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ABSTRACT

A detailed model of the tidal disruption events (TDEs) has been constructed using stellar dynamical and gas
dynamical inputs that include black hole (BH) mass M•, specific orbital energy E and angular momentum J, star
mass Må and radius Rå, and the pericenter of the star orbit rp(E, J, M•). We solved the steady state Fokker–Planck
equation using the standard loss cone theory for the galactic density profile ρ (r) ∝ r− γ and stellar mass function ξ
(m) where m=Må/Me and obtained the feeding rate of stars to the BH integrated over the phase space as
N Mt •
˙ µ b, where 0.3 0.01b = -  for M•>107Me and ∼6.8×10−5 Yr−1 for γ= 0.7. We use this to model the
in-fall rate of the disrupted debris, M E J m t, , ,˙ ( ), and discuss the conditions for the disk formation, finding that the
accretion disk is almost always formed for the fiduciary range of the physical parameters. We also find the
conditions under which the disk formed from the tidal debris of a given star with a super Eddington accretion
phase. We have simulated the light curve profiles in the relevant optical g band and soft X-rays for both super and
sub-Eddington accretion disks as a function of M E J t, , .˙ ( ) Using this, standard cosmological parameters, and
mission instrument details, we predict the detectable TDE rates for various forthcoming surveys as a function of γ.

Key words: accretion, accretion disks – black hole physics – galaxies: kinematics and dynamics – galaxies: nuclei –
quasars: supermassive black holes – galaxies: stellar content

1. INTRODUCTION

It is well known from observations that supermassive black
holes (SMBHs) reside at the center of galactic nuclei (Kormendy
& Richstone 1995; Kormendy & Ho 2001). If a star passes
within the radius r R M Mt •

1 3( ) ~ of the galaxy’s central
black hole (BH), the BH’s tidal gravity exceeds the star’s self-
gravity and it is tidally disrupted (Hills 1975; Rees 1988). Stars
in the galactic center move in the combined potential field of the
SMBH and other stars in the galactic center. The star with orbital
energy E is tidally captured if the orbital angular momentum is
J J r r E2lc t t

2 ( ( ) ) = F - , where Jlc is the angular momen-
tum of the loss cone (Frank & Rees 1976) and r( )F is the
potential by the BH and other stars in the galactic center. The
stellar interactions result in the diffusion of the stars into the loss
cone. The stellar distribution function (DF) f E J,( ) follows the
Fokker–Planck (FP) equation (Bahcall & Wolf 1976; Lightman
& Shapiro 1977) and the rate of feeding of stars into the loss
cone gives the theoretical tidal disruption event (TDE) rate N .t˙
The rate of TDE per galaxy depends on the stellar distribution in
the galactic center, the SMBH mass M•, and the structure of
galactic nuclei that could be symmetric, axis-symmetric,
or triaxial nuclei (Merritt 2013b). Cohn & Kulsrud (1978)
obtained the numerical solution to the FP equation for spherical
nuclei by means of a detailed boundary layer analysis and
applied it to globular clusters. Wang & Merritt (2004) solved
the steady state FP equation for the 51 galaxies with the
Nuker profile by assuming a single mass star distribution and
obtained the N 10 10 Yr .t

4 5 1˙ ~ -- - - They further predicted
that N Mt •

0.25˙ µ - for the isothermal case (also see Merritt
2013a). Stone & Metzger (2014) employed a stellar mass
function, m( )x , in their DF, applied it to a sample of 200
galaxies, and obtained N M .t •

0.4˙ µ - Magorrian & Tremaine
(1999) solved the steady state FP equation for an axis-symmetric
nuclei with stars on a centrophobic orbits and obtained
N M10 Yr .t

4
•

0.19 1˙ ~ - - - The non-spherical mass distribution in
the galactic center provides an additional torque to the star’s

orbit, which results in additional diffusion of stars in the loss
cone, and such orbits are called drain orbits. Vasiliev & Merritt
(2013) solved the full FP equation numerically for an axis-
symmetric nuclei with a slight deviation from the sphericity and
found that Nt˙ is two to three times higher than that for spherical
geometry. The orbital evolution in the galactic nuclei is more
complicated in the presence of triaxial potentials, which support
two distinct families of tube orbits circulating about the long and
short axes of the triaxial figure (Merritt & Vasiliev 2011). In
addition, there is a new class of centrophilic orbits called the
pyramids, and the defining feature of the pyramid orbit is that the
minimum of J= 0 and a star on such an orbit will eventually
find its way into the SBH even without the assistance of
collisional relaxation (Merritt & Valluri 1999). Feeding rates due
to collisional loss cone refilling are very large in such galaxies
compared with the spherical galaxies (Merritt & Poon 2004).
Due to the complexity of the orbits in the non-spherical galaxies,
we assume that the galaxy is spherical in this paper and plan to
study the more general ellipsoidal or triaxial case later.
Approximately two dozen TDE candidates have been

observed and found with diverse mixture of optical (van Velzen
et al. 2011; Cenko et al. 2012; Gezari et al. 2012; Arcavi et al.
2014; Chornock et al. 2014), UV (Gezari et al. 2008, 2009), and
X-ray (Donley et al. 2002; Komossa 2002; Maksym et al. 2013)
detection. The TDE rates are highly uncertain from observations
due to low sample size, which are typically a value of10 Yr5 1- -

per galaxy inferred from X-ray (Donley et al. 2002), UV (Gezari
et al. 2008), and optically (van Velzen & Farrar 2014) selected
events. Although uncertain, the values obtained are below the
theoretical estimates.
The second theoretical aspect of TDE is the accretion

dynamics of the disrupted debris and the resulting luminosity
and spectral energy distribution. A star tidally captured by the BH
is disrupted in a dynamical timescale. Rees (1988) calculated the
energy of the disrupted debris for the initial parabolic orbit of the
star. The debris is assumed to follow a Keplerian orbit around the
BH and the mass in-fall rate is inferred to be M t .5 3˙ µ - In
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general, the mass in-fall rate depends on the internal structure and
properties of the star, and follows the t 5 3- law only at the late
stages of its evolution (Phinney 1989; Lodato et al. 2009;
Guillochon & Ramirez-Ruiz 2013). The debris experience stream
collision either due to incoming stream that intersects with the
outflowing stream at the pericenter (Kochanek 1994) or due to
relativistic precession at the pericenter (Hayasaki et al. 2013).
These interactions result in circularization of the debris to form an
accretion disk (Hayasaki et al. 2013; Bonnerot et al. 2015;
Shiokawa et al. 2015). Strubbe & Quataert (2009) proposed a
simplistic steady accretion model, with the fraction of mass
outflow caused by the strong radiative pressure in the super
Eddington phase constant. We follow the work of Strubbe &
Quataert (2009) to obtain the light curve profile and duration of
the flare detection tfd for given instrument parameters.

The energy of the debris Ed depends on the pericenter of the
star orbit r E J M m, , , .p •( ) Hence, the mass accretion rate
M E J M m, , , ,•˙ ( ) the flux, and tfd depends on E and J. We
build an accretion model based on the initial stellar system
parameters and simulate light curve profiles as a function of E
and J in the optical and X-ray bands. For a DF that depends on
the E only, the stars are diffused into the loss cone through
star–star interactions, which leads to the change in orbital
angular momentum of the star (Lightman & Shapiro 1977);
thus the DF of stars within the loss cone depends on both E and
J and we calculate N E J m, , ,t˙ ( )g and the detectable rates of
TDE ND˙ for the various optical and X-ray surveys.

The crucial point is that J plays an important role in the
stellar dynamical process through N E J m, , ,t˙ ( )g and the
accretion process through r E J M m, , ,p •( ), which impacts the
detectable TDE rates; this has not been taken into account in
previous calculations.

The observed sample of candidate TDE is expanding rapidly,
mainly at the optical frequencies due to the advent of the highly
sensitive wide field surveys such as Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS),
observing in both the medium deep survey (MDS) mode and
3π survey mode (Kaiser et al. 2002). The study of TDE will be
further revolutionized in the next decade by the Large Synoptic
Survey Telescope (LSST) with high sensitivity in optical
frequencies (LSST Science Collaboration et al. 2009) and the
extended Roentgen Survey with an Imaging Telescope Array
(eROSITA) in the X-ray band, which performs an all sky
survey (ASS) twice a year (Merloni et al. 2012) and can detect
hundreds or thousands of TDE per year (Gezari et al. 2008;
Khabibullin et al. 2014; van Velzen & Farrar 2014). We
calculate the detectable rate ND˙ for Pan-STARRS 3π, Pan-
STARRS MDS, and LSST in the optical g band and eROSITA
in soft X-ray band; instrument details are given in Table 2.

The Figure 1 shows the methodology adopted to calculate
the detectable TDE with the initial parameters M•, M R, , E, J,
and redshift z. In Section 2, we solve the steady state FP
equation for a power law density profile r r( )r µ g- and stellar
mass function m .( )x We obtain N E J m, , ,t˙ ( )g for the typical
parametric range of density profiles (γ= 0.6–1.4), energy, and
angular momentum (J Jlc ), which we use later to calculate
the detection rate, N .D˙ In Section 3, we calculate the energy Ed

of the disrupted debris and the maximum radius R E J,l ( ) from
the star center to the point where the debris is bound to the BH.
We then simulate M E J t, , .˙ ( ) In Section 4, we compare the
accretion ta, ring formation tr, viscous tv, and radiation tR
timescales and discuss the conditions for the formation of an

accretion disk. In Section 5, by equating the Ṁ and Eddington
mass accretion rate M ,E˙ we obtain the critical BH mass
M E J,c ( ), such that for M M ,c• < the accretion disk formed has
a super Eddington phase. We then simulate the light curve
profiles in the optical and X-ray as a function of E, J, and M•,
depending on whether the accretion disk is super Eddington or
sub Eddington. The flux from the source at a redshift z is
compared with the sensitivity of the mission instrument to
obtain t .fd In Section 6, we calculate ND˙ for optical and X-ray
missions by assuming the standard cosmological parameters
and BH mass function to obtain the galaxy density. Table 1
shows a glossary of symbols we use in this paper.

