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Abstract

We apply the Minkowski tensor statistics to three-dimensional Gaussian random fields. Minkowski tensors
contain information regarding the orientation and shape of excursion sets that is not present in the scalar
Minkowski functionals. They can be used to quantify globally preferred directions and also provide information
on the mean shape of the subsets of a field. This makes them ideal statistics to measure the anisotropic signal
generated by redshift space distortion in the low-redshift matter density field. We review the definition of the
Minkowski tensor statistics in three dimensions, focusing on two coordinate invariant quantities,W1

0,2 andW2
0,2.

We calculate the ensemble average of these 3×3 matrices for an isotropic Gaussian random field, finding that
they are proportional to products of the identity matrix and a corresponding scalar Minkowski functional. We
show how to numerically reconstruct W1

0,2 and W2
0,2 from discretely sampled fields and apply our algorithm to

isotropic Gaussian fields generated from a linear ΛCDM matter power spectrum. We then introduce anisotropy
by applying a linear redshift space distortion operator to the matter density field and find that both W1

0,2 and
W2

0,2 exhibit a distinct signal characterized by inequality between their diagonal components. We discuss the
physical origin of this signal and how it can be used to constrain the redshift space distortion parameter
ϒ≡f/b.
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1. Introduction

The Minkowski tensors are a set of statistics that generalize
the Minkowski functionals, which are themselves scalar
quantities. They are defined as integrals over the boundary of
an excursion set, with integrands related to symmetric tensor
products of position vectors and normals to the boundary
(Hadwiger & Schneider 1971; Schneider 1972; McMullen
1997; Alesker 1999; Beisbart et al. 2002; Hug et al. 2008b;
Schroder-Turk et al. 2010, 2013). As such, they provide
directional information that is not present in the scalar
Minkowski functionals.

The Minkowski functionals have been used within the
context of cosmology for three decades (Doroshkevich 1970;
Adler 1981; Gott et al. 1986, 1986, 1989; Hamilton et al. 1986;
Melott et al. 1989; Ryden et al. 1989; Park & Gott 1991; Park
et al. 1992, 2005; Matsubara 1994, 1996; Schmalzing et al.
1996; Colley et al. 2000; Kerscher et al. 2001; Gott et al. 2008,
2009; Appleby et al. 2017b, 2018). However, the application of
Minkowski tensors to the field is a relatively new phenomenon.
In a recent publication, the authors analytically calculated the
ensemble expectation value of the Minkowski tensor statistic
W2

1,1 for two-dimensional Gaussian random fields on a sphere
or plane (Chingangbam et al. 2017). This quantity is a 2×2
matrix and, for an isotropic field, is proportional to the identity
matrix. In an arbitrary coordinate system, both an anisotropic
Gaussian field and isotropic non-Gaussian field can potentially
generate off-diagonal elements. By diagonalizing these matrices,
we eliminate the coordinate dependence and find that an
isotropic, non-Gaussian field would yield equal eigenvalues that

differ from their Gaussian expectation values. An anisotropic
field would yield unequal eigenvalues.
These statistics were first applied to cosmological data in

Ganesan & Chingangbam (2017), where a significant aniso-
tropic signal was found in the 2015 E-mode Planck data (Adam
et al. 2016). The authors then applied this statistic to non-
Gaussian density fields constructed from slices of mock galaxy
simulations in Appleby et al. (2017a). The density field
reconstructed from mock galaxies contains a preferred direction
as a result of redshift space distortion; this effect produced a
distinct imprint on the diagonal elements of W2

1,1. These
statistics have also been applied to the fields of the epoch of
reionization (Kapahtia et al. 2017).
In Appleby et al. (2017a), the three-dimensional matter

density field was decomposed into two-dimensional slices. This
approach is useful when dealing with photometric redshift
catalogs, which are characterized by large galaxy number
density and volume but relatively poor position information
along the line of sight. However, with increasingly large
spectroscopic galaxy catalogs becoming available (Bundy et al.
2015; Liske et al. 2015; Dawson et al. 2016; Blanton
et al. 2017), we can directly extract information from the full
three-dimensional dark matter density field. The three-dimen-
sional field contains more information than its two-dimensional
counterpart—the process of binning galaxies into two-dimen-
sional slices smooths the distribution, and information is lost in
the Fourier modes parallel to the line of sight. In addition, we
expect the two- and three-dimensional statistics to exhibit
different sensitivity to bias, shot noise, and redshift space
distortion. The effect of linear redshift space distortion is to
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modify the shape of large-scale structures in the direction
parallel to the line of sight. The finger-of-God effect will scatter
the line-of-sight position of galaxies within virialized structures
as a result of stochastic velocity components. Both effects will
change the morphology of structures, generating anisotropic
isodensity contours. The strength of the anisotropic signal can
be used to test the nature of gravity and additionally constrain
cosmological parameters. Many previous studies on redshift
space distortion have focused on how the signal modifies the
shape of the matter power spectrum (and also potentially the
bispectrum). However, the Minkowski tensors provide a
measure of the shape of the excursion sets and hence can be
used to probe the anisotropic effect of the velocity field on
structures.

In this work, we extend our previous analytic and numerical
analysis of two-dimensional Minkowski tensors to three-
dimensional fields. We begin in Section 2 by reviewing the
definition of Minkowski functionals and their generalization to
tensors. We then focus on two particular Minkowski tensors
—W1

0,2 and W2
0,2—that possess translational invariance and

calculate their ensemble average for a Gaussian random field.
To extract the W1

0,2, W2
0,2 statistics from a discretely sampled

density field, we require a method of numerically generating
isodensity surfaces. The technical details of the algorithm
adopted in this work are discussed in Appendices A and B. We
apply this numerical algorithm to a Gaussian random field in
Section 3, matching our numerical analysis with analytic
predictions where possible. We study the shape of individual
connected regions and holes in Section 4 by calculating the
eigenvalues of W1

0,2 and W2
0,2 for disjoint excursion subsets. In

Section 5, we repeat our analysis for an anisotropic Gaussian
field by applying a linear redshift space distortion operator to
the matter density field. We discuss the sensitivity of W1

0,2 and
W2

0,2 to the redshift space distortion parameter ϒ=f/b and
summarize our findings in Section 6.

2. Minkowski Tensors

In this section, we review the definition and properties of
Minkowski functionals in three dimensions and their general-
ization to Minkowski tensors.

The Minkowski functionals are a set of d+1 scalar
quantities that characterize the morphology and topology of
an excursion set of a field u in d-dimensional space.
Throughout this work, we use mean subtracted fields u 0á ñ =
with variance u0

2 2s = á ñ. An excursion set is defined by a
boundary of constant field value u=σ0ν=constant. In three
dimensions, the excursion set boundary is a two-dimensional
isofield surface, and the Minkowski functionals are the
enclosed volume and surface area and integrals of the mean
and Gaussian curvatures over the surface. Specifically, we can
write

W
V
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where Q is the excursion set volume and ∂Q is its boundary; dV
and dA are infinitesimal volume and surface area elements,
respectively; and G2=(κ1+κ2)/2, G3=κ1. κ2 are the mean
and Gaussian curvatures of the surface ∂Q, respectively. Here
κ1 and κ2 are the principle curvatures of the surface and V is the
total volume of the three-dimensional space; we have defined
the Minkowski functionals per unit volume.
For a Gaussian random field, one can analytically calculate the

ensemble expectation value of these quantities (Doroshkevich
1970; Adler 1981; Gott et al. 1986; Hamilton et al. 1986; Tomita
1986),
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where σ0,1 are the two-point cumulants of the field
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k P k

