ( ) ( )t a m t a m a m a m=
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Figure 1. Normalized vertical cross sections of the stream functions ψ and T for different values of n and advective flux RU=2 at a radius of 8 kpc (r/h=20) are
shown in panels (a) and (b). Panels (c) and (d) represent the meridional contour plots of ψ for n = 1 and 2 respectively, and panels (e) and (f) represent the same for T.
The contour plots are normalized with respect to the corresponding value of n = 1. Here h = 400 pc is the half-width of the disk.
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where

Q r X Q r X r r; , , ,
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is a linear combination of the steady-state radial functions
Q rm

s ( ) given in Equation (38). For our calculations, we have
truncated the summation in Equation (58) to N=6. Substitut-
ing Equation (57) in Equation (30a), we obtain
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t
a z ;da
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( )¢ = Λr, and Λz are the r- and z-

dependent parts of operator Λ defined in Equation (18). We
have neglected the terms containing partial derivatives with
respect to α and μ in Equation (59), as they are small compared
to the derivatives with respect to z (we have checked this by
evaluating these coefficients numerically from the steady
solutions and also a posteriori from the time-dependent
solutions). Dividing Equation (59) throughout by wQa, we
obtain upon rearranging
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Since the lhs of the above equation is a function of (r, τ) and
the rhs is a function of (z, τ), the equality is satisfied only if
both are equal to γ(τ), which depends only on τ(α, μ).
Following similar steps with Equation (30b) for the solutions
(w, Q, b), we obtain
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Combining Equations (60) and (61), we obtain the following
set of equations:
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The functional form of Equations (62b) and (62c) is same as
that of Equations (35) and (36), except that the functions αm

and γ now vary with time, and can be solved in the same
manner as done for the steady-state case as discussed in

Section 4. In order to solve the radial equation, we assume

w
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so that w(0)=1. Multiplying Equation (62a) by Q, we obtain
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tion (64), we find
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Multiplying both sides by l
s for a given index l and integrating

over r (represented by angular brackets), we obtain
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The orthogonality property of Bessel functions gives
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For different values of l, we obtain a set of N equations similar
to Equation (67), which can be compactly written as

X G K 0 69
m

N

m lm lm m m
s

1
( )( ) ( )å d g gG + - =

=

where Glm and Km are defined in Equation (68). Equation (69)
can be written as an eigenvalue problem by reframing it in
terms of matrices in the following manner:
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where G̃ and K̃ are N×N square matrices defined as
G Glm lm( ˜ ) = and K Klm lm m m

s( ˜ ) ( )d g g= - respectively, and X̃

is a column vector of length N defined as X X .m m( ˜ ) =
Multiplying Equation (70) by G ,1˜- we obtain

G K X X . 711( )˜ ˜ ˜ ˜ ( )= G-

Solving Equation (71) gives us N real eigenvalues for Γ. We
now denote the nth eigenvalue of Γ as Γn and the
corresponding components of the eigenvectors as Cnm, which
are defined to be orthonormal with the sign determined by Cn1.
Since G̃ and K̃ are known, Cnm are uniquely determined. We
then define an N×N square matrix C̃ such as C C .nm nm( ˜ ) =
We can write the general solution as the linear combination of

9

The Astrophysical Journal, 817:12 (27pp), 2016 January 20 Prasad & Mangalam



all these modes (since w(0)=1), i.e.,
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where qn are constants that set the initial ratios for various
modes Qn at τ=0. We estimate the coefficients qn by writing
the initial condition for the radial part of the solution as

q C Q s Q0 73
n m

N

n nm m
s

m
m m

s

, 1 1

( ) ( )å åt = =
= =

where the coefficients sm are the seeds that set the relative
strength of each steady-state mode Q .m

s Comparing the
coefficient of Qm

s from both sides in Equation (73), we find

q C s C q s0 74
n

N

n nm m
T

1
0( ) ˜ ˜ ˜ ( )å t = =  =

=

where q̃ and s̃ are column vectors of length N defined as

q q ,n n( ˜) = s sm m( ˜) = respectively, and C T
0

˜ is an N×N square

matrix defined as C C 0 .T
nm mn0( ˜ ) ( )t= = Equation (74) can

then be rewritten as q C s ,T
0

1( )˜ ˜ ˜=
-

which can be solved to

obtain the values of constants qn. Henceforth, for clarity, we
use q C q Cnm l ln nm n nm d= = (where no summation is implied

on n); C q.T˜ ˜ ˜ =
As discussed in Section 2, during the course of dynamo

operation, a corona builds up around the disk due to the release
of small-scale magnetic helicity fluxes across the boundary.
The boundary conditions given in Equation (56) are still valid
with ,m

sa sm , and n
sg now replaced by their time-dependent

counterparts. Using Equations (38), (55), and (72a), the
continuity of ψ at the top surface can be written as
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From Equation (75), we can write

e w a 1 exp . 76m
n

N

n nm m
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1
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=

The expressions for ψc and Tc are now given as

w a rJ r z

T

1 exp 1 ,
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5.1. Time Dependence of αm and Coronal Helicity

The equation for the evolution of ma is derived in
Appendix D and can be written as

J Br
d

d
C B R R R1 ,

78

m
m U m

2 1( ) ( )·

( )

⎡⎣ ⎤⎦a
t

a a= - + - - +a k
-

where

C
h

l
R2 , . 79

t0

2

( )
⎛
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⎞
⎠⎟

k
h

= =k

For Rm=105 (Shukurov et al. 2006), the ratio
R

m

m

a is very small

compared to other terms in Equation (78) and is hence
neglected. In order to obtain an equation for dynamical
evolution of αm, we take a spatial average of Equation (78)
over the entire volume of the disk, and the resulting equation
can now be written as
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d

d
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·
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- +

a
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-

where the angular brackets in the above equation represent
volume averaging.

Now r r dr ,
r

r
r2

0

2 2

3d

d
d

2 òá ñ = = and the expressions for B2á ñ

and J B·á ñ are given by (see Appendix E for details)
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Equation (78) can now be written compactly as

J B
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As mentioned in Section 2, during the dynamo operation
inside the disk, we allow for the large-scale magnetic helicity
flux to be redistributed by advection in the disk but not escape.
The justification for this can be given as follows. In disks of
spiral galaxies, the hot gas produced by SNe can rise to large
scale heights above the disk surface. Upon cooling and due to
thermal instabilities, these gases form discrete dense clouds and
fall back to the disk. This is known as the galactic fountain
(Shapiro & Field 1976; Brandenburg et al. 1995). The magnetic
fields carried away by these hot gases are typically of scales
smaller than the size of the hot cavities (0.1–1 kpc). Hence the
fields carried outside the disk mostly represent the small-scale
turbulent magnetic fields (Shukurov et al. 2006). The scale of
the hot cavities is greater than that of the turbulent magnetic
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field but smaller than the scale of the mean magnetic field. So,
the Lorentz force resists the advection of the mean field at the
disk surface more efficiently than that of the small-scale
turbulent magnetic field (Shukurov et al. 2006). Also
reconnection can remove the loops in the large-scale magnetic
field arising due to the fountain flow from their parent magnetic
field lines. Thus the galactic fountain flow is more likely to
carry only the small-scale magnetic field (Shukurov
et al. 2006). For large values of the turbulent magnetic
Reynolds number RU(>20), Brandenburg et al. (1995) argue
that the large-scale magnetic field can be transported from the
disk into the halo by topological pumping. However, in our
case RU�2 (see Table 1), and thus the small-scale magnetic
fields are expected to be removed from the disc more efficiently
than the large-scale magnetic fields.