2. THEORETICAL CAPTURE RATE

The strength of tidal encounter is expressed in terms of
parameter ,th the ratio of surface gravity of the star GM R 2

 

and tidal gravity due to the BH GM R rp•
3

 at the pericenter rp,
given by (Merritt 2013b)

GM

R

r

GM R
. 1t

p

2

3

•

1
2

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 

h =

The tidal radius rt is defined as the value of rp that satisfies

r
M

M
R a2t t

2 •
1
3

( )
⎛
⎝⎜

⎞
⎠⎟ h=

M

M

M

M

R

R
b2.25 10

10
pc. 2t

6 •
6

2
3

1
3

1
3

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 h= ´ -
-

  

The quantity th is the form factor of order unity and we have
taken 1.th = For a main sequence star with the mass-radius
relation R R mn

 =  , where m M M ,=  the tidal radius
given by Equation (2b) reduces to

r M m
M

M
m, 2.25 10

10
pc 3t

n
•

6 •
6

1
3

1
3( ) ( )

⎛
⎝⎜

⎞
⎠⎟» ´ - -



and n 1 3,> r M m,t •( ) increases with m. We take n= 0.8 for
the entire range of stellar masses in our calculations
(Kippenhahn & Weigert 1994). We take the lifetime of the
main sequence star t MMS

2.5
µ - and the dynamical time of the

star to fall into the BH t a GMdyn
3

•= , where a is the
semimajor axis of the star to the BH. For a star to be captured
during its main sequence lifetime, t tdyn MS< , which gives

m t
GM

a
, 4l

•
3

0.4

( )
⎛
⎝⎜

⎞
⎠⎟= 

where te is the lifetime of the sun and is shown in Figure 2
for a r .h=
Stars in the galactic center move in the potential field of both

SMBH and other stars in the galaxy. The DF is assumed to be a
function of energy E r v 22( )= F - only and is given by
f E Ep( ) µ for r rh and r GM r•( )F = , where
r GMh •

2s= is the radius of influence and σ is the stellar
velocity dispersion and is related to the M• through the M•–s
relation given by Ferrarese & Ford (2005)

M M1.66 10
200 Km s

. 5•
8

1

4.86

( )⎜ ⎟⎛
⎝

⎞
⎠

s
= ´

-

2

The Astrophysical Journal, 814:141 (20pp), 2015 December 1 Mageshwaran & Mangalam



Bahcall & Wolf (1976) introduced stellar scattering and
diffusion and found that p 3 4= (Peebles 1972) gives a
negatively divergent flux; they also obtained p 1 4= for the
steady state distribution, which gives a constant energy flux.
The stars are tidally captured if the angular momentum is

J J E r,lc t( ) , where J E r r r E, 2lc t t t
2( ) ( ( ) )= F - is the

loss cone angular momentum (Frank & Rees 1976). The
maximum value of J is J E r, .lc t( ) As J E r, 0,lc t( )  the
maximum value of energy is E r .m t( )= F

Because J E r,lc t( ) depends on rt, which varies with Må, we
consider a DF that depends on the stellar mass function m( )x
given by (Kroupa 2001)

m Hm m
Bm m

0.08 0.5
0.5 150

6
1.3

2.3
( ) ( )

⎧⎨⎩x » < <
< <

-

-

where

H B B
m

m
M

M
2 ,

1

7.91 0.77
and ,

m
1.3

*
= =

-
=-

where mm is the maximum mass of a main sequence star in the
stellar distribution, taken to be 150.
Wang & Merritt (2004) and Stone & Metzger (2014) have

taken the sample of galaxies with a Nuker law, which is
basically a double power law profile with break radius rb that
separates inner and outer slopes. In Figure 3 we have shown the
range of rb and rh for the sample of galaxies given in Wang &
Merritt (2004). For most of the galaxies r r ,b h> which is also
true for the sample of galaxies given in Stone & Metzger
(2014). Because the stellar dynamics in the galactic center is
influenced by the BH for r r ,h we consider a single power
law density profile r r r0 0( ) ( )r r= g- for r rh , where γ is

Figure 1. The flow chart of the procedure we have adopted in the calculation of event rates. The stellar dynamics and gas dynamics are connected by the parameters of
specific energy E and specific angular momentum J of the star’s initial orbit. The flux fobs is compared with the sensitivity fl of the detector to obtain flare duration. For
the given instrument details, such as cadence tcad, integration time tint, and fraction of sky observed fs, we calculate the net detectable TDE rate for the detector. The td
is the dynamical time of the in-fall of the debris to the black hole.
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the inner slope of the Nuker law. We define rh, where
M r M2h •( ) = (Wang & Merritt2004), such that

r M r
3

2
. 7h0 0 •

3 ( )r
g

p
=

-g g-

The potential due to the stellar distribution is obtained from
the Poisson equation and given by

r

r

r

r

r

2

1

2
1 2

ln 2.

8h

h

2

2

( ) ( )
⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

 s g
g

g

F = -
- ¹

=

g-

The total potential is given by r r r•( ) ( ) ( )F = F + F , where
r GM r• •( )F = is the potential due to the BH. We consider the

DF as

F E m f E m, . 9( ) ( ) ( ) ( )x=

The density of stars for F E m,( ) is given by

r d vM F E m

d vf E dm m M

,

, 10

3

3

( ) ( )

( ) ( ) ( )





ò
ò ò

r

x

=

=

Table 1
Glossary of Symbols

Common Parameters

M• Black hole mass J Orbital angular momentum
M6 M M10•

6( ) Jlc Loss cone angular momentum
Må Stellar mass Jc Angular momentum of circular orbit
E Orbital energy ℓ J Jlc

m( )x Stellar mass function m M M 

Stellar Dynamical Parameters

j J Jc
2 2  E 2s

rt Tidal radius ρ Galactic density
rh Black hole influence radius γ Galaxy density power law
s r rh st r rt h

Rs Schwarzschild radius F Stellar potential
rb Break radius of Nuker profile •F Black hole potential
σ stellar velocity dispersion Φ Total potential = • F + F
q Diffusion parameter tMS Main sequence lifetime

c Critical energy for q = 1 Tr Radial period of orbit
Nṫ Theoretical TDE rate få Probability of main sequence star capture

Accretion Dynamical Parameters

rp Pericenter of the orbit td dynamical time
ē E GM rt•( ) = r rt h( ) Γ Adiabatic index
Ed Energy of disrupted debris k Spin factor
Rl Maximum radius from star center to bound debris tm Orbital period of inner-most debris
xl R Rl  ta Accretion timescale
x R RD RD Debris radius from star center
ε E Ed dm Edm Energy of inner-most bound debris
μ M M M Debris mass with energy Ed

Ṁ Mass accretion rate τ t tm

ME˙ Eddington mass accretion rate tr Ring formation timescale
fr Fraction of star mass bound to black hole tv Viscous timescale
Mc Critical black hole mass tR Radiation timescale
κ Opacity of the medium r t tr a

rc Circularization radius v t tv R

rL Outflowing wind launch radius Tph Temperature of photosphere
rph Radius of photosphere of outflowing wind Te Effective temperature of disk
Le Luminosity emitted from the source L Luminosity

M•( )y Black hole mass function LE Eddington luminosity
P M z,•( ) Probability of detection z Redshift
ϒ Detection efficiency of a detector ND˙ Detectable rate

Instrumental Parameters

fl sensitivity of the detector tcad Cadence of instrument
tint Integration time of detector fs Fraction of sky survey

4
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where d v v dv dv2 t t r
3 p= with radial velocity vr and tangential

velocity vt is given by

v
J

r

v r E
J

r

d v
r v

JdEdJ

;

2 ;

2
. 11

t

r

r

2

2

3
2

( ( ) )

( )p

=

= F - -

=

For a spherically isotropic galactic center, the function f(E) is
obtained through the inverse transform of Equation (10), and is
known as the Eddington formula, given by (Binney &
Tremaine 2008)

f E
M

d

dE

d

d E
d

1

8

1
, 12

E

E

2
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( ) ( )


òp
r

=
F - F

F

where

M M m dm 13
0.08

150
( ) ( ) ò x=

and Emin is the minimum of E taken to be −100. The number of
stars in the cluster for a given F E m,( ) is

N d r d v dmF E m, , 143 3 ( ) ( )ò ò ò=

where d r r dr43 2p= for spherical galaxy. In terms of
dimensionless variables ℓ J Jlc= and E ,2 s= the number
of stars is given by

N ℓ d dℓ dm J ℓT ℓ

F m d dℓ

, 8 ,

, 15

lc r
2 2 2( ) ( )
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´

where T ℓ,r
dr

vr
∮( ) = is the radial period. For a spherical

geometry, T ℓ,r ( ) is a function of  only, and the N ℓ,( )
increases with ℓ.
From the given stellar density profile and potential r ,( )F the

DF f(E) is given by
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and  is the Lambert function given by e e1 2 2( )  = Y ,
where ,2sY = F s r r,h= E 2 s= (Wang &Merritt 2004)
and s1 and s2 are obtained by solving

s s a
2

2
1 181 1

2
min( ) ( )

g
+

-
- =g-

s s b
2

2
1 . 182 2

2( ) ( )
g

+
-

- =g-

Figure 4 shows the plot of g ( ) for various γ. For
2,g = g ( ) corresponds to Equation (17) of Wang & Merritt

(2004). The BH potential dominates over the star potential for
r rh as shown in Figure 5 and thus g 3 2( ) µ g-

for 1. 

