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Theoretical analysis of effective electric fields in mercury monohalides
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Mercury monohalides are promising candidates for electron electric dipole moment searches. This is due
to their extremely large values of effective electric fields, besides other attractive experimental features. We
have elucidated the theoretical reasons of our previous work. We have also presented a detailed analysis of our
calculations, by including the most important of the correlation effects’ contributions. We have also analyzed the
major contributions to the effective electric field, at the Dirac-Fock level, and identified those atomic orbitals’
mixings that contribute significantly to it.
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I. INTRODUCTION

The electron electric dipole moment (eEDM) is a conse-
quence of parity and time-reversal violations [1–4]. It is an
important nonaccelerator probe of physics beyond the standard
model [5,6]. Ibrahim et al. make a case that the eEDM can be
a sensitive probe of PeV physics [7]. There is a large body of
work on eEDMs and CP violation in supersymmetric models
(for example, see Ref. [8]). A knowledge of eEDMs also
provides insights into the baryon asymmetry in the universe
(BAU) [9,10]. One of the Sakharov conditions [11], which
gives the necessary prerequisites for BAU, is CP violation. If
the CPT theorem [12] is true, then T violation must correspond
to CP violation, to preserve CPT symmetry. This correspon-
dence is what connects the two seemingly disparate phenom-
ena, eEDMs and BAU. The importance of this connection is
demonstrated in the work by Fuyuto et al. [10], who argue
that the relationship between the BAU-related CP violations
and eEDMs is important for the test of the electroweak
baryogenesis (EWBG) scenario. They proceed to show that
if BAU-related CP violation does exist then the EWBG region
might be entirely verified by the future eEDM experiments.

Heavy polar diatomic molecules are currently the preferred
candidates to look for a shift in the energy of a molecule in a
particular state, due to the presence of the eEDM (for example,
see Ref. [13]). The electric field corresponding to that shift in
energy, with the proportionality constant being the eEDM, is
called the effective electric field, Eeff. It is the electric field that
an electron experiences, due to all other electrons and nuclei
in the molecule [14]. These calculations warrant a relativistic
treatment to compute this quantity, as Eeff completely vanishes
in the nonrelativistic limit [15].

We had calculated the effective electric fields of mercury
monohalides and identified them as promising candidates for
eEDM searches [16]. The main thrust of this paper is to
elaborate on the theoretical aspects of our previous one [16].
In particular, we analyze and elucidate the contributions
to the effective electric fields, at the Dirac-Fock (DF) and
correlation levels. We employ a relativistic coupled cluster
method (RCCM), for our computations.

II. THEORY

The eEDM Hamiltonian, HeEDM, is given by

HeEDM = −de

Ne∑
j=1

β �σj . �Eintl,j (1)

where de is the eEDM. The summation is over the number of
electrons in the molecule, Ne. β is one of the Dirac matrices,
�σ refers to the Pauli matrices, and �Eintl is the internal electric
field.

The shift in energy due to the eEDM is given by

�E = 〈ψ |HeEDM|ψ〉 (2)

= −deEeff. (3)

Here, |ψ〉 is the ground-state wave function of mercury
monohalides. Comparing Eqs. (1) and (3), we obtain the
following expression for Eeff:

Eeff = 〈ψ |
Ne∑
j=1

β �σj . �Eintl,j |ψ〉. (4)

To obtain the wave function, we employ a fully relativistic
coupled cluster method. The wave function is given by

|ψ〉 = eT |�0〉. (5)

T is called the cluster operator. |�0〉 is the Dirac-Fock wave
function. We use the relativistic coupled cluster singles and
doubles (CCSD) approximation in our paper. More details
about the relativistic CCSD method and its salient features
can be found in Refs. [14,17].

