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Abstract

The Ca II K spectroheliograms spanning over a century (1907–2007) from Kodaikanal Solar Observatory, India,
haverecently been digitized and calibrated. Applying a fully automated algorithm (which includes contrast
enhancement and the “Watershed method”) tothesedata, we have identified the supergranules and calculated the
associated parameters, such as scale, circularity, andfractal dimension. We have segregated the quiet and active
regions and obtained the supergranule parameters separately for these two domains. In this way, we have isolated
the effect of large-scale and small-scale magnetic fields on thesestructures and find asignificantly different
behavior of the supergranule parameters over solar cycles. Thesedifferences indicateintrinsic changes in the
physical mechanism behind thegeneration and evolution of supergranules in thepresence of small-scale and large-
scale magnetic fields. This also highlights the need for further studies using solar dynamo theory along with
magneto-convection models.
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1. Introduction

The Sun, a magnetically active star, has an atmosphere
thatvaries widely with height in density and temperature. The
lowermost layer of the atmosphere is known as thephotopshere,
where we observe the signature of solar convection, the granules
(thecharacteristic scale of the granules is a few Mm). There are
patterns on the solar surface thatare larger (∼30Mm) than the
granular scales. These are known as supergranules. Supergranules
appear indifferent shapes and sizes. The boundaries of these
structures are the host of the magnetic fluxes, and thedispersal of
thisflux is believed to be governed by the diffusion that iscaused
by theevolution of thesupergranules (Rast 2003; Crouch
et al. 2007).

The origin of the supergranulation is not fully understood. It
can be due to convection (like granules) or itcan be a dynamic
instability. The study of the supergranules is important
becauseit reveals the intrinsic scale of thephysical mechanism
thatdrives these structures. Moreover,one can investigate the
effect of astrong magnetic field by studying the supergranular
properties separately for active and quite regions. There have
been a few studies in the past on the detection and calculation
of different properties of supergranules. Using an autocorrela-
tion curve technique, Sýkora (1970) andHagenaar et al. (1997)
detectedsupergranular structures, whereas Muenzer et al.
(1989) estimated the latitudinal dependence of the supergranule
sizesby using Ca II imagesthrough a fast Fourier transform
analysis for bothactive and quiet regions. These automated
methods are useful in determining the aggregate properties of
supergranules, but they fail to record the parameters of
individual structures. In an another work, Berrilli et al.
(1999)used an automated skeleton detection method and have
shown the temporal variation of the quiet regioncell size for
one year data set. Hagenaar et al. (1997) showed the invariance
of thesupergranule scale distribution at different spatial
smoothings. They also studied the distribution of supergranule
scales and found that the scalesaresimilar toVoronoi

tessellation. A similar work has been made by Srikanth et al.
(2000), whoquantified the distribution using skewness and
kurtosis parameters. In a recent work, McIntosh et al. (2011)
explored the variation of the supergranular parameters from
five independent sources using the “watershed segmentation”
method to detect the supergranules inthe images. From their
results (for a period of 33 years, 1944–1976), they found
imprints of the solar cycle variation in the supergranule
parameters. Thus we see that a study of the supergranule
parameters for several solar cycles is necessary to determinetheir
relation with the large-scale solar variation.
Using the Kodaikanal digitized Ca II K data, we presentfor

the first timethe variation of the supergranular parameters
for a period of 100 years (1907–2007) in this paper.
Kodaikanal Solar Observatory (KSO) has archived 100 years
(cycles 14–23) of chromospheric images in Ca II K (3933.67 Å)
through an unchanged f/21 optics with a 30 cm objective. This
gives an enormous opportunity to study the synoptic variation
of supergranular cell sizes over many solar cycles and also to
understand their correspondence with the solar activity. This
paper is organized as follows: after presenting a brief data
description in Section 2, we define the detection method and
various parameters associated with supergranlues in Section 3.
Results from the KSO are discussed in Section 4, whereas in
Section 5 we present the results using the data from other
observatories. Finally, Section 6 provides abrief summary and
conclusion.