2
9i

i2
2
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and P(k) is the power spectrum from which u(x, y, z) is drawn.
The ν dependence of W0–3 is completely fixed, and the
amplitudes carry information regarding the shape of the power
spectrum. For a non-Gaussian field—such as the late-universe
matter density, which has undergone nonlinear gravitational
collapse—both the amplitude and shape of these functions are
modified (Matsubara 1994, 2000; Pogosyan et al. 2009; Gay
et al. 2012; Codis et al. 2013). Specifically, W0–3 lose their
symmetry properties about ν=0 due to the presence of
corrections proportional to higher-order cumulants of the field.
These statistics can be generalized to vectors and tensors

(Hadwiger & Schneider 1971; Schneider 1972; McMullen
1997; Alesker 1999; Beisbart et al. 2002; Hug et al. 2008b;
Schroder-Turk et al. 2010, 2013). Our focus is on rank-two
statistics, although rank-one and higher-rank quantities also
carry information. The rank-two Minkowski tensors in three
dimensions are defined as (Schroder-Turk et al. 2013)

xW A dV , 10
Q

0
2,0

0
2òº ( )

x nW A G dA, 11t
r s

t
Q

t
r s, òº Ä

¶
ˆ ( )

where t=1–3 and (r, s)=(2, 0), (1, 1), or (0, 2); x and n̂ are
the position vector and unit normal to the bounding surface,
respectively; G1=1, G2=(κ1+κ2)/2, and G3=κ1. κ2;
and xr, nsˆ are the symmetric tensor products of x, n̂ with
themselves r, s times. Here At is a normalization factor chosen
to match the scalar Minkowski functionals, so A0=1/V
A1=1/6V, A2=1/3πV, and A3=1/4π2V. Equations (10)
and (11) comprise a complete set of 3×3 matrices that can be
constructed from x and n̂ integrated over Q and ∂Q. All other
rank-two quantities that can be constructed vanish identically.
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There are 10 Minkowski tensors defined in this way;
however, they are not all independent. The following four
linear dependencies exist (Hug et al. 2008a, 2008b):

W tW
A

A
t W3 12t t

t

t
t

0,2 1
1

1,1 = + -+
+( ) ( )

for t=0, 1, 2, 3, where Wt are the scalar Minkowski
functionals and  is the 3×3 identity matrix. We can therefore
form a basis of six Minkowski tensors that encapsulate all
relevant shape information that can be extracted from the rank-
two matrices: W W W W W W, , , , ,0

2,0
1
2,0

2
2,0

3
2,0

1
0,2

2
0,2. Of these

quantities, only W1
0,2 and W2

0,2 are translationally invariant
(Schroder-Turk et al. 2013). The remaining four will vary as a
function of the coordinate system that one adopts. For
cosmological applications, a coordinate system centered on
the observer presents a logical choice, but in what follows, we
will focus on the statistics W1

0,2 and W2
0,2 with the under-

standing that we are not extracting all possible information
from the field.

The Minkowski tensors that we study, which are explicitly
given by
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represent integrals over the boundary of the excursion set, with
the vector product of surface normal n̂ with itself as the kernel.
They are 3×3 matrices, and as we will show, both the
structure of the matrix and the magnitude of its components
inform us about the properties of the field.

For a Gaussian random field, we can calculate the ensemble
expectation value of these matrices. We close this section with
an outline of this calculation.

We define u as a smooth random field in three-dimensional
space and ν as a threshold value that defines the excursion set
boundary ∂Q. We first rewrite the integrands of W1

0,1 and W2
0,2

in terms of the field u and its first and second derivatives, ui and
uij. The i, j subscripts run over a Cartesian (x1, x2, x3)
coordinate system. The unit normal vector is given by
n u u=  ˆ ∣ ∣. For an arbitrary integrand F(ν), we can
transform area integrals to volume integrals by introducing an
integral over u with a delta function, δ(u−ν), as

dA F dA du u F u

dV u u F u . 15

ò ò
ò

n d n

d n

= -

=  -

( ) ( ) ( )

∣ ∣ ( ) ( ) ( )

The mean curvature is related to the unit vector normal to a
given surface as
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In terms of field derivatives, we can express G2 as
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Here W1
0,2 and W2

0,2 are given by
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0,2 is equivalent to W2,
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2.1. Ensemble Expectation Values for Isotropic Gaussian
Fields

If u is Gaussian and isotropic, we can compute the ensemble
expectation values ofWj

0,2. Here σ0,1 are defined in terms of the
variances of u and ui as

u , 230
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which are the real space equivalents of the first two cumulants
defined in Equation (9). The nonzero correlations containing
second derivatives are
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where the covariance matrix XX TS º á ñ is given by
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The integrals over volume and X have been interchanged
since they commute. Performing the X integration first, we
arrive at an ensemble expectation per unit volume
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When extracting information from the Minkowski tensors,
one can either use the components of the matrices W1

0,2 and
W2

0,2 directly or, alternatively, construct their eigenvalues and
eigenvectors. Any anisotropic signal in the field will generate
inequality between eigenvalues of these matrices, independent
of the particular coordinate system adopted.

3. Numerical Calculation of Minkowski Tensors for
Isotropic Gaussian Random Fields

We have argued that additional information is potentially
contained in the Minkowski tensors relative to the Minkowski
functionals and calculated their theoretical expectation value
for an isotropic Gaussian random field. We now numerically
extract these statistics from a discretely sampled density field.
To do so, we require an algorithm capable of generating
bounding surfaces of constant density enclosing an excursion
set. In Appendix A, we detail our method of surface generation
and how we calculate the Minkowski tensors using the surface.

In this work, we study three-dimensional density fields δi,j,k
on a regular lattice, where i, j, and k are integer pixel identifiers
in a x1, x2, x3 Cartesian coordinate system. We take 1�i, j,

and k�Npix with Npix=512 and a fixed pixel resolution
ò=2h−1 Mpc; the total volume V=(1024h−1 Mpc)3 is taken
to be cubic, but this is not necessary. We take a periodic
domain so that N j k j k1, , 1, ,pixd d=+ , i N k i k, 1, ,1,pixd d=+ , i j N, , 1pixd =+

i j, ,1d . We normalize the field δi,j,k → δi,j,k/σ0, where σ0 is the
rms fluctuation of δi,j,k within the box. From this field, we
create triangulated surfaces of constant density δ=ν by
applying the method of marching tetrahedra (Doi &
Koide 1991). This algorithm runs through every grid point (i,
j, k) in the total volume, generating pixel cubes from the eight
nearest neighbors: δi,j,k, δi+1,j,k, δi,j+1,k, δi,j,k+1, δi,j+1,k+1,
δi+1,j+1,k, δi+1,j,k+1, and δi+1,j+1,k+1. This pixel cube is then
decomposed into six nonoverlapping, equal-area tetrahedra.
The density field is linearly interpolated along the edges of the
tetrahedra to points at which δ=ν, and a triangulated surface
is generated from these points. Details of the calculation can be
found in Appendix A. Once a surface of constant δ=ν has
been constructed, we extract the Minkowski functionals and
tensors using their discretized approximations given in
Equations (40)–(43) and (44) and (45).
We first test the numerical algorithm by applying it to an

isotropic Gaussian field. We generate discrete random fields δi,j,k
in Fourier space drawn from a ΛCDM linear matter power
spectrum, taking the fiducial parameters shown in Table 1.
We smooth the field in Fourier space using a Gaussian
kernel W kR e k R

