
POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS
FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

K. Sowmya
1
, K. N. Nagendra

1
, M. Sampoorna

1
, and J. O. Stenflo

2,3

1 Indian Institute of Astrophysics, Koramangala, Bengaluru, India; ksowmya@iiap.res.in, knn@iiap.res.in, sampoorna@iiap.res.in
2 Institute of Astronomy, ETH Zurich, CH-8093 Zurich, Switzerland; stenflo@astro.phys.ethz.ch

3 Istituto Ricerche Solari Locarno, Via Patocchi, 6605 Locarno-Monti, Switzerland
Received 2015 April 3; accepted 2015 October 6; published 2015 November 25

ABSTRACT

Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states
of the same term influences the polarization for some of the diagnostically important lines of the Sunʼs spectrum,
like the sodium and lithium doublets. The polarization signatures of this combined interference contain information
on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of
polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the
photon frequencies arising due to the Doppler motions of the atoms. We consider the scattering atoms to be under
the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg
approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise
from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic
system as a concrete example that is relevant to the Sun.
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1. INTRODUCTION

In the present paper, we address the problem of quantum
interference between the magnetic substates of the hyperfine
structure (F) states pertaining to different fine structure (J)
states of a given term, in the presence of magnetic fields of
arbitrary strength covering the Hanle, Zeeman, and Paschen–
Back (PB) effect regimes. We will refer to this as “combined
interference” or the “F+ J state interference.” We develop the
necessary theory including the effects of partial frequency
redistribution (PRD) in the absence of collisions, assuming the
lower levels to be unpolarized and infinitely sharp. We refer to
this theory as the “combined theory” throughout the paper.

We consider a two-term atom with hyperfine structure under
the assumption that the lower term is unpolarized. In the
absence of a magnetic field, the atomic transitions in a two-term
atom take place between the degenerate magnetic substates
belonging to the F states. An applied magnetic field lifts the
degeneracies and modifies the energies of these magnetic
substates. The amount of splitting (or the energy change)
produced by the magnetic field defines the regimes in which
Zeeman and PB effects act. Depending on the relative
magnitudes of the fine structure splitting (FS), the hyperfine
structure splitting (HFS), and the magnetic splitting (MS), we
characterize the magnetic field strength into five regimes. These
regimes are illustrated schematically in Figure 1. In the
approach presented in this paper, we account for the
interferences between the magnetic substates pertaining to the
same F state, the magnetic substates belonging to different F
states of the same J state, and the magnetic substates belonging
to different F states pertaining to different J states. Although all
three types of interference are always present, depending on the
field strength one or two of them would dominate as depicted in
the different panels of Figure 1.

Within the framework of non-relativistic quantum electro-
dynamics, Casini & Manso Sainz (2005) formulated a theory
for polarized scattering on a multi-term atom with hyperfine
structure in the presence of an arbitrary strength magnetic field

under the approximation of complete frequency redistribution
(CRD). In the present paper, we restrict our treatment to a two-
term atom with HFS and consider the limit of coherent
scattering in the atomic frame with Doppler frequency
redistribution in the observerʼs frame. We base our formalism
on the Kramers–Heisenberg coherency matrix approach of
Stenflo (1994). In our combined theory, we do not account for
the coherences among the states in the lower term. In a recent
paper, Stenflo (2015) indicated how they may be included by
extending the coherency matrix approach to the multi-
level case.
Based on the concept of “metalevels,” Landi Degl’Innocenti

et al. (1997) formulated a theory that is able to treat coherent
scattering in the atomic rest frame for a two-term atom with
hyperfine structure. Recently, Casini et al. (2014) presented a
generalized frequency redistribution function for the polarized
two-term atom in arbitrary fields, based on a new formulation
of the quantum scattering theory. Our approach is an alternative
approach to the same problem and is conceptually more
transparent, although limited to infinitely sharp and unpolarized
lower levels.
Belluzzi et al. (2009) studied the linear polarization produced

due to scattering on the D lines of neutral lithium isotopes.
They employed the density matrix formalism of Landi
Degl’Innocenti & Landolfi (2004, hereafter LL04), together
with the approximation of CRD, to treat the quantum
interference between the fine and hyperfine structure states.
They restricted their study to the non-magnetic case. However,
they explored the sensitivity of the Stokes profiles to the
microturbulent magnetic fields. For our study in the present
paper, we consider the same D lines of lithium isotopes and
present in detail the effects of a deterministic magnetic field of
arbitrary strength. For this atomic line system, the PB effect in
both the fine and the hyperfine structure states occurs for the
magnetic field strengths encountered on the Sun. We restrict
our treatment to the single scattering case, since our aim here is
to explore the basic physical effects of the combined theory.
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2. THE ATOMIC MODEL

In this section, we describe the structure of the model atom
considered for our studies and its interaction with an external
magnetic field. We consider a two-term atom, each state of
which is designated by the quantum numbers L (orbital), S
(electron spin), J (= L+ S), Is (nuclear spin), F (= J+ Is), and
μ (projection of F onto the quantization axis).

2.1. The Atomic Hamiltonian

Under the L–S coupling scheme, the atomic Hamiltonian for
a two-term atom with hyperfine structure is given by
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where LS( )z is a constant having the dimensions of energy,
and J and J are the magnetic dipole and electric
quadrupole hyperfine structure constants, respectively. The
first term in the above equation is a measure of the FS while
the second and the third terms provide a measure of the HFS.
The eigenvalues of the atomic Hamiltonian represent the
energies of the F states, calculated with respect to the energy
of the corresponding term.

