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Abstract. Sunspots are the most conspicuous aspects of the Sun.
They have a lower temperature, as compared to the surrounding photo-
sphere; hence, sunspots appear as dark regions on a brighter background.
Sunspots cyclically appear and disappear with a 11-year periodicity and
are associated with a strong magnetic field (∼ 103 G) structure. Sunspots
consist of a dark umbra, surrounded by a lighter penumbra. Study of
umbra–penumbra area ratio can be used to give a rough idea as to how
the convective energy of the Sun is transported from the interior, as the
sunspot’s thermal structure is related to this convective medium.

An algorithm to extract sunspots from the white-light solar images
obtained from the Kodaikanal Observatory is proposed. This algorithm
computes the radius and center of the solar disk uniquely and removes the
limb darkening from the image. It also separates the umbra and computes
the position as well as the area of the sunspots. The estimated results are
compared with the Debrecen photoheliographic results. It is shown that
both area and position measurements are in quite good agreement.

Key words. Sun—sunspots—Kodaikanal digitized data—sunspot area
—heliographic coordinates.

1. Introduction

Sunspots are the visible indicators of magnetic activity on the Sun. These activities
are associated with the highly energetic particles that are spewed into space, which in
turn affect the Earth’s climate and environment (Hiremath & Mandi 2004; Hiremath
2006a, b, 2009; Hiremath et al. 2015). Proper estimation of position and area
of sunspots is crucial for understanding many solar phenomena, such as rotation
rate of the Sun, the solar irradiance that changes from one cycle to another, etc.
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Accurate computation of the position of sunspots helps in accurately estimating the
meridional flows whose cyclic dependency is supposed to dictate the amplitudes
of the solar cycle. The other studies involving sunspots include growth and decay
of spots (Lustig & Wohl 1995; Hiremath & Lovely 2010), emergence of flux due
to spots (Baranyi & Ludmany 1992), evolution of sunspot groups and interaction
between them (van Driel-Gesztelyi et al. 1993), axial tilt of sunspot groups (Howard
1991, 1992) and periodicities in solar activity (Oliver & Ballester 1995).

Initially attempts for sunspot detection from the solar images included
threshold intensities for umbra–penumbra and penumbra–photosphere boundaries
(Grossmann-Doerth & Schmidt 1981; Steinegger et al. 1990). To derive the thresh-
old, cumulative histogram methods were adopted (Pettauer & Brandt 1997). Another
method (Pettauer & Brandt 1997) to detect the sunspots included the maximum
gradient method. Some others (Chapman & Walton 2001) applied edge-detection
method to extract objects from background. Gyori (1998) and Zharkov et al. (2005)
adopted morphological operations in addition to gradient measures to detect the edge
of sunspots. Curto et al. (2008) and Watson et al. (2009) used morphological tools to
detect the sunspots. A new method based on the level-set formulation of active con-
tour was proposed by Goel & Mathew (2014). Adaptive region growing techniques
are yet another method (Yu et al. 2014) for detection of sunspots.

Many methods to compute the position and area of sunspots were used (Howard
et al. 1984; Baranyi et al. 1999; Cakmak 2014). The Greenwich photoheliographic
results (GPR) compiled sunspot observations from a small network of observato-
ries to produce a catalog of sunspots from 1874 to 1976. By overlapping Stonyhurst
charts (with spherical grids) manually, average position between two grids in which
the sunspot is inscribed within a square box is estimated. In Debracen photoheli-
ographic data, the position of a spot is derived from the position of the center of
the umbra (Csilla Szasz 2003, if the umbra could be separated from the penumbra.
If there is no identification of any umbra in the penumbra, the position of the cen-
ter of the penumbra is measured. Some other such methods have been described in
Poljancic et al. (2011).

