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ABSTRACT

We present a general relativistic (GR) model of jet variability in active galactic nuclei due to orbiting blobs in
helical motion along a funnel or cone-shaped magnetic surface anchored to the accretion disk near the black hole.
Considering a radiation pressure driven flow in the inner region, we find that it stabilizes the flow, yielding Lorentz
factors ranging between 1.1 and 7 at small radii for reasonable initial conditions. Assuming these as inputs,
simulated light curves (LCs) for the funnel model include Doppler and gravitational shifts, aberration, light
bending, and time delay. These LCs are studied for quasi-periodic oscillations (QPOs) and the power spectral
density (PSD) shape, and yield an increased amplitude (∼12%), a beamed portion and a systematic phase shift
with respect to that from a previous special relativistic model. The results strongly justify implementing a realistic
magnetic surface geometry in Schwarzschild geometry to describe effects on emission from orbital features in the
jet close to the horizon radius. A power-law-shaped PSD with a typical slope of −2 and QPOs with timescales in
the range of (1.37–130.7) days consistent with optical variability in blazars, emerges from the simulations for black
hole masses = − × ⊙M M(0.5 5) 10•

8 and initial Lorentz factors γ = −2 10jet,i . The models presented here can be
applied to explain radio, optical, and X-ray variability from a range of jetted sources including active galactic
nuclei, X-ray binaries, and neutron stars.

Key words: accretion, accretion disks – black hole physics – BL Lacertae objects: general – galaxies: active –

galaxies: jets – pulsars: general

1. INTRODUCTION

A bulk flowing plasma close to the innermost stable circular
orbit (ISCO) of a black hole, consisting of the accretion disk
and developing jet, is strongly influenced by magnetic field
structures, differential rotation of the disk, and radiative
structuring. The flow velocity field and magnetic fields are
dominated by the azimuthal and possibly the radial compo-
nents. The poloidal components are non-zero owing to vertical
structuring, random motions, radiation pressure, and dynamo
action in the disk. The magnetic field strength generated by
dynamo action in the inner disk is expected to be in
equipartition with the gas pressure (e.g., Brandenburg
et al. 1995), allowing for a reasonably well-developed vertical
structuring in the field (Spruit 1996).

Variability is often observed in emission from active galactic
nuclei (AGNs) with strong jet components such as blazars,
inferred from the domination of synchrotron processes in radio
to optical light curves (LCs) and spectra from regions at parsec
scales as well as close to the base of the jet (e.g., Wagner
et al. 1996; Gupta et al. 2012). Theoretical models are often
applicable to emission from regions that are some distance
away from the central region where structures are resolvable.
Some of these include Doppler beaming of a stream or blobs of
plasma accelerated to relativistic velocities along helical paths
(Camenzind & Krockenberger 1992; Steffen et al. 1995;
Rieger 2004), as was recently observed in the blazar BL
Lacertae (Marscher et al. 2008), and shocks propagating along
the relativistic jet (Marscher & Gear 1985), which explains the
variability in some blazars (e.g., Qian et al. 1991; Hagen-Thorn
et al. 2008). Quasi-periodic variability can be caused due to the
orbital motion of the flow along helical trajectories which get

beamed when their local angle is close to the angle to the
observer’s line of sight in the inner region where the jet is just
developing. This effect is expected to last for a few cycles.
In a study of X-ray binaries, the inner jet appears to be

intrinsically linked to the corona because spectral character-
istics of its emissions are the same as those from a
Comptonized corona (Markoff et al. 2005). In another study,
VLBI observations at 1.3 mm resolve structures and study the
emission from the inner jet of M87 (Doeleman et al. 2012). In
this study, a direct scaling relation between the angular size and
the distance to the object indicates that the region of emission is
very compact, even inside of the ISCO (5.5± 0.4 Rs, where Rs
is the Schwarzschild radius), implying that the emitting source
is on a prograde orbit. These and similar studies indicate that
there is a strong disk–jet connection, which is also likely
because perturbations produced in the disk can be advected into
the jet and amplified there via Doppler boosting (e.g.,
Wiita 2006).
Emission in AGNs such as blazars is observed in a wide

variety of wavelengths ranging from radio to optical to
Gamma-rays (e.g., Abdo et al. 2011) and can be inferred in
many cases to arise from the jet. Intra-day variability in the
optical bands is frequently observed in strongly jetted radio-
loud AGNs. The measured magnitude often changes by an
order or more in less than a day (e.g., Gupta et al. 2008). Jet
variability in the X-rays is observed on timescales of a few
hours. A possible 4.6 hr QPO in an X-ray LC of the blazar PKS
2155-304 and the interpretation is discussed in terms of
instabilities in the disk being advected into the jet and intrinsic
jet-based processes including shocks in jets (Lachowicz
et al. 2009). IDV timescales ranging between 15.7 and 46.8
ks have been detected in eight LCs from 1ES 1426+428 and
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PKS 2155-304 (Gaur et al. 2010). Intra-night variability in the
optical B and R bands have detected timescales ranging from
several hours to a week in the radio loud narrow line Seyfert 1
galaxy SDSS J094857.3+002225, interpreted in terms of
physical processes in a relativistic jet (Liu et al. 2010). These
and other studies indicate that short-term (a few hours) to long-
term (a few days to weeks) variability is commonly observed
in radio, optical, and X-ray wavelengths. A helical kinematical
jet model was applied to explain the trajectories of blobs in the
inner jet (Steffen et al. 1995). In the study, the model is applied
to quasar 3C 345 to infer an inclination angle of ◦6 . 8 and
typical Lorentz factors of 5.8 and 4.6 for two radio
components.

In our paper, we define “blobs” to be density inhomogene-
ities that are acted upon by the centrifugal force, radiation
pressure and drag, and the gravitational force of the black hole.
We, however, do not include any thermodynamic evolution of
the blob. The blob flows along with the bulk plasma in the
region with a dominant magnetic field, where the plasma is
constrained by flux freezing to flow along the magnetic surface
encompassing the jet. The variability could be attributed to
orbital blobs propagating along the jet, the emission from
which is beamed along the observer’s line of sight causing
rapid changes in the received flux. Our model assumes a flow
that has transited from the accretion disk onto the jet through
the magnetic field surface anchored onto the disk at foot points
close to the black hole. Thus, blobs such as orbiting spots could
be present in the jet at various scales in the mass-loaded jet.
This is expected to occur regardless of the jet models such as
the purely electro-magnetic jets or the magnetohydrodynamic
jets. The developed model is used to study the quasi-periodic
oscillations (QPOs) phenomenon in addition to the timing
study of simulated LCs using the Fourier periodogram and
wavelet analysis. Our model can be used to study both the
timing properties and the variable emission from orbiting blobs
as well as model the jet structure and place constraints on the
trajectories of these orbiting blobs, which can be compared
with observations.

Earlier works in this direction have mainly addressed only
accretion disk based variability and its timing properties. Models
include the variability due to orbiting blobs and are applicable to
optical/UV and X-ray wavelengths (e.g., Zhang & Bao 1991;
Mangalam & Wiita 1993). Recent models also include the effect
of aberration based on the observer in a local static frame
(Pecháček et al. 2005), hinting at the necessity for a full general
relativistic (GR) treatment in the disk–jet case. A model for the
QPO and its timing properties, such as the quality factor, the
break frequency inferred from the PSD shape for a GR thin disk,
was presented in Mohan & Mangalam (2014). There is a
necessity for a treatment of the emission source kinematics and
light ray paths in curved spacetime as the inner jet is close to the
black hole; also, GR effects on this emission have not been
treated in earlier works. A preliminary study was presented in
Mohan (2014) and Mangalam & Mohan (2015).

A schematic indicating the basic features of the wind in the
context of the black hole system is shown in Figure 1. The
geometry consists of three zones. In the region
( < <R r Rs ISCO ) marked as Zone 1, the radiation pressure
is dominant and drives the outflowing blobs, which are sourced
from a hot corona (thermal temperature of ∼85 keV, e.g.,
Mohan & Mangalam 2014) with zero angular momentum (as
the inflow toward the black hole would be on plunging orbits).

We consider the effects of radiation, namely pressure and drag
in a two-dimensional model in Section 2, thereby extending the
one-dimensional model of Abramowicz et al. (1990). In
Section 3, we construct a model in Schwarzschild geometry
for the kinematics and emission of the blob for the region
( < <R r RA L ) marked as Zone 3 and beyond ( >r RL). The
transition region ( < <R r RAISCO ) marked as Zone 2 requires
a treatment of the relativistic Grad–Shafranov to self-
consistently describe the geometry of the field and kinematics
of the flow. While we postpone this for future studies, in this
paper, we take the results from Section 2 to provide the launch
parameters for calculating the blob trajectory in a conical or
funnel geometry for the magnetized jet in Section 4.
We assume that the blob that is accelerated by radiation
reaches the magnetic surface where it is centrifugally driven to
higher Lorentz factors by the co-rotation with the foot point. In
the analysis in Section 4, applicable to Zone 3, we calculate the
typical Lorentz factors that can be obtained both from the initial
acceleration due to radiation in Zone 1 and the co-rotation
in Zone 2; in Zone 3 we assume that the blob has reached a
final angular momentum achieved at the Alfvén point;

Wϖ=∞j A
2 where ϖA is the cylindrical radius of the Alfvén

point and Ω is the spin of the magnetic surface. Based on the
kinematics of the model, the emission is also calculated for the
centrifugally driven flow on an assumed conical- or funnel-

Figure 1. Schematic indicating the kinematically different zones in the
trajectory of a typical blob. The black hole with a Schwarzschild radius

=R GM c2s •
2 is at the center. In the region ( < <R r Rs ISCO) marked Zone 1,

radiation pressure is dominant and drives the outflowing blobs sourced from a
zero angular momentum corona. In the transition region ( < <R r RAISCO )
marked Zone 2, the kinematics of the flow are driven by radiation as well as the
co-rotating magnetic field lines that are anchored to the disk. In Zone 3, at radii

< <R r RA L, where RA is the Alfvén radius and RL is the radius of the light
cylinder, the inertia dominates and the orbital angular momentum of the blob
has reached an asymptotic value.
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shaped geometry for the magnetic surface. While this is a
simplified approach that improves upon previous work, we plan
to construct a fully self-consistent model for Zone 2 in the
future. We calculate the trajectory of the orbiting blob and the
expected LC from a special relativistic cone model as presented
in Camenzind & Krockenberger (1992) and then from a GR
cone model and a realistic funnel model, given the instanta-
neous position and velocity in each case. Results from the
analysis of simulated LCs include addressing the QPO
phenomenon, its evolution and the shape of the power spectral
density (PSD) for multiple emitting regions are presented in
Section 4.4. We then discuss the advantages of our GR funnel
model and interpret the results of the simulations in Section 5.