2.1. Loss Cone Theory

The loss cone is a geometrical region in phase space for
which r r .p t We adopt the Cohn & Kulsrud (1978) formalism
for computing the flux of stars into the loss cone in  and the
j J Jc

2 2 ( )= phase space, where Jc ( ) is the angular
momentum of circular orbit with energy . We consider the
diffusion in the j space only and in the limit j 0, the steady
state FP equation reduces to (Merritt 2013b)

d y

d

d

dy
y

d y

dy

, ,
19

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

 c
c

c
=

with the boundary condition

y y y a0, 0 20lc( ) ( ) = " <

Figure 2. The mass limit of star ml as a function of black hole mass
M M M10•

6
6=  for a r .h= It is the maximum mass of star in the cluster that

can be captured during its main sequence lifetime. The thin gray line shows the
maximum mass in the Kroupa (2001) sample of stars.

Figure 3. The blue points show the break radius rb for the sample of galaxies
given in Wang & Merritt (2004). The red line shows the radius of influence rh.
The plot indicates that for most galaxies r rb h> , which implies that for r r ,h
the density r( )r can be taken to be a single power law profile.

5

The Astrophysical Journal, 814:141 (20pp), 2015 December 1 Mageshwaran & Mangalam



y y y y b0, 1, 20lc( ) ( ) ( )  = "

where

D

j

j

dr
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j
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1
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2
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=
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and D limj
j

j

dr

v0 2 r

2

∮( )
( )

á = 
D

is the orbit averaged angular

momentum diffusion coefficient and ylc is y at j j .lc=  Merritt
(2015b) has expressed y,( ) c in terms of the distribution of
the pericenters rp and apocenters ra, and calculated the capture
rate Nt˙ in terms of ra and rp, while we use appropriately scaled
values of E and J2 for calculating rp and various other
parameters required in the gas dynamical calculation in the
following sections. Note that in the calculation we use the total
potential inclusive of the stars and the BH.

The local diffusion coefficient in the limit j 0 is given by
(Magorrian & Tremaine 1999)
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where v 2( )D ^ is given in Appendix L of Binney &
Tremaine (2008). Thus, the orbit averaged diffusion coefficient

is given by
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where Mf is the mass of field star with the maximum mass
taken to be 150 Me, M M• L » , and
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where s ( ) is obtained by solving s ,( ) Y = s r rh= and

s
s

s
1 2

2
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2
2( )( ) ( )

s g
Y =

F
= +

-
- g-

Now Jc
2 ( ) is given by

J r s s2 26c h c c
2 2 2 4( ) ( ) ( ) ( )⎡⎣ ⎤⎦  s= + g-

where sc ( ) is given by

s
s s

1

2

2

2
1 . 27

c
c c
2 2( ) ( )

g
+

-
- - =g g- -

The solution of Equation (19) with the boundary conditions
(20b) is given by (Merritt 2013b)

y X j
e J y y

J
, 1 2 28lc

n n

n lc

n1

0

1

nq2

4 ( )( )( )
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( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ åc

a

a

a
= -

c

=

¥ a-

where na are the consecutive zeros of the Bessel function
J ,0 ( )a q y1 lc= , and X jlc( ) is given by

X j
f

q q
j

q
e

1 log
1

;

1 4 29

lc

lc

n n

1

1
2

nq2

4

( ) ( )

( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟



å

z

z
a

=

+

= -

-

=

¥ a-

where f ( ) is given by Equation (16). The Equation (28) gives
the DF of stars in the loss cone in terms of energy  and
angular momentum ℓ J J y y .lc lc= = Figure 6 shows the
plot of ℓ0,( ) for 1000 terms in the summation in
Equation (28), which matches with the boundary condition
given by Equation (20a) with an accuracy of 10 .3~ - With an
increase in the number of terms in summation, the order of
accuracy of ℓ0,( ) to Equation (20b) increases; however, we

Figure 4. The dimensionless g ( ) is shown for various γ. For 2,g = g ( )
corresponds to Equation (17c) of Wang & Merritt (2004).

Figure 5. The stellar potential r ,( )F black hole potential r• ( )F , and total
potential r( )F are shown for 1.2.g = For r r ,h the black hole potential

r GM r• •( )F = dominates over the star potential.
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use 1000 terms in summation to calculate ℓ,( ) c because it is
in close agreement with the boundary condition.

The approximation to q( )z given by Cohn & Kulsrud (1978)
is

q q
q

q

q q
q

1 1

0.186 0.824
1. 30CK( ) ( ) ( )

⎧
⎨⎪
⎩⎪

z z» =
+





We compared the q( )z obtained for a summation of 10,000
terms in Equation (29) with qCK ( )z , and it does not fit very well
for q close to unity, as shown in Figure 7. Thus we used a better
approximation to q( )z given by

q

q
q

q q q

q q

q

1 4

0.86 0.384 0.379

0.427 0.095

4 310.5 1.5

2 2.5

( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪



z » + -
+ -

<

which follows Equation (30) for q 1 and gives a better fit to
q( )z for q close to unity. The residual for Equation (30) is

higher than the residual for Equation (31), as shown in
Figure 7.

The function q ( ) given by

q
D

j

D J

J r

D J

r r, 2

32
lc

c

lc t

c

t t

2

2

2

2 2( )( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( )


  



 

s
=

á ñ
=

á ñ
=

á ñ

F -

can be interpreted as the ratio of the orbital period to the
timescale for diffusional refilling of the loss cone. The regime
q 1( ) > defines the pinhole or full loss cone in which stellar
encounters replenish loss cone orbits much more rapidly than
they are depleted, whereas q 1( ) < defines the diffusive or
empty loss cone regime. The Figure 8 shows q ( ) plotted as a
function of  for 1.0.g = The function q ( ) decreases with  ,
which implies that the high energy orbits have smaller diffusion
angle. The smaller the diffusion angle, the higher the diffusion
time, and thus the lower the feeding rate to the loss cone. The
critical energy c defined by q 1c( ) = decreases with M•, and
m is shown in Figure 9 for 1.g = The c is the energy from

which the majority of the loss cone flux originates (Lightman &
Shapiro 1977). With an increase in M•, the relaxation time of
the galaxy increases; thus the diffusion timescale increases
(Frank & Rees 1976) and q decreases, which results in a
decrease in .c As r M m m, ,t

n
•

1 3( ) µ - it increases with m for
n 0.8,= ; Jlc increases so q decreases, which results in a
decrease of .c As γ increases, the diffusion timescale decreases
due to an increase in the number of scatterers, and thus q and c
increase.
Using Equation (28) and the mass function of stars in the

galaxy m( )x given by Equation (6), the loss cone feeding rate is
given by (Merritt 2013b)

d N

dEdy
dm m J E D E y4 1, . 33t

c

2
2 2

˙
( ) ( ) ( ) ( ) ( )òp x c= á ñ =

The corresponding feeding rate in terms of E and j is given in
Merritt (2015a).
The Jacobian of the transformation from E y,{ } space

to dimensionless variables ℓ J J r, ,lc t
2 2{ ( ( )) = =

j J J r,c lc t
2( ( ) ( )) }  is given by

dEdy
E y
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d dℓ
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ℓ
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¶

and the following result is obtained by calculating the product
of the determinants of the two Jacobians in the above equation
as

dEdy
J r

D J
d dℓ

,
. 35lc t

c

2
2

2
2( )

( ) ( )
( )



 
s=

á ñ

Then, the feeding rate is given by

d N

d dℓ dm
m J ℓ4 1, 36t

lc

2

2
2 2 2

˙
( ) ( ) ( ) ( )


 p s x c= =

Figure 10 shows the plot of Nt˙ as a function of  for various ℓ
for M 16 = and 0.8.g = The capture rates decreases with 
because of the decrease in the diffusion coefficient D ( ) and
increases with ℓ due to the increase in N ℓ,( ) (see
Equation (15)).
Because J r r r E2lc t t t

2( ) ( ( ) )= F - (see Section 2) this
implies that E rt( )< F and the maximum value of E Em= =

r .t( )F Because r M m r, 10 10 ,t h•
6 5( ) ~ -- - and r r ,h the

potential is dominated by the BH potential, as shown
in Figure 5, which implies that E M m r M m, ,m t• •( ) ( ( ))= F =
GM r M m, .t• •( ) The orbital motion of a star at the turning point
of the orbit rx, is given by

E r
J

r2
37x

x

2

2
( ) ( )= F -

where r r r ,•( ) ( ) ( )F = F + F r GM r• •( )F = , and r( )F is
given by Equation (8). In terms of dimensionless variables,
ℓ J Jlc= and e E Em¯ = , where E GM rm t•= , such that
e r r ,t h¯ ( )=  and the Equation (37) using Equation (25) is

Figure 6. The ℓ0,( ) is obtained by transforming Equation (28) from y to the
ℓ J Jlc= space, such that y y ℓlc

2= , and calculating for 1000 terms in the
summation of Equation (28). The boundary condition given by Equation (20a)
shows that ℓ0,( ) is a step function with ℓ for ℓ 1. Thus, taking 1000 terms
in summation satisfies the boundary condition within a fraction of about 10 .3-
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given by

38

e

s

s ℓ s s s ℓ s s

s ℓ s

2

2
1 1

t

x t x x t t

x t

2 2 2 2 2 2

2 2 2
( )