G
42

G
2

= -( ) with R h20 MpcG
1= - . We vary

the threshold −3<ν<3 using N=40 equispaced values. At
each ν threshold, we generate a triangulated surface of constant
density that encloses all pixels satisfying δi,j,k>ν; this boundary
defines the excursion set. We then use the properties of the surface
to numerically reconstruct the scalar and tensor Minkowski
functionals. In Figure 1, we present the scalar Minkowski
functionals W0–3 as a function of threshold ν, where blue points
and error bars represent the mean and error on the mean of these
statistics extracted numerically from Nreal=50 realizations. The
solid black line represents the theoretical expectation values given
in Equations (5)–(8). The algorithm accurately reproduces the
expected scalar Minkowski functionals. This serves as a
consistency check.
We plot the Minkowski tensors W ij1

0,2( ) (left panels) and
W ij2

0,2( ) (right panels) in Figure 2. In the top panels, we exhibit the
diagonal components of these matrices (ij)=(11, 22, 33) (blue/
yellow/red points). We have shifted the points by δν=±0.03 in
the x-axis to distinguish them. The solid black lines are the
theoretical expectation values for these fields, which exhibit
subpercent-level agreement with the numerical output. We also

Table 1
Fiducial Parameters Used in this Work

Parameter Fiducial Value

Ωmat 0.26
ΩΛ 0.74
H0 72 km s−1 Mpc−1

RG 20 h−1 Mpc
ò 2 h−1 Mpc

Note. Here RG is the smoothing scale used when applying a Gaussian
smoothing kernel to the density field and ò is the fiducial resolution of the
density fields generated in this work.
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plot the functions W1
0,2D and W2

0,2D , defined as
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These functions should be consistent with zero when
W W1

0,2
1µ( ) , W W2

0,2
2µ( ) .

In the middle panels, we exhibit the off-diagonal components
(ij)=(12, 13, 23) (black, green, cyan points) divided by the mean
of the diagonal components W W 3i ii1

0,2
1

3
1
0,2º å = ( ) , W2

0,2 º
W 3i ii1

3
2
0,2å = ( ) . The off-diagonal elements should be consistent

with zero for a Gaussian isotropic field. The points and error bars
indicate the mean and error on the mean obtained from the
Nreal=50 realizations of the field. The off-diagonal components
fluctuate around zero, as expected. The error bars increase with
increasing n∣ ∣ due to the smaller total surface area for large
thresholds. This also occurs in the vicinity of ν∼0 for W2

0,2.

The top and middle panels of Figure 2 confirm the analytic
results derived in Section 2. The ensemble averages of the
matrices W1

0,2 and W2
0,2 are proportional to products of the

identity matrix and W1 and W2, respectively, for an isotropic,
Gaussian random field. The statistics W1

0,2D and W2
0,2D

provide a convenient measure of anisotropy; these quantities
should be identically zero for an isotropic field, regardless of
cosmological parameters or power spectrum shape.

4. Mean Shape of Excursion Regions

In the previous section, we calculated the Minkowski
functionals and generalized tensors for excursion sets defined
over the entire volume of a three-dimensional space. Further
information can be extracted from the field by considering
these statistics for every distinct subregion contained within the
excursion set. If we calculate the tensors W1

0,2 and W2
0,2 for

every individual distinct surface that makes up the excursion
set, as well as every individual hole, then we arrive at a
distribution of tensors that provide information on the
morphology of these constant density surfaces. As each
subregion will be oriented randomly, we diagonalize their

Figure 1. Minkowski functionals. We generate Nreal=50 realizations of a Gaussian field drawn from a ΛCDM power spectrum in a cube of volume
V h1024 Mpc1 3= -( ) and resolution ò=2h−1 Mpc. We smooth the field with a Gaussian kernel with smoothing scale R h20 MpcG

1= - . The mean and error on the
mean are exhibited as blue points and error bars, respectively; the error bars are smaller than the data points. The solid black line denotes the theoretical expectation
value for the field, which shows close agreement with the numerical reconstruction.
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W1
0,2 and W2

0,2 matrices and generate a set of eigenvalues 1,2,3
1l( )

and 1,2,3
2l( ) . These parameters provide shape information for each

structure. We define the mean ratio of these eigenvalues as

, 34i
i1
1

1
1

b
l
l

= ( )( )
( )

( )

, 35i
i2
2

1
2

b
l
l

= ( )( )
( )

( )

where the subscripts run over i=2, 3 and 1i
1 b ( ) , 1i

2 b ( ) ,
as we have ordered 1,2,3

1l( ) and 1,2,3
2l( ) in descending size. The

sample mean, represented by angular brackets ...á ñ, is for the
combination of all connected regions and holes within the
excursion set for a fixed threshold ν. These quantities provide a
measure of the average shape of the isodensity structures as a
function of threshold. Here 1i

1,2b =( ) corresponds to a perfectly
isotropic mean shape (sphere, cube) and 1i

1,2b <( ) indicates
either ellipticity or a more general departure from isotropy.

Figure 2. Minkowski tensors W1
0,2 (left panels) and W2

0,2 (right panels). (Top panels) Diagonal components of the W1
0,2, W2

0,2 matrices (i, j)=(1, 1), (2, 2), (3, 3)
(blue/yellow/red) and the theoretical expectation value (black solid line). We also plot the residuals W ij1

0,2D( ) , W ij2
0,2D( ) defined in Equations (32) and (33), which

are consistent with zero. (Middle panels) Ratio of the off-diagonal components of W1
0,2, W2

0,2 and the average of the diagonal components. These quantities are
consistent with zero, as expected for a Gaussian field. (Bottom panels) i

1b ( ) and i
2b ( ), where i=2, 3. The yellow and blue points correspond to i=2 and3,

respectively. The i
1,2b ( ) functions are defined in Equations (34) and (35); they provide a measure of the mean shape of the connected regions and holes in the excursion

set. The solid black lines in the panels correspond to the i
1,2b ( ) values predicted using the shape of peaks in a Gaussian random field.
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To calculate 1,2,3
1,2l( ) for every connected region and hole, we

apply a type of friends-of-friends algorithm to the
discretized density field δi,j,k. We note that in each
tetrahedron in our decomposition, all “in” states belong to
the same excursion set subregion (cf. Figure 6). Using this
information, our algorithm passes through the volume
systematically from one corner to the opposite, and each
time it encounters a (i, j, k) pixel that is “in” and not
assigned to a particular excursion set subregion, it is
assigned to a new set. The algorithm then searches all (i′,
j′, k′) pixels that this pixel is linked to via our tetrahedral
decomposition; if these points are also “in” states, then they
are assigned to the same subset as the original point (i, j, k).
This procedure is repeated for all (i′, j′, k′) “in” states that
have been found using the algorithm and then iteratively
until no more linked “in” pixels are found. We then resume
our original sweep through the box. The algorithm is
repeated for “out” states of the field. Once we have
categorized all “in” and “out” pixels according to the subset
to which they belong, we can calculate the morphological
and topological quantities of each subregion by using the
surface that encloses each of them.