2.2. The Magnetic and the Total Hamiltonians

An external magnetic field lifts the degeneracies of the
magnetic substates of the F states and changes their energies by
an amount given by the eigenvalues of the magnetic
Hamiltonian

J S B. 2B 0 ( ) · ( ) m= +

Assuming the quantization axis to be along the magnetic field
(z-axis of the reference system), the matrix elements of the total
Hamiltonian, ,T A B  = + can be written as
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where F F I I J J1 1 1 ,s s( ) ( ) ( ) = + - + - + and μ0 is the
Bohr magneton. The total Hamiltonian matrix in the combined
theory is no longer a symmetric tridiagonal matrix, unlike the
case of the PB effect in fine or hyperfine structure states.
Instead, it is a full symmetric matrix and we diagonalize it
using the Givens–Householder method described in Ortega
(1968). We test the diagonalization code written for the
problem at hand using the principle of spectroscopic stability
(PSS) presented in Appendix B.

2.3. Eigenvalues and Eigenvectors

The diagonalization of the total Hamiltonian gives the
energy eigenvectors in terms of the linear Zeeman effect regime
basis LSJI Fs∣ mñ through the expansion coefficients CJF

k as

LSI k C LSI LSJI F, , . 4s
JF

JF
k

s s( ) ( )åm m m=

Figure 1. Illustration of the magnetic field strength regimes in the combined
theory. For illustration purposes, a 2P term with nuclear spin 3/2 is considered.
The various splittings indicated are not to scale. Panels (a)–(d) show the first
four regimes of the field strength. When MS is much greater than FS, we have a
complete PB regime for both J and F, which we call the fifth regime (not
illustrated in the figure).
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The symbol k labels different states corresponding to the given
values of L S I, , ,s( )m and its dimension is given by

N d I d I1 max , . 5k
d L S

L S
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∣ ∣
å m= + + - -

= -

+

We assume the C-coefficients appearing in Equation (4) to be
real because the total Hamiltonian is real. We obtain the C-
coefficients and the corresponding eigenvalues denoted here as
E LSI ,k s( )m after diagonalizing the atomic and magnetic
Hamiltonians presented in Sections 2.1 and 2.2.

3. THE REDISTRIBUTION MATRIX FOR THE
COMBINED J AND F STATE INTERFERENCES

The methodology followed to derive the PRD matrix (RM)
for the combined case of J and F state interferences in the
presence of a magnetic field is similar to that presented in
Sowmya et al. (2014b) for F state interference alone. For the
sake of clarity, we only present the important equations
involved in the derivation.

In a single scattering event, the scattered radiation is related
to the incident radiation through the Mueller matrix given by

M TWT . 61 ( )= -

Here, T and T 1- are the purely mathematical transformation
matrices and W is the coherency matrix for a transition
a b f  defined by

w wW . 7
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Note that the summations over the initial (a) and final (f) states
are incoherent, and therefore do not allow the lower levels to
interfere. w in the above equation is the Jones matrix and its
elements are given by the Kramers–Heisenberg formula, which
gives the complex probability amplitudes for the scattering
a b f  as
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Here, ω= 2πξ is the circular frequency of the scattered
radiation. bfw is the energy difference between the excited
and final levels and γ is the damping constant.

Using Equation (4) in the Kramers–Heisenberg formula, and
noting that Lf= La and using the Wigner–Eckart theorem (see
Equations (2.96) and (2.108) of LL04), we arrive at
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Here, ε are the spherical vector components of the polarization
unit vectors (ea and eb) with α and β referring to the scattered
and incident rays, respectively. k kb b f f

( )n xF -g m m is the
frequency-normalized profile function defined as
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with h being the Planck constant.
Inserting Equation (9) into Equation (7), and after elaborate

algebra (see for example Sowmya et al. 2014b), we obtain the
normalized RM, R ,ij

II for type-II scattering in the laboratory
frame as
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Here, ni,Q
K ( ) are the irreducible spherical tensors for

polarimetry (Landi Degl’Innocenti 1984) with i= 0, 1, 2, 3
referring to the Stokes parameters, the multipolar index K= 0,
1, 2, and Q K K, .[ ]Î - n¢ and n represent the directions of the
incident and scattered rays, respectively, and B is the vector
magnetic field. x′ and x are the non-dimensional frequencies in
Doppler width units (see Appendix A). k kb b b b

b m m¢ ¢
is the Hanle

angle given by
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The explicit forms of the auxiliary functions hII and fII

appearing in Equation (12) are given in Appendix A. When
Is= 0, Equation (12) reduces to the PRD matrix for J state
interference alone (see Equation (11) of Sowmya et al. 2014a).
When FS is neglected, Equation (12) reduces to the expression
of RM for pure F state interference (see Equation (16) of
Sowmya et al. 2014b). When we neglect both FS and HFS, we
recover RM for the L L La b a  transition (analogous to a
two-level atom case) in the presence of a magnetic field.

4. RESULTS

In this section, we present the results obtained from the
combined theory for the case of the single scattering of an
unpolarized, spectrally flat incident radiation beam by an atom
with both non-zero electron and nuclear spins. Considering the
relevance to solar applications, we choose the D line system at
6708Å from neutral 6Li and 7Li isotopes as an example to test
the formalism developed. We take the values of the atomic
parameters and isotope abundances for this system from Table
1 of Belluzzi et al. (2009).