2. RADIATION-DRIVEN WIND IN
THE LAUNCHING REGION

The effect of radiation pressure on radially outflowing
relativistic particles has been studied by Abramowicz et al.
(1990). While Vokrouhlicky & Karas (1991) included the
black hole spin on the radiation pressure driven radial motion
of particles, the effects of thermodynamic evolution was
included by Horák & Karas (2006).

In addition to the effects of radiation pressure considered in
Abramowicz et al. (1990), we extend their one-dimensional
model to the general case of three dimensions (which
simplifies to two for the resulting planar trajectories in a
spherically symmetric metric) by including effects of radiation
drag arising from the azimuthal and the θ components of the
equations of motion. The four acceleration of the blobs in
Schwarzschild geometry is set equal to the radiation forces of
pressure and drag on the blob and hence the Lorentz factors are
derived.

The observer geometry and the vectors are presented in
Figure 3 of Abramowicz et al. (1990). First, we treat the blob
motion in full θ ϕr( , , ) spherical coordinates. The evolution of
the velocity due to the action of the radiation pressure and drag
self-consistently governs the trajectory of the blobs until it
reaches the launch positions on the magnetic surface at larger
distances. The region where this occurs is radiation dominated
and consists of a zero angular momentum hot flow sourced
from a corona. The kinematics of this region, Zone 1, is of
interest in the current section.

The model is cast in a Schwarzschild spacetime with the line
element,

θ θ ϕ

= − −

+
−

+ +( )
ds M r c dt

dr

M r
r d d

(1 2 )

(1 2 )
sin , (1)

2 2 2

2
2 2 2 2

where θ ϕr( , , ) are the spherical polar coordinates and
=M GM c•

2 is the gravitational radius with M• being the
black hole mass. The covariant components of this diagonal
metric, expressed in these coordinates are given by

θ

=

= − −
−

αβ θθ ϕϕ

⎜ ⎟⎛
⎝

⎞
⎠

( )g g g g g

M r
M r

r r

, , ,

(1 2 ),
1

1 2
, , sin . (2)

tt rr

2 2 2

By writing the line element in the form

θ

θ ϕ

= − − − −

− −

− −

−

−

−

⎜ ⎟
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⎛
⎝
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⎛
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dr

dt
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r M r
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(1 2 ) 1 (1 2 )
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sin (1 2 ) , (3)

2 2 2 2
2

2 1
2

2 2 1
2

we can write the blob three-velocity components as

β

β θ

β θ ϕ

= −

= −

= −

θ

ϕ

−

−

−

M r
c

dr

dt

M r
r

c

d

dt

M r
r

c

d

dt

(1 2 )
1

(1 2 )

(1 2 )
sin

. (4)

r
1

1 2

1 2

With the above representation, the proper time τ = −d ds2 2 can
be written as

τ γ= −−d c dt M r(1 2 ), (5)2 2 2 2

where γ β β β= − − −θ ϕ
−(1 )r

2 2 2 1 2 is the Lorentz factor. The
components of the four-velocity of the emitting blob along the
jet τ τ= =α α αu dx d dx dt dt d( )( ) are then

γ

β γ

β γ
θ

β γ
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r
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The covariant components of the four-velocity can be
obtained by lowering the indices using the metric

=β
α

αβu u g ,

γ

β γ β γ θβ γ

= − −

× −

β

θ ϕ
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The contra-variant components of the acceleration are given by

τ
= + Γα

α

ν
α νa

du

d
u u . (8)μ

μ

The radial component is then given by
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Using the four-velocity components from Equation (6)
and Γ = − M r(1 2 )tt

r M

r2
, Γ = − −M r(1 2 ) ,rr
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r
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Γ = −ϕϕ r sinr 2 θ − M r(1 2 ),
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The quantity mc ar2 is the radial force where m is the mass of
the orbiting blob. The θ-component of the acceleration is given
by
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Using the four-velocity components from Equation (6),
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The quantity θmc ra2 is the force in the θ direction. The
azimuthal component is given by
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Using the four-velocity components from Equation (6),
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The quantity ϕmc ra2 represents the force in the azimuthal
direction. Radiation force drives the accelerated outward
motion of the blob while the initial azimuthal and angular
motion, however, is continuously retarded by the effect of the
radiation drag of an assumed spherically symmetric radia-
tion field.
Following Abramowicz et al. (1990), the contra-variant

components of the radiation energy flux are given by

=α α ν
νF h T u , (15)μ

μ

where δ= +α α αh u uμ μ μ is a projection tensor and νT μ is the
radiation field energy density. The tetrad components of the
energy density tensor can be evaluated using
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where I r( ) is the radiation field intensity, n i( ) is the unit vector
describing the photon trajectory, and Wd is an element of the
solid angle subtended on the sky of the local observer (see
Figure 3 of Abramowicz et al. 1990). The energy density can
thus be evaluated from this using
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where =R M6 is the radius of the emitting surface, η is the
viewing angle from the zenith for the stationary observer and is
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related to δ, which is the zenithal angle at the point of emission,
R, by

η δ= −
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1 2

1 2

where δ =sin 1 for >R M 3 2 and δ =sin M
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3 3

2

− M R(1 2 )1 2 for ⩽R M 3 2 (Abramowicz et al. 1990).
If σ is the cross section of the orbiting blob over which the

radiation force acts, the quantity σ αF represents the radiation
force. The radial component of the energy flux is given by
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Using the components of αu from Equation (6), αu from
Equation (7), and νT μ from Equation (17), the radiation force
in the radial direction is given by

σ σγ
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The θ-component of the energy flux is given by

= + + +

+ + +
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Using the components of αu from Equation (6), αu from
Equation (7) and the components of νT μ from Equation (17),
the θ-component of the radiation force is given by

σ
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γ
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The azimuthal component of the energy flux is given by
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Using the components of αu from Equation (6), αu from
Equation (7), and the components of νT μ from Equation (17),

the azimuthal component of the radiation force is given by
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2.1. Dynamics Based on Radiation Pressure and Drag

The Eddington parameter Γ is the ratio of the disk
luminosity L to the Eddington luminosity LEdd and is given by,

σΓ = = −


L

L

cπI R R M R

GM mc

( ) (1 2 )
(25)

Edd

2 1 2

•

where LEdd is corrected for the GR redshift factor
− M R(1 2 )1 2 and σ is the cross section of the orbiting blob

over which the radiation force acts and

= −
−

⎜ ⎟⎛
⎝

⎞
⎠

I r

I R

M R

M r

( )

( )

1 2

1 2
, (26)

2

is obtained from the energy conservation along the null
trajectory in the stationary frame (Abramowicz et al. 1990).
The first equation of motion is from the radial components of

the acceleration and the force. The radial component of the force
imparts the radial acceleration onto the orbiting blob, i.e.,
σ =F mc ar r2 . Using Equations (10) and (20) and the representa-
tion =x r M and =X R M , we can eliminate the dependence of
the equation on M. Then, expressing the equation in terms of the
Eddington parameter Γ using Equations (25) and (26),
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The second equation of motion is from the θ-components of
the acceleration and the force. The θ-component of the force
imparts a drag on the acceleration of the orbiting blob and
σ =θ θF mc a2 . Using γ β= −(1 )r r

2 1 2, Equations (12) and (22)
and the representation =x r M and =X R M , and expressing
the equation in terms of the Eddington parameter Γ using
Equations (25) and (26),
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The third equation of motion is from the azimuthal
components of the acceleration and the force. The azimuthal
component of the force imparts a drag on the azimuthal
acceleration of the orbiting blob and σ =ϕ ϕF mc a2 . Using
Equations (14) and (24) and the representation =x r M and

=X R M , and expressing the equation in terms of the
Eddington parameter Γ , using Equations (25) and (26),
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2.1.1. Purely Radial Motion

In the limits β =ϕ 0 and β =θ 0, i.e., purely radial
outflowing motion, only the first equation of motion is

relevant. The equation reduces to

γ β
β

η β β η η

− + =
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× − + + − −

⎜ ⎟⎛
⎝

⎞
⎠

⎡⎣
⎤
⎦⎥



( ) ( )

x
d

dx x x

X

x
(1 2 )

1 1 2

1 2

sin 1
2

3
4 cos 3cos ,

(30)
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r r
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2 2 3

which is the same as that derived in Abramowicz et al. (1990).
Solving for βr and hence γ β= − −(1 )r r

2 1 2 as a function of the
initial launch velocity, βr i, and x indicates a constant saturation
value of −2 7 for Γ = 0.3, β = 0.86–0.99r i, at distances r
beyond ∼a few tens of M from the black hole and is plotted in
Figure 2. In the simulations, changes to Γ did not change these
results.
For the range of β = −0.86 0.99r i, and = −x 6 20, the γr

contours saturate at constant values in the range −2 7 for large
x, consistent with the simulations of Abramowicz et al. (1990).