In the bottom panels of Figure 2, we plot the mean eigenvalue
ratios i

1b ( ) and i
2b ( ) (left and right panels) for all connected regions

and holes in the excursion set. In the large n∣ ∣ limit, these
correspond to the shape of the field in the vicinity of peaks and
troughs. One can predict the form of a Gaussian field in the
vicinity of a peak (Bardeen et al. 1986); the result is that the field
will have the form of a triaxial ellipsoid. The calculation of the
expectation value of the ellipticity em and prolateness pm in the
vicinity of a peak is presented in Appendix C. For an ellipse with
parameters em, pm, we can calculate the eigenvalues of the
corresponding Minkowski tensors W1

0,2 and W2
0,2 using Equations

(65) and (66); these analytic predictions are shown as solid black
lines in the bottom panels of Figure 2. We find good agreement
between our numerical reconstruction of i

1b ( ), i
2b ( ) and the analytic

prediction for large n∣ ∣ thresholds. However, the theoretical
approximation does not accurately reproduce the details of the β

curves for −3<ν<3. This is not a surprising result, as the
theoretical prediction was constructed by expanding the density
field as an ellipsoid in the vicinity of a peak. Here i

1b ( ) and i
2b ( ) are

sensitive to the shape of the excursion set boundary, which will not
be elliptical in general. In the large n∣ ∣ limit, both i

1b ( ) and i
2b ( ) are

related to the mean axis lengths of the approximately elliptical
bounding surface. The lengths of the axes vary with ν and show an
overall tendency toward a spherical shape for large n∣ ∣.

The components of W1
0,2 and W2

0,2 have dimensions of area
and length per unit volume, respectively. Their eigenvalues,
and hence i

1b ( ), i
2b ( ), are correlated, and purely from the

dimensionality of the matrices, we expect i i
2 1b b~( ) ( ) . This

correspondence will not be exact, as the mean curvature G2 acts
as a weighting factor when comparing the two statistics.

When numerically reconstructing i
1,2b ( ) from a discrete

density field, we apply a volume cut and only calculate the
sample means (Equations (34) and (35)) for excursion set
regions and holes that have a volume greater than V 8cut

3> ,
where ò=2 h−1 Mpc is the resolution of the grid. Small-scale
peaks that are not resolved can generate artificial anisotropy
and will spuriously decrease the i

1,2b ( ) functions. We discuss
this issue further in Appendix B.2.

5. Numerical Calculation of Minkowski Tensors for
Anisotropic Gaussian Random Fields

In Sections 2 and 3, we predicted the ensemble averages of
W1

0,2 and W2
0,2 for isotropic, Gaussian random fields and

reconstructed them numerically from a discretely sampled
density field. For these fields, the Minkowski tensors are simple,
being proportional to the identity matrix and scalar Minkowski
functionals. The utility of these statistics is apparent when
applying them to fields that are anisotropic or non-Gaussian. For
an anisotropic yet Gaussian field, the Minkowski tensors will be
characterized by matrices with unequal eigenvalues. Certain
types of non-Gaussianity can potentially generate off-diagonal
elements. In this work, we focus on anisotropy and postpone an
analysis of non-Gaussianity to the future.
We generate an anisotropic Gaussian field by first creating an

isotropic field δi,j,k in a V h1024 Mpc1 3= -( ) box of resolution
ò=2h−1 Mpc drawn from a ΛCDM linear matter power
spectrum with parameters defined in Table 1 and then applying
a linear redshift space distortion operator, taking the line of
sight arbitrarily as the x3-axis. Specifically, we generate
Nreal=50 realizations of a Gaussian random field drawn from
the same ΛCDM power spectrum as in Section 3 and then
apply the following transformation in Fourier space:

k kb 1 , 36k
rsd 2d m d= + ¡( ) ( ) ( ) ( )( )

where k kk x
2 2 2

3
m = and ϒ=f/b is the redshift space distortion

parameter, where b is the bias and f m
6 11W is the growth

parameter.6 For simplicity, we use the plane-parallel approx-
imation, which reduces the effect of linear redshift space distortion
to the Kaiser effect corresponding to an amplitude shift 1 k

2m+ ¡( )
in Fourier space. This field is then smoothed in Fourier space using
a Gaussian kernel of width R h20 MpcG

1= - . We calculate the
Minkowski tensors for both the isotropic case ϒ=0 and a redshift
space–distorted field 0¡ ¹ . Since we are using the matter density
field directly, as opposed to a biased tracer such as galaxies or
halos, we fix b=1 and mat

6 11¡ = W . The redshift dependence of ϒ
will result in a redshift-dependent signal in W1

0,2, W2
0,2. In this

section, we generate fields at z=0.
In Figure 3, we exhibit the diagonal components of the matrices

W1
0,2 (top left panel) and W2

0,2 (top right panel). The solid black
line is the theoretical prediction for an isotropic field, that is, for
ϒ=0. The blue/yellow/red points represent the (i, j)=(1, 1), (2,
2) (3, 3) directions. The effect of linear redshift space distortion is
to modify the diagonal elements, with the line-of-sight component
x3 enhanced relative to the perpendicular x1,2 components. We plot

W ij1
0,2D( ) and W ij2

0,2D( ) in the middle panels. These statistics,
which are consistent with zero for an isotropic field, present a
constant shift for all −3<ν<3 thresholds. Hence, the effect of
adding linear redshift space distortion is a constant amplitude shift
between the diagonal elements. The matrices are no longer
proportional to the identity matrix, and the signal is more
pronounced in the statistic W1

0,2.
In the middle panels, we exhibit the off-diagonal compo-

nents of the matrices divided by the average value of the
diagonal elements. Black, green, and cyan points correspond to
i j, 1, 2 , 1, 3 , 2, 3=( ) ( ) ( ) ( ), respectively. The off-diagonal
elements are all consistent with zero, as we expect. The linear

6 To avoid confusion with i
1,2b ( ), we have used ϒ to denote the redshift space

distortion parameter rather than the standard notation β=f/b.
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redshift space distortion operator in the plane-parallel approx-
imation corresponds to a directional-dependent cofactor in
Fourier space; hence, if we take a Gaussian field and apply this
operator, we expect the resulting field to remain Gaussian. This
is reflected in the off-diagonal components of the Minkowski
tensors, which are consistent with zero. Note that we are
aligning the coordinate system with the anisotropic signal in the
x3-axis. For an arbitrary coordinate system, one should
diagonalize the matrix, and any anisotropic signal would
manifest as inequality between eigenvalues.

In the bottom panels, we plot the mean shape of connected
regions and holes within the excursion set for the redshift
space–distorted field, characterized by i

1b ( ) (left panel) and i
2b ( )

(right panel). We also plot i
1bD ( ) and i

2bD ( ), which are defined
as the difference between the functions i

1b ( ) and i
2b ( ) as

measured in redshift and real space,

. 37i i i
1,2

,rsd
1,2

,real
1,2b b bD = - ( )( ) ( ) ( )

One can observe a small ∼1% decrease in i
1,2b ( ) in redshift space

relative to real space; this is due to the elongation of structures

Figure 3. Minkowski tensorsW1
0,2 (left panels) andW2

0,2 (right panels) for the anisotropic Gaussian field described in Section 5. (Top panels) Diagonal components of
W ij1

0,2( ) , W ij2
0,2( ) , (i, j)=(1, 1), (2, 2), (3, 3) (blue, yellow, red points) and the theoretical expectation value for the corresponding isotropic field (black solid line). The

components of W ij1
0,2D( ) and W ij2

0,2D( ) are no longer consistent with zero, showing a constant amplitude shift due to the anisotropic signal. (Middle panels) Off-
diagonal components of W ij1

0,2( ) , W ij2
0,2( ) divided by the average of the diagonal components W1

0,2, W2
0,2. These quantities are consistent with zero, as expected for a

Gaussian field. (Bottom panels) i
1b ( ) (left) and i

2b ( ) (right) for the anisotropic field. Here i
1,2bD ( ) is the difference between i