4.1. Level-crossings and Avoided Crossings

In Figures 2 and 3, we show the dependence of the energies
of the levels in the 2P terms of the 6Li and 7Li isotopes on the
magnetic field strength. Such figures provide us with informa-
tion on the field strength regimes in which processes like the
Zeeman effect, incomplete PB effect, and complete PB effect

operate. They help us to choose the magnetic field strength
values for studying the effects of level-crossing on the Stokes
profiles. We choose different scales for the x-axes in different
panels to bring out the level-crossings which occur at different
field strengths due to the difference in the magnitudes of FS
and HFS. The y-axes in all of the panels in both figures denote
the energy shift of the levels from the parent L= 1 level.
In panels (a) and (c) of Figure 2, we plot the energies of the

magnetic substates of the F states belonging to the 2P3/2 and
2P1/2 levels of 6Li, respectively, as a function of the field
strength. Since the nuclear spin of 6Li is 1, we have half-integer
values for F. In these panels, we see that the magnetic substates
of the F states of 2P3/2 cross at nine points while those of

2P1/2
do not cross. We note a similar behavior in the case of the F
states belonging to the 2P3/2 and

2P1/2 levels of
7Li (see panels

(b) and (d), respectively). The magnetic substates of the F
states of 2P1/2 do not cross while those of 2P3/2 cross at 14
points. In the weak field regime (e.g., 0–60 G), we see the PB
effect for the F states, and in the strong field regime (for kG
fields) we see the PB effect for the J states. In Tables 1 and 2,
we list the quantum numbers of the levels which cross along
with their corresponding field strengths for the weak field
regime. The numbers indicated in boldface in these tables
correspond to those crossings which satisfy bm mD = -¢

2.bm =  We discuss the effects of these level-crossings on
the polarization in later sections.
In panels (a) and (d) of Figure 3, we plot the energies of the

magnetic substates of the 2P terms of 6Li and 7Li as a function
of the magnetic field strength. In these panels, the points where
the levels cross are denoted as c1 and c2 for 6Li and as c′1 and
c′2 for 7Li. When we zoom into these crossing points, we see
other interesting phenomena (see panels (b), (c), (e), and (f)).
For example, at c1, we see a crossing of the bunch of lower-
most three levels going downward in Figure 2(a) with the three
levels going upward in Figure 2(c). Although the magnetic
substates of the F states appear to be degenerate in Figure 3(a),
they are not fully degenerate, as can be seen in Figure 3(b).
Similar behavior can be seen in Figures 3(c), (e), and (f), and
the levels correspond to the magnetic substates of the F states
shown in Figure 2.
In addition to the usual level-crossings, we see several

avoided crossings in Figures 3(b), (c), (e), and (f). For example,
in panel (b), we see one avoided crossing marked a1, two in
panel (c) marked a2 and a3, two in panel (e) marked a′1 and a′
2, and three in panel (f) marked a′3, a′4, and a′5. As we can see
from the figure, these avoided crossings take place between the
magnetic substates with the same μ values (−1/2 in panel (b),
−3/2 and −1/2 in panel (c), 0 and −1 in panel (e), and −2,
−1, and 0 in panel (f)). The levels with the same μ cannot cross
due to the small interaction that takes place between them. This
interaction is determined by the off-diagonal elements of the
magnetic hyperfine interaction Hamiltonian which couple the
states with different J values (Brog et al. 1967; Wieder & Eck
1967; Arimondo et al. 1977). A rapid transformation in the
eigenvector basis takes place around the region of avoided
crossing. This is described in Bommier (1980) and in LL04
(see also Sowmya et al. 2014a, 2014b).

4.2. Line Splitting Diagrams

The line splitting diagram shows the displacement of the
magnetic components from the line center (corresponding to
the wavelength of the L 0 1 0=   transition in the
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reference isotope 7Li) and the strengths of these components
for a given field strength. In Figure 4, we show the line splitting
diagrams for different B values. We take into account the
isotope shift and the solar abundances of the two isotopes while
computing the strengths and magnetic shifts. As mentioned
earlier, the components arising for B= 0 correspond to the
transitions between the unperturbed F states. We see that the
hyperfine structure components of the D lines are well
separated when B= 0 due to the relatively large FS. When
the magnetic field is applied, the degeneracy of the magnetic
substates is lifted. As a result, 70 allowed transitions take place
in 6Li and 106 in 7Li. This explains why the diagrams become
crowded as the field strength increases. We see that the
magnetic displacements increase with an increase in B as
expected. In the diagrams shown, we note that the MS is
nonlinear and is a characteristic of the incomplete PB regime.

