
Minkowski Tensors in Two Dimensions: Probing the Morphology and Isotropy of the
Matter and Galaxy Density Fields

Stephen Appleby1, Pravabati Chingangbam2, Changbom Park1 , Sungwook E. Hong3 , Juhan Kim4 , and Vidhya Ganesan2,5
1 School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea; stephen@kias.re.kr

2 Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560 034, India
3 Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea

4 Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
5 Indian Institute of Science, Bangalore 560 034, India

Received 2017 September 15; revised 2018 March 5; accepted 2018 March 31; published 2018 May 10

Abstract

We apply the Minkowski tensor statistics to two-dimensional slices of the three-dimensional matter density field.
The Minkowski tensors are a set of functions that are sensitive to directionally dependent signals in the data and,
furthermore, can be used to quantify the mean shape of density fields. We begin by reviewing the definition of
Minkowski tensors and introducing a method of calculating them from a discretely sampled field. Focusing on the
statistic W2

1,1—a 2×2 matrix—we calculate its value for both the entire excursion set and individual connected
regions and holes within the set. To study the morphology of structures within the excursion set, we calculate the
eigenvalues λ1, λ2 for the matrix W2

1,1 of each distinct connected region and hole and measure their mean shape
using the ratio b l lº á ñ2 1 . We compare both W2

1,1 and β for a Gaussian field and a smoothed density field
generated from the latest Horizon Run 4 cosmological simulation to study the effect of gravitational collapse on
these functions. The global statistic W2

1,1 is essentially independent of gravitational collapse, as the process
maintains statistical isotropy. However, β is modified significantly, with overdensities becoming relatively more
circular compared to underdensities at low redshifts. When applying the statistics to a redshift-space distorted
density field, the matrix W2

1,1 is no longer proportional to the identity matrix, and measurements of its diagonal
elements can be used to probe the large-scale velocity field.

Key words: dark matter – galaxies: evolution – methods: statistical

1. Introduction

One of the fundamental axioms implicit within the standard
cosmological model is that the distribution of matter in the
universe is statistically isotropic and homogeneous when
smoothed over suitably large scales. This condition is very
well observed in the early epoch of radiation and matter
domination, where fluctuations in the dark matter density field
are small. However, the scale at which this remains true at low
redshifts is less clear, as nonlinear gravitational evolution
generates a complex web of structures. We expect alignment of
structures due to their position within the cosmic web (Lee &
Pen 2002; Aubert et al. 2004; Patiri et al. 2006; Hahn et al.
2007; Lee et al. 2008; Paz et al. 2008; Codis et al. 2014, 2015a,
2015b) and a bias in the clustering properties of galaxies. The
dark matter field exhibits coherent structures even at very large
scales (~ -h100 Mpc1 ), so the scale at which alignments cease
to become significant remains an open question.

Furthermore, when introducing an observer, one can state
that the observed distribution of dark matter tracers (typically
galaxies) are neither homogeneous nor isotropic; selection
effects generate a nontrivial radial profile in the observed
number density, and redshift-space distortion effects will
modify the apparent positions of galaxies along the line of
sight. Line-of-sight effects will generate a bias in the detection
of structures perpendicular to the line of sight. Isotropy of the
galaxy sample is lost via masks and boundaries. If we can
measure the degree of anisotropy in data sets, then we can
potentially minimize observational systematics and, in the case
of redshift-space distortion, constrain the growth rate.

The N+1 Minkowski functionals are a set of scalar
quantities that characterize the morphology and topology of an

N dimensional field (Doroshkevich 1970; Adler 1981; Gott
et al. 1986, 1989; Hamilton et al. 1986; Melott et al. 1989;
Ryden et al. 1989; Park & Gott 1991; Park et al. 1992;
Matsubara 1994, 1996; Schmalzing et al. 1996; Kerscher et al.
2001; Park et al. 2005). Since they are scalar quantities, they
cannot inform us of any directionally dependent information
contained within the data. The concept of Minkowski
functionals can be generalized to vector and tensor counterparts
(McMullen 1997; Alesker 1999; Beisbart et al. 2002; Hug et al.
2008; Schroder-Turk et al. 2010, 2013); these quantities are
typically defined as integrals of some higher-rank quantity over
the boundary of an excursion set. As such, they contain
information not present in the standard Minkowski functionals.
In particular, they can be used to identify globally anisotropic
signals in the data, as well as provide a measure of the shape of
the peaks/troughs of a density field when applied to individual
connected regions and holes in an excursion set. In both
instances, the Minkowski tensors measure directions associated
with a boundary.
The application of Minkowski tensors to cosmology is a

relatively new phenomenon. Ganesan & Chingangbam (2017)
applied a Minkowski tensor that encodes shape and alignment
information of structures to the two-dimensional cosmic
microwave background (CMB) fields. The authors showed
that the 2015 E-mode Planck data (Adam et al. 2016) exhibit a
higher than 3σlevel of anisotropy or alignment of hot spots
and cold spots. Analytic expressions of translation invariant
Minkowski tensors for Gaussian random fields in two
dimensions have been derived in Chingangbam et al. (2017).
In this work, we apply the Minkowski tensors to two-

dimensional slices of the dark matter density field. We first
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review the generalization of the Minkowski functionals to their
tensor equivalents. We then ask how these quantities can be
used to test the isotropy of the field. Throughout this paper, we
focus on two-dimensional slices of a three-dimensional
volume; in a companion paper, we consider the three-
dimensional generalization of these statistics.

In the following sections, we provide a thorough explanation
of our construction of the Minkowski functionals and tensors
by generating the boundary of an excursion set in two
dimensions. We then define the Minkowski tensors and show
how they can be calculated for a discrete field and bounding
perimeter. We apply our algorithms to a Gaussian random field,
connecting our numerical results to analytic predictions
wherever possible. We close by applying the statistics to the
late-time gravitationally evolved dark matter field using the
latest Horizon Run simulation.

2. Generating the Boundary of an Excursion Set: Two
Dimensions

We begin with a discussion of our construction of a
bounding perimeter enclosing a subset of a density field in two
dimensions. Our analysis in this section will closely follow that
of Schroder-Turk et al. (2010), but we detail the method for
completeness.

Our starting point is a discrete two-dimensional density field
δij on a regular lattice spanned by i, j subscripts,  i N1 pix,
1�j�Npix, where Npix is the number of grid points in one
dimension. The domain is chosen to be a square with periodic
boundary conditions, but this condition is not necessary. We
define a dimensionless density threshold n d s= c 0, where δc is
a constant density threshold and σ0 is the rms fluctuation of δij.
A perimeter of constant density δc=σ0ν defines an excursion
set of the field. We can label each (i, j) pixel as either “in” or
“out” of the excursion set according to δij>νσ0 or δij<νσ0,
respectively. Our intention is to construct a closed boundary
perimeter that separates in/out pixels.
We adopt the method of marching squares (Mantz

et al. 2008). The method performs a single sweep through
the entire grid systematically from one corner to the opposite.
At each grid point (i, j), we generate a square from its adjacent
pixels—they are + + + +( ) ( ) ( ) ( )i j i j i j i j, , 1, , , 1 , 1, 1 .
Each of these pixels can be either “in” or “out” of the
excursion set, so there are 24=16 possible unique states of the
square. In Figure 1, we exhibit the standard 16 states, where we
use the integer 1�Nc�16 to define each case as labeled.
Each point denotes a δij vertex; black are “in” states δij>σ0ν,
and white are “out” states δij<σ0ν. A closed bounding
perimeter is then constructed based on the 16 cases by linearly