1,2b ( ) measured for the anisotropic mat
6 11¡ = W

and isotropic ϒ=0 fields. Excursion sets in the isotropic field are more spherical, characterized by higher i
1,2b ( ) values.
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along the line of sight as a result of coherent infall/outfall of
matter into over/underdensities. The effect is roughly constant
as a function of ν and is more pronounced for the Minkowski
tensor W1

0,2. Although the effect of redshift space distortion on
each individual excursion set region is very small, the signal is
cumulative in the sense that each will be distorted in the same
direction. This cumulative signal generates the large effect on

W1
0,2D and W2

0,2D observed in the second set of panels.
Figure 3 indicates that the redshift space parameter ϒ=f/b

can be constrained by measuring the diagonal elements of W1
0,2

and W2
0,2. We attempt to quantify the sensitivity of these

statistics to ϒ by varying Ωmat and hence mat
6 11¡ W . We

generate Gaussian anisotropic fields for three different values
Ωmat=(0.21, 0.26, 0.31) and reconstruct the Minkowski
tensors in each case. A larger Ωmat will produce a more
pronounced anisotropic signal, and we study the sensitivity of
the amplitude shift in W ij1

0,2D( ) , W ij1
0,2D( ) to this parameter.

In Figure 4, we plot the differences, W1
0,2

33 matD W -( ) ( )
W 0.261

0,2
33 matD W =( ) ( ) (left panel) and W2

0,2
33 matD W =( ) ( )

W 0.262
0,2

33 matD W =( ) ( ) (right panel), extracted from Nreal=
50 realizations of Gaussian fields. We only plot the
(ij)=(33) components for clarity. The (ij)=(11), (22)
components exhibit similar behavior. The green points
correspond to the isotropic field ϒ=0, and blue points
are the linear redshift space–distorted field mat

6 11¡ = W . The
square and triangle data points correspond to Ωmat=0.21
and0.31, respectively.

For an isotropic field, W ij1
0,2

matD W( ) ( ) and W ij2
0,2

matD W( ) ( )
are consistent with zero for all Ωmat, and hence linear
combinations should also be zero (cf. green points). For a redshift
space–distorted field, the matrices W ij1

0,2
matD W( ) ( ) and

W ij2
0,2

matD W( ) ( ) are no longer consistent with zero; the amplitude
shift observed in Figure 3 will depend on Ωmat. In Figure 4, we
find that an order 10%~ ( ) variation of ϒ will generate an order

2%~ ( ) variation in W ij1
0,2

matD W( ) ( ) and a smaller variation in

W ij2
0,2

matD W( ) ( ). Although the signal is small, we measure the
statistics over multiple thresholds ν, which will increase the
statistical significance of the amplitude shift.
For isotropic fields, the diagonal components of W1

0,2 and
W2

0,2 are sensitive to the value of Ωmat; however, the matrix is
always proportional to the identity matrix. It follows that

W1
0,2D and W2

0,2D should be insensitive to Ωmat. For redshift
space–distorted fields, the diagonal elements of W1

0,2 or W2
0,2

are no longer equal, and the magnitude of the difference
between them will depend on ϒ. Schematically, we can write

W W cdiag 1, 1, , 381
0,2

1µ ´ ¡{ ( )} ( )

W W cdiag 1, 1, , 392
0,2

2µ ´ ¢ ¡{ ( )} ( )

where c(ϒ) and c′(ϒ)>1 are functions of ϒ and we have
chosen a coordinate system in which the anisotropic signal is
aligned with the x3-axis. The statistics W1

0,2D and W2
0,2D will

be sensitive to c(ϒ) and c′(ϒ), and hence Ωmat.
Recall that we are using the matter field directly, rather than

a biased tracer, so we are taking b=1. When applying the
statistics to data, measuring W1

0,2D , W2
0,2D will allow us to

constrain ϒ=f/b. By measuring the genus W3 of the three-
dimensional density field, one can obtain a constraint on Ωmat

that is relatively insensitive to galaxy bias and redshift space
distortion. It follows that combinations of measurements of W3

and W1
0,2D , W2

0,2D can potentially provide simultaneous
constraints on Ωmat and galaxy bias b.

6. Summary

The purpose of this work has been to introduce the
Minkowski tensors for three-dimensional fields as a general-
ization of the standard scalar Minkowski functionals. Initially
focusing on isotropic Gaussian random fields, we calculated the
ensemble expectation value of the translation invariant statistics
W1

0,2 and W2
0,2. In Appendix A, we provide an algorithm that

generates closed triangulated isofield surfaces from which one

Figure 4. (Left panel) Difference between W1
0,2

33D( ) measured for fields generated with Ωmat=0.21 (squares) and Ωmat=0.31 (triangles) and the “fiducial”
cosmology Ωmat=0.26. The green data points are for an isotropic field and are consistent with zero. For an anisotropic field (blue points), W1

0,2
33D( ) is nonzero and

sensitive to Ωmat. (Right panel) Same as the left panel but using the statistic W2
0,2

33D( ) .
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can extract these statistics numerically from a discrete density
field. We found close agreement between the theoretical
expectation value and numerical reconstruction of the Min-
kowski functionals and tensors.

For an isotropic Gaussian random field, the Minkowski
tensors are proportional to the product of the scalar Minkowski
functionals and the identity matrix. As such, W1

0,2 and W2
0,2 do

not contain additional information relative to W1 and W2,
respectively. However, departures from either Gaussianity or
isotropy can potentially modify W1

0,2 and W2
0,2, either by

generating off-diagonal terms or introducing inequality
between diagonal elements.

We applied our numerical algorithm to a Gaussian but
anisotropic field, simulating a plane-parallel, linearly redshift
space–distorted density field. The effect of redshift space
distortion will be to distort the shape of structures along the
line of sight, generating a preferred direction in the normals of
the excursion sets. As this effect is cumulative, we find a large
10%–20% amplitude shift in the W1

0,2D , W2
0,2D statistics

relative to an isotropic density field. This signal can be used to
constrain the redshift space distortion parameter ϒ=f/b.

In this work, we have focused on linear density fields and the
Kaiser approximation, which represents coherent infall of mass
into overdensities and will be the dominant source of
anisotropy on large scales 20 Mpc~ ( ). We expect W1

0,2 and
W2

0,2 will also be sensitive to nonlinear anisotropies arising
from the finger-of-God effect. Conversely, we do not expect the
statistics to be sensitive to nonlinear gravitational collapse, as
this process remains statistically isotropic on all scales. Hence,
these statistics will provide a measure of both the linear and
nonlinear velocity perturbation that is independent of the
nonlinear behavior of the density field δ. A detailed analysis of
non-Gaussianity will be pursued elsewhere, with an application
of the Minkowski tensors to the late-time gravitationally
evolved matter density field. The eigenvalues of W1

0,2 and W2
0,2

are independent measures of non-Gaussianity of a field and
contain complementary information compared to the scalar
Minkowski functionals.

The authors thank the Korea Institute for Advanced Study
for providing computing resources (KIAS Center for Advanced
Computation Linux Cluster System) for this work.