4.3. Single Scattered Stokes Profiles

In this section, we present the Stokes profiles for various B
values computed using the combined theory for the single
scattering case. We choose a coordinate system (see Figure 5)
in which the magnetic field lies in the horizontal (xy) plane
making angles θB= 90° and χB= 45°. We make this choice
following Stenflo (1998) in order to bring out clearly the effects
of the magnetic field. We assume the unpolarized incident ray
to be along the vertical (z-axis) and the scattered ray (or the line
of sight) to lie in the horizontal plane along the x-axis. Thus,
the angles for the incident and the scattered rays become

μ′= 1, χ′= 0°, μ= 0, and χ= 0°. We use the fact that the
lithium lines are optically thin and only single scattering is
considered here to add the Stokes profiles computed for the
individual isotopes after weighting them by their respective
abundances. In Figures 6–9, we compare the single scattered
Stokes profiles for three cases: the cases of pure F state
interference (dotted lines) represented by a two-level atom with
hyperfine structure, pure J state interference (dashed lines)
represented by a two-term atom without hyperfine structure,
and the combined theory (solid lines) represented by a two-
term atom with hyperfine structure. We choose a Doppler width
of 60 mÅ for all of the components of the multiplet when
computing the Stokes profiles. For this particular value of the
Doppler width, the theoretical Q/I profile closely resembles the
observed Q/I profile (see Belluzzi et al. 2009). We use the
Einstein A coefficient of 3.689× 107 s−1 for all of the
components.
In Figure 6, we show the Stokes profiles computed in the

absence of magnetic fields for 100% 7Li in panel (a), for 100%
6Li in panel (b), and for both the isotopes combined according
to their percentage abundance in panel (c). In panels (a) and (b),
we see two peaks corresponding to the D lines of the two
isotopes in intensity. The intensities of the D lines in both the
isotopes are of similar magnitude since we have assumed 100%
abundance for the two isotopes. We also note that the
wavelength positions of the D lines of 6Li are different from
those of 7Li due to the isotope shift. In panel (c), we see two
distinct peaks in intensity. The first peak to the left is due to the
7Li D2 line. The second peak falls at the line center positions of

Figure 2. Energies of the HFS magnetic substates as a function of the magnetic field strength for 6Li (left column) and 7Li (right column). Panels (a) and (b)
correspond, respectively, to the 2P3/2 levels of

6Li and 7Li, while panels (c) and (d) correspond to the 2P1/2 levels of
6Li and 7Li, respectively. The nuclear spins of 6Li

and 7Li are 1 and 3/2, respectively.
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Figure 3. Energies of the magnetic substates belonging to the 2P terms as a function of the magnetic field strength for 6Li (a) and 7Li (d). Blow up of the crossing
regions c1 (b) and c2 (c) in 6Li and c′1 (e) and c′2 (f) in 7Li. In the panels (b), (c), (e), and (f) the levels are identified by their magnetic quantum number values μ.

Table 1
Magnetic Field Strengths (Approximate Values in G) for Which the Magnetic

Substates of the F States Cross in the 6Li Isotope

F Fb b⧹ ¢ 1/2 3/2 3/2 3/2

b b⧹m m ¢ 1/2 −1/2 1/2 3/2

3/2 −3/2 0.57 L L L
5/2 −5/2 1.61 1.26 0.72 0.63
5/2 −3/2 L L 1.3 0.9
5/2 −1/2 L L 2.93 2.25

Note. For instance, the crossing between F3 2, 3 2b b( )m = - = and
F1 2, 1 2b b( )m = =¢ ¢ occurs at B ∼ 0.57 G. The numbers highlighted in

boldface represent the field strength values for which the level-crossings
corresponding to 2b bm m mD = - = ¢ occur.

Table 2
Magnetic Field Strengths (Approximate Values in G) for Which the Magnetic

Substates of the F States Cross in the 7Li Isotope

F Fb b⧹ ¢ 1 1 2 2 2 2

b b⧹m m ¢ 0 +1 −1 0 +1 +2

2 −2 2.2 2.6 L L L L
3 −3 5.2 5.95 4.15 2.65 2.35 2.1
3 −2 L L L 3.7 3.25 2.95
3 −1 L L L 8.8 7.25 6.0

Note. For instance, the crossing between F2, 2b b( )m = - = and
F0, 1b b( )m = =¢ ¢ occurs at B ∼ 2.2 G. The numbers highlighted in boldface

represent the field strength values for which the level-crossings corresponding
to 2b bm m mD = - = ¢ occur.
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7Li D1 and
6Li D2. However, the dominant contribution comes

from 7Li D1 due to its relatively larger abundance. A small
bump to the right of the second peak is due to the 6Li D1 line. A
small difference in the intensity at the 7Li D2 peak between the
dashed lines and the other two cases is seen in panels (a) and
(c). It is clear from the figure that this discrepancy is caused by
7Li. Comparing the solid, dotted, and dashed profiles, we come
to the conclusion that the HFS is at the origin of this
discrepancy. This is because the solid and dotted lines
computed by including HFS perfectly match and only the

dashed lines computed without HFS differ from the other two
cases. The discrepancy is very small in the case of 6Li because
of smaller HFS in 6Li compared to that in 7Li. The reason for
this discrepancy is due to the asymmetric splitting of the HFS
components about the given J state and also due to the finite
widths of the components. This difference decreases (graphi-
cally indistinguishable) when a magnetic field is applied (for
example, when B= 5 G as seen in Figure 7) because of the
superposition of a large number of magnetic components. In
contrast, this difference is about an order of magnitude larger in

Figure 4. Line splitting diagrams for the two lithium isotopes for the field strengths indicated. The solid lines represent the magnetic components of 7Li while the
dashed lines represent those of 6Li. Vertical dotted lines mark the positions of the D lines of the two isotopes. Δλ = 0 corresponds to the line center wavelength of
L 0 1 0=   transition in 7Li.
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the non-magnetic case. As we increase the field strength, the
intensity profiles broaden due to an increased separation
between the magnetic components.