In order to calculate the mean magnetic helicity of the
coronal field, we use the prescription given in Low
(2006, 2011), which gives the measure of mean magnetic
helicity as (see Appendix F for details)

H
T

r
dV

r
dV

2 2
. 84

V V
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c c
2

c
2

2
( )ò ò

y my
= =

The mean magnetic helicity in the corona is given by
Equation (165) as

H r J r w w
a 1

. 85
n m l

N

d l
s

d n m nl ml

l
s

c
, , 1

2
2
2

2

2
( ) ( ) ( ) å pm g

g m
=

-=

The equation for the rate of change of large-scale magnetic
helicity in the corona is given by Equation (13):

dH

dt
R

l B
dV . 86
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c
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Combining Equations (9), (127), and (130) with the above
equation, and reducing the above equation in dimensionless
form using the transformations given in Equation (29), we
obtain the final equation as (see Appendix G for details)

dH

d
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R R R
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. 87d
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c c ( ) ( )
t

p
a= +a k

The above equation gives the dynamical evolution of the large-
scale coronal helicity Hc. The fraction of small-scale magnetic
helicity flux getting converted into the large-scale helicity in
the corona, Rc, can be estimated as follows. The small-scale
magnetic field escaping into the corona, b, gets converted into
the large-scale magnetic field, Bc, through random reconnec-
tion events. Thus B b N ,c c= where Nc= kf/km; km=μ and
kf=1/l0 are the wavenumbers for the mean and turbulent
fields in the corona, respectively. We now estimate fraction Rc

through
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where R
R S

k c
x

f A s

( )


t = is the reconnection timescale and the factor

Rx(S) is a theory-dependent function of the Lundquist number
S R l c .m s A t0( ) h= The alfvénic Mach number is given by

,A the advection timescale by h U ,a zt = and

R h h1 1V n
s 2( ) ( )g m m» -  is the ratio of the two

effective volumes. Upon simplification, we obtain the fraction
as

R
k c

k R S U

k

k R S
, 89

f A s

m x z
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m x z
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 
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where U cz z s = is assumed to be of the order of unity. We

then obtain R .
k

k R Sc
f A

m x ( )
» Now S 1.6 10 ,A

6= ´ and

R S Sx ( ) = for Sweet–Parker reconnection or
R S S8 lnx ( ) p= for the Petschek process (Kulsrud 2005).
For 1,A » which may be reasonable to assume, given that
corona is being filled by plasma containing small-scale helicity
flux, that is near equipartition. This leads to a range for Rc of
10−3

–10−1. We investigate this entire range of Rc, given the
uncertainties in this parameter, but find that the final solution
(discussed in Section 6) is insensitive to Rc.
Below, we summarize the important equations from this

section for quick reference and discuss the solutions in the next
section. To obtain the radial solutions Q(r), we solve
Equation (64) given by

r Q Q Q 0, 90r( ) ( ) ( )t g tG - L - =

and the coefficients w(τ) are obtained from Equation (63) given
by

w

w
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where w(0)=1. The solutions for Q(r) and the global growth
rate Γ are obtained from the eigenvectors and eigenvalues
obtained from Equation (71) given by

G K X X 921( )˜ ˜ ˜ ˜ ( )= G-

with the initial conditions set by Equation (74). The z part of
the solution is obtained from solving the Equations (62b) and
(62c) given by
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with the boundary conditions given in Equation (56) for time-
dependent αm and μ. The dynamical equations for αm and μ are
solved from Equations (83) and (87) given by
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with B ,2á ñ J B·á ñ, and Hc defined by Equations (81), (82), and
(165) respectively, for the initial conditions αm=10−3 and
μ=0 at τ=0.
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6. SOLUTIONS OF TIME-DEPENDENT DYNAMO
EQUATIONS

In this section, we present a summary of our simulations for
the global nonlinear dynamo using the turbulence parameters
for the SNe-driven scenario presented in Table 1. The time-
dependent dynamo equation given by Equations (62) and (63)
can be solved parametrically as a function of local and global
growth rates, γ and Γ respectively. These parameters in turn
depend upon the values of input αm and μ. In Section 6.1, we
discuss the dependence of the dynamo solutions on parameters
α and μ, for fixed values of Rα, Rω, and Rc. The dynamical
equations for αm and μ given by Equations (83) and (87),
respectively, which specify the evolution of the amplitude and
structure of the large-scale magnetic field with time, are
discussed in Sections 6.2 and 6.3.

6.1. Parametric Study of Time-dependent Dynamo Solutions

The dependence of γ on ma and μ can be obtained by
demanding non-trivial solutions for a in Equation (62); see the
discussion following Equation (56) in Section 4. The resulting
solution of γ as a function of αm is shown in Figure 2(a) (γ was
found to be nearly independent of variation in μ). We find that
γ decreases monotonically with decreasing αm and increases
with increasing RU. For given values of γ(μ,αm), we can solve
Equation (71) to obtain the various eigenvalues Γn and their
corresponding eigenvectors nm as functions of αm and μ. The
variation of the highest eigenvalue Γ1 as a function of αm is
shown in Figure 2(b). Similar to the case of γ as shown in
Figure 2(a), we find that Γ1 is nearly independent of variation
in μ, decreases monotonically with decreasing αm and
increases with increasing RU. Since we find that both γ and
Γn (in general) show very weak dependence on μ, for rest of the
analysis in this section we focus only on the dependence of γ
and Γn on αm. For a fixed value of 0.09579 ,s

1( )m g=- = -
the variation of γ with αm for different values of RU is shown in
Figure 3(a). The variation of the different eigenvalues Γn as a
function ofαm is shown in Figure 3(b), and the parametric
dependence of Γn with γ is shown in Figure 3(c). We find that
the roots of Γn (marked by black dots in Figure 3) occur at
values of αm at which ,m

sg g= where rm
s

dg is the zero of the
Bessel function m

s defined in Equation (38). The functional
dependence of various elements of the eigenvector m1
(corresponding to the eigenvalue Γ1) on αm is shown in
Figure 4. In this case (RU=2), we find that 0.966m

sa = -

(marked by the black dot in Figure 4), where s
1g g= and

Γ1=0; the coefficient corresponding to ,s
1 11 , attains its

maximum value, whereas all other coefficients of m1 go to
zero. This is because, when ,m

sg g= from Equation (70),
KDet 0˜ = and GDet 0.˜G = Since GDet 0,˜ ¹ this implies

Γ=0 and ,mm mm dµ with mm reaching its peak value. At
this value of αm, the radial mode of the time-dependent solution
is a pure Bessel mode ( s

1 ), which also satisfies the steady-state
dynamo equation. Hence 0.966m

sa = - represents the value of
αm for which the dynamo solution reaches its steady-state
values for RU=2. During the evolution of αm, from its initial
value α0 to final value ,m

sa g goes through all Bessel roots

m
sg (see Figure 3), which forces Γn to zero and then to

negative values. Subsequently the expression

w dexpn n
0

( )ò t t= G ¢ ¢
t

decays for all values n>1. Only w1

survives and is amplified before Γ1 goes through zero near
,m m

sa a= where w1 saturates to a constant value (see
Section 6.2 for details). This, however, does not give us an
estimate of the time required for the solution to reach the
steady-state condition and the final magnetic field strength. To
find this, we study the dynamical solutions of αm and μ in the
next subsection.

6.2. Evolution and Saturation of the Dynamo with Time

To study the effect of advective and diffusive fluxes on the
saturation of the volume-averaged large-scale magnetic field
strength B ,á ñ we vary the vertical advective flux, RU, in the
range 0–2 corresponding to U0 of 0–2 km s−1 and the diffusive
flux Rκ as 0 or 0.3. The saturated volume-averaged values of B,
αm, and μ are denoted as B ,satá ñ m

sa , and μ s respectively. The
results are shown for a choice of N=6 in Equation (58), with
the initial condition q3=1, q1=q2=q4=q5=q6=0 in
Equation (74), αm=10−3, μ=0, and Rc=0.01 at τ=0,
corresponding to a seed field of 1 nG. The following are the
key results.

1. We find that in all cases there is initially a brief phase of
rapid growth (t=0–0.5 Gyr), when the magnetic field
grows exponentially with time (see Figure 5(a)). This
represents the kinematic regime of dynamo operation
where αm≈0 (see Figure 5(b)). After that, αm decreases
rapidly during the period t=0.5–1 Gyr and reaches close
to its saturation strength. Since αk = 1 is assumed to be
constant throughout, the total α-effect also decreases

Figure 2. Variations of (a) γ and (b) Γ1 with respect to αm for different values of RU at μ=−0.09579.
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during this phase. The dynamo starts getting quenched
and the mean magnetic field reaches saturation around
9–10 Gyr. The timescale for saturation, tsat, is defined as
the time when αm reaches 99.99% of m

sa (obtained from
the eigenmode analysis discussed in Section 6.1, also see
Table 2). The saturated mean magnetic field strength is in
equipartition with the turbulent kinetic energy ( Beq~á ñ)
and reaches 99% of its final value within a period of
1 Gyr. These values (see Table 2) are in agreement with
the results from numerical simulations previously pre-
sented in Gressel et al. (2013) and Chamandy et al.
(2014). The final saturation value of αm is between −0.93
and −0.97, depending upon the value of RU, which
corresponds to a net α∼0.03–0.07 (3%–7% of the initial
value).

