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ABSTRACT

In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a
two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is
unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar
Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for
the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to
complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the
problem of polarized line formation in magnetized media, which includes both the effects of PRD and the
lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that
includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a
two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime,
namely, the Ja = 1, Jb = 0 and Ja = Jb = 1, where Ja and Jb represent the total angular momentum quantum
numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant
only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative
transfer problem.
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1. INTRODUCTION

The linear polarization of the spectral lines is produced due
to the absorption, emission, and scattering of radiation in the
solar atmosphere. The anisotropic illumination of the atom
induces atomic alignment, which in turn gives rise to the
polarization of the radiation (scattering polarization). There
are two important theoretical approaches developed so far to
study the physics of scattering polarization. The first one is
the self-consistent approach developed by Landi Degl’Inno-
centi (1983) using the density matrix formalism, starting
from the principles of quantum electrodynamics. One of the
main advantages of this “density matrix” approach is that it
allows one to take into account the polarization of all levels
of the atomic system under consideration. This naturally
allows to take into account the lower level polarization
(LLP). The density matrix formalism is developed under the
flat spectrum approximation and hence its main limitation is
the difficulty to take into account the effects of partial
frequency redistribution (PRD). The second theoretical
approach is the semi-classical one, which provides the
advantage of including the effects of PRD by means of
redistribution matrices (Stenflo 1994, hereafter S94). Using
this “redistribution matrix” approach, our understanding of
the physics of resonance scattering has improved greatly and
the effects of PRD have been studied extensively. The
limitation of this theory is that using it we can deal with only
two-level and two-term atoms with unpolarized, infinitely
sharp lower levels.

The many anomalous spectral structures in the Second Solar
Spectrum (SSS, Stenflo & Keller 1997; Stenflo et al. 2000) cast
doubt on the general assumption, made in the redistribution
matrix approach, that the anisotropic illumination of atoms in
the solar atmosphere induces population imbalances only in the

upper level and the lower level is assumed to be unpolarized.
Except for the case when the total angular momentum4 of the
lower level is Ja = 0 or 1/2, the assumption of zero atomic
alignment in the lower level is questionable, particularly when
the lower level is different from the ground state. Trujillo
Bueno & Landi Degl’Innocenti (1997) studied the influence of
lower level atomic polarization on the scattering line polariza-
tion for the case of a two-level atom with Ja=1 and Jb = 0.
This is an example where the resulting polarization is
completely due to the population imbalances in the sublevels
of the lower atomic level. They used the density matrix
approach and solved simultaneously the statistical equilibrium
equations (SEEs), neglecting stimulated emission and the
transfer equation under complete frequency redistribution
(CRD). This theory was later applied to explain many spectral
features in the SSS. Landi Degl’Innocenti (1998) introduced
optical depopulation pumping of the lower levels as a possible
mechanism to explain the observed linear polarization in the
Na I D1 line. Trujillo Bueno (1999) showed the importance of
LLP in the case of the Mg I b2 line. Also he pointed out the
importance of the depolarizing elastic collisions and their role
in decreasing the alignment of the atomic levels (see also
Casini et al. 2002). Trujillo Bueno et al. (2002) demonstrated
the operation of the ground-level Hanle effect and importance
of the selective absorption from the ground level to the
generation of the polarization in the He I triplet system. Also
the importance of atomic polarization of the metastable lower
level of the Ca II infrared triplet was presented by Manso Sainz
& Trujillo Bueno (2003, 2010). However, in all the above-
mentioned studies, except in Landi Degl’Innocenti (1998), the
effects of the PRD were neglected. In Nagendra (2003) the
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4 Ja and Jb represent total angular momentum quantum numbers of the lower
and upper levels, respectively.
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effects of PRD on linear polarization profiles have been
reviewed and the limitations of CRD approximation are pointed
out (see also Nagendra 2014, 2015). It is well known that CRD
approximation is sufficient in describing the line core
polarization, whereas the PRD effects are important in the
wings of strong resonance lines.

