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Abstract

Cosmic Microwave Background (CMB) is a relic from the early Universe. It was

generated due to the physical processes in the early Universe during an epoch

known as the recombination or decoupling epoch. The CMB has highly uniform

temperature over the entire sky but with small variations in different direc-

tions. Due to the Thomson scattering between photons and electrons and also

because of the quadrupole anisotropies induced in the cosmic plasma during

the decoupling epoch, the CMB is linearly polarized. The CMB radiation in each

line of sight is associated with temperature (T ) and polarization. The po-

larization can be decomposed into Stokes parameters Q/U , or E mode (E)

and B mode (B) fields. Here, Q/U fields transform as spin ±2 objects under

rotation transformation while the E/B fields remain invariant. The fluctua-

tions observed in CMB is due to the quantum fluctuations generated during the

inflationary phase, which is a period of exponential expansion moments after

the Big Bang in the early Universe. The CMB fluctuations will have statistical

properties similar to this primordial fluctuations only for the linear evolution of

fluctuations. Statistical observable can be used to capture the morphological

properties of the CMB fluctuations. Then these morphological properties can

be studied in relation to the parameters describing the physical mechanisms of



the inflationary phase. In this research work, we use the geometrical and topo-

logical observables to study the CMB polarization fields and we also introduce

a novel statistical observable for the analysis of CMB fields.

The models about the inflationary phase predict that the Probability Distribution

Function (PDF) of primordial fluctuations are close to the Gaussian distribution

but with small deviation. The information about the exact form of deviation

in the PDF of primordial fluctuation will be encapsulated in the CMB fields. We

investigate the local type non-Gaussian features in the CMB polarization fields,

which is parametrized by fNL. We derive the analytic expression for the PDF

of any general local type non-Gaussian field such as the T and E fields of CMB,

and also for the local type non-Gaussian polarization intensity (IP ) constructed

from local type non-Gaussian Q and U fields. We use the analytic expression

and simulations of local type non-Gaussian CMB fields, namely T , E and IP ,

and study the deviation in their PDF relative to the Gaussian PDF. We found

from the analytic expression that the non-Gaussian deviation in the PDF of the

T and E fields are proportional to (fNLσ) while that of IP field is proportional

to (fNLσ)2. The numerical calculations show that the non-Gaussian deviation

in the PDF of E field is similar to that of the T field. While the non-Gaussian

deviation corresponding to the IP field has smaller amplitude and large error

bars in comparison to that of T field. This analysis was repeated using the

geometrical and topological observables, namely Scalar Minkowski Functionals

(SMFs) and Betti numbers of fields. These observables capture different mor-

phological features of a given field. The results obtained using these observables

are similar to those from the PDF of the fields. Hence from the theoretical point

of view, these results imply that the E field can provide an independent con-

straint on fNL similar to the T field. Further, the results also show that when
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the IP field is used independently for such analysis, it cannot provide any sta-

tistically significant information. In the realistic scenario, the observational

data contains instrumental systematics which will lead to the reduction in the

statistical significance of the above results.

The CMB polarization is usually analyzed using the E/B fields as they are

scalar fields. We investigate the theoretical aspects of using the Q/U fields

as a complementary analysis of CMB polarization. We show that the variance

of Q/U and its gradient fields are invariant under rotation transformation,

and hence the invariance of the SMFs of a Gaussian Q/U fields. However, this

statement breaks down for incomplete sky. Then we studied the non-Gaussian

deviation in Q/U fields constructed from the simulations of local type non-

Gaussian E field. These simulations use the same x−y coordinates along each

line of sight. We found that its amplitude is about an order of magnitude

lower than that of T field and has different shape. This finding will be useful

for distinguishing different non-Gaussian signals in the observational data from

future experiments. Further, we studied the effect of the presence of primordial

tensor perturbation, which is parametrized by r, on the SMFs of Q/U and IP

fields, and the number density of singularities in IP field. Here, a singularity is

a point on the CMB field where IP = 0. We found that the amplitude of SMFs of

these fields are sensitive to the presence of primordial tensor perturbation and

it decreases with r. We also show that the number density of singularities in IP

field decreases with r. This finding will be useful for the searches of primordial

tensor perturbation in the future experiments. The instrumental systematics

in the observational data will decrease the statistical significance of the above

results.
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We introduce Tensor Minkowski Functionals (TMFs), which are tensor gen-

eralization of Minkowski Functionals, as a new statistical observable for the

analysis of CMB data. Since these are tensor quantities, they are capable of

capturing more morphological properties in a given field than their scalar coun-

terparts. We have developed a code, referred as TMFCode, to compute the TMFs

for any general field on an Euclidean plane. In order to apply the TMFs, specifi-

cally W 1,1
2 which is a tensor of rank 2, to CMB fields which lies on a 2-d spherical

surface, we map each point on the sphere with a point on a plane using stereo-

graphic projection. The code computes W 1,1
2 , and then the net anisotropy (β)

and net orientation (α) of the structures are estimated. We investigated the nu-

merical error in this computation due to pixelization. We found the error in β

increases with the increasing curvature of the boundaries of the structure. The

error in α is negligible when the structures are completely unoriented with each

other and it increases as the structures become more and more aligned with

each other. We present the numerical calculation of the systematic variation of

α and β with the threshold value for the simulated Gaussian and isotropic CMB

T and E fields. We found that the value of β shows a characteristic variation

with the threshold value while α is flat. We show that according to the stan-

dard model, β = 0.62 for T and β = 0.63 for E, where the values are corrected

for pixelization. The value of α is one for both the fields, which is as expected

for an isotropic field.

We applied W 1,1
2 for the analysis of PLANCK data as an illustration of its

application. The instrumental systematics and the gravitational lensing due to

large scale structure affects the morphological features of the CMB fields. We

study the effect of these factors on the value of α and β using the simulations

of CMB frequency bands, namely 44GHz and 70GHz provided in PLANCK data,
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which contains the respective instrumental characteristics. We found that the

percentage difference in α and β due to these factors are less than 2% and it

significantly increases the size of their error bars. We use the CMB simulations

corresponding to the frequency band 44GHz as the basis for testing the consis-

tency of different PLANCK data sets with theoretical expectations. We estimated

the deviation in α and β for the foreground cleaned CMB maps namely SMICA,

COMMANDER, SEVEM and NILC corresponding to full mission, half mission 1, half

mission 2, half ring 1 and half ring 2 provided in the PLANCK data. These cal-

culations showed that β is consistent with the standard model within 2−σ for

all data sets, except the T map of NILC half mission 2 which has slightly higher

deviation. We found the values of α for T map of different data sets to be in

excellent agreement with the standard model within 1.2− σ. The deviation in

α of E map of all data sets are higher than 3−σ except the SMICA full mission

data. Further, α for E map corresponding to the half mission 1 of all data

sets showed consistently higher deviation of 5 − σ. These results imply that

the structures in the E map has an extent of alignment with each other. This

alignment could be cosmological or due to instrumental systematics. Since we

are comparing the PLANCK maps which are obtained by co-adding all frequency

bands with that of the simulations with the instrumental characteristics of a

specific frequency band, namely 44GHz, the instrumental systematics is more

probable reason for the alignment measured in E map.
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same fNL value and smoothing angles as lower panels of Fig. 5.2, but are
shown on a larger scale to show the large size of the error bars. The error
bars are obtained from the sample variance of 1000 simulations. . . . . . 74

5.4 Betti numbers and their non-Gaussian deviations for E mode, with fNL =
10 and for various smoothing angles. . . . . . . . . . . . . . . . . . . 76

5.5 Betti numbers and their non-Gaussian deviations for ĨP , with fNL = 10
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Chapter 1

Introduction

1.1 Cosmic Microwave Background and the his-

torical developments

The Cosmic Microwave Background (CMB) is a thermal background radiation

observed in all directions of the sky. The discovery of CMB paved the way for

major advancements in the field of cosmology. It firmly established the hot Big

Bang model. The statistical properties of the CMB fluctuations gave credibility

to the idea of “cosmic inflation,” which proposes a brief period of exponential

expansion of the Universe in the moments following the Big Bang. Further

development of experiments which can accurately measure CMB will allow us to

test cosmological models, develop fundamental theory of inflation, and it may

eventually reveal the nature of fundamental laws at high energies which cannot

be achieved by our present day particle accelerators.

In 1950s, there were two competing theories for the origin of the Universe.

One was the Steady State theory, according to which our Universe is static

1
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and existed in the current state for eternity [1]. An alternative model was

the Big Bang theory which suggested that the Universe began from a hot and

dense initial state, then it gradually expanded and cooled [2]. Edwin Hubble’s

discovery of expansion of the Universe [3] supported the latter model. How-

ever at the time, the model was not completely accepted among the scientific

community. Meanwhile, George Gamow and collaborators had shown as early

as 1948 that the Big Bang model predicts the existence of a remnant thermal

background radiation [4, 5, 6]. Finally in 1965, Arno Penzias and Robert Wil-

son detected this background radiation, with a temperature of about 3K [7],

which was inferred to be the CMB by Robert Dicke et al. (1965) [8]. Penzias

and Wilson received the Nobel Prize for physics in 1978 for the discovery.

According to the Big Bang model, the light nuclei like deuterium, helium,

and lithium were created in the very early phase of the Universe through the

Big Bang Nucleosynthesis (BBN) [9, 10]. While the nuclei heavier than lithium

originated from the stellar nuclear reactions or supernova explosions. The cal-

culations of mass abundances using BBN gives 25% of helium-4 (4He), 0.01% of

deuterium (2H), and small traces of helium-3 and lithium-7 (3He,7 Li). These

predictions were later tested through observations of astronomical objects, such

as dwarf galaxies and quasars, where primordial abundances are preserved since

it has not yet been significantly altered by stellar nucleosynthesis. The abun-

dance measurement of deuterium and helium using these observations were

found to be in good agreement with the theoretical expectations [11], which

provided a very strong confirmation of the Big Bang model. But the abundance

in lithium shows a discrepancy between the prediction and observation, which

is referred to as Lithium problem [12, 13, 14, 15]. This discrepancy can only

be resolved through a better understanding of BBN and stellar nucleosynthesis.
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The CMB observations so far has shown that it is very isotropic. The scale of

the causal horizon at the epoch when the CMB was generated subtends an angle

which is less than a degree on the sky. However, the CMB photons coming from

the direct opposite points of the sky, which are separated by 180◦, also have

similar temperature. This is referred to as the horizon problem. Similar to this

example, the CMB observations also lead to other paradoxes like the flatness

problem and magnetic monopole problem. In order to explain such paradoxes

the idea of inflation was introduced. The inflation model was proposed by Alan

Guth in 1981 [16] and it was developed further in [17, 18, 19, 20]. During the

inflationary phase, a causally connected region was blown up to the size of the

observable Universe. This resolved the paradoxes.

The COsmic Background Explorer (COBE) satellite was launched aboard a

Delta rocket in 1989 to investigate the CMB radiation. It carried three instru-

ments, namely, Differential Microwave Radiometer (DMR), Far-InfraRed Absolute

Spectro photometer (FIRAS) and Diffuse InfraRed Background (DIRBE). The

FIRAS instrument measured the spectrum of CMB radiation to be a black body

distribution [21]. The DMR instrument measured temperature fluctuations about

the order of 10−5 with 7◦ sky resolution [22]. The DIRBE instrument surveyed

the diffuse infrared sky [23]. COBE’s principal investigators, George Smoot and

John Mather, received Nobel Prize for physics in 2006. This project is regarded

as the starting point for precision cosmology. A number of ground and balloon

based experiments were used to measure the temperature anisotropies at differ-

ent scales. A list of such experiments is FIRS, ATCA, MSAM, Python, Saskatoon

experiment, CAT, TRIS, APACHE, BAM, QMAP, SuZIE, TOCO, BOOMERanG, MAXIMA

etc.

The Degree Angular Scale Interferometer (DASI), a telescope located in
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Antarctica, first detected the gradient component of CMB polarization anisotropies

known as E mode polarization [24]. The curl component is called the B mode

polarization. DASI was also the first to detect the second and third acoustic

peaks of the power spectrum of CMB temperature [25, 26, 27]. The first acoustic

peak of temperature was detected by TOCO, BOOMERanG and MAXIMA [28, 29].

The ground based experiment CBI measured the small scale anisotropies in

temperature and E mode [30, 31]. It also obtained the detailed power spec-

trum of E mode. The B mode polarization due to the primordial origin is yet

to be detected. Secondary effects such as gravitational lensing, foreground also

has an impact on the CMB. The B mode polarization induced due to the grav-

itational lensing was first measured by SPTpol [32]. This was later confirmed

by POLARBEAR [33], PLANCK [34] and BICEP2 [35]. A list of a few polarization

anisotropy experiments is: POLAR, COMPASS, QUaD, BICEP, AMiBA etc.

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched from Florida

in 2001, which succeeded the COBE mission. This was followed by the PLANCK

mission by ESA in 2009. These missions have provided us with high precision

temperature maps, and polarization map [36, 37]. Overall, the CMB observa-

tions so far are consistent with the standard model of cosmology and cosmic

inflation. But a few anomalies have been seen in the CMB temperature that

are not consistent with the standard model [38]. A few of these anomalies

are: low variance at lower resolutions, hemispherical asymmetry, point parity

asymmetry, mirror parity asymmetry, and a large cold spot. Since these were

observed by both WMAP and PLANCK experiments, these anomalies are not likely

to be due to the systematics in these experiments. The analysis of large scale

polarization anisotropies in the PLANCK team’s final data release, will either

increase or decrease the significance of these detected anomalies.
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1.2 Thermal history of the Universe

In this section, we describe the stages in the evolution of the Universe. The

early Universe was in a plasma state, which consisted of different elementary

particles in thermal equilibrium. As the Universe expanded, the temperature

of the cosmic plasma also dropped. Further, the wavelength of photons also

gets stretched and hence red-shifted. Therefore, the cosmic time line can be

specified by either temperature or redshift.

The early Universe went through a phase of cosmic inflation, an exponential

expansion, about 10−36 seconds after Big Bang. This was driven by the inflaton

scalar field, that filled the Universe at the time. Quantum fluctuations were

generated during this phase. The scale of these fluctuations gets stretched

outside the Hubble horizon scale, cH−1, due to the exponential expansion.

After it crosses the horizon, the amplitude of the fluctuations remain constant

in time. Once the inflationary phase is over, the Universe starts to decelerate

and the fluctuations again enter the Hubble horizon. These form the primordial

seeds which eventually evolve into the anisotropies observed in the CMB and the

large scale structures in the Universe. Further, the inflaton energy density

condense to form the standard model particles through a process known as

“reheating”. This also results in the transfer of fluctuations, from the initial

energy density into the energy density of these particles.

When the temperature of the cosmic plasma was above 200GeV, the Uni-

verse was made up of quarks and gluons, which were unbounded and free, and

dark matter. Around this time, it is expected that dark matter decoupled

from the plasma. The elementary particles that mediate weak interactions,

namely W± and Z bosons, were massless and also the weak interactions were
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as strong as the electromagnetic interactions. As the temperature dropped be-

low 200GeV, the electroweak symmetry was broken and the Higgs mechanism

gave masses to the elementary particles. Therefore, the weak interactions be-

came weak. At temperatures below 100MeV, corresponding to the redshift of

z > 1012, hadrons begin to form. When the temperature falls to about 1.4MeV,

the weak interaction rate becomes slower than the expansion rate and the neu-

trinos decouple from the plasma. Neutrinos follow Fermi-Dirac distribution

with a temperature decreasing with time due to the expansion. Hence there

must be a neutrino background with a temperature of about 1.95K. However,

this background has not been detected till now. At a slightly lower tempera-

ture, electrons and positrons annihilated each other. The photons were heated

due to this annihilation process, while the neutrinos were not affected as they

had already decoupled from the plasma. Therefore, the photons will be at a

higher temperature than the neutrinos.

At a later stage, the cosmic plasma mainly consisted of photons, electrons,

protons, and a few neutrons. The number of photons with energies larger than

the binding energy of deuterium (2.2MeV) were sufficient so as to prevent the

survival of any deuterium nuclei that formed. Only when the temperature

dropped below 0.08MeV, deuterium nuclei was able to survive. Then the BBN,

described in the previous section, lead to the formation of light nuclei, He4,

with traces of deuterium, He3, and Li7 in the Universe.

When the temperature dropped to slightly above 0.3eV, and redshift of

z > 1100, the cosmic plasma consisted of photons, electrons and protons in

thermal equilibrium. These particles were interacting with each other through

Thomson and Coulomb scattering. There were sufficient number of photons

in the plasma, which were energetic enough to destroy any neutral hydrogen
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that formed. Once the temperature falls below 0.3eV, protons and electrons

combine to form the neutral hydrogen. The photons then decoupled from the

plasma and the Universe became transparent to it. The CMB photons have

black body distribution with a temperature decreasing with time due to the

expansion. This is the CMB radiation that appears to come from a spherical

surface around the observer which is known as the last scattering surface. This

surface is the farthest we can see in the Universe. The phase of the Universe

during which the photons decoupled from the cosmic plasma is referred to as

the recombination era. The subsequent epochs like the reionization era will

also have an impact on the CMB radiation.

1.3 Polarization of CMB

The fact that the Thomson scattering during the recombination phase can po-

larize the CMB radiation was realized in 1968 [39]. If we consider an unpolarized

light ray traveling along the x axis, which gets scattered from an electron and

gets deflected along the y axis (refer to Fig. 1.1). The incident light ray has

equal intensity in y and z axes. Since the outgoing direction is along y axis, the

intensity along z axis is transmitted while that along the y axis is not trans-

mitted. Therefore, the scattered light ray is linearly polarized with intensity

along the z direction.

In a realistic situation, the incoming radiation is incident on an electron

from all directions. Consider an isotropic incoming radiation, which in the

present case we consider to be along two directions x and z axis. The outgoing

ray will have intensity along x axis which comes from the incoming radiation

along the z direction while the intensity along z axis comes from the incoming
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Figure 1.1: Image showing the Thomson scattering of radiation with an electron. Hori-

zontal line is the x direction, vertical line is the z direction and other line is the y direction.