2. Due to the transport of the small-scale magnetic helicity
fluxes from the disk to the corona, the large-scale
magnetic helicity of the corona grows with time, carrying
the same sign as that of the small-scale fields. This is
reflected in the evolution of the force-free parameter μ in
the corona, as shown in Figure 5(c). In the kinematic
phase, when αm=0, there is no magnetic helicity flux
and hence the magnetic helicity of the coronal field is
zero. The parameter μ then grows rapidly for non-zero αm

between t=0.5 and 1 Gyr. When αm saturates (around
t�1 Gyr), μ also saturates at a value that is very close to

.s
1g- The final saturation values for B ,á ñ αm, and μ

corresponding to the different values of RU and Rκ are
presented in Table 2.

3. In the absence of the magnetic helicity fluxes
(RU = Rκ = 0), we find that the large-scale magnetic
field initially grows in the kinematic regime to a strength
of B0.4 eq~ á ñ (Sur et al. 2007), but once the α-quenching
becomes operative, it decays catastrophically to nearly
zero field strength (see Figure 5(a)). As expected, the
force-free parameter in the corona, μ, remains zero
throughout for this case. In all other cases, the saturated
value of the field proportional to the net flux, i.e., the
saturated mean-field strength, is higher for higher values
of RU and Rκ.

4. For the case of U0=2 km s−1 (RU=2), we obtain a
saturated field strength of ∼1.05–1.12 Beqá ñ depending
upon the value of Rκ used (see Table 2 and Figure 6(a)).
This is in good agreement with the field strengths
reported in observations (Beck 2012; Van Eck
et al. 2015). The timescale needed for reaching saturation
in this case is about 9 Gyr.

5. At the point when Γ1=0, where ,s
1g g= the radial

function becomes a pure r s
1 mode, causing a “reso-

nance,” and there is sudden transfer of energy from all the
other modes to the fundamental mode s

1 (seen as a peak
in Figure 6(a) at t=0.96 Gyr). From Equation (81), we
find that at this point, B w .2

11
2

1
2µ This resonance

condition manifests as a sharp jump in the magnetic field
strength and sharp decrease in the values of αm and μ (as
seen in Figure 5). For ,s

1g g Γ1<0 (see Figure 3
(c)) and w1 slowly saturates (see Figure 7(a)), and the
saturation of B2 follows. Both αm and μ change rapidly
before this period and very gradually afterwards. In
Figures 6(b) and (c), we show the variation of αm and μ

Figure 3. (a) The variation of γ with αm for different values of RU. (b) The
dependence of different values of Γn on αm. (c) The parametric plot between Γn

and γ. The black dots in the figure represent the positions where Γn=0 for
different values of n. The plots in panels (b) and (c) correspond to the case
of RU=2.

Figure 4. Variation of different elements of the eigenvector ,m1 corresponding
to the largest eigenvalue Γ1 with αm. The black dot corresponds to the value of
αm where Γ1=0 and .s

1g g=
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with time, beginning from t=0.96 Gyr (when Γ1=0)
to t=12 Gyr, for the case of RU=2 and Rκ=0. It can
be seen from Figure 6(b) that αm first overshoots its
saturation value near αm=−0.9660 and then asympto-
tically tends toward this value over the period of the next
10 Gyr. This variation, though small, is still significant,
because from Figure 4 we find that the relative ratio of
various radial Bessel modes m1 is very sensitive to the
value of αm in this region. So, a small difference in the
value of αm can result in a vastly different radial profile
for the magnetic field (as shown later in Figures 7(c) and
(d)). This also tells us that even though the magnetic field
initially begins with some random combination of Bessel
modes, the dynamo equation drives it asymptotically
toward a single Bessel mode that is a solution of the
steady-state dynamo equation. From Figure 6(c), we find

that μ asymptotically tends toward the value
0.09579,s

1g- = - which is its maximum permissible
value (see Equation (55)).

6. Figure 7(a) shows that the mode w1 is about 105 times
stronger than the second highest mode w2. Thus for all
practical purposes, we need to follow only the behavior
of eigenvalue Γ1 and its corresponding eigenvector .m1
The variation of different eigenvalues Γn with time is
shown in Figure 7(b) for the case of RU=2 and Rκ=0.
The initial value of Γ1 for αm=0 is around 1.2 (see

Figure 5. The evolution of (a) the magnetic field (normalized with respect to
the equipartition field strength), (b) αm, and (c) the force-free parameter μ with
time for different values of RU and Rκ = 0.

Figure 6. (a) The evolution of the volume-averaged magnetic field strength for
the case of RU=2 and Rκ=0 during the period t=0–1 Gyr. (b), (c) The
variation of αm and μ with time respectively for the case of RU=2 and
Rκ=0. For (b) and (c), we have plotted the functions beginning at
t=0.96 Gyr, when Γ1=0, in order to highlight the small variation.
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Figure 2(b)); it then decreases to zero at .m m
sa a= The

behavior of Γ1 mimics that of αm as shown in Figure 6(b),
whereby it initially overshoots the point Γ1=0 and then
asymptotically tends toward this point. The variation of
different elements of m1 is depicted in Figure 7(c). We
notice that even though the initial magnetic field starts as
a random mixture of different Bessel modes, after
t=0.96 Gyr all other modes except 11 decay in strength.

Finally, around t=10 Gyr, only 11 is dominant, while
all other m1 are nearly zero. Thus the asymptotic radial
configuration is a pure Bessel mode .s

1 This can also be
observed in Figure 7(d), where the temporal evolution of
Bessel modes wm

s
n

N
n nm1

 å= = normalized with
respect to the maximum value of s

1 is shown.
7. The steady-state configuration is independent of the

relative strengths of different Bessel modes qn, taken at

Figure 7. (a) The variation of the relative strength of different coefficients wn scaled with respect to the maximum value of w1 as a function of time. (b) The variation
of different eigenvalues Γn with time t. (c) The variation of different eigenvectors m1 corresponding to eigenvalue Γ1 with time. (d) The temporal evolution of
different Bessel modes m

s normalized with respect to the maximum value of .s
1 All the plots correspond to RU=2 and Rκ=0. The initial time is set at

t=0.96 Gyr for panels (a) and (b) and at t=0 Gyr for panels (c) and (d).

Table 2
Final and 99% Saturation Values

RU Rκ tsat (Gyr) Bsatá ñ Beqá ñ m
sa sm t99 (Gyr) B99á ñ α99 μ99

0 0 4.35288 0.00709 −0.97026 0 0.12661 0.00702 −0.00008 0
0 0.3 10.73855 0.24704 −0.93758 −0.09578 0.32034 0.24457 −0.11043 −0.00157

0.5 0 9.76078 0.3614 −0.94555 −0.09578 0.87414 0.35779 −0.93575 −0.09572
0.5 0.3 9.50699 0.45716 −0.94555 −0.09578 0.99903 0.45259 −0.93834 −0.09569

1 0 9.59684 0.57857 −0.95299 −0.09579 0.97572 0.57279 −0.94709 −0.09571
1 0.3 9.53675 0.65967 −0.95299 −0.09579 1.00783 0.65308 −0.94743 −0.09571

1.5 0 9.51527 0.80103 −0.95981 −0.09579 0.97181 0.79301 −0.95485 −0.09572
1.5 0.3 9.48252 0.87748 −0.95981 −0.09579 0.98711 0.8687 −0.95498 −0.09572

2 0 9.14301 1.04499 −0.966 −0.09579 0.95521 1.03454 −0.96156 −0.09574
2 0.3 9.12089 1.12063 −0.966 −0.09579 0.96441 1.10942 −0.96163 −0.09574