Formulation of a general self-consistent theory for
radiative transfer problem including the effects of PRD and
LLP is a complex theoretical problem. Landi Degl’Innocenti
et al. (1997) have formulated a theory for coherent scattering
that takes into account the LLP. This theory is based on the
concept of “metalevels.” Based on this theory, Belluzzi et al.
(2015) have recently derived the collisionless redistribution
matrix for a two-term atom with hyperfine structure splitting
in the non-magnetic regime by including the polarizability of
the lower hyperfine levels ( F levels). They have applied this
theory to the problem of Na I D lines. In their studies they
have treated the LLP factor as a free parameter. Note that in
the present paper we do not treat the LLP factor as a free
parameter, but instead obtain it under the CRD limit for a
two-level atom. Casini et al. (2014) have also presented a
new quantum scattering theory with which they have derived
a generalized redistribution function for a polarized two-term
atom with hyperfine structure splitting. As an alternative
attempt, in the present paper, we perform numerical
computations for a two-level atom by combining the
redistribution matrix approach and the density matrix
approach. Using the redistribution matrix approach, we
derive the collisionless PRD matrix (the so-called type II
redistribution matrix in the nomenclature of Hummer 1962),
including the effects of LLP. In the process, the density
matrix elements of the lower level are appropriately
incorporated in to the PRD matrix derived starting from the
Kramers–Heisenberg scattering formulation. We remark that
only the population imbalances among the sublevels of the
lower level are taken into account, while the coherences
among them are ignored. This is consistent with the
assumption of an infinitely sharp lower level. The lower
level density matrix elements are obtained by solving the
SEEs that are derived using the density matrix approach. The
type II redistribution matrix so derived is then included in the
radiative transfer equation. To this end we use the quantum
field theory approach given by S94 to obtain the transfer
equation for the problem at hand. We further apply this
theoretical formulation to the cases of  1 0 1 and
 1 1 1 transitions in the non-magnetic regime.
In Section 2 we present the collisionless redistribution matrix

for a two-level atom with PRD and LLP mechanisms properly
taken into account. In Section 3 the radiative transfer equation
for solving the concerned problem is presented. Section 4
concerns a discussion on the influence of LLP on the polarized
line profiles formed under PRD. In Section 5 we propose a
simple alternative approach to solve the same problem. The
conclusions are presented in Section 6. The two-stage
numerical procedure used to solve the transfer equation and
SEEs is described in the Appendix.

2. REDISTRIBUTION MATRIX WITH PRD AND LLP

As a first step we have derived the redistribution matrix
including the effects of PRD and LLP. We considered a general
case of  J J Ja b a scattering transition. We follow the

Kramers–Heisenberg approach as given in Stenflo (1998) but
include the contribution from the lower level density matrix
elements. In Stenflo (1998) the populations of the magnetic
sublevels were assumed to be the same for all the magnetic
sublevels of the lower level. We relax this assumption here and
thereby take into account the population imbalances among the
lower magnetic sublevels. Following the procedure given in
AppendicesA andB of Sampoorna et al. (2007), we express
the type II redistribution matrix with LLP in terms of
irreducible spherical tensors of Landi Degl’Innocenti &
Landolfi (2004, hereafter LL04). After an elaborate algebra
we obtain the expression for the type II redistribution matrix
with LLP in the atomic frame as
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In the above equation μʼs denote the magnetic substates of a
given J-state. The multipolar components of the lower level
density matrix are denoted by rQ

K
L

L . The multipolar index
 K J0 2L a with [ ]Î - +Q K K,L L L is associated with the

lower level having total angular momentum Ja. rQ
K

L

L can be
obtained by solving the polarized SEEs as given in Equations
(10.1) and (10.2) of LL04. SEEs given in LL04 take into
account both population imbalances and coherences while the
redistribution matrix derived above takes into account only the
population imbalances. This is because the first j3 symbol
which arises due to the inclusion of LLP restricts the value of
QL to 0. All the different symbols appearing in the above
equation are consistent with Sampoorna (2011), therefore we
do not elaborate on them. The profile function ( )f n x-m mJ J,b b a a

is defined in Equation(40) of Sampoorna (2011).
The above expression gives the RII redistribution matrix in

the atomic frame for a two-level atom without hyperfine
structure splitting. A more general expression for this matrix
for a multiplet (including also hyperfine structure) is given in
Landi Degl’Innocenti et al. (1997, see Equation(12) in their
paper; see also Equation(1) in Landi Degl’Innocenti 1999).
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The expression in Equation (1) is normalized to
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In order to transform the atomic frame RII matrix derived in
Equation (1) to the laboratory reference system, we followed
Section4 of Sampoorna (2011). This process simply involves
the transformation
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where hII and f II are the auxiliary functions which are defined
in Equations(22) and(23) of Sampoorna (2011). In the next
section we include the type II redistribution matrix for a two-
level atom with LLP, into the radiative transfer equation.

3. RADIATIVE TRANSFER EQUATION FOR A TWO-
LEVEL ATOM WITH LLP

We remark that in the density matrix approach of LL04 the
transfer equation is written in terms of emission and absorption
coefficients. These emission and absorption coefficients depend
on the density matrix elements of the upper and lower levels
respectively. On the other hand, in the redistribution matrix
approach, the transfer equation for a two-level atom without
LLP is written in terms of a source vector that depends on the
scattering integral. The scattering integral basically contains the
redistribution matrix for the problem at hand. However, the
transfer equation of LL04 (which can handle a two-level atom
with LLP) cannot be used for our purposes because the
emission vector is not written in terms of the scattering integral
involving the redistribution matrices. Therefore, we need to
extend the transfer equation in the redistribution matrix
approach to include the effects of LLP.