Figure 1. Marching-squares algorithm. Each set of four adjacent pixels for the discretized field δij can take one of 16 possible combinations of “in” or “out” states.
Black circles denote points in our grid for which the density lies inside the excursion set δij>σ0ν, and white circles are “out” points with δij<σ0ν. We label each
case with an integer 1�Nc�16. Between each “in” and “out” state, we linearly interpolate between corners of the box to find the point along the edge of the square
that satisfies δ=σ0ν. We then connect these vertices, shown as solid black arrows. The arrow defines the boundary of the excursion region and is directed such that it
always flows anticlockwise around the “in” states. The cases Nc=7 and Nc=10 are ambiguous, as discussed in the text.
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interpolating along the edges of the squares. Specifically, one
can note that whenever an “in” and “out” state are joined along
an edge of a square, we linearly interpolate between the values
of δ at these vertices along the edge to the point at which
δ=σ0ν is reached. This defines a vertex in the bounding
perimeter. Vertices are then joined according to Figure 1—this
defines the edge components of the boundary, which
correspond to the solid arrows in the figure. Finally, we use
trigonometry to calculate the area enclosed by the bounding
perimeter in each square (the shaded region in each case in
Figure 1). The perimeter of the boundary, exhibited as black
arrows in the figure, is directed such that the arrow always
flows anticlockwise around the “in” vertices δij>σ0ν.

There is a caveat to the method: there is an ambiguity
regarding the cases Nc=7 and Nc=10. In these cases, each
edge of the square will have a vertex belonging to the excursion
boundary, and we can join these vertices in two different ways.
In Figure 2, we exhibit the ambiguity, labeling the squares
Nc=7, 7b and =N b10, 10c . Regardless of which of these
cases we choose to adopt, the method will always yield a
closed bounding perimeter. Furthermore, Nc=7, 10 are rare
configurations when calculating the bounding surface of fields
that are smoothed over more than a few pixel lengths.
Nevertheless, one must still account for the ambiguity. We
select either 7 or 7b by estimating the value of δ at the center of
the square simply as the mean of the four vertices. If this value
is “in” (d s n> 0 ), then we assume that the two “in” vertices of
the square belong to the same excursion region (that is, we
select Nc=7). Otherwise, we select b7 . We perform a similar
operation for case 10.

Once we have generated the vertices that define the bounding
perimeter of the excursion set, we can calculate its total length
and enclosed area. These two quantities are proportional to the
Minkowski functionals. The final Minkowski functional in two
dimensions is the genus; this can be generated by first
calculating the normals to the bounding perimeter. Then, the
genus is linearly related to the sum of the angles between the
normals of the adjacent perimeter edge sections. Specifically,

we define the three Minkowski functionals W0,1,2 as
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where ò da...
Q

and ò¶ dℓ...
Q

are integrals over the area and

perimeter of an excursion set, respectively, and κ is the local
curvature. Here D∣ ∣An is the area of the shaded region in each
pixel square, ån is the sum over all pixel squares, and ∣ ∣e is the
length of the boundary in each square (the length of the solid
black arrows in Figure 1). The sum åe indicates the sum over
all edge segments in the discrete boundary, and A is the total
area of the two-dimensional plane. The angle βi between
normals of adjacent perimeter segments is exhibited in Figure 3
; the genus is simply the sum of all such angles. The sum åi

indicates the sum over all vertices in the bounding perimeter.
The genus is a topological quantity that measures the number
of connected regions minus the number of holes.
The above algorithm will allow us to calculate the Minkowski

functionals and their generalizations, the Minkowski tensors,
which will be defined in Section 3. These quantities describe the
global properties of the excursion set. However, the total
excursion set will be composed of a set of disconnected “in” and
“out” subregions; see Figure 1. To calculate the properties of the
subregions, we apply a simple friends-of-friends algorithm to the
density field. For each δij that is inside the excursion set, we
assign all points d  i j1, 1 as belonging to the same subregion if
they are also within the excursion set, and we repeat the
operation iteratively on these points. The only caveat is again the
cases Nc=7 and Nc=10 in Figure 1—if two “in” vertices are
linked diagonally in the box they share (for example, δij and
d + +i j1, 1 are inside the excursion set and d +i j, 1 and d +i j1, are out),
then we test whether the box is 7, 10 or b b7 , 10 by calculating
the central value of the density in the box. If the square is 7, 10,
then the diagonal “in” vertices are assumed to belong to the same
excursion region, otherwise they are not assigned as friends.

Figure 2. Ambiguous cases 7 and 10. The “in” states can either be connected
(7 and 10) or disconnected (7b and 10b). Using either the original case or its
corresponding “b” state will yield a closed curve. To determine which to use,
we calculate the density at the center of the square. If it is “in,” then we assume
that the “in” states are linked; otherwise, we assume that the “out” states are
linked (the “b” states).

Figure 3. We exhibit two squares, (i, j) and +( )i j, 1 , which represent cases
Nc=2 and Nc=6 in Figure 1. By interpolation, we generate the black arrows,
which are the vectors eij and eij+1. The brown arrows denote the unit normals to
eij and eij+1; the angle between them is bi. We note that βi is directed
following the anticlockwise conventions of our method.
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Note that they may still ultimately be linked via our algorithm,
just not through a b7 or b10 box.

Once we have assigned each “in” grid point to a particular
excursion subregion (there are cid distinct subregions), we can
calculate the area, perimeter, and genus of each one,
constructing a distribution of Minkowski functionals for each
density threshold ν. Furthermore, we can perform the same
algorithm but instead tracking the “out” states—this will yield
the properties of the individual holes in the field.

The ability of this algorithm to accurately reproduce the
bounding perimeter of an excursion set decreases for
structures that are poorly resolved, specifically for peaks
that have sizes roughly equal to our pixel resolution. As
cosmological density fields exhibit structure on all scales, we
must be careful to check that numerical artifacts do not impact
our results. In Appendix A, we highlight two principal sources
of numerical error and attempt to quantify the size of these
effects. We find that smoothing the field over more than five
pixel lengths is sufficient to ensure that marching squares
reconstruct the excursion-set boundary of the dark matter field
to better than 1% accuracy for thresholds −4�ν�4.

3. Minkowski Tensors: Definition

The Minkowski functionals are scalar quantities. In
McMullen (1997), Alesker (1999), Beisbart et al. (2002),
Hug et al. (2008), and Schroder-Turk et al. (2010, 2013), the
vector and tensor generalizations were constructed; we direct
the reader to these works for the details of their definition.
These statistics were applied to cosmology in Beisbart et al.
(2001, 2001), Mecke et al. (1994), Schmalzing & Buchert
(1997), and Ganesan & Chingangbam (2017).

The Minkowski tensors of rank (m, n) of a field in a flat two-
dimensional space are given by

ò= ( )rW
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where r is the two-dimensional position vector and n̂ is the unit
normal to the tangent vector of the bounding perimeter. We
schematically present the vectors ˆr n, and ê—the unit tangent
vector to the boundary—in Figure 4.