Image from http://web.stanford.edu/$\sim$schurch/quad_science.html.

radiation along the x direction. So the outgoing ray is unpolarized. In the case

of dipole anisotropic pattern, which indicates that the temperature along ± x

direction are different while the temperature along ± y direction are the same.

Now the intensity along z axis of the outgoing ray is average from ± x direction,

and hence the scattered radiation is again unpolarized. Finally, let us consider

the case of quadrupolar anisotropic pattern, which implies that the temperature

along the x direction is different from the z direction. The intensity of scattered

ray along the x axis is due to the incident radiation along the z direction, while

that along z axis is due to the incident radiation along x direction. Due to

the distinct temperature along x and z directions, the outgoing radiation is

linearly polarized. Therefore, the Thomson scattering generates polarization

only when the incoming radiation has quadrupole anisotropy.

http://web.stanford.edu/$\sim $schurch/quad_science.html
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The condition for polarization of CMB is Thomson scattering between the

photons and electrons, and the quadrupole anisotropy in the cosmic plasma.

Before the recombination era, the interaction rate of photons and electrons were

so high that it erased any anisotropies present in the cosmic plasma. While

there were no Thomson scatterings after the recombination phase. Hence the

CMB photons cannot get polarized before or after the recombination. How-

ever during the recombination period, quadrupole anisotropies were generated

which lead to the polarization of CMB [40, 41, 42, 43, 44]. Therefore, only about

10% of CMB radiation are polarized. Since polarization is a weak signal, even

though the existence of CMB polarization was known as early as 1968, its actual

detection was made by DASI much later in 2002 after a lot of experimental

efforts [45, 46, 47, 48, 49, 50]. Further, this polarization will get modified dur-

ing the epoch of reionization and also due to gravitational lensing by the large

scale structures.

The polarization map obtained by PLANCK satellite confirms the standard

cosmological model [51]. Further, the angular power spectrum at small scales

of the polarization map has been used to better constrain the parameters of

standard cosmological model. Currently, an important goal in cosmology is

the detection of B mode polarization. In 2014, BICEP2 collaboration reported

a significant detection of B mode polarization [52]. Later, the collaboration

of BICEP2 and PLANCK team revealed that it was due to the contamination

from dust [53]. The experiments on CMB polarization are still in the evolv-

ing stage. While anisotropies in the temperature component has been accu-

rately measured and its consistency with the standard model has been exten-

sively tested. Just as the CMB temperature has revolutionized our ideas about

the early Universe, the information contained in the polarization is expected
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to lead to important advancement in our understanding. The future experi-

ments such as Cosmic Origins Explorer (COrE) and Polarized Radiation Imaging

and Spectroscopy Mission (PRISM) are being planned to study the polarization

anisotropies.

1.4 Statistical tools

The statistical properties of CMB anisotropies contain information about the

physical mechanism of inflationary phase and also about the later epochs. In

order to capture different features in the CMB anisotropies, different statistical

observables are required. Then the various aspects, such as the non-Gaussian

features, of CMB fluctuations can be studied in relation to the physical mecha-

nism which induced these fluctuations.

Important statistical tools used for analyzing cosmological data are power

spectrum, bispectrum, and Minkowski Functionals. Genus, which is one of

the Minkowski Functionals has been used extensively for analyzing large scale

structure of the Universe and CMB [54, 55, 56, 57, 58, 59]. A more generalized

form known as Minkowski Functionals was introduced into cosmological litera-

ture in [60], where it was applied to galaxy surveys. Then it was used to study

statistical properties of large scale structure and CMB [61, 62, 63, 65, 66, 67,

68, 69]. Further, it was applied to the observed CMB data in order to constrain

the extent of primordial non-Gaussianity [70, 71, 72, 73, 74, 75, 76]. It has

been applied to study other aspects of CMB, namely, to identify traces of resid-

ual foreground contamination [77, 78], cold spot anomaly [79] and modified

gravity theories through lensing of CMB [80]. A topological observable known
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as “Betti numbers”, was introduced as a statistical observable for the analy-

sis of large-scale structures [81, 82, 83]. It was then used to study different

non-Gaussian signals in CMB [84, 85].

Tensor Minkowski Functionals [86, 87] are tensor generalization of Minkowski

Functionals. Since these quantities have more degrees of freedom, these are very

useful for quantifying different morphological features in a field. This has been

used to study a variety of phenomena such as neuronal cells in the brain [88],

ice crystals in Antarctica [89], and galaxies and clusters of galaxies in our Uni-

verse [90]. This is a new statistical observable that we will be introducing for

the analysis of CMB.

1.5 Aim of the thesis

The aim of the thesis is to study the statistical properties of primordial fluctua-

tions using the geometrical and topological statistical tools on the polarization

of CMB radiation. This study was conducted along the following lines of inves-

tigation:

• CMB temperature has been extensively used for the analysis of non-Gaussian

features in the primordial fluctuations and to constrain the extent of non-

Gaussianity. We expect that the inclusion of polarization data will lead

to better constrain on non-Gaussianity. We investigate the non-Gaussian

features in the E mode polarization, using probability distribution func-

tion, geometrical, and topological properties, to investigate and quantify

its ability to constrain primordial non-Gaussianity. The PLANCK team

analysis which included the polarization data confirmed our expectations.
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• The analysis of CMB polarization is usually done using E and B mode po-

larization. We study the prospect of analysis using the Stokes parameters

Q and U . Due to their spin-2 nature, which implies that they transform

under rotation transformation, they are not widely used for CMB analysis.

We theoretically investigate the affect of rotation transformation on the

geometrical and topological properties of Q and U . Further, we study

the affect due to the various aspects of primordial fluctuations, such as

the presence of primordial non-Gaussianity and tensor perturbation, on

the geometrical and topological properties of Q and U .

• We introduce a new statistical tool, Tensor Minkowski Functionals which

are extensions of the Scalar Minkowski Functionals, for the analysis of

CMB. This can capture features such as net anisotropy and net orienta-

tion in the structures of a field. We develop a numerical code which can

estimate these features for a given field. We estimate the expected val-

ues for net anisotropy and net orientation of CMB fields according to the

standard model of cosmology. As an illustration of its application, we do

a simple study to test the consistency of various PLANCK data sets with

the standard model of cosmology.

The thesis is organized as follows:

• A brief introduction about CMB was presented in this chapter.

• Aspects of CMB anisotropies are given in Chapter 2, where we describe

the CMB observables, origin of perturbations, and the primordial non-

Gaussian fluctuation.
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• In Chapter 3, the derivation and the numerical analysis of probability

distribution of CMB observables are shown and its implications are dis-

cussed.

• An introduction to topology and different topological properties of a ran-

dom field are described in Chapter 4.

• The numerical analysis of non-Gaussian features in the E mode polar-

ization using the geometrical and topological observables and its impli-

cations are discussed in Chapter 5.

• The theoretical aspects of the prospect of the usage of the Stokes pa-

rameters of CMB for the analysis of primordial fluctuation are studied in

Chapter 6.

• Chapter 7 introduces a new statistical tool, Tensor Minkowski Function-

als, for the analysis of CMB. We have developed a code to compute these

quantities. The numerical method used by this code is described. Then

the theoretical prediction for the net anisotropy and net orientation ac-

cording to the standard model of cosmology is presented.

• The results from the analysis of PLANCK data sets is presented and its

implications are discussed in Chapter 8.

• The conclusion and the future course of work are discussed in Chapter 9.





Chapter 2

Anisotropies in Cosmic

Microwave Background

2.1 CMB observables

The CMB radiation is specified by temperature and polarization along each line

of sight. The temperature is expressed as

∆T

T0

(n̂) =
T (n̂)− T0

T0

, (2.1)

where T (n̂) is the temperature along each direction, and T0 is the average

temperature over the entire sky. While the polarization is described in terms

of the Stokes parameters Q,U and V . Since the Thomson scattering during

the recombination era cannot induce circular polarization, the quantity V is

taken to be zero. The values of Q and U along any given direction, n̂, on the

sphere are defined in the spherical coordinate system. Further, these transform

15
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under rotation by an angle α about the line of sight as Q′

U ′

 = R(2α)

 Q

U

 =

 cos 2α Q+ sin 2α U

− sin 2α Q+ cos 2α U

 . (2.2)

Hence the transformation of complex quantities Q + iU and Q − iU can be

written as

(Q± iU)′(n̂) = e∓2iα(Q± iU)(n̂). (2.3)

These are spin -2 and spin 2 objects respectively. Further, all of the above

described quantities can be expressed in terms of spin weighted harmonic func-

tions as
∆T

T0

(n̂) =
∑
`m

aT`mY`m(n̂),

(Q+ iU)(n̂) =
∑
`m

a2,`mY2,`m(n̂),

(Q− iU)(n̂) =
∑
`m

a−2,`mY−2,`m(n̂).

(2.4)

The CMB polarization can be re-expressed in terms of gradient and curl com-

ponent, which are known as E mode and B mode respectively. These are scalar

quantities or spin 0 objects. The distinction between the E and B component

of a polarization field is in the property of the pattern in the polarization ori-

entation surrounding a particular point. The E mode polarization field has

an orientation which is diverging from the point while the B mode polariza-

tion field has an orientation which is curling around the point. Further, the B

mode polarization changes sign under parity transformation while E mode is

invariant .

The spin of an object can be lowered or raised using the spin lowering and
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spin raising operators, ∂ and ∂̄ respectively, which are given by

s+1f(θ, φ) = ∂ sf(θ, φ) = −(sin θ)s
[
∂

∂θ
+

i

sin θ

∂

∂φ

] [
(sin θ)−s sf(θ, φ)

]
,

s−1f(θ, φ) = ∂̄ sf(θ, φ) = −(sin θ)−s
[
∂

∂θ
− i

sin θ

∂

∂φ

]
[(sin θ)s sf(θ, φ)] ,

(2.5)

where sf(θ, φ) is a field and the subscript ‘s’ indicates the spin of the field. The

E mode and B mode fields can be constructed by using the above operators

on the quantities Q± iU as follows

E(n̂) = ∂̄2(Q+ iU)(n̂) =
∑
`m

(
`+ 2

`− 2

)1/2

aE`mY`m(n̂),

B(n̂) = ∂2(Q− iU)(n̂) =
∑
`m

(
`+ 2

`− 2

)1/2

aB`mY`m(n̂), (2.6)

where aE`m, a
B
`m are related to a2,`m, a−2,`m as

aE`m = −(a2,`m + a−2,`m)/2,

aB`m = i(a2,`m − a−2,`m)/2. (2.7)

The CMB polarization can also be expressed in terms of polarization intensity

and polarization angle. The polarization intensity is invariant under coordi-

nate transformation while the polarization angle varies. We will represent the

polarization intensity as IP and the mean shifted polarization intensity, ĨP , as

ĨP = IP − 〈IP 〉. (2.8)
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The power spectrum of the CMB fields are calculated as

CXY
` =

1

2`+ 1

∑̀
m=−`

aX`ma
∗Y
`m, (2.9)

where X, Y = T,E,B. Since the B mode field has odd parity, the cross

correlation of B mode with either E mode or temperature vanishes. Hence

the CMB fluctuations are described by four power spectra, which are the auto

correlation of T,E,B and the cross correlation between T and E. A convenient

form of power spectrum, D`, can be defined as

DXY
` =

`(`+ 1)

2π
CXY
` . (2.10)

The Fig. 2.1 shows the plots of D` for all the four power spectrum.

The Hierarchical Equal Area isoLatitude Pixelization (HEALPix)1 [107] is

used for pixelization of CMB maps. A base map is constructed with twelve

pixels on three rings of constant latitude as shown in top left map in the Fig.

2.2. The resolution is defined in terms of the parameter Nside, which is the

number partitions on the side of a pixel of the base map required to build a

map of higher resolution. The base map corresponds to the Nside = 1. The

maps in Fig. 2.2 shows the construction of higher resolution map for Nside = 2

(top right map), 4 (bottom right map), and 8 (bottom left map). For example,

to obtain a map of Nside = 4 the sides of each of the pixels in the base map are

partitioned into 4 and hence a single pixel in the initial map will now contain 16

pixels. The pixel centers lie on a ring of constant latitude (θ). The rings in the

equatorial zone, defined by −2/3 < cosθ < 2/3, contain equal number of pixels

1http://healpix.sourceforge.net

http://healpix.sourceforge.net
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Figure 2.1: Plots in the top three panels show the power spectra, D` defined in Eq. 2.10,

for temperature, E mode, and B mode in units of µK2. The bottom panel shows the same

for the cross correlation between temperature and E mode.

of 4Nside. While other rings contain varying number of pixels, which increases

with its increasing distance from the poles. The total number of pixels, denoted

as Npix, for a higher resolution map is 12N2
side. Each of these pixels have equal

area of π/3N2
side. Further for the Q/U maps, a coordinate system needs to be

defined at each point on the sphere. In the HEALPix convention, x direction
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Figure 2.2: Pixelization scheme used by HEALPix package. Images show the pixelization

for different resolution, with Nside = 1 (top left map), 2 (top right map), 4 (bottom right

map), and 8 (bottom left map). Image from K. M. Gorski et al. (2005), HEALPix: A

Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on

the Sphere - Scientific Figure on ResearchGate, https://www.researchgate.net/1801816_

fig3_Fig-4-Orthographic-view-of-the-HEALPix.

at each point is defined such that it is pointing towards the south and the y

direction such that it is pointing towards the east. For the analysis of Q/U

maps, we use the HEALPix convention.

https://www.researchgate.net/1801816_fig3_Fig-4-Orthographic-view-of-the-HEALPix
https://www.researchgate.net/1801816_fig3_Fig-4-Orthographic-view-of-the-HEALPix
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2.2 Origin of CMB fluctuations

The metric of a homogeneous and isotropic Universe is described by the Friedmann

Robertson Walker (FRW) metric given by

ds2 = −dt2 + a2(t)γijdx
idxj, (2.11)

where a(t) is the scale factor. Here, γij is the metric of 3D space with constant

curvature k, which in polar coordinates (r, θ, φ) is given by

γij =


1

1− kr2
0 0

0 r2 0

0 0 r2 sin2 θ

 .

According to the standard model of cosmology, the Universe is dominated

by cosmological constant (Λ) or dark energy and cold dark matter. It is

also referred as ΛCDM model. It is described by the cosmological parame-

ters: Λ, cold matter density (Ωm), Hubble parameter at the present time

(H0 = 100 h Mpc/kms−1), amplitude of primordial fluctuations (As), spec-

tral index of primordial fluctuations (ns), and optical depth of reionization era

(τ). Here, Ω is the ratio of energy density (ρ) and critical energy density (ρc),

which is energy density corresponding to the flat Universe, H0 = ȧ(t0)/a(t0),

and the subscript ‘0’ represents that the value corresponds to the present time.

The definition of As and ns is given in Eq. 2.17 of the next section. The

evolution of the scale factor and the various content of the Universe are related
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by the Einstein equation, known as the Friedmann equations given by

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (2.12)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (2.13)

where, p is the pressure.

Since the observed CMB fluctuations are small, perturbation theory is used

to describe the evolution of primordial fluctuations. The metric perturbations

are classified into three types scalar, vector and tensor. At first order, these

perturbations evolve independent of each other and hence can be studied in-

dependently. The physical processes which induce scalar perturbations, does

not induce vector or tensor perturbations, and vice versa. This statement is a

manifestation of the decomposition theorem. The general perturbed metric is

given by

ds2 = −(1 + 2Ψ)dt2 + a2(t)[(1− 2Φ)γij + 2hij]dx
idxj, (2.14)

where Ψ and Φ are Bardeen potentials, and hij is a divergenceless, traceless,

symmetric tensor. The Bardeen potentials signify the scalar perturbations

while hij describes the tensor perturbations. For a perfect fluid containing

non-relativistic particles, the Bardeen potentials are related to each other and

it refers to the Newtonian gravitational potential. The density fluctuations

can generate scalar perturbations while it is not capable of generating tensor

perturbation. The vector perturbations are not included in the above equation,

as any such perturbations decays out rapidly. The tensor perturbation gives rise

to the gravitational waves generated during the inflationary era. The extent to
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which the tensor perturbations are present relative to the scalar perturbations

is parameterized by tensor-to-scalar ratio, r.

The polarization of CMB during recombination era can be sourced by primor-

dial density fluctuations and primordial gravitational waves. In both of these

cases, the mechanism through which the CMB is polarized is Thomson scatter-

ing and the only distinction between the two is in the cause of quadrupole

anisotropies. In the case of density fluctuations, velocity gradients in the cos-

mic plasma create the quadrupole anisotropies which results in the polarization.

In the case of gravitational waves, the photons get redshifted or blueshifted as

they travel on the metric perturbed by the gravitational waves. This frequency

shift has a quadrupolar angular dependence which gives rise to the polariza-

tion in CMB. Specifically, the primordial gravitational waves results in B mode

polarization of CMB.

The Boltzmann equation is used to describe the evolution of perturbations

in each of the elementary particles photons, neutrinos, electrons, protons and

also the dark matter, which is given by

df(~x, ~p, t)

dt
= C[f ], (2.15)

where f is the distribution of the species in phase space, which is a function

of its position (~x), momentum (~p) and t, and C is the relevant interaction

terms for each species. The above Boltzmann equation for each species, to-

gether with the Einstein equation are solved simultaneously, in order to find

the distribution of CMB temperature and polarization. These equations are

numerically solved using the publicly available package Code for Anisotropies
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in the Microwave Background (CAMB)2 [91] provided by Antony Lewis and An-

thony Challinor. This code gives the radiation transfer function ∆X
l (r) for

X = T,E,B, which encapsulates the information about the evolution from

the primordial perturbation to the CMB fluctuations for different scales. It also

computes the power spectrum of CMB fields, which in terms of radiation transfer

function is given by

CXY
` =

∫
dkk2PΦ(k)|∆X

` (k)∆Y
` (k)|, (2.16)

for X, Y = T,E,B. Here, PΦ(k) is the power spectrum of primordial gravita-

tional potential given by

PΦ(k) = As

(
k

ks

)ns−1

, (2.17)

with ks = 0.002Mpc−1, as predicted by the inflation model

2.3 Non-Gaussian fluctuations

In literature, there are a variety of inflation models that have been proposed [16,

19, 20, 92, 93, 94]. Currently observations [95, 96] support the range of inflation

models, according to which the probability distribution of primordial fluctu-

ations are very close to Gaussian. Different classes of models have their own

characteristic non-Gaussian deviation [97, 98, 99]. They provide us with a

method, which will help in isolating the inflation model that accurately de-

scribes our Universe.