In order to derive the radiative transfer equation for a two-
level atom with LLP, we follow the quantum field theory
approach of S94 (see his Chapters 7 and 8). It is important to
note that the theory presented in S94 is in coherency matrix
formalism. These equations are now converted to Stokes vector
formalism in the present paper. The notations used in the
present section have the same meaning as in S94 unless
specified. From Equation (8.15) of S94 the radiative transfer
equation can be written as
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where Fc represents the spontaneous emission term in the
coherency matrix formalism and is given by (see also Section
8.10 of S94)
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The components of the g and f matrices are given by
Equations (8.94) and (8.95) of S94, respectively. We have to
note that in S94 the total angular momentum quantum numbers
of the lower and upper levels are denoted by Jμ and Jm,
respectively. However, to be consistent with the notations used
in the present paper, we denote them by Ja and Jb. Further, the
magnetic quantum numbers μ, μ′, m, and m′ of S94,
respectively, are replaced by μa, m¢a, μb, and m¢b. Also the
expressions in S94 are for a general transition in a multi-level
system. In Section 2 we derived the redistribution matrix for a
two-level atomic system with LLP under the following
assumptions: (1) we neglect the off-diagonal terms of the
lower level density matrix. This means that we consider only
the population imbalances in the lower level and neglect the
coherences between the magnetic substates. In other words,
only the rm ma a

terms contribute to the transfer equation; (2) we
consider the case of Rayleigh scattering, i.e., Ja = Jf. These
assumptions are also taken into account while using the
expressions of aa¢g and aa¢f in the transfer equation.
The elements of the g matrix in the first two terms of the

right-hand side of Equation (4) represent radiative absorption.
The f matrix elements in the first two terms in the second line
represent the stimulated emission. From Equations (8.113) and
(8.114) of S94 and the explanation that follows, we see that the
terms inside the summation in Equation (5) can be written as a
Mueller matrix = -M TWT 1 for the scattering of the Stokes
vector Sk. In this manner the spontaneous emission term can be
transformed from the coherency matrix formalism to the Stokes
vector formalism. This transformation has to also be applied to
the absorption and stimulated emission terms in the radiative
transfer Equation (4). We carried out these transformations and
found that the expressions we obtained are similar to those
given in Section 6.7 of LL04. Thus the radiative transfer
equation in Stokes vector basis can now be written as
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where Mkj are the elements of the Mueller scattering matrix, Akj

and Akj
S are the elements of the radiative absorption and

stimulated emission matrix, respectively. For the problem at
hand, namely, a two-level atom with LLP, this matrix M is
simply the type II redistribution matrix described in Section 2.

3.1. Contribution from Thermal Emission

The transfer Equation (6) derived above does not take into
account the contribution from the thermal emission. Thus, the
transfer equation obtained in Equation (6) represents only pure
scattering. For practical applications, however, we need to take
into account the contribution from the thermal emission. For
this purpose we follow the procedure given in Section6.9 of
S94 to calculate the contribution from thermal emission.
Thermal emission is nothing but a limiting case in which the
scattering atom has completely lost its memory about how it
was excited (see Stenflo 1998). Hereafter we neglect the
contribution from the stimulated emission (the second term on
the right-hand side of Equation (6)). The radiative transfer
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equation including the contribution from thermal emission
( jk

thermal) can be written as
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Generally, the thermal emission is given by the absorption
matrix times the Planck function ( nB o). However, for the
problem at hand, it is necessary to distinguish the processes of
absorption and thermal emission. While the LLP is relevant for
radiative absorption it is irrelevant for the thermal emission.
Therefore, to distinguish these two processes we define the
emission profile matrix asFemi and absorption profile matrix as
Fabs. The absorption profile matrix is related to the absorption
matrix hA derived starting from the quantum field theory of
S94 through
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where kL is the line-averaged absorption coefficient (for the
case when stimulated emission is neglected) defined as
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The expression of the absorption profile matrix Fabs in the
atmospheric reference frame is the same as the expression
under the summation K, Q, Kl, Ql of Equation (7.15a) of LL04.
In the line of sight reference frame, this matrix is the same as
Equation (6.59) of S94, which is given by
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with the corresponding expressions for yQ U V, ,
abs where fq is

replaced by ψq, the anomalous dispersion profile. In the above
expressions γ and χ denote the inclination and azimuth of the
magnetic field with respect to the line of sight. Since the
transfer equation is solved in the frame where the z-axis is
along the atmospheric normal, we need to convert the angles γ
and χ in the line-of-sight frame to the atmospheric reference
frame. This can be done following Appendix B of Anusha et al.
(2011). The expression for fq

abs is given by (see Equation (6.52)

of S94)
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In Equation (12) the contribution from the population
imbalances in the lower level to the absorption processes is
included via the density matrix element rm ma a