We have a treasure of more than 100 years white-light and calcium picture data
from the Kodaikanal Observatory, which is digitized recently (Singh & Ravindra
2012; Ravindra et al. 2013). In the present study, we analyze only the white-light
images. These images were previously analyzed by using the reduction techniques
used for calculation of Mt.Wilson measurements (Howard et al. 1984; Sivaraman &
Gupta 1993). In this method, a cross-hair is positioned over the umbra and the posi-
tion is computed to be the mean position of vertices of the cross-hair. The areas were
determined to be that of the superimposed quadrilateral by the cross-hair. For the
same data set, Ravindra et al. (2013) proposed another method involving morphol-
ogy for sunspot area measurement, although limb darkening was not removed and
the heliographic coordinates were not computed. In order to complete the task, in
this study an algorithm is proposed to locate the center and radius of the solar disk
and to remove limb darkening from the image. This algorithm further detects the
sunspots, separates the umbra from it and calculates the position (heliographic coor-
dinates) and area of sunspots with proper error bars. Section 2 outlines the details
of observation of the images from the Kodaikanal Observatory. Section 3 describes
the method of analysis in detail and finally, section 4 presents the comparison of the
estimated results with those of the Debracen results.
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2. Observational details

The solar telescope at the Kodaikanal Observatory consists of a 15-cm achromatic
lens as the objective, which has a focal length of 240 cm. In the focal plane a
green color filter is used to improve the quality of the solar image. More detailed
information of this telescope can be found in Sivaraman & Gupta (1993).

Photographic data of the Sun extends back to 1904 and is available up to present
day. The telescope produces a solar disk image which is about 20 cm in diameter.
Most of the images are taken early in the morning, before 10 h (IST). On most days,
only one image is obtained and some days, few more images are obtained, depending
on the sky conditions. A typical white light image of the Sun obtained from the
Kodaikanal Observatory is illustrated in Figure 1. One can notice a straight line (thin
wire), that marks the east–west direction of the sky on the image.

The solar white-light images were stored on the photographic plates of size 25.4
sq. cm till 1975. From Jan. 1976, they were replaced by high-contrast film of size
25.4 cm × 30.5 cm. These photographic plates were carefully preserved along with
a log book about the information of the observations. In almost 106 years of obser-
vations, 31800 plates covering over 31000 days are available. All these photographic
images were digitized recently using a proper 4k × 4k format CCD-camera. The
whole process of this digitization and calibration of the images is described by
Ravindra et al. (2013).

3. Data analysis

Sunspot detection is a tricky procedure. Computation of accurate heliographic coor-
dinates is another difficult task without which no meaningful science can be derived
from the solar images. For this purpose, the following procedures have to be adopted.
First and foremost is to detect the edge of the solar disk. Then one has to compute
its center and radius uniquely, remove the limb darkening from the image and then

Figure 1. Digitized white-light image of the Sun obtained from Kodaikanal Solar Observatory.
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the heliographic coordinates of each pixel of the image are to be obtained. Further,
the sunspots are detected, the umbra is separated and the average heliographic coor-
dinates and the area of the sunspots are calculated. Each of these steps are briefly
explained in the following sub-sections.

3.1 Detection of the edge

In order to estimate the heliographic coordinates, it is important to calculate the
center and radius of the solar disk. This requires detection of edge of the image as
accurately as possible. A sobel operator is used for the edge detection for each of the
images. This filter uses the concept of sudden gradient change at the edges. A typical
solar white-light image with its detected edge is illustrated in Figure 2.

3.2 Calculation of center and radius

The next major step is the computation of the center and radius of the solar disk
in terms of number of pixels. These parameters are quite crucial for the positional
measurements on the Sun. Many different methods were adopted in the past (Denker
et al. 1998). For Kodaikanal images, Hough transform was used to locate the solar
disk center and radius (Ravindra et al. 2013). According to them, with the radius of
the Sun as a free parameter, eight points on the edge are considered and the circle is
fitted for obtaining the central coordinates of the disk. With this method, there is a
possibility that the coordinates of the disk center are estimated wrongly if the given
radius is incorrect. Hence, in order to compute uniquely all the three parameters (two
coordinates of the center and radius) as described in Appendix A, the method of
circle-fitting is used. In our method, all the detected points of the edge are used for
fitting the circle. A least-square fitting is applied to find the best fit. This involves
solving for three unknowns (two center coordinates and one radius) with three

Figure 2. Detected edge (white dots) of the solar disk from Kodaikanal Solar Observatory.
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equations. Hence, all the three parameters are obtained simultaneously and uniquely.
This procedure is applied for each of the images to locate the disk center and radius.