¯

( ) ( )⎡⎣ ⎤⎦g

=

- +
-

- - -

-

g g- -

where s r r ,x x h= s r r .t t h= Since ē is a monotonically decreas-
ing function of sx, and both the pericenter and apocenter of the
orbit should lie below rh, the minimum value of ē is at sx= 1 for
r r ;x h= taking e s e1 ,x h¯ ( ) ¯= = Equation (38) reduces to

e

s

ℓ s ℓ s s

ℓ s

1
2

2
1

1
. 39h

t

t t t

t

2 2 2 2

2 2

( )¯ ( )g
=

- -
-

-

-

g-

Now s r r 10t t h
5= ~ - –10 ,6- e r r .h t h¯  Because J rlc x( ) =

r r E2 x x
2 ( ( ) )F - , this implies that E rx( )< F and the

maximum value of E r rx t( ) ( )= F F , which corresponds to
e 1¯  and thus e 1.¯  The total potential is dominated by the
BH near rt, as shown in Figure 5. After ignoring the second
term in the numerator in the right-hand side of Equation (38),
which is a factor s r r 10 10 1t t h

5 6= -- -  lower than the
first, Equation (38) reduces to

e
x ℓ

x ℓ
, 40x

x

2

2 2
¯ ( )=

-
-

where x s s .x x t= If xp is lower of the two roots of xx, it is given
by

x
e

e e ℓ
1

2
1 1 4 1 . 41p

2( )( )
¯

¯ ¯ ( )= - - -

Figure 7. The figure (a) shows q q( )z as a function of q over all ranges under various approximations. The blue line corresponds to q( )z summed up to 10,000 terms.
The red thin line corresponds to our approximation of q( )z given by Equation (31). The green line shows the results obtained by Cohn & Kulsrud (1978) and is given
by Equation (30). Asymptotically the blue line follows the red thin line. The figure (b) shows q q( )z for q close to unity; our approximated formula gives a good fit to

q .( )z The figure (c) shows the residual of q q( )z for our approximated equation (blue) and the Cohn & Kulsrud (1978) approximation (red).

Figure 8. The function q ( ) given by Equation (32) is shown as a function of 
for 1.0g = and m = 1; q ( ) decreases with  , which implies that the high
energy orbits have smaller diffusion angle.
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For a star to be tidally disrupted, x 1p < , which results in

e ℓ1 1 0 422( )( )¯ ( )- - >

and x 0p > results in

ℓ e e1 0. 432 ( )¯ ¯ ( )- >

The Equation (43) restricts the range of ē to e 1¯ < and thus
Equation (42) implies that ℓ 1.< Thus, the applicable ranges
are e e 1h¯ ¯< < and ℓ0 1.< < We derived the turning points
sx by solving Equation (38) subject to the constraint r rp t< and
r r rt a h< < , and verified the range for ē and ℓ derived above.

While we ignored relativistic effects in the analysis above,
we plan to include them in the future.
The lifetime of a main sequence star is t t mMS

2.5= -
 where

t 10 years10= is the lifetime of a solar type star and the radial
period is given by

T
v

dr
1

. 44r
r

r

rp

a

( )ò=

In terms of s r rh= and using Equation (25), Tr is given by

T e M m
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s s

s s ℓ s s s

ℓ s s e s ℓ s

ds
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2
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1
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g
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where sa and sp are the dimensionless apocenter and pericenter
obtained by solving Equation (38). We find numerically that
the radial period Tr is approximated by

T e M m
r

e e s

e

s
e s

, ,
2 2

0.57 1.47

1.47 .
46

r
h

t

t
t

•
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3
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( )
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¯

¯
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

p
s

´
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-



Because the BH potential dominates at high energy, the
corresponding orbits are Keplerian and the radial period

e .3 2¯( )µ - Using the M•–s relation given by Equation (5)
and r GM ,h •

2s= the radial period in Keplerian regime
is T Mr •

0.38 3 2µ - , where e s .t¯ = The stars on the loss
cone orbits are captured in the radial period timescale and
the number of stars in the loss cone orbit is N dlc ( ) 
(Merritt 2013b). Thus the capture rate is approximately
given by N N T d Mt lc r •

0.38˙ ( ( ) ( ))  ò= µ - in the regime
e s1.47 t¯ > , which is consistent with the average best-fit slope
of 0.3- over the entire range of ē that was found numerically.
A tidally captured star is on main sequence if its main

sequence lifetime is t TrMS > , where Tr is the radial period of
the orbit. Considering all possible radial phases of the star in an
orbit, the probability that a star of mass m is tidally captured as
a main sequence is given by

f e M m
t m

T e M m
, , Min 1,

, ,
. 47

r
•

MS

•
( ) ( )¯ ( )

¯
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ =

Figure 9. The top panel (a) shows c for which q 1( ) = as function of M6 and
m for 1.g = The bottom panel (b) shows c as a function of γ for a star of unit
solar mass and radii that increases with γ.

Figure 10. The theoretical capture rate Nṫ (Equation (36)) is shown as a
function of  for various ℓ and for M 16 = and 0.8.g = The capture rates for
high energy orbits are small and increase with ℓ due to an increase in N ℓ,( )
(see Equation (15)).
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Using Equations (28), (36), and d dℓ s dedℓ ,t
2 1 2¯ = - the

capture rate is given by

d N

dedℓ dm
s m f e M m

J e ℓ

4 , ,

1, . 48

t
t

lc
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2
2 1 2

•

2

( )
˙

¯
( ) ¯

( ¯) ( ) ( )

p s x

c

=

´ =

-

Figure 5 of Freitag & Benz (2002) gives the maximum mass
of BH as function of mass m of the star that is disrupted. We
observe that stars with mass m 0.8> are tidally disrupted in
the entire range of BH mass M M M10 106

•
8< <  and for

m 0.8,< a substantial fraction is tidally captured without
disruption. Thus we take the effective star mass range to be

m0.8 150.< < The net capture rate is given by

N M dm de dℓ s

M m m f e M m J e

ℓ

, 4

, , ,

1, . 49

t
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t
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•
2
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1
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• •
2
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˙ ¯

( ) ¯ ( ¯)
( ) ( )

¯




ò ò òg p s

x
c

=

´

´ =

-

We solved Equation (28) to obtain ℓ1,( ) and used it in
Equation (48) to calculate the capture rate. The integration of
Equation (48) over the energy range e e 1h¯ ¯< < and angular
momentum range ℓ0 1< < results in a capture rate per unit
mass dN dmt˙ , which is a decreasing function of m as m( )x
decreases with m and is shown in Figure 11(a) for various
M M M10•

6
6=  and 1.0.g = Similarly, integrating Equa-

tion (48) over energy e e 1h¯ ¯< < and test star mass
m0.8 150< < results in dN dℓt˙ , which is an increasing

function ℓ as shown in Figure 11(b).
The net Nt˙ obtained using Equations (28) and (49) increases

with γ and decreases with M6 as shown in Figure 12. For
M 10,6  N Mt 6

˙ µ b where 0.3 0.01b =  , as shown in
Figure 12(b) for various γ. The increase with γ is nonlinear
as shown in Figure 13 and for N ,t

p˙ gµ the best-fit value of
p 2.1.~ The galaxies with larger γ posses higher rates because
their denser central stellar populations naturally feature shorter
relaxation times and faster rates of energy and angular
momentum diffusion.

3. PHYSICS OF TIDAL DISRUPTION

The classical description of a TDE was outlined by Rees
(1988). In this picture, a star on parabolic orbit is tidally
captured and disrupted at the pericenter and the distribution of
mass of disrupted debris with respect to specific binding energy
dM dEd is roughly flat, where Ed is the energy of the disrupted
debris. For stars on a parabolic orbit, Lodato et al. (2009) found
that dM dEd depends on the properties of the star and adiabatic
index Γ. Using Equation (41), the pericenter is given by

r e ℓ M m
r

e
e e ℓ

r
ℓ e

ℓ e e
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1 1 4 1

2 1

1 1 4 1
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Equivalently
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E
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2

2
•
2

2

•

2

2
•
2

1

( )

( )

⎡
⎣
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⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
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= - -
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The stars on the loss cone orbits are captured within the
dynamical time t r GMd p

3
•

0.5( )= with tidal acceleration

a GM R rt p•
3= D where RD is the debris distance from the

star center at the moment of breakup. Then, the energy of the
disrupted debris is given by

E e ℓ M m R eE M m
kGM R

r e ℓ M m
, , , , ,

2

, , ,

52

md
p

• •
•

2
•

( ) ( ) ( )¯ ¯
¯

( )

D » -
D

where R R R, ,{ } D Î - the negative sign corresponds to the
region toward the BH and k is the spin-up factor due to tidal
torque by the SMBH on a star, given by (Alexander &

Figure 11. For 1.0g = and M6 = 1 (blue), 10 (red), 50 (orange), and 100
(brown). Figure (a) shows dN dmṫ obtained using Equation (28) and
integrating Equation (48) over ē; ℓ decreases with m as m( )x decreases with
m. Figure (b) shows dN dℓṫ obtained using Equation (28) and integrating
Equation (48) over ē and ℓ.
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Kumar 2001)

k
1 non spin up no change in angular velocity
3 spin up to break up angular velocity.