The expectation value of any operator, O, in an RCCM, can
be expressed as [18,19]

〈O〉 = 〈ψ |O|ψ〉
〈ψ |ψ〉

= 〈�0|eT †ONeT |�0〉C + 〈�0|O|�0〉. (6)

The subscript, N, means that the operator is normal or-
dered [20], and C means that each of the terms are connected
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[21]. Therefore,

Eeff = 〈�0|eT †H eff
eEDM,NeT |�0〉C + 〈�0|H eff

eEDM|�0〉 (7)

≈ 〈�0|(1 + T1 + T2)†H eff
eEDM,N (1 + T1 + T2)|�0〉C

+〈�0|H eff
eEDM|�0〉. (8)

We replace the usual eEDM operator by an effective
one [14], H eff

eEDM, given by

2ic

e

Ne∑
j=1

βγ5p
2
j (9)

where c is the speed of light, e is the charge of the electron,
Ne refers to the number of electrons in the molecule, β is one
of the Dirac matrices, γ5 is the product of the Dirac matrices,
and pj is the momentum of the jth electron. This is done,
so that the Hamiltonian is rewritten in terms of only one-
body operators. The term �Eintl [from Eq. (4)] has a two-body
operator in it. Although it can be calculated, in principle, it
is very time demanding and complicated. Using an effective
one-body operator simplifies the computations by a significant
amount. Further details can be found in Ref. [14] and the
references therein. We consider only the linear terms in the
expansion of eT , both on the bra and the ket sides, in the first
term of Eq. (6), as shown in Eq. (8). This is a reasonable
approximation, and we can see this from the accuracy of our
results from our previous works, where we compare them
with experimental values [14,17,22,23]. This approximation,
hence, not only saves computational cost by only taking into
account only the linear terms but also provides very accurate
results.

Since the dominant contribution to Eeff is at the DF
level [16], we analyze the terms that constitute it. The
contribution, EDF

eff , can be rewritten as

EDF
eff = 〈�0|H eff

eEDM|�0〉

=
MO∑
i

〈ϕi |heff
eEDM|ϕi〉

= 〈ϕv|heff
eEDM|ϕv〉

= 4ic

e

NB∑
k=1

2NB∑
l=NB+1

C∗S
k CL

l

〈
χS

v,k

∣∣p2
∣∣χL

v,l

〉
. (10)

Here, ϕv refers to the singly occupied molecular orbital
(SOMO). heff

eEDM is the single-particle effective eEDM operator.
Summation over the number of molecular orbitals (MO) is
indicated by i, while summations over the number of large
and small components of the basis sets are given by k and
l, respectively. NB refers to the number of large component
basis functions. Ck and Cl refer to the coefficients, obtained by
solving the DF equations, and their superscripts L and S stand
for large and small components, respectively. The χs refer
to the atomic orbitals (basis sets) of the constituent atoms.
The mixing between large and small components is due to the
fact that the eEDM operator is off-diagonal. Only the SOMO
survives in the expression for EDF

eff , because the remaining
terms cancel out. This can be understood in the following

TABLE I. Summary of the basis sets employed in our calculations.

Atom Basis (DZ) Basis (TZ)

Hg 22s,19p,12d,9f,1g 29s,24p,15d,11f,2g

F 9s,4p,1d 10s,5p,2d,1f

Cl 12s,8p,1d 15s,9p,2d,1f

Br 14s,11p,6d 20s,13p,9d,1f

I 21s,15p,11d 28s,21p,15d

way:

MO∑
i

〈ϕi |heff
eEDM|ϕi〉 =

(MO−1)/2∑
i ′

⎡
⎣〈ϕi ′ |heff

eEDM|ϕi ′ 〉

+
(MO−1)/2∑

i
′

〈ϕ
i
′ |heff

eEDM|ϕ
i
′ 〉
⎤
⎦

+〈ϕv|heff
eEDM|ϕv〉. (11)

In the above expression, we have decomposed the left-hand
side into three terms. The first and the second summation
terms on the right-hand side denote the contributions from the
doubly occupied orbitals in the Kramers pairs, ϕi ′ and ϕ

i
′ . The

third term is the contribution from SOMO. The Kramers pair
orbitals are related by the time-reversal operator (τ ) [24]:

|ϕ
i
′ 〉 = τ |ϕi ′ 〉 (12)

− |ϕi ′ 〉 = τ |ϕ
i
′ 〉. (13)

Therefore,

〈ϕ
i
′ |heff

eEDM|ϕ
i
′ 〉 = 〈ϕi ′ |τ †heff

eEDMτ |ϕi ′ 〉
= −〈ϕi ′ |heff

eEDM|ϕi ′ 〉. (14)

Hence, the first two terms in Eq. (11) cancel out pairwise, and
only the SOMO remains.