Note.The volume-average steady-state values of αm, and μ along with the corresponding timescale tsat are listed for different input values of RU and Rκ in the first six
columns. The last four columns represent the time at which Bá ñ reached 99% of its saturated value, given by t99, the corresponding magnetic field strength given by
B99á ñ, and the corresponding values of αm and μ denoted by α99 and μ99.
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τ=0. We have explored different choices of seed fields,
such as taking a pure n=2 seed field (q2=1, all other
qn=0), or a seed field with a mixture of modes. These
different choices of seed field only shift the time required
to reach the steady state depending upon its closeness to
the final configuration. For example, a seed field of pure
n=1 mode reaches saturation faster (in about 0.1 Gyr)
than a pure n=2 mode, because the final configuration
in this case is the pure Bessel mode .s

1 In Figure 7(d) we
find that, since the initial seed field was given as a pure

s
3 mode, it initially dominates, but after t=1 Gyr, s

1
remains the most dominant mode. We also see that N=6
is a good approximation as the contribution from the
higher modes is quite small and for the most part only the
first two modes s

1 and s
2 are dominant. We have also

checked the solutions with higher values of N (N=12
for a smaller range in RU and Rκ), and the results were
found to be qualitatively similar because the higher orders
do not contribute much to the final saturated field and
decay at a much faster rate. Since we are computationally
constrained, we have restricted our calculations to N=6.

8. The r, z, and f components of the large-scale magnetic
field in the corona B ,c can be written by combining
Equations (14), (15), and (77) as

B
r z
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Near saturation, only w1 and 11 are the dominant terms
(from Figures 7(a) and (c)), and we find from
Equation (97a) that B 0rc( ) ~ in the corona (since

;s s
1m g~ see Table 2). Due to the small value of ,s∣ ∣m

the strength of Bc( )f is also much weaker in the corona
than in the disk (see Section 6.3 for more details). We
infer from Equation (97) that the strength of the large-
scale magnetic field in the corona depends only on the
saturated values of μ, wn, and ,nm and these parameters
are found from our simulations to be nearly independent
of Rc. The parameter Rc only changes the rate at which
large-scale magnetic helicity accumulates in the corona
during the course of dynamo operation. For higher values
of Rc, the final value of μ will then approach its
asymptotic value of s

1g faster (see Figure 6(c)). This
leads to an increase in the vertical length scale of the
coronal field, which is effectively proportional to
1 s

1
2g m- (from Equation (77)). Thus from Equa-

tion (85), higher values of Rc result in higher values of Hc

as shown in Figure 8 purely because of the increase in the
extent of the large-scale field while its strength does not

change significantly. This seems to be in agreement with
our simulations done up to Rc=0.1, which is the higher
limit allowed from reconnection arguments. For all the
values of Rc shown in Figure 8, the values of B ,satá ñ m

sa
and μ s are nearly the same. This is because the magnetic
field in the corona is quite weak compared to that within
the disk and the solutions within the disk are only weakly
dependent on μ.

9. We also find in Figure 5(a) that the growth rate, γ, of the
magnetic field is proportional to RU (for a given Rκ). This
is true even in the kinematic regime. To illustrate the
dependence of γ on the advective flux RU, we use the
kinematic solutions of the dynamo equation (obtained by
solving only Equations (34)–(36) with 0ma = and

s
1m g= ) for a larger range of RU (up to RU=20).

This is shown in Figure 9. We find that the growth rate
increases with RU for smaller values (RU=0–5) until a
maximum value of RU=5 is reached, and then it
decreases monotonically for higher values of RU. Since
we have used only values of RU between 0 and 2, we find
that in our cases higher values of RU help the dynamo to
operate faster. Brandenburg et al. (1992, 1993) have also
reported similar results in their numerical simulations
where the dynamo action is enhanced by the aid of
galactic winds.

Figure 8. The log of absolute mean coronal helicity plotted for different
fractions Rc, varying between 10−4 and 10−1, for the case of RU=0
and Rκ=0.3.

Figure 9. The variation of the local growth rate γ as a function of the advective
flux RU, for αm=0 and .s

1m g= The range for RU in our simulations is 0–2,
where γ increases linearly with RU.
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6.3. Distribution of the Saturated Magnetic Field
across the Disk

Here we discuss the structure of the steady-state magnetic
field and its distribution across the disk and the corona. The
complete radial and vertical dependences of the fields are
shown through contour plots with respect to r and z. The
following are the key results.

1. In Figure 10, we show the meridional contour plots
of ψ corresponding to RU=2 and Rκ=0 at
t=t99=0.96 Gyr (when the volume-averaged magnetic
field strength Bá ñ reaches 99% of its final strength),
t=5 Gyr (an intermediate period during the evolution of

magnetic field), and t=tsat=9.1 Gyr, when the mag-
netic field almost reaches its steady-state configuration.
These plots depict the shape of the poloidal component of
the magnetic field. From Figure 10(a), we find that
initially at t=0.96 Gyr, the magnetic field is primarily
confined to the radiusr=0–8 kpc with the field being
strongest at around r=4 kpc. Subsequently, the mag-
netic field diffuses across the disk, and at t=5 Gyr
(see Figure 10(b)) it is predominantly confined to
r=4–16 kpc. Finally, as shown in Figure 10(c), at
t=9.1 Gyr, when the magnetic field has reached a near
steady-state configuration, the field is spread out across
the disk. The radial profile of ψ is now proportional to

Figure 10. The meridional contour plots of ψ corresponding to RU=2 and Rκ=0 shown at different instants of time. (a) t=t99=0.96 Gyr, when the volume-
averaged magnetic field strength Bá ñ reaches 99% of its final strength. (b) t=5 Gyr, an intermediate period during the evolution of magnetic field. (c)
t=tsat=9.1 Gyr, when the magnetic field almost reaches its steady-state configuration. Here h=400 pc corresponds to the half-width of the galactic disk.
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r s
1 as discussed previously in Section 6.1. Poezd et al.

(1993), in a similar analytical approach for a nonlinear
thin-disk galactic dynamo, found magnetic field reversals
that occur in a quasi-stationary states for certain choices
of seed fields.

2. In Figure 11, we show the meridional contour plots of T
corresponding to RU=2 and Rκ=0 at
t=t99=0.96 Gyr, t=5 Gyr, and t=tsat=9.1 Gyr.
The poloidal current becomes negligibly small outside the
disk (z>1). The structural evolution of T is similar to ψ,
whereby we find that at t=0.96 Gyr (see Figure 11(a)),
the field is primarily confined to r=0–4 kpc, and then
diffuses across the disk over time (see Figure 11(b)). The
near steady-state configuration is then shown in

Figure 11(c) at t=9.1 Gyr. The contour plots are shown
only up to z=1 since the value of T is very small outside
the disk. Due to the small value of μ s, these results are
not very different than what we have found under vacuum
boundary conditions of μ=0, which is generally
considered for the disk dynamo (Ruzmaikin et al. 1988;
Sur et al. 2007; Chamandy et al. 2014). The individual
components of the magnetic field inside and outside the
disk are discussed below.

3. In Figure 12, we show the contour plots of magnetic field
components Br and Bf as functions of r and z for RU=2
and Rκ=0 at t=tsat=9.1 Gyr where the magnetic
field reaches a near steady-state configuration.
Figures 12(a) and (c) show the variations of Br and Bf

Figure 11. The meridional contour plots of T corresponding to RU=2 and Rκ=0 shown at different instants of time. (a) t=t99=0.96 Gyr, when the volume-
averaged magnetic field strength Bá ñ reaches 99% of its final strength. (b) t=5 Gyr, an intermediate period during the evolution of magnetic field. (c)
t=tsat=9.1 Gyr, when the magnetic field almost reaches its steady-state configuration. Here h=400 pc corresponds to the half-width of the galactic disk.
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respectively within the disk for heights z/h=0–1 while
Figures 12(b) and (d) show the variations of these fields
in the corona for heights z/h=1–2. The ratio of the
strength of Bf and Br inside the disk is of the order

R R 1 .m
1 2[ ( )]a~ +w a As expected from the boundary

condition given in Equation (51), Br changes sign near
the disk, which is a necessary condition for the dynamo to
operate (Ruzmaikin et al. 1988), so that the sign of the
flux leaving through the surface is opposite to that of the
flux in the mid-plane. The strength of the azimuthal field
decreases with height and tends to zero near the disk
surface. Both Bf and Br are negligibly small in the corona
(roughly two orders of magnitude less than their strengths
inside the disk), which also gives the appearance of
discontinuity in these functions at z=1. But their
continuity is implied from the continuity of ψ and T,
which is guaranteed from the boundary conditions
(Equations (51) and (52)). The contour plot of Bz for

the same configuration is shown in Figure 13. We find
that although Bz is much weaker than Br and Bf inside the
disk, it is the most dominant component in the corona. It
is reported from observations that in general the strength
of the large-scale magnetic field in the halo is comparable
to that in the disk (Krause 2014). We plan to consider in
the future a halo model with a dynamo and/or a stronger
galactic wind that can transport magnetic field from the
disk in order to achieve higher magnetic field strengths
(Brandenburg et al. 1993; Moss et al. 2010).