2.1.2. Poloidal Motion

A poloidal outflow in the radiation region (β β= ≠ϕ θ0, 0,
β ≠ 0r ) is trajectorially equivalent to the case of motion on the
equatorial plane (θ β β β= = ≠ ≠θ ϕπ 2, 0, 0, 0r ) due to the
spherical symmetry of the Schwarzschild geometry. We appeal
to the zero angular momentum nature of the outflow source in
the corona region (see Figure 1) to motivate this poloidal flow.
Thus, we are left with two coupled partial differential equations
to solve modified versions of Equations (27) and (28) with
(β β β= ≠ ≠ϕ θ0, 0, 0r ). The bulk Lorentz factor

γ β β= − − θ
−(1 )r

2 2 1 2 in this case and γ β= − −(1 )r r
2 1 2;

γ β= −θ θ
−(1 )2 1 2. The resulting equations are,
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for the radial motion, and the θ-equation is
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In the simulations carried out, we set Γ = 0.3. The initial
value βr i, was varied between 0.01 and 0.99, the range being
chosen based on the βr range simulated in Mohan &
Mangalam (2014) for a relativistic thin disk (Novikov &
Thorne 1973; Shakura & Sunyaev 1973) in the context of
the quality factor Q observable in the inner region of
the accretion disk very close to the ISCO. There, we obtained
the range × −1.36 10 0.995 for a range of the disk viscosity
parameter α = −0.01 0.4 for ⩾ −r M M6 20 . The range
of initial velocity βθ i, is chosen based on the argument
that if the motion is along Keplerian orbits,

Wβ = − = −θ
θ− −M r M r r(1 2 ) (1 2 ) ( ).r

c

d

dt

r

c
1 2 1/2 As W =r( )

c M r( )3 1 2 for Keplerian orbits, β = −θ
−M r(1 2 ) 1 2 M r( )1 2.

We thus evaluate βθ i, to be in the range −0.25 0.61 for
= −r M M6 20 .
The initial values βr i, and βθ i, were taken in the range

0.86–0.99 (similar to the case of purely radial flow) and
0.25–0.61, respectively. The initial values of the variables x
and θ were taken in the range 6–20 and − π0.01 2,
respectively. The contours of βθ and γ β= − −(1 )2 1 2, where

β β β= + θ( )r
2 2 1 2 as a function of x and θ, are plotted in

Figure 3. Simulated final values of βθ are in the range
0.18–0.81 and γ are in the range −1.1 26.3, higher than in the
purely radial case though, γ saturates to low values for smaller
initial values of x. It is inferred from the simulations that βθ and
γ decrease rapidly; this decrease is large for smaller initial
values of x, while their decrease is more gradual at larger initial

values of x. These effects can be attributed to the drag force due
to the non-radial component of the radiation pressure, which
plays an important role in stabilizing the saturation values of γ
at an early stage even if the source of the outflow had an initial
angular momentum. The simulations thus indicate that the flow
becomes rapidly radial.
We plan to present details of the classification of flows,

and hence a more comprehensive exploration of the
parameter space and the resulting trajectories in a paper in
preparation. Here, we have derived the typical values
of the poloidal βp and γp that are the inputs to typical initial
values for Zone 3 ( < <R r RA L) and beyond ( >r RL)
where the angular momentum is set by its value at the Alfvén
point.

3. TRAJECTORY AND EMISSION GEOMETRY
IN AND BEYOND ZONE 3

From the metric in Equation (1), there is no explicit
dependence in the equations of motion on the ϕ and t
coordinates, there are two Killing vectors associated with this
geometry given by ζ = (1, 0, 0, 0) and η = (0, 0, 0, 1). If u is
the four-velocity of the emitting blob, the Killing vectors can
be used to evaluate the constants of motion for the Schwarzs-
child metric including the the total energy

ζε = − =
−

u

M R
u·

(1 2 )
, (33)

t

and the conserved angular momentum

Wη θ= − =j Ru· sin , (34)2 2

where ut is the time component of the four velocity u and Ω is
the angular velocity of Keplerian orbits in Schwarzschild
geometry. The condition = −u·u 1 in case of the Schwarzs-
child metric gives

γ

θ θ ϕ

= = − −
−

− −
−

⎛
⎝
⎜⎜

)

u M R
R c

M R

R c R c

1 2
˙

1 2

˙ sin ˙ . (35)

t
jet

2 2

2 2 2 2 2 2 2
1 2

This can be used to write the general expression for the
velocity βjet of the emitting spot as

β θ θ ϕ

γ

=
−

− −

= − −( )

R c

M R
R c R c

M R

˙

1 2
˙ sin ˙

1 2 1 (36)

jet

2 2
2 2 2 2 2 2 2

jet
2 1 2

The various emission and direction vectors include the radial
vector n, the direction vector of the initially emitted light ray k0
and the final direction vector pointing along the observer line of
sight k. A general path showing the source motion along a
helical trajectory and the emission geometry along with the
above vectors is presented in a schematic in Figure 4.
The vector k0 is given in terms of k and n as

α
ψ

ψ α
ψ

= + −
k k n

sin

sin

sin( )

sin
; (37)0

this identity can be verified applying dot and cross products of
k and n and using their geometry given in Figure 4.

Figure 2. Contours of γr as a function of the initial launch velocity βr i, and x.
The γr value tapers off to constant values at large x for β = −0.86 0.99r i,

consistent with the simulations performed in Abramowicz et al. (1990). The
simulated γr are in the range 2–7.
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In the Cartesian x y z( , , ) coordinate system centered on the
black hole, the components of the direction vector k are given
by

= i ik (sin , 0, cos ) (38)

and the components of the emission vector n are given by

θ ϕ θ ϕ θ=n (sin cos , sin sin , cos ). (39)

The initial emission angle α can be written in terms of the
initial direction vector k0 and the emission vector n as

α = k ncos ·0 . The final angle of the emitted ray ψ can be
written in terms of the final direction vector k and the emission
vector n as ψ = k ncos · . This can be expanded as

ψ θ θ ϕ= +i icos cos cos sin sin cos . (40)

Assume that an emitter located at a radial distance R emits a
light ray at an angle α with respect to the radial vector. The
light ray undergoes bending due to spacetime curvature to
emerge at a final angle ψ with respect to the radial vector and
the relationship between ψ and α can be determined by solving
and combining

∫ψ = − −
∞ −( )dr

r
b r M r1 1 (1 2 ) (41)

R 2
2 2 1 2

and

α = −b

R
M Rsin (1 2 ) , (42)1 2

where b is the impact parameter shown in Figure 4. The
derivation of the above equation is presented in Appendix. This
propagation effect can be approximated by the expression
(Beloborodov 2002)

α ψ− = − − M R1 cos (1 cos )(1 2 ). (43)

Using the above approximation, we find

α
ψ

ψ

= − −

+ + − )

M R M R

M R

sin

sin
(1 2 ) (1 2

(4 )(1 cos ) . (44)

1 2

1 1 2

The travel time will be different for photons emitted from
different radial locations R. The difference between the travel
time for a ray emitted from a position R and that from a
position at the center of the coordinate system can be obtained
from the integral

∫
Δ

=
−

− − −
∞ −⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
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t

dr

M r

b

r
M r

1 2
1 (1 2 ) 1 . (45)

R

2

2

1 2

The time delay due to light bending can be approximated
(Poutanen & Beloborodov 2006) as

δ δΔ = + −⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟t y y

R

c8
1

1

3

2

14
, (46)LB

2

where ψ= −y (1 cos ) and δ = M R2 . The time delay is
defined with respect to straight paths from point P to the
observer, as shown in Figure 4.
The time of advance due to orbital motion of the emitting

source, tadv, can be expressed in terms of geometric factors
from Figure 4 as

ϖ= − − nt y R c c(1 ) ( ) , (47)0 iadv · 0

where the constant shift n( )0 i· accounts for the initial offset in R
in the projected i direction toward the observer. If the time of
emission in the source frame is tem, the observed period of the
signal tobs is reduced due to the effects of the component of the
source moving toward the observer’s line of sight and due to
the time delay induced by light bending and the disk

Figure 3. Contour plots of β θθ x( , ) and γ θ β= − −x( , ) (1 )2 1 2 where β β β= + θ( )r
2 2 1 2 for β = −0.86 0.99r i, and β = −θ 0.25 0.61i, . Left plot: simulated βθ is in the

range 0.18–0.81. The decrease in βθ are large for smaller initial values of x. Right plot: the decrease in γ also follows the same expected trend to that of βθ . The
simulated γ are in the range 1.1–26.3, higher than in the purely radial case, though, with saturation of γ to low values occurring even at smaller x. These effects can be
attributed to the drag force acting to rapidly cause the loss of any initial angular momentum as well as stabilize the flow at small x.
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inclination, and is given by

ϖ

ψ ϖ

= − + Δ +
= + − + + Δ +

= − + + Δ +

[ ]
[ ]
[ ]

n

n

t t t t z

t y R c c t z

t R c c t z

(1 )

( 1) ( ) (1 )

( )cos ( ) (1 ).