2http://camb.info/

http://camb.info/
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We focus on a particular type of non-Gaussian distribution known as local

type non-Gaussianity [100, 101, 102, 103]. We construct non-Gaussian primor-

dial gravitational potential Φ, which is defined in Eq. 2.14, as a function of

conformal distance by adding a non-linear term as

Φ(r) = ΦL(r) + fNLΦNL(r), (2.18)

where ΦNL is defined as

ΦNL(r) = (ΦL(r))2 −
〈
(ΦL(r))2〉 , (2.19)

and fNL is a measure of the extent of non-Gaussianity in the field. The quantity

Φ sets the initial conditions for the theoretical calculation of CMB temperature

and polarization fluctuations. Hence the information about primordial non-

Gaussianity will be encoded in the CMB fluctuations.

The analysis of CMB observations so far indicate that the value of fNL are

very small [76], hence the second term in Eq. 2.18 is much smaller in com-

parison to the first term. However foreground contamination, instrumental

noise, and secondary sources of anisotropy also generate non-Gaussian features

in the CMB. Cosmic variance also introduces some non-Gaussianity due to the

uniqueness of the observed CMB sky. Due to this factor the search for primordial

non-Gaussianity is a challenging task.

The search for primordial non-Gaussianity requires statistical observables,

which are capable of detecting the presence of any non-Gaussian features in the

CMB fields. A few examples of statistical observables in Fourier space are power

spectrum, bispectrum, and trispectrum. While the statistical observables such
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as Betti numbers, Minkowski functionals, Tensor Minkowski Functionals are

defined in real space, whose description is given in Chapter. 4. Since each of

these statistical observables get affected differently by different non-Gaussian

sources, they are useful for distinguishing the non-Gaussian signal of primordial

origin from those of other sources. In order to study these statistical observables

and to probe the non-Gaussianity in CMB, one requires high resolution simu-

lations of CMB containing non-Gaussian features. Here, we describe a method

first proposed by Liguori et al. [104] and then developed further in [105, 106]

to simulate CMB maps with local type non-Gaussian features. The following are

the step by step procedure, to simulate a single realization corresponding to a

given cosmological model:

• Fine shells of conformal distances r = [r1, r2, . . . rn] are constructed from

the origin to the last scattering surface.

• The covariance matrix (PΦ,`) is a n x n matrix, whose components are

radial correlations of multipole moment ΦL,`m(r) (spherical harmonic co-

efficients of ΦL) between different conformal distances. The (r1, r2)th

component is estimated as

〈ΦL,`1m1(r1)Φ∗L,`2m2
(r2)〉 =

2

π
δ`2`1δ

m2
m1

∫
dkk2PΦ(k)j`1(kr1)j`2(kr2), (2.20)

where δij is the Kronecker delta function, and j` is the spherical Bessel

function of order `.

• The vector ΦL,`m(r) = [ΦL,`m(r1),ΦL,`m(r2), . . .ΦL,`m(rn)] is estimated as

ΦL,`m(r) = P
1/2
Φ` .g, (2.21)



Chapter 2 27

where g is a complex vector. The components of g are independent

Gaussian random variables with zero mean and unit variance.

• The spherical harmonic transform, ΦL(r), is obtained using the multipole

moments ΦL,`m(r).

• Square the linear term ΦL(r) and subtract its variance as shown in

Eq. 2.19, to obtain the corresponding non-linear term ΦNL(r).

• Spherical harmonic transform the non linear term ΦNL(r), to obtain the

corresponding multipole moments ΦNL,`m(r).

• The linear term of spherical harmonic coefficients of the map are obtained

as

aXL,`m =
(−i)`

2π2

∫
dkk2ΦL,`m(k)∆X

` (k), (2.22)

where ∆X
` (k) is the radiation transfer function, in Fourier space, of tem-

perature for X = T and E mode for X = E. It is obtained using the CAMB

package for a given cosmological model. Similar to the calculation of lin-

ear term, the non-linear term of spherical harmonic coefficients (aXNL,`m)

are obtained by replacing the linear term, ΦL,`m, with the non-linear term

ΦNL,`m.

• The spherical harmonic coefficients of a map with local-type non-Gaussianity,

fNL, can be calculated as

aX`m = aXL,`m + fNL · aXNL,`m. (2.23)

• Finally, the temperature and E mode maps are constructed, by spherical
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harmonic transform of aT`,m and aE`,m respectively.

We use the publicly available simulations provided by Elsner and Wan-

delt3, for the non-Gaussian studies in the subsequent chapters. The reso-

lution of these map is fixed by the maximum multipole `max = 1024 and

Nside = 512. These maps were simulated with the cosmological parameters ob-

tained from WMAP5+BAO+SN data4: ΩΛ = 0.721, Ωch
2 = 0.1143, Ωbh

2 = 0.02256,

As(0.002Mpc−1) = 2.457 x 10−9, h = 0.701, ns = 0.96 and τ = 0.084. We use the

HEALPix package, which also provides various codes for processing of the CMB

maps, for the pixelization and the analysis of these maps. In order to study

the behavior of a given field at different scales, we use Gaussian smoothing

described by either smoothing angle, θs, or FWHM. These are related to each

other as θs = FWHM/
√

8ln2.

3http://planck.mpa-garching.mpg.de/cmb/fnl-simulations
4http://lambda.gsfc.nasa.gov/product/map/dr3/parameters.cfm

http://planck.mpa-garching.mpg.de/cmb/fnl-simulations
http://lambda.gsfc.nasa.gov/product/map/dr3/parameters.cfm
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Probability distribution function

of local type non-Gaussian CMB

fields

3.1 Introduction

The primordial non-Gaussian features in CMB temperature field has been stud-

ied extensively [73, 108, 109, 75]. Here, we extend such studies to the CMB

polarization fields. We use Probability Distribution Function (PDF) of the field

as it is a simple and direct observable. We derive analytic expressions for PDF

of Gaussian and local type non-Gaussian CMB fields such as temperature, E

mode, and polarization intensity. We numerically compute and analyze the

non-Gaussian deviation in the PDF of CMB fields. In the analysis, issues in ob-

servational data such as incomplete sky coverage and instrumental systematics

are neglected. The non-Gaussian signal in CMB fields is studied relative to the

29
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cosmic variance.

This chapter is organized as follows. In Sec. 3.2, we derive the analytic

formula for PDF of CMB fields. In Sec. 3.3, the results from the numerical

calculations of non-Gaussian deviation, which is obtained using the simulations

of Gaussian and non-Gaussian CMB maps, are presented. Finally, we summarize

and discuss the implication of these results in Sec. 3.4.

3.2 Analytic formula for PDF

The statistical properties of primordial fluctuations, Φ defined in Eq. 2.14, and

CMB fluctuations are the same only when the evolution of fluctuations during

the intermediate epochs are linear. If linear evolution of fluctuation is assumed

then this would imply that the PDF of temperature and E mode fields will be

Gaussian when the PDF of Φ is Gaussian. In the alternative case, where the

PDF of Φ is non-Gaussian, then these fields will also have similar non-Gaussian

distribution. Similarly, the Q and U fields will also have PDF same as the Φ,

which will then decide the PDF of the polarization intensity field, IP .

3.2.1 PDF of local type non-Gaussian field

In this section, we derive the PDF of a general local type non-Gaussian field,

which is parametrized by fNL. Let X denote a field having the Gaussian PDF

with zero mean. Then a local type non-Gaussian field Y can be constructed as

Y = X + fNL(X2 − σ2), (3.1)
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where σ2 = 〈X2〉. Consider P (X), P (Y ) to be the PDF of random variables

X, Y respectively.

Let F (Y ) be some arbitrary function, then its expectation value can be

written as

〈F 〉 =

∫
dXP (X)F

(
X + fNL(X2 − σ2)

)
=

∫
dXP (X)

∫
dk√
2π
eik(X+fNL(X2−σ2))F̃ (k).

(3.2)

In the second step, we have expressed the function F in terms of its Fourier

transform. Expanding the exponential term in terms of fNL, we get

〈F 〉 =

∫
dXP (X)

∫
dk√
2π
eikX

(
1 + ikfNL(X2 − σ2)− k2f 2

NL(X2 − σ2)2 + . . .
)
F̃ (k).

(3.3)

Simplification of 0th order term:

1√
2π

∫
dk

∫
dX P (X) eikX F̃ (k)

=
1√
2π

∫
dk

∫
dX

1√
2πσ

e−X
2/2σ2

eikX F̃ (k)

=
1√
2π

∫
dk F̃ (k) e−k

2σ2/2

=
1√
2π

∫
dk e−k

2σ2/2 1√
2π

∫
dY e−ikY F (Y )

=
1√
2πσ

∫
dY e−Y

2/2σ2

F (Y )

=

∫
dY P 0(Y )F (Y ),

P (0)(Y ) =
1√
2πσ

e−
Y 2

2σ2 . (3.4)
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Similarly, the first and second order correction term are obtained to be

P (1)(Y ) = − fNLσ√
2πσ

e−
Y 2

2σ2
Y (Y 2 − 3σ2)

σ3
, (3.5)

P (2)(Y ) =
(fNLσ)2

√
2πσ

e−
Y 2

2σ2
(Y 6 − 11Y 4σ2 + 23Y 2σ4 − 5σ6)

2σ6
. (3.6)

Now Eq. (3.3) can be written as

〈F 〉 =

∫
dY F (Y )

(
P (0)(Y ) + P (1)(Y ) + ...

)
. (3.7)

The PDF of non-Gaussian field Y is given by

P (Y ) = P (0)(Y ) + P (1)(Y ) + P (2)(Y ) + . . . , (3.8)

where the first term is the PDF of Gaussian part of Y and the higher order

terms give corrections to the zeroth order. Hence, substituting these terms in

Eq. 3.8, we get

P (Y ) =
1√
2πσ

e−
Y 2

2σ2 − fNLσ√
2πσ

e−
Y 2

2σ2
Y (Y 2 − 3σ2)

σ3
(3.9)

upto first order correction. The non-Gaussian deviation in the PDF is defined

as
∆P

P (0),max
=
P (Y )− P (0)(Y )

P (0),max
. (3.10)

By substituting the analytic formula, Eq. (3.9), in the above equation, we get

∆P

P (0),max
= −fNLσe

− Y 2

2σ2
Y (Y 2 − 3σ2)

σ3
. (3.11)
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3.2.2 PDF of polarization intensity field

Here, we calculate the PDF of polarization intensity. Let us consider X and Y

to be two independent random variables. These two variables can be imagined

to form a two dimensional space, where each point is specified by these two

random variables and also has an associated probability. Then X, Y is just one

way of naming the points on the space. It can also be expressed in terms of R

and θ, given by

R =
√
X2 + Y 2, tan θ =

Y

X
. (3.12)

The total probability of an infinitesimal area (dRdθ or dXdY ) remains invari-

ant in both of the coordinate system, hence

P (R, θ)dRdθ ≡ P (X)P (Y )dXdY, (3.13)

where X = R cos θ and Y = R sin θ.

Case 1. X and Y have Gaussian PDF:

Gaussian PDF for X and Y are substituted in Eq. 3.13, then all the terms are

expressed in terms of R and θ, and finally it is integrated over θ, as follows

P (R, θ)dRdθ =
1√
2πσ

e
−X2

2σ2
1√
2πσ

e
−Y 2

2σ2 dXdY

P (R, θ)dRdθ =
1

2πσ2
e
−R2

2σ2 dRRdθ∫
dθP (R, θ)dR =

1

2πσ2

∫
dθ Re

−R2

2σ2 dR

P (0)(R)dR =
R

σ2
e−

R2

2σ2 dR,

(3.14)

where P (0)(R) =

∫
dθP (R, θ), the superscript (0) indicates that it is zeroth
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order and R ⊂ [0,∞). The above form of PDF is known as Rayleigh distribu-

tion.

Case 2. X and Y have local type non-Gaussian PDF:

We use P (X) = P (0)(X) + P (1)(X) + P (2)(X) + . . . in Eq. 3.1 for PDF of X

and Y , where P (0)(X), P (1)(X) and P (2)(X) are given by Eqs. (3.4), (3.5) and

(3.6) respectively. These are then substituted in Eq. (3.13) to obtain the PDF

for non-Gaussian R. Progressing similar to the previous case, we get

P (R) =
R

σ2
e−

R2

2σ2

(
1 +

f 2
NLσ

2

16σ6
(5R6 − 66R4σ2 + 184R2σ4 − 80σ6) + . . .

)
.

(3.15)

The first order correction P (1)(X) is proportional to odd power of X, hence

the PDF of R does not receive any contribution at first order in fNLσ.

The polarization intensity, IP , is a field similar to R and hence will have

the similar PDF as R for both the Gaussian and non-Gaussian cases. The

non-Gaussian deviation in the PDF of polarization intensity is given by

∆P

P (0),max
=
f 2

NLσ
2

16σ6
e−

R2

2σ2
(
5R6 − 66R4σ2 + 184R2σ4 − 80σ6

)
. (3.16)

From the expressions in Eq. (3.11) and Eq. (3.16), we expect the non-Gaussian

deviation of polarization intensity to be much smaller in comparison to that of

E mode field.

3.3 Non-Gaussian deviation of the PDF

We present the numerically calculated non-Gaussian deviation in temperature,

E mode, and polarization intensity fields in this section. We use simulation



Chapter 3 35

of Gaussian and local type non-Gaussian CMB fields provided by Elsner and

Wandelt (see Sec. 2.3 for a description of the simulation of data).

The temperature and E mode fields are constructed with fNL = 10, and

smoothed with Gaussian smoothing angle, θs = 20′. The non-Gaussian devia-

tion in the PDF of these fields are expected to have the form in Eq. (3.11), whose

characteristics such as the amplitude and RMS of distribution depend on the

physical processes in the recombination era and the evolution of fluctuations

in the later epochs. The plot of PDF and non-Gaussian deviation, which are

average over 1000 realizations, are shown in Fig. 3.1. The Gaussian and non-

Gaussian PDF are shown in upper panels, while the difference between these

two, ∆P , divided by the amplitude of the Gaussian PDF, P (0),max, are given in

the lower panels. We find that the shape of the non-Gaussian deviation follows

the form given by Eq. (3.11). We observe that the non-Gaussian deviation of

temperature and E mode fields show similar amplitudes.

The linear and non-linear part of the non-Gaussian map, used for the calcu-

lations in Fig. 3.1, are constructed from a single realization. This leads to the

cancellation of significant part of the cosmic variance, while only the sample

variance due to the higher order non-Gaussian term is retained which is shown

in the bottom panels of Fig. 3.1. We can estimate the full cosmic variance by

calculating

∆Pi,j(X) = Pi(X)− P (0)
j (X), (3.17)

where ∆Pi,j is the difference between the PDF of ith realization of non-Gaussian

field and the jth realization of Gaussian field. There are 1000x1000 differ-

ent (i, j) combination of PDFs. The average of the scaled PDF difference,

∆Pi,j(X)/P (0),max, over the i’s and j’s will be same as the mean value in the
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Figure 3.1: Upper panels show the PDF for temperature fluctuations (left panel) and E

mode (right panel) with smoothing angle θs = 20′. The lower panels show the corresponding

non-Gaussian deviations. These are obtained by averaging over 1000 simulations of CMB.

Error bars are the sample variance calculated using these simulations.

lower panels of Fig. 3.1. While we expect the sample variance to increase con-

siderably. The non-Gaussian deviation calculated using this method is shown

in Fig. 3.2. We observe that the error bars in this case are about two orders

of magnitude larger than the previous case.

In order to calculate the non-Gaussian deviation in the real data, a corre-

sponding Gaussian map is needed. The Gaussian maps can be generated by

randomizing the phase of a`m’s while maintaining a constant amplitude. In

this statement, we assume the smoothing angle to be small enough so that the

temperature or E mode map are made up of a large number of a`m’s, then

the central limit theorem would be applicable since the a`m’s are uncorrelated

in this case. The non-Gaussian deviation of the observed CMB map can be
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Figure 3.2: The non-Gaussian deviation in PDF, ∆P/P (0),max, for temperature (left panel)

and E mode (right panel). Error bars are the sample variance from 1000x1000 different

combination of ∆Pi,j(X) given in Eq. (3.17).

computed by using the PDF obtained by averaging over many Gaussian maps.

Further, the error bars can be estimated by dividing this map into many re-

gions.

The PDF of IP when the Q and U fields are Gaussian distributed, is given

in the last line of Eq. (3.14). The procedure we follow to construct an IP

map is as follows: we first Gaussian smooth the E mode map, transform into

Q,U maps and then the IP map is computed. The tensor-to-scalar ratio, r, is

assumed to be zero in this case. The numerically computed PDF of IP is shown

in the left panel of Fig. 3.3. This corresponds to the Gaussian distributed E

mode field. We note that the shape of PDF computed are in good agreement

with Eq. (3.14).
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In order to investigate the effect on IP due to the presence of tensor per-

turbation, we plot the PDF of IP in the right panel, which includes B mode

with tensor-to-scalar ratio of r = 0.2 with the smoothing angle same as the

left panel. In this case, the E mode and B mode fields both are Gaussian

smoothed, transformed into Q,U maps, and then the IP map is constructed.

We find that the amplitude of the PDF is lower when the tensor perturbations

are included and this effect becomes noticeable at large smoothing angles. For

the calculations in Fig. 3.3, we use the CMB simulations with the cosmological

parameters obtained from the PLANCK data [111].

The PDF of IP becomes nearly Gaussian in shape when the Gaussian smooth-

ing is performed on the IP field itself. This is due to the central limit theorem.