III. RESULTS AND DISCUSSIONS

In this section, we present the method of calculations used
in this paper, followed by a detailed discussion of the results.
We used and modified the UTCHEM code [25], for the DF
and atomic orbital to MO integral transformations [26]. We
performed the CCSD calculations in the DIRAC08 program [27].

The details of the basis sets are given in Table I (uncon-
tracted [14]; kinetically balanced [24] Gaussian-type orbitals;
cc-pV DZ (correlation consistent polarization valence double
zeta) and TZ (triple zeta) basis for F, Cl, and Br [28]; Dyall’s
basis for I [29]; and Dyall’s c2v and c3v basis sets for Hg [29]).
We did not freeze any of our occupied orbitals. We chose the
following bond lengths (in angstroms): HgF (2.00686) [30],
HgCl (2.42), HgBr (2.62), and HgI (2.81) [31].

Table II shows the terms from Eq. (8), and also the total
Eeff, for HgX. In our previous work, we had performed this
analysis for only HgF. Extending it to all HgX enables us
to study the trends in Eeff, for these molecules. Also, in
our previous work, we had identified HgBr as a promising
candidate, among the HgX molecules. Hence, theoretical
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TABLE II. Contributions, from the individual terms, to the
effective electric field of HgX; cc refers to complex conjugate, of
the term that it accompanies.

Term HgF HgCl HgBr HgI

DF 104.25 103.57 97.89 96.85

H eff
EDMT1+ cc 20.16 19.34 22.18 24.78

T
†

1 H eff
EDMT1 −3.91 −3.58 −4.07 −4.77

T
†

1 H eff
EDMT2+ cc 0.44 0.194 −0.2 −0.30

T
†

2 H eff
EDMT2 −5.52 −5.96 −6.5 −7.26

Total 115.42 113.56 109.29 109.30

details about HgX other than HgF become important. In the
notation used in the table, H eff

eEDMT1, for example, actually
refers to 〈�0|{H eff

eEDM}T1|�0〉C , where the curly brackets refer
to a normal-ordered operator. This is done for the purpose
of brevity. Note that the 〈�0|{H eff

eEDM}|�0〉C is zero, since
the effective eEDM operator is normal ordered [22]. The
H eff

eEDMT2 term, and its complex conjugate, are zero, due to
the Slater-Condon rules [20]. Hence, we are left with seven
nonzero terms.

The DF term is the largest, and it decreases from HgF
to HgI. Correlation effects account for about 9% of the total
effective field. This indicates that for these molecules both Eeff

and the amount of correlation do not significantly vary with Z
of the lighter halide atom. Among the correlation terms, the
H eff

eEDMT1 term is the largest. The second and the third largest
correlation contributions come from the T

†
2 H eff

eEDMT2 term and
the T

†
1 H eff

eEDMT1 term. Their effect is to reduce Eeff. The overall
values of Eeff decrease from HgF to HgBr. HgBr and HgI have
almost the same values of Eeff, although the DF value of HgI
is smaller in comparison with HgBr. This can be understood
from the fact that the difference between the H eff