(48)

0

0

i

i

obs em adv LB

em · 0 LB

em · 0 LB

This is used to map the time of emission to the time of
observation by accounting for light bending where ΔtLB is the
time delay from Equation (46) due to light bending and where
z is the cosmological redshift of the emitting source. The effect
of the time delay due to the light bending and disk inclination is
to change the phase of reception of the observed signal. The
phase change is expected to systematically increase as the
emitting source moves along the expanding jet toward the
observer. Also, we set the constant offset so that

= =t t( 0) 0obs em for no light bending.

4. FLOW TRAJECTORIES IN AND BEYOND
ZONE 3 AND RESULTING LCS

We now discuss the construction of the LC for the variability
model. The motion of the flux frozen blob is along a magnetic
surface with foot points anchored on the accretion disk. A basic
schematic of the blob motion along the magnetic surface is
presented in Figure 5.

This surface co-rotates along with the disk at an angular
frequency given by

W
ϖ

=
+

cM

aM
, (49)F

F

1 2

3 2 1 2

where a is the black hole spin parameter and ϖF is the
cylindrical radius to the foot point from the coordinate system
centered on the black hole ( =z 0). The radius of the light
cylinder ϖL is the position on a cylindrical surface along which
the plasma moves at the speed of light and is calculated as

W
ϖ

ϖ
= = +c

M
a. (50)L

F

F
3 2

1 2

The cylindrical radius from which the blob is launched is given
by ϖ ϖ= f L0 , where f = 0.1–10. The specific angular
momentum of the blob, j, is conserved along the magnetic
surface. This occurs beyond the Alfvén point with a cylindrical
radius ϖ ϖ= xA A L where ⩽x 1A

2 . The conserved angular
momentum is then given by

Wϖ= =∞j j x . (51)A L F
2 2

TheWF in Equation (49) is the angular frequency of orbits in
the Kerr metric and we make use of ≠a 0 only for comparison
with the special relativistic model presented in Camenzind &
Krockenberger (1992). For the GR models, we make use of the
Schwarzschild geometry ( =a 0) to maintain consistency with
the treatment of the Doppler boost factor, aberration, and light
bending.
The instantaneous position of the emitting spot is given by

ϖ ϕ ϖ ϕ= =x y z t t t t z tx ( , , ) ( ( )cos ( ), ( )sin ( ), ( )), (52)s

where ϖ is the cylindrical distance to the emitting spot from
z t( ). In our variability model, a prescription for ϖ ϖ= z( ) is
given by the geometry of the magnetic surface. The velocity
components ( = d dtx x˙ s s ) are then

ϖ ϕ ϖ ϕ ϖ ϕ ϖ ϕ

=

= − +( )
( )x y z

t t t t z

ẋ ˙, ˙, ˙

˙ cos ( ) ˙ ( ), ˙ sin ( ) ˙ ( ), ˙ .

(53)

s

The angle between the velocity vector of the spot ẋs and the
initial direction vector k0 is given by

ξ

α
ψ

ψ α
ψ

=

= + −⎛
⎝⎜

⎞
⎠⎟

x k

x

x
x k x n

cos
˙ ·

˙

1

˙

sin

sin
˙ ·

sin( )

sin
˙ · . (54)

s 0

s

s
s s

Using the initial direction vector k0 from Equation (37), the
final direction vector k from Equation (38) and the radial
vector n from Equation (39), we can write the most general
form of ξcos as

W

W

ξ α
ψ

ψ α
ψ

α
ψ

ϖ ϕ ϖ ϕ

ψ α
ψ

θ θ θ

α
ψ

θ ϕ

ψ α
ψ

θ θ θ

ϖ α
ψ

ϕ

= + −

= − +

+ − +

= +

+ − +

−

⎪

⎪

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎡
⎣⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎧
⎨
⎩

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎫⎬⎭
(55)

i i z i

z

z i i

i

x
x k x n

x

x

cos
1

˙

sin

sin
˙ ·

sin( )

sin
˙ ·

1

˙

sin

sin
˙ cos sin sin sin ˙ cos

sin( )

sin
˙ tan sin cos

1

˙
˙

sin

sin
tan cos sin cos

sin( )

sin
tan sin cos

sin

sin
sin sin .

s

s

s

s
s

0

0

0

The Doppler factor D evaluated in an instantaneous
stationary frame at the source using the emission vectors given

Figure 4. General helical flow geometry showing the path of the emitting
source on the jet (blue) launched from the cylindrical radius ϖ0 emitting a light
ray which is subjected to the light bending effect (red). If the time of emission
is tem, the time at which the signal is observed = − + Δ( )t t t tobs em adv LB

+ z(1 ), where tadv is the time taken for the source to traverse the distance
ψRcos and ΔtLB is the correction due to light bending effect in curved

spacetime. The blob trajectory is shown in blue, emission vectors in black, and
geometrical quantities including distances in grey.
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in Equations (37), (38), and (39) is given by

γ β ξ
=

−( )
D

1

1 cos
. (56)

jet jet

In the observed frame, the above expression must be
modified to account for the gravitational redshift. Thus, the
effective redshift factor g, which is the ratio of observed to
emitted energy of the emitted ray, must include the above
Doppler factor as well as the gravitational redshift effect, and is
given by

γ β ξ

= = −

= −
−( )

g
E

E
M R D

M R

(1 2 )

(1 2 )

1 cos
. (57)

observed

emitted

1 2

1 2

jet jet

An alternate derivation of the above equation is presented in
the Appendix. If γjet,i is the bulk Lorentz factor of the flow at
the initial launch radius ϖ0, the energy conservation condition
along the trajectory can be written as

γ
ε

γ

ϖ
γ

−
=

−
= =

−
=

( )
u

M R M R M(1 2 ) (1 2 ) 1 2
.

(58)

t jet jet,i

0
jet,f

This can be used to express γjet in terms of the initial
parameters ϖ0 and γjet,i. From the simulations invoking
radiation pressure and drag in Section 2.1, we motivate stable
values of γ ∼ −2 6jet,i at larger x such as the initial launching
point (foot points on the disk) which we have taken to be
between (0.1–10) light cylinder radii. The LC is given by the
spectral flux density observed νF t( ). If ′νF is the spectral flux
density in the co-moving frame, these are related by the

expression

= ′ν
λ

νF t g t F t( ) ( ) ( ), (59)

where λ = + Γ3 for a resolved blob of plasma and
λ = + Γ2 for a continuous flow; Γ is the spectral index,
which is the slope in the relation ν∝ν

ΓF between the spectral
flux νF and the emission frequency in the observer frame. Either
case of λ is possible depending on the particular application to
observations, but for the purposes of illustration, we take
λ = + Γ2 in order to compare our results with Camenzind &
Krockenberger (1992).
Because t is the time in the source frame, we obtain the time

in the observer frame using the transformation in Equation (48)
with the time delay ΔtLB to obtain =ν νF F t( )obs in the observer
frame. The beaming effect will be prominent in the LC when
the angle ξ between the initial emission vector and the velocity
vector of the source is close to the disk inclination angle i
between the normal drawn in the coordinate system centered on
the black hole and the observer direction. The quasi-periodic
behavior from orbital signatures when beaming occurs is
expected to be distinctly visible in the observed LC and could
last for only a few cycles.

4.1. Special Relativistic Cone Trajectory

We construct a special relativistic jet model based on that
presented in Camenzind & Krockenberger (1992). The model
consists of a relativistic blob in a cone geometry as shown in
Figure 5. The kinematical prescription includes expressions for
the cylindrical radius ϖ and the associated velocity ϖ̇ in terms
of z and ż. In the cone model with a jet half-opening angle θ0,

ϖ ϖ θ= + z tan . (60)0 0

Using the above equation, the velocity associated with ϖ t( )
is given by

ϖ θ= z˙ ˙ tan . (61)0

The conservation of angular momentum gives an azimuthal
velocity Wϕ ϖ= = ∞t j˙ ( ) 2 and the phase is given by

W∫ϕ =t t dt( ) (˜) ˜
t

0
. The condition = −u·u 1 in the case of the

Minkowskian metric, an approximation used in Camenzind &
Krockenberger (1992) then gives

W
γ

ϖ
ϖ

= =
+

−
=

+

− ∞
( )u

u

c

u

j

c

1

1

1

1

, (62)t p p2
jet
2

2

2 2 2

2

2

2 2

where ϖ= +u u z( ˙ ˙ )p
t 2 2 1 2 is the poloidal velocity. In the

region where collimation of the jet occurs (ϖ ϖ≫ L), the bulk
Lorentz factor γjet becomes a constant due to energy

conservation. Equation (33) can be written for large R because
γjet = ò. At large R, ϖ is also large. Hence, up tends to a

constant value and, like Camenzind & Krockenberger (1992),
we make this approximation. For a jet half-opening angle θ0, as

θ γ=z cu˙ cosp 0 jet, we obtain

θ
ϖ

=
+

− ∞
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟z

u

u
c

j
˙

1
cos . (63)

p

p
2

0
2

2

2

1 2

The cylindrical distance ϖ ϖ= t( ) in this particular case due
to the simplification of up being a constant. From Equation (61),

Figure 5. Helical trajectory of an emitting blob in Schwarzschild geometry,
constrained along rotating magnetic field lines with footpoints on a Keplerian
disk (at cylindrical radius ϖo). In the cone model (left plot), the half opening
angle of the jet is θ0. In the funnel model (right plot), the flow is asymptotically
bound by a cylinder of radius ϖ f at large z. The blob trajectory is shown in
blue, emission vector in red, geometrical quantities including distances in grey
and the jet magnetic surface shape in green.
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ϖ θ= z˙ ˙ tan 0. Using ż from Equation (63),