When B= 0, the Q/I profiles exhibit a multi-step behavior
around the line center positions of the D1 and D2 lines of both
isotopes. We see the effects of quantum interference clearly in
Q/I. In the 7Li D2 core, significant depolarization is caused by
the HFS compared to the case where this splitting is neglected
(compare the solid and dashed lines in panels (a) and (c)). A
similar depolarization is also exhibited by the core of the 6Li D2

line (see panels (b) and (c)). However, in the scale adopted, the
solid and dashed lines appear to merge around the core of 6Li
D2 in panel (c), as the Q/I values of 6Li D2 are an order of
magnitude smaller than those of 7Li D2 because of their relative
abundances. The D1 lines remain upolarized. As expected, the
solid lines merge with the dotted line in the cores of lithium
lines while they coincide with the dashed lines in the wings.
When a magnetic field is applied, we see a depolarization in Q/
I and a generation of the U/I signal in the cores of the lithium
lines due to the Hanle effect. We note that the combined theory
results match more closely the pure J state interference results
for fields of the order of 100 G. This behavior continues until
the level-crossing field strength of B= 3238 G for fine structure
is reached.

For kG fields, we are by far in the complete PB regime for
the F states. In this regime, the J and Is couple strongly to the
magnetic field and the interaction between J and Is becomes
negligible. Therefore, one would expect the HFS magnetic
substates to be fully degenerate, and therefore the solid and
dashed lines should match closely for fields of the order of kG.
However, for the level-crossing field strengths, we see
considerable differences between the solid and dashed lines,
especially in U/I. In order to understand this, we compare the
Stokes profiles for 7Li and 6Li separately in panel (a) and (b) of
Figure 8 with the combined profiles in panel (c). We do this to
check whether a particular isotope is giving rise to this
difference. We note that this difference between the solid and
dashed lines prevails in all three panels (i.e., in both isotopes).
We attribute this difference in the shape and amplitude between
the solid and the dashed lines to HFS, the level-crossings, and
avoided crossings between the HFS magnetic substates. When

we look at Figure 3, we find that the HFS magnetic substates
have finite energy differences and are not fully degenerate in
the complete PB regime for the F states. We see several
crossings as well as a few avoided crossings. These level-
crossings and avoided crossings between the non-degenerate
HFS magnetic substates lead to a modification of the coherence
and significant Hanle rotation, thereby affecting the shape and

Figure 5. Scattering geometry considered for the results presented in
Section 4.3.

Figure 6. Single scattered Stokes profiles for the lithium D line system in the
absence of a magnetic field: (a) 100% 7Li, (b) 100% 6Li, and (c) 7Li and 6Li
combined according to their percentage abundance. The line types are indicated
in the intensity panels. The geometry considered for scattering is μ = 0, μ′ = 1,
χ = 0°, and χ′ = 0°. The vertical dotted lines represent the line center
wavelength positions of the 7Li D2,

7Li D1,
6Li D2, and

6Li D1 lines in the
absence of magnetic fields.
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amplitude of the U/I profiles. The HFS effects show more
prominently in the polarization diagrams which will be
discussed in Section 4.5. For the geometry under consideration,

this effect is significantly seen for B= 3238 G. For a level-
crossing field strength of 4855 G, the Stokes profiles show
somewhat different behavior.

Figure 7. Same as Figure 6, but in the presence of a magnetic field. The left and the right panels correspond to different field strength values. The field orientation
(θB = 90°, χB = 45°) is the same in both the panels. Refer to Section 4.3 for the scattering geometry.

Figure 8. Stokes profiles obtained for B = 3238 G: (a) 100% 7Li, (b) 100% 6Li, and (c) 7Li and 6Li combined according to their percentage abundance. Refer to
Section 4.3 for the scattering geometry. When B = 3238 G, the U/I values are so small for the dotted line case that they become indistinguishable from the zero line.
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We also note that for fields of the order of kG, differences
between the solid and dashed lines remain only in the far left
wing (see Figures 8 and 9). From Figure 8 it is clear that this
difference in the far blue wings is only due to the 7Li isotope
(compare panels (a)–(c)). This can be understood with the help
of the line splitting diagrams for level-crossing fields in
Figure 4 in comparison with the corresponding diagrams in
Figure 3 of Sowmya et al. (2014a; a direct comparison of the
displacements can be made as the zero points in the two figures
are the same). In a two-term atom without HFS, when a
magnetic field is applied, the various FS magnetic components
are either blue or redshifted from the line center depending on
their energies. When HFS is included, the HFS magnetic
components are distributed around the positions of the FS
magnetic components in the absence of HFS. We find that the
positions of the HFS magnetic components in Figure 4
correspond well with the wavelength positions of the FS
magnetic components in Figure 3 of Sowmya et al. (2014a),
except for the bunch of magnetic components to the extreme
left represented by solid lines. The magnetic field leads to a
large blue shift of this bunch, which consists of three σb
(Δμ= μb− μa=+1), two π (Δμ= 0) and one σr (Δμ=−1)
components. These components (otherwise not present at this
wavelength position when HFS is neglected) give rise to the
systematic difference in Q/I, U/I, and V/I in the far blue wing
of the D2 line of