eEDMT1 term
and the T

†
1 H eff

eEDMT1 + T
†

2 H eff
eEDMT2 term is larger for HgI.

We shall remark briefly about how the correlation trends
vary in the Eeffs of HgX, as compared to those in our previous
and ongoing works. In our previous work on the permanent
dipole moment (PDM, also known as the molecular electric
dipole moment) of SrF [17], and subsequently on the PDMs
of the other alkaline-earth monofluorides (AEMs) [22], we
had performed the same analysis. Although Eeff and PDM are
different properties, they do share similarities; for example,
both the properties depend on the mixing of orbitals of opposite
parity. Hence, it is worthwhile to check if there are any
similarities in their correlation trends. We first compare the
correlation trends between the Eeff of HgX and the PDMs of the
AEMs. Both of them are systems with one unpaired electron,
but we see that in AEMs, while correlation can decrease (for
example, BeF, by around 20%) or increase (for example, BaF,
by around 20%) the PDM, the effect of correlation on the
Eeffs of HgX is almost the same throughout, from HgF to HgI.
The PDMs of HgX follow an entirely different trend, where
the correlations decrease the PDM drastically [32]. We now
compare the correlations in the Eeffs of HgX with those in YbF,
the candidate that currently sets the second best limit on eEDM,
and RaF, a promising candidate for eEDM experiments. In all
the HgX molecules, correlations account for about 10%. In

(b)(a) (c)

(e)(d)

FIG. 1. Goldstone diagrams for Eeff: (a) DF term, (b) H eff
eEDMT1,

(c) T
†

1 H eff
eEDMT1 term, and (d) Direct diagrams of T

†
1 H eff

eEDMT2 term and
T

†
2 H eff

eEDMT2 term, respectively.

YbF, the correlations account for about 20% [14], while in
RaF [33] it is close to 30%. Again, all of these systems have
one unpaired electron, and their heavier atoms have atomic
numbers fairly close to one another, but their effective fields
and their correlation effects are very different. In HgI, for
example, the correlation effects are 10%, owing to the fact
that nearly half of the H eff

eEDMT1 term is canceled out by the
other correlation terms. In RaF, this is not so. In fact, the
H eff

eEDMT1 term adds to about 20 GV/cm, and the rest close to
−0.5 GV/cm. The values that we finally obtain are a conse-
quence of several cancellations at work, among the various
DF and the correlation terms. We shall attempt to understand
further these cancellations for HgX in the rest of this paper.
This brief discussion illustrates that further detailed theoretical
studies are required to understand better the correlation effects
and trends, of these class of polar molecules.

Figure 1 shows some of the dominant Goldstone diagrams
involved in the expectation value expression, given by Eq. (8),
specifically the DF, the H eff

eEDMT1, the T
†

1 H eff
eEDMT1 term, the

direct counterparts of the T
†

1 H eff
EDMT2, and the T

†
2 H eff

eEDMT2

terms. The conjugate diagrams are not given, since they give
the same result.

The physical interpretation of these diagrams is discussed
in detail in another work on PDMs [22]. For the sake of
completeness, we choose a representative diagram, H eff

eEDMT1,
to explain its physical significance. We choose this diagram,
since it contributes the most to the effective electric field. This
term can be expanded as

∑
i,a

[〈ϕi |
{
heff

eEDM

}|ϕa〉〈ϕa|t |ϕi〉
]
C

(15)

where the summation is over i and a, where i refers to the oc-
cupied orbitals (holes) and a corresponds to the virtual orbitals
(particles). We obtain this expression, if we apply the Slater-
Condon rules to the original expression, 〈�0|{H eff

eEDM}T1|�0〉C .
Mathematically, the H eff

eEDMT1 term represents an all-order
residual Coulomb interaction, resulting in an electron from
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TABLE III. Summary of the DF results, of the contributions from
various orbitals’ mixings, at the TZ level.

Atom Mixing HgF HgCl HgBr HgI

Hg s − p1/2 −266.29 −262.07 −249.39 −242.34
Hg p1/2 − s 373.37 367.74 349.42 339.56
Hg p3/2 − d3/2 31.22 25.22 21.84 20.99
Hg d3/2 − p3/2 −32.26 −26.35 −22.48 −21.84
Hg d5/2 − f5/2 −0.91 −0.51 −0.39 −0.33
Hg f5/2 − d5/2 0.92 0.52 0.4 0.33
X s − p1/2 −2.78 −4.85 −10.58 −17.19
X p1/2 − s 2.79 4.92 11.17 19.87
Total: 106.06 104.62 99.99 99.05
DF 105.47 104.03 99.55 98.99

s − p1/2 and p1/2 − s 107.08 105.67 100.03 97.22

an occupied orbital, i, being excited to a virtual orbital, a, and
then falling back into the same state, i, due to the interaction of
the particle with the eEDM. This diagram represents several
correlation effects, like the Brueckner pair correlation [20],
among others, but is not obvious from the coupled cluster
diagram, since the T1 part embodies in it the residual Coulomb
interaction, to all orders of perturbation.