The rank-zero Minkowski tensors are the standard Minkowski
functionals. Our focus is on rank-two Minkowski tensors

+ =m n 2, specifically the subset that is translationally
invariant:
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Further information may be extracted from higher-rank
generalizations + >m n 2, but we do not consider these
quantities in this work.
There exist relations between Equations (7) and (10) and
Wj , where  is the identity matrix and Wj, ( j=0, 1, 2) are

the scalar Minkowski functionals (McMullen 1997):

 = ( )W W2 , 110 1
1,1


p

= + ( )W W W
2

, 121 1
0,2

2
1,1

 = ( )W W2 . 132 2
0,2

These relations imply that W2
0,2 and W1

1,1 carry no additional
information relative to the scalar Minkowski functionals. The
W2

1,1 andW1
0,2 tensors carry new information, with the sum being

related to W1 according to Equation (12). It is sufficient to
measure one of these two tensors, with the other containing no
new information. Here W2

1,1 is related to W1
0,2 via a rotation,

p=W TW T 21
0,2

2
1,1 t , where T is the p 2 rotation matrix and Tt is

its transpose.
The tensor W2

1,1 can be reexpressed as (Chingangbam
et al. 2017)

òp
= Ä

¶
ˆ ˆ ( )W

A
e e dℓ

1
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, 14

Q
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1,1

where ê is the unit tangent to the curve. For a discretized field,
this formula can be expressed in component form as

ò åp
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= + =
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r n r n dℓ
A

e e
1

4
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,
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ij
Q

i j j i
e

i j2
1,1 1

where the i j, subscripts run over the standard two-dimensional
x x,1 2 orthogonal coordinates. The sum is over all edge
segments of the excursion-set perimeter, ei is the length of
the boundary segment in the ith direction, and ∣ ∣e is the length
of the two-dimensional vector e. The diagonal components of
( )W ij2

1,1 are proportional to the (squared) total length of the
excursion-set bounding perimeter in the ith direction, and the
off-diagonal component is the cross term. The existence of a
preferred direction in the excursion boundary will manifest as
an inequality between the diagonal components of ( )W ij2

1,1 .

Figure 4. We exhibit a schematic diagram of the area Q of an excursion set, its
boundary ∂Q as a green solid line, and the vectors ˆr n, and ê used in the
construction of the Minkowski tensors.
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The function ( )W ij2
1,1 can be defined not only over the entire

excursion-set perimeter but also over each distinct subregion
(both connected region and hole). The principal axes of each
subregion will be aligned in different directions; so, to measure
the shapes of these structures, we extract the eigenvalues of
( )W ij2

1,1 . The result is a pair of (λ1, λ2) values for each
connected region and hole in the set.

We define the mean ratio of eigenvalues of all individual
excursion subregions as

b
l
l

b
l
l

b
l
l

º º º ( ), 16c
2

1 c
h

2

1 h
tot

2

1 tot

where áñc,h,tot denotes the sample average over all individual
connected regions, holes, and combined connected regions and
holes, respectively. Therefore, b 1c,h,tot provides information
regarding the mean shape of the excursion regions. Here
b = 1c,h,tot corresponds to a perfectly isotropic average shape,
and any value less than unity indicates some level of
anisotropy, either ellipticity or a more general departure from
isotropy.

Additional information is contained within W2
1,1 relative to

the scalar Minkowski functionals. The statistic is invariant
under translations, and a perfectly isotropic field would
correspond to a diagonal matrix with equal components. Any
departure from this equivalence will signify a preferred
direction in the bounding perimeter of the excursion set.

4. Applications: Two-dimensional Gaussian Random Field

We test our algorithm by applying it to a Gaussian random
field. For such a field, the Minkowski functionals can be
calculated analytically, and we can also compare the shape of
the field in the vicinity of peaks to known analytic results.

We generate a two-dimensional Gaussian random field δk in
Fourier space with a constant power spectrum (Gaussian white
noise). This field is then converted to its real-space counterpart
via a fast Fourier transform algorithm. We generate the field
over a ´ -( )h3150 3150 Mpc1 2 area, adopting a 2048×2048
equispaced grid over this range, yielding a resolution
 = -h1.54 Mpc1 . We smooth the field in the plane with a
Gaussian kernel, using a smoothing scale = -R h15 MpcG

1 .

We apply our two-dimensional marching-squares algorithm
to the resulting δij. In Figure 5, we exhibit a small

´ -( )h500 500 Mpc1 2 subset of the density field. We also
exhibit an example of our algorithm: we apply a density
threshold ν=σ0, ν=1.4σ0 and find the boundaries of the
excursion set. They are exhibited as black/red lines in Figure 5.
From these boundaries, we construct the Minkowski func-
tionals and tensors.
The scalar Minkowski functionals are exhibited as a function

of normalized density threshold ν in Figure 6. We generate
Nreal=100 realizations of a Gaussian random field; the blue
points are the mean of these realizations, obtained using our
algorithm. The error on the mean is smaller than the points. The
solid black line is the theoretical expectation value. The
accurate reproduction of the theoretical curves serves as a
consistency check of our method.
In Figure 7, we exhibit the matrix components of ( )W ij2

1,1 . In
the top panel, we exhibit the mean and error on the mean of

Figure 5. We exhibit a ´ -( )h500 500 Mpc1 2 subset of a Gaussian random
field as a heat map. The field has a flat power spectrum with a Gaussian
smoothing kernel. Our algorithm generates a bounding perimeter of constant ν;
we exhibit two examples, ν=σ0 and ν=1.4σ0, as black/red contours.

Figure 6. Minkowski functionals of a two-dimensional Gaussian field. The
blue points and error bars are the mean and error on the mean of Nreal=100
realizations of a Gaussian field with a flat power spectrum. The solid black line
is the analytic prediction.
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diagonal components =( ) ( )i j, 1, 1 , (2, 2). We also show the
theoretical prediction for W1/π, which should match the
diagonal components for an isotropic Gaussian random field.
We find close agreement between the isotropic expectation
value and our numerical reconstruction. We exhibit the off-
diagonal component of the matrix, =( ) ( )i j, 1, 2 , finding
consistency with zero.

In the bottom panel, we exhibit the fractional difference

p
D º

-
( )

( )
( )W

W W

W
, 17ij

ij ij
2
1,1 2

1,1
1

1

which should be consistent with zero for an isotropic Gaussian
field. The error bar increases with n∣ ∣ due to the smaller
perimeter of the excursion set, leading to larger statistical
fluctuations. Note that from the definitions in Equations (2)
and (15), the sum D + D( ) ( )W W2

1,1
11 2

1,1
22 must be zero.

In what follows, we use the quantities D( )W2
1,1

11, D( )W2
1,1

22,
and á ñ( )W W2

1,1
12 2

1,1 to study the sensitivity of the statistic W2
1,1

to galaxy bias, gravitational evolution, and redshift-space
distortion, where á ñ = +[( ) ( ) ]W W W 22

1,1
2
1,1

11 2
1,1

22 is the aver-
age of the diagonal components of the matrix. We note that the
functionsD( )W2

1,1
11,D( )W2

1,1
22, and á ñ( )W W2

1,1
12 2

1,1 will not be
Gaussian-distributed but will be symmetric with respect to the
peaks of their probability distributions.
We exhibit the mean and error on the mean of β in Figure 8,

generated from the Nreal=100 realizations. The top and

Figure 7. Top panel: matrix components of the Minkowski tensor ( )W ij2
1,1 ;

=( ) ( )i j, 1, 1 (blue), (1, 2) (yellow), and (2, 2) (red). The solid black curve is
the theoretical prediction for W1/π, which should match the diagonal
components. Bottom panel: =( ) ( )i j, 1, 1 (blue) and (2, 2) (red) components
of the fractional residuals defined in Equation (17). These quantities are
consistent with zero for all thresholds probed.