As the smoothing is a linear process, the order of the non-Gaussian deviation

which is about (fNLσ)2 remains unaltered. The PDF of ĨP and the correspond-

ing non-Gaussian deviation are shown in Fig. 3.4, where the IP field is first

computed, the smoothing process is performed on it, and then ĨP is calculated

by subtracting the mean. Here, the tensor perturbations are not included and

the non-Gaussian calculations corresponds to fNL = 10. The amplitude of non-

Gaussian deviation is an order of magnitude lower than the temperature and

E mode, while the error bars are twice as large. For the calculations using the

polarization intensity in the subsequent chapters, we use ĨP with smoothing

performed on IP .

3.4 Discussion

We investigated the primordial local type non-Gaussian features that are im-

printed in the CMB polarization using their PDF. Analytic expressions for the

PDF of Gaussian and local type non-Gaussian CMB fields were obtained. We
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Figure 3.3: Left panel: PDF of IP using the Gaussian distributed E mode, which is smoothed

for various smoothing angles θs. This case assumes the tensor-to-scalar ratio r to be zero.

Right panel: PDF of IP which includes B mode with r = 0.2. The corresponds to the Gaussian

distributed E mode and B mode, where each of these fields are smoothed. These plots are

average over 1000 realization of simulated CMB fields. Error bars are sample variances from

these simulations.

analyzed the non-Gaussian deviation of the PDF for E mode and polarization

intensity fields in relation to the temperature field.

From the analytic expressions, we find that the non-Gaussian deviation of

the PDF for E mode and temperature is about (fNLσ) while for polarization

intensity it is about (fNLσ)2. The numerical computation of the non-Gaussian

deviation showed that their shape, amplitude and size of error bars for tem-

perature and E mode are same. While for the polarization intensity field, the

amplitude is about an order of magnitude smaller and the error bars are twice

as large compared to that of temperature or E mode field. From the theoretical
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Figure 3.4: Upper panel: PDF of ĨP using E mode field with the Gaussian distribution

and the non-Gaussian distribution with fNL = 10, where IP map is smoothed. Lower panel:

Non-Gaussian deviation of ĨP .

perspective, these analysis indicates that the E mode field is capable of provid-

ing an independent and equally powerful constraint on fNL as the temperature

field, while the polarization intensity field is not very useful for such analysis.

But as we have neglected issues related to observational data, this will reduce

the usefulness of E mode field in constraining fNL. The PLANCK collaboration

obtained tighter constraint on the local type non-Gaussianity, fNL, using both

the temperature and polarization data [75]. But the inclusion of polarization

did not lead to tight enough constraint on fNL as our calculations suggested

because of the high noise levels in the polarization data from the observation.
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Geometrical and topological

properties of a random field

4.1 What is Topology?

Topology is the study of geometrical properties and spatial relations of a math-

ematical object, that remains unaltered by the continuous change of shape or

size. These properties are preserved under the action of deformation, twisting,

and stretching of the object. While tearing or gluing changes its topology. For

example, topologically a circle is equivalent to a square or a triangle. A circle

can be stretched to form the corners and then the rest of the points can be

straightened out to form the sides of either a triangle or a square. Example of

two objects which are not topologically equivalent to a circle are straight line

and the figure 8. In order to transform a circle into a straight line segment, the

circle needs to be teared at a point and then straightened out. But as tearing

changes the topology, the straight line segment is topologically distinct from

41
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the circle. Similarly for the figure 8, where we are required to glue the two

points of a circle, which again changes the topology of the object.

One of the historical problem which laid the foundations of topology was

Königsberg bridge puzzle by Euler. The city of Königsberg in Prussia (now

at Kaliningrad, Russia) which was located on both sides of the Pregel river.

It included two islands which were connected to each other, and to the two

mainlands of the city by seven bridges, which is illustrated in the left image

of Fig. 4.1. The problem was to devise a path through the city that would

cross each of these bridges only once. Euler published a paper entitled “So-

lutio problematis ad geometriam situs pertinentis” which translates into “The

solution of a problem relating to the geometry of position” [112]. The only

important information in the problem are the connections between the land

masses. Hence the problem can be reformulated in terms of abstract terms,

each land mass can be replaced with a vertex or node and each bridge with

an edge. This mathematical structure is known as graph which is shown in

the right image. The shape of the graph can be deformed in any way without

effecting its basic structure. The only significant factor is the number of edges

connecting any pair of vertices or nodes.

Euler observed that when one enters a land mass by a bridge, as any bridge

can only be crossed once hence he/she needs to leave by another bridge. Hence

each land mass except the ones which are the starting or ending point, must

have even number of bridges. However in the above problem all the land

masses have odd number of bridges and hence it is impossible to strategize

a path which satisfies the condition required by the problem. The number

of edges connected to a node is known as its degree. Euler showed that the

condition to traverse such a path is that the graph should have exactly zero or
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Figure 4.1: Left image is an illustration of the Königsberg bridge puzzle. Right image

is the problem written using the mathematical structure called graph. Left image from Si-

mon Kneebone, https://simonkneebone.com/2011/11/29/konigsberg-bridge-puzzle/.

Right image from CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=

851840.

two nodes with odd degree. Such a path has been named as Euler walk in his

honour.

One of the important application of topology is to quantitatively study the

morphology of spacial structures induced by physical processes. An example

is the study of microstructured materials. When intricate structures develop

in the material as a consequence of interactions such as self assembly in liquid

crystals, we need to understand how the spatial patterns are related to physical

properties such as elasticity, permeability and conductance. Here observables

are required to capture the morphological features of the spatial pattern, which

can then be used to quantitatively study the spatial patterns in relation to the

physical processes.

In this chapter, we introduce geometrical and topological observables, namely,

https://simonkneebone.com/2011/11/29/konigsberg-bridge-puzzle/
https://commons.wikimedia.org/w/index.php?curid=851840
https://commons.wikimedia.org/w/index.php?curid=851840
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Betti numbers, Minkowski Functionals, and Tensor Minkowski Functionals. We

use these quantities to study 2-dimensional random fields. In particular, we

use these observables to quantify various morphological features of the CMB

fields and use them to study the statistical properties of CMB fields in rela-

tion to different parameters of standard model of cosmology. A description for

each of these observables will be presented in the subsequent sections. Simple

definitions and notations that we will be using are as follows:

• A random field that lies on a two dimensional Euclidean plane E2 will be

denoted as p(x, y).

• A random field that lies on a two dimensional surface of a sphere S2 will

be denoted as s(θ, φ), where θ is latitude and φ is longitude.

• A threshold value is chosen among the range of values taken by a given

random field. This is then expressed in terms of the RMS, denoted as σ0,

of the random field. This is denoted as ν.

• The excursion set is the set of all points with the field value greater than

or equal to νσ0. This set is denoted as K. The set of all points where the

field value is equal to νσ0 is denoted as ∂K, which is a subset of K. The

left image in Fig. 4.2 shows an example of excursion set on an Euclidean

plane. The points of white region belong to the excursion set while the

points of black region do not belong to the set. In this example, ∂K is a

set of all the points on the boundaries of the white region. Similarly, the

right image in Fig. 4.2 shows an example of excursion set on a sphere.

• An excursion set may contain one or more connected regions. Further,

each of these connected regions may be simply connected, which implies
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Figure 4.2: Images show the excursion sets on a plane (left image) and sphere (right

image). White region are points that belong to the set while black region are points that do

not belong to the set. In the left image, an excursion set lying on a plane is shown, which

contains two hot spots and two cold spots. In the right image, the excursion set lying on a

sphere is shown, which contains one hot spot and one cold spot.

that it does not contain any holes, or it may be multiply connected, which

means that it contains one or more number of holes in them. The left

image in Fig. 4.2 shows two connected regions in the excursion set. The

connected region of smaller size located on the right corner of the image

is an example of a simply connected region with no holes. On the other

hand, the larger one located at the center of the image is a multiply

connected region with two holes within it. Similarly, the right image in

Fig. 4.2 contains one multiply connected region with one hole. We refer

to a connected region as hot spot and a hole as cold spot. We refer to

either hot spot or cold spot as structure.
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4.2 Betti numbers

4.2.1 Definition

Consider a 2-dimensional mathematical object. It can be associated with two

Betti numbers, denoted as β0 and β1, based on whether the points within the

object are connected or disconnected with each other. β0 is the number of

connected regions within the object while β1 is the number of disconnected

regions within it. Consider for example a disc, all the points within a disc

are connected with each other and there are no disconnected regions within

it. Hence, β0 = 1 and β1 = 0. For a disc with a hole within it, the points of

the object surrounding the hole are connected with each other while the points

within the hole are disconnected from the points of the objects. Therefore, it

has one connected region and one disconnected region, so β0 = 1 and β1 = 1. If

the disc has two holes, then as the two holes are disconnected with each other,

they form two disconnected regions. So, β0 = 1 and β1 = 2. Note that any

deformation of the object does not affect these quantities and hence these are

topological observables.

The above idea can be extended to define Betti numbers for an excursion

set. The excursion set is the set of all points within the mathematical object.

The connected region of the object is nothing but a hot spot in the excursion set

while a hole is a cold spot. Note that the excursion set may contain more than

one connected regions. Then the definition of Betti numbers for an excursion

set, K, of either p(x, y) or s(θ, φ) becomes

• β0 = number of hot spots

• β1 = number of cold spots.
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For example, the Betti number for the excursion sets shown in Fig. 4.2 are

β0 = 2 and β1 = 2, for the case where the excursion set lies on a plane, and

β0 = 1 and β1 = 1, for the case where the excursion set lies on a sphere.

The boundary of the excursion set, i.e. ∂K, is made up of a number of

closed contours. An orientation can be assigned to each of the closed contours.

A closed contour which is enclosing a hot spot is given a positive sign, and a

closed contour which is enclosing a cold spot is given a negative sign. Then

β0 and β1 are the number of positive and negative orientation closed contours

respectively. Mathematically, the Betti numbers for an excursion set K with

smooth boundary ∂K can be written as

β0 =
1

2π

∫
C+

κd`, β1 =
1

2π

∫
C−

κd`, (4.1)

where d` is the line element and κ is the curvature at each point of the closed

contours. C+ denotes positive orientation closed contours while C− denotes

negative orientation closed contours. Here, the curvature κ is defined as

κ(`) =
dτ

d`
, (4.2)

where τ is the angle between the tangent vector at point ` of the closed contour

and a fixed direction. The Betti numbers expressed in terms of τ is given by

β0 =
1

2π

∫
C+

dτ, β1 =
1

2π

∫
C−

dτ. (4.3)
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4.2.2 Numerical computation of Betti numbers

Here, we describe a numerical method to compute Betti numbers [84]. This is

based on the method for computing genus (see Sec. 4.3.1 for definition) used

in Gott et al. (1990) [55].

In the case of a field s(θ, φ), each point on the sphere is mapped onto

a plane. We use stereo-graphic projection to implement this mapping. The

image in Fig. 4.3 shows the implementation of stereo-graphic projection. For

this projection, we take the equator as the projection plane. First, each point

on the southern hemisphere is mapped onto the projection plane with the north

pole as projection point as shown in the figure. A line (dashed black line) is

drawn connecting the north pole and any point on the southern hemisphere

(solid green ball), then the field value at this point is mapped onto a point

(green circle) where the line intersects with the projection plane. Then this

procedure is repeated to map each point on the northern hemisphere onto the

projection plane with the south pole as projection point.

In a realistic case, the contours in an excursion set on a plane are approx-

imated by line segments due to pixelization. For example in Fig. 4.4, left

image shows an excursion set with a circular structure. Its contours are ap-

proximated by line segments shown in black line. The right image in Fig. 4.4

shows the final structure, which is a square shaped structure. Note that the

closed polygon has positive orientation. In general, the contour of a irregular

shaped structure will become a irregular shaped polygon due to pixelization.

The Betti numbers of a pixelized excursion set is given by

β0 =
1

2π

∑
i+

(∆τ)i+ , β1 =
1

2π

∑
i−

(∆τ)i− , (4.4)
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Figure 4.3: Image shows the mechanism of stereo-graphic projection with equator as the

projection plane. Here, the north pole is chosen as the projection point. Each point (solid

green ball) on the southern hemisphere is mapped onto a point (green circle) on the equator

by connecting a line from the north pole to points on the southern hemisphere (dashed black

line). Image from http://pd.chem.ucl.ac.uk/pdnn/symm2/proj3a.htm.

where (∆τ)i are the exterior angles, which is the angle between the tangent

vectors at ith and (i+ 1)th vertex of the polygon, and i+ represents the vertices

of the positive orientation closed polygons while i− represents the vertices of

the negative orientation closed polygons. For example, Betti numbers of the

polygon shown in the right image of Fig. 4.4 can be computed by calculating

the exterior angles at all the vertices. The exterior angle at all the vertices of a

square is π/2. Hence we get, β0 =
1

2π
(π/2 + π/2 + π/2 + π/2) = 1 and β1 = 0.

http://pd.chem.ucl.ac.uk/pdnn/symm2/proj3a.htm
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Figure 4.4: Images show the affect of approximation of a structure to a polygon. Left

image shows a circular structure, whose contours are approximated to line segments (black

line). Right image shows the final polygon obtained after the approximation, which is a

square shaped structure. Here, the pixel size is assumed to be comparable to the size of the

structure. Note that in general, when the pixel size is much smaller than the size of the

structure, then the structure will become a polygon with many sides.

4.3 Minkowski Functionals

4.3.1 Definition

In integral geometry, Hadwiger’s theorem [113, 114] states that in d-dimensional

Euclidean space, any morphological observable of an excursion set is a linear

combination of d+ 1 functionals, which are known as Minkowski Functionals.

Hence the morphology of an excursion set on a two dimensional space is com-

pletely described by three Minkowski Functionals. This theorem is also valid

for curved spaces [64, 65].
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The Minkowski Functionals for an excursion set, K, with a smooth bound-

ary ∂K of a field s(θ, φ), on a sphere of radius R, are defined as

V0 =

∫
K

da,

V1 =
1

4

∫
∂K

d`, (4.5)

V2 =
1

2π

∫
∂K

d` κ,

where da is the surface element. Each of these Minkowski Functionals has a

simple physical interpretation:

• V0 = total area of the excursion set

• V1 = total length of the contours or boundaries of the excursion set

• V2 = number of hot spots - number of cold spots.

The functional V2 is equal to the difference between the Betti numbers V2 =

β0 − β1. For example, V2 for the excursion sets shown in Fig. 4.2 are V2 =

2− 2 = 0, where the excursion set lies on a plane, and V2 = 1− 1 = 0, where

the excursion set lies on a sphere. Further, V2 is a topological observable

while V0 and V1 are geometrical observables. In standard practice, Minkowski

Functionals per unit area are used for the analysis of CMB fields, which is given

by

Vj =
Vj

4πR2
, (4.6)

where j = 0, 1, 2. These are scalar quantities since they are invariant under

coordinate transformations. Hence, we refer to these three functionals as Scalar

Minkowski Functionals (SMFs). V0 is referred as area fraction, V1 as contour
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length, and V2 as genus.

4.3.2 Minkowski Functionals of a Gaussian field

The excursion set of a field will vary systematically with the threshold value

depending on the statistical properties of the field. The SMFs can capture these

systematic variation of the excursion set with the threshold value. In this

section, we discuss the SMFs of a random field which has a Gaussian distribution.

The SMFs of a Gaussian random fields have been well studied in the litera-

ture [115, 116]. Their analytic expressions in arbitrary dimensions was derived

by Tomita [117]. Consider s(θ, φ) to have a Gaussian distribution. Then the

analytic expression for SMFs, in two dimensional space, as a function of ν are

given by

V an
0 (ν) =

1

2

[
1−Θ

(
ν√
2

)]
,

V an
1 (ν) =

1

8
√

2

σ1

σ0

e−ν
2/2, (4.7)

V an
2 (ν) =

1

(2π)3/2

(
σ1

σ0

)2

νe−ν
2

,

where the superscript ‘an’ indicates that it is analytic expression, Θ is the Gaus-

sian error function, given by Θ(x) = 2√
π

∫ x
0
dt exp(−t2), and σ1 = 〈∇s · ∇s〉.

The amplitude of SMFs depend only on σ0 and σ1. These are related to the

power spectrum, C`, as

σ2
j =

1

4π

∑
`

(2`+ 1)
[
`(`+ 1)

]j
C`W

2
` , (4.8)
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for j = 0, 1 [40], where W` is the smoothing weightage. For a Gaussian smooth-

ing, W` = e−`(`+1)θ2s/2. Hence the SMFs of a Gaussian random field depends only

on the power spectrum. However, if there are any non-Gaussian features in the

field, then that will show up as deviation in the SMFs from the analytic formula

in Eq. (4.7).

4.3.3 Numerical computation of Minkowski Functionals

We describe here two methods for computing SMFs of a random field on a

sphere. The first method was introduced by Schmalzing and Gorski [65]. The

line integrals in Eq. (4.6) for contour length and genus can be transformed

into surface integrals, then the SMFs as a function of ν can be written as

Vj(ν) =
1

4πR2

∫
S2

da Ij. (4.9)

Here, Ij’s are related to the field s(θ, φ) and its covariant derivatives as follows

I0 = Θ(s− ν),

I1 =
1

4
δ(s− ν)

√
s2

;θ + s2
;φ, (4.10)

I2 =
1

2π
δ(s− ν)

2s;θs;φs;θφ − s2
;θs;φφ − s2

;φs;θθ

s2
;θ + s2

;φ

,

where the subscript ‘;’ indicates covariant derivatives. The covariant derivatives

are related to partial derivatives as

s;θ = s,θ, s;φ =
1

sinθ
s,φ,
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s;θθ = s,θθ, s;θφ =
1

sinθ
s,θφ −

cosθ

sin2θ
s,φ, s;φφ =

1

sin2θ
s,φφ +

cosθ

sinθ
s,θ.