( )⎧⎨⎩=

The maximum distance from the center of a star to the point
where the debris is bound to the BH at the moment of
disruption is obtained by setting Ed= 0 in Equation (52) and is

given by

R e ℓ M m
r e ℓ M m e

kr M m
, , ,

, , ,

2 ,
. 53l

p

t
•

2
•

•
( ) ( )

( )¯
¯ ¯

( )=

Figure 14 shows the contour plot of x x e ℓ M m, , ,l l •( ¯ )º =
R e ℓ M m R, , ,l •( ¯ )  for M 16 = and m= 1. The value of
r e ℓ M m, , ,p •( ¯ ) is less than Schwarzschild radius R Ms •( ) for
ℓ 0.2 , whereas x e ℓ M m, , ,l •( ¯ ) increases with ē and the
increase with ℓ is significant for high energy orbits. With the
increase in the value of x e ℓ M m, , , ,l •( ¯ ) the mass of the debris
bound to the BH increases and for x e ℓ M m, , , 1,l •( ¯ ) = the
entire debris is bound to the BH.
The time taken for the most tightly bound debris to return its

pericenter after disruption is given by

t e ℓ M m
GM

E e ℓ M m R
, , ,

2

2 , , , ,
. 54m

d

•
•

•
3 2( )

( )
¯

¯
( )⎡⎣ ⎤⎦

p
=

-

As the bound material falls back to its pericenter, it loses its
energy and angular momentum, thus accreting into the SMBH
and giving rise to the flare (Phinney 1989). The in-fall mass
accretion rate at time t after disruption for the debris following
Keplerian orbits is given by

dM

dt

dM

dE

dE

da

da

dt
GM

dM

dE
t

1

3
2 55

d

d

d
•

2
3

5
3( ) ( )p= = -

where a is the semimajor axis of the debris with orbital energy
E e ℓ M m R, , , , .d •( ¯ )D The term dM dEd is the energy distribu-
tion within the bound matter and depends on the internal
structure of the star (Phinney 1989; Lodato et al. 2009). We
now write it in terms of dimensionless quantities using
Equations (52) and (53), and modify the dimensionless
quantities given in Lodato et al. (2009) by including the
dependence on r e ℓ M m, , ,p •( ¯ ) through R e ℓ M m, , ,l •( ¯ ) and
express

x x

x
x x x

1
, 1 56l

l
l l

2 3 ( ) ( )e t=
-
+

= - +-

Figure 12. Panel (a) shows the net Nṫ obtained using Equations (28) and (49) as
a function of M6 for various γ. Panel (b) shows Nṫ as a function of M6 for
M 106 > and γ = 0.6 (blue), 0.8 (red), 1.0 (orange), 1.2 (brown), and 1.4
(purple), and it follows that N Mt 6

˙ µ b- where 0.3 0.01.b = 

Figure 13. The figure shows the Nṫ obtained using Equations (28) and (49) as a
function of γ for variousM6 = 1 (blue), 10 (red), 50 (orange), and 100 (brown),
and it follows Nt

p˙ gµ with the best-fit value of p 2.1.~ The Nṫ increases with
γ due to an increase in the density of the central stellar population.

Figure 14. A contour plot of the maximum distance from the star center
x e ℓ M m R R, , ,l l•( ¯ ) = (Equation (53)) to the point where the debris is bound
to the black hole for M 16 = and m = 1. The green line corresponds to r Rp s=
and for r R ,p s> the contours lie above the green line.
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m
e
t= + =
-

where e ℓ M m, , ,•( ¯ )e = E e ℓ M m R, , , ,d •( ¯ )D E e ℓ M m R, , , , ,d •( ¯ )-
x R R ,= D M Mm = and e ℓ M m, , ,•( ¯ )t t t e ℓ M m, , ,m •( ¯ )º ,
where E E e ℓ M m R, , , ,dm d •( ¯ )= - is the energy of inner-most
tightly bound debris. The term dm

d

dx
b x x dx
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x

u
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( ) ( )ò
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where b is the ratio of central density cr to mean density
M R3 4 3

  r p= and θ is the solution of Lane–Emden equation
for the given polytrope u related to the density by .c

ur r q=
The total mass accretion rate is given by M e ℓ M m t, , , ,•˙ ( ¯ ) =
M t d dm( )( ) m t , which depends on the orbital parameters
through xl and tm. We simulated the mass fallback rate for
u= 1.5, which corresponds to 5 3.G = Figure 15 shows the
plot of d dm t for various values of xl. With an increase in e,¯
the xl increases and the orbital period of the debris decreases,
which implies that the mass in-fall rate increases. Thus, the
peak accretion rate increases with xl. Next, we examine the
conditions for formation of an accretion disk.

4. FORMATION OF AN ACCRETION DISK

The debris of the disrupted star follows a Keplerian orbit
around the BH. This debris experiences stream–stream
collision either due to an incoming stream that intersects with
the outflowing stream at the pericenter (Kochanek 1994) or due
to relativistic precession at the pericenter (Hayasaki et al.
2013). This stream–stream collision results in a shock breakout
that circularizes the debris and forms an accretion disk
(Ramirez-Ruiz & Rosswog 2009).

Even though the circularization timescale (time required for
the debris to circularize to form an accretion disk) is not
accurately known, it is roughly given by t n tc morb» , where norb
is the minimum number of orbits required for circularization
(Ulmer 1999). As the debris falls toward the pericenter, it is
accreted with an accretion rate given by Equation (55). The
formation of an accretion disk depends on tc and the accretion
timescale ta, which we define as the time required to consume
99% (at the 3σ level) of bound debris. If this timescale is less
than tc, the matter is accreted before the disk is formed. We
approximated d dxm for convenience with a Gaussian function
because it depends on the solution of the Lane–Emden
equation, which is symmetric about the center of the star and

is given by d dx e1.192 .x4.321 2m - The total mass consumed
in dimensionless time t ta a mt = is given by

d

d
d 59
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a

( )òm
m
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tD =
t

where d dm t is given by Equation (57). If fr is the fraction of
debris bound to the BH, then in time ,at the mass accreted by
the BH is ∼0.99fr. Then, the accretion timescale ta is given by

t e ℓ M m

t
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The orbital period of debris will vary due to energy. The
energy gradient between the bound debris will fill out a ring
and the initial spatial distance between the bound debris will
determine the ring formation timescale tr. Let the dispersion in
the energy around the initial energy E be E.D A ring is formed
in the timescale t 2r p= DW, where DW is the dispersion in
the orbital frequency (Hadrava et al. 2001). The orbital
frequency E GM2 3 2

•( ) ( )W = and dispersion E E1 2DW µ D
and ED are given by
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Then, tr is given by
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The ratio e ℓ M m t e ℓ M m t e ℓ M m, , , , , , , , ,r r a• • •( ¯ ) ( ¯ ) ( ¯ ) =
is given by

e ℓ M m
x

x

x f

x

, , ,
1

3 2 1 Min 1,

1

2.0787
Erf 0.997 1.962

64

r
l

l

l r

l

•

1
3
2

[ ]
[ ]

( )¯

( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

 =
+

´
+ --

and an accretion disk is formed if e ℓ M m, , , 1.r •( ¯ ) < In
Figure 16, the top panel (a) shows the contour plot of

e ℓ M m, , ,r •( ¯ ) for M6= 1, m= 1, and r e ℓ M m R, , , ,p 6 s( ¯ ) >
1.r < The bottom panel (b) shows Max[ e10 1, 0r

6( ¯  -

ℓ M1, 1 1006 )    ] < 1, which implies that the bound
debris will form an accretion disk.

Figure 15. The dimensionless mass accretion rate given by Equation (57) as a
function of dimensionless time τ for various xl. The peak accretion rate
increases with xl, whereas the time for peak accretion decreases with xl.
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The radiation timescale of the disk is given by

t e ℓ M m
f M c

M e ℓ M m
c, , ,

, , ,
65R

r
•
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•

2( ) ( )¯ ˙ ¯
( )

h
=

where c is the light speed, Ṁ is the accretion rate, and η is the
radiative efficiency of the disk. The viscous timescale tv of the
disk formed is given by

t
V

dr
1

66v
r

r

r

c

in

( )ò=

where Vr is the radial inflow velocity of matter in the disk, rin is
the inner radius of disk, and r e ℓ M m r r e r, , , 2 1c p p t•( ¯ ) ( ¯ )= - ,
where r e ℓ M m, , ,c •( ¯ ) is the circularization radius. The radial
inflow velocity is given by (Shakura & Sunyaev 1973; Strubbe
& Quataert 2009)

V
r f
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where f 1 r

r
in= - and ν is the viscosity of the medium given

by c H.sn a= The parameter α is taken to be 0.1 and

c H GM rs •
3= , where H is the disk scale height. Strubbe &

Quataert (2009) calculated the disk scale height for a slim disk
(see Section 5.1) to be
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where ME˙ is the Eddington mass accretion rate and Ṁ is taken
to be the time averaged accretion rate. Using Equations (66)
and (67), the viscous timescale is given by
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is given by
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where radiative efficiency is typically 0.1h = and an accretion
disk formed is a slim disk if 1.v < Figure 17 shows the
contour plot of e ℓ M m, , ,v •( ¯ ) for m= 1 and ℓ= 1 and 0.6. We
conclude that the accretion disk formed is a slim disk for
M 31.6.6  For higher mass SMBHs, a thin disk forms from
the disrupted debris of a star on low energy orbit and ℓ 1~ ,
and a thick disk for a star on high energy orbit.