. The transition
strength ( )m mS ,q a b is given by (see Equation (6.33) of S94)
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In the case of thermal emission, the emission processes are
independent of the absorption. Therefore, we define a separate
profile matrix (Femi) to account for the emission processes. The
matrix elements of theFemi matrix are now independent of the
population imbalances in the lower level. The expression for
fq

emi is given by (see Equation (6.37) of S94)
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The form of the emission profile matrixFemi is the same as the
absorption profile matrix Fabs with the elements f DI Q U V, , , ,

abs

replaced by f DI Q U V, , , ,
emi . For the problem at hand, the thermal

emission term is given by
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where ( )=1 1, 0, 0, 0 T and α is the fraction of the scattering
process given by
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with fx the area normalized profile function which is equal to
fq

emi when q = 0. The line source function Sba takes the
following simple form when stimulated emission is neglected:
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In the above equations, AJ Jb a and BJ Ja b are the Einstein
coefficients for the spontaneous emission and absorption
respectively, and CJ Ja b is the upward inelastic collisional rate.
By defining t = -d k dsL we can rewrite the transfer
Equation (7) including the unpolarized continuum as
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where [ ]=I S S S S, , ,0 1 2 3
T =[ ]I Q U V, , , T, r is the ratio of

continuum to line-averaged opacity, and E is a 4×4 unit
matrix. The scattering source vector Sscatt is given by
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The above equations take a simpler form in the absence of
magnetic fields. These equations are given in the next section.
Furthermore, the equations presented in the present paper are
for the case without elastic collisions. When elastic collisions
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are included the contribution from the incoherent scattering
processes to the source vector should also be taken into
account. The details regarding this can be found in Sections
5.17 and 6.9 of S94.

3.2. The Non-magnetic Case

To numerically solve the problem of polarized radiative
transfer including the effects of LLP, we restrict our attention to
the non-magnetic case. For this particular case the Stokes V is
zero, and for the planar geometry Stokes U is zero. Therefore
the dimension of the problem reduces from 4×4 to 2×2.
The emission profile matrix Femi which contributes to the
thermal emission can be simplified further for this case. In the
absence of magnetic field, Equation (14) reduces to

( )f
p n

f=
D

=
H

. 20q
D

x
emi

Therefore, f =D 0emi (cf. Equation (11)). Thus fI
emi is the only

non-zero term in the emission profile matrixFemi, which takes
the form
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From Equations (15) and (21) we see that the thermal emission
contributes only to the Stokes I. Equation (18) can thus be
rewritten as
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To solve the problem of polarized line formation including
PRD and LLP, we follow a two-stage approach. In the first
stage we solve the SEEs and the transfer equation simulta-
neously for a given Ja and Jb, taking into account the effects of
the polarization of the lower level but in the limit of CRD. The
density matrix elements obtained as output from the first stage
are used as input to compute the redistribution matrix that
enters the second stage (cf. Equation (23)). In the second stage
we solve the radiative transfer equation (see Equation (22))
including the effects of PRD and LLP. Further details on the
numerical method adopted are described in the Appendix. In
this two-stage approach, the density matrix elements are
computed neglecting the effects of PRD, and they are kept
fixed when computing the polarized PRD line profiles. Such a
two-stage approach is basically an approximation proposed in
this paper, which lacks a complete, self-consistent theory for
the problem at hand.

4. NUMERICAL RESULTS IN THE ABSENCE OF
MAGNETIC FIELDS

For our studies we consider two cases namely Ja = 1, Jb = 0
and Ja = Jb = 1 to illustrate the effects of LLP on the polarized
line formation. The governing equations and the concerned
numerical method of solution are described for the Ja = Jb = 1
case in Appendix. A similar procedure can be followed for
deriving corresponding expressions for the Ja = 1, Jb = 0 case
(see also Trujillo Bueno & Landi Degl’Innocenti 1997). For
our computations, we have considered a plane parallel
isothermal atmospheric slab with effective temperature of
6000 K with no incident radiation at the boundaries. Back-
ground continuum opacity is assumed to be zero. For all the
results presented in this paper we consider a thick slab of total
line center optical thickness T=1012. The effect of depolariz-
ing elastic collisions is neglected.

4.1. The Case of the  1 0 1 Transition

We consider a two-level atom with Ja = 1 and Jb = 0. The
concerned SEEs and the transfer equations are given in Trujillo
Bueno & Landi Degl’Innocenti (1997). Because of the
cylindrical symmetry of the problem, only three density matrix
elements are needed to fully specify the excitation state of the
atoms, namely, ( )r a0

0 , ( )r b0
0 , and ( )r a0

2 . For this particular case
we consider the example of a hypothetical line at 5000Å
whose Einstein coefficient for spontaneous emission is

= -A 10 sba
8 1 and whose downward inelastic collisional rate

is = -C 10 sba
4 1.