4. The magnetic pitch angle is defined by
p B Btan .r

1 ( )= f
- Using Equations (14), (15), and

(72), we can write the pitch angle inside the disk as

p
w t Q r a z

w t Q r b z
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Since a single mode w1 is dominant over all other values

Figure 12. Contour plots of magnetic field components Br and Bf as functions of r and z for RU=2 and Rκ=0 at t=tsat=9.1 Gyr. Panels (a) and (c) show the
variation of Br and Bf respectively within the disk for heights z/h=0–1 while panels (b) and (d) show the variation of these fields in the corona for heights z/
h=1–2. The contours in all the panels have been scaled with respect to the maximum value of Br∣ ∣ within the disk.
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of wn (see Figure 7(a)), the pitch angle within the disk
p ,a z

b z
1

1

( )
( )

~ - ¢
is nearly independent of r. The variation of

magnetic pitch angle p in degrees as a function of z for
different values of RU and Rκ=0 at t=tsat (correspond-
ing to the value of RU) is shown in Figure 14(a). We find
that p varies from –2.5° to 0° within the disk depending
on the value of RU. Since Br and Bf have opposite signs
inside the disk (see Figures 12(a) and (c)), the pitch angle
is negative inside the disk, decreases in magnitude with
height, and becomes positive near the surface (when Br

changes sign). This means that the magnetic spiral that is
trailing within the disk starts leading near the surface.
This is in agreement with what has been previously
reported in Chamandy et al. (2014) and is expected in a
model with outflows and corona (Ruzmaikin et al. 1979;
Ji et al. 2014). The pitch angle is found to varying
between –3.6° and 6° in the corona, as shown in
Figure 14(b). The difference in the sign of pitch angle
between the disk and the corona also implies that the
large-scale magnetic helicities in the disk and corona are
of opposite sign. This is expected in our model because
the magnetic helicity in the corona grows through the
small-scale helicity of the disk, which has opposite sign
to that of the large-scale field. This inference can be
verified through observations to further validate the role
of small-scale magnetic helicity fluxes in dynamo action.
The observed values of the pitch angle are close to −20°
(Fletcher 2010). It might be possible to obtain higher
values for the pitch angle by incorporating mean radial
flows (Moss et al. 2000) or by invoking spiral shocks
(Van Eck et al. 2015) or using non-standard parameter
values for the dynamo (Chamandy & Taylor 2015). We
plan to investigate these effects in future work.

7. SUMMARY AND CONCLUSIONS

We have developed a global semi-analytic 3D model for the
dynamo operation in a galaxy with a corona. The model
includes small-scale (advective and diffusive) magnetic helicity
fluxes that transfer magnetic helicity from the disk to the

corona and prevent the catastrophic quenching of the dynamo.
The effect of these small-scale magnetic helicity fluxes on the
nonlinear saturation of the dynamo is also demonstrated from
the strength and structure of the global saturated magnetic field.
Here we summarize and highlight the novel features of
this work.

1. We have incorporated the radial dependence in the SNe-
(and MRI-) driven turbulence parameters and have shown
that all these parameters, α, Ω, ηt, and Uz have similar
radial variations (∝1/r). Thus the dynamo parameters Rα,
Rω, and RU defined in Equation (28) are nearly
independent of r. This leads to a great simplification in
our formulation, and the dynamo Equations (30a) and
(30b) take the same dimensionless form for both SNe-
and MRI-driven turbulence.

2. A comparison of different parameters for the cases of
SNe- and MRI-driven turbulence is presented in Table 1.
We found that the SNe-driven dynamo operates at a much
faster rate than the MRI-driven dynamo and hence the
magnetic field generation in the disk is likely to be
dominated by SNe-driven turbulence. As a combined
treatment of both SNe- and MRI-driven turbulence is
beyond the scope of this paper, we have used only the
SNe-driven turbulence parameters for our analysis.

3. We have solved the dynamo equations inside the disk to
obtain the global steady-state solutions, which are
matched to a linear force-free field in the corona (see
Section 4). These global analytic solutions allowed us to
calculate the global relative helicity for both the disk and
the corona. We have presented an analysis of the relative
helicity flux terms in Appendix A. We have included the
advective and diffusive fluxes for the work presented in
this paper and plan to explore the contribution from other
terms in the future.

4. We have solved the full time-dependent problem in
Section 5 by writing the time-dependent magnetic field in
a separable form (see Equation (57)), where the radial
solution is expressed in terms of the steady-state solutions
already obtained in Section 4. By studying the parametric
dependence of the time-dependent solutions on αm and μ,
we obtained the saturation value of αm that enabled us
estimate the corresponding global steady-state magnetic
field geometry.

5. To summarize our approach to solve for the saturation of
the nonlinear dynamo, the overall time-dependent solu-
tion to Equation (62) given by Equations (63), (71), and
(72) is built using an expansion of the steady-state
solutions whose time dependence is parameterized
through the local growth rate γ(t). The radial part,
Equation (62a), provides connection between the global
growth rate Γ(t), radial diffusion, and the local growth
rate γ(t) that represents other effects of vertical advection,
diffusion, shear, and the α-effect. In essence, the time-
dependent solution describes a dynamo of large-scale
magnetic field in the disk with vertical components a(z)
and b(z) solved from the steady-state solution for a given
γ(t). The flux transport is introduced by the helicity
Equation (87), which includes the efflux of only the small
helicity and its conversion by reconnection to large-scale
magnetic helicity in the corona. The boundary conditions
provide the connection of the external large-scale field to
the corresponding disk field through the force-free

Figure 13. Contour plot of magnetic field component Bz as a function of r and z
for RU=2 and Rκ=0 at t=tsat=9.1 Gyr. The contours in the figure have
been scaled with respect to the maximum value of Br as shown in Figure 12(a).
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parameter μ(t). Thus, in our model, the large-scale flux is
not transported out of the disk or destroyed (see
Section 5.1). A more detailed treatment, including the
large- and small-scale helicity fluxes (as given in
Equations (3) and (4)) is beyond the scope of this paper
and will be taken up in the future.

6. The analysis of the radial solution in terms of its
eigenvectors (as shown in Section 6.1) also gives a clear
understanding of the evolution of the global structure of
magnetic field with time.

7. We have obtained quadrupolar solutions for the saturated
magnetic field strength, B ,eq~á ñ which is proportional to
the advective and diffusive fluxes leaving the surface, see
Table 2. For the case of vertical outflow Uz=2 km s−1 at
a radius of 4 kpc, we obtained a mean-field strength of
Bsatá ñ= 5–7μG, which is close to what was reported in
numerical simulations (Gressel et al. 2013; Chamandy
et al. 2014) and in observations (Beck 2012; Van Eck
et al. 2015). The dynamo was found to reach equipartition
strength and 99% of its saturation value in about 1 Gyr,
which is faster than the timescales previously reported in
Sur et al. (2007) and Chamandy et al. (2014).

8. We found that during the dynamo operation, the small-
scale magnetic helicity fluxes slowly build a corona with
a magnetic helicity that carries the same sign as that of the
small-scale magnetic helicity fluxes, see Figure 5(c). We
also found that the magnetic field inside the disk is not
very sensitive to the fraction of large-scale helicity in the
corona given by Rc (shown in Figure 8). In the absence of
the flux terms (RU=Rκ=0), we found that the mean
magnetic field initially grew to a maximum value of

B0.4 eq~ á ñ in the kinematic phase and then catastrophi-
cally quenched (see Figure 5(a)). This confirms the
crucial role of the helicity fluxes in the dynamo operation
(Sur et al. 2007).