Appendix A
Generating the Bounding Surface of an Excursion Set

In this appendix, we elucidate the numerical algorithm that
we use to generate isodensity surfaces. Our starting point is a
discretized three-dimensional field δi,j,k on a regular lattice. We
take 1�i, j, k�Npix, and constant pixel resolution ò. We will
study periodic density fields, so we take N j k j k1, , 1, ,pixd d=+ ,

i N k i k, 1, ,1,pixd d=+ , and i j N i j, , 1 , ,1pixd d=+ . We apply a density
threshold ν and define pixels as “in” the excursion set if they
satisfy δi,j,k>ν and “out” if δi,j,k<ν. Our goal is to generate a
surface of constant density δ=ν that encloses the “in” pixels.
We use the method of marching tetrahedra to construct the
bounding surface.

The method of marching tetrahedra is similar in spirit to
marching squares in two dimensions. We sweep through the
total volume systematically over the i, j, and k dimensions,
forming cubes of adjacent vertices δi,j,k, δi+1,j,k, δi,j+1,k, δi,j,k+1,
δi,j+1,k+1, δi+1,j+1,k, δi+1,j,k+1, and δi+1,j+1,k+1. We exhibit one
such cube in Figure 5. We then further subdivide each cube

into six nonoverlapping, equal-area tetrahedra. All tetrahedra
share a single edge, which is a major interior diagonal of the
cube. We note that there is no single unique decomposition of a
cube into tetrahedra, as there are four major diagonals. Using
the vertex labels in Figure 5, the tetrahedral decomposition of
the cube can be defined in four ways (a−d), as shown in
Table 2. In this work, we present results using decomposition
(a); however, when calculating the Minkowski functionals and
their generalizations, we have checked that all four yield
consistent results.
Once an individual cube has been decomposed, we consider

each of its six tetrahedra in turn. They possess four vertices,
and each can be in/out of the excursion region. Therefore,
there are 24=16 possible distinct states of the tetrahedron. We
exhibit the 16 states in Figure 6. The solid points are vertices of
the cube, with white representing “out” states and black “in.” A
triangulation is constructed by linearly interpolating the density
along any edge of the tetrahedron that joins an “in” δ>ν
(black points) and “out” δ<ν (white points) state to the point
at which δ=ν. The triangulations are exhibited in red in
Figure 6. Once we have generated the triangle vertices, we can
calculate the total area of the triangles, the volume they
enclose, and the normals to the triangulated bounding surface,
which always point externally to the enclosed “in” states.
In Figure 7, we exhibit an example of one complete pixel

cube and the triangulation that our algorithm generates. The

Figure 5. Pixel cube constructed from the eight nearest neighbors of the
discretized density field δi,j,k. We label the cube vertices 0–7, as shown.

Table 2
Tetrahedral Decompositions

(a) (b) (c) (d)

(0, 6, 2, 1) (4, 2, 6, 5) (3, 5, 6, 7) (7, 1, 2, 3)
(0, 6, 2, 3) (4, 2, 6, 7) (3, 5, 6, 2) (7, 1, 2, 6)
(0, 6, 5, 4) (4, 2, 1, 0) (3, 5, 1, 2) (7, 1, 5, 6)
(0, 6, 7, 4) (4, 2, 3, 0) (3, 5, 1, 0) (7, 1, 5, 4)
(0, 6, 7, 3) (4, 2, 3, 7) (3, 5, 4, 7) (7, 1, 0, 3)
(0, 6, 5, 1) (4, 2, 1, 5) (3, 5, 4, 0) (7, 1, 0, 4)

Note. Four possible tetrahedral decompositions of the pixel cubes (a)–(d) using
the index labels shown in Figure 5.
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cube has five “in” and three “out” states, exhibited in the top
left panel. The lower six panels exhibit the six tetrahedra
that we generate (solid black lines) and the individual
triangulations constructed within each. The resulting surface
within the cube is exhibited in the top right panel. We repeat
this construction for each pixel cube within the total
volume, generating a closed triangulated surface encom-
passing the “in” states.

The method is guaranteed to generate a closed surface. The
topological ambiguities that are inherently present in the
marching-cubes algorithm (Montani et al. 1994; Lewiner
et al. 2003) are eliminated by our choice of interpolation
scheme; however, as we discuss in Appendix B, we introduce
additional numerical uncertainty with our choice. The simpli-
city of the method relies on linear interpolation between
tetrahedron vertices; however, a more sophisticated algorithm
should adopt bilinear and trilinear schemes when generating
triangle vertices on the surface and interior region of a pixel
cube, respectively. There is no single unique bounding surface
for a discrete density field, as the result will depend on the
interpolation scheme adopted. We discuss the numerical error
associated with our boundary reconstruction further in
Appendix B.

Once we have generated the triangulated surface, we can
calculate the four scalar Minkowski functionals as

W
V
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V

V
1 1
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The discretized forms of W0–3—the expressions after the
second equalities in Equations (40)–(43)—represent sums over
different quantities. Here å is a sum over each tetrahedron in
our decomposition, and VD is the volume occupied by the
polygon defined by the triangle vertices and “in” states of each
tetrahedron. That is, VD is the volume enclosed by our
triangulated surface within each tetrahedron. The sum tå
denotes the sum over all triangles within the bounding surface,

Figure 6. After decomposing a pixel cube into six tetrahedra (as described in the text), each tetrahedron can occupy one of 16 possible states, depending on whether its
vertices are “in” (δi,j,k>ν; black points) or “out” (δi,j,k<ν; white points) of the excursion set. A bounding surface separating the in and out states is constructed by
linearly interpolating along the edges of the tetrahedron to the point δ=ν, where ν is the density threshold. This procedure generates the vertices of a triangulation,
displayed in red in the figure.
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Figure 7. Example of our algorithm applied to a single pixel cube, displayed in the top left panel. The six smaller panels exhibit the six tetrahedra that we decompose
the full cube into (shown as solid black lines). For each tetrahedron, we generate the triangulated surface according to Figure 6. The final triangulated surface for this
particular pixel is shown in the top right panel.

Figure 8. To generate the Minkowski functional W2 and Minkowski tensor W2
0,2, we reconstruct the angle αe from each edge in the triangulation. We exhibit αe for a

single edge. In the left panel, we display the surface constructed for a particular pixel cube. The edge e, exhibited as a solid green line, joins two triangles with normals
n1 and n2. The quantity αe is the angle between n1 and n2 in the plane perpendicular to the edge vector e. We exhibit this plane in the right panel, where we have
rotated the cube in the left panel such that the line of sight is parallel to e.
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where t∣ ∣ is the area of each triangle. Here eå is the sum over all
triangle edges e, which have length e∣ ∣. The angle ea represents
the angle subtending the normals of two triangles that share
edge e; an example is exhibited in Figure 8.

The calculation of W3—the genus of the field—involves
taking the sum of all interior angles of triangles that share a
common vertex v and subtracting 2π for each unique vertex in
the triangulation. The calculation reduces to the sum of deficit
angles at each vertex, as the Gaussian curvature at all other
points on the triangulated surface (edges and triangle surfaces)
is zero. An example is presented in Figure 9. We present a
single cube containing a triangle vertex that lies within its
interior (shown as a green triangle). The contribution of this
vertex to the total genus of the excursion set is given by
2 i i1

6p f- å = . We repeat this calculation for each triangle
vertex in the bounding surface to generate W3. The sum vå in
Equation (43) is the sum over all unique vertices in the
boundary triangulation.