(4.11)

In a realistic situation, there are only finite number of sample points or

pixels in the excursion set. The delta function is replaced with a function of

finite bin width ∆ν as

δ(s− ν) ≈ 1

∆ν
d(s− ν), (4.12)

where

d(s− ν) =


1 ν − ∆ν

2
≤ s ≤ ν +

∆ν

2

0 otherwise

. (4.13)

The bin width ∆ν is decided by the spacing between the threshold levels. And

the integrals are replaced with the summation over all the pixels as

Vj(ν) ≈ 1

Npix

Npix∑
i=1

Ij(xi), (4.14)

where xi is the position vector of ith sample point or pixel on the sphere. We

refer to this method of numerical computation of SMFs as Schmalzing and Gorski

(SG) method.

In the above method, due to the discretization of Eq. (4.6) numerical inac-

curacies are introduced in the calculation of V1 and V2 [118]. The numerically

estimated SMFs can be written as Vj(ν) = V an
j (ν) + R∆ν

j (ν), where R∆ν
j is the

residual error due to discretization. Here, the superscript ∆ν indicates the

threshold bin size and the dependency of residual error on it. The residual
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error, R∆ν
j , is given by

R∆ν
j (ν) =

1

∆ν

∫ ν+∆ν/2

ν−∆ν/2

dsV an
j (s) − V an

j (ν). (4.15)

The residual error cannot be estimated without knowing the exact analytic

expression, V an
j (ν), of the random field. While for the case of a Gaussian field,

since the exact analytic expression is given by Eq. (4.7), R∆ν
j can be computed

as

R∆ν
1 (ν) =

1

8

√
π

2

σ1

σ0

1

∆ν

[
erf

(
ν + ∆ν/2√

2σ0

)
− erf

(
ν −∆ν/2√

2σ0

)]
− V an

1 (ν)

R∆ν
2 (ν) =

1

(2π)3/2

(
σ1

σ0

)2
1

∆ν

[
exp

(
−(ν −∆ν/2)2

√
2σ0

)
−exp

(
−(ν + ∆ν/2)2

√
2σ0

)]
− V an

2 (ν). (4.16)

The second method to compute SMFs is a geometrical technique [119, 120].

The area fraction can be obtained by counting the number of pixels which

have field value above the threshold value. The contour length is determined

by constructing line segments along the boundaries through interpolation of

the field values using least square method. This interpolation requires the

first derivatives of the field which are obtained using HEALPix package. The

Euler characteristics (χ), which is related to V0 and V2 as χ = V2 + 1
2πR2V0 for

an excursion set on a sphere, is the integration of the curvature over all the

boundaries of the excursion set. As the topological properties are invariant

under continuous transformation of the boundary, explicit calculation of the

boundary curvature is not required instead the curvature can be considered

to be concentrated at the vertices of the boundaries of the pixels. Curvature
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weights are assigned at each of the vertices, which is determined by the field

value at the pixels surrounding the vertex. Then the summation over these

weights gives the Euler characteristic. We refer to this numerical method for

computing the SMFs as CND REG2D method.

4.4 Tensor Minkowski Functionals

4.4.1 Definition

Tensor Minkowski Functionals (TMFs) are tensor generalization of SMFs [86, 87].

Since these are tensor quantities, they can capture more information about the

morphological properties of a given excursion set than the SMFs.

Consider an excursion set K with a smooth boundary ∂K of a field p(x, y).

Let Ks be a subset of K which contains only one simply or multiply connected

region with a smooth boundary ∂Ks. Then the TMFs of rank a+b, with a+b ≥ 0,

for Ks are defined as

W a,0
0 =

∫
Ks

~r ada,

W a,b
j =

1

2

∫
∂Ks

~r a ⊗ n̂ bGjd`,
(4.17)

for j = 1, 2 with G1 = 1 and G2 = κ, where ~r is the position vector and n̂ is

the unit normal vector at each point on the contour ∂Ks. The contour which

forms the boundary of a hot spot is assigned a counterclockwise direction while

that of a cold spot is assigned clockwise direction. The components of tensor

product between two vectors, namely ~A and ~B, is defined as ( ~A ⊗ ~B)ij =

(AiBj + AjBi)/2. When we take a + b = 0, then the Eq. (4.17) reduces to
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three SMFs, but with different normalization constants, as

W 0,0
0 =

∫
Ks

da, W 0,0
j =

1

2

∫
∂Ks

Gj d`. (4.18)

The equation yields three Vector Minkowski Functionals with a = 1 and b = 0

as

W 1,0
0 =

∫
Ks

~r da, W 1,0
j =

1

2

∫
∂Ks

~r Gjd`. (4.19)

Seven kinds of Tensor Minkowski Functionals of rank 2 can be constructed with

a+ b = 2, namely W 2,0
0 , W 2,0

1 , W 1,1
1 , W 0,2

1 , W 2,0
2 , W 1,1

2 , and W 2,2
2 .

The Scalar Minkowski Functionals are motion-invariant, which means that

they are invariant under translation and rotation transformation. While Vec-

tor and Tensor Minkowski Functionals are motion-covariant, which means that

they vary under these transformations. Their transformation under the oper-

ation of translation and rotation on a single structure, Ks, are given by

W a,b
ν (Ks + ~t ) =

a∑
c=0

a
c

~tc ⊗W a−c,b
ν (Ks),

W a,b
ν (R̂ Ks) = R̂ W a,b

ν (Ks).

(4.20)

Here, Ks +~t denotes that all the points of the structure, Ks, are translated by

the vector ~t, and R̂ is the rotation operator, for clockwise rotation by angle θ,

it is given by

R̂(θ) =

 cos θ sin θ

− sin θ cos θ

 . (4.21)

The motion-covariant Minkowski Functionals can be divided further based on

their more specific behavior under translation operation. Those which satisfy
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W a,b
ν (Ks+~t ) = W a,b

ν (Ks) are called translation-invariant while others are called

translation-covariant. Hence from Eq. 4.20, W 0,b
ν are translation-invariant for

any b and ν. Further, W 1,1
1 and W 1,1

2 are also translation-invariant [121]. While

rest of the motion-covariant Minkowski Functionals of rank 1 and rank 2 are

translation-covariant. Translation-invariant Minkowski Functionals capture in-

formation about the characteristics of the structure and they are insensitive

to the position of the structure. Hence, we are interested in the application of

translation-invariant Minkowski Functionals to the CMB analysis.

When the structure, Ks, is rescaled in space, which implies that the coor-

dinate of each point on the structure is multiplied with a scaling factor λ, then

the Minkowski Functionals transform as

W a,b
ν (λKs) = λ2+a−νW a,b

ν (Ks). (4.22)

Another interesting property of the Minkowski Functionals is that they are

additive, which implies that for any two structures, say Ks1 and Ks2, the

Minkowski Functionals satisfy

W a,b
ν (Ks1 ∪Ks2) = W a,b

ν (Ks1) +W a,b
ν (Ks2)−W a,b

ν (Ks1 ∩Ks2). (4.23)

The Minkowski Functionals are not independent, they have inter-dependencies

Wν(Ks)E = νW 0,2
ν (Ks) +W 1,1

ν+1(Ks),
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Figure 4.5: The excursion set containing a single elliptically shaped structure is shown in

the left image. White region are the points that belong to the excursion set while the black

region are points that are not part of the set. The right image shows an excursion set with

a rectangle shaped structure.

for any single structure Ks and ν = 0, 1, 2 [122, 87], specifically

W0(Ks)E = W 1,1
1 (Ks),

W1(Ks)E = W 0,2
1 (Ks) +W 1,1

2 (Ks),

W2(Ks)E = 2W 0,2
2 (Ks).

(4.24)

We note that from these equations that W 1,1
1 and W 0,2

2 does not give any

additional information in comparison to the Scalar Minkowski Functionals.

While W 0,2
1 and W 1,1

2 contain additional information but they are related to

each other. This relation can also be written as W 1,1
2 = R̂T (π/2) W 0,2

1 R̂(π/2),

where R̂(π/2) is the rotation operator with an angle of π/2. Therefore, all the

new information is contained in one of these Tensor Minkowski Functionals.

Hence, we focus on W 1,1
2 for the application to CMB analysis.
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For example, the analytic expression for W 1,1
2 of an elliptical shaped struc-

ture shown in the left image of Fig. 4.5, Ks, is given by

W 1,1
2 (Ks) =

f 1,1
2 (p, q) 0

0 f 1,1
2 (q, p)

 , (4.25)

with f 1,1
2 (p, q) =

1

2
p2q2

∫ 2π

0

dϕ
cos2ϕ

[p2 − (p2 − q2)cos2ϕ]3/2
, (4.26)

where p and q are the semi-major and semi-minor axis of the ellipse respec-

tively [123]. For the case of a circle, we take p = q then the above expression

reduces to

W 1,1
2 (Ks) =

p/2 0

0 p/2

 . (4.27)

4.4.2 W 1,1
2 for structures in an excursion set of a pix-

elized field

For a pixelized field, the excursion set, K, will become a set containing a

finite number of pixels and the subset Ks will consist of pixels which are part

of a single structure. As mentioned before in the case of Betti numbers in

Subsection. 4.2.2, the structures in this excursion set are approximated to

polygons. Here, we describe W 1,1
2 for a polygonal structure given by Schröder

Turk et al. (2010) [123].

A polygonal structure will consist of the vertices ~vi for i = 1, . . . nv and

the edges vector ~e(i,i+1) for i = 1, . . . nv − 1, where nv is the total number

of vertices of the polygon. As mentioned before, the direction of the edges

vector are chosen to be counterclockwise around hot spots while clockwise

direction around cold spots. The unit normal vector of an edge is given by
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~n(i,i+1) = R̂(π/2)
~e(i,i+1)

|~e(i,i+1)|
. The exterior angle, ∆τi, is the angle between the

unit normals vector of the two adjacent edges vector. Its value ranges from −π

to π. Further, a polygonal structure is a convex structure if all the exterior

angles ∆τi are greater than zero otherwise it is a concave structure. The left and

middle image in the Fig. 4.6 shows example for convex and concave structure

respectively.

For a polygonal structure, the curvature κ is discontinuous as: κ = 0 along

the edges while it is undefined at the vertices. Let the polygonal structure,

Ks, be a convex structure, then its W 1,1
2 can be computed using parallel body

construction. In parallel body construction, a parallel structure Ks+ε of Ks is

constructed as

Ks+ε = Ks ]Bε. (4.28)

Here, Bε is a disk of radius ε and ] is the Minkowski sum. The Minkowski sum

of Ks and Bε is obtained as follows: A disk Bε is constructed around every

point of Ks, the union of all these disks gives Ks+ε. This process converts

the sharp turns at the vertices to a smooth circular boundaries and with well

defined curvature as shown in Fig. 4.7. For the calculation of W 1,1
2 , only the

circular boundaries at the vertices need to be considered as κ = 0 on all the line

segments. Now the analytic expression for W 1,1
2 of convex polygonal structure,

Ks, is obtained with the limit of ε → 0 by using the definition in Eq. 4.17,

which yields

W 1,1
2 (Ks) =

nv−1∑
i=1

1

2
|e(i,i+1)|−1(~e(i,i+1) ⊗ ~e(i,i+1)). (4.29)

Note that since the edges vector are real, and as the tensor product is defined
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to be symmetric, the above tensor is a real symmetric matrix. In general,

the structures are not convex. For the case of concave polygonal structure, a

concave structure can be considered to be the union of two or more convex

structures. Consider the concave structure, Ks, shown in the middle image of

Fig. 4.6, which can be considered to be the union of two convex structures,

say Ks1 and Ks2. It has one vertex where ∆τi < 0, where it has a concave dip.

Then the structure is split at the vertex, into two convex structures as shown

in the right image of the figure. From the additive property of the Minkowski

Functionals, the W 1,1
2 of concave polygonal structure can be expressed in terms

of its convex structure components as

W 1,1
2 (Ks) = W 1,1

2 (Ks1 ∪Ks2) = W 1,1
2 (Ks1) +W 1,1

2 (Ks2)−W 1,1
2 (Ks1 ∩Ks2).

(4.30)

Hence, the analytic expression for W 1,1
2 in Eq. 4.29 is valid for any general

polygonal structure.

As an example, consider a rectangular shaped structure of sides p and q

with p ≥ q, which is an approximation of ellipse, as shown in the right image

of Fig. 4.5. Then the W 1,1
2 can be obtained from Eq. 4.29 as

W 1,1
2 (Ks) =

1

2

2

 p 0

0 0

+ 2

 0 0

0 q

 , (4.31)

=

 p 0

0 q

 . (4.32)

We introduce TMFs, in particular W 1,1
2 , as a new statistical observable for

the analysis of CMB. We have developed a code to compute W 1,1
2 for polygonal
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Figure 4.6: Images show a convex polygonal structure (left image), concave polygonal

structure (middle image) and the concave structure being split into two convex structure.

A structure is convex if the straight line joining any two points in it, also belongs to the

structure otherwise it is concave. The structure in the middle image has a concave dip, so

a straight line can be drawn connecting the two points which lie on opposite sides of this

dip. The points of the straight line that fall on the dip does not belong to the structure and

hence the structure is concave. The right image shows the concave structure being split into

two convex structures.

Figure 4.7: Images show the process of parallel body construction for a square shaped

structure. Left image shows a square structure. Right image shows the square shaped

structure after parallel body construction. A disc is constructed at every point of the square,

the union of all these discs gives the right image.

structures on an Euclidean plane using the Eq. 4.29. The code uses the

algorithm in [123], which will be described in Chapter. 7.
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4.4.3 Anisotropy and orientation of structures in an ex-

cursion set

The tensor W 1,1
2 is a real symmetric 2 × 2 matrix, hence it will have two real

eigenvalues. For an excursion set K, each structure can be associated with a

tensor W 1,1
2 . Let the corresponding eigenvalues be denoted as λ1 and λ2 with

λ1 ≤ λ2. The tensor
〈
W 1,1

2

〉
can also be obtained for the excursion set, where

〈. . . 〉 indicates average over all the structures of K for each component of the

tensor. Let Λ1 and Λ2 with Λ1 ≤ Λ2, be the eigenvalues of
〈
W 1,1

2

〉
. Then the

ratios of eigenvalues namely α and β are defined as

α ≡ Λ1

Λ2

, (4.33)

β ≡
〈
λ1

λ2

〉
. (4.34)

The quantity α is estimated as: the tensor 〈W 1,1
2 〉 is obtained by averaging

over all the structures of the excursion set, its eigenvalues are computed, and

then the ratio of eigenvalues are estimated. While β is estimated as: ratio of

eigenvalues for W 1,1
2 of each of the structures in the excursion set is calculated,

and then it is averaged over all the structures.

When the excursion set consists of a single structure, the value of β will

quantify the intrinsic anisotropy in the shape of the structure. In this case, α

will be equal to β. Consider simple isotropic structures like circle and square.

For a circle, W 1,1
2 is given by Eq. 4.27 which gives β = 1. For a square, we

use W 1,1
2 given in Eq. 4.32 with p = q which again gives β = 1. Hence for

isotropic structures β = 1. While for a general shape the value of β will lie

between 0 and 1. Further, β < 1 indicates that the shape is anisotropic and the
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Figure 4.8: Images show rectangles, with sides p and q for p ≥ q, for different aspect ratios,

q/p. Left image shows square shaped structure which is isotropic. Middle image shows a

rectangular shaped structure with aspect ratio of 0.5. Rectangular structure with aspect

ratio of 0.2 is shown in the right image.

extent of deviation of β from 1 gives a measure of deviation in the shape of the

structure from the isotropic shape. For an illustration consider the rectangles,

having sides p and q with p ≥ q, shown in Fig. 4.8. The left image shows a

square which is isotropic, the middle image shows a rectangle with the aspect

ratio, q/p, of 0.5, and the right image shows a rectangle with the aspect ratio

of 0.2. The corresponding β values are obtained from the analytic expression

for W 1,1
2 of a rectangle, which is given in Eq. 4.32. The eigenvalues of W 1,1

2

from the equation are q and p. Hence for the special case of a rectangle, we

get β = q/p which is same as the aspect ratio. Therefore, β for the rectangles

in Fig. 4.8 are 1, 0.5 and 0.2 respectively. Note that for a general shape, the β

values need not be equal to the aspect ratio. When the excursion set contains

many structures, β will give the net anisotropy in the structures.

For an excursion set containing many structures with anisotropic shape, it

can be associated with an orientation. The quantity α quantifies the extent

of orientation for a given arrangement of structures. When the structures are
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randomly oriented then α = 1. Alternatively, when the structures are aligned

along the same direction then α = β. In the intermediate case, the value of

α will lie between β and 1. As an illustration consider the rectangles with

different alignments as shown in Fig. 4.9. All these rectangles have an aspect

ratio of 0.5. Left image shows an excursion set with two rectangular shaped

structures which are aligned with each other. The value of α can be obtained

using the Eq. 4.34 as

〈W 1,1
2 〉 =

1

2

 p 0

0 q

+

 p 0

0 q

 ,

Λ1 = q,Λ2 = p,

α =
q

p
.

Hence when the rectangles are completely aligned with each other, the value

of α is equal to β, which in the present case is α = β = 0.5. For the case of

rectangles in the middle image of Fig. 4.9, where they are oriented at 45◦ to

each other, we get

〈W 1,1
2 〉 =

1

2

 p 0

0 q

+ R̂T (−π/4)

 p 0

0 q

 R̂(−π/4)

 ,

Λ1 =
p+ q

2
,Λ2 = p,

α =
1

2
(1 +

q

p
).

For the aspect ratio of 0.5, we get α = 0.75. Similarly, for the case of rectangles

aligned at right angle to each other as shown in the right image of Fig. 4.9, we
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Figure 4.9: Each of the images show two rectangles of same aspect ratio but with different

alignments. Left image shows rectangles which are aligned with each other. Middle image

shows rectangles which are oriented at 45◦ with respect to each other. Rectangles which are

aligned at right angle to each other are shown in the right image.

get

〈W 1,1
2 〉 =

1

2

 p 0

0 q

+

 q 0

0 p

 ,

Λ1 =
p+ q

2
,Λ2 =

p+ q

2
,

α = 1.

These calculations show the variation of α with different alignment and its

ability to capture the information about the alignment in the structures of a

given excursion set.