2. Data Description

The primary data used in this study are taken from the
digitized archive of the Kodaikanal Ca II K observations3

(Priyal et al. 2014; Chatterjee et al. 2016). In addition,we have
also used data from the Precision Solar Photometric Telescope
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(PSPT) (Ermolli et al. 1998). The details of each data set are
given in Table 1.

We usedfor comparisonthe V2.0 daily sunspot number data
from theSIDC (Solar Influences Data Analysis Center), which
areavailable at http://www.sidc.be/silso/datafiles.

3. Definitions and Methods

3.1. Detection of Supergranules

Supergranulesarelarge-scale velocity structures with a
spatial extent of ∼30Mm and a typical lifetime of 25 hr
(Rieutord & Rincon 2010). These structures also have a strong
horizontal flow of ≈400 m s−1. Now, in the intensity images
taken through a chromospheric line such as Ca II K, we note a
boundary-like pattern that isalso known as the “chromospheric
network.” These networks outline the supergranular cells and
can be used as a proxy for supergranular shape and size
measurements (Simon & Leighton 1964). We follow this
convention thoughout the paper. In order to identify these
structures, we first select a rectangular region (“region of
interest,” ROI) at the diskcenter with sides equal to 60% of
solar diskdiameter. Thisselection is made in order to
minimize the errors that aredue to the projection effect. The
different stepsinvolved in detecting the supergranules from
KSO and PSPT intensity imagesare shown in the different
panels of Figure 1. We highlight the ROIs withrectangles, as
shown in the 1(a) panels,and the full views of the ROIs are
shown in the 1(b) panels. Next, these regions were histogram
equalized and smoothed with a median filter to reduce noise
(1(c) panels).

We used the morphological closing and subsequently
watershed transform (Vincent & Soille 1991; Lin et al. 2003;
McIntosh et al. 2011) on these ROI images to detect the
supergranules. The basic principle behind the watershed
transformation is as follows: whenan image is visualized as
a topographic surface with gray-levels as heights, watershed
segmentation divides the imageinto catchment basins. All
pixels corresponding to a basin areconnected to a local
minimum thatfallswithin the basinthrough a pixelpath of
steadily decreasing intensity height (Sonka et al. 2014). Now,
the rationale behind the usage of morphological closing was to
avoid oversegmentation into smaller scales through thewa-
tershed method. The results of the watershed transformation on
the ROI images are shown in the 1(d) panels. To visuallycheck
for the detection accuracy, we overplotthe detected super-
granular boundaries onthe histogram-equalized images as
shown in the 1(e) panels and find a very good match between
the two. We also providemagnified 400″×400″ views of
the 1(e) panels in the1(f )panels to depict the overlap of
network with thewatershed boundaries (shown asdark blue
double lines). After detecting the supergranules from every
image using thismethod, we now define some of the
parameters associated with it in the next section.

3.2. Scale, Circularity, and Fractal
Dimension of Supergranules

All the detected supergranulesfrom every single imagewer-
eisolated using the region-labeling method (Sonka et al. 2014).
To calculate the supergranulation scale(characteristicscale of
these structures), we equate each supergranule area to the area
of a circle, and the radius of this circle is defined as the
supergranule scale.We take theaverage of these radii for
each image to find a number called the average supergranule
scale.
Next, we define the circularity of each supergranule by the

expression 4πA/P2,where A and P denote thearea and
perimeter of each supergranule (Srikanth et al. 2000). In the
digital domain, circularity shows some dependence on the size
of the structures. This arises because the feature boundaries
becomeexaggerated when size decreases (a result ofthe fixed
pixel resolution). To correct for this dependency, we first
calculate a trend of thecircularity versus scalefor each
imageby fitting a second-degree polynomial (Figure 2(a)),
and then the data points are divided by the fitted curve to
correct for the trend (Figure 2(b)). As larger areas are assumed
to have correct (scale-independent) circularity, we multiplied
the normalized circularity values by theminimum of the
polynomial curve.
One of the other important parameters associated with a

supergranuleis the fractal dimension, which is a measure of
thecomplexity and self-similarity of a structure (Mandelbrot 1982).
It is also calledfractional dimension, and it captures the
dependence of structure details on scale. Now, the fractal
dimension (D) is estimated from the area (A) and perimeter (P)
of a given structurevia the relation µP A

D
2 (Muller &

Roudier 1994). Thus, twice the slope of the area versus perimeter
plot, on a log-log scale, isequal to the fractal dimension (Paniveni
et al. 2010).