3.3 Removal of limb darkening

While observing the Sun, there is a gradual decrease in intensity from center of the
disk to the limb. This apparent change in intensity is called as limb darkening (see
Figure 3). It is very crucial to remove this effect before any further analysis of the
Sun’s images. To remove limb darkening, the following procedure is adopted on each
of the images.

For each of the images, concentric circles are drawn from the center to the edge,
each of whose radius increases by one unit. The median of intensities in each of the

Figure 3. Variation of median intensity from disk center to the edge of the solar disk.

Figure 4. Solar white light image after limb darkening removal.



3 Page 6 of 20 J. Astrophys. Astr. (2016) 37: 3

concentric circles corresponding to that radius are estimated. Hence, a fixed intensity
for each radius value is obtained. A polynomial of degree 3 fits very well for these
radius-intensity values (Figure 3). If r is the radius of a particular pixel, I is its
intensity and I (r) is its intensity profile according to the fit, then its corrected value
is

Icorrected = I

I (r)
.

This intensity correction is applied for all the pixels in each of the digitized
images, resulting in uniformly bright images, hence suggesting that the phenomenon
of limb darkening has been removed from the images. One such processed image is
illustrated in Figure 4.

3.4 Detection of sunspot and separation of umbra

The main techniques used for the detection of sunspots from the Kodaikanal solar
images are from the field of mathematical morphology. Several studies earlier used
this method to detect sunspots (Zharkov et al. 2005; Curto et al. 2008). This method
uses shape and structure of digital images to analyze the features present in the
image. It uses a certain structuring element to probe the image, which maybe of
any shape but, a circle, square or cross are commonly used. The basic operations of
morphology include erosion, dilation, opening, closing and top-hat transformation.

After the limb darkening is removed, the image is inverted by taking the recipro-
cal of intensities at each point. This transformation results in the sunspots appearing
brighter on a darker background. Histogram equalization is then applied to this
image, that adjusts the image intensities to enhance the contrast (Figure 5). This
makes it easier to extract sunspots from the image. Next, a top-hat transformation
is applied. The structuring element used in this case is a disk of radius 50 units.
A certain intensity threshold that is derived by taking mean of values from several

Figure 5. The image that is inverted by taking the reciprocal of intensities at each point is
illustrated.
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sunspots is applied. As a result, a frame consisting of only the bright sunspot regions
is obtained. After applying mask filter over these regions that makes the intensity of
all the selected regions equal to unity, they are multiplied with the original image to
obtain only the sunspot regions in the image.

After the sunspot regions are detected, each region is normalized by dividing the
intensities of sunspot’s pixels with its maximum value. An intensity threshold that is
unique for each of these regions is then applied. The threshold is 15% more than the
minimum value in each region. This threshold is taken by observing several sunspots
and considering the mean intensity of all the values. These processes are repeated
for each of the images to obtain the umbra separated from all the sunspots.

An example of the extracted sunspot and its umbra is given in Figure 6.

Figure 6. An example of the detection. (a) Typical sunspot, (b) extracted sunspot and (c)
separated umbra.
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3.5 Computation of heliographic coordinates of sunspots

Before the heliographic coordinates of the sunspots are computed, heliographic coor-
dinates of each pixel of the solar disk of each image is computed. Detailed steps
of computation of these heliographic coordinates are presented in Appendix B.
After this computation, sunspots are detected as described in the previous section.
Then, the average heliographic latitude, θspot and average heliographic longitude
difference, lspot, with their error bars (δθ and δl) are computed as follows.

If θn, ln and In are latitude, longitude difference and intensity of the n-th pixel
of the detected sunspot, then following Hiremath and Hegde (2013), the average
heliographic coordinates of the sunspot are the weighted means as given below:

θspot =
∑
n

θn × In∑
n

In

and

lspot =
∑
n

ln × In∑
n

In

.

The errors, δθ and δl in these heliographic coordinates are computed as follows.

δθ = σθ√
N

and

δl = σl√
N

.