We introduce a quantity O defined as

O ≡ 1− α
1− β

, (4.35)

which is also a measure of orientation in the structures but it is scaled so that

its value lies between zero and one. O = 1 indicates that the structures are
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completely aligned while O = 0 indicates that the structures are randomly

oriented. Consider the example of rectangles in Fig. 4.9, the value of O

are 1, 0.5, and 0 respectively. This is a useful quantity when comparing two

distribution of structures with different net anisotropy β. This is because if

these structures have high degree alignment then α is bounded below by the

value of β, while O is not. In the example, the value of O when the structures

are completely aligned is one and is not dependent on β. Hence it captures

alignment of the structures independent of the anisotropy of the structures.
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Signature of primordial

non-Gaussianity in CMB

polarization

5.1 Introduction

Here, we study the effect of the presence of local type primordial non-Gaussianity

on the CMB polarization fields using the geometrical and topological observable,

namely SMFs and Betti numbers. Specifically, we investigate the local type non-

Gaussian features in the E mode and ĨP fields. We neglect the instrumental

effects and analyze the non-Gaussian deviation of these polarization fields in

comparison to the cosmic variance. Further, we quantify the statistical sensitiv-

ity of the polarization fields for the presence of non-Gaussianity and comment

about their ability to constrain fNL.

69
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The organization of this chapter is as follows. In the second section, we ana-

lyze the non-Gaussian deviations in SMFs and Betti numbers of the polarization

fields. In the third section, we quantify and compare the statistical sensitivity

of temperature and polarization fields for detecting the presence of local type

non-Gaussian features. Finally, we summarize the results and discuss about

its implications in the fourth section.

5.2 Primordial non-Gaussian features in the

CMB polarization

We study the non-Gaussian features in CMB polarization. The geometrical and

topological observables, SMFs and Betti numbers, are used to capture these

non-Gaussian features. Gaussian and local type non-Gaussian simulations of

CMB temperature and E mode map provided by Elsner and Wandelt are used

for the study.

For a Gaussian field, the exact SMFs are given by the analytic formula Eq.

(4.7). While analytic expression for Betti numbers are not known, but it can

be numerically calculated for a Gaussian field using the method described in

Sec. 4.2.2. Any non-Gaussian features present in a given field will result in

the deviation of SMFs and Betti numbers from the Gaussian expectations. The

non-Gaussian deviation of SMFs are expressed as

∆Vi = V NG
i − V G

i , (5.1)
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for i = 0, 1, 2. Similarly, Betti numbers are expressed as

∆βi = βNG
i − βG

i , (5.2)

for i = 0, 1.

5.2.1 Scalar Minkowski Functionals

The SMFs of CMB polarization are estimated using the SG method described

in Sec. 4.2.2. It was mentioned that the method has numerical error due to

the discretization of delta function. In the present case, this does not result

in significant error due to the following reason. Since the Gaussian and non-

Gaussian maps are constructed from a single realization of Gaussian distributed

random numbers and also as we are currently interested in the weakly non-

Gaussian case, the numerical errors in the SMFs of both Gaussian and non-

Gaussian maps will be similar and hence it will cancel each other when the

non-Gaussian deviation is calculated.

In Fig. 5.1, the three top panels show the plots of SMFs calculated for E

mode and their non-Gaussian deviations with fNL = 10 for various smoothing

angles are shown in the lower panels. The chosen threshold values lie in the

range −4.5 ≤ ν ≤ 4.5 with the spacing of ∆ν = 0.75. The amplitudes of

non-Gaussian deviation vary linearly with fNL. The plots were obtained by

averaging over 1000 realizations of E mode field and the error bars are the

corresponding sample variance. The contour length and genus, V1 and V2, of

E mode field in the figure have larger amplitudes than the temperature field

(refer to Fig. 2 in [68]). This implies that there are more structures in the

E mode field than the temperature field. The non-Gaussian deviation in each
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Figure 5.1: Upper panels: Plots show SMFs as a function of threshold for E mode. Lower

panels: The corresponding non-Gaussian deviations in SMFs for fNL = 10 with different

smoothing scales. The error bars shown are the sample variance calculated using 1000

realization of CMB fields.

of the SMFs shows a characteristic shape and they also vary slightly with the

smoothing angle. The size of the error bars increases with the smoothing angle,

θs, because there are only fewer number of structures which in turn results in

the statistical uncertainties. We observe that the non-Gaussian deviation in
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Figure 5.2: Upper panels: Plot of SMFs for ĨP . Lower panels: The corresponding non-

Gaussian deviation in SMFs with fNL = 10 for different smoothing scales.

all three SMFs of E mode have similar shape and comparable amplitude to

that of the temperature field. Further, their error bars are also similar in size.

Therefore, we can conclude that the E mode carries as much non-Gaussian

information as the temperature and hence can provide independent constraint

on primordial non-Gaussianity.

The Fig. 5.2 shows the plot of SMFs for ĨP in the three top panels. Their
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Figure 5.3: Plots show non-Gaussian deviations in SMFs with error bars for ĨP with the

same fNL value and smoothing angles as lower panels of Fig. 5.2, but are shown on a larger

scale to show the large size of the error bars. The error bars are obtained from the sample

variance of 1000 simulations.

non-Gaussian deviation for fNL = 10 with various smoothing angles without

error bars are shown in the lower panels of Fig. 5.2 and the non-Gaussian

deviation with error bars are shown in Fig. 5.3. The plots were again obtained

by averaging over 1000 realizations and the error bars are the corresponding

sample variance. The shapes of SMFs for ĨP are similar to the SMFs of a Gaussian

field even though it has a Rayleigh distribution shown in Eq. 3.14. This is

because of the Gaussian smoothing, which modifies the distribution of ĨP as

discussed in Sec. 3.3. The amplitude of SMFs for ĨP field are similar to E mode
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field at the same smoothing angle. The non-Gaussian deviation of ĨP , shown

in the lower panels of Fig. 5.2, shows a shape that is different from that of E

mode. Further, the deviations of ĨP have much smaller amplitude than that

of E mode at lower smoothing angles, while they both become similar to each

other at higher smoothing angles. The plots in Fig. 5.3 are the same deviations

as the Fig. 5.2, but are shown on a larger scale to highlight the large error bars.

The larger error bars in the deviation of ĨP in comparison to E mode indicates

that the statistical uncertainties in the non-Gaussian deviation of ĨP are much

larger than that of E mode or temperature. This implies that ĨP field has very

low capability to detect the primordial local type non-Gaussianity.

5.2.2 Betti numbers

Betti numbers for E mode and ĨP are calculated using the method described in

Sec. 4.2.2. This method has not been tested for the accuracy that is required

for the analysis of the present day high resolution maps. Therefore, the results

obtained using this method are correct qualitatively, but are not suitable as

yet for the accurate analysis and application to the observed map.

The threshold value ranging from −4.5 ≤ ν ≤ 4.5 are chosen with the

spacing of ∆ν = 0.5. The Betti numbers, β0 and β1, for Gaussian E mode field

(left panel) and their corresponding non-Gaussian deviations (middle panel and

right panel) are shown in Fig. 5.4. The plot is the average of 1000 realizations

of CMB. The amplitude, shape, and size of error bars of non-Gaussian deviation

for E mode field are again similar to the temperature field (refer to Fig. 3 and

8 of [84]).

The β0 and β1 for Gaussian case of ĨP (left panel) and their corresponding
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Figure 5.4: Betti numbers and their non-Gaussian deviations for E mode, with fNL = 10

and for various smoothing angles.

non-Gaussian deviations (middle and right panels). The plots are average over

1000 realizations. The amplitude of β0 and β1 for Gaussian case are similar

to that of E mode field. The non-Gaussian deviation has an amplitude much

smaller than the E mode for small smoothing angle, while at higher smoothing

angle it becomes comparable. The plots shown in Fig. 5.5 are same as the

Fig. 5.6 but are shown at larger scale to show the large error bars. This again

shows that the ĨP field has low statistical power to detect the primordial local

type non-Gaussianity.



Chapter 5 77

Figure 5.5: Betti numbers and their non-Gaussian deviations for ĨP , with fNL = 10 and

for various smoothing angles.

5.3 Statistical sensitivity of T , E and ĨP to pri-

mordial non-Gaussianity

The statistical sensitivity of temperature, E mode and ĨP to the non-Gaussian

features present in them can be estimated and compared using the quantity,

A, which is calculated by summing the absolute values of the non-Gaussian

deviation expressed in terms of the sample variance from ν = −4.5 to 4.5. A

is defined as,

A = ∆ν
M∑
i=1

(
|∆O(i)| /OG,max

)
σs(i)

, (5.3)
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Figure 5.6: Plots show non-Gaussian deviations in Betti numbers with error bars for ĨP

with the same fNL value and smoothing angles as the middle and right panels of Fig. 5.5,

but are shown on a larger scale to show the large size of the error bars. The error bars are

obtained from the sample variance of 1000 simulations

where M is the number of threshold levels, O is either V1, V2, β0 or β1, and

σs(i) is the sample variance at each the threshold level, i.

The Table. 5.1 shows the value of A for the SMFs, V1 and V2. The number

of threshold levels is M = 13 for V1 and V2. The values of A for temperature

and E mode for these two observables have similar values. This implies that

the E mode is capable of constraining primordial local type non-Gaussianity

independently same as the temperature field. While the values of A for polar-

ization intensity, ĨP , is very low and hence it is not a suitable field for such

analysis.

5.4 Discussion

We analyzed the non-Gaussian features in the E mode and ĨP fields using the

SMFs and Betti numbers. The numerical calculations of non-Gaussian deviation

in the SMFs and Betti numbers of E mode field showed that they have similar
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Field Smoothing angle (θs) A for V1 A for V2

∆T/T

40′ 27.3 22.8

70′ 21.3 14.5

90′ 18.4 26.0

E

40′ 34.8 26.0

70′ 19.4 19.0

90′ 14.0 17.0

ĨP

40′ 1.2 1.2

70′ 1.8 1.6

90′ 1.7 1.5

Table 5.1: Table shows the value of A, defined in Eq. (5.3), for the SMFs, V1 and V2.

shape, amplitude, and size of error bars to that of the temperature field. We

showed that the non-Gaussian deviations of IP are smaller at small smoothing

angles and that it becomes comparable to the temperature at higher smoothing

angles. Additionally, their deviation has different shape and has very large error

bars. We quantified the statistical sensitivity of each of these polarization fields

for the presence of primordial local type non-Gaussianity. We found that the

statistical sensitivity of E mode field is comparable to the temperature field

while it is very low for the ĨP field. Hence from the theoretical point of view,

these calculations suggest that the E mode field can provide an independent

constraint on fNL similar to that of the temperature field while ĨP is not capable

of providing an independent constraint. Since we are ignoring the observational

effect, this reduces the significance of the above findings. These conclusions are

the same as that obtained from the analysis using the PDF of CMB fields. As the

ĨP has distinct non-Gaussian deviation from that of the temperature and E
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mode fields, if all these fields are used in conjunction then they will be useful for

distinguishing different types of non-Gaussianity in the observational data. The

PLANCK collaboration obtained constraint on local type non-Gaussianity, fNL,

of 2.7±5.8 using the temperature data alone [75], and later a value of 0.8±5.0

was obtained by including the E mode data [76]. The error bars has shrunk

by about 14%. As mentioned in Chapter. 3, here also these results confirms

our expectations but it is not as pronounced as our calculations showed due to

the higher noise levels in the polarization data.
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Signature of the primordial

fluctuations in the Stokes

parameters of CMB polarization

6.1 Introduction

We study the theoretical aspects of using the Stokes parameters Q/U for the

analysis of CMB maps in this chapter. First, we analytically study the effect

of rotation transformations about the line of sight on the SMFs of the Stokes

parameter. Then we investigate the effect of the presence of local type pri-

mordial non-Gaussianity and tensor perturbation on the SMFs of Q/U . As our

focus here is on the theoretical issues, we neglect the observational effects in

this analysis.

This chapter is organized as follows. An analytic study of the effect of
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rotation transformations about the line of sight on the variance of Stokes pa-

rameters and its gradients will be presented in the second section. In the third

section, the numerical calculations of the affect on the SMFs due to the global

rotations about the line of sight will be given. Further, an analysis of the

residual error in the numerical calculation of contour length and genus of the

Q/U fields will also be given in the section. Then the calculations and analysis

of the non-Gaussian deviation in the Q/U fields will be shown in the fourth

section. The effect of the presence of tensor perturbation on the SMFs for Q/U ,

and the number density of singularities in the polarization intensity will also be

presented in the section. These results will be summarized and its implications

will be discussed in the fifth section.

6.2 Variance of Stokes parameters and its gra-

dients

We consider the Stokes parameters field, Q,U , and their gradients field,∇Q,∇U .

Here, we investigate how the variance of these fields transform under rotations

about the line of sight. We denote them as

ΣX
0 ≡ 〈XX〉, ΣX

1 ≡ 〈∇X · ∇X〉, (6.1)

where X is either Q or U and 〈. . . 〉 indicates average over the surface of the

sphere.

Let Q(θ, φ), U(θ, φ) be the Stokes parameters measured by an observer O

along each line of sight of the sphere. While an another observer O′ makes the

measurement at each point, but with the co-ordinate system which is rotated
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by the same angle α to that of the observer O at each line of sight. Let the

Stokes parameters measured by the observer O′ be Q′(θ, φ), U ′(θ, φ), where

Q′, U ′ is given by Eq. (2.2).

Consider Q′, U ′,∇Q′, and ∇U ′ along any arbitrary line of sight (θ, φ). We

express these primed quantities in terms of unprimed quantities using Eq. (2.2).

We denote the average over an ensemble of universes as 〈. . . 〉ens. Then the

primed quantities are squared and averaged over the ensemble of universes to

get

〈Q′Q′〉ens = cos2(2α) 〈QQ〉ens + sin2(2α) 〈UU〉ens

+ sin 4α 〈QU〉ens, (6.2)

〈U ′U ′〉ens = sin2(2α) 〈QQ〉ens + cos2(2α) 〈UU〉ens

− sin 4α 〈QU〉ens, (6.3)

〈∇Q′ · ∇Q′〉ens = cos2(2α) 〈∇Q · ∇Q〉ens + sin2(2α) 〈∇U · ∇U〉ens

+ sin 4α 〈∇Q · ∇U〉ens, (6.4)

〈∇U ′ · ∇U ′〉ens = sin2(2α) 〈∇Q · ∇Q〉ens + cos2(2α) 〈∇U · ∇U〉ens

− sin 4α 〈∇Q · ∇U〉ens. (6.5)

The Stokes parameters are expressed in terms of the spherical harmonic

coefficients, aE,`m and aB,`m, using Eq. (2.7) and Eq. (2.4), then we get

Q = −1

2

∑
`m

{
aE,`m (Y2,`m + Y−2,`m)

+iaB,`m (Y2,`m − Y−2,`m)

}
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U =
i

2

∑
`m

{
aE,`m (Y2,`m − Y−2,`m)

+iaB,`m (Y2,`m + Y−2,`m)

}
. (6.6)

Simplification of 〈Q′Q′〉ens given by Eq. 6.2:

QU =
i

4

∑
`m`′m′

{
aE,`ma

∗
E,`′m′ (Y2,`m + Y−2,`m)×

(
Y ∗2,`′m′ − Y ∗−2,`′m′

)
+aB,`ma

∗
B,`′m′ (Y2,`m − Y−2,`m)×

(
Y ∗2,`′m′ + Y ∗−2,`′m′

)
+cross terms

}
, (6.7)

which is obtained by multiplying Q and U from the Eq. (6.6). We assume

statistical isotropy of the perturbations,

〈
aE,`ma

∗
E,`′m′

〉
ens

= δ``′δmm′
〈
|aE,`m|2

〉
ens

(6.8)〈
aB,`ma

∗
B,`′m′

〉
ens

= δ``′δmm′
〈
|aB,`m|2

〉
ens

(6.9)〈
aE,`ma

∗
B,`′m′

〉
ens

= 0. (6.10)

Then the ensemble average of QU is

〈QU〉ens =
i

4

∑
`m

{
〈|aE,`m|2〉ens (Y2,`m + Y−2,`m)×

(
Y ∗2,`m − Y ∗−2,`m

)
+〈|aB,`m|2〉ens (Y2,`m − Y−2,`m)×

(
Y ∗2,`m + Y ∗−2,`m

)}
. (6.11)

The coefficient of |aE,`m|2 and |aB,`m|2 in Eq. (6.11) are complex conjugate of
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each other. The coefficient of |aE,`m|2 can be simplified as follows

(Y2,`m + Y−2,`m)
(
Y ∗2,`m − Y ∗−2,`m

)
= Y2,`mY

∗
2,`m − Y−2,`mY

∗
−2,`m − Y2,`mY

∗
−2,`m + Y−2,`mY

∗
2,`m. (6.12)

Using the conjugate relation given by Y ∗s,`m = (−1)s+mY−s,`−m, where s is the

spin index, in the second term of the RHS of the above equation gives

Y−2,`mY
∗
−2,`m = (−1)2(m−2) Y ∗2,`−m Y2,`−m

= Y ∗2,`−m Y2,`−m. (6.13)

Since m in Eq. (6.11) is summed over from −` to `, and a∗E,`m = (−1)maE,`−m

from the reality condition on E mode field, we can rename −m to m. This leads

to the cancellation of the first two terms in Eq. (6.12). The same cancellation

happens for the coefficient of |aB,`m|2 in Eq. (6.11). Finally we get,

〈QU〉ens =
i

4

∑
`m

{
〈|aE,`m|2〉ens − 〈|aB,`m|2〉ens

}
×
(
− Y2,`mY

∗
−2,`m + Y−2,`mY

∗
2,`m

)
. (6.14)

The two terms in the second line of the above equation are complex conjugates.