ϖ θ
ϖ

=
+

− ∞
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

cu

u
c

j
˙

1
sin . (64)

p

p
2

0
2

2

2

1 2

The above expression can be written in terms of ϖ̇ and ϖ as

ϖ ϖ

ϖ

θ

−
=

+∞

cu

u

˙ sin

1
. (65)

j

c

p

p2

0

22

2

On integrating the above equation, we obtain

ϖ
ϖ

θ= + − +
+

∞

∞ ∞

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟

(66)t
j

c

c

j

c u

j u
t( ) 1 1

1
sin .

p

p

0
2 2

2

2

2
0

2 1 2

The magnitude of the source velocity is given by

Wϖ ϖ

θ ϖ

=

= + +

= + ∞

( )
( )

z

z j

x x x˙ ( · )

˙ ˙

˙ sec (67)

s s s
1 2

2 2 2 2 1 2

2 2
0

2 2 1 2

In the absence of the light bending effect, ψ α= in which case
the direction vectors =k k0 . The angle between the velocity
vector xs and the initial direction vector k0, ξcos from
Equation (55) then reduces to

W

ξ θ ϕ

ϖ ϕ

= +

−

( ( )z i i

i

x
cos

1

˙
˙ tan cos sin cos

sin sin ). (68)
s

0

The velocity ż can be obtained from Equation (63) and ϖ from
Equation (66). The effective redshift factor g t( ) is then given
by

γ β ξ
=

−( )
g

1

1 cos
. (69)

jet jet

We can use ξcos from Equation (68), γjet from Equation (62),

β γ= −1 1jet jet
2 and ϖ̇ from Equation (66) in the above

equation to obtain =g g t( ). The LC is given by
= +ΓF t g t( ) ( )2 . Because t is the time in the source frame, we

obtain the time in the observer frame using the transformation
in Equation (48) without the time delay ΔtLB in this case to
obtain =F F t( )obs in the observer frame.

To illustrate the validity of the model developed in Section 3,
we simulate an LC for a general BL Lac object using the
expressions presented in this section. For this, we consider the
same parameters that were considered in Camenzind &
Krockenberger (1992), i.e., =u 3p , i = 0◦. 05,

= × ⊙M M5 10•
7 , =a 0.8, and ϖ ϖ= 10 L0 . The parameter

=u 3p is chosen in order that γjet,i at large ϖ ∼ 3.2 which is
within the range predicted by the effects of radiation pressure
and drag in Section 2.1 and is in the same range as that
considered in Camenzind & Krockenberger (1992). The
resulting LC is plotted in Figure 6, which is similar to Figure
3 of Camenzind & Krockenberger (1992) with phase shift.

4.2. Fully Relativistic Cone Model

We construct a fully relativistic jet model in Schwarzschild
geometry that consists of a relativistic blob in a cone geometry
as shown in Figure 5. Here we consider GR effects that include
time delays due to light bending, the Doppler and gravitational
redshift, and the treatment of the poloidal velocity as a general
function of the geometrical and kinematical parameters as
opposed to the constant that was assumed in the previous case.
The kinematical prescription includes expressions for the
cylindrical radius ϖ and the associated velocity ϖ̇ in terms
of z and ż.
The cylindrical distance ϖ z( ) is given by Equation (60) and

the velocity associated with ϖ z( ) is given by Equation (61).
The radial distance R z( ) is given by

ϖ

ϖ θ ϖ θ

= +

= + +

( )
( )

R z z z

z z

( ) ( )

sec 2 tan (70)

2 2 1 2

0
2 2 2

0 0 0
1 2

and the velocity associated with R z( ) is given by

ϖ ϖ ϖ θ θ= + = +( )R
R

zz
z

R
z˙ 1

( ˙ ˙)
˙

tan sec . (71)0 0
2

0

The polar angle θ z( ) is given by

θ ϖ=z z R zsin ( ) ( ) ( ) (72)

and the velocity associated with θ z( ) is given by

θ ϖ ϖ ϖ
= − = −

⎛
⎝⎜

⎞
⎠⎟R

z

R

R

z

R
˙ 1

˙
˙ ˙

. (73)0

The conservation of angular momentum gives an azimuthal
velocity Wϕ ϖ= = ∞z j˙ ( ) 2. Using the condition = −u·u 1,
from Equation (35)

γ ϖ

ϖ θ θ

ϖ

= = − −

+
+

−
− ∞

−

⎛
⎝⎜

⎞

⎠
⎟⎟⎟

⎞

⎠
⎟⎟⎟

(

( )

u M R
z

R c

z

M R

j

c

(1 2 )
˙

tan sec

(1 2 )
. (74)

t
jet

2

2 2 0
2

0 0
2

0
2

2

2 2

1 2

From the energy conservation condition along the trajectory,

ε
γ

ϖ−
= =

−( )
u

M R M(1 2 ) 1 2
, (75)

t jet,i

0

where γjet,i is the initial Lorentz factor. Using γjet,i from

Equation (62) for the case of ϖ ϖ= 0 at =z 0 and a constant

up, we obtain γ = +

−
ϖ

∞

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

u
jet,i

1

1

1 2

p

j

c

2

2

0
2 2

and

γ γ
ϖ

= = −
−( )

u
M R

M

(1 2 )

1 2
. (76)t

jet jet,i
0
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Using the above expression for ut in Equation (74), we
obtain an equation for ż given by

ϖ
ϖ

γ

ϖ
ϖ θ θ

= − − −
−
−

× +
+

−

∞

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )

( )
z cR M R

j

c

M

M R

z

M R

˙ (1 2 )
1 2

(1 2 )

1

tan sec

(1 2 )
.

(77)

2

2 2

0
2

2
jet,i
2

1 2

0
2

0 0
2

0
2 1 2

In the above equation, ϖ ϖ= z( ) from Equation (60) and
=R R z( ) from Equation (70). The above expression can be

integrated to obtain =z z t( ) as

∫

∫

ϖ
ϖ θ θ

ϖ
ϖ

γ

×
+

+

−

− − −
−
−

=

∞

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

( )

( )

dz

R

z

M R

M R
j

c

M

M R

c dt

tan sec

(1 2 )

(1 2 )
1 2

(1 2 )

1

. (78)

z

t

0

0
2

0 0
2

0
2

2

2 2

0
2

2
jet,i
2

1 2

0

Once we obtain =z z t( ), this can be used to evaluate
=z z z t˙ ˙ ( ( )), ϖ ϖ= z t( ( )), and ϖ ϖ= z t˙ ˙ ( ( )). The magnitude

of the source velocity is given by

Wϖ ϖ

θ ϖ

= = + +

= + ∞

( )
( )

z

z j

x x x˙ ( · ) ˙ ˙

˙ sec . (79)

s s s
1 2 2 2 2 2 1 2

2 2
0

2 2 1 2

The velocity ż = z z t˙ ( ( )) and all other terms in the above
expression can be cast in terms of z t( ). In the current model, we
consider the light bending effect in which case the direction
vector k0 is obtained from Equation (37) and the angle
between the velocity vector xs and the initial direction vector
k0, given by ξcos , is given by the general expression in
Equation (55).

The effective redshift factor g t( ) is then given by the general
expression in Equation (57). We can use ξcos from
Equation (55), γjet from Equation (74), and βjet from
Equation (36) in the equation for g to obtain =g g t( ). The
LC is given by = +ΓF t g t( ) ( )obs

2
obs , expressing t in terms of

tobs. The importance of making use of a fully relativistic model
when compared to the earlier special relativistic model is
presented in terms of the difference between the tobs in both
cases. It is seen that for the fully relativistic model, tobs tends to
increase systematically with tem. This difference in timescale is
of the order of ∼5 days by the end of the simulation. This
difference is plotted in Figure 7, which justifies the use of the
fully relativistic model.
To illustrate the model developed in Section 3 and the

comparison with the special relativistic cone case in Section 4.1,
we simulate an LC for a general BL Lac object using the
expressions presented in this section. Using again =u 3p as an

initial condition, with i = 0◦. 05, = × ⊙M M5 10•
7 , =a 0.8,

and ϖ ϖ= 10 L0 , the resulting LC is shown in Figure 8. The
parameter =u 3p is chosen in order that γjet,i at large ϖ ∼ 3.2,
which is within the range predicted by the effects of
radiation pressure and drag in Section 2.1 and is in the
same range as that considered in Camenzind & Krock-
enberger (1992). This is a comparison between the LCs in
the fully relativistic cone case and the special relativistic
case, which indicates an increased amplitude in the former.
There is also a systematically increasing phase lag compared
to the latter case as expected due to the effect of the time
delay caused by light bending. The ratio of the amplitudes
gives a 12% increase in the maximum amplitude due to the
GR boost factor in g. The beaming effect is observed for
the last two cycles for the GR cone case where there is an
increased amplitude, which then settles down. The increased
amplitude ratio and the phase lag change can be attributed
to the integrals over time of intensity and phase amplifying
the small but early differences in phase. Even a small phase
difference between the GR and special relativistic simula-
tions gets amplified due to the nature of the g factor in
Equation (57), which includes the gravitational redshift
factor − M R(1 2 )1 2 and light bending effects.