4. Results from KSO

4.1. Full ROI; the Aggregate

As mentioned in the previous section, we calculated different
supergranule parameters such asscale, circularity, and the fractal
dimension within a selected ROI (we call it “aggregate” hereafter)
from each of the KSO Ca II K images. Figure 3 shows the
variation of theaverage supergranule scale over theninecycles
(cycles 14 to22) studied in this paper. The green dots correspond
to average scales determined from individual images, and the solid
black curve represents asmoothed version of the same. We
additionally plot thespline smoothed first and third quartile curves
with blue and red dashes, respectively, in Figure 3, and thisshows
that thescatter in the data is smallerthan the temporal variation of
the parameter.
All the smoothed curves presented in this paper are

generated using the CRAN package named “cobs” of the
statistical analysis software R (details about this can be found
in Feigelson & Babu 2012). This smoothing technique is based
on basis splines (Reinsch 1967) and allows manual input
features such as constraints and knot points. For this study we
used a quadratic spline with the penalty parameter λ (Hastie &
Tibshirani 1990) set to 1. This method takes care of the
temporal variation of the data spread (or sudden disconti-
nuities) and is effective in avoiding the “artificial” jitters as
opposed to the conventional running-average technique. More-
over, to compare the two methods (spline smoothing and the

Table 1
Details of the Different Data Sets Used in this Study

Data Source Wavelength (passband) (Å) Duration Pixel Scale

KSO Ca II K 3933.67 (0.5) 1907–2007 0 8
PSPT-ITALY 3934.00 (2.5) 1996–2016 1″
PSPT-USA 3934.00 (1.0) 2005–2015 1″
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running averaging), werepeatedthe entire presented analysis
withrunning-averaged data, and the results are presented in the
Appendix.

The vertical dashed line in Figure 3 indicates that the KSO
image quality degraded substantially after this period (1997
onward/cycle 23 onward). Although we detected and calcu-
lated all the supergranule parameters alsousing the images
from this time period(1997 onward, as shown in the plots),
all the correlation values (with the SSN) werecalculated
for theperiod 1907–1996. To extend our analysis beyond
1996, we used the PSPT-Italy (1996–2016) andPSPT-USA
(2005–2015) data to cover the remainingperiod, and the results
from them are discussed in thesubsequent sections.

Now from the curve we immediately note that it has
asunspot-cycle-like periodicity of ∼11 years. To understand
its connection with the solar cycle more clearly, we over-
plotthe smoothed sunspot number (SSN) data in the same
panel (dashed curve). A positive correlation value of 0.76
confirms the in-phase variation of the average supergranule
scale with the sunspot number. The calculated scale values
(Figure 3) vary from 24Mm (during the cycle minima)
to 28–30Mm (during the cycle maxima) with an average

ataround 26Mm. These estimated scale values from the KSO
data match the valuespresented in McIntosh et al. (2011)
closely, where the authorsused Mount Wilson Solar Observa-
tory (MWO) historical data for three cycles (1944–1976). It
must be emphasized here that McIntosh et al. (2011) could not
obtaina clear trend of the in-phase variation of thesupergra-
nule radius with the SSN in all the three cycles they analyzed.
In our analysis, whenwe look for the same period as presented
in McIntosh et al. (2011), i.e., from 1944 to 1976, we note that
the in-phase variation signature is prominently visible for all of
the cycles. In fact, the one-to-one correlation with the SSN is
clearly demonstrated for all the cycles (cycles 14–22)
investigated in this study. Thus, we conclude that the long-
term data availability at KSO has enabled us to establish the in-
phase variation of the radius parameter with SSN over amuch
greater span of time than any other previous study.