9. We have shown the evolution of the global structure of
the magnetic field in the disk as well as the corona, as a
function of time (see Section 6.3). The magnetic fields in
the corona are found to be much weaker than those inside
the disk and are dominated by Bz (see Figures 12 and 13).
This indicates that the halo may require dynamo action or

a stronger galactic wind to account for the much stronger
magnetic fields reported in observations (Krause 2014).
We plan to take this up in the future.

10. We have improved upon previous work by introducing
the following novelties: building a 3D model of the
global field of the disk and corona using a simplified
treatment of reconnecting the small-scale field to describe
a large-scale force-free coronal field and balancing the
global helicity by the use of gauge-free descriptions of
absolute helicity.

In the future, we plan to work on a hybrid model for the
dynamo with a simultaneous treatment of both SNe- and MRI-
driven turbulence. We also plan to include a more realistic
model for the coronal field that involves details of the helicity
dissipation by reconnection in the corona. The contribution
from the remaining small- and large-scale magnetic helicity
flux terms (apart from advective and diffusive fluxes) in
Equations (3) and (4) needs to be explored in order to study its
effect on the saturation of the dynamo. The magnetic pitch
angle obtained in this model is much less than the observed
values; we plan to investigate this further by expanding our
parameter space and incorporating other effects in the model as
discussed in the last paragraph of Section 6.3.
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referee for insightful comments and helpful suggestions. A.P.
acknowledges CSIR for the SPM fellowship. We also thank the
support staff of the IIA HPC facility and Sandra Rajiva for
proofreading the manuscript.

APPENDIX A
MAGNETIC HELICITY DYNAMICS

The induction equation is given by

B
B

U B J
t

. 99t ( ) ( )h¶ =
¶
¶

=  ´ ´ -

Figure 14. (a) The variation of the pitch angle within the disk (which is nearly in independent of r) with z for different values of RU and Rκ=0. (b) The pitch angle in
the corona as a function of r and z for RU=2 and Rκ=0.
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The mean-field component of the induction equation is given
by

B
B

U B J
t

. 100t ( ) ( )h¶ =
¶
¶

=  ´ ´ - +

Uncurling Equation (100), we get

A
A

U B J
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101t 1 ( )h j¶ =
¶
¶

= ´ - + + 

where j1 is a scalar function that depends only on spatial
coordinates. In order to calculate the temporal evolution of

large-scale helicity A BH dV ,d
V

·ò= we take the partial

time derivative of its density given by
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where A A U B J A .t 1( )( ) h j¶ ´ = ´ - + +  ´ The
volume average of Equation (102) gives the equation for the
temporal evolution of large-scale magnetic helicity, Hd

(Mangalam 2008, p. 69) as
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where n̂ represents the normal to the surface S enclosing
volume V and

F J U B A B2 1041 1( ) ( )h j j= - ´ - -  ´ -

is the large-scale magnetic helicity flux. Similarly, for the
temporal evolution of the mean small-scale magnetic helicity

a bh dV ,d
V

·ò= we note that the time derivative of the

small-scale magnetic field obtained by subtracting Equa-
tion (100) from Equation (99) is given by

b u B U b u b j 105t ( ) ( ) h¶ =  ´ ´ + ´ + ´ - -

Uncurling Equation (105), we get

a u B U b u b j . 106t 2 ( ) h j¶ = ´ + ´ + ´ - - + 

The time derivative of the mean small-scale magnetic helicity
density, a b·c = , is then given by

a b a b a a2 . 107t t t( ) ( ) ( )· · · ( )¶ = ¶ +  ¶ ´

Using Equation (106), we get
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The volume average of Equation (108) now gives us the
equation for the evolution of the mean small-scale helicity, hd,
as

B j b f
dh

dt
dV dV n dS2 2 ,

109

d

V V S
∮· · · ˆ

( )

ò ò h= - - -

where f a a b2t 2( ) j= - ¶ ´ - represents the surface flux
terms, which can be expanded in detail as

f a B u a u B a U b

a b U a u b a b u

a j a a b2 . 1102 2

( ) ( )· ( · ) ·

( · ) ( · ) ( · )
( ) h j j

= - -

+ - +
+ ´ + ´ -  ´ -

APPENDIX B
DERIVATION OF EQUATION (30)

We start with Equation (20) given by

t
U

z
r T 111z t ( ) ( )

⎛
⎝⎜

⎞
⎠⎟h y a

¶
¶

+
¶
¶

- L =

where we have explicitly mentioned the r-dependence of ηt.
Now substituting the variables using the transformations given
in Equation (29), we get

h

h

U

h z

r

h

T

h
, 112t z t

2 2 0 0
0( )

˜
( ) ˜ ˜ ˜

˜
( )

⎛
⎝⎜

⎞
⎠⎟

h
t

h
y y aa

y¶
¶

+
¶
¶

- L =

where we have used t h h .d t
2 ( )h= Dividing the above

equation throughout by ,
r

h
t0
2

( )y h
we get

h

r

U h

r z

h

r
T . 113t

t

z

t t

0( )
( ) ( ) ˜

˜ ˜
( )

˜ ˜ ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

h
h t h

y
a
h

a
¶
¶

+
¶
¶

- L =

Since ηt(r)∝1/r (from Equations (22) and (23)), we can write

h

r

r

h
r . 114t

t

( )
( )

˜ ( )
⎡
⎣⎢

⎤
⎦⎥

h
h

= =

Using definitions of RU and Rα from Equation (28), we write
Equation (113) as

r R
z

R T . 115U˜
˜

˜ ˜ ˜ ˜ ( )
⎛
⎝⎜

⎞
⎠⎟t
y a

¶
¶

+
¶
¶

- L = a

Similarly, we rewrite Equation (21) as

t
U

z
T

z
116z t ( )

⎛
⎝⎜

⎞
⎠⎟h

y¶
¶

+
¶
¶

- L = W
¶
¶

where we have used r .r

r
0 0( )W = W Substituting the dimension-

less variables from Equation (29) into the above equation, we
get

h

h

U

h z

r

h

T

h h z
. 117t z t

2 2
0 0( )

˜
( ) ˜ ˜ ˜

˜
( )

⎛
⎝⎜

⎞
⎠⎟

h
t

h y y y¶
¶

+
¶
¶

- L =
W ¶

¶

Following the same steps as taken after Equation (112), we get
the final form as

r R
z

T R
z

. 118U˜
˜

˜ ˜ ˜

˜
( )

⎛
⎝⎜

⎞
⎠⎟t

y¶
¶

+
¶
¶

- L =
¶
¶

w
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APPENDIX C
DERIVATION OF QUADRUPOLAR BOUNDARY

CONDITIONS GIVEN IN EQUATION (56)

The functions ψ and T have the same radial dependence both
outside and inside the disk, as given by Equation (38). Thus, in
writing the boundary conditions for quadrupolar symmetry
(Equations (51)–(53)), the radial part of the solution cancels out
and we obtain a set of four equations relating the eigenvalues
and eigenfunctions of a .n

s Substituting Equation (41) into
Equation (51) we get

c exp 0. 119
j

nj nj nj
1

4

( ) ( )å l l =
=

We rewrite Equation (35) as

b
R

a R
da

dz

d a

dz

1

1
. 120n

s

m
s n

s
n
s

U
n
s

n
s2

2( ) ( )
⎛
⎝⎜

⎞
⎠⎟a

g=
+

+ -
a

Combining Equations (41), (52), and (120), we get

R c

R c

exp

1 exp . 121

j
n
s

U nj nj nj nj

j

s
m
s

nj nj

1

4
2

1

4

( ) ( )

( )( ) ( )

å

å

g l l l

m a l

+ -

= +a

=

=

Rearranging terms in the above equation, we get

R R

c

1

exp 0. 122

j

s
m
s

nj U nj n
s

nj nj

1

4
2

( )

( )

( )