Using the conjugate relation we get

Y2,`mY
∗
−2,`m = (−1)m−2 Y2,`mY2,`−m (6.15)

The spherical harmonic functions are of the form Y2,`m = f(θ)eimφ and Y2,`−m =

g(θ)e−imφ, hence each term in the coefficient of Eq. (6.14) is real. Therefore,
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they cancel each other due to their opposites signs. Hence, we get

〈QU〉ens = 0, (6.16)

which is true at every point, (θ, φ), on the sphere. Using Eq. (6.16) in Eq.

(6.2) we get

〈Q′Q′〉ens = cos2(2α) 〈QQ〉ens + sin2(2α) 〈UU〉ens. (6.17)

Assuming 〈QQ〉ens = 〈UU〉ens we get

〈Q′Q′〉ens = 〈QQ〉ens. (6.18)

This relation is true along any arbitrary direction on the sky. Now taking the

average 〈. . . 〉 on both sides, we get

〈〈Q′Q′〉ens〉 = 〈〈QQ〉ens〉. (6.19)

As the order of the average 〈. . . 〉 and 〈. . . 〉ens can be reversed, so we have

〈〈Q′Q′〉〉ens = 〈〈QQ〉〉ens (6.20)

〈
ΣQ′

0

〉
ens

=
〈
ΣQ

0

〉
ens

(6.21)

Simplification of 〈∇Q′∇Q′〉ens in the Eq. 6.4:

Similar to the case of ensemble average on QU , we get for 〈∇Q · ∇U〉ens as

〈∇Q · ∇U〉ens =
i

4

∑
`m

{
〈|aE,`m|2〉ens∇ (Y2,`m + Y−2,`m)×∇

(
Y ∗2,`m − Y ∗−2,`m

)
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+〈|aB,`m|2〉ens∇ (Y2,`m − Y−2,`m)×∇
(
Y ∗2,`m + Y ∗−2,`m

)}
.

(6.22)

Simplifying the factor containing gradients of the Y±2,`m’s as

∇ (Y2,`m + Y−2,`m) · ∇
(
Y ∗2,`m − Y ∗−2,`m

)
= ∇Y2,`m · ∇Y ∗2,`m −∇Y−2,`m · ∇Y ∗−2,`m

−∇Y2,`m · ∇Y ∗−2,`m +∇Y−2,`m · ∇Y ∗2,`m. (6.23)

Following the same steps as in the case of Eq. (6.12), the first two terms gets

canceled when the conjugate relation is used. Further Simplification leads to

the conclusion that the remaining terms are real and hence cancel each other

out. Therefore,

〈∇Q · ∇U〉ens = 0. (6.24)

Again, this zero correlation is true at every point (θ, φ) on the sphere. Using

Eq. (6.24) in Eq. (6.4) we get

〈∇Q′ · ∇Q′〉ens = cos2(2α) 〈∇Q · ∇Q〉ens + sin2(2α) 〈∇U · ∇U〉ens (6.25)

Assuming 〈∇Q · ∇Q〉ens = 〈∇U · ∇U〉ens and taking the average 〈. . . 〉 on both

sides, we get

〈〈∇Q′∇Q′〉ens〉 = 〈〈∇Q∇Q〉ens〉 (6.26)

Interchanging the order of the average 〈〉 and 〈〉ens, we get

〈〈∇Q′∇Q′〉〉ens = 〈〈∇Q∇Q〉〉ens (6.27)
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〈
ΣQ′

1

〉
ens

=
〈
ΣQ

1

〉
ens

(6.28)

We have shown that the variances of Stokes parameters and its gradients

are invariant under a global rotation of same angle about each line of sight. For

the case when the rotation angle varies for different line of sight, the rotation

factors will be part of the integrand. In order to prove the above invariance it is

not necessary to carry out the integration explicitly and hence the above proof

is applicable for direction dependent rotation also. But this will not hold for

the case of incomplete sky due to the masking of Galactic and point sources,

as the relations in Eqs. (6.8) and (6.9) are no longer applicable because the

statistical isotropy is broken in this case. Therefore in the case of incomplete

sky, 〈ΣQ,U
0 〉ens and 〈ΣQ,U

1 〉ens are not invariant under rotations about the line of

sight.

6.3 Scalar Minkowski Functionals of Stokes pa-

rameters

We investigate the effect on the SMFs of Q and U due to the rotations about the

line of sight. We expect the fields Q and U to have Gaussian distribution when

the primordial fluctuations, both the scalar and tensor type, are Gaussian.

Then their SMFs will be given by Eq. (4.7). We denote rc =
σ0

σ1

=

√
Σ0√
Σ1

, which

is referred to as the correlation length of the structures of a random field. From

the Eq. (4.7), the amplitude of SMFs are dependent on the powers of rc. As

shown in Sec. 6.2, the variance ΣX
i for X = Q,U and hence rc are invariant

under arbitrary rotation about each line of sight. Therefore, the SMFs must

also be invariant. But this does not hold for incomplete sky. In the subsequent
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Figure 6.1: The plot of V1 is shown for Q,Q′ (left panel) and U,U ′ (right panel) for the

smoothing angles θs = 20′ (small red dashed lines) and θs = 40′ (long blue dashed lines).

Q′, U ′ are obtained by a global rotation of about α = 45◦ in each line of sight. The plots

corresponding to the primed and unprimed are indistinguishable, and they show that the

amplitudes are invariant under global rotation. All these plots are obtained by averaging

over 1000 realizations and the error bars are the corresponding sample variance. Similarly,

the plots of V2 are shown in the lower panels.

analysis, we will only focus on the full sky maps.

We consider simulations of Q and U fields using scalar perturbation with

Gaussian distribution. The fields Q′ and U ′ are obtained from Q and U by

global rotation with an angle of about α = 45◦ about each line of sight. We

use SG method for the calculation of SMFs. The contour length and genus of all

these fields are shown in Fig. 6.1 for smoothing angles θs = 20′, 40′. The plots

show that the contour length and genus are invariant under global rotation.

We obtain the same result for different choices of α.

We numerically calculate the residual error defined in Eq. (4.15) for Q and
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Figure 6.2: Upper panels show the residuals defined in Eq. (4.15) of V1, for Q (left) and

U (right) with the smoothing angles θs = 20′ (red dashed lines) and θs = 40′ (blue dashed

lines) with ∆ν = 0.25, 0.64, 1. There are average over 1000 maps. The analytic form of

residual given by (4.16) for a Gaussian field is shown with black dotted lines. Lower panels

show the same but for the residuals of V2.

U (dashed lines) and the analytic form obtained from Eq. (4.16) for a Gaussian

field (black dotted lines), which are shown in Fig. 6.2 for different smoothing

angles θs = 20′, 40′. The calculations for various bin sizes ∆ν = 0.25, 0.65, 1

are also shown. In the analytic case, the residual increase with larger bin sizes

and they are not affected by the variation of smoothing angle. The residual

error in the contour length for Q and U are nearly same and appears to agree

with the analytic form. When we zoom into the plots, we observe that there

is noticeable difference between the dashed and dotted lines at small bin sizes.

This difference is more significant at larger smoothing angles. While, they show

good agreement at larger bin size, such as, for the case of ∆ν = 1. Similar
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kind of behavior is observed in the genus residuals but the difference between

the dashed and dotted lines at small bin sizes are much larger. Further, there

is a small difference between the residuals in Q and U .

The residual calculations was repeated for temperature maps and we have

reproduced the results in [118]. Therefore, the disagreement between the nu-

merically calculated residual and the analytic form at small bin size is not due

to the errors in the numerical calculations. This disagreement may be due to

the spin-2 nature of Q and U . Since there is a good agreement in the case of

temperature which is a scalar field. In particular during the implementation

of the SG method, the covariant derivative of a scalar field are used instead of

the appropriate covariant derivative of spin-2 fields relevant for Q and U fields,

which could be the reason behind the disagreement.

6.4 Aspects of primordial fluctuation in the

Stokes parameters of CMB

6.4.1 Primordial non-Gaussianity

We investigate the effect on the SMFs of Q and U fields due to the presence

of primordial local type non-Gaussianity. Our aim here is to study the non-

Gaussian features in these fields, hence we use full sky maps. In this analysis,

the tensor-to-scalar ratio, r, is taken to be zero. We use the non-Gaussian E

mode simulations provided by Elsner and Wandelt. Then the Gaussian and

non-Gaussian Q/U maps are constructed with the chosen fNL values. These

maps use HEALpix convention described in Sec. 2.1 for defining the x − y

coordinates at each line of sight. Hence, we compare maps that uses the same
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x−y coordinates at each line of sight. We mainly use the SG method to estimate

the SMFs of these fields. Nevertheless, we have repeated the calculations using

the CND REG2D method and the results agree with each other.

The SMFs of Q and their non-Gaussian deviation with fNL = 1000 are

shown in Fig. 6.3. The calculations of U are the same as Q as expected,

hence are not shown. The top panels show SMFs for Gaussian case and non-

Gaussian case for fNL = 1000 with the smoothing angle θs = 5′. The plots

corresponding to these two cases are indistinguishable by the eye. The lower

panels show the non-Gaussian deviations with error bars for fNL = 1000. The

non-Gaussian deviations at lower fNL values are statistically noisy. With the

main intention to study the shape and amplitude of non-Gaussian deviation

in Q, we have chosen unrealistically large values of fNL. The amplitude of

the non-Gaussian deviations in Q are much smaller than that obtained from

the temperature (refer to Fig. 2 of [68]) and E mode (refer to Fig. 5.1).

The shape of deviation is different from the temperature and E mode fields.

The non-Gaussian deviation in genus is similar to the cubic order primordial

non-Gaussianity parametrized by gNL (see Fig. 4 of [105] and Fig. 1 of [69])

In order to apply this non-Gaussian analysis for masked observational data,

we need to compute the SMFs of the corresponding Gaussian component. This

can be done by calculating the amplitude of SMFs using the Eq. 4.7, which

depends on the variances of the field. This method is approximate and is

applicable only for the weakly non-Gaussian fields. Then the non-Gaussian

deviation can be estimated by subtracting the SMFs of the Gaussian component

from that obtained from the observational data. But the comparison between

the simulation and observational data is possible only when both the map have

the same x− y coordinate choices along each line of sight.
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Figure 6.3: The top three panels show the SMFs for Gaussian and non-Gaussian case with

fNL = 1000. The difference between the Gaussian and non-Gaussian case is small, and

it is indistinguishable by the eye. The lower panels shows the corresponding non-Gaussian

deviations for different smoothing angles. We have chosen large values of fNL as the deviation

becomes statistically noisy at small values. These plots are average over 1000 maps and the

error bars are their sample variances.

6.4.2 Primordial tensor perturbations

Here, we investigate the effect of tensor perturbations on the Q and U fields.

We use the simulations of E mode and B mode with Gaussian distribution. For
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this simulation, we use ΛCDM cosmological parameters: Ωch
2 = 0.1198, Ωbh

2 =

0.02225, H0 = 67.27, ns = 0.9645, `n(1010As) = 3.094, τ = 0.079, taken from

the 2015 PLANCK data [51]. These maps have resolution with Nside = 1024.

In Sec. 3.2, we showed that the PDF of IP with a Gaussian Q and U ,

has Rayleigh distribution. Further in Sec. 3.3, we found that the PDF of IP

varies noticeably with the tensor-to-scalar ratio, r. Since the PDF is completely

described by σ0, the effect on it due to the presence of tensor perturbation can

be understood by studying the effect on the σ0. Here we take this observation

further and study the variation of σi’s and r−1
c with r. Then we discuss its

impact on various fields.

The plot showing the variation of σ0 and σ1 with r are shown in Fig. 6.4.

The chosen r values range from 0.05 to 0.2. In order to see the variation at

different scales, two smoothing angles 10′ and 90′ are chosen. We observe that

σ0 and σ1 increases due to the presence of tensor perturbation. The slope of

these plots vary with the smoothing scale. On visual inspection these plots

appear to be linear, but actually σ0 and σ1 are not linear in r which can be

noted when we plot rc versus r.

The plot of r−1
c vs r, for r = 0.05 to 0.2 are shown in Fig. 6.5 with different

smoothing scales. The presence of tensor perturbation results in the decrease

of the value r−1
c . Further, we observe that r−1

c decreases with the increasing

r. The amplitude of SMFs are proportional to the power of r−1
c . Hence these

observations indicate than the amplitude of SMFs will decrease with r. Since

V1 ∝ r−1
c and V2 ∝ r−2

c , the genus is more sensitive than the contour length to

the presence of tensor perturbation.

For the polarization intensity, it was shown by Naselsky and Novikov [125]

that its SMFs, Vi’s, are proportional to r−ic , for i = 1, 2. Hence the behavior
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Figure 6.4: The plot showing the variation of σ0 with r for smoothing angles θs = 10′, 90′

is shown in the left panel. The corresponding plot of σ1 is shown in the right panel. The

star symbol indicate the r values where the calculations was done. These plots are average

over 1000 simulations.

of r−1
c implies that the amplitude of the SMFs for IP will also decrease with r.

The points on the CMB field where Q = 0 = U and hence IP = 0, are referred

to as singular points. The number density of singularities in CMB polarization

intensity were studied in [126, 127]. Let Nsing denote the number density of

singularities. In [125], it was also shown that Nsing = 1/4πr2
c . Therefore,

the behavior of r−1
c shows that Nsing is sensitive to the presence of tensor

perturbation and it decreases with r.

6.5 Discussion

We analyzed the theoretical aspects related to the usage of Q/U fields for the

searches of primordial non-Gaussianity using SMFs. We showed analytically
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Figure 6.5: The plot of r−1
c versus r with smoothing angles θs = 10′, 90′. These are

average over 1000 simulations. The star symbol indicate the r values where the calculations

was done.

that the SMFs of Gaussian Q/U fields are invariant under rotation transforma-

tions about the line of sight. This statement holds only for the maps with full

sky coverage and hence it will break down for the case of incomplete sky. Then

we studied the effect of local type primordial non-Gaussianity on the SMFs of

Q/U fields. We found that the amplitude of non-Gaussian deviation is about

an order of magnitude lower than that of temperature and E mode, and further

their shape is also different. For the analysis of data from the future experi-

ments which are sensitive enough to detect tiny traces of non-Gaussianity in

the CMB fields, the above findings will be useful for distinguishing local type

non-Gaussianity from different physical sources. We also studied the effect of

the presence of tensor perturbation on the morphological properties of polar-

ization fields. We found that the SMFs of Q/U and IP are sensitive to the

presence of tensor perturbations and that their amplitude decreases with r.
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Further, we showed that the number density of singularities in the IP field is

also sensitive and it also decreases with r. These findings can be useful for

the searches of B mode polarization in the future experiments. As we have

neglected the observational effects in the above analysis, this will decrease the

statistical significance of these results.





Chapter 7

Application of Tensor

Minkowski Functionals to CMB

analysis

7.1 Introduction

In this chapter, we introduce Tensor Minkowski Functionals as a new statistical

tool for the analysis of CMB maps. Since these are tensor generalization of SMFs,

these are capable of capturing more morphological features in the maps. We

develop a code to compute TMFs for a random field on a plane. Then we analyze

and quantify the inaccuracies in the numerical computation of α and β, defined

in Eq. (4.34). Finally, we obtain the theoretical prediction for the value of α

and β assuming standard ΛCDM model.

This chapter is organized as follows. In the second section, we describe the

algorithm used to compute α and β for a given excursion set on a plane. We

99
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also quantify the numerical errors in these quantities due to pixelization. In the

third section, the numerical computation of the variation of α and β with the

threshold value is presented for simulated CMB fields. We also give an estimate

of α and β expected for a Gaussian and isotropic CMB fields. A summary of

these results and a discussion of its implication will be given in the last section.

7.2 Numerical computation of α and β for an

excursion set on a plane

7.2.1 Algorithm to compute α and β

Consider an excursion set on an Euclidean plane. In order to compute α, β,

defined in Eq. (4.34), for the excursion set, we first compute W 1,1
2 given by

Eq. (4.29) for each individual structure. For this computation, we follow the

algorithm in [123]. The code that we have built based on this algorithm will

be referred to as the TMFCode. Here, we describe this algorithm.

Consider a planar field which is pixelized with NpixxNpix number of pixels.

The shape of each pixel is considered to be a square. The index (i, j) labels

the pixels, which ranges from 1 to Npix along each dimension. The excursion

set, K, picks a finite number of pixels out of these pixels. First, the individual

structures in the excursion set are identified and labeled. For a pixel say

(i1, j1) that belongs to the excursion set, the neighbouring pixels and all the

pixels connected to it are labeled as structure 1. Then it scans for a pixel say

(i2, j2) contained in K but which does not belong to the structure 1, identifies

all the pixels connected to it, and labels them as structure 2. This process is

repeated until all the structures in the excursion set are identified and labeled.
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Next, the line segments which forms the boundaries of the structures needs

to be constructed, which uses the marching square algorithm. The entire area

of the planar field is divided into square shaped area segments with the pixel

centers of the four adjacent pixels as the vertices. Each of these area segments

is assigned with none or one or two line segments based on whether the pixel

centers at the four adjacent vertices belongs to the excursion set or not. A

given pixel center may either belong to the excursion set or not, so it has

two possibilities. Therefore, there are in total 16 possibilities for different

combinations of four adjacent pixel centers. The area segments for all these

different combinations are shown in Fig. 7.1. The black and white circles are

the pixel centers. The black circles are the pixel centers which belong to the

excursion set while white circles corresponds to those which are not contained

in the set. The line segments for each of these area segments are constructed

as follows: the point on the edges, which connect black circle and white circle,

of the area segment where the field value becomes equal to threshold value is

found by linear interpolation, and then the line segments are constructed with

these points as the vertices. The direction for these line segments, which is

part of a closed polygon, are assigned such that it is counterclockwise for a

closed polygon enclosing a connected region and clockwise if it encloses a hole.

The line segments for all the combinations of four adjacent pixel centers are

also shown in Fig. 7.1. These line segments which form the boundaries of the

structures, defines the edges vector, ~e(i,i+1) for i = 1,. . .nv − 1, in Eq. (4.29).

Finally, the tensor, W 1,1
2 , is computed for each structure using the Eq.