Table III presents the various contributions to the DF value
of Eeff, due to the mixing between various orbitals (or basis
sets) [Eq. (10)], at the TZ level. We have not presented the anal-
ysis for the DZ basis sets, since TZ is closer to the actual wave
function, and the results from both the basis sets show the same
trend. In the second column, s − p1/2, for example, is actually
a shorthand for

∑
s

∑
p1/2

C∗S
s CL

p1/2
〈χS

v,s |p2|χL
v,p1/2

〉. The first
summation is over all the small component basis sets of the s
angular momentum function, and the second is over the large
component basis sets of the p1/2 angular momentum function.
The mixing between the same parity orbitals is zero, and hence
those terms that contain matrix elements between s and d, for
example, are ruled out. Only s, p1/2, p3/2, d3/2, d5/2, and f5/2

orbitals for Hg, and s and p1/2 for X, have been considered in
Eq. (10), since the terms involving the mixing between other
orbitals contribute negligibly to EDF

eff . This can also be recog-
nized from the difference between the rows labeled “Total,”
which gives the sum of the mixings associated with the orbitals
considered, and “DF,” which gives the total DF contribution.
The difference between the two decreases from F to Br.

The combined s − p1/2 and p1/2 − s contribution is clearly
the highest among all others, contributing to over 100% of the
total DF value of Eeff in all cases, except HgI. The “anomaly”
in HgI is due to the halide atom’s contribution becoming
important.

We observe that the absolute magnitude of all the terms for
Hg decreases from F to I. However, in X, we see the opposite
trend. In fact, for HgI, the contribution from X increases the
effective field by over 2.5 GV/cm.

The angular momentum functions are strictly not atomic
orbitals, but the terms from the basis sets that we employ.
Hence, we cannot, from our results alone, deduce those prin-
cipal quantum numbers that contribute significantly. However,
we can intuitively guess that the major contribution is from the
6s and the virtual 6p1/2 orbitals of the Hg atom, since they lie
close in energy, and their radial overlap is large. Moreover, we

can expect the matrix elements of the eEDM operator between
these opposite parity orbitals to be large.

The importance of s − p1/2 and p1/2 − s mixing of the
heavier atom in the Eeff of HgF has been understood in the
past, for example, Ref. [34]. We shall compare our results
with the previous ones later in this paper. In our paper, we have
taken into account not only the s − p1/2 and p1/2 − s mixing
but also that of the other orbitals of both the atoms, and then
demonstrate that it is the s − p1/2 mixing of the heavier atom
that dominates. In the table, we have only shown the s − p1/2
and p1/2 − s mixing of the lighter atom, but that is because we
found the other mixings to be negligibly small. Also, note that
our analysis is not only for HgF but for the heavier mercury
monohalides too. For example, in HgI, the “lighter” atom,
iodine, is sufficiently heavy. In spite of that, we see that the
s − p1/2 and p1/2 − s mixing from I is surprisingly small.

Finally, we observe that not only the magnitude of the s −
p1/2 and the p1/2 − s mixings (of the heavier atom) are large
but so is the remainder when these terms cancel each other’s
contributions. This illustrates the importance of cancellations
that occur in ab initio calculations. In the case of iodine (in
HgI), the two terms themselves are non-negligible, but they
cancel each other out, leaving behind a very small contribution
to the DF Eeff from the lighter atom.