We can also calculate the Minkowski tensors from the
bounding surface. They are given by (Schroder-Turk
et al. 2013)
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where we have introduced the additional vectors ne˙ and n̈e,
which are defined as n n n n n¨e = + ¢ + ¢( ˆ ˆ ) ∣ ˆ ˆ ∣ and
n n e¨e e= ´˙ ˆ. Here ê is the unit vector pointing along an edge,
and n n, ¢ˆ ˆ are the unit normals of the two triangles that share the
edge. We have written Equations (44) and (45) using index
notation, where i,j indices run over the standard Cartesian x1,
x2, x3 orthogonal coordinates.

Appendix B
Sources of Numerical Error

We briefly review three sources of numerical error associated
with our algorithm. The first is topological, the second is
morphological, and the third regards the spurious anisotropy
implicit within our interpolation scheme.

B.1. Topological Ambiguity

The topological inconsistency stems from the fact that the
method adopted in this work involves the linear interpolation of
the density between points in a grid that assumes monotonicity
of the field between grid points. However, maxima, minima,
and saddle points are intrinsically higher-order quantities. It
follows that we will fail to detect structures that are present in
the field that are of order of the pixel size. The cosmological
density field will exhibit structure on all scales, and although
small-scale structures are suppressed by smoothing over several
pixels, they will still be present, particularly at high threshold
values. An example is presented in Figure 10. Applying our
algorithm to a cube with eight “out” density pixels will always
yield an empty box (left panel), but there may be small-scale
structure present (right panel). The gray sphere represents a
peak in the density field, which is subresolution in size. The
scenario exhibited schematically in Figure 10 will modify the
genus of the excursion set by one; at extreme threshold values
n∣ ∣, these missing maxima and minima can comprise a
significant fraction of the total.
For a Gaussian field, one can provide an order-of-magnitude

estimate of the number of density peaks that we will fail to
detect using our approach. To do so, we use the shape of a
density field in the vicinity of a peak of height νpk, which is
given in Bardeen et al. (1986) as

r
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where we have defined an arbitrary spherical coordinate system
with x3=r sin θ sin f. The angle average of A(e, p) is zero, and
we take this limit—that is, we assume that peaks are spherically
symmetric, xr 2pk 2

2
0n n s s- ( ). Let us take r as the radial

distance between the location of a peak and the nearest grid
point in a regular lattice at which we sample the field. The grid
points are separated by distance ò, so r0 3 2  , where
r=0 is the case where the peak lies exactly on a sampled grid
point and r 3 2= is where the peak lies at the center of a
pixel cube, maximally distant from any grid point. For our
algorithm to fail to detect a peak, the field value ν must have
dropped from νpk at the location of the peak to below the
threshold νt at distance r—that is, x must satisfy

x
r

2
. 48t
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2
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s
s
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The conditional probability that a point in the field takes value
x, given that it is a peak of height νpk, is given by
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e f x dx
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Figure 9. To generate the Minkowski functional W3, we require the deficit
angle at each vertex in the triangulated surface. An example is displayed: the
green point in the center is a triangle vertex interior to this particular box. It is
shared by six triangles in the surface; the deficit angle for this vertex is given
by 2 i i1

6p f- å = .
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Therefore, the number density of peaks that our algorithm will
miss, as a function of threshold value νt and distance r from the
nearest grid point, is given by

r d P x dx, .
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In what follows, we take the threshold range 0<νt<3 and
r0 3 2< . The quantity of interest is the total fraction of

peaks that our algorithm will fail to detect as a function of
threshold νt. Hence, we construct the statistic

f
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where r( ) is a weighting function that corresponds to the
fractional volume within a pixel cube that is a distance r from
one of the vertices, and r( ) is normalized as

r dr 1. 54
0

3 2




ò =( ) ( )

We generate r( ) numerically by decomposing a pixel cube
into a regular (2003) lattice and calculating the number density
of points that lie a distance r from the nearest vertex.

We exhibit fmissed as a function of threshold ν for various ò
values in Figure 11. We use a ΛCDM power spectrum to
generate the field and vary RG and resolution ò. We find that the

fraction of missed peaks increases with both ν and ò for fixed
RG, as expected. One must smooth over 10 pixels to ensure that
the fraction of missed peaks remains below fmissed=0.03
for the threshold range ν<3 probed in this work. Although
the missed peak fraction appears large for high threshold
values, and this loss could potentially bias topological
quantities, the statistical uncertainty on genus measurements
increases with n∣ ∣. For example, in this work, we have used
V=(1024h−1 Mpc)3 volumes and find a statistical error of
ΔW3/W3∼7% on the genus at ν=3.

B.2. Discretization Error

The second issue is the discretization of the bounding
surface, which yields a polygonal structure that might not
accurately represent the smooth underlying field. An example
is exhibited in Figure 12. We have discretized a spherical

Figure 10. Example of the topological ambiguity that is present within our approach. We consider linear interpolation between vertices within a cube and hence will
miss small-scale critical points that cannot be described with a linear scheme. In this example, the box has eight “out” vertices, and our algorithm will adopt the left
panel in this case. However, a small-scale peak (exhibited schematically in the right panel as a gray sphere) may be present, which would not be detected.

Figure 11. Fraction of peaks that our algorithm will fail to detect as a function
of threshold ν, as discussed in Appendix B.1. The blue, red, yellow, and black
lines correspond to smoothing scales and resolutions R , 20, 4 ,G  =( ) ( )

h20, 3 , 20, 2 , 15, 1.5 Mpc1-( ) ( ) ( ) , respectively. Smoothing over 10 pixels will
reduce the fraction of missed peaks to below ∼3% for 3n <∣ ∣ .
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density field of the form

x x
x x x, ,

1
, 551 2 3

cen

cen
d

d
=

+ -
( )

∣ ∣
( )

where x=(x1, x2, x3) and xcen is a random position vector that
defines the center of the density field. Here δcen is the maximum
value of the field at x= xcen. We fix xcen and exhibit surfaces
of constant threshold ν in Figure 12. As we increase the
threshold ν, we generate increasingly small spherical regions,
and when the radius of the sphere approaches the resolution ò,
the triangulated mesh no longer accurately represents the
underlying field. From left to right, the radii of the spheres in
Figure 12 are x xr 10 , 5 , 3 ,cen    = - =∣ ∣ . One can
observe the degradation in accuracy of the surface reconstruc-
tion with decreasing r/ò.

To quantify this effect, we generate Nreal=100 density
fields of the form of Equation (55), with fixed δcen and random
centers xcen. We vary the threshold cut and consider how the
properties of the spherical structure change as we decrease its
resolution. Specifically, we calculate the diagonal elements of
the matrices W1

0,2 and W2
0,2 for the spherical density field,

which should satisfy W W W1
0,2

11 1
0,2

22 1
0,2

33= =( ) ( ) ( ) and
W W W2

0,2
11 2

0,2
22 2

0,2
33= =( ) ( ) ( ) for an isotropic boundary. In

Figure 13, we exhibit the absolute difference between the
diagonal matrix elements divided by the average value as a
function of the radius of the spherical overdensity normalized
by the pixel resolution r/ò. All quantities should be zero, and
any departure is due to anisotropy generated from our
discretization scheme. One can observe that the resolution
effect is negligible for both statistics for well-resolved objects
r>3ò; however, objects that are of order of the pixel size can

yield an ∼20% numerical error in our estimation ofW1
0,2, W2

0,2.
When calculating these quantities for stochastic fields, one
must be careful to smooth over sufficiently large scales so that
the excursion set is dominated by well-resolved regions.