Figure 8. Statistic β for holes and connected regions (top and middle panels)
and the combined mean of both holes and connected excursion regions (bottom
panel). The black circles and green squares indicate the mean value of this
statistic after we have made different cuts to our sample of connected regions
and holes (according to the size of the region) for a fixed smoothing scale

= -R h15 MpcG
1 . We note that the statistic is insensitive to these cuts. The red

squares are the same statistic with a smaller smoothing scale = -R h10 MpcG
1

applied. In this case, the percolation of the field occurs at a slightly different
value of ν, but the statistics behave similarly otherwise. We also exhibit the
theoretical prediction (Equation (18)) obtained using peak statistics as a solid
black curve in the bottom panel. The theoretical curve approaches our
numerical result for high threshold values.
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middle panels show the statistic for holes βh and connected
regions βc, respectively, and the bottom panel shows the
average for the combined holes and connected regions βtot. The
number of distinct connected regions and holes used to
calculate the averages varies greatly as a function of ν and is
related to the Betti numbers (Chingangbam et al. 2012; Park
et al. 2013). For the smoothing scales and volumes probed in
this work, we have ~ ( )103 distinct connected regions/holes
at ν±1. The function β is only defined in the domain
0<β�1; therefore, it is not a Gaussian-distributed variable.
However, we have checked that the probability distribution
function of β is not significantly skewed and the mean is an
appropriate proxy for its peak.

In Figure 8, we exhibit the statistic β after making various
cuts to the excursion-set sample. To minimize spurious
numerical artifacts, we have adopted a highly resolved plane
of size ´ -( )h3150 3150 Mpc1 2 with a total number of pixels

= ´N 2048 2048pix and a smoothing scale = -R h15 MpcG
1 .

With this choice, we smooth over nearly 10 pixels. To further
test for numerical artifacts, we make cuts to our sample.
Specifically, the black circles and green squares in Figure 8
represent the mean l lá ñ2 1 from a sample with =A 0, 4cut

2,
where  = -h1.54 Mpc1 is the pixel size and Acut is the area
cut that we apply to the excursion regions. So, for the black
points, we use the entire sample to calculate l lá ñ2 1 , and for the
green squares, we remove all excursion regions (holes and
connected regions) that have an area <A 4 2 before
calculating l lá ñ2 1 . As discussed in Appendix A, we apply
area cuts to test that no spurious anisotropic signals are
generated as a result of including poorly resolved excursion
subsets in the average quantities bc,h,tot. We find that the
statistics are practically independent of any area cut that we
impose, indicating that the well-resolved objects dominate our
sample for the thresholds probed. If poorly resolved regions
become dominant, then at high n∣ ∣ one would observe a
spurious decrease in bc,h,tot. We also exhibit the same statistics
for a field smoothed on a smaller scale = -R h10 MpcG

1 : we
observe that βtot is insensitive to RG. As discussed in
Appendix B, this result is expected for a Gaussian white-noise
field.

The top and middle panels of Figure 8 present very different
behavior on either side of ν=0; this is due to the fact that we
initially have a single hole (or connected region) with structures
embedded. In this regime—the right- and left-hand sides of the
top and middle panels, respectively—the mean value of β is
dominated by a single region that is roughly the size of the
entire plane.6 This single excursion region undergoes rapid
percolation into many structures, which is exhibited by the
rapid change at ν=±1 in the figures. Following this, the
statistic βh is dominated by distinct holes for νA<−1 and βc
by distinct connected components for νA>1.

Regardless of the Acut that we use, the mean shape of each
individual connected region and hole has a value βtot∼0.6
(bottom panel; Ganesan & Chingangbam 2017), which
increases with n∣ ∣, as we expect. This suggests that the mean
shape is becoming increasingly circular with increasing density
threshold, but βtot remains significantly smaller than unity even
at large n∣ ∣.

In the bottom panel, we exhibit the theoretical prediction
(Equation (18)) as a solid black line. The theoretical curve has

been constructed by analytically calculating the mean shape of
the peaks of a two-dimensional Gaussian field. This calculation
has been performed previously in Bond & Efstathiou (1987;
see also Aurich et al. 2011 for later work and Bardeen et al.
1986 for the three-dimensional case), and we quote the results
relevant to our analysis in Appendix B. In the large ν threshold
limit, l lá ñ2 1 c is expected to be

ò

ò
l l

f k k f f

f k f f
á ñ =

- -

- -

p

p

-

-

( ( ) )

( ( ) )
( )

d

d

cos 1 cos

cos 1 1 cos
,

18
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2 2
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2
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2 2 3 2
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2 2
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2 2 3 2

where κm is defined in Equation (34) and is related to the
expectation value of the ellipticity of a peak em, defined in
Equation (33). In deriving Equation (18), one assumes that the
contours of constant density in the vicinity of a peak are
elliptical. For a Gaussian field, Equation (18) is valid for βtot at
large ν, as in this regime βtot;βc. Similarly, due to the
ν→−ν symmetry of a Gaussian field, Equation (18) is also
valid for βh at extreme negative ν values. We stress that the
excursion-set boundary will only trace the peaks and troughs of
the field in the high n∣ ∣ threshold limit. There is no general
correspondence between peaks and connected regions or
troughs and holes.

5. Minkowski Tensors Applied to Simulated Galaxy
Catalogs

We now consider the Minkowski tensors of the low-redshift
dark matter density field and study the effect of galaxy bias,
gravitational evolution, and redshift-space distortion on W2

1,1

and βtot. We apply our statistics to the Horizon Run 4
simulation data. Before continuing, we briefly describe the
simulation.
Horizon Run 4 is the latest data release from the Horizon

Run project.7 It is a dense, cosmological-scale N-body
simulation that gravitationally evolved =N 63003 particles in
a = -( )V h3150 Mpc1 3 volume box. The cosmological para-
meters used can be found in Table 1, and the details of the
simulation are discussed in Kim et al. (2009, 2015). We use
two-dimensional slices of snapshot data at z=0.2 of thickness
Δ. The field is smoothed in the plane of the data using a
Gaussian kernel of width RG. We vary both Δ and RG in what
follows.
Rather than use the dark matter particle data, we adopt the

mock-galaxy catalog constructed in Hong et al. (2016). Mock
galaxies are assigned by the most bound halo particle–galaxy
correspondence scheme. The survival time of satellite galaxies
after merger is calculated by adopting the merger timescale
model described in Jiang et al. (2008). We take a fiducial

Table 1
Fiducial Parameters Used in the Horizon Run 4 Simulation

Parameter Fiducial Value

Ωmat 0.26
ΩΛ 0.74
ns 0.96
σ8 0.794

6 When calculating βtot, we do not include connected regions or holes that
have sizes of the same order of magnitude as the total area of the plane. 7 http://sdss.kias.re.kr/astro/Horizon-Runs
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galaxy number density of = - - -¯ ( )n h10 Mpc3 1 3 by applying a
lower-mass cut.

From the galaxy distribution, we generate a density field by
first generating a regular grid of size 2048×2048 in the x1, x2
plane and slices of width Δ in the x3 direction (taken as the line
of sight). We bin the mock galaxies according to the x3 slice to
which they belong and then in the two-dimensional pixelated
grid according to a cloud-in-cell scheme. Taking each slice in
turn, we use the average number of galaxies n̄ per pixel to
define the two-dimensional density field d = -( ¯) ¯n n nij ij ,
where i j, indices run over the 2048×2048 lattice. Next, the
slice is smoothed over the plane using a two-dimensional
Gaussian of width RG. For each slice, we calculate the
Minkowski tensor W2

1,1 and βtot. Rather than use the
conventional overdensity threshold ν to define the excursion
set, we instead adopt the area threshold νA parameter, which is
defined as

òp
= -

n

¥
[ ] ( )f t dt

1

2
exp 2 , 19A

2

A

where fA is the fractional area of the field above νA. The νA
parameterization eliminates the non-Gaussianity in the one-
point function (Gott et al. 1987; Weinberg et al. 1987; Melott
et al. 1988). This choice allows us to compare excursion sets in
the Gaussian and non-Gaussian fields that occupy the
same area.