Here, σθ and σl denote standard deviation of latitude and longitude difference
values of the sunspot pixels, and N is the total number of pixels in the considered
spot. Using the above mentioned formulae, the heliographic coordinates and their
errors for each sunspot in every image are estimated.

3.6 Computation of area of sunspot

The area of the whole spot and that of the umbra are calculated separately. In general,
area is the product of number of pixels and area of each pixel. If one knows the size
of a pixel, then area of pixel is square of the pixel size. Pixel size is computed as
follows:

Pixel size = Radius of sun in arcseconds

Radius of sun in pixels
= Rad

R

where the computations of Rad and R are given in Appendix B.
The number of pixels in the whole spot and umbra is then estimated and multiplied

by the area of the pixel. This area is then expressed in millionth of area of solar
hemisphere, which is the standard unit for measuring the area of sunspots.
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The Sun is a sphere, but it is flattened on the image. This leads to some projection
effects at the edge of the Sun. Owing to the spherical shape of the Sun, the area of
sunspots appear less than the true area. This effect is also called as the foreshortening
of the area. This projection effect is corrected as follows:

Area, A′ of sunspot = No. of pixels × pixel area,

Corrected Area (A) = A′

cos(δ)
,

where cos(δ) = sin(Bo) sin(θ)+cos(Bo) cos(θ) cos(l), with θ and l are heliographic
latitude and heliographic longitude from the central meridian of the sunspot respec-
tively, whereas Bo is the heliographic latitude of the center of the solar disk at the
time of observation.

Errors in the area of the whole sunspot and umbra are determined by moving
the boundary inwards and outwards by one pixel, since we are confident in locating
the boundaries to within one pixel of their true location. The penumbra area is then
calculated by subtracting the umbra area from the whole spot area and the required
umbra–penumbra area ratio is then obtained.

Table 1. Estimated center and radius values.

Radius
Year Month Date and Time X-center Y -center (No. of pixels)

2011 1 1.340278 2048 2048 1522.84
2011 1 2.362500 2048 2048 1519.16
2011 1 4.340278 2048 2048 1523.65
2011 1 5.315972 2048 2048 1523.06
2011 1 5.345139 2048 2048 1526.33
2011 1 6.331250 2048 2048 1521.75
2011 1 7.322917 2048 2048 1522.77
2011 1 8.347222 2048 2048 1524.53
2011 1 9.383333 2048 2048 1524.16
2011 1 10.427083 2048 2048 1523.38
2011 1 11.333333 2048 2048 1525.38
2011 1 12.438889 2048 2048 1526.99
2011 1 13.395833 2048 2048 1524.86
2011 1 16.625000 2048 2048 1523.68
2011 1 17.333334 2048 2048 1523.06
2011 1 18.322916 2048 2048 1522.81
2011 1 18.447916 2048 2048 1523.94
2011 1 19.329861 2048 2048 1522.96
2011 1 20.336805 2048 2048 1522.85
2011 1 21.340279 2048 2048 1523.38
2011 1 22.324306 2048 2048 1521.30
2011 1 23.326389 2048 2048 1522.54
2011 1 24.326389 2048 2048 1519.10
2011 1 25.364584 2048 2048 1521.62
2011 1 26.322916 2048 2048 1521.07
2011 1 27.597221 2048 2048 1521.92
2011 1 28.345139 2048 2048 1522.67
2011 1 29.378471 2048 2048 1522.31
2011 1 30.338194 2048 2048 1520.16
2011 1 31.340973 2048 2048 1519.98
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4. Results

In order to compute heliographic coordinates and area of sunspots, white-light
images for the year 2011 of the Kodaikanal Observatory are considered. As described
in section 3, edge of solar disk is detected, the effect of limb darkening is removed,
radius and center coordinates are simultaneously and uniquely estimated; then
sunspots are detected, umbra–penumbra are separated and finally the respective heli-
ographic coordinates and areas are estimated. After the complete analysis, two files
– one containing the radius values for each day and another containing the latitude,
longitude and umbra area to penumbra area ratio for each sunspot – are obtained.
A typical table of center and radius values daily for the images of January, 2011 is
given in Table 1. In Table 2, a part of the final result file for February 2011 is given.
For each detected sunspot, the date and time of observation, the heliographic coor-
dinates (θ and l) with the respective error bars (δθ and δl), the corrected whole spot

Figure 7. A scatter plot of Kodaikanal and Debracen sunspot data for heliographic coordi-
nates. (a) The scatter plot for latitudes, and (b) the scatter plot for longitudes from the central
meridian.
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area (WA), the umbra area (UA), the penumbra area (PA) and the umbra–penumbra
area ratio (UA/PA) with the corresponding error bars are presented.