5. ACCRETION DISK PHASE

The Eddington mass accretion rate is given by

M
GM

c

4
71E

•˙ ( )p
hk

=

where κ is the opacity of the medium taken to be Thompson
opacity and η is the radiative efficiency. For a given tidally
disrupted star, the accretion disk formed has a super Eddington
phase if M e ℓ m M, ,c •( ¯ ) > where M e ℓ m, ,c ( ¯ ) is the critical BH
mass. We have numerically equated the peak accretion rate Mp˙
and ME˙ , and obtained M e ℓ m, ,c ( ¯ ) as shown in Figure 18 for
m= 1. The M e ℓ m, ,c ( ¯ ) decreases with ℓ and increases with e.¯
For a given ℓ, an increase in ē increases Ed and thus the orbital
period of the disrupted debris decreases, which results in an
increase in the Ṁ and hence the peak accretion rate M .p˙ For a
given e,¯ the pericenter rp increases with ℓ, which results in a
decrease in Ed and thus Mp˙ decreases. For a given ē and
ℓ, r e ℓ m, ,p ( ¯ ) increases with m, which results in a decrease in
Ed. The decrease in Ed implies an increase in fallback time and

Figure 16. The top panel (a) shows a contour plot of the ratio e ℓ M m, , ,r 6( ¯ )
(Equation (64)) for M 16 = and m = 1. The green line corresponds to r R .p s=
For r Rp S> , which lies above green line, e ℓ, 1r( ¯ ) < and thus an accretion
disk is formed. The bottom panel (b) shows Max[ e ℓ,r( ¯ ) ] as a function of M6

obtained in the range e10 16 ¯ - and ℓ0 1. 
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a decrease in peak accretion rate Mp˙ , which results in a decrease
in M e ℓ m, , .c ( ¯ )

5.1. Super Eddington Phase

For M M e ℓ m, , ,c• ( ¯ ) the radiation produced by viscous
stress in the rotating disk is trapped by electron scattering and
the disk is radiatively inefficient. The time for the photon to
diffuse out of the gas is longer than both the inflow time in the
disk and the dynamical time for the outflow. Thus the disk
is radiation pressure dominated and the opacity is given by
the electron scattering. We assume that the opacity due to
the Thompson scattering and in our flux calculation adopt
the work of Strubbe & Quataert (2009). The strong
radiative pressure induces an outflowing wind. At the launch
radius r e ℓ M m r e ℓ M m r r e r, , , , , , 2 1 ,L c p p t• •( ¯ ) ( ¯ ) ( ¯ )= = -

the internal energy is converted into the kinetic energy of the
outflows, and the material leaves the disk with the temperature
at the launch radius as determined by aT r v1 2L L w

4 2( ) ( )r»
(Lodato & Rossi 2011), where a is the radiation constant. The
outflow geometry is assumed to be spherical. The photons are
trapped up to the radius where r 1rk ~ and the radius of
photosphere rph

1( )rk~ - is given by

r e ℓ M m t
f M

v
, , , ,

4
, 72

w
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out( )¯
˙

( )
k

p
=

where M M M10 ,• 6
6=  f M Mout out( ˙ ˙ )= , and v f GM rw v L•=

is the velocity of outflowing wind where fv is taken to be unity.
The outflowing wind is assumed to expand adiabatically so that
the density is r T r3( ) ( )r µ , where T is the temperature of the
outflowing wind. Using this scaling relation, the temperature
at the photosphere is T T r rL Lph ph

1 3( ( ) ( ))r r= , and using
Equation (72), Tph is given by
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Dotan & Shaviv (2011) have calculated the fraction of
outflowing material from the super Eddington slim disk with
M ME˙ ˙ = 1, 5, 10, and 20, respectively. We approximated their
result by the following relation (Lodato & Rossi 2011)

f e ℓ M m t
M

M
, , , ,

2
arctan

1

4.5
1 . 74

E
out •( )¯

˙
˙ ( )

⎡
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥p

= -

Thus, the luminosity from the outflowing wind is given by
L e ℓ M m t r B T, , , , 4out

• ph
2

ph( ¯ ) ( )p=n n and B Tph( )n is the inten-
sity obtained assuming the outflowing wind as a black body.
In the super Eddington phase, the time for the photon to

diffuse out of the disk is longer than the viscous time, so that
the disk that is formed is thick and advective, whereas in the
case when M M ,E˙ ˙ the disk is thin and cools by radiative

Figure 17. The contour plot of e ℓ M m, , ,v •( ¯ ) (Equation (70)) is shown for
ℓ 1= (top) and ℓ 0.6= (bottom) for m = 1. The green line corresponds to
r R .p s= For M 31.6,6  the accretion disk formed is a slim disk.

Figure 18. A contour plot of M e ℓ m, ,c ( ¯ ) is shown for the disruption of a star
of solar mass. The peak Ṁ increases with a decrease in ℓ and an increase in ē,
and thus, Mc increases with decreasing ℓ and increasing e.¯
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diffusion. Strubbe & Quataert (2009) considered a slim disk
model by introducing an additional advection term in the
energy conservation equation, where the effective temperature
profile of the disk as a function of radius is given by

T e ℓ M m r t
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where f 1 ,r

r
in= - SBs is Stefan–Boltzmann constant, rin is

the inner radius of the disk, and Rs is the Schwarzschild
radius BH.

5.2. Sub-Eddington Phase

The disk is sub-Eddington for the BH mass
M M e ℓ m, ,c• ( ¯ )> and M M .E˙ ˙< We then consider the disk
as the radiative thin disk whose the temperature profile is given
by
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We see that Equation (75) is the modified temperature profile
of the thin disk and follows the thin disk for M M .E˙ ˙< Since
the sub-Eddington phase exists only for a certain duration, we
assume that Equation (75) is the temperature profile for the
entire duration as it approaches the thin disk model for
M M .E˙ ˙< Assuming the disk to be a black body, the intensity
of the disk is given by B T e ℓ M m r t, , , , ,e •( ( ¯ ))n and thus the
disk luminosity is given by
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The total luminosity can be written as
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If ln and hn are the minimum and maximum frequency of the
spectral band, then the luminosity of the emitted radiation in
the given spectral band in the rest frame of the galaxy is given
by
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The observed flux f e ℓ M m z t, , , , ,obs •( ¯ ) = L e ℓ M m, , , ,e •( ¯
z t z, 4 dL

2) ( ( ))p , where z is the redshift and dL is the luminosity

distance, and the radiation is observed only if

f f e ℓ M m z t
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where fl is the sensitivity of the detector. The Equation (79) is
utilized to generate a digital signal A(t) such that

A t
1 if eqn 79 holds true
0 if eqn 79 does not hold true.

80( )
( )
( ) ( )

⎧⎨⎩=

The width of the digital signal gives the duration of the flare
detection used in the event rate calculation (see Section 6.3).
As an example, the observed flux in optical g band is shown

in Figure 19 for M 16 = , z= 0.1, and ℓ= 0.6 (blue), 0.8 (red),
1.0 (orange). For M 1,6 = both the outflowing wind and disk
contribute to the observed flux and the flux from the wind
dominates in the initial time. We can observe a dip in flux due
to the outflowing wind whose r Mph ˙µ and T Mph

5 12˙µ - and
the occurrence time of dip is nearly at the time of peak
accretion rate Mp˙ (see Figure 15). With an increase in e,¯ the Mp˙
increases, which results in an increase in rph and a decrease in
Tph, and thus a decrease in the intensity of radiation B T .ph( )
The flux is due to outflowing wind r B Tph

2
ph( )µ and decreases

Figure 19. The observed flux fobs (Equation (79)) in the optical g band for
M 1,6 =  m = 1, redshift z = 0.1, and ℓ = 0.6 (blue), 0.8 (red), 1.0 (orange).
The peak flux decreases with ℓ and the light curve profile gets widened with a
decrease in ℓ. The initial dip in the flux is due to the outflowing wind. The time
is scaled with tm (in days), which is the orbital period of the inner-most bound
debris that decreases with ℓ due to the increase in the energy of the disrupted
debris.
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with Mp˙ if the decline in B Tph( ) is higher than the rise in rph.
Ulmer (1999) predicted that the minimum value of norb for the
disrupted debris to get circularized is ∼2–3, and thus we have
utilized the fobs starting from the time 3t = to generate a
digitized signal and calculate the duration of the detection.

6. EVENT RATE CALCULATION

For any transient survey, the net detectable TDE rate
depends on the number density of non-active galaxies, the
theoretical capture rate per galaxy (see Section 2), the
luminosity distance of galaxies, the sensitivity of the detector,
and the duration of flare detection. In this section, we will carry
out the detailed calculation of each quantity separately and then
combine them in Section 6.3.

6.1. Number Density of Non Active Galaxies

The number density of quasars is a function of redshift and
luminosity, where the quasars emitting radiation of low intensity
(L 10 erg s40 1< - ) are non-active galaxies as compared to the
normal quasars (L 10 10 erg s45 46 1» - - ). According to the
Soltan (1982) argument, if quasars were powered by accretion onto
an SMBH, then such SMBH must exist in our local universe as
“dead” quasars or non-active galaxies. The number density of
galaxies (quasars) can be obtained using the quasar luminosity
function (QLF; Hopkins et al. 2007),

d
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where L, , ,1 2* *y g g are a function of redshift z. As TDEs are
the main observational signatures of quiescent galaxies, we
need to determine the number density of quiescent galaxies at
any redshift z. Chen et al. (2007) used the QLF to obtain the
duty cycle z z10 0.13 2.5( ) ( )d = - , where z( )d is defined as the
ratio of the number of active galaxies to the total number of
galaxies. Thus, the BH mass function of quiescent galaxies is
given by
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where L is the luminosity of the quasars, which is taken to be
L L GM c4E •h h p k= = , where LE is the Eddington luminos-
ity, η is 0.1, and κ is the opacity due to Thompson scattering.
This gives the number density of quiescent galaxies as a
function of BH mass M• and redshift z, as
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6.2. Luminosity Distance

We assume ΛCDM cosmology with 0.315, 0.685mW = W =L ,
H 67.3 Km s Mpco

1 1= - - (Planck Collaboration et al. 2013).
The luminosity distance as a function of redshift z is given as
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( )ò= +
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Consider now a small volume of the universe at redshift z with
radial width dz covering an opening angle ω on the observer’s

sky (Khabibullin et al. 2014). The comoving volume of the
slice is

dV d
I z

W z
dz 85c H

3
2 ( )
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( )w=

where f d c H W z z4 , , 1 ,s H o m
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1

1
86

z

m0 3 0.5( )
( )

( )
( )ò=
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and fs is the fraction of sky observed.