We shall now attempt to explain why the H eff
eEDMT1 term

is large, among the correlation terms. The DF contribution
dominates among the others, due to the significantly high
difference between the large values of s − p1/2 and p1/2 − s

of the Hg atom (the notation is the same as that in Table III).
We wish to reiterate that s is an occupied orbital, while
p1/2 is a virtual one. Now, let us focus only on the matrix
elements. Their values are several orders larger than their
corresponding coefficients. These large matrix elements, of
the form 〈o|heff

eEDM|v〉 (where we abbreviate occupied orbitals
as o and virtual orbitals as v), also occur in the expression for
H eff

eEDMT1 (and hence it also contains matrix elements between
s and p1/2), except that H eff

eEDMT1 has accompanying it a t1
amplitude, which indicates the “weight” associated with a
one-hole one-particle excitation. The t amplitudes are like
probability amplitudes, and thereby lesser than 1 always.
Hence, we can view the amplitude as having a “reducing”
effect on the H eff

eEDMT1 term, for each i and a. This is probably
why the H eff

eEDMT1 term is not as large as the DF one; the large
matrix elements are accompanied by the smaller values of
the t1 amplitudes. Obviously, this is not the only reason why
the DF term is substantially larger than the other terms. The
term also contains matrix elements of the type 〈o|heff

eEDM|o〉
and 〈v|heff

eEDM|v〉, which cancel each other in a way that results
in the final value of the DF term. There are also cancellations
between various terms that constitute H eff

eEDMT1, since not all
matrix elements or the t1 amplitudes are positive.

The matrix elements, of the form 〈o|heff
eEDM|v〉, occur only in

H eff
eEDMT1 and T

†
2 H eff

eEDMT1 (and its complex conjugate term).
The latter, however, is not as large as the former and is, in
fact, very small, probably due to two reasons. The first is the
cancellations that arise among the four terms that constitute
T

†
2 H eff

eEDMT1:∑
i>j,a>b

[
tab∗
ij tai 〈b|heff

eEDM|j 〉 + tab∗
ij tbj 〈a|heff

eEDM|i〉

−tab∗
ij taj 〈b|heff

eEDM|i〉 − tab∗
ij tbi 〈a|heff

eEDM|j 〉]. (16)

042513-4



THEORETICAL ANALYSIS OF EFFECTIVE ELECTRIC . . . PHYSICAL REVIEW A 95, 042513 (2017)

TABLE IV. The terms that contribute to T
†

1 H eff
eEDMT1.

Term Contribution (GV/cm)

I 10−3

II 2.94
III −4.44
IV 2.4

We have not explicitly mentioned that the operator is normal
ordered, or that each term is connected. The four terms are 0.72,
0.24, −0.03, and 0.77, respectively, for HgF, which we choose
as a representative case (we expect the trends to be similar
for the other monohalides). All the four terms have matrix
elements of the form 〈o|heff

eEDM|v〉, of which two are dominant,
and they almost cancel each other out. The second reason is
that in this term there is another t amplitude, t2, which is also
less than 1, and hence “reduces” the net contribution further.

The T
†

1 H eff
eEDMT1 consists of terms of the type 〈o|heff

eEDM|o〉
and 〈v|heff

eEDM|v〉. To discern how these terms contribute, we
expand the T

†
1 H eff

eEDMT1 term:

−
∑
i,j,a

ta∗
i t aj 〈j |heff

eEDM|i〉 +
∑
i,a,b

ta∗
i t bi 〈a|heff

eEDM|b〉

−
∑
i,a

ta∗
i t ai 〈i|heff

eEDM|i〉 +
∑
i,a

ta∗
i t ai 〈a|heff

eEDM|a〉 (17)

= I + II + III + IV. (18)

The first term corresponds to Fig. 1(c). The second term is
similar to the figure, except that the eEDM vertex is between
two particles, instead of two holes. The third term is the same
as the first, except that in its Goldstone diagram both the holes
are the same orbitals, that is, the interaction of the hole with the
eEDM leaves it unchanged. The fourth is again the same as the
second, but with the two particles being the same orbital. We
have expanded T

†
1 H eff

eEDMT1 this way, so that we can understand
which types of matrix elements contribute to it dominantly.
Table IV summarizes the contributions to this term.

We observe from the table that, magnitude-wise, the terms
that contain the eEDM operator between the same orbitals
(terms II and III) contribute significantly. Note that these
matrix elements are nonzero, although heff

eEDM is P-odd. This
is because the orbitals are MOs, and each MO is expanded as
a linear combination of basis functions, of different angular
momenta. The major contributions to the T

†
2 H eff

eEDMT2 term
are also from matrix elements between the same orbitals
(−4.7 GV/cm).