5.1. Varying Smoothing Scales RG, Δ

In the top panels of Figure 9, we exhibit the quantities
D( )W2

1,1
11, D( )W2

1,1
22 defined in Equation (17) for the z=0.2

Horizon Run 4 mock-galaxy density field. In the left panels, we
fix the slice thickness D = -h30 Mpc1 and vary the Gaussian
smoothing scale in the plane = -R h20, 15, 10 MpcG

1 (green,
yellow, and blue points). In the right panels, we fix

= -R h15 MpcG
1 and vary Δ=40, 30, 20 h−1Mpc (cyan,

yellow, and red points). The error bars are constructed as the
error on the mean calculated using Nslice=75 slices of the field.
Both W2

1,1 and W1 are reconstructed from the data. In the middle
panels, we exhibit á ñ( )W W2

1,1
12 2

1,1 . Here D( )W2
1,1

11, D( )W2
1,1

22,
and á ñ( )W W2

1,1
12 2

1,1 are all consistent with zero, which means
that the relation µW W2

1,1
1 remains true for the gravitationally

evolved nonlinear density field.
We exhibit βtot in the bottom panels of Figure 9. This

quantity is sensitive to both Δ and RG. The most significant
effect of gravitational evolution on βtot is in the large νA
regime, where overdensities become increasingly spherical due
to gravitational collapse. In contrast, underdense regions
characterized by νA<0 become less spherical for excursion
sets of fixed νA. The tilt in βtot(νA) indicates that the holes are
less circular than those in a Gaussian field occupying the same
area, and the overdensities are more circular. The βtot decreases
for negative thresholds νA<0 as RG is lowered but is only
weakly sensitive to RG for νA>0.

5.2. Redshift Evolution and Galaxy Bias

One can study the redshift evolution of W2
1,1 and βtot by

calculating these statistics for slices of snapshot data at
different redshifts. One should observe an initially symmetric
βtot at high redshift, which becomes increasingly tilted due to
gravitational collapse with decreasing z. However, as we are

using galaxies as tracers of the underlying field, this effect will
be intertwined with galaxy bias. Fixing a constant galaxy
number density at each redshift generates a galaxy distribution
with a bias that is roughly constant with redshift. On the other
hand, a more highly biased point distribution will better trace
the high peaks of the underlying density field, which will be
more spherical. Hence, we can expect the tilt in βtot as a
function of νA to increase with increasing bias.
In the left panels of Figure 10, we exhibit D( )W2

1,1
11,

D( )W2
1,1

22, á ñ( )W W2
1,1

12 2
1,1 , and βtot at three epochs. We take a

Gaussian random field with a linear ΛCDM dark matter power
spectrum as the initial condition of the simulation and calculate
βtot and W2

1,1 for this field and for the Horizon Run 4 snapshot
boxes at z=1 and 0.2, fixing D = -( ) ( )R h, 30, 15 MpcG

1 .
We use all galaxies in the simulation, fixing the number
density ~ ´ - - -¯ ( )n h1.5 10 Mpc2 1 3.
We exhibit D( )W2

1,1
11 and D( )W2

1,1
22 at different redshifts,

finding no evidence of evolution. Similarly, the off-diagonal
component ( )W2

1,1
12 remains consistent with zero. This implies

that the relationship µW W2
1,1

1 is not affected by gravitational
evolution. However, both ( )W ij2

1,1 and W1 do evolve with
redshift: the scalar Minkowski functional W1 is skewed due to
the non-Gaussianity generated by the effect of gravity
(Matsubara 1994, 2003). They evolve in such a way that the
relationship µW W2

1,1
1 is preserved.

Here βtot becomes increasingly tilted relative to its Gaussian
form with decreasing redshift. In Figure 10, we exhibit both βtot
and the residual Δβtot, which is the fractional difference
between βtot as measured from the galaxy catalogs at
z=1,0.2 and the initial condition. Here Δβtot varies
approximately linearly with νA and is Δβtot;0.1 for high
thresholds n ∣ ∣ 4A . The increasing signal with time indicates
that overdense patches of fixed area become increasingly
circular as collapse occurs. The underdense regions νA<0 of
the same area become less spherical relative to the initial
condition.
In the right panels, we plot D( )W2

1,1
11, D( )W2

1,1
22,

á ñ( )W W2
1,1

12 2
1,1 , and βtot for the z=0.2 snapshot data, taking

different mass cuts to the galaxy distribution to generate galaxy
catalogs with number density = ´ -n̄ 5.0 10 3, 1.0×10−3, and
5.0×10−4 (h−1Mpc)−3. One can observe no significant depend-
ence of mass cut and number density onD( )W2

1,1
11,D( )W2

1,1
22, or

á ñ( )W W2
1,1

12 2
1,1 ; however, as we decrease the galaxy number

density, the value of βtot decreases for νA<0. We also exhibit
Δβtot, which is the fractional difference between βtot as measured
with the = ´ ´- - - -¯ ( )n h1.0 10 , 5.0 10 Mpc3 4 1 3 samples and
= ´ - - -¯ ( )n h5 10 Mpc3 1 3. The change in number density n̄

affects the shape of βtot(νA) predominantly in the νA<0 regime.
One can observe that both gravitational collapse and galaxy bias
affect the shape of the βtot(νA) curve similarly.

5.3. Redshift-space Distortion

Our results indicate that the statisticD( )W2
1,1 is insensitive to

gravitational collapse, and this remains true regardless of our
choice of Δ and RG smoothing scales. The matrix retains the
relation µW W2

1,1
1 , as the effect of gravity introduces no

preferred direction. However, as stated in the Introduction, the
dark matter field that we observe via galaxy tracers is not
isotropic: a preferred direction exists due to the redshift-space
distortion effect along the line of sight. We close this section by
considering how the global properties of the field are modified
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when we introduce a preferred direction to the data. For this
purpose, we take the z=0.2 snapshot data and apply a
redshift-space distortion to the position of each galaxy by
adjusting their position in the x2, x3 directions via the relation

q¢ = +
+( )
( )

( )x x v
z

H z

1
cos , 202 2 2 los

q¢ = +
+( )
( )

( )x x v
z

H z

1
sin , 213 3 3 los

where v2,3 are the velocities in the x2,3 directions and θlos is the
angle of the data plane relative to the line of sight. We always
generate data slices along the x3 axis, so varying 0�θlos�
π/2 is equivalent to varying the observer line of sight with
respect to the plane. Here θlos=π/2 is the standard case where

the plane is perpendicular to the line of sight, and θlos=0
corresponds to a density plane aligned exactly with the line of
sight. The introduction of the velocity correction to the galaxy
positions generates a global anisotropy in the field, which the
Minkowski tensor W2

1,1 is sensitive to.
In Figure 11, we exhibit D( )W2

1,1
11, D( )W2

1,1
22 (top panel),

á ñ( )W W2
1,1

12 2
1,1 (middle panel), and βtot (bottom panel) for the

real-space field (yellow squares) and slices of the redshift-space
distorted field aligned perpendicular (red circles) and parallel
(green circles) to the line of sight. We fix Δ=30 h−1 Mpc and
RG=15 h−1 Mpc. These values were chosen to ensure that the
field is in the mildly nonlinear regime in both smoothing
planes. In the bottom panel, we exhibit both βtot for the three
cases and the fractional residuals Δβtot between the real-space
value of βtot and the redshift-space distorted values (so, for

Figure 9. Top panels: fractional differencesD( )W2
1,1

11,D( )W2
1,1

22 defined in Equation (17). We exhibit these quantities as a function of nA, which is related to the area
fraction of the field. The dependence ofD( )W2

1,1
11,D( )W2

1,1
22 onΔ and RG is negligible. Middle panels: off-diagonal component ( )W2

1,1
12 divided by the average of the

two diagonal components á ñW2
1,1 . This quantity is consistent with zero for all RG and Δ values. Bottom panels: btot calculated using all connected regions and holes at

each nA threshold. Left panels: D = -h30 Mpc1 , = -R h20, 15, 10 MpcG
1 (green, yellow, and blue). Right panels: = -R h15 MpcG

1 , D = -h40, 30, 20 Mpc1

(cyan, yellow, and red). Error bars denote the error on the mean from =N 75slice fields.
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example, the green circles in the lower panel represent the
fractional residual b b q b bD = = -( ( ) )0tot,rsd los tot,real tot,real).