4.3. Fully Relativistic Funnel Model

We construct a GR (Schwarzschild geometry) jet model
which consists of a relativistic blob in a funnel geometry as
shown in Figure 5. The shape of the magnetic surface can be
determined by solving the relativistic Grad–Shafranov equation
(e.g., Fendt & Memola 2001). This is expected to yield stable,
axisymmetric magnetic field configurations. Here, we make an
approximation of this shape and impose the condition of
angular momentum conservation along this surface. Here too,
we consider the GR effects, which include the time delay due to
light bending, the Doppler and gravitational redshift, and the
treatment of the poloidal velocity as a general function of the
geometrical and kinematical parameters as opposed to a
constant that is assumed in the special relativistic case. The
kinematical prescription includes expressions for the cylind-
rical radiusϖ and the associated velocity ϖ̇ in terms of z and ż.
The cylindrical distance ϖ z( ) is given by

ϖ ϖ= + − −( )( )z k e( ) 1 1 , (80)z z
0

f

Figure 6. Simulated light curve for up = 3, xA = 0.9, i = 0◦. 05,
= × ⊙M M5 10•

7 , a = 0.8, ϖ ϖ= 10 L0 , and Γ = 1. The light curve (red
curve) shows the quasi-periodic oscillation expected from a general BL Lac
object when the special relativistic formalism is used in the simulation.
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where ϖ ϖ ϖ= −k ( )f 0 0, ϖ f is the cylindrical distance
between the normal axis and the source position at the location
where the funnel transitions into a cylinder. If we use
ϖ ϖ= qf L,

ϖ ϖ ϖ= − = −k q f( ) 1. (81)f f 0 0

A constraint on zf can also be obtained based on the vertical
distance z at the region where ϖ ϖ= f . If the jet half opening
angle is θ0, θ ϖ ϖ= − ztan ( )f f0 0 , then

ϖ θ= −z q f( ) tan . (82)f L 0

The velocity associated with ϖ z( ) is given by

ϖ
ϖ

= −z
k

z
e˙ ˙ (83)

f

z z0 f

The radial distance R z( ) is given by

ϖ

ϖ

= +

= + − +−⎛
⎝⎜ ( )
( )

( )

R z z z

k e z

( ) ( )

1 1 (84)z z

2 2 1 2

0
2 2 2

1 2
f

and the velocity associated with R z( ) is given by

ϖ ϖ

ϖ

= +

= + − +− −
⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

R
R

zz

z

R

k

z
k e e z

˙ 1
( ˙ ˙)

˙
1 1 . (85)

f

z z z z0
2

f f

As before, the polar angle θ z( ) is given by

θ ϖ=z z R zsin ( ) ( ) ( ) (86)

and the velocity associated with θ z( ) is given by

θ ϖ ϖ

ϖ

= −

= + − +−

⎛
⎝⎜

⎞
⎠⎟

( )( )

R
z

R

R
z

R
ke z z k

˙ 1
˙

˙

˙
1 (1 ) . (87)z z

f
0 f

The conservation of angular momentum gives an azimuthal
velocity Wϕ ϖ= = ∞z j˙ ( ) 2. The condition = −u·u 1 in case
of the Schwarzschild metric gives

ϖ

ϖ

ϖ

= − −

− + − +
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Using the general expression for ut from Equation (74), we
obtain an equation for ż given by
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In the above equation, ϖ ϖ= z( ) from Equation (80) and
=R R z( ) from Equation (84). The above expression can be

Figure 7. Curves showing tobs vs. tem for the fully relativistic cone model
(blue) and the special relativistic cone model (red dashed). The tobs in the
former increases systematically and reaches a difference of ∼5 days by the end
of the simulation with respect to the latter.

Figure 8. Simulated light curve for up = 3, xA = 0.9, i = 0◦. 05,
= × ⊙M M5 10•

7 , a = 0.8, ϖ ϖ= 10 L0 , and Γ = 1. The light curve shows
the quasi-periodic oscillation expected from a general BL Lac object. A general
relativistic light curve from orbital features in a cone geometry (blue curve) is
compared with the previously calculated special relativistic light curve from
orbital features in a cone geometry (red curve).The increased amplitude ratio
and the phase lag change can be attributed to the integrals over time of intensity
and phase amplifying the small but early differences in phase. Even a small
phase difference between the general relativistic and special relativistic
simulations gets amplified due to the nature of the g factor in Equation (57)
which includes the gravitational redshift factor − M R(1 2 )1 2 and light
bending effects.
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integrated to obtain =z z t( ) as
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If we use k from Equation (81) and zf from Equation (82),
we can obtain =z z t( ), which can then be used to evaluate

=z z z t˙ ˙ ( ( )), ϖ ϖ= z t( ( )), and ϖ ϖ= z t˙ ˙ ( ( )). The magnitude
of the source velocity is given by
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Once we obtain =z z t( ), this can be used to evaluate
=z z z t˙ ˙ ( ( )), ϖ ϖ= z t( ( )), and ϖ ϖ= z t˙ ˙ ( ( )). The velocity ż

= z z t˙ ( ( )) and all other terms in the above expression can be
cast in terms of z t( ). In the current model, we consider the light
bending effect in which case the direction vector k0 is obtained
from Equation (37) and the angle between the velocity vector
xs and the initial direction vector k0 given by ξcos is given by
the general expression in Equation (55).

The effective redshift factor g t( ) is then given by the general
expression in Equation (57). We can use ξcos from
Equation (55), γjet from Equation (74), and βjet from
Equation (36) in the equation for g to obtain =g g t( ). The
LC is given by = +ΓF t g t( ) ( )obs

2
obs , expressing t in terms of

tobs. In this case as well, tobs tends to increase systematically
with tem, analogous to the full relativistic cone case. Though,
the change is slightly gradual. This difference in timescale is of
the order of ∼3 days by the end of the simulation. This
difference is plotted in Figure 9; clearly the use of the fully
relativistic model impacts the phase significantly.

To illustrate the model developed in Section 3 and the
comparison with the special relativistic cone case in Section 4.1,
we simulate an LC for a general BL Lac object using the
expressions presented in this section. Using once again =u 3p

as an initial condition, = ◦i 0 .05, = × ⊙M M5 10•
7 , =a 0.8,

and ϖ ϖ= 10 L0 , the LC is plotted in Figure 10. The parameter
=u 3p is chosen in order that γjet,i at large ϖ ∼ 3.2, which is

within the range predicted by the effects of radiation pressure
and drag in Section 2.1 and is in the same range as that
considered in Camenzind & Krockenberger (1992). A
comparison between the LCs in the GR cone case and the
special relativistic case indicates an increased amplitude in the
former in the funnel geometry as well; there is also a
systematically increasing phase lag compared to the latter case
as expected due to the effect of the time delay caused by light
bending. The ratio of the amplitudes gives a 12% increase in
the maximum amplitude due to the GR boost factor in g
justifying the use of a fully relativistic model. Thus, the
beaming effect is observed for the first two cycles for the GR
funnel case where there is an increased amplitude, which then
settles down. The increased amplitude ratio, and the phase lag
change here as well, can be attributed to the integrals over time
of intensity and phase amplifying the small but early

differences in phase. Even a small phase difference between
the GR and special relativistic simulations gets amplified due to
the nature of the g factor in Equation (57), which includes the
gravitational redshift factor − M R(1 2 )1 2 and light bending
effects.
A comparison is then done between the simulated LC in

funnel and cone geometries for the GR formalism. For the
parameter values γ = 4jet,i , =k 2 ( =q f 3), θ = ◦0 .10 , = °i 5 ,

= × ⊙M M5 10•
7 , =a 0, and ϖ ϖ= 10 L0 , the LCs are plotted

in Figure 11. The phase of the funnel geometry curve
systematically lags the phase of the cone geometry curve
indicating a dominance by higher frequencies. This phase shift
is seen to increase with the simulation time. The ratio of the
maximum amplitude of the funnel geometry curve to that of the
maximum amplitude of the cone geometry curve is 9%.
Because of the slower expansion of the funnel compared to the
cone, there are more orbits at higher frequencies (due to
conservation of angular momentum) at a location where the
GR boost factor is more effective.

4.4. Funnel Model Simulations and Discussion

We perform two sets of simulations to address the expected
LC and timing information for an observer viewing the AGN at
varying inclination angles i, black hole mass M•, and the initial
launch bulk Lorentz factor γjet,i. The choices for i are based on
typical values expected for the inclination angle from
observational studies (e.g., Pushkarev et al. 2009). A time
series analysis of the LC is conducted using the Fourier
periodogram analysis (e.g., Mohan et al. 2014; Mohan &
Mangalam 2014) and the wavelet analysis (e.g., Torrence &
Compo 1998; Mohan et al. 2011). The Fourier periodogram of
the LC is the normalized Fourier power spectrum, evaluated at
the frequencies = Δf j N t( ) where = −j N1, 2 ,...( 2 1) (up
to and excluding the Nyquist frequency) and is fit with a
power-law shape, =P f Af( ) m, assumed to be the shape that
best describes the underlying PSD. The wavelet analysis gives
the QPO and its evolution including the phases during which it
is present in the LC, and hence the number of cycles it is
present for. In the wavelet analysis, any periodicity inside a
cone of influence (triangular region) can be trusted. Features
outside this region could be subject to systematic effects due to
the wavelet method. From these simulations, we aim to address
questions such as the typical QPO expected from orbital
processes in the jet, its dependence on M•, the beaming effect,
the conditions for its sustenance and the typical range of PSD
slopes expected. These are motivated from observational
studies at optical and radio wavelengths which indicate QPOs
with timescales of less than a day to a few tens of days (e.g.,
Gupta et al. 2012).
We first simulate the expected LC from an emitting source in

helical motion along the funnel shaped magnetic surface
launched from a single ring with cylindrical radius ϖ ϖ= 10 L.
The other quantities that are fixed include =k 2, =x 0.9A ,
θ = ◦0 .10 and α = 1. The simulations are carried out for =i °3 ,
°6 , °9 , °12 and, °15 with = × ⊙M M(0.5, 5) 10•

8 and γ =jet,i 2
(mildly relativistic), 4 (relativistic), and 10 (highly relativistic).
The choice of γ = 2, 4jet,i is consistent with the range predicted
by the effects of radiation pressure and drag in Section 2.1. The
choice of γ = 10i was made in order to study simulated LCs for
jets from black holes with higher masses, which include
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blazars. The results of the timing analysis are summarized in
Table 1 and some interesting cases are plotted in Figure 12.