7Li. However, they do not affect the intensity.
The V/I profiles remain somewhat indistinguishable between

the three cases considered, except for very weak fields like 5 G
as in Figure 7. F state interference significantly changes the V/I
profile at the 7Li D2 wavelength position. This is a signature of
the alignment-to-orientation (A-O) conversion mechanism (see

Landi Degl’Innocenti 1982, and LL04) acting in the incomplete
PB regime for the F states. As described in LL04, this occurs
because of the double summation over K and K′ appearing in
Equation (12) and because the spherical tensor n3,Q

K ( ) is
non-zero only when K= 1 (see Equation (33) of Appendix C).
This means that circular polarization can be generated by
resonance scattering even if the atom is not exposed to
circularly polarized light. The alignment present in the
radiation field is converted to the orientation in the upper
term. This orientation in the upper F states gives rise to
circularly polarized light. As discussed earlier, small differ-
ences appear in the far blue wings for fields equal to or larger
than the level-crossing field strengths.
Finally, we remark that the discussion presented above

concerning the comparison of the single scattered Stokes
profiles between the three cases (namely, the pure J state, pure
F state, and combined J and F interference) also remains valid
for other scattering geometries.
In Figure 10, we show the Stokes profiles obtained after

including a weakly polarized background continuum. We refer
the reader to Section 4.3 of Sowmya et al. (2014a) for details
on how we add the continuum contribution and on the
parameters used for the continuum. We compare this figure
with Figure 4 of Sowmya et al. (2014a) and find that the HFS
does not cause any change in the intensities. When B= 0 the
HFS causes a depolarization in the core of Q/I without
affecting the shape of the profile. For other field strengths, there
is only a slight difference in the amplitude of the profiles as
compared to the case without HFS, although their shapes
remain the same. The U/I profiles differ both in amplitude and

Figure 9. Stokes profiles obtained for B = 4855 G and B = 5000 G. Refer to Section 4.3 for the scattering geometry.
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shape for B= 3238 G. This difference is due to HFS. When
HFS is neglected, there is only one level-crossing at this field
strength. On the other hand, when HFS is included, there are
several level-crossings around this field strength (see
Figures 3(b) and (e)). V/I profiles have the same shapes and
amplitudes as compared to the case without hyperfine structure.

4.4. Net Circular Polarization (NCP)

In this section, we present the plots of NCP defined as Vdò l
as a function of the magnetic field strength B. Since the PB
effect causes nonlinear splitting of the magnetic components
with respect to the line center, the Stokes V profiles become
asymmetric. As a result of this asymmetry, the integration of
the Stokes V over the full line profile yields a non-zero value. In
the linear Zeeman and complete PB regimes, the V profiles
show perfect antisymmetry which causes the NCP to become
zero. The A-O conversion mechanism discussed in Section 4.3
further enhances the asymmetry in Stokes V profiles already
caused by nonlinear MS, and thereby contributes to the NCP.
This mechanism is particularly efficient when the level-
crossings satisfy 1.b bm m mD = - =¢

In Figure 11, we show the behavior of NCP in different field
strength ranges for the scattering geometry: μ′= 0, χ′= 0°,
μ= 1, χ= 90°, θB= 0°, and χB= 0°. This choice of field
geometry is made in order to obtain larger values for Stokes V.
In panel (a), we show the weak field behavior of NCP. We
attribute the non-zero NCP in this regime to the PB effect in the
F states and the A-O conversion mechanism taking place in the
incomplete PB regime for the F states. We find that the NCP

increases with increasing field strength, peaking around the
level-crossing field strength (see Tables 1 and 2), and decreases
with further increase in B. For fields of the order of kG we see a
second peak in NCP whose magnitude is larger than the first
peak by an order. This is due to the PB effect in the J states and
the A-O conversion mechanism occurring in the incomplete PB
regime for the J states. With a further increase in the field
strength, we enter the complete PB regime for the J states
where the NCP becomes zero.
Detailed discussions on the various mechanisms producing

NCP are presented in LL04.

4.5. Polarization Diagrams

In Figure 12, we present the plots of Stokes Q/I versus
Stokes U/I (polarization diagrams) for a given B and Bq and for
the full range of χB. Refer to the figure caption for the incident
and scattered ray directions. θB takes values 0°, 70°, 90°, and
110°. We find that the θB= 70° and 110° curves perfectly
coincide in all four panels. They take same values for Q/I and
U/I at χB= 0° and χB= 180°. However, we see that the
dependence on χB of the θB= 70° curve is somewhat different
from that of the θB= 110° curve. By this, we mean that for the
θB= 70° case, the Q/I value changes in an anti-clockwise
direction from the χB= 0° point while it changes in a
clockwise direction from the χB= 0° point for the θB= 110°
case. The Q/I value increases with increasing χB, reaches a
maximum and then decreases till χB= 180°. U/I makes a
gradual transition from being positive to negative. Q/I again
increases with an increase in χB and at χB= 360° it resumes
the same value it had at χB= 0°. U/I now makes a transition
from being negative to positive. When θB= 0° the magnetic
field is along the z-axis and exhibits azimuthal symmetry.
Hence, θB= 0° is just a point in the polarization diagram. For
θB= 90° the diagram is symmetric with respect to the U/
I= 0 line.
In Figure 13, we compare the polarization diagrams obtained

at different wavelength points by varying the field strength B
for a two-term atom without HFS (dashed curves) and a two-
term atom with HFS (solid curves). The geometry considered is
described in the caption to the figure. In panel (a), we see a
decrease in Q/I with increasing field strength due to the Hanle

Figure 10. Stokes profiles obtained by including the contribution from the
continuum for different values of B. Refer to Section 4.3 for the scattering
geometry. The vertical dotted lines represent the positions of the D lines.