⎡⎣ ⎤⎦å m a l l g

l

+ + - -

´ =

a
=

For quadrupolar boundary conditions, we substitute Equa-
tion (41) into Equation (53a) to get

c 0. 123
j

nj
1

4

( )å =
=

Differentiating Equation (120) with respect to z, we get

db

dz R

da

dz
R

d a

dz

d a

dz

1

1
. 124n

s

m
s n

s n
s

U
n
s

n
s2

2

3

3( ) ( )
⎛
⎝⎜

⎞
⎠⎟a

g=
+

+ -
a

Substituting Equation (124) into Equation (53b), we get

R c 0. 125
j

n
s

nj U nj nj nj
1

4
2 3( ) ( )å g l l l+ - =

=

APPENDIX D
EQUATION FOR EVOLUTION OF αm

In order to derive an equation for the evolution of αm with
time, we first calculate the divergence of the small-scale
magnetic helicity fluxes given in Equations (10) and (11). The
divergence of the advective flux density obtained using
Equations (10), (19), and (25) is given by

U
r

r
z

U . 126a m m m0( ) ( ) ( )· · ( ) a
f

a a =  =
¶
¶

W +
¶
¶

The first term on the rhs of Equation (126) goes to zero due to
axisymmetry, and since U0 is assumed to be independent of z

we obtain

U
z

. 127a
m

0· ( ) a
 =

¶
¶

From Equation (11), we can write

0.3 . 128m t m( ) ( )· · · ( ) k a h a = -  = -  k

Evaluating t m· ( )h a  separately, we write

. 129t m t m m t
2( )· · ( )h a h a a h  =  +  

Since ηt depends only on r (from Equations (22) and (23)), we

can write .t r
t

d
( )h ~ h

Also as the z derivatives dominate over

the r derivatives, we can write the first term on the rhs of
Equation (129) as .t m t z

2 m
2

2h a h » a¶
¶

Also, the second term on

the rhs of Equation (129), m t h r
m t

d
( )·a h  ~a h

, is small

compared to the first term, t m h
2 m t

2( )h a ~a h
, and can be

neglected. Thus Equation (129) can now be written as

z z
0.3 . 130t

m m
2

2

2

2
· ( ) h

a
k

a
 = -

¶
¶

= -
¶
¶

k

The small-scale magnetic helicity transport equation along with
the flux terms can now be written by combining Equations (8),
(127), and (130) as

J B

t l

B

B R

U
z z

2

. 131

m t t m

m

m m

0
2

2

eq
2

0

2

2

·

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a h a h a

a
k

a

¶
¶

=
- -

+

-
¶
¶

+
¶
¶

Rescaling Equation (139) using the relations given in
Equation (29), we write

J B
h

h

d

d

r

l
B

r

h R

U

h h

2

132

t m t t m

m

m m

0

2
0
2 0

2 0

0 0 0
2

( ) ˜ ( )
˜ ˜ ( ) ˜ · ˜ ˜

˜ ˜ ( )

⎛
⎝⎜

⎞
⎠⎟

h a a
t

h
a a

h a a

a a ka a

=- - +

- -

where B B
Beq

˜ = and J .Jh

Beq

˜ = Here (and in the following

sections), we use the “no-z” approximation (Subramanian &
Mestel 1993; Moss 1995; Chamandy et al. 2014) for obtaining

the z derivatives of α by setting
z h

12

2 2¶
¶

- and
z

,
h

1¶
¶

 

with the sign chosen appropriately. Multiplying Equation (132)
by the factor ,h

rt

2

0 ( )a h
we obtain

J B
h

r

d

d

h

l
B

r

h R

U h

r r

2

.

133

t

t

m t m

m

t
m

t
m

0

2
2

0

0

( )
( )

˜ ˜ ˜ ( ) ˜ · ˜ ˜

( )
˜

( )
˜

( )

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

h
h

a
t

a
h
a

a

h
a

k
h

a

=- - +

- -
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Using 1 ,m˜ ˜a a= + the definitions given in Equation (28), and
Equation (114), we write Equation (133) as

J Br
d

d
C B R R R1 ,

134

m
m U m

2 1( ) ( )·

( )

⎡⎣ ⎤⎦a
t

a a= - + - - +a k
-

where we have dropped the tilde for clarity and

C
h

l
R2 , . 135

t0

2

( )
⎛
⎝⎜

⎞
⎠⎟

k
h

= =k

APPENDIX E
DERIVATION OF B2á ñ AND J B·á ñ

Using Equations (14) and (15), we can write

B B B B P B
T

r
; ; . 136P P ˆ ˆ ( )y f= + = =f f

The expression for the energy of the mean magnetic field can
be written as

B
r

T
1

137z r
2

2
2 2 2( ) ( ) ( )⎡⎣ ⎤⎦y y= ¶ + ¶ +

where
z

,z¶ =
¶
¶ r

.r¶ =
¶
¶

From Equation (57), we can write

q Q a w q Q aw; 138z
n

N

n n n r
n

N

n n n
1 1

( )å åy y¶ = ¢ ¶ = ¢
= =

where a da

dz
¢ = and Q .n

dQ

dr
n¢ = Thus substituting Equation (138)

into (137), we obtain

B
r

Q Q a b Q Q a q q w w

r
Q Q a b Q Q a w w

1

1
.

139

n m

N

n m n m n m n m

n m l k

N

l
s

k
s

l
s

k
s

nl mk n m

2

, 1
2

2 2 2

, , , 1
2

2 2 2

( )

( )
( )

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ 

å

å

= ¢ + ¢ + ¢ ¢ ¢

= ¢ + ¢ + ¢

=

=

¢ ¢

For the mean current density, we can write

J B P

P

T

r

r
T

1
, 140

ˆ ˆ

ˆ ˆ ( )⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

y f

y f

=  ´ =  ´ +  ´

=- L +

where we have used P
r

ˆ f̂ ´ = - L and

P
T

z
r

T

r
z T .T

r r r

1 1( )ˆ ˆ ˆ ˆf ´ = -
¶
¶

+
¶
¶

= Combining Equations

(136) and (140), we get

J B P PT
r

T
1

. 141
2

· ˆ · ˆ ( ) ( )y y= - L

The first term on the rhs of Equation (141) is given by

P PT
r

T T

r
Q Q a b Q Q ab q q w w

r
Q Q a b Q Q ab w w

1

1

1
.

142

z z r r

n m

N

n m n m n m n m

n m l k

N

l
s

k
s

l
s

k
s

nl mk n m

2

, 1
2

, , , 1
2 ( )

( )

( )ˆ · ˆ

( )

 

å

å

y y y= ¶ ¶ + ¶ ¶

= ¢ ¢ + ¢ ¢

= ¢ ¢ +

=

=

¢ ¢

The second term on the rhs of Equation (141) is given by

r
T

r
r

r
T

1 1 1
. 143r r z2 2

2( ) ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥y y y- L = ¶ ¶ + ¶

The first term inside the brackets on the rhs of Equation (143)
can be written as

r
r

r
d

dr r

dQ

dr
aq w

Q aw Q aw

1 1

.

144

r r
n

N
n

n n

n

N

r n n
n l

N

l
s

nl l
s

n

1

1 , 1
( )

( )

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠



å

å å

y

g

¶ ¶ =

= L = -

=

= =

Noting that q Q a wz n

N
n n n

2
1åy¶ = = and substituting Equa-

tion (144) into Equation (143), we get

r
T

r
Q Q w w b a a

1 1
.