With an increase in the inclination angle i, the maximum
amplitude in the simulated LC tends to decrease. This is due to
the beaming effect because the projection of the emitting
source velocity onto the emission direction (β k·jet ) continues
to grow smaller in the direction toward the observer. This leads
to a less pronounced maximum amplitude that continues to
decrease with an increase in i. For a given M•, the maximum
amplitude tends to increase with γjet,i. This is due to the
stronger beaming effect toward the observer’s line of sight by
the emitting source for larger γjet,i. The PSD slope ranges
between −1.54 and −3.43. The slopes steeper than −2.5 are
likely to be the result of a poor fit. Hence, we calculate a
median slope of −2.00± 0.28. QPOs peaked between
20.7–130.7 days are inferred from the wavelet and PSD
analysis. For a given M•, the QPO peak shifts to higher values
with increasing i. This is due to the orientation away from the
observerʼs line of sight for the chosen set of parameters leading
to the larger timescale QPO at larger r.

We then simulate the expected LC from multiple emitting
sources in helical motion along the funnel shaped magnetic
surface launched from rings with cylindrical radii ϖ = 5, 6, 7,
and 8 ϖL. Fixed parameters in this simulation include =k 2,

=x 0.9A , θ = ◦0 .10 , and α = 1. The simulations are carried out
for i= °3 , °6 , °9 , °12 , and °15 with = × ⊙M M(0.5, 5) 10•

8 and
γ = 2jet,i –10 as in the previous case. The results of the timing
analysis are summarized in Table 2 and some interesting cases
are plotted in Figure 13.

In these simulations, we observe similar trends as those
that were present in the previous case. With an increase in i,
the maximum amplitude in the simulated LC tends to
decrease. For a given M•, the maximum amplitude tends to
increase with γjet,i. The PSD slope in these simulations is
more well constrained and ranges between −1.09 and −3.39.
The slopes steeper than −2.5 are likely to be the result of a
poor fit. Hence, we calculate a median slope of −2.02± 0.34.
Significant QPOs ranging between 1.37–33.49 days are
detected in these simulations. The QPO for high γjet,i tends
to be lower than that for lower γjet,i. This is likely because, for

high γjet, the beamed portion occurs in the inner jet close to
the black hole where the orbital frequency is higher due to
gravitational redshift. Thus, the associated timescales are
then expected to be lower. Thus, the power spectrum is
dominated by higher frequencies, which implies that the PSD
would tend to flatten. This trend is also seen in the above
multiple emitting ring simulations for M• = × ⊙M5 107 . For

the case of = × ⊙M M5 10•
8 , the opposite trend is seen. For a

higher M•, there are more cycles during beaming due to

Figure 9. Curves showing tobs vs. tem for the fully relativistic funnel model
(black) and the special relativistic cone model (red dashed). The tobs in the
former increases systematically and reaches a difference of ∼3 days by the end
of the simulation with respect to the latter.

Figure 10. Simulated light curve for up = 3, xA = 0.9, i = 0◦. 05,
= × ⊙M M5 10•

7 , a = 0.8, ϖ ϖ= 10 L0 , and Γ = 1. The light curve shows
the quasi-periodic oscillation expected from a general BL Lac object. A general
relativistic light curve from orbital features in a funnel geometry (black curve)
is compared with the previously calculated special relativistic light curve from
orbital features in a cone geometry (red curve). The increased amplitude ratio
and the phase lag change can be attributed to the integrals over time of intensity
and phase amplifying the small but early differences in phase. Even a small
phase difference between the general relativistic and special relativistic
simulations gets amplified due to the nature of the g factor in Equation (57),
which includes the gravitational redshift factor − M R(1 2 )1 2 and light
bending effects.

Figure 11. Simulated light curve for γ = 4jet,i , k = 2, xA=0.9, i = 0◦. 05,

= × ⊙M M5 10•
7 , a = 0, and ϖ ϖ= 10 L0 . A comparison is made between

the funnel geometry light curve (black curve) and the cone geometry light
curve (blue curve). Both light curves show a quasi-periodic oscillation
expected from a general BL Lac object. The phase of the funnel geometry
curve systematically lags the phase of the cone geometry curve. Also, the
funnel geometry curve is dominated by higher frequencies in the initial
portion.
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favorable orientation (at higher frequencies); hence, the PSD
slope tends to steepen.

5. SUMMARY AND CONCLUSIONS

We summarize our results. The special relativistic cone
model (Section 4.1) is the same as that proposed by
Camenzind & Krockenberger (1992). The fully relativistic
models developed in this work include the cone model
(Section 4.2) and the funnel model (Section 4.3). The main
results include discussions on the novel aspects of the fully
relativistic funnel model with respect to the special
relativistic cone model.

1. We have considered a possible mechanism of jet-based
variability from various sources including BL Lac objects
and blazars (e.g., Camenzind & Krockenberger 1992;
Steffen et al. 1995), quasars (e.g., Kudryavtseva
et al. 2011), binary black holes (e.g., Iguchi
et al. 2010), and X-ray binaries (e.g., Fukumura &
Kazanas 2008; Fukumura et al. 2009). We extended the
light-house model proposed in Camenzind & Krock-
enberger (1992), which was applied to simulate optical
LCs from BL Lac objects and quasars.

2. We studied the effects of radiation pressure and drag and
derived the saturation Lorentz factors that are achievable.
The Lorentz factors γ range 2–7 in the purely radial
outflow simulations. For a poloidal flow (β =ϕ 0), we
obtain γ in the range 1.1–26.3, greater than that
previously obtained. Though, the drag force acting on
the non-radial component of the blob velocity plays an
important role in rapidly decreasing γ ∼ 2, thus stabiliz-
ing it at very small x, indicating that the outflow is stable
even in the innermost regions. Thus, the γjet,i chosen for
the simulations in the relativistic cone and funnel models
in the subsequent section can be obtained at larger
distances with small to moderately relativistic emitting
blob velocities.

3. We constructed a kinematic model of orbital blobs along
helical trajectories on a magnetic surface approximating
the expanding jet with foot points on the accretion disk in
the vicinity of a black hole using a special relativistic
calculation of the g factor for cone geometry similar to
Camenzind & Krockenberger (1992) in Section 4.1 and a
fully relativistic formulation in cone geometry (Sec-
tion 4.2) and the same in a more realistic funnel geometry
(Section 4.3). The g factor was calculated in Schwarzs-
child geometry and the following GR effects were
included: gravitational and Doppler shifts, aberration,
and a prescription for time delay due to orientation and
light bending.

4. By using the periodogram and wavelet based time series
analysis techniques (Section 4.4), we seek to distin-
guish among the various flavors of the generic jet
variability model, which here include the cone and
funnel models. The time series analysis of simulated
LCs yields properties including aperiodic variability, its
timescales, and the emission region; the PSD slope and
its range, which can be compared with observations in
optical/UV and X-ray. It is also found that the QPO, its
evolution, and stability can be described by the orbital
motion of blobs in the jet.

5. The use of fully relativistic models (given in Section 4.2
and Section 4.3) was justified by the resulting
amplitude increase (by about 12 %) due to the GR
boosts and a systematically increasing phase lag in the
simulated LC for a general BL Lac object from the fully
relativistic funnel when compared to the special
relativistic cone, which occurs at small k and larger
inclination angles i. The phase lag has been explained
by the angular momentum conservation in combination
with the gradual increase of the orbital radius. Our fully
relativistic formulation reduces to the special relativistic
formulation in the limit of large R and when all the
above GR effects are not considered; this is presented in
Section 4.

6. There is thus a necessity to account for all GR effects as
used in the present model for the correct description of
the physical effects on emitted radiation from these jetted
sources and to use more realistic jet geometries. It can be
thus applied to both timing studies of jet variability as
well as to map trajectories of radio blobs or blobs in the

Table 1
Results for Light Curves from Blobs Launched from
a Single Ring of Cylindrical Radius ϖ ϖ= 10 L0

Inclination
Angle i (°) ⊙

M

M10

•

8

γjet,i Max.
Amplitude A

PSD
Slope m

QPO
(days)

3 0.5 2 54.48 −1.96 124.0 W
L 4 506.49 −1.97 89.8 W
L 10 8090.84 −2.26 79.7 W
5 2 54.24 −1.54 68.2
L 4 492.43 −1.65 18.6
L 10 6949.31 −1.82 L

6 0.5 2 54.05 −2.42 124.8 W
L 4 483.05 −2.18 90.8 W
L 10 5780.68 −3.00 80.8 W
5 2 54.06 −1.64 70.1
L 4 483.10 −1.73 20.7
L 10 5780.68 −2.01 L

9 0.5 2 51.50 −1.70 126.2 W
L 4 372.24 −2.30 92.4 W
L 10 1540.67 −3.16 82.5 W
5 2 51.51 −1.70 73.2
L 4 372.25 −1.77 24.3
L 10 1544.25 −2.03 L

12 0.5 2 46.60 −1.73 128.2 W
L 4 238.24 −2.42 94.8
L 10 328.10 −3.13 85.0 W
5 2 46.60 −1.73 77.5
L 4 238.24 −1.80 29.0
L 10 328.56 −1.98 K

15 0.5 2 40.24 −3.43 130.7 W
L 4 136.38 −2.50 97 W
L 10 81.36 −3.07 88.1 W
5 2 40.25 −1.75 82.9
L 4 136.38 −1.82 35.1
L 10 81.44 −1.94

Note. The parameters used that are not reported in the above table include
xA=0.9, θ = ◦0.10 and α = 1. The slopes steeper than −2.5 are likely to be the
result of a poor fit. Hence, we calculate a median slope of −2.00 ± 0.28 and the
QPO estimates range between 20.7 and 130.7 days. A W next to a QPO peak
indicates its measurement using the wavelet analysis only. If there is nothing
present next to the inferred QPO, the measurement is the mean of the wavelet
and PSD estimates.
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inner jet and compared with observations to help identify
the region of emission. The application of the model to
radio data is being planned.