Figure 1 shows the emergent (I, Q/I) at μ=0.11 for the
 1 0 1 transition. Here we compare the results obtained

under the limits of PRD and CRD when LLP is taken into

Figure 1. Emergent intensity and polarization for μ=0.11 computed using the
two-stage approach. The case of the  1 0 1 transition is considered with
the effects of LLP. Solid line represents the case of PRD and the dotted line that
of CRD. Other input parameters are = -A 10 s ;J J

8 1
b a = -C 10 sJ J

4 1
b a . No

background continuum opacity is used.
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account. We see that the intensity profiles show the typical
signatures of the PRD and CRD mechanisms. In particular, in
the case of CRD we obtain an absorption line (see dotted line in
Figure 1), while in the case of PRD we obtain a self-absorbed
emission line (see solid line in Figure 1). The self-absorbed
emission type profiles in the intensity appear because of the
nature of the collisionless redistribution function exhibiting a
transition from the CRD-like behavior in the line core to the
coherent scattering-like behavior in the line wings (see e.g.,
Figure4(a) of Rees & Saliba 1982). The Q/I profiles are
identical for the PRD and CRD limits. This is because, for this
particular transition in the non-magnetic regime, only the
elements R00

II and R01
II of the redistribution matrix are non-zero

and all the other elements are zero. Hence the line source vector
corresponding to the polarization (SQ l, ) is always zero (see
Equation (23)). This implies that the contribution to the emitted
polarization for this case does not come from the redistribution
processes but only from the dichroic absorption (see Trujillo
Bueno & Landi Degl’Innocenti 1997). In order to understand
the combined effects of PRD and LLP in a better way, we
consider another case study with Ja = Jb = 1.

4.2. The Case of the  1 1 1 Transition

For the case when Ja = Jb = 1, even in the absence of LLP,
since the upper level is polarized, a finite amount of emergent
polarization is generated unlike the case of Ja = 1, Jb = 0. For
all the computations of this particular transition ( Ja=Jb=1),
we again consider the hypothetical case like that described for
Ja = 1, Jb = 0. In this case, there are four density matrix
elements to be determined, namely, ( )r a0

0 , ( )r a0
2 , ( )r b0

0 , and
( )r b0

2 , when polarizability of both levels are taken into account.
Figure 2 shows the emergent (I, Q/I) at μ=0.11 for the
 1 1 1 transition. The solid line in Figure 2 represents the

emergent profiles obtained when both the effects of PRD and
LLP are considered. In order to see the importance of both
effects we have overplotted the (I, Q/I) profiles obtained when
only the effects of PRD are considered with an unpolarized
lower level (ULL—dashed line); when the effects of LLP is
considered in the limit of CRD (dotted line); and the case
where only the CRD effects are considered with ULL (dotted–
dashed line). Figure 2 clearly shows that the LLP effects appear
only in the emergent polarization and the intensity profiles
remain unchanged whether or not LLP is taken into account.
We see that the LLP effects in the emergent Q/I are significant
mainly in the core (up to ∼2 Doppler widths, see inset in the
lower panel of Figure 2), and in the wings the effects of PRD
are dominant (compare solid and dashed lines). The enhance-
ment in the emergent polarization at the line center when LLP
is included is around 5%.

In the first stage of the two-stage approach, the SEEs are
solved under the approximation of CRD, and thus all the
transition rates that enter into the SEEs are frequency-
integrated quantities. Therefore, all the redistribution effects
are integrated away. The contributions to the frequency-
integrated scattering probability come almost entirely from
the Doppler core. In SEEs, we compare the individual
transition rates for a given radiation field. For each individual
transition, the contributions of the wing photons are insignif-
icant compared with the core photons. Since it is only the core
photons that are relevant to SEEs, the effects of LLP only show
up in the core but are absent in the wings. We cannot exclude
that the absence of LLP effects in the wings could be due to the

two-stage approach that we have used. This possibility needs to
be tested based on a more elaborate theory of PRD, like the
recent formulations by Casini et al. (2014) and Bom-
mier (2016).

5. AN ALTERNATIVE APPROACH TO INCLUDE THE
EFFECTS OF LLP IN POLARIZED LINES FORMED

UNDER PRD

The conclusion that LLP effects are only significant in the
line core allows us to use an alternative approach to solve the
problem at hand. We refer to this approach as the correction
method. In this method, we compute the line profiles taking
into account PRD and neglecting LLP (in the standard two-
level approach) and later apply to it the corrections due to the
effects of LLP computed using the density matrix approach
with CRD. The actual procedure is described below.
(i) We solve the SEEs and the transfer equation simulta-

neously for a given Ja and Jb, taking into account the effects of
a polarized lower level in the limit of CRD. For this purpose,
we use the relevant equations derived from the density matrix
approach. We also neglect the stimulated emission. The Stokes
Q parameter obtained through a simultaneous solution of SEEs
and the polarized transfer equation is denoted by QCRD

LLP. For the
numerical solution of this problem, we use the Rybicki and
Hummer method (see Rybicki & Hummer 1991) appropriately
generalized to handle the polarized lower level. The governing
equations and the details of the numerical procedure followed
are described in Appendix A.1.