The effect of redshift-space distortion is markedly different
for the two planes. If we align the data plane perpendicular to
the line of sight (red circles), then the effect of linear redshift-
space distortion is to increase the density contrast, as galaxies
in the vicinity of the slice boundary will be scattered into/out
of the slice for overdense/underdense regions. The shapes of
connected regions and holes will change, but their orientations
will remain random. As such, we can expect W2

1,1 to remain
insensitive to redshift-space distortion when we take
θlos=π/2. This agrees with our numerical result. In the top
panel of Figure 11, we find no statistically significant departure

ofD( )W2
1,1

11,D( )W2
1,1

22 from zero when measured in either real
or redshift space with q p= 2los . The shape of individual
excursion regions as described by βtot is modified by ∼1% but
is not systematically higher or lower than its real-space value.
When we align the data slice parallel to the line of sight, the

effect of peculiar velocities will be to increase the ellipticity of
overdensities. In contrast to the θlos=π/2 case, the effect of
redshift-space distortion will now generate a globally preferred
direction in the excursion-set boundary. The effect on
individual excursion regions is small. In the bottom panel of
Figure 11, we observe the fractional change Δβtot in βtot as
measured in real space and the θlos=0 plane in redshift space
(green circles). Here Δβtot is negative in the range

Figure 10. Left panels: redshift evolution of the statistics D( )W2
1,1

11, D( )W2
1,1

22, á ñ( )W W2
1,1

12 2
1,1 (top and middle), and btot (bottom) for the Horizon Run 4 snapshot

data at z=0.2 and 1 (yellow and gray) and the Gaussian initial condition (white). We have used fiducial smoothing parametersD = -h30 Mpc1 , = -R h15 MpcG
1 .

All galaxies in the simulation are used as density tracers at z=1 and 0.2, with a total number density ´ - - -¯ ( )n h1.5 10 Mpc2 1 3. Here bD tot is the fractional
difference between btot as measured at =z 1, 0.2 and the initial condition. Right panels: D( )W2

1,1
11, D( )W2

1,1
22, á ñ( )W W2

1,1
12 2

1,1 , and btot for z=0.2 snapshot data,
taking different mass cuts to the galaxy sample to yield number density = ´ -n̄ 5.0 10 3, 1.0×10−3, and 5.0×10−4 (h−1 Mpc)−3 (blue, yellow, and green). Here
bD tot is the fractional difference between btot measured using = ´ ´- - - -¯ ( )n h1.0 10 , 5.0 10 Mpc3 4 1 3 galaxy catalogs and the most dense

sample = ´ - - -¯ ( )n h5.0 10 Mpc3 1 3.
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−3<νA<3, which indicates that structures in real space are
more spherical; however, the difference is a roughly ∼1%
effect that slowly increases with increasing νA.

Although the effect on each individual excursion-set region
is small, it is coherent in the sense that, statistically, all
overdensities/underdensities will be distorted in the same
direction. As W2

1,1 is a measurement of the preferred directions
in the global excursion-set bounding perimeter, the distortion
generates a cumulative signal in this statistic. In the top panel
of Figure 11, we observe this effect: D( )W2

1,1
22 exhibits an

∼8% departure from the isotropic limit, tilting as a function of
νA. The asymmetry of D( )W2

1,1
22 about νA=0 indicates that

nonlinear fingers-of-God effects, which modify the shape of
overdensities parallel to the line of sight, are also contributing
to the signal. The asymmetry about νA=0 also implies that
the W2

1,1 matrix no longer satisfies the relation µW W2
1,1

1 —

non-Gaussianity of the velocity field affects W1 and W2
1,1

differently, and additional information can be extracted by
measuring both.
Here W2

1,1 is sensitive to redshift-space distortion and not
gravitational collapse because the latter effect is statistically
isotropic, in principle, at any scale. The density field will
undergo collapse, but no preferred direction will be generated
in the excursion-set boundary in real space. This makes the
Minkowski tensor an ideal candidate to measure the large-scale
properties of the velocity field.
We expect that the linear Kaiser effect will generate a

constant shift in DW2
1,1 and the fingers of God a tilt as a

function of νA. It follows that measurements of W2
1,1 can be

used to simultaneously constrain the redshift-space distortion
parameter b = f b and the velocity dispersion of gravitation-
ally bound galaxies. The next stage of this analysis requires a
theoretical prediction of the Minkowski tensors in redshift
space. A real-space analysis was conducted in Chingangbam
et al. (2017); the generalization to redshift space will be
considered elsewhere.

6. Summary

In this work, we have studied the morphological properties
of two-dimensional density fields. For this purpose, we have
adopted the Minkowski tensor W2

1,1. To use this statistic, we
must first generate a bounding perimeter of constant density,
which defines an excursion set. We adopted the method of
marching squares, the details of which are described in the text.
We studied the diagonal and off-diagonal elements ofW2

1,1 for a
Gaussian random field, finding that this matrix is proportional
to the identity matrix and the scalar Minkowski functional W1.
We then considered the W2

1,1 statistic applied to individual
subsets of the excursion set. For every threshold ν, we
constructed the matrix W2

1,1 for each distinct connected region
and hole, and from them we extracted the eigenvalues λ1,2.
These quantities inform us of the shape of individual excursion-
set regions. We calculated the mean eigenvalue ratio l lá ñ2 1 as
a function of ν and, in the large n∣ ∣ limit, related this quantity to
the mean ellipticity of the field in the vicinity of a peak. We
found reasonable agreement between theory and numerical
application of our algorithm in the large threshold limit.
However, the statistic βtot is a more general measure of shape
than the ellipticity; it is a property of the excursion-set
boundary and makes no assumption regarding its shape.
Finally, we applied the Minkowski tensor to mock-galaxy

data and considered how it is modified by gravitational
collapse. We found that the mean eigenvalue ratio βtot is
particularly sensitive to the effect of gravity, the dominant
effect being a tilt that indicates that connected regions become
increasingly circular relative to holes occupying the same area.
In contrast, the matrixW2

1,1 defined over the entire excursion set
is essentially insensitive to gravitational collapse, as the process
introduces no preferred direction.
However, when the data contain a large-scale anisotropic

signal, W2
1,1 will exhibit strong sensitivity. When we corrected

mock-galaxy positions to account for redshift-space distortion
and repeated our analysis using slices of the density field
oriented by angle θlos relative to the line of sight, we found that

Figure 11. Statistics D( )W2
1,1

11, D( )W2
1,1

22, á ñ( )W W2
1,1

12 2
1,1 (top and middle

panels), and btot (bottom panel) as a function of nA for the Horizon Run 4
z=0.2 snapshot box, where we have introduced a redshift-space distortion
along the line of sight. Here qlos is the angle of the line of sight relative to the
plane of the data, with q p= 2los being the usual case where the plane is
perpendicular to the line of sight. The yellow squares represent the statistics in
real space, and the red/green circles represent the redshift-space distorted fields
perpendicular/parallel to the line of sight. The shape of individual objects btot
also exhibits a dependence on qlos, with excursion subsets becoming less
circular in redshift space relative to the real-space field for q = 0los . In the
lower right panel, we exhibit the fractional residual bD tot between btot as
measured in real and redshift space.
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the diagonal components of W2
1,1 are significantly modified: a

distinctive functional dependence on nA develops with over-
densities preferentially aligning along the line of sight. The
anisotropy manifests as both a change in amplitude ofD( )W ii2

1,1

and a roughly linear dependence on νA. The fact that the
statistic is sensitive to anisotropy in the data, and only very
weakly to the non-Gaussianity of the late-time field, makes it a
promising candidate to study the velocity perturbations in
redshift space. We consider the redshift-space theoretical
expectation of the Minkowski tensors in a forthcoming
publication.