Table V summarizes the results obtained from previous
works. Only results for HgF are available, and we proceed to

TABLE V. Effective electric field, Eeff , in the HgF molecule,
calculated in earlier literature.

Work Eeff (GV/cm)

Dmitriev et al. [36] 99.26
Meyer et al. [34] 68
Meyer and Bohn [37] 95
This paper 115.42

briefly discuss them. The first work on the Eeff of HgF was by
Kozlov [35]. It was a relativistic, semiempirical calculation.
The focus of the paper was the nuclear anapole moment, and
electron-nucleus P and T violating interactions. The table of
results gives the final result of Eeff. Note that since it is a
semiempirical calculation it cannot break the final value of
Eeff into its constituent DF and correlation parts.

Dmitriev et al. [36] computed the Eeff of HgF, using their
calculated bond length of 2.11 Å. They chose the minimal
atomic basis set for F, while for Hg they used five relativistic
valence orbitals, 5d3/2, 5d5/2, 6s1/2, 6p1/2, and 6p3/2. They
obtained a value of about 100 GV/cm. Their calculation can
be described as quasirelativistic, since it requires the addition
of the spin-orbit interaction to a nonrelativistic Hamiltonian.
Our work is fully relativistic (we do not resort to an effective
Hamiltonian, but the Dirac-Coulomb one) and has the spin-
orbit interaction and other effects built into it. They did not
account for mixing between orbitals beyond d5/2, the effect of
F was ignored, and also only the principal quantum numbers 5
and 6 were chosen. We have made no such restrictions. Finally,
they had adopted CI, exciting only three outer electrons. In our
CCSD calculation, all the 89 electrons were excited. Hence,
the Hilbert space that we considered to capture the correlation
effects is larger than that in their work. Our error estimate of 5%
is better than their estimate of 20% . Their estimate of Eeff does
not contain in it information on the DF or correlation contri-
butions. We have provided a detailed breakdown of Eeff in our
paper. Also, their close agreement with our results for Eeff may
be a result of fortuitous cancellations. For example, their work
computed the PDM of HgF to be 4.15 D, which is close to our
DF value of 3.9 D. But, our relativistic CCSD result is 2.61 D.

Meyer et al. [34] calculated Eeff for HgF, among sev-
eral other molecules, using their nonrelativistic software,
to compare the accuracy of their method. Later, in 2008,
they improved upon their approach further, to obtain a more
accurate value, of 95 GV/cm [37].

In our previous work on HgX [16], we had taken recourse
to the relativistic coupled cluster method. We had shown that
Eeff, for all the HgX molecules, is substantially larger than that
for all the current eEDM molecular candidates. However, we
had not performed a detailed analysis of the physical effects
at the DF and correlation levels, which is what we have done
in the present paper. We wish to emphasize that besides the
fact that we use a fully relativistic coupled cluster approach
and extend the results to all HgX we also break the final value
of Eeff down into its constituent terms, both at the DF and
correlation levels.

Since we are elaborating on the theoretical aspects of
our previous work, the error estimates are the same (see
Ref. [16]). We recently improved upon our earlier results
on HgX Eeffs, where we take into account the effect of the
neglected nonlinear coupled cluster terms in the expectation
value [38]. Therefore, the nonlinear terms, in fact, contribute
far less than our earlier estimate of 3.5% .

IV. CONCLUSION

We have calculated the effective electric fields of mercury
monohalides. We have not frozen any of the core orbitals. We
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employed Dyall’s basis sets for Hg and I, and cc-pV basis
sets for the other halides. The DF term contributes the most
to Eeff (about 90%). We have reported the trends in some
of the correlation terms for these molecules, at the DZ level.
We observe that the dominant contribution to the correlation
effects is from a one hole-one particle excitation coupled
cluster diagram. We present one example of a physical effect
that is included in this diagram. We have also reported on
those mixings of atomic orbitals that significantly contribute
to the DF value of Eeff and observed their trends, at the TZ
level. We recognize that the s − p1/2 mixing in Hg contributes
dominantly to EDF

eff .
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