7. Two sets of simulations, one for blobs emanating from
a single and another from multiple rings were carried
out to span a range of LCs. Their timing properties were
studied for the maximum amplitudes, PSD slope, and
QPO if present. Two main trends are observed in the
single emitting ring simulations. With anincrease in the
inclination angle i, the maximum amplitude in the
simulated LC tends to decrease, because the beaming
effect in the direction of the observer continues to grow
smaller. The other trend is that for a given M•, the
maximum amplitude tends to increase with γjet,i, due to
the stronger beaming effect toward the observer’s line
of sight by the emitting source for larger γjet,i. We
calculate a median slope of −2.00± 0.28 similar to the
observed PSD slopes of blazars in the Optical and X-ray
translated to the source frame. QPOs peaked between
20.7–130.7 days are inferred from the wavelet and PSD

analysis. The second set of simulations were carried out
for a blob launched from multiple emitting rings
ϖ ϖ= −5 8 L0 . In these multiple emitting rings simula-
tions, the same two trends above are observed. We
calculate a median slope of −2.02± 0.34. Significant
QPOs ranging between 1.37–33.49 days are detected in
these simulations. In the multiple emitting rings
simulations, we were also able to identify QPOs
because a wider choice of orientations result from a
larger set of initial conditions; the same trends were
observed in the relationship between the QPO time-
scale, M•, and γjet. The QPO timescale tends to reduce
with an increase in γjet due to a GR boost, which tends
to flatten the PSD slope. Aperiodic variability when
considering multiple emitting rings is a natural
consequence that is seen in our results.

A natural power-law-shaped PSD with a typical slope of
approximately −2 along with a weak to strong QPO, ranging
between 1.37 and 130.7 days, emerges from the simulations
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Figure 12. Results for light curves from a single emitting ring of ϖ ϖ= 10 L0 . The plots in the left column are the simulated light curves, the plots in the middle
column are their wavelet analyses, and the plots in the right column are their PSD. The PSD is fit with a power law with a slope m. The line above the best fit indicates
a 99% significance on any inferred QPO period. Top row: simulation for i = 3°, M•= × ⊙M5 107 , γ = 2jet ; a QPO of 124 days is inferred from the timing analyses; a

PSD slope of −1.96 is inferred. Middle row: simulation for i = 9°, = × ⊙M M5 10•
7 , γ = 2jet ; a QPO of 126.2 days is inferred from the timing analyses; a PSD slope

of −2.78 is inferred. Bottom row: simulation for i = 15°, = × ⊙M M5 10•
7 , γ = 4jet ; a QPO of 97 days is inferred from the timing analyses; a PSD slope of −2.50 is

inferred.
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considering single and multiple emitting rings. This shape
comes naturally considering only geometrical parameters, even
before any consideration of physical models of the orbital
instabilities. The detailed magnetic structure can be constructed
by solving the relativistic Grad–Shafranov equation. The
dynamical timescale due to jet-based orbital processes is
expected to be from a few minutes to tens of days depending on
the black hole mass. The GR funnel model for variability can
thus be applied to radio, optical, and X-ray emission from
various types of jetted sources including radio-loud AGNs such
as BL Lac objects, quasars, binary black holes, and X-ray
binaries where active accretion results in the jet phenomenon
such as in micro-quasars and other compact sources such as
accreting and hence active neutron stars.

We are indebted to the anonymous referee for suggesting the
incorporation of effects of radiation pressure and drag as well
as other improvements that have enhanced this paper
considerably. We thank V. K. Subramanian for preparing
schematic Figures 1, 4, and 5.

APPENDIX
RELATIONSHIP BETWEEN THE EFFECTIVE REDSHIFT

FACTOR g AND THE DOPPLER FACTOR D

The tetrads used by a local static observer in the Schwarzs-
child metric are given by,

θ
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= −
=
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e R
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The directional vector n a( ) in the GR case with light bending is
given by (Pecháček et al. 2005),
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If p is the four-momentum of the emitted light ray, its
covariant components are given as

= θ ϕ( )p p p p p p p p1, , , , (94)μ t r t t t

the objective being to calculate the components pμ in terms of
the emission angles and the geometric quantities. This can be
done using the relationship between the directional vector n a( )

and pμ given by

=n
p e

p e
. (95)a μ a

μ

μ a
t

( ) ( )

( )

Using the above equation and the tetrads from Equation (92),
we obtain

α
α
ψ
α
ψ

ϕ θ

= −

= − −

= −

× −
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ϕ

−

−

−

p p M R

p p iR M R

p p iR
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cos (1 2 )

sin

sin
cos (1 2 )

sin
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sin sin sin

(1 2 ) (96)

r t

t

t

1

1 2

1 2

The four velocity of the emitting source is given by

β β β= θ ϕ( )uu 1, , , , (97)t
r

where γ=ut
jet is obtained from Equation (35). The effective

redshift factor g is the ratio of observed to emitted energy of the
photon and is given by

= = ∞ ∞ = −
g

E

E p u

p u
p u

( ) · ( )

·

1
. (98)

μ
μ

observed

emitted

Table 2
Results for Light Curves from Blobs Launched from
Multiple Rings of Cylindrical Radii ϖ ϖ= −5 8 L0

Inclination
Angle i (°) ⊙

M

M10

•

8

γjet,i Max.
Amplitude A

PSD
Slope m

QPO
(days)

3 0.5 2 54.35 −2.01 K
L 4 494.97 −1.67 K
L 10 5955.14 −1.70 K
5 2 47.94 −1.72 27.62
L 4 327.01 −1.90 7.89
L 10 1909.06 −1.77 1.37

6 0.5 2 52.28 −2.47 K
L 4 424.37 −1.73 K
L 10 4155.13 −1.96 0.98
5 2 47.43 −1.95 28.34
L 4 338.99 −2.02 4.37, 8.74
L 10 3553.40 −2.36 1.81

9 0.5 2 48.46 −2.81 K
L 4 322.86 −1.81 K
L 10 2778.43 −1.31 K
5 2 45.01 −2.12 14.80, 29.59
L 4 298.02 −2.18 5.06, 10.13
L 10 2778.43 −3.18 K

12 0.5 2 44.00 −2.99 K
L 4 217.66 −2.00 K
L 10 962.85 −1.09 K
5 2 40.96 −2.39 15.65, 31.31
L 4 218.57 −2.34 6.03
L 10 962.85 −3.39 K

15 0.5 2 38.23 −2.94 5.45
L 4 135.59 −1.97 K
L 10 207.60 −1.23 K
5 2 35.78 −2.61 16.74, 33.49
L 4 137.58 −2.46 2.89, 7.22
L 10 207.60 −3.24 1.89

Note. The parameters used that are not reported in the above table include
xA = 0.9, θ = ◦0.10 and α = 1. We calculate a median slope of −2.02 ± 0.34
and the QPO estimates range between 1.37 and 33.49 days. All QPOs inferred
above are the mean of the wavelet and PSD estimates.
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Using Equations (96) and (97) in the above equation, the
effective redshift factor is given by

α
β α

ψ
β

α
ψ

θβ ϕ

= − −

−
−

−

−

θ

ϕ

−⎞
⎠⎟

(g
M R

u
M R

M R
R i

R i

(1 2 )
(1 2 )

cos
(1 2 )

sin

sin
cos

sin

sin
sin sin sin . (99)

t

r

1 2
1 2

1 2

1

The g expression can be written in terms of β ξcosjet with
βjet obtained from Equation (36) already including a correction
for the frame changing from an instantaneous rest frame to a
local static observer frame and ξcos obtained from
Equation (55) to give the expression for g in Equation (57).
Thus,

γ β ξ
= −

−( )
g

M R(1 2 )

1 cos
. (100)

1 2

jet jet

Because pμ can also be expressed as

=

− − θ
−



( )( )
p

b b R M R p b1, 1 1 (1 2 ) , , , (101)

μ

2 2 1 2

where ϵ is the conserved photon energy, the direction between
the emitted ray and the radial direction for equatorial orbits
(θ = π 2) is given by

α =

= −

− −

ϕ

−

− )
( ) (

( ( ))

p e

p e

b R M R b

b R M R

tan

(1 2 ))

1 1 1 2 . (102)

μ
μ

μ r
μ

( )

( )

1 2

2 2 1 2

Solving the above equation for αsin , we obtain Equation (42).
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