4.2. Active and Quiet Regions

Since the mainmagnetic activities are concentrated on the
active regions (ARs), it would be interesting to investigate the

Figure 1. Different processing steps to detect supergranules. (a) CaIIK disk-centered image; (b) central window (as highlighted by the rectangle in (a)) used for
further processing; (c) limb-darkening corrected, intensity-enhanced, and smoothed version of (b), (d) detected supergranules using the watershed transform
(supergranule boundaries are shown in black); (e) supergranule boundaries from (d) overplotted on (c); and (f) magnified view of panel (e) with aFoV of
400″×400″.
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Figure 2. (a) Dependence of thesupergranule circularity onthe scale. The solid red line is the fitted second-degree polynomial on the observed trend; (b) the same as
previously, only after removing the trend.

Figure 3. Cyclic variation of themean supergranule scale for ninecycles. Green points correspond to data from the KSO. The black solid curve is thesmoothed
average supergranule scale. Blue and red dashed curves depict spline smoothing for the first and third quartiles, respectively. The black dashed curve depicts the
temporal variation of thesmoothed sunspot number (SSN). Cycle numbers are marked in blue.

Figure 4. Separation of active and quiet region supergranules. (a) Rectangular regions with white plage structures are defined as active regions (ARs); (b) regions
away from plage structures (outside the rectangular patches and inside the disk) are considered quiet regions (QRs). The dashed rectanglesin both panelsshow the
regions within which supergranule detection is performed (this is same as the ROI).
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effect of the same on the different properties of supergranules
in ARs and on the rest of the Sun, the quite regions (QRs).

Although there have been attempts to divide the solar images
into ARs and QRs and study the changes in supergranule scale,
all of them were for a very short span of time, at most for one
solar cycle (Muenzer et al. 1989; Berrilli et al. 1999; Meunier
et al. 2008). In this study we recorded the supergranule
parametersseparately for AR and QRfor more than nine
cycles with a fully automated method. To identify the locations
of the ARs from the Ca II K images, we used the plage
locations as proxies for the magnetic field (Sheeley et al. 2011).
All the full-disklimb-darkening-corrected KSO Ca II K images
were used to detect plages with a fully automated method, as
described in Chatterjee et al. (2016). Next we used a
rectangular maskaround each of the detected plageswith
sides three times the maximum distances of plage structure
coordinates from thecentroids along X and Y. We define

theserectangular regions as ARs. This procedure is shown
for a representative KSO imagein Figure 4(a). We keep a
margin of 0.5 times of these X and Y distances, and theregion
beyond thismargin is considered as a QR (Figure 4(b)). The
supergranule detection was performed within a rectangular
region about the diskcenter, as shown in Figures 1, 4.
Figure 5 shows the temporal variation of AR and QR

supergranule scales with solar cycles. The AR supergranular
scale varies coherently with the SSN (plotted as theblack dashed
curve). The correlation coefficient between the two equals0.90.
In addition tothis in-phase variation with the sunspot cycle, we
note that the average AR scalein this caseis around 25Mm (we
obtained a similar number from the aggregate case, as shown
in Figure 3). The temporal variation of theQR supergranule
average scale is illustrated in Figure 5(b). Interestingly, for the
QR case we find a strong anticorrelation between the mean scale
and the SSN cycle. The correlation coefficient is−0.86. For both

Figure 5. Cyclic variation of mean supergranule scale for the AR (panel a) and for the QR (panel b). Dots correspond to the measured mean scale values from
individual images, whereas the solid curves represent the smoothed versions of the same. The SSN cycle is shown with a dashed curve. Individual cycle numbers are
marked in blue. The color theme, i.e., results from ARs in red and results from QRs in blue, is followed throughout this paper.
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Figure 6. Variation of supergranule circularity for over a century for ARs (panel a) and for QRs (panel b). Dots correspond to circularity values obtained from
individual images, whereas the solid curves represent their smoothed version. The SSN cycle is also plotted at the bottom of each panel.