In order to validate our detected method of sunspots and computation of their area
and heliographic coordinates, the different parameters of the sunspots are compared
with the estimated parameters obtained from different studies. One such comparison
with the results of Debracen sunspot data is presented in this study. Typical scatter
plots of heliographic coordinates (Figures 7), area (Figures 8) and umbra–penumbra
area ratio (Figures 9) are presented. Monthly average variation of whole spot area
and umbra–penumbra area ratio (Figures 10) for a period of one year is also plotted
and compared with the Debracen data.

From all these results, one can notice from the scatter plots that there is almost a
perfect association between Kodaikanal and Debracen results, hence validating our
method of detection of sunspots and the estimation of their heliographic coordinates
and area respectively. In fact, the goodness of fit and association is judged by the

Figure 8. A scatter plot of Kodaikanal and Debracen data for area of sunspots. (a) The scatter
plot for whole spot area, and (b) the scatter plot for umbral area of the sunspots.
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Figure 9. A scatter plot of Kodaikanal and Debracen data for area of sunspots. (a) The scatter
plot for penumbral area of sunspots and (b) the scatter plot for umbra–penumbra area ratio of
sunspots.

computation of χ2. However, as the estimated errors are very small (∼1%) and χ2 is
inversely proportional to estimated errors, apparent value of χ2 is very large. In order
to avoid this inconsistency, all the parameters with their error bars are normalized
and χ2 is computed. From all the illustrated plots, one can notice that χ2 is very
small suggesting good association between both the results.

From the monthly variation of whole spot area and umbra–penumbra area ratio
plots, it is clear that both the Kodaikanal and Debracen results follow a similar trend
and moreover, the Debracen results are well within the error bars.

4.1 Advantages and disadvantages of the new method

For all the algorithms described in section 3, an IDL code is developed to detect sun-
spots and to estimate their parameters from the digitized images of the Kodaikanal
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Figure 10. Monthly variation of whole spot area and umbra–penumbra area ratio of
Kodaikanal and Debracen sunspot data. (a) The variation of whole spot area and (b) the varia-
tion of umbra–penumbra area ratio.

Observatory. This code automatically detects the edge of the solar disc, computes its
radius and center simultaneously and uniquely, removes limb-darkening and computes
heliographic coordinates – all in one go. It also automatically detects the sunspots and
estimates the required parameters, whose results perfectly match with those of the
already existing results, such as the Debracen sunspot results. Our method also com-
putes the error bars in all the estimates, making the computation more accurate.
This IDL code is fully-automatic, thus reducing the errors introduced by human
bias.

However, an important disadvantage of this code is that our method uses a certain
intensity threshold for umbra detection, which is not particularly unique. One more
disadvantage lies with the thin wire across each image, that produces some unwanted
results in few of the images.
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5. Conclusion

A fully automized algorithm was successfully developed to analyze the Kodaikanal
solar white light images. The algorithm includes computation of the radius and
center of the solar disc simultaneously and uniquely. Our developed algorithm fur-
ther detects sunspots and estimates the average latitude and longitude from central
meridian of each of the detected sunspots. It separates the umbra from each sunspot
and computes the area of both the whole spot and the umbra. The results obtained
are compared with the existing Debracen data and it is found that the heliographic
coordinates of sunspots and their areas, estimated by our method are almost simi-
lar to the Debracen results. Hence, this validates our methodology of detection of
sunspots and estimation of area and their respective heliographic coordinates.
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Appendices

Appendix A

Circle-fitting

Let xi and yi be the x- and y-coordinates of the edge detected pixels (as illustrated
in Figure 2), respectively, where i varies from 1 to N, given N is the total number
of detected pixels. Let x̄ and ȳ be the mean of the respective xi and yi coordinates.
That is,

x̄ = �xi

N

and

ȳ = �yi

N
.