Figure 2. Emergent intensity and polarization for μ=0.11 computed using the
two-stage approach for the  1 1 1 case. The different line types
correspond to: solid line—PRD + LLP, dotted line—CRD + LLP, dashed
line—PRD + ULL, and the dotted–dashed line—CRD + ULL. The
abbreviation ULL stands for unpolarized lower level. Other input parameters
are = -A 10 s ;J J

8 1
b a = -C 10 sJ J

4 1
b a . No background continuum opacity is

used. The inset in the Q/I panel shows the Q/I profiles for a shorter frequency
bandwidth for the sake of clarity.
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(ii)We solve the same problem as above, but now neglecting
the effects of LLP. The resulting Stokes Q parameter is denoted
by QCRD

ULL.
(iii) The difference between the solutions obtained with and

without the effects of LLP is

( )D = -Q Q Q . 24CRD CRD
LLP

CRD
ULL

We refer to Δ QCRD as the correction term.
(iv) We now solve the transfer equation for the atomic

system under consideration using the standard two-level atom
approach including PRD. For this purpose we use a polarized
approximate lambda iteration method (Nagendra et al. 1999).
The polarization thus obtained is referred to as QPRD

ULL.
(v) It is well known that the effects of PRD are noticeable

mainly in the line wings. Our studies showed that the effects of
a polarized lower level of an atomic system are confined to the
line core region (see Figure 2). To a good approximation a
solution including the effects of PRD and also the LLP can be
obtained from

( )= + DQ Q Q . 25PRD
LLP

PRD
ULL

CRD

In Figure 3 we compare the Q/I profiles obtained using the
simple correction method described above and the elaborate
two-stage approach proposed in this paper (see Appendix). We
see that the results from both methods match closely. Thus in
order to simplify the computational efforts one can use the
simple correction method instead of the two-stage approach.

6. CONCLUSIONS

In this paper we have presented a numerical algorithm to
solve the polarized radiative transfer problem including the
effects of PRD and LLP in the general case of magnetic media.
Following the Kramers–Heisenberg approach as given in
Stenflo (1998), we have derived the general collisionless
redistribution matrix including the effects of LLP for a two-
level atomic system. This redistribution matrix now depends on
the density matrix elements of the lower atomic level. We then
include this redistribution matrix in the transfer equation. For
this purpose, we followed the quantum field theory approach
of S94.

A two-stage approach is proposed to solve the polarized
radiative transfer problem including the effects of PRD and
LLP in the non-magnetic regime. In the first stage we solve the
SEEs and the transfer equation simultaneously under the flat
spectrum approximation using the density matrix formalism

developed by Landi Degl’Innocenti (1983). The density matrix
elements thus obtained from the first stage are used as inputs to
the second stage to compute the collisionless redistribution
matrix elements. In the second stage, we use the DELOPAR
method to obtain the formal solution. Furthermore, we use the
frequency-angle-by-frequency-angle (FABFA) method to com-
pute the source vector corrections.
To demonstrate the effects of PRD and LLP, we consider

two examples, namely, the  1 0 1 transition and
 1 1 1 transition. The case of the  1 0 1 transition

does not show any signatures of PRD in the emergent
polarization profile. This is because in this particular case,
the contribution to the emergent linear polarization does not
come from the scattering processes but only from the dichroic
absorption from the lower level. However, in the  1 1 1
transition, the PRD signatures in the emergent polarization
profile can be clearly seen in the line wings. Our studies
indicate that the LLP effects are confined mostly to the line
core region. The reason behind this appears to be that the SEEs
are solved under the flat spectrum approximation, which makes
the concerned transition rates frequency-integrated quantities.
This leads us to a computationally simpler numerical approach
called the “correction method” to study the effects of PRD and
LLP on polarized line formation. We have verified that this
computationally simpler correction method represents a
sufficiently good approximation and is therefore useful in
practical model calculations.

APPENDIX
NUMERICAL METHOD: TWO-STAGE APPROACH

In this section we describe the two-stage approach to solve
the problem of polarized line formation including LLP and
PRD for the non-magnetic case. In the first stage we solve the
polarized SEEs and transfer equation simultaneously in the
limit of CRD. For the numerical solution of this problem, we
use the Rybicki and Hummer method (see Rybicki &
Hummer 1991) appropriately generalized to handle polarized
lower level (see also Trujillo Bueno 2003). In the second stage,
we solve the polarized radiative transfer equation including the
effects of LLP (through the density matrix elements derived in
the first stage) and PRD.