Figure 7. Calculation of thefractal dimension of supergranules. (a) Fractal dimension of supergranules in QRs; (b) fractal dimension of supergranules in ARs.
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the AR and the QR, we find substantial cases when the scale
values have comparatively low numbers (≈22Mm).

We also calculated the scale-normalized average circular-
ityseparately for AR and QR, and the results are shown in
panels a and b of Figure 6, respectively. From the evolution of
the AR circularity, we observe that the supergranules are more
circular during the solar minima thanduringsolar maxima. A
correlation coefficient of −0.90 confirms this. For the QR
(panel 6(b)), it becomes interesting becausethe circularity
parameter shows no apparent correlation with the sunspot
cycle.

Next we calculate the fractal dimension for the ARs and the
QRs. As defined in Section 3.2, the fractal dimension is equal
totwicethe slope of the log-log area versus perimeter plot.
The different panels of Figure 7 show the calculation of the
fractal dimension for the AR and the QR from a single KSO
image. Previously, Paniveni et al. (2010) have quantified the
AR and QR fractal dimension of supergranules (identified
manually) from KSO CaIIK filtergrams for aperiod of 1.5
years between 2001 and 2002. In this study we recorded
the same for a much longer period and also using a fully
automated method.

Figure 8 shows the temporal variation of the fractal
dimension for the two regions as obtained from the KSO data.
For the AR fractal dimension we observe a good correlation
(with correlation coefficient 0.80) with the solar cycle. For the
QR, it is exactly opposite, i.e., the QR fractal dimension has a
strong anticorrelation (with correlation coefficient −0.93) with
the solar cycle. Additionally, we note that thefractal dimension
for active regions is lower thanfor quiet regions on an average,

as the smoothed paleblue curve rarely dipsbelow the
smoothed red curve (in accordance with Paniveni et al. 2010).

5. Results from PSPT

As mentioned in the previous section, the KSO data quality
degraded after 1996, and thus the calculated supergranule
parameters have more scatter, fewerdata points, and large
discontinuities.
We thereforeused the same technique (of supergranule

detection) on the PSPT-Italy and PSPT-USA images. Results
from these data sets are shown in thedifferent panels of
Figure 9. From the plot we note that the average supergranule
scales from two observatories match well. In fact, they are also
close to the value obtained from the KSO data (Figure 3). Upon
careful observation of the plot, we find some differences,
however. The plot revealsa constant shift in the measured
supergranule scale values (≈1Mm) between the PSPT-Italy
and PSPT-USA data. The reason behind this may be thatthe
PSPT-Italy data are available in JPEGformat, which intro-
duces some compression in the original image, whereas PSPT-
USA data are available in standard astronomical FITS format
without any compression.
In panel 9(a) we note that the change in the mean scale

valuefrom PSPT-Italydoes not show a clear in-phase variation
withcycle 23 (1996–2008). In the next cycle, cycle 24 (2008
onward),the solar-cycle-like variation resumes. For PSPT-
USA (panels 9(b)), we do find an in-phase variation of the
same with solar cycle. Thus we conclude that the results from
the PSPT-Italy arenot due to an detection artifact, but are
insteadrelated to the image quality (or continuity) of the
telescope.

Figure 8. Variation of supergranule fractal dimensions corresponding to individual images in ARs (red dots) and QRs (blue dots). Smoothed curves for the two are
shown assolid red and paleblue curves, respectively. The bottom panel presents amagnified view of the region enclosed by thedotted rectangle in the top panel.
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6. Summary and Conclusion

In this study, we usedfor the first timethe calibrated Ca II K
images recorded at theKSO to identify different supergranule
parameters such as mean radius, circularity, andfractal
dimension for onecentury (1907–2007). This has been the
longest time series todate for the supergranule geometrical
parameters. The main findings are listed below.