Firstly, we convert the (xi, yi) coordinates into a new system of coordinates
(ui, vi) with

ui = xi − x̄

and
vi = yi − ȳ.

Let (uc, vc) be the center of the circle and let R be its radius in this new coordinate
system. Let α = R2.

Distance of any point (ui, vi) from the center is =
√

(ui − uc)2 + (vi − vc)2.
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According to the least square fit, best fit is obtained when the function S =∑
i[g(ui, vi)]2 is minimized, where g(ui, vi) = (ui −uc)

2 + (vi − vc)
2 −α. Hence,

the partial derivatives of these functions with respect to α, uc and vc should all be
zero.

Condition 1:

∂S

∂α
= 2 ×

∑
i

g[ui, vi] ∂g

∂α
= 0 (A1)

⇒ −2 ×
∑

i

g[ui, vi] = 0

⇒
∑

i

[(ui − uc)
2 + (vi − vc)

2 − α] = 0

⇒
∑

i

ui
2 +

∑
i

uc
2 +

∑
i

vi
2 +

∑
i

vc
2 − 2

[∑
i

uiuc +
∑

i

vivc

]
=

∑
i

α

⇒
∑

i

ui
2 +

∑
i

vi
2 + N[uc

2 + vc
2] − 2

[
uc

∑
i

ui + vc

∑
i

vi

]
= Nα . (A2)

It is known that
∑

i ui = ∑
i (xi − x̄) = Nx̄ − Nx̄ = 0. Similarly,

∑
i vi = 0.

Putting this in equation (A2), we get∑
i

ui
2 +

∑
i

vi
2 + N[uc

2 + vc
2] = Nα . (A3)

Condition 2:

∂S

∂uc

= 2 ×
∑

i

g[ui, vi] ∂g

∂uc

= 0,

⇒
∑

i

(ui − uc)g(ui, vi) = 0. (A4)

On expansion,

⇒
∑

i

ui
3 +

∑
i

uivi
2 − 2uc

∑
i

ui
2 − 2vc

∑
i

uivi − uc

∑
i

ui
2

− uc

∑
i

vi
2 − Nuc

3 − Nucvc
2 + Nαuc = 0.

Substituting the value of Nα from equation (A3), the following equation is
obtained:

uc

∑
i

ui
2 + vc

∑
i

uivi = 1

2

[∑
i

ui
3 +

∑
i

uivi
2

]
. (A5)
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Condition 3:

∂S

∂vc

= 2 ×
∑

i

g[ui, vi] ∂g

∂vc

= 0 . (A6)

Proceeding the same way as in Condition 2, the following equation is obtained:

uc

∑
i

uivi + vc

∑
i

vi
2+ = 1

2

[∑
i

vi
3 +

∑
i

viui
2

]
. (A7)

Solving simultaneous equations (A5) and (A7), the values of uc and vc are
obtained. Then from equation (A3),

α = R2 = (uc
2 + vc

2) + 1

N

[∑
i

ui
2 +

∑
i

vi
2

]
, (A8)

and

R = √
α =

√
(uc

2 + vc
2) + 1

N
[�ui

2 + �vi
2] . (A9)

From this equation, the value of radius, R of the solar disc is estimated. The next
step is, converting (uc, vc) into the original coordinate system, that is obtained by
adding the respective mean values

xc = uc + x̄

and
yc = vc + ȳ.

Hence, using this method, the coordinates of the center of the image (xc, yc) and
the radius R, is computed uniquely.

Appendix B

Heliographic coordinates

Following Smith (1990), we compute the heliographic coordinates of the sunspots
as follows. To compute the heliographic latitude θ , heliographic longitude L and
longitude difference from central meridian l, it is necessary to calculate the daily
values of heliographic latitude (Bo) and longitude (Bo) of the disk center as well as
the polar angle P .