Figure 11. Net circular polarization as a function of the magnetic field strength
B. The scattering geometry is characterized by μ′ = 0, χ′ = 0°, μ = 1,
χ = 90°, θB = 0°, and χB = 0°.
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effect. For fields greater than 100 G, we enter the Hanle
saturation regime. Q/I starts to increase as we approach the
level-crossing field strength (around 3 kG). Loops (i.e., a single
circular loop for the dashed line and multiple small loops for
the solid line) arise due to several level-crossings (see Figure 3)
where the coherence increases and Q/I tends to approach its
non-magnetic value. Comparing the solid and dashed curves in
Figure 13, the effects of HFS can be clearly seen. First, due to
the depolarization caused by HFS, the polarization diagram
shrinks in size. Second, multiple small loops are formed (see
the solid lines in Figure 13). These multiple loops arise due to
several level-crossings that occur only when HFS is included
(see Figures 3(b), (c), (e), and (f)). For field strengths larger
than the level-crossing field strengths, the Q/I value decreases
again and becomes zero around 10 kG. We see the effects due
to Rayleigh scattering in strong magnetic fields when we
increase the field strength beyond 10 kG (similar to Figure 6(b)
of Sowmya et al. 2014a). In panel (b), we show the polarization
diagram computed at the 6Li D2 wavelength position. Since the
7Li D1 position nearly coincides with that of 6Li D2, we see the
combined effect of both lines. However, due to the large

abundance of 7Li, the behavior of the polarization diagram is
dominated by the contribution from 7Li D1. Since

7Li D1 is
unpolarized, the small arcs seen for weak fields are due to the
6Li D2 line. After the Hanle saturation field strength (30 G), the
polarization diagrams essentially show behavior similar to the
corresponding polarization diagrams in panel (a). In panel (c),
we show the polarization diagram for the 6Li D1 position. The
D1 line remains unpolarized till the level-crossing field strength
(around 3 kG) is reached. Around the level-crossing field
strength, we see a bigger loop for the case without HFS (dashed
line) and a smaller loop for the case with HFS (solid line).

5. CONCLUSIONS

We present a formalism to treat the combined interferences
between the magnetic substates of the hyperfine structure states
pertaining to different fine structure states of the same term
including the effects of PRD in scattering. Using the Kramers–
Heisenberg approach, we calculate the polarized scattering
cross section (i.e., the redistribution matrix) for this process.
We also demonstrate the behavior of the redistribution matrix

Figure 12. Polarization diagrams obtained at the D line positions for B = 5 G and different θB as indicated in the panels. The azimuth χB of the magnetic field is varied
from 0° to 360°. The symbols on the curves mark the χB values: 0 ,—*  70 ,◦—  180 ,—  and 270 .—  Since the curves for θB = 70° and 110° coincide, we use
symbols that are bigger in size for the θB = 110° case to distinguish it from the θB = 70° curve. The geometry considered is μ = 0, μ′ = 1, χ = 0°, and χ′ = 0°.
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in a single scattering of the incident unpolarized radiation by
the lithium atoms. In the solar case, the combined theory finds
applications in modeling of spectral lines like lithium 6708Å
for which the effects of both fine and hyperfine structure are
significant.
In the absence of magnetic fields, we recover the results

already published by Belluzzi et al. (2009). In the present
paper, we illustrate the effects of a deterministic magnetic field
on the Stokes profiles of the lithium D line system. We cover
the entire field strength regime from a weak field Hanle regime
to incomplete and complete PB regimes. When the fields are
weak, the Stokes profiles exhibit the well-known Hanle
signatures at the centers of the lithium D lines, namely,
depolarization of Q/I and rotation of polarization plane. We
note that there are Zeeman-like signatures for stronger fields.
We show the signatures of level-crossings and avoided
crossings in Stokes profiles and polarization diagrams. Unlike
the pure J state or F state interferences, when J and F state
interferences are treated together, a multitude of level-crossings
and avoided crossings occur which produce multiple loops in
the polarization diagrams and interesting signatures in the U/I
profiles. Non-zero NCP is seen for fields in the incomplete PB
regime which arises not only due to nonlinear MS but also due
to the A-O conversion mechanism as already described
in LL04. However, its diagnostic potential needs to be
explored. We perform the calculations including the effects
of PRD. However, its effect manifests only when one considers
the transfer of the line radiation in the solar atmospheric
conditions.
We thank the referee for very useful, detailed, constructive

comments and suggestions which helped us understand the
results better and improve the paper substantially. We
acknowledge the use of the HYDRA cluster facility at the
Indian Institute of Astrophysics for the numerical computations
related to the work presented in this paper.