To observe this signal using real data, we require a
measurement of the density field in planes parallel to the line
of sight. Upcoming galaxy surveys such as DESI (Aghamousa
et al. 2016) and LSST (Abell et al. 2009) will provide volume-
limited galaxy samples over gigaparsec volumes from which
we can take subsets of the field perpendicular and parallel to
the line of sight. Existing surveys such as HectoMAP (Geller
et al. 2011; Geller & Hwang 2015) provide spectroscopic
galaxy catalogs over cosmological scales in slices parallel to
the line of sight and can be used to extract the redshift-space
distortion signal predicted in this work.

Photometric redshift uncertainties will be the dominant
source of contamination to the signal, as they will also scatter
galaxy positions along the line of sight. As the redshift-space
distortion effect is present when smoothing over large scales

~ -R h15 MpcG
1 , spectroscopic catalogs will be better suited

to measuring W2
1,1. However, upcoming photometric catalogs

can still potentially be used to extract information from W2
1,1.

The fingers of God introduce a tilt in W2
1,1 as a function of νA,

as galaxies in overdense regions will predominantly experience
the effect. It follows that redshift-space distortion and
photometric redshift uncertainty could potentially be disen-
tangled, as the latter will not possess the same sensitivity to
density fluctuations and hence will not generate the same tilt in

nD ( )W2
1,1

A . Photometric redshift catalogs are characterized by
large number densities and cosmological-scale volumes, and
using them will provide better statistics relative to spectro-
scopic samples. A detailed study of photometric redshift
contamination will be presented elsewhere.
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Appendix A
Sources of Numerical Error

There are two issues with the marching-squares algorithm
that are capable of generating spurious numerical artifacts,
which we briefly discuss.

A.1. Topological Ambiguity Associated with Marching-squares
Algorithm

The first problem is our choice of interpolation scheme. We
are assuming that in/out states joined along the edges of
squares in the δij grid will always cross the threshold δ=νσ0

once. This is tantamount to the statement that the density field
is monotonically increasing or decreasing on the scale of our
spatial resolution ò. As a result, our method will not be able to
distinguish certain examples of the density field; for example,
in Figure 12, we exhibit two squares that cannot be
distinguished, and our algorithm will always adopt the left
panel. The right panel shows a density peak internal to the
square as a gray shaded area; we cannot reconstruct such a peak
using marching squares. Critical points are manifestly higher-
order phenomena, which cannot be modeled via linear
interpolation.
Although our method will miss this small-scale behavior, we

always smooth the field over at least three pixel lengths. The
smooth field will generically be monotonic over scales ~ ( ).
However, the extremes of the distribution (the high threshold
peaks, for example) are likely to occupy a small area, and we
will inevitably fail to detect some of these objects. With the
Horizon Run 4 mock-galaxy data, we can test the significance
of this issue using the following method.
The mock-galaxy data are a point distribution. We take the

three-dimensional Horizon Run 4 mock galaxies and bin them
into two-dimensional slices of thickness Δ, as before. We then
generate two grids x y,i j and  ¢ ¢ = + +x y x y, 2, 2i j i i in
the two-dimensional plane and bin the galaxies according to a
cloud-in-cell scheme for each grid. The resulting density fields
are denoted δij and d¢ij, respectively. For the density field δij, we
perform the marching-squares algorithm as described in the
main body of the text, but we now perform an additional check
whenever cases Nc=1 or Nc=16 (displayed in Figure 1) are
encountered.
Our algorithm will always predict δ<ν and δ>ν for the

central values of Nc=1 and Nc=16, respectively—consistent
with no small-scale structures on scales ~ ( ). This is because
we use a simple linear interpolation scheme to predict the
density between the (i, j) pixels. We now test the center of these
boxes by using d¢ij as the value of the density field at xi+ò/2,
yj+ò/2. Whenever we encounter the case Nc=1, we check if
d n¢ >ij . If this inequality is satisfied, then we can say that there
is some structure on the scale of our resolution ò that the
algorithm has failed to detect. Similarly, for the case Nc=16,
we test d n¢ <ij , in which case there is a hole in the excursion
set that has not been detected. We count the total number of
holes and connected regions that the code fails to detect in the
entire plane at each density threshold ν. We then divide this
number by the total number of holes and connected regions that

Figure 12. Example of the ambiguity implicit within our algorithm. Any
density peak or nonmonotonic behavior of the field over scales smaller than our
resolution ò will not be detected. Here we exhibit two distinct cases of a density
field: in both, the four vertices at which we measure dij are “out” of the
excursion region, but in the right panel, there is a maxima internal to the square.
Our algorithm can never detect such small-scale features and will always select
the left case in this example.
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the code successfully finds during the course of the algorithm;
we denote this fraction fmissed. Efficacy of the method requires
fmissed = 1.

We repeat this calculation for Nslice=75 slices of the three-
dimensional density field and calculate the average fraction
fmissed as a function of νA. We exhibit this quantity in
Figure 13. We repeat the calculation for three different spatial
resolutions, ò=1.54, 3.00, and 6.15 h−1 Mpc (yellow squares,
blue circles, and green triangles), fixing the smoothing scale
RG=15 h−1 Mpc in the plane. We observe that the fraction of
missed structures is negligible for our fiducial resolution
ò=1.54 h−1 Mpc, but the effect increases with ò. Additionally,
the fraction of missed structures increases with increasing n∣ ∣A .
This is to be expected, as the typical area occupied by peaks
and minima decreases at large thresholds. The total number of
missed holes and connected regions is between 5% and 10%
when using ò=6.15 h−1 Mpc, corresponding to smoothing
over 2.4 pixels. We must smooth over at least five pixel lengths
to ensure that the number of structures missed by the algorithm
is ∼1%.

It is difficult to provide a physical interpretation of fmissed, as
our test does not reveal all cases in which the algorithm can
fail. For example, we have only calculated the density field in
the exact center of the squares; peaks of the field may occur at
any point. Furthermore, all 16 cases in Figure 1 can exhibit
nonlinear behavior of the field on scales of order ò that can
modify the genus, and we have only considered failures
associated with Nc=1, 16. However, we can argue that the
center of the boxes Nc=1, 16 are most likely to exhibit
irregularities (being maximally distant from our interpolation
points); hence, fmissed provides a conservative indicator of the
failure rates in all boxes. We conclude that the fiducial
smoothing and resolution scales adopted in this work are
sufficient to minimize this particular spurious numerical
artifact.