Let T = JD−2415020
36525 , where JD is the Julian Date of observation and T is the

number of Julian centuries since epoch 1900 Jan 0.5.
The geometric mean latitude L′, mean anomaly g and right ascension 	 of the

ascending node of the Sun are

L′ = 279◦.69668 + 36000◦.76892T + 0◦.0003025T 2,

g = 358◦.47583 + 35999◦.04975T − 0◦.00015T 2 − 0◦.0000033T 2

and
	 = 259◦.18 − 1934◦.142T .
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The true longitude λ	, of the Sun is given by

λ	 = L′ + C,

where C is called the equation of the center and is defined as

C = (1◦.91946 − 0◦.004789T − 0◦.000014T 2) sin(g)

+(0◦.020094 − 0◦.0001T )sin(2g) + 0◦.000293 sin(3g).

The apparent longitude of the Sun, λa consists of the true longitude, λ	 and
corrections for aberration and nutation

λa = λ	 − 0◦.00569 − 0◦.00479 sin(	).

The actual physical ephemeris computations begin with

φ = 360

25.38
(JD − 2398220).

The inclination of the equator of the Sun relative to the ecliptic plane is I = 7.25◦
and the longitude of the ascending node of the solar equator, K is

K = 74◦.3646 + 1◦.395833T .

X and Y are defined such that

tan(X) = − cos(λ′) tan(ε)

and
tan(Y ) = − cos(λ	 − K) tan(I ),

where ε is the obliquity of the ecliptic and λ′ is the Sun’s apparent longitude
corrected for nutation.

The mean obliquity εo is determined from

εo = 23◦.452295 − 0◦.0130125T − 0◦.00000164T 2 + 0◦.000000503T 3,

and with the correction of nutation as

ε = εo + 0◦.00256 cos(	).

Finally, polar angle P, Bo and Lo can be computed as follows:

P = X + Y,

Bo = sin−1[sin(λ	 − K) sin(I )],
Lo = tan−1

[
sin(K − λ	) cos(I )

− cos(K − λ	)

]
+ M,

where M = 360◦ − φ. φ must be reduced to the range 0◦ −360◦ by subtracting
integral multiples of 360◦.

The solar radius as viewed from the Earth changes daily due to the revolution of
Earth around the Sun. Hence, the resolution of the pixels changes daily as well.
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If n is the number of days from J2000.0, the mean anomaly g, measured from the
epoch J2000.0 is defined as follows:

n = JD − 2451545.0,

g = 357◦.528 + 0◦.9856003 n.

g is reduced to the of range 0◦ to 360◦ by adding multiples of 360◦. Distance of
the Sun from Earth, R′, in AU is

R′ = 1.00014 − 0.01671 cos(g) − 0.00014 cos(2g).

The semi-diameter of the Sun, Rad in arc-seconds is

Rad =
(

0.2666

R′

)◦
× 3600′′.

Mathematical determination of the heliographic coordinates is based on the polar
coordinates (r, θ ′). This means, before computation of heliographic coordinates,
the observed Sun’s image in cartesian coordinates is transformed to polar coordi-
nates. The angular distance ρ of any pixel from the center of the solar disc is then
determined from the equation

sin(ρ) = r

R
,

where R is the radius of the solar disc as described in Appendix A, using circle fit.
To calculate the heliographic latitude θ and longitude l from the central meridian of
any pixel, the following equations are used:

sin(θ) = cos(ρ) sin(Bo) + sin(ρ) cos(Bo) sin(θ ′),

sin(l) = cos(θ ′) sin(ρ)

cos(θ)
.

The heliographic longitude is obtained by adding the value of Lo to the the
longitudinal difference l of the pixel from the central meridian.

L = Lo + l.

For more accurate results, correction for distortion of the Sun’s image is consid-
ered. Telescope objective lens with a short focal length can contribute to distortion
of the projected image. This distortion is corrected by using the following empirical
relations:

T = Rad

15
,

Ro = 29.5953 cos

[
cos−1(−0.00629T )

3
+ 240

]
,

ρ′ = Ro × r

R

and

ρ = sin−1
(

sin(ρ′)
sin(Ro)

)
− ρ′.
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This ρ is then taken as the corrected angular distance and then the heliographic
coordinates are computed as mentioned above.
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