A.1. Stage 1 of the Two-stage Approach

The governing equations and concerned numerical method
for the simultaneous solution of the SEEs and transfer equation
in the limit of CRD is illustrated here for the  1 1 1
transition. For this particular transition, the SEEs and transfer
equations are given in Trujillo Bueno (1999). There are four
density matrix elements to be determined, namely, ( )r a0

0 ,
( )r a0

2 , ( )r b0
0 , and ( )r b0

2 when polarizability of both the levels
are taken into account for this case. The SEEs to be solved
correspond to the K=0 and 2 components of the upper level,
the K=2 component of the lower level density matrix, and the
number conservation equation. These equations can be derived
starting from the general Equations (10.4) given in LL04. The
upward and downward inelastic collisional rates are taken into
account when solving the SEEs. J0

0 and J0
2 are two quantities

related to the radiation field that enter the SEEs and the
expressions for these are given in Trujillo Bueno (1999). The
coupled transfer equations for the Stokes parameters I and Q

Figure 3. Emergent polarization for μ=0.11 computed using the correction
method (solid line) and the two-stage approach (dotted line). Other parameters
are the same as in Figure 2.
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are given by

( ) h h= - -dI ds I Q, 26I I
A

Q
A

( ) h h= - -dQ ds I Q. 27Q Q
A

I
A

Here s is the geometrical distance along the ray. In the
preceding equations, òI and òQ are the emission coefficients and
h I

A and hQ
A are the absorption coefficients. They depend on the

atomic density matrix elements, which in turn depend on the
Stokes I and Q parameters. Thus the problem becomes both
nonlinear and nonlocal. This is referred to as the NLTE
problem of the second kind (see LL04). To solve this problem,
we use an iterative technique based on the approximate lambda
iteration (ALI) method. We note that  ¹ 0Q in the case of the
 1 1 1 transition, whereas it is equal to 0 in the case of the
 1 0 1 transition as the upper level with Jb = 0 cannot

lead to the emission of polarized radiation. The coupled transfer
Equations (26) and (27) can be decoupled by working with

= ++I I Q and = --I I Q (see Trujillo Bueno 2003). The
decoupled transfer equations can be written as

( ) h= -+
+ + +

dI

ds
I , 28

( ) h= --
- - -

dI

ds
I , 29

where   = ++ ;I Q   = -- ;I Q h h h= ++ I Q and
h h h= -- I Q. Thus we can write the source functions S+
and S− as

( ) [( ) ( )] ( )

( ) [( ) ( )] ( )

( )


h

n r m m r

r m m r

=

=
- - + -

- - + -

+
+

+

S

h

c

b b

a a

2 3 1 3 1

3 1 3 1
,

30

3

2

0
0 1

4 2
2 2

0
2

0
0 1

4 2
2 2

0
2

( ) [( ) ( )] ( )

( ) [( ) ( )] ( )

( )


h

n r m m r

r m m r

=

=
- - - -

- - - -

-
-

-

S

h

c

b b

a a

2 3 1 3 1

3 1 3 1
.

31

3

2

0
0 1

4 2
2 2

0
2

0
0 1

4 2
2 2

0
2

The formal solution of the transfer Equations (28) and (29) can
be written as

[ ] ( )= L+ + +I S , 32

[ ] ( )= L- - -I S , 33

where Λ+ and Λ− are the operators that depend on the optical
distances between the grid points. We use the short
characteristics method (Olson & Kunasz 1987) to find the
formal solution of the transfer Equations (28) and (29).

Now, in order to linearize the SEEs, we introduce the
approximate operator based on the idea of operator splitting:

[ ] ( )[ ]
[ ] ( )[ ] ( )

†

†





*

*

L + L - L

L + L - L
+ + + + + +

- - - - - -

I S S

I S S

,

, 34

where the “†” represents the quantities known from the
previous iteration. Following Olson et al. (1986), the

approximate operators *L+ and *L- are chosen to be the
diagonals of the respective actual lambda operators. The
radiation field tensors can now be written as

( )
( )
( )

( )* *
r

r
= + L + LJ J

b

a
, 350

0
0
0,eff

0
0

2
0 0

0

0
0

( )
( )
( )

( )* *
r

r
= + L + LJ J

b

a
, 36eff

0
2

0
2,

0
2

2
2 0

0

0
0

where J0
0,eff and J eff

0
2, are given by

[( )[ ] ( )[ ]] ( )† †* *

ò òf m=

´ L - L + L - L
-

+ + + - - -

J dx d

S S

1

2

1

2
, 37

x0
0,eff

1

1

[(( ) ( )) ( )[ ]
(( ) ( )) ( )[ ]] ( )

†

†

*

*

ò òf m

m m

m m

=

´ - + - L - L

+ - - - L - L

-

+ + +

- - -

J dx d

S

S

1

2
3 1 3 1

3 1 3 1 . 38

eff
x0

2, 1

4 2 1

1

2 2

2 2

The components of the Λ* operator are given by

[( ) ( )][ ( ) ( )]

[( ) ( )][ ( ) ( )]

[( ) ( )][ ( ) ( )]

[( ) ( )][ ( ) ( )]
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In the computation of S+ and S− in the first iteration, we need
the values of ( )r a0

0 , ( )r b0
0 , ( )r a0

2 , and ( )r b0
2 . These are obtained

by assuming the LTE populations. First we compute the
number densities of the lower level ( )NJa , upper level ( )NJb , and
the total density ( = +N N NJ Ja b). From this, we compute