145
n m l k

N

nl mk l
s

k
s

n m l
s

2
, , , 1

2 ( )( )

( )

⎡⎣ ⎤⎦ åy g- L =  -
=

Substituting Equations (142) and (145) into Equation (141), we
obtain

J B
r

Q Q a b a b ab

Q Q ab w w

1

. 146

n m l k

N

l
s

k
s

m l
s

l
s

k
s

nl mk n m

, , , 1
2 ( )·

( )

⎡⎣
⎤⎦ 

å g= ¢ ¢ +  -

+

=

¢ ¢

In order to obtain the volume-averaged quantities B2á ñ and
J B ,·á ñ we note that, since the quantities in Equations (139)
and (146) are separable in variables r and z, we can split the
volume average into radial averages on functions related to Q
(r) multiplied by vertical averages on functions of a(z) and b(z).
Using the above relations, we can write the volume-averaged
quantities as

B w w
Q Q

r
a b

Q Q

r
a

w w J r a b

J r a . 147

n m l k

N

n m nl mk
l
s

k
s

l
s

k
s

n m l

N

n m nl ml l
s

d

l
s

l
s

d

2

, , , 1
2

2 2

2
2

, , 1
2
2 2 2

0
2 2

( )
( ) ( )

⎡
⎣⎢
⎤
⎦
⎥⎥

⎡⎣
⎤⎦

 

 

å

å g

g g

= ¢ +

+

= ¢ +

+

=

¢ ¢

=
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J B w w

Q Q

r
a b a b ab

Q Q

r
ab

w w

J r a b a b ab

J r ab

148

n m l k

N

n m nl mk

l
s

k
s

l
s l

s
k
s

n m l

N

n m nl ml

l
s

d l
s

l
s

l
s

d

, , , 1

2 2

, , 1

2
2

0
2

( )
( )

·

( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣
⎤⎦

 

 

å

å

g

g g

g g

=

´ ¢ ¢ +  - + á ñ

=

´ ¢ ¢ +  -

+ á ñ

=

¢ ¢

=

where we have used Equation (38) and the orthogonality
properties of Bessel functions to write

Q Q

r r

Q Q

r
rdr

J r J r

2

149

l
s

k
s

l k

N

d

r
l
s

k
s

l k

N

lk k
s

d
l

N

l
s

d

2
, 1

2 0 2

, 1
2
2

1
2
2

d

( ) ( ) ( )

òå

å åd g g

=

= =

=

= =

Q Q

r r

Q Q

r
rdr

J r J r

2

150

l
s

k
s

l k

N

d

r
l

s
k
s

l k

N

lk k
s

k
s

d
l

N

l
s

l
s

d

2
, 1

2 0 2

, 1
0
2

1
0
2

d

( ) ( )
( )

òå

å åd g g g g

=

= =

¢ ¢

=

¢ ¢

= =

and the vertical averaging is defined in the following

manner: a a z dz.
0

1
( )òá ñ =

APPENDIX F
GAUGE-INVARIANT DESCRIPTION OF HELICITY IN

CYLINDRICAL GEOMETRY

The Chandrasekhar–Kendall representation of magnetic
fields in cylindrical geometry in terms of generating functions
f and ψ is given by (Low 2006, 2011)

B B B 151( )= +f y

B Bz z; . 152( )ˆ ˆ ( )f y=  ´ =  ´  ´f y

Then the absolute magnetic helicity density, defined as

h z z z, 2

153

abs ( ) ( ) ( )( ) ˆ · ˆ ˆ
( )

⎡⎣ ⎤⎦y f y y f=  ´  ´  ´ +  ´

is a gauge-invariant measure of magnetic helicity density. The
magnetic vector potential given as A z zˆ ˆy f=  ´ + is also
well defined. For the case of axisymmetry, we get

z
r

.ˆ ˆy
y
f ´ = -

¶
¶

Thus, we can write the f component of

A as

A z
r

, 154ˆ ˆ ( )y
y
f=  ´ = -

¶
¶

f

and rewrite Equation (153) as

A B Bh 2 . 155abs ( )· ( )= +f y f

Also under axisymmetry, Equation (152) can be rewritten as

B B
r r z

r
r r

r
r

z,
1

. 156
2

ˆ ˆ ˆ ( )⎜ ⎟⎛
⎝

⎞
⎠

f
f

y y
= -

¶
¶

=
¶
¶ ¶

-
¶
¶

¶
¶

f y

Thus combining Equations (154), (155), and (156), we get

A B A B A B0; . 157· · ( )= =f y f f f f

So, we get the final expression for absolute magnetic helicity
density for an axisymmetric field in cylindrical geometry as

h A B2 . 158abs ( )= f f

Comparing the definition for the field in Equation (152) with
our definition in Equations (14) and (15), we get A

r
f=f

y and

B .T

r
f=f Thus Equation (158) in our notation takes the

following form:

h
T

r

2
. 159abs 2

( )y
=

The mean magnetic helicity can then be defined as

H
T

r
dV

2
. 160

V 2
( )ò

y
=

APPENDIX G
BALANCE OF MAGNETIC HELICITY FLUXES AND

EVOLUTION OF CORONAL HELICITY

The mean magnetic helicity within the galactic disk can be
written using Equation (160) as

H
T

r
dV

2
. 161d

V 2
( )ò

y
=

Substituting for ψ and T in Equation (161) using Equation (57),
we obtain

H
r

w w Q Q ab r dr dz

w w r J dr ab dz

r w w J r ab

2
2

4

2 .
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d
V n m l k

N

n m nl mk l
s

k
s

n m l k
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n m nl mk
r

r

l
s

k
s

z

d
n m l

N

n m nl ml l
s

d

2
, , , 1

, , , 1 0 0

1

2

, , 1
2
2

d

( )
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

  

 

ò

ò ò

å

å

å

p

p

p g

=

=

= á ñ

=

= = =

=

For calculating the mean magnetic helicity in the corona, we
substitute Equation (77) into Equation (84),

H w w a

J r J r rdr

z dz

4 1

exp 1 .

163

n m l k

N

n m nl mk

r

l
s

k
s

l
s

k
s

c
, , , 1

2

0
1 1

1

2 2

d

( )
( ) ( )

( )

( )
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⎡⎣ ⎤⎦

 

ò

ò
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g g

g m g m

=

´

- + - -

=

¥
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Using the orthogonality property of Bessel functions given in
Equation (68), we can simplify Equation (163) as

H r J r w w a

z dz

2 1

exp 2 exp 2 .
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n m l

N

d l
s

d n m nl ml

l
s

l
s

c
, , 1

2
2
2 2

2

1

2

( ) ( )

( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

 

ò

å pm g

g m g m

=

´ - - -

=
¥

Upon evaluating the z integral in Equation (164), we obtain

H r J r w w
a 1

. 165
n m l

N

d l
s

d n m nl ml

l
s

c
, , 1

2
2
2

2

2
( ) ( ) ( ) å pm g

g m
=

-=

The expression for the small-scale magnetic helicity density in

the disk is (Sur et al. 2007) .
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Rescaling the

expression for χ, we can write
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Dropping the tilde for simplicity, we get R .
C m
2c a= a The

small-scale magnetic helicity within the disk can be estimated
by integrating χ over the volume:
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The conservation of total magnetic helicity for disk and
corona combined together can be written using Equations (12),
(162), (85), and (167) as

H H h
H

R
168d d0

c

c
( )= + +

r w w J r

ab
a

R C
R

2

1 1
169

d
n k l

N

n m nl kl l
s

d

l
s

m

2

, , 1
2
2

2

c
2

( )
( ) ( )

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

 åp g

m

g m
a

=

´ á ñ +
-

+ a

=

where H0 is the initial magnetic helicity of the system
contributed entirely by the mean field in the disk. Differentiat-
ing Equation (168) with respect to time, we get the following
equation for the rate of change of large-scale magnetic helicity
in the corona:
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The terms inside the bracket on the rhs of Equation (170)
represent the rate of change of total magnetic helicity of the
disk and can be written using Equations (3) and (4) as
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where we have neglected the large-scale magnetic helicity flux.
Since the microscopic resistivity η is small, the first two terms
on the rhs of Equation (171) are negligible compared to the
third term and can be dropped from the equation. The rate of
change of the large-scale magnetic helicity in the corona can
then be written by combining Equations (170) and (171) and
using Equations (9)–(11) to write the flux terms. We then get
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where we have dropped the term containing the radial
derivative of 1/ηt, as it is negligible compared to the other
term containing z derivatives of . Now we can write
Equation (172) using Equation (173) as
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where S represents the top surface of the disk. Using Equations
(9), (10), and (11), we can write
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Also under the no-z approximation, we write h;z m ma a¶ = -
Equation (174) now becomes
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Rescaling Equation (176) using the transformations given in
Equation (29), we write
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where S S h2˜ = and H H B h .c c eq
2 4˜ ( )= Simplifying Equa-

tion (177) and using the definitions given in Equations (28) and
(79), we get
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Dropping the tilde in Equation (178) for clarity and using
Equation (114), we get the final equation for the rate of change
of large-scale helicity in the corona as
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