A.2. Finite Resolution Effect

A second source of numerical contamination arises for
excursion-set regions occupying an area of the order of the

pixel size, as the reconstructed bounding perimeter for these
objects will not accurately represent the smooth contour of the
continuous field d ( )x x,1 2 . As an example, in Figure 14, we
exhibit an excursion set represented by a single point in our
grid. The boundary is exhibited as a polygon, but the difference
between the discretized perimeter and the smooth underlying
field is likely to be large in this instance. This difference will
lead to large errors in our numerical reconstruction of the
morphological properties of the field whenever small excur-
sion-set regions dominate the total excursion region. This is
likely to occur at large threshold values n∣ ∣.
We can estimate the magnitude of this discretization effect

directly. To do so, we take a regular grid and generate a smooth
circular density field. Defining the center of a circle

= ( )r x x,cen 1,cen 2,cen , we define d ( )x x,1 2 as

d
d

=
+ - + -

( )
( ) ( )

( )x x
x x x x

,
1

, 221 2
cen

1 1,cen
2

2 2,cen
2

where δcen is an arbitrary constant. For this field, surfaces of
constant d d=( )x x,1 2 c will generate an excursion set of
constant radial distance from rcen. Increasing the threshold δc
will generate smaller circular excursion sets. For a circle, we
can trivially calculate all properties of the excursion set, and
specifically, we have βc=1. Therefore, as we decrease the
radius of the circular density field, we can ascertain the extent
to which our numerical reconstruction of β deviates from unity.
In Figure 15, we exhibit the residual Δβ=β−1 as a function
of the radius of the circular region in units of pixel size: r/ò.
The blue circles and error bars denote the average and rms
fluctuations of Nreal=100 realizations, randomly placing the
center of the circular density rcen within the box.
One can observe close agreement between theory and

numerical approximation when the circle is well resolved,
r>4ò, but order ~ ( )10% discrepancies are apparent for
r∼ò. This numerical artifact will artificially decrease the
isotropy of the density peaks. However, when we calculate
bc,h,tot for a stochastic density field, we should not simply
remove poorly resolved excursion-set regions from the sample
and calculate the mean properties of the remaining set, because

Figure 13. Fraction of missed connected regions and holes fmissed as a function
of nA for three different box resolutions, ò=1.54, 3.00, and 6.15 h−1 Mpc
(yellow squares, blue circles, and green triangles). This statistic informs us of
spurious numerical errors in our reconstruction of the genus due to the
marching-squares algorithm. The number of missing structures is negligible for
our choice of residual resolution ò=1.54 h−1 Mpc but increases sharply with
increasing ò.

Figure 14. Example of the boundary that the marching-squares algorithm will
generate for a small excursion-set region of the order of the size of a single
pixel ~ ( )2 . The discrete nature of our algorithm generates a polygon that
will not accurately represent the true, smooth boundary.
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doing so could introduce a selection bias. The shape of an
excursion set is correlated with its area: large regions are more
likely to be less circular. Making size cuts to our sample will
bias the resulting β statistic. So we have two competing effects:
if we simply calculate the mean statistic l lá ñ2 1 for all regions
in our sample, then we will observe a spurious anisotropic
signal at high n∣ ∣ threshold values where the peaks will typically
be small. However, if we make an area cut and eliminate small
regions from the average, then we will be preferentially
selecting large excursion regions in our sample. In the main
body of the text, we vary the cut and examine its effect on our
statistics. As we smooth the field over an increasingly large
number of pixels, this numerical artifact will become less
significant, and we find that the effect is negligible if we
smooth over several pixel lengths.

We have repeated the above test using elliptical density
fields randomly located within a two-dimensional plane. We
again find percent-level agreement between our numerical
algorithm and analytic predictions, subject only to the
condition that the ellipse is well resolved (with minor axis
e>4ò). This indicates that our numerical error will not be
sensitive to the shape of the excursion-set regions.

Appendix B
Mean Shape of a Peak in a Two-dimensional

Gaussian Field

A peak in a two-dimensional field d ( )x x,1 2 can be
characterized by its height, which we define as νp, and its
ellipticity e. In the vicinity of a peak at xi=0, we can expand
the density field as

åd d z= +( ) ( ) ( )x x x0
1

2
, 23

ij
ij i j

where i, j subscripts run over the two-dimensional x1, x2
coordinate system. Here ζij=∇i∇jδ is a matrix composed of
second derivatives of δ. We can diagonalize ζij and rewrite

Equation (23) in terms of its eigenvalues ω1,2,

åd d w= -( ) ( ) ( )r r0
1

2
, 24i

i
i i

2

where ri is a coordinate basis in this rotated frame. We fix
ω1>ω2 in what follows. A surface of constant δ(r)=δc
corresponds to an ellipse with axes

d d
w

=
-⎡

⎣⎢
⎤
⎦⎥

( ( ) ) ( )a
2 0

. 25i
i

c
1 2

The ratio of the axes of the ellipse a2/a1 is then simply given by

w
w

= ( )a

a
, 262

1

1

2

and we define the ellipticity as

w w
w w

=
-
+( )

( )e
2

. 271 2

1 2

For a Gaussian random field d ( )x x,1 2 with power spectrum
( )P k2D , one can calculate the conditional probability of the

ellipticity e of a peak of height np; it is given by (Bond &
Efstathiou 1987)
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2 0, * gn=x p, and s0,1,2 are cumulants of the
density field
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To predict the mean ellipticity of all peaks above the density
threshold ν, we also require the number density of peaks p;
this is given by (Bond & Efstathiou 1987)

 n n
n

p
g gn= n-( ) ( ) ( )d Ae

d
G

2
, , 31p p p

2 p
pp

2

where A is a normalizing factor.
For all peaks above a particular threshold ν, we can therefore

estimate the probability distribution of e as

ò n n n=
n

¥
( ) ( ) ( ∣ ) ( )P e A P e d , 320 p p p p

Figure 15. Fractional departure of the statistic β from its theoretical
expectation value β=1 for a single circular density region as a function of
the ratio of the radius of the circle to the resolution of our two-dimensional
grid. For circular regions that are not well resolved, r<3ò, we find errors
>10% in our numerical reconstruction of the statistics.
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where A0 is a normalization factor. For a given ν threshold, we
find the most likely ellipticity em as the expectation value

ò= ( ) ( )e eP e de. 33m
0

1 2

It remains to relate em to the axis ratio of an ellipse and then
calculate the Minkowski tensor for such a shape.

The most probable ellipticity em is related to the most
probable axis ratio k º ( )a am 1 2 m as

k º =
-
+

⎛
⎝⎜

⎞
⎠⎟ ( )a

a

e

e

1 2

1 2
. 34m

1

2 m

m

m

For an ellipse with axes a1,2, we can calculate the Minkowski
tensor W2

1,1 analytically (Schroder-Turk et al. 2010),

= ( ( ) ( )) ( )W f a a f a adiag , , , , 352
1,1

2
1,1

1 2 2
1,1

2 1

where
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f f
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2
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2
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2
2
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2
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Note that the matrix is diagonal only in the coordinate basis
aligned with the axes of the ellipse. In this case, ( )f a a,2

1,1
1 2

and ( )f a a,2
1,1

2 1 correspond to the eigenvalues of this matrix.
The ratio of these eigenvalues can be compared to btot in the
large n∣ ∣ limit.

For a Gaussian white-noise density field, γ and hence W2
1,1

are independent of the smoothing scale RG and power spectrum
amplitude, which are the only parameters in the analysis. When
applying these statistics to a cosmological dark matter field,
W2

1,1 will depend on both RG and the cosmological parameters
W n,mat s via the γ dependence of Equations (28) and (31).
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