APPENDIX A
THE MAGNETIC REDISTRIBUTION FUNCTIONS FOR
THE COMBINED J AND F STATE INTERFERENCES

The magnetic redistribution functions of type-II in the case
of combined J and F state interferences have the same form as
those in cases where only the interferences between fine
structure or hyperfine structure states are considered, except for
the increase in the dimension of the quantum number space.
For our problem of interest, they take the forms given by
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Figure 13. Polarization diagrams obtained at the D line positions for a given
orientation of the magnetic field. The dashed lines correspond to the pure J
state interference case without HFS while the solid lines correspond to the
combined theory case (including HFS). The magnetic field strength values are
marked along the dashed curves in Gauss, with “k” meaning a factor of 1000.
The asterisks on the solid curves represent the same field strength values as
indicated for the dashed curves. The scattering geometry considered is μ = 1,
μ′ = 0, χ = 90°, and χ′ = 0°.
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and
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Here, Θ is the scattering angle, and the functions H and F are
the Voigt and Faraday–Voigt functions (see Equation (18) of
Smitha et al. 2011). The quantities appearing in the expressions
for the type-II redistribution functions have the following
definitions:
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where xba is the emission frequency, x ba¢ is the absorption
frequency, a is the damping parameter, and ΔνD is the Doppler
width.

The auxiliary functions hII and fII appearing in Equation (12)
can be constructed by making use of Equations (14) and (15) as
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These auxiliary functions contain the information regarding the
Doppler redistribution of photon frequencies.

APPENDIX B
THE PSS

The PSS is a basic test for checking the correctness of the
eigenvalues and eigenvectors obtained from a diagonalization
procedure, for a given problem. A detailed description of the
PSS is given in LL04 (see pp. 321–325). In LL04, the
manifestations of PSS are given separately for (a) a two-level
atom with hyperfine structure and (b) a two-term atom
exhibiting only FS. In this appendix, we formulate the PSS
for the case of a two-term atom exhibiting both FS and HFS.
We basically follow the same procedure as described in LL04
to derive the expression for the centers of gravity in frequency
of the magnetic components.

The strengths of the magnetic components are given by
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which are essentially the square of the complex amplitude of
the transition between the lower term (quantities with sub-
scripts a) and the upper term (quantities with subscripts b). rq
are the spherical components of the dipole moment operator.
Using the basis expansion defined in Equation (4), the Wigner–
Eckart theorem and its corollary, we expand the above equation

as
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with, q= 0 for π, +1 for σr, and −1 for the σb components.
The transitions connecting the upper and the lower terms obey
the selection rules ΔL= 0, ±1, ΔS= 0, ΔIs= 0, and
Δμ= μb− μa= 0, ±1. Summing the expression for the
unnormalized strengths over all of the possible transitions,
making use of the orthogonality property of the C-coefficients
given in Equation (5a) of Casini & Manso Sainz (2005) and
Equations (2.23a) and (2.39) of LL04, we obtain
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The centers of gravity in frequency of the magnetic
components are defined as

, 24q
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Using Equations (23) and (25) in Equation (24), and
performing sums over ka and kb with the help of Equations
(5a) and (7) of Casini & Manso Sainz (2005), we obtain
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We separate the atomic and magnetic Hamiltonians in the
above expression. It can be shown that the atomic part does not
contribute to the centers of gravity. Using Equations (2.42),
(2.41), (2.36d), (2.26d), and (2.39) of LL04, we simplify the
magnetic Hamiltonian part and find that

q , 27q L ( )n nD = -

where νL is the Larmor frequency associated with the applied
magnetic field. This result is the same as Equation (3.66)
of LL04 which one would expect for a two-term atom without
any fine or hyperfine structure. This means that the centers
of gravity of the magnetic components in the PB regime have
the same frequencies as the individual components due to
Zeeman effect that would arise from the transitions between
spinless lower and upper terms. In situations where the electron
and nuclear spins are negligible, this is expected from the PSS.

We then verify that the eigenvalues and eigenvectors
obtained by diagonalizing ,T when used in Equation (24),
give the same value for Δνq as that calculated from
Equation (27).

APPENDIX C
A-O CONVERSION MECHANISM

The RM presented in Equation (12) can be reduced to the
phase matrix by integrating the auxiliary functions over the
incoming and outgoing frequencies. The phase matrix will then

take the form given by
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Here, A is the Einstein coefficient for the L La b transition
and k k E E h, .b b b b k kb b b b

( ) ( )n m m = -m m¢ ¢ ¢ ¢
We compute the

sQ
K for the geometry considered in Section 4.3 so that we can

obtain an expression for the frequency integrated fractional
circular polarization, p ,V˜ similar to the one given in Section
10.20 of LL04. The explicit expressions for ni,Q

K ( ) in the
atmospheric reference frame for a rotation of the form
R 0, , , , 0B B( ) ( )q c c qº - - ´ are given by
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We then expand the summations over K, K′, and Q in
Equation (28) and write down the expressions for the P00 and
P33 elements. We substitute in the expressions for P00 and P33

the sQ
K evaluated for the incoming and outgoing rays by

making use of Equations (30) and (33) for the geometry
considered in Section 4.3. After elaborate algebra, we finally
arrive at an expression for the frequency integrated fractional
circular polarization given by

p
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W W
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As discussed in Section 4.3 and in Section 10.20 of LL04, due
to the double summations over K and K′ in Equation (28) and
due to the fact that the spherical tensors n3,Q

K ( ) are non-zero
only when K= 1, orientation can be produced in the upper term
even when circular polarization is not present in the incident
radiation. This mechanism is therefore called the A-O
conversion mechanism. We identify that the term with K= 1
in the numerator of Equation (34) is responsible for the A-O
conversion mechanism. We have discussed the signatures of
this mechanism in the Stokes V parameter in Section 4.
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