1. Weimplemented a fully automated algorithm to detect
the supergranules from the intensity images. Using this
automated segmentation method, we find the mean
supergranule scale to vary between a range of
22–28Mm, which is similar to the scale presented in
McIntosh et al. (2011).

2. To isolate the effect of the stronglarge-scale magnetic
field on the derived supergranule parameters, we
segregate the ARs and QRs from every intensity image
using the plages as proxies for the magnetic locations.
Analysis shows that the AR supergranule mean scale
varies in phase with the solar cycle, whereas for the QR
supergranule mean scale it is the opposite. TheAR

supergranule scale fluctuation about themean is more
than that of theQR values. This means thatalthough
theQR scale is anticorrelated with the SSN, theAR scale
dominates and causes theaggregate scale to bein phase
with theSSN. We conjecture that theAR scale fluctua-
tion is influenced by the spatial extent of magnetic field. It
other words, larger ARs during solar maxima might be
causing the AR supergranules to become larger. Network
magnetic elements have ashrinking effect on super-
granules, as hinted by Meunier et al. (2008). During
minima they arereduced and might cause larger QR
supergranules.

3. The circularity parameter is found to behave differently
for the two regions (ARs and QRs). TheAR circularity
shows a strong anticorrelation withsunspot cycle,
whereas the QR circularity shows no dependence. The
random walkassociated with network magnetic elements
might causethe AR supergranules to distort and become
less circular during cycle maxima.

4. Fractal dimension, the measure of the boundary irregu-
larity, also has adifferent and non-overlapping evolution

Figure 9. Cyclic variation of themean supergranule scale for 1996–2016 from various observatories.
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for the two regions. In this case, the AR fractal dimension
has a positive correlation with the sunspot cycle, whereas
the QR has a negative correlation.

5. We also used our detection technique on different data
sets from different observatories. The similar parameter
values clearly depictthe reliabilityof the technique
weused in this paper.

In conclusion, we used a unique data set to study the
variation of the supergranular parameters withsolar cycle. The
variation of thesupergranule parameters also hasan effect on
the total solar irradiance(McIntosh et al. 2011). In our future
work we would like to explorethis topic furtherusing data
from different observatories. Now, ARs are the locations of

strong large-scale magnetic fields (mostly the sunspot fields),
which are believed to be generated by the global solar
dynamo (Charbonneau 2010), whereas the small-scale quiet-
Sun magnetic field is believed to be governed by a local
dynamo (Stenflo 2012). The different nature of the correlations
for AR and QR supergranules thusreflects this inherent
difference in the nature of the magnetic fields. It is not clear
how themagnetic fieldinfluences thescale variability, but our
results of segregating the AR and QR provide new constraints
that we hope future magneto-convection models will be able to
explain.

We would like to thank the Kodaikanal facility of theIndian
Institute of Astrophysics, Bangalore, India, for providing the

Figure 10. Cyclic variation of supergranule parameters for ninecycles. The upper panel shows theaggregate scale variation and the bottom panel shows thecyclic
variation of thefractal dimension for AR and QR. These figures are same as Figures 3 and 8 except thatthe smoothing approach now is therunning average.
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data. These data are now available for public use at https://
kso.iiap.res.in/data. We also thank the SCIENCE & ENGI-
NEERING RESEARCH BOARD (SERB) for the project grant
(EMR/2014/000626).

Appendix

As mentioned earlier, werecomputed all the correlation
coefficients with running-averaged curves in order to verifythe
reliability ofthe obtained results. Two of theseplots areshown
in Figure 10. The top and bottom panels in this plot are similar
toFigures 3 and 8 with the smoothing technique being the
running average. Comparing the respective plots, we observe
that the running averagegenerates a much morejittery curve
thanthe spline-smoothed curves. Thesejittersresultinslightly
lower correlation coefficient (C.C.) values. However, the
improvements in correlations are mostly marginal except for
one case (SSN versus AR fractal dimension). The C.C.s
obtained from these two methods are listed in Table 2. Thus,
the closeness of the correlation values confirm the fact that the

physical interpretations are not affected by the smoothing
methods.
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