B.3. Intrinsic Anisotropy

The third numerical issue that should be addressed is the
anisotropy associated with the interpolation scheme that we
adopt. The method of marching tetrahedra decomposes the
pixel cubes into six nonoverlapping tetrahedra and then
performs linear interpolation between tetrahedron vertices that
are “in” or “out” of the excursion set. This procedure breaks the
symmetry of the cube along the major diagonal in which we
decompose into tetrahedra. Poorly resolved excursion subsets
will therefore exhibit a degree of alignment. The purpose of
this work is to study anisotropic signals within the data; one
must check that no spurious numerical artifacts are introduced.
To test the reliability of the algorithm, we take the Nreal=50

realizations of a ΛCDM Gaussian random field used in
Section 3 and calculate the Minkowski tensor W1

0,2 for each
connected region in the excursion set for each density field. We
then calculate the corresponding eigenvectors and eigenvalues.
For an isotropic field, the individual excursion subsets should
exhibit no alignments, and the eigenvectors should be
randomly directed on the unit sphere. Clustering in the
eigenvectors will indicate artificial anisotropy generated by
the method.
In Figure 14, we exhibit a Mollweide projection of the

eigenvector corresponding to the largest eigenvalue of every
connected region from the Nreal=50 realizations. Each
connected region will generate an eigenvector direction as a
point on the unit sphere. We create a smoothed distribution

Figure 12. We exhibit the breakdown in accuracy of the marching tetrahedron algorithm. After generating a smooth spherical density field δ(x, y, z)=δ(r) as in
Equation (55), we construct a surface of constant density around the central point. We decrease the radius of the sphere: from left to right, the radius is r=10, 5, 3,
1×ò, where ò is the resolution of the grid.

Figure 13.We calculate the Minkowski tensorsW1
0,2 (left panel) andW2

0,2 (right panel) for Nreal=50 realizations of a randomly positioned spherical density field. We
plot the absolute differences in the diagonal components of the matrices divided by the mean value as a function of the radius of the sphere in units of resolution ò. All
quantities should be consistent with zero for perfect spheres. For well-resolved surfaces, r>3ò, the statistics are consistent with their theoretical expectation to within
∼1%. However, for poorly resolved objects, the discrete nature of the bounding surface introduces spurious numerical anisotropy.
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from the points, with hot spots indicating an overdensity of
eigenvector pointings. The top left panel exhibits the distribu-
tion of all eigenvectors, and the top right panel exhibits only
the eigenvector directions of objects with volume V>8ò3,
where ò=2h−1 Mpc is the resolution of our grid. That is, the
top left panel exhibits all eigenvector pointings, and the top
right contains information on well-resolved objects only.

The top left panel exhibits clear anisotropy, with a set of six
overdensities regularly spaced (two at the poles and four
equispaced at the equator). It is clear that the unresolved objects
generate an anisotropic signal that aligns with the Cartesian
grid. However, if we eliminate the unresolved regions from our
average (top right panel), then we largely remove the spurious
signal.

We repeat our analysis using the Nreal=50 realizations of
the anisotropic Gaussian field used in Section 5. In the bottom
panels, we exhibit the eigenvector pointings for the excursion
subsets after applying no cut (left panel) and a volume cut
V>8ò3. The physical anisotropic signal in the x3 direction is
overwhelmingly dominant regardless of the cut.

The spurious numerical anisotropic signal generated by the
method is a form of noise that will provide a lower limit on the
strength of any actual signal that can be detected using this

algorithm. It is important to mitigate this numerical artifact by
applying cuts to the data and removing poorly resolved regions.
Pragmatically, one should study the robustness of the statistics
as we change the total volume of the sample, the spatial
resolution ò, and the volume cut applied.

Appendix C
Shape of Peaks in a Three-dimensional Gaussian Random

Field

The mean shape of a peak in a three-dimensional Gaussian
random field was calculated in Bardeen et al. (1986). We
briefly review this calculation and relate the ellipticity and
prolateness to the Minkowski tensors of individual excursion
set subregions.
For a Gaussian random field F, the probability distribution of

F and its first and second derivatives, ηi=∇iF/σ1 and ∇i∇jF,
respectively, at a point in three-dimensional space is given by a
multivariate Gaussian probability distribution. We are inter-
ested in the shape of the peaks of the density field, which are
characterized by ∇iF=0. If we diagonalize the second
derivative matrix ∇i∇jF in terms of its eigenvalues λ1,2,3 and
then define x=(λ1+λ2+λ3)/σ2, y=(λ1−λ3)/(2σ2),

Figure 14. After generating Nreal=50 realizations of a Gaussian random field, we collect all disjoint structures within the excursion sets and calculate their
Minkowski tensors W1

0,2. The eigenvectors of this matrix correspond to a set of axes along which the object is aligned. We exhibit the direction of the eigenvector
corresponding to the largest eigenvalue for every distinct structure within the Nreal=50 Gaussian fields (top panels). Each individual structure will contribute a point
on the sphere. We have smoothed this point distribution and generated Mollweide projections of the resulting distribution. For an isotropic Gaussian field, each
eigenvector should be randomly directed. In the top left panel, we exhibit all distinct subsets and observe a distinct anisotropic pattern of six equispaced overdensities:
two at the poles and four evenly spaced at the equator. This pattern indicates six directions along which poorly resolved subsets of the field will align. If we only
consider objects that are well resolved by cutting all structures with volume V<8ò3 (top right panel), then the spurious anisotropic signal is eliminated. For
comparison, in the bottom panels, we perform the same test on the anisotropic Gaussian random field introduced in Section 5. In this case, the physical anisotropic
signal along the x3-axis is clearly dominant regardless of the volume cut adopted.
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z=(λ1−2λ2+λ3)/(2σ2), and ν=F/σ0, we can define the
joint probability as
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The conditional probability for the ellipticity e=y/x and
prolateness p=z/x parameters, given a peak with parameters
ν and x, is given by (Bardeen et al. 1986)
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the average peak density of the maxima of parameters ν, x is
given by
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where A is an unimportant constant from which our final result
will be independent. At each threshold level ν, we estimate the

mean shape of peaks that lie within the excursion set as
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We perform the two-dimensional integrals in Equation (64)
and find the expectation values em and pm via em =

e p P e p edpde, ,ò òc( ) ( ) , p e p P e p pdpde, ,m ò òc= ( ) ( ) .
We next relate the ellipticity and prolateness of a peak to the

corresponding eigenvalues of the Minkowski tensor. For an
ellipsoid, one cannot obtain a closed-form expression for the
eigenvalues of W1

0,2 or W2
0,2. One can write these quantities in

terms of integrals over the parameterized ellipsoid surface as
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where we have parameterized the surface of the ellipse as
x y z u v a u v b u c, , sin cos , sin sin , cos2 2 2=( ) ( ). In terms
of this parameterization, the mean curvature G2 is given by

The most likely values of parameters a, b, and c are related to
the ellipticity em and prolateness pm as
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therefore, for a given em, pm, we invert the relations of
Equations (68) and (69) and then calculate the integrals
expressed in Equations (65) and (66) for the corresponding am,
bm, cm. There exists a redundancy in Equations (68) and (69),
so we eliminate am and define b b am m m=¯ , c c am m m=¯ . The
ratio of eigenvalues calculated from the Minkowski tensors in
Equations (65) and (66) can be similarly defined purely in
terms of bm¯ and cm¯ . We compare the theoretical values of i

1b ( )

and i
2b ( ) obtained for the peaks of the field with those of the

excursion set regions, which are extended objects that may
encompass multiple peaks. We expect agreement between
theoretical expectation and numerical reconstruction in the high
threshold limit n∣ ∣.
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