6.3. Probability of Flare Detection

We generate the spectrum in the form of digital signal using
Equation (80), and the width of the digital signal provides the
duration of flare detection t e ℓ M m z, , , , .f •( ¯ )d If t tandcad int are
the cadence and integration time of the detector, then the
probability of detection of an event is given by

P e ℓ M m z
t e ℓ M m z

t t
, , , , Min 1,

, , , ,
87

f
•

•

cad int
( ) ( )

¯
¯
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d
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+

Using Equations (28), (48), (83), (85), and (87), the net
detectable event rate by the detector is given by
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With the given initial parameters M m e ℓ, , ,• ¯ , and z, we
generate the light curves using Equation (78) in the optical g
and soft X-ray bands. The generated spectrum is compared
with the sensitivity of the detector fl to generate a digital signal
using Equation (80), and the width of the digital signal gives
the duration of flare detection. The range of initial parameters
in the calculation are taken to be M M M106 •

6=  =
m e1 100, 0.8 150, ¯- = - = e ℓ1, 0 1h¯ - = - , and

z z0 s= - , where z M m e ℓ, , ,s •( ¯ ) is the detection limit of
the survey. Then, using Equation (88), we calculated the net
detectable rate by integrating in steps over redshift z ℓ e m, , ,¯ ,
and finally over M•, such that

N dM dm de dℓ

dz
d N e ℓ M m z

dM dmdedℓdz
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The detectable rate per M6 integrated over z, e,¯ ℓ, and m for
various γ is shown in Figure 20 for LSST and Pan-STARRS 3π
detectors parameters. As the Nt˙ and BH mass functions
decrease with M6, the dN dMD 6˙ decreases with M6. The net
ND˙ integrated over e,¯ ℓ , m, and M6 is plotted as a function of γ
in Figure 21 for various missions. The resulting ND˙ gµ D

where Δ is given in Table 2.
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Using Equations (28), (36), (83), and (85), the occurrence
rate of TDE is given by

N dM dm de dℓ dz d
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where integration limits are same as those taken for
Equation (89). We define the detection efficiency of TDE for
a detector to be

N

N
. 91D

o

˙
˙ ( )¡ =

The ND˙ calculated for LSST, Pan-STARRS 3π, Pan-
STARRS MDS, and eROSITA mission along with their
detection efficiency are given in Table 2. van Velzen et al.
(2011) estimated the event rates on the basis of observational
studies in the optical bands for the Sloan Digital Sky survey
(SDSS) and scaled the result of SDSS to the other missions
using the relation N f fs l

3 2˙ µ - (Gezari et al. 2009). This
relation is valid only if we assume all other parameters, such as
cadence and integration time of the detector, to be same and
Table 2 shows the estimated rates by van Velzen et al. (2011)
Nobs˙ (column with c notation) and our predicted rates ND˙
(column with a notation). The value of γ from the observed
density profile is in the range ∼ 0.5–1.2 (Wang & Merritt 2004;
Stone & Metzger 2014). Our results are in reasonable
agreement with their results. Khabibullin et al. (2014)
calculated the number of events N detectable at any moment
in the X-ray band for the eROSITA mission assuming a
constant theoretical rate for M 1 106 ~ - and light curve
profile to follow the t 5 3- law, whereas we have followed a
more rigorous calculation to obtain N .D˙ Our prediction for
eROSITA does not include the limitations in Khabibullin et al.
(2014), but are more precise and in agreement with their rough
estimate.
The values of γ for which our predictions of ND˙ match with

the scaled-up values in van Velzen et al. (2011) are shown as sg
in Table 2. The only free parameter in our estimate is γ and this
is likely to vary from source to source. Not knowing the
expected distribution of γ as a function of redshift, we
calculated the error in our estimation of ND˙ by taking a
fiduciary range in the observed median of 0.7 0.1g =  , as is
shown in Table 2.

7. DISCUSSION OF THE RESULTS

The star’s initial orbital parameters E and J have significant
effects on both stellar and accretion dynamics. We have seen
that the effect of J, which has not been included previously,
plays a crucial role in constructing the shape of light curve
profiles.
We employed a single power density model because most of

the galaxies given in Wang & Merritt (2004) and Stone &
Metzger (2014) have a break radius r rb h> and we calculated
the N 10 10t

5 4˙ ~ -- - Yr−1, which shows a nonlinear
dependence with M• as shown by Wang & Merritt (2004) for
single stellar mass distribution with a Nuker profile. Using
Equations (28), (49), (83), and (85) the galaxy average Nt˙ is
given by

N
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and is shown in Figure 22. For 0.7,g = N 6.8 10t
5˙ ~ ´ - yr−1,

which is close to the observational inferred value 10 5~ - yr−1

and Nt
2˙ g» for 1.2.g The sample of galaxies taken

Figure 20. The detectable rate, ND˙ per M6 obtained by integrating Equation (88)
in steps over z ℓ e m, , and¯ for various γ for (a) LSST survey and (b) Pan-
STARRS 3π survey for 0.6g = (blue), 0.8 (red), 1.0 (orange), and 1.2 (brown).
With increase in γ, the detectable rate increases due to the increase in N .ṫ

Figure 21. The detectable rate, ND˙ (Equation (89)), as a function of γ for LSST
(blue), Pan-STARRS 3π (red), Pan-STARRS MDS (orange), and eROSITA
(brown). It is seen that ND˙ gµ D where Δ is the slope given in Table 2.
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by Stone & Metzger (2014) have γ varying over all ranges up
to 1.2g = , which implies that their Nt˙á ñ is γ independent, whereas
we have calculated Nt˙á ñ assuming that all galaxies have the same γ.
The discrepancy in theory and observation is smaller in our
model for 1g compared with Stone & Metzger (2014), who
have predicted N few 10t

4˙á ñ ~ ´ - yr−1 by taking into account the
Schechter BH mass function and a Nuker profile. The γ averaged
Nt˙ integrated over the range 0.6 1.2 g is

1.3 10 4~ ´ - yr−1.
Our calculation of Nt˙ is based on a simple model of two body

relaxations in a spherical potential. The alternative relaxation
mechanism such as resonant relaxation (Rauch & Tre-
maine 1996), which dominates for high energy orbits and
anomalous relaxation for highly eccentric orbits e 1
(Hamers et al. 2014) and non-spherical potential can
moderately change the values of N .t˙ Merritt (2015b), taking
into account the resonant relaxation theory in a potential
dominated by the BH, has shown that the enhancement of
angular momentum diffusion at large binding energies results
in a depletion of DF at those energies, and results in a density
deficit core, but the effect of resonant relaxation on Nt˙ is
moderate for a power law model, such as the one used here;
however, resonant relaxation for more general DF can be
important. The assumption of isotropic velocity distribution
overestimates the TDE rates if the true velocity distribution is
anisotropic and tangentially biased, and underestimates the
rates if the aniostropy is radially biased. This is because a
tangentially biased distribution will have longer angular
momentum relaxation time compared with a radially biased
distribution. Recent N-body simulations by Zhong et al. (2014)
have indicated that the presence of a loss cone will bias the
orbits toward tangential anisotropy at a smaller distance and
radial anisotropy at a larger distance, and that the tangential
anisotropy is minor near .c From both observational and
theoretical perspectives, it is unclear whether the galactic nuclei
are sufficiently anisotropic (and overwhelmingly in the
tangential direction) so as to reduce TDE rates to the
observationally inferred values.

Rees (1988) and others have considered the stellar orbit to be
nearly parabolic. We included the angular momentum J in the
calculation and studied the effect of J on accretion dynamics.

We modified the dimensionless quantities given in Lodato et al.
(2009) and for the low eccentric orbits, which results in an
increase in peak accretion rate. Strubbe & Quataert (2009) and
Lodato & Rossi (2011) calculated the spectral profile for a
parabolic orbit that does not have any dip in their luminosity
profile. The inclusion of J induces a dip in the light curve
profile, which gets deeper with increased energy. We can also
see that our results in the optical band match the result of
Lodato & Rossi (2011) for e 1.¯ 
In general, the accretion of matter into the BH is non-steady

because the mass at the outer radii are higher than the mass at
inner radii. Montesinos Armijo & de Freitas Pacheco (2011)
evaluated the surface density and temperature profile assuming
the accretion disk to be thin and the accretion rate t .5 3µ - A
model for a non-steady accretion mechanism that includes both
the super- and sub-Eddington phase is required to better
understand the evolution and emission from the disk. The α

viscosity prescription used by Strubbe & Quataert (2009) is not
applicable in the super-Eddington phase due to low efficiency
and high opacity of the disk, so a general viscosity prescription,
such as r rd e( )n µ S where d and e are constants, can be used
to evaluate the accretion disk, where r( )S is surface density
profile (Mangalam 2001; Shen & Matzner 2014).

Table 2
Mission Instrument Parameters and Predicted Rate of the Surveys

Survey Band fs Sensitivity/Flux Cadence Time
Integration

Time ND˙ (Yr 1- )a sg
b

Nobs˙
(Yr 1- )c ϒd Δe

(s) (s) 0.7 0.1g = 

LSST Optical 0.5 24.5 AB mag (g band) 2.6 × 105 10 5003±1421 0.63 4131 0.91 1.97
Pan-

STARRS
(MDS)

Optical 0.0012 24.8 AB mag (g band) 3.46 × 105 30 12.3±3.5 0.77 15 0.92 1.98

Pan-STARRS 3p Optical 0.75 24 AB mag (g band) 6.05 × 105 30 6337±1800 0.48 3106 0.85 1.94
eROSITA X-ray 1 2.4 10 erg s cm14 1 2( )´ - - - 1.58 × 107 1.6 103´ 679.5±195 K K 0.7 2.06

Notes. The parameters of the survey are taken from (1) LSST (Strubbe & Quataert2009 and http://www.lsst.org/lsst/overview/), (2) Pan-STARRS (MDS; Medium
Deep survey; van Velzen et al.2011), (3) Pan-STARRS 3π (Strubbe & Quataert 2009 and http://pan-starrs.ifa.hawaii.edu/public/), (4) eROSITA (SRG; Khabibullin
et al. 2014 and http://www.mpe.mpg.de/eROSITA)
a Our predicted values along with the error estimates for an assumed range of 0.1gD = around a typically observed median of 0.7.g =
b N ND s D˙ ( ) ˙g = estimated by van Velzen et al. (2011).
c Results from van Velzen et al. (2011).
d Detection efficiency of the detector given by Equation (91).
e Detectable rate ND˙ gµ D.