( )r =a
N

N0
0 1

3

Ja and ( )r =b
N

N0
0 1

3

Jb . We assume

( ) ( )r r= =a b 00
2

0
2 in the first iteration. Preconditioning the

quantity ( ) ( )r rb a0
0

0
0 , we can linearize the SEEs to obtain the
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linearized equations
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Here CJ Jb a is the downward inelastic collisional rate. In the
present case there is a contribution from the K=2 multipole
component of the inelastic collision rates, namely, ( )CJ J

2
a b

and
( )CJ J
2
b a
. The relation between the Kth multipole component and

zeroth component of different collision rates is given in
Appendix 4 of LL04. Using that relation we get

( ) = -C C 2J J J J
2
a b a b

and ( ) = -C C 2J J J J
2
b a b a

for the  1 1 1

transition (we have taken =
~
K 1). The above equations are then

solved for the density matrix elements ( )r a0
0 , ( )r b0

0 , ( )r a0
2 , and

( )r b0
2 . In the subsequent iterations the source functions and the

quantities J0
0 and J0

2 are updated. The iteration sequence is
continued until convergence is obtained over the density matrix
elements. In this way the SEEs and the transfer equations are
solved simultaneously using the ALI method. The limit of ULL
is recovered by setting ( )r a0

2 to zero in the above equations. It
has to be noted that the time evolution equation of the lower
level will then be given by ( ) ( )r d d r=a aQ

K
K Q0 0 0

0 , and
therefore, the Equation (40c) will vanish. The rest of the
iteration procedure remains the same, which then involves
solving the SEEs for the three unknowns, namely, ( )r b0

2 , ( )r b0
0 ,

and ( )r a0
0 .

A similar procedure can also be followed for the case of Ja =
1 and Jb = 0, which is simpler compared to the Ja=Jb=1
case, with only three density matrix elements to be determined.
The SEEs and the transfer equation for this case ( Ja = 1 and Jb
= 0) in the non-magnetic regime are given in Trujillo Bueno &
Landi Degl’Innocenti (1997).

A.2. Stage 2 of the Two-stage Approach

The density matrix elements obtained from the first stage
described above are used to compute the elements of the
redistribution matrix ( )m m¢ ¢R x x, , ,ij

II which is needed in the
second stage. In this stage we solve the polarized transfer
equation given in Equation (22). By defining the total optical
depth ( )t f t= +d r dItot

abs we can simplify Equation (22) as

( )
t

= -
I

I S
d

d
. 41

tot
eff

Here, the effective source vector is

( )= - ¢S S K I, 42eff tot

where we have redefined the total absorption matrix as

( )
f

¢ =
+

-K
K

E
r

. 43
I
abs

The total source vector is defined as

[ ] ( )
f

=
+

+nS S
r

rB 1
1

. 44
I

ltot abs 0

With these expressions we can apply the same steps as in
Equations(19)–(26) of Sampoorna et al. (2008) to obtain the
formal solution of the transfer equation using the DELOPAR
method (see also Trujillo Bueno 2003). The transfer
Equation (41) is solved iteratively using an ALI method. To
compute the source vector corrections, we use the so-called
FABFA method, similar to that given in Sampoorna et al.
(2011). Hereon the dependencies over x and μ appear as
subscripts. The formal solution of the transfer Equation (41)
can be written as

[ ] ( )L=m m mI S . 45x x xtot,

L mx is the frequency- and angle-dependent integral operator,
which can be split as

( ) ( )* *L L L L= + -m m m m , 46x x x x

where *L mx represents the diagonal approximate operator. Now
we can write the total source vector as

( )d= +m m m
+S S S . 47x

n
x

n
x

n
tot,

1
tot, tot,

Here n represents the iteration index. Using Equations (23),
(44), (46), and (47) we obtain

[ ]

( ) ( )

*ò òd m
f

d

a

L- ¢ ¢

= + - + -

m m
m m

m m

m m m m n m

¢ ¢
¢ ¢ ¢ ¢S

R
S

J S

p d dx

p p S p B1 1

1

2

1 , 48

x
n

x
x x

x
x tot x

n

x x
n

x ba x
c

x
n

II

tot,
,

,

tot,0

where ( )f f= +mp rx x I
abs and ( )f= +mp r rx

c
I
abs . We have

to note that in the above equation, the thermal emission term
remains constant over iterations in the non-magnetic case. The
mean intensity is given by

( )ò òm
f

= ¢ ¢m
m m

m
¢ ¢

¢ ¢J
R

Id dx
1

2
. 49x

n x x

x
x

II
,

The standard steps of FABFA as given in Sampoorna et al.
(2011) can now be applied to solve the system of linear
equation (48) to obtain the corrections to the total source vector
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(d mS xtot, ) in the iteration process. In this way, using the ALI
method, we solve the transfer equation, which now includes the
effects of PRD and LLP.
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