Figure 22. The galaxy averaged Nṫ (Equation (92)) increases with γ and
for 1.2,g N .t

2˙ g»
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We have built simple analytical expressions to evaluate the
condition for the formation of an accretion disk. We did not
include the stream interactions and relativistic effects in the
calculations, which can speed up the rate of formation of the
disk through the angular momentum exchange. The hydro-
dynamical simulations by Ramirez-Ruiz & Rosswog (2009)
have shown that the debris interactions result in the formation
of an accretion disk with mass accretion rate showing deviation
from Lodato et al. (2009) in early time and following t 5 3- in
the late stage. Very recently, Bonnerot et al. (2015) performed
hydrodynamical simulations for a star on a highly elliptical
orbit with the resulting debris undergoing apsidal precession;
they found that the higher the eccentricity and/or the deeper the
encounter, the faster the circularization. For an efficient
cooling, the debris forms a thin and narrow ring of gas. For
an inefficient cooling, they settle in a thick and extended torus,
mostly centrifugally supported against gravity. The general
relativistic hydrodynamical simulations by Shiokawa et al.
(2015) have shown that the accretion rate still rises sharply and
then decays as a power law; however, its maximum is 10%
smaller than the previous expectation, and timescale of the
peak accretion is longer than previously predicted values. This
is due to the mass accumulation at higher radius because of
angular momentum exchange at large radii. The overall
conclusion is that the resulting debris will form an accretion
disk. The thickness of the disk formed and the circularization
timescale as a function of stellar parameters and M• still need to
be evaluated. We think that while it is important to include
relativistic effects and stream collisions, it is unlikely that it will
change the conclusion, and will only slightly change the
conditions derived for the disk formation.

Strubbe & Quataert (2009) predicted ND˙ assuming a constant
capture rate, stellar orbits to be parabolic, and the flare duration
to be the duration of Eddington phase, which is obtained
assuming dM dEd as a constant. Gezari et al. (2008) and van
Velzen et al. (2011) used the observed detectable rate for the
GALEX mission in the Near Ultra Violet and SDSS in optical
band, respectively, and scaled it to the other missions assuming
survey parameters such as cadence and integration time to be
same. van Velzen et al. (2011) observationally estimated higher
rates compared with the estimation by Gezari et al. (2008) due
to low sample size. We performed a detailed calculation, taking
in account both stellar and accretion dynamics, and predicted
the detectable rates that are in agreement with the prediction by
van Velzen et al. (2011). We have not included the filter
transmission in generating the spectrum. As the filter
transmission varies over the wavelength in the given spectral
band, and is less than unity, the simulated flux gets reduced,
which results in the reduction in the tfd and hence the
detectable rate N .D˙

India’s space mission ASTROSAT, which was launched
recently, has a payload Sky Scanning Monitor (SSM) to follow
up the transient universe in the X-ray band by scanning nearly
half the sky in about 6 hours for a continued same stellar
pointing of the spacecraft (http://astrosat.iucaa.in/?q=node/
13). The sensitivity of the instrument is

7.2 10 erg s cm10 1 2~ ´ - - - with the integration time of the
detector to be 10 minutes. With these parameters, the detectable
rate for ASTROSAT is expected to be less than ∼1 yr−1. For
the optical surveys in the g band, namely LSST and PAN-
STARRS, the TDE may not be resolved and the corresponding
rates predicted could be an overestimate by a factor of a few.

8. SUMMARY AND CONCLUSIONS

We studied in detail, the model of the TDE, taking into
account the stellar dynamical and gas dynamical inputs. The
overall system parameters include BH mass M•, specific orbital
energy E and angular momentum J, star mass Må and radius Rå,
and the pericenter of the star orbit r E J M, , .p •( ) We solved the
steady state FP equation using the standard loss cone theory for
the galactic density profile r r( )r µ g- and stellar mass function

m( )x , where m M M= , and obtained the feeding rate of stars
to the BH N E J m, , ,˙ ( )g that is an increasing function of J and
γ, but a decreasing function of E and m. Because the stars evolve
along their orbits toward the BH, we compared the lifetime of
the main sequence star to the radial period of its orbit and
calculated the probability få for a star to be captured as a main
sequence given by Equation (47). Using this we model the in-fall
rate of the disrupted debris, M E J m t, , ,˙ ( ), and discuss the
conditions for the formation of an accretion disk considering
accretion, viscous, ring formation, and radiation timescales. We
find that the accretion disk is almost always formed for the
fiduciary range of the physical parameters. By equating the peak
of M E J m t, , ,˙ ( ) to the Eddington rate, we derive the critical
black mass M E J m, , .c ( ) We have simulated the light curve
profiles in the relevant optical g band and soft X-rays for both
super- and sub-Eddington accretion disks as a function of
M E J m t, , ,˙ ( ), taking typical stellar system parameters. Speci-
fically, we found the following key results:

1. In Section 2.1, we approximated the radial period of an orbit
with Equation (46) and the M•–s relation. The radial period
of an orbit in Keplerian potential is T M .r •

0.38 3 2µ - - The
capture rate N N Tt lc r˙ ( ( ) )ò= d M .•

0.38 µ -

2. The applicable ranges of dimensionless energy ē and
angular momentum ℓ are given by {e e 1,h¯ ¯< <

ℓ0 1< < } where e s r r .h t t h¯ = =
3. We solved the steady state FP equation in Section 2.1

and obtained the capture rate using Equation (49). We
found that the capture rate Nt˙ does not show a power
law dependence with M• and it increases with γ.
Even though the increase in Nt˙ with γ is non linear,
an approximate fit gives Nt

p˙ gµ , where p 2.1~ (see
Figure 13). For M 10,6 > N Mt 6

˙ µ b- and 0.3 0.01b ~ 
(see Figure 12).

4. In Section 3, we show that the fractional radius from the
star center x e ℓ M m, , ,l •( ¯ ) to the point where the debris is
bound to the BH increases with ē and ℓ (see Figure 14).
The increase with ℓ is significant only for high energy
orbits. The peak accretion rate increases with xl. The
decline to later t 5 3- law is steeper if the energy of the
initial orbit is higher, as shown in Figure 15.

5. In Section 5, by equating Mp˙ and M ,E˙ the critical BH mass
M e ℓ m, ,c ( ¯ ) is found to increase with ē and decrease with ℓ

and m (see Figure 18). With the decrease in ℓ, the rp
decreases and thus Ṁ increases, which results in an increase
in M .p˙ For higher ē and lower ℓ, M e ℓ m, ,c ( ¯ ) can exceed
the BH mass limit for TDE to occur (i.e., ∼ 3 M10 .8´  ).

6. In Section 4, we found that Max
[ r e ℓ M10 1, 0 1, 1 1006

6( ¯ )     - ] <1,
which implies that the debris will form an accretion disk
(see Figure 16). The ratio 1v < for M 31.66  implies
that the accretion disk formed is a slim disk. The v
increases with M6 and decreases with ē as shown in
Figure 17. The higher mass SMBHs form a thin disk from
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the disrupted debris of a star on low energy orbit and
ℓ 1~ , and a thick disk for a star on a high energy orbit.

7. In Section 5.2, we derive the observed flux as a function
of ē and ℓ. Figure 19 shows the observed fluxes fobs in the
optical g band and the peak observed flux increases with
a decrease in ℓ. The decline of the light curve profile to
the later stage gets steeper with increasing ℓ.

8. In Section 6, the net detectable rate ND˙ is calculated for
the various missions observing in optical and X-ray
bands. Using standard cosmological parameters and
mission instrument details, we predict the detectable tidal
disruption rates for 0.7g = for LSST to be ∼5003 yr−1;
Pan-STARRS in the optical g band performing in either
the ASS mode or the deep imaging survey mode were
predicted to be ∼ 6337 yr−1 for operation in 3 π mode
and ∼12.3 yr−1 in the MDS mode, which are in
reasonable agreement with scaled-up values based on
SDSS detection. Our prediction for eROSITA in the soft
X-ray band is about ∼679.5 yr−1, which is consistent
with Khabibullin et al. (2014). The values of γ for which
our predictions of ND˙ match with the scaled-up values in
van Velzen et al. (2011) are shown as sg in Table 2. We
also estimated the error in ND˙ for an error in fit to γ,
which is taken to be 0.1 and is also shown in Table 2.

9. Our results are in reasonable agreement with the scaled-
up values from the SDSS observations (van Velzen
et al. 2011), as given in Table 2, along with the detection
efficiency of the detector ϒ. The ϒ is lowest for the
eROSITA mission due to the high cadence of half year
and is highest for Pan-STARRS MDS due to very high
sensitivity. The ND˙ gµ D, where 1.95D ~ in optical
band is shown in Figure 21.

We can use the TDE rate as a proxy to estimate the BH mass
distribution as a function of redshift and relate it to the
occupation fraction of SMBHs in galaxies (Stone & Metz-
ger 2014). The TDE can influence jet activity from BH systems
in two ways. The stellar debris can quench the jet (Gopal-
Krishna et al 2008) for BH masses below M3 108´  or the
Poynting flux from a spinning hole can be boosted by the
ingestion of a star. There have been several observations (e.g.,
Burrows et al. 2011) indicating radio transients after a TDE and
these have been studied by simulations (Tchekhovskoy
et al. 2014). In the future, we plan to include more details of
the underlying physics, such as resonant relaxation, non-
spherical systems, relativistic gas dynamics, and viscosity
prescription, to improve our predictions.

We thank the anonymous referee for insightful and helpful
comments that improved the paper significantly. We also thank
Andrea Merloni and M.C. Radevi for useful discussions.
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