(4.29). Then the ratio of eigenvalues, α, β, are computed using two different

ways of averaging as shown in Eq. (4.34).
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Figure 7.1: The boundary and direction are shown for different configurations of four

adjacent pixels. The small black and white circles are pixel centers. The black circles are

pixels which belong to the excursion set while white circles are not.

7.2.2 Anisotropy measure of an elliptical structure on a

plane

In a pixelized space, a continuous contour is approximated by a polygon which

results in numerical inaccuracy in the computation of W 1,1
2 . We consider an

excursion set containing an elliptically shaped structure as shown in the Fig.

4.5.

The β value for an ellipse from analytic formula in Eq. (4.26), the value
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q/p β from β from TMFCode % error

analytical

formula

10002 20002 30002

pixels pixels pixels

1.0000 1.0000 1.0000 1.0000 1.0000 0.0

0.8000 0.7154 0.7642 0.7641 0.7641 6.8

0.7346 0.6293 0.6902 0.6901 0.6901 9.7

0.7262 0.6185 0.6790 0.6803 0.6799 9.9

0.6000 0.4638 0.5418 0.5417 0.5418 16.8

0.5000 0.3518 0.4371 0.4370 0.4370 24.2

0.3000 0.1602 0.2432 0.2433 0.2432 51.8

0.1000 0.0274 0.0739 0.0741 0.0741 170.4

Table 7.1: The Column 2 shows the β values obtained from the analytic formula in Eq.

(4.26) for different aspect ratios q/p in Column 1. The Column 3 shows the β values from the

numerical computation using TMFCode for different resolutions. The percentage numerical

error in β for 30002 pixels are shown in Column 4.

from numerical computation using TMFCode and the corresponding numerical

error due to pixelization are shown for different aspect ratios in Table. 7.1.

This is shown for different resolutions 10002, 20002, and 30002 pixels. In this

case, α = β since the excursion set consists of a single structure. The β

value obtained from numerical computation does not significantly vary with

the resolution for a fixed aspect ratio. The numerical error in β increases as

the aspect ratio, q/p, is decreased. The continuous contour of the ellipse is

approximated with a polygon, hence it fails to capture the true curvature at
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every point on the contour. This numerical error is due to the pixelization.

The section of the contour with high curvature results in large error in the

numerical computation of β. The approximation to polygon systematically

over estimates the value of β relative to those from the analytic formula for

the continuous ellipse. This observation will be used to approximately correct

for the numerical error due to pixelization in β for CMB fields.

7.2.3 Orientation measure of two elliptical structure on

a plane

We study the numerical error in α due to pixelization. Consider an excursion

set with two ellipses with fixed aspect ratio q/p = 0.5. Due to pixelization,

these ellipses will be approximated as polygons. α of the excursion set using

analytic formula in Eq. (4.26), α from numerical computation using TMFCode

for different resolution, and the numerical error are shown for different relative

orientation between the major axes of the two ellipses in Table. 7.2. The

Column 1 shows the angle between the major axes of the ellipses. The case

where the ellipses are perfectly aligned with each other corresponds to 0◦.

While when the major axes of the ellipses are perpendicular to each other, they

are completely unoriented with each other. The value of α does not significantly

vary with the resolutions for a fixed relative orientation between major axes of

the ellipses. The numerical error due to pixelization decreases as the ellipses

become more and more unoriented to each other for a fixed resolution. When

the major axes of the ellipses gets completely oriented then α = β. Therefore,

when the ellipses are highly aligned then the numerical error in α will become

equal to the numerical error in β. As the ellipses become unaligned with each
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Angle between α from α from TMFCode % error

major axis analytic

of the ellipses formula

10002 20002 30002

pixels pixels pixels

0◦ 0.3518 0.4369 0.4371 0.4369 24.2

20◦ 0.3787 0.4668 0.4668 0.4674 23.4

45◦ 0.4936 0.5665 0.5660 0.5661 14.7

60◦ 0.6132 0.6720 0.6724 0.6727 9.7

90◦ 1.0000 1.0000 1.0000 1.0000 0.0

Table 7.2: The Column 2 shows α for an excursion set with two ellipses obtained from the

analytic formula in Eq. (4.26). α obtained from the numerical computation using TMFCode

are shown in Column 3 for different resolutions. The percentage numerical errors for the

case of 30002 pixels are given in Column 4. These are shown for different relative orientation

angle between the major axes of the ellipses in Column 1.

other, the α will become close to one irrespective of the value of β. Therefore,

the numerical error also decreases. In the application to data whose α is close

to one, the numerical error due to pixelization can be neglected. While when

the data has α close to β, then the numerical error will no longer be negligible.

These results will be used during the analysis of CMB fields.
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7.3 α and β for an excursion set on a sphere

7.3.1 Stereo-graphic projection and its effect on α and

β

In order to compute α and β for an excursion set of a field on a sphere, we use

stereo-graphic projection to map the field on a sphere onto a plane. A brief

description of stereo-graphic projection was given in the Subsection. 4.2.2.

This is a conformal map and hence it preserves the angle and shape of the

structures. While the size of the structure will not be preserved. Therefore

the structures that lie further from the poles will have same shape but its size

will be enlarged. This effect can be observed in Fig. 7.2 where the projection

of elliptically shaped structure on the sphere is shown for the ellipse located

at different latitude of the sphere. When the structure is enlarged by a then

W 1,1
2 will scale as a. This is because from Eq. 4.17, ~r scales as a, κ scales as

a−1, dl scales as a while n̂ is invariant. Hence the two structures with the same

shape but with different size will have equal β. Therefore, the stereo-graphic

projection is a good choice for the computation of β.

Consider a set of structures having a given distribution of shapes. These

structures can be arranged with different relative alignment in many ways. The

value of α measures the extent of orientation in each of this arrangement of

structures. In other words, α measures the net orientation for a given distribu-

tion of shapes. In the case of stereo-graphic projection, as the structures away

from the poles are scaled, it changes the distribution of shapes in the struc-

tures and hence effects the value of α leading to errors. Since the scaling effect

is significant for structures close to the equator, these errors can be reduced



Chapter 7 107

Figure 7.2: Images show the stereo-graphic projection of excursion set with an elliptically

shaped structure, with an aspect ratio of 0.5, which is located at different latitude on the

sphere. We can observe that the shape of the structure is preserved while the size gets

enlarged as it becomes closer to the equator of the sphere.

by removing structures close to the equator from the excursion set. A simple

analysis of these errors are presented in the next subsection.

7.3.2 Orientation measure for structures of an excursion

set on a sphere

The quantity α is capable of detecting any alignment in the structures on a

plane (refer to Subsection. 7.2.3). Here, we extend this study to the case

of an excursion set on a sphere. We consider an excursion set with many

elliptically shaped structures with fixed aspect ratio of 0.7 on a sphere, whose

major axes are all oriented towards the pole. This implies that these structures

possess a net orientation. This sphere as seen from two different directions and

the corresponding stereo-graphic projection with sheet of the paper as the

projection plane are shown in Figs. 7.3 and 7.4.

The value of α (Column 2) and O (Column 3), defined in Eq. (4.35), for

a sphere with elliptically shaped structures with different projection planes

(Column 1) are shown in Table. 7.3. A projection plane is specified with the
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Figure 7.3: Image shows a sphere containing elliptically shaped structures (left image)

as seen from above the north pole and the corresponding stereo-graphic projection (right

image) with sheet of the paper as projection plane.

Figure 7.4: Image shows a sphere containing elliptically shaped structures (left image) as

seen from any point just above the equator and the corresponding stereo-graphic projection

(right image) with sheet of the paper as projection plane.

angle between the equatorial plane and the projection plane, which is repre-

sented as δ. The projection images for the case of δ = 0◦ is shown in the right

image of Figs. 7.3 while for δ = 90◦ in Fig. 7.4. For the case of δ = 0◦, the

structures show negligible orientation. While the structures are highly oriented

when δ = 90◦. These images show that the orientation of structures depend on

the choice of projection plane. We estimate α and O for these cases. For the

case of δ = 0◦, the value of α is close to 1 and O is close to 0, which indicates

that the structures have negligible orientation. While for the case of δ = 90◦,
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Angle b/w equatorial plane α O

and projection plane (δ)

0◦ 0.9963 0.0107

45◦ 0.9322 0.2204

90◦ 0.7259 0.9259

Table 7.3: The table shows the value of α (column 2) and O (column 3) which is defined in

Eq. 4.35 for different projection planes (column 1). For this calculations, a sphere containing

elliptically shaped structures are considered.

we get α = 0.73 and O = 0.93 which indicates that the structures possess a

net amount of orientation. These calculations show that these quantities are

capable of detecting and quantifying any orientation in the structures on a

sphere.

In the above example, we considered structures on a sphere which are

aligned with each other. For this case, the value of α shows a broad range from

0.73 to 1 for different stereo-graphic projection plane. On the other hand, if the

structures on a sphere are randomly oriented. Then the structures on different

projection planes will also be randomly oriented. Hence α will be close to 1

for all these projection planes. In this way any alignment in the structures on

a sphere can be detected.

Further, we study the elliptically shaped structures on a sphere, whose

major axes are aligned towards the pole, which are located far away from the

equator and those that are near the equator. We consider the structures that

lie in the range of colatitude angle (0◦−70◦ and 110◦−180◦) and those that lie

in the range of colatitude angle (70◦−110◦). The value of α for these two cases,

and the percentage difference between them, for different projection planes are
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Angle b/w α α % difference

equatorial for structures in for structures in

plane and 0◦ ≤ θ ≤ 70◦ 70◦ ≤ θ ≤ 110◦

projection and 110◦ ≤ θ ≤ 180◦

plane (δ)

0◦ 0.9963 1.0000 0.37%

45◦ 0.9322 0.9612 3.11%

90◦ 0.7259 0.8065 11.10%

Table 7.4: The table shows the value of α for a sphere containing elliptically shaped

structures. The Column 2 shows α for the case where the structures fall in the range of

colatitude angle 0◦ ≤ θ ≤ 70◦ and 110◦ ≤ θ ≤ 180◦ are considered, with different projection

planes given in Column 1. The Column 3 shows the same but for the structures that lie in

the range of colatitude angle 70◦ ≤ θ ≤ 110◦. The percentage difference between these two

cases are shown in Column 4.

shown in Table. 7.4 . The percentage difference shows that it is small when

the structures have negligible orientation. While it increases as the structures

becomes more and more aligned with each other. The reason for this error

is: even though the given excursion set on the curved surface of a sphere have

structures completely aligned with each other, the structures near the equator

becomes randomly oriented when it is projected onto a plane. Hence, all the

structures that fall in the range of (70◦ − 110◦) will be removed during the

analysis of CMB fields.
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7.4 Application to simulation of CMB fields

with ΛCDM model

7.4.1 α and β for simulated CMB fields

The excursion set of a random field varies systematically with the threshold

value. This will have an imprint on the boundaries of the structures in the

excursion set. Therefore, the tensor, W 1,1
2 and hence α and β, will be able to

capture this systematic behavior with the threshold value.

We compute α and β for simulated CMB temperature and E mode fields,

with Gaussian and isotropic distribution. In order to analyze the intrinsic

shape and orientation of structures in the excursion set of these fields. The

CMB fields are used which are scaled by the RMS value. Threshold values lying in

the range −6 < ν < 6 with 20 bins are chosen. The value of α and β obtained

will provide an estimate of their expected values for Gaussian and isotropic

random fields.

In the present analysis, we use CMB fields with the cosmological parame-

ters obtained from the PLANCK data [51]. We use temperature and E mode

fields with scalar perturbations. The resolution corresponds to the maximum

multipole `max = 2200 and Nside = 1024. Gaussian smoothing removes small

structures and hence the smoothing angle is chosen such that temperature and

E mode field have similar number of structures. We choose the FWHM= 20′ for

temperature, and 50′ for E mode.

We compute W 1,1
2 using the algorithm described in the previous section.

The projected plane is pixelized with (3Nside) x (3Nside) pixels. This was chosen

so that the total number of pixels on the projected plane is larger than the total
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Figure 7.5: The top panels show αT (left panel) and βT (right panel) as a function of ν

for both hot spots and cold spots of the temperature field (represented with the superscript

T ). The middle panels show the same for only hot spots (represented with the subscript h).

The bottom panels show the same for only cold spots (represented with the subscript c).

These are average over 100 simulations of CMB. The error bars are the corresponding sample

variance.

number of pixels on the sphere. As described in the previous subsection, we

remove the structures that fall on the colatitude angle from θ = 70◦ to 110◦

in order to reduce the numerical error. In order to remove these structures, a

map marking these pixels is first constructed and then it is stereo-graphically

projected onto a plane. Then all of the structures in the excursion set that

overlap with these marked pixels are completely removed.

The Fig. 7.5 shows the variation of αT and βT as a function of ν for

temperature field. The zoomed in version is shown in Fig. 7.6. The top panels
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Figure 7.6: The figure is the same as the Fig. 7.5 but where the threshold range is enlarged.

show αT (left panel) and βT (right panel) computed using both the structures

hot spots and cold spots. These are average over 100 maps and the error bars

are the respective sample variance.

The αT value is close to one when |ν| ≈ 1 with small error bars. This

indicates that the structures in the CMB temperature maps has no net orienta-

tion. Initially we had assumed that the maps are statistically isotropic, hence

the above result recovers this input assumption. In this calculation, the galac-

tic plane is chosen as the stereo-graphic projection plane. In order to search

for net orientation, the calculations should be repeated for different choices of

projection planes whose necessity is described in Appendix. 7.3.2. The figure
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shows that the variation of αT with the threshold is symmetric about ν = 0.

At |ν| > 1, the value of αT is less than one with large error bars. This is

because the number of structures at large ν values are very few. This in turn

leads to small sample size resulting in net orientation which grows with |ν|.

The Fig. 7.5 shows the variation of βT as a function of ν and the enlarged

version is shown in Fig. 7.6. The βT vs ν has a characteristic shape. The

figure shows that the structures in the temperature field possesses a net intrinsic

anisotropy. The net anisotropy at different threshold values is about βT ' 0.68.

Error bars are small at ν ≈ 1 where the number of structures are large similar

to that of αT . A lot of sample maps does not contain any structures, hence

when the βT value is averaged over the sample maps it leads to a smaller value

and large error bars. Further, the βT value shows a sharper drop with ν than

the αT value at larger threshold values.

We compute α and β of temperature field for hot spots and cold spots

separately. The Fig. 7.5 shows the plots of α (left panel) and β (right panel)

for hot spots (with subscript h) in the middle panels. While the bottom panels

shows the same for cold spots (with subscript c). The Fig. 7.6 shows the

enlarged version of the plots. The plots show that they are symmetric around

ν = 1 for hot spots while for cold spots it is around ν = −1. This shift in

the center of the plot is because there are more hot spots at positive threshold

values and there are more cold spots at negative threshold values. Further, the

shapes are not symmetric around the center of the plots. We observe that the

shape of αTh vs ν and αTc vs ν are mirror images of each other. Similarly, the

shape of βTh and βTc are also symmetric. The net intrinsic anisotropy of both

the structures, hot spots and cold spots, are equal.

The Fig. 7.7 shows the value of α and β of E mode field (with superscript
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Figure 7.7: The figure is the same as the Fig. 7.5 but for E mode field.

E). The enlarged version of the plots are shown in Fig. 7.8. The net anisotropy

of E mode field is close to 0.69 while for the temperature field it is close to

0.68. This implies that the structures in the temperature and E mode fields

are slightly different which may have originated due to the different mechanism

of evolution in these fields. Other than this point, the plots of E mode field

shows similar behavior to that of the temperature field.

7.4.2 Numerical correction for α and β due to pixeliza-

tion

The structures in the excursion set of CMB fields have continuous contour upto

quantum level. But the values of α and β computed in the previous subsection
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Figure 7.8: The figure is the same as the Fig. 7.7 but where the threshold range is enlarged.

was obtained with polygons on the pixelized space. In Sec. 7.2.2, it was shown

that the numerical error in β due to pixelization increases as the aspect ratio

of ellipse decreases. We correct for this numerical error by using the following

points: structures in the CMB fields with very high curvature are rare and

any curved section of the structure can be approximated with a section of an

ellipse. Hence an approximate correction for β can be estimated by subtracting

the numerical error in elliptic polygon for respective β values, i.e. β = 0.68

for temperature and 0.69 for E mode, by interpolating the values in Table.

7.1. Correcting for the β values we get β = 0.62 for temperature field and

β = 0.63 for E mode field. These are the intrinsic anisotropy of structures in

the CMB fields predicted by the standard ΛCDM cosmology. This originates from

the anisotropy due to the primordial fluctuations and the subsequent evolution
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during later epochs, such as the recombination and reionization eras.

In Sec. 7.2.3, it was shown that the numerical error in α due to pixelization

is negligible for α ≈ 1. The value of α for simulated CMB fields was obtained to

be one. Hence no correction is required for this case.

7.5 Discussion

We have introduced the TMFs as a new statistical tool for the analysis of CMB

data. We have developed a code, referred as TMFCode, for computing α and β of

a random field on a plane. The numerical errors in these quantities due to pix-

elization was analyzed. We found that the pixelization error in net anisotropy

increases as the structures become more and more elongated. In the case of

net orientation, the error is negligible when the structures are unoriented and

it increases as the structures become more and more aligned with each other.

Then we computed α and β for Gaussian and isotropic simulations of pure

CMB. We found that the net anisotropy in hot spots and cold spots according

to the standard ΛCDM model are: β = 0.62 for temperature and β = 0.63 for

E mode, where the values are corrected for pixelization error. Further, the net

orientation, α, for all the structures in the temperature and E mode was found

to be one, which is as expected for a Gaussian and isotropic field.

In the earlier works [130, 131, 132], the shape of hot spots and cold spots

of CMB maps was used for the analysis. They used ellipticity parameter, ε,

to measure the anisotropy in the shape, which is defined as the ratio of the

distance of farthest and closest point on the contour of the structure from its

center. They obtained the value ε ∼ 2.2. Approximately, ε is related to β as

ε ≈ 1/β. As the β parameter is capturing the overall shape using the entire
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closed contour of a structure, hence the value of ε is larger than 1/β ∼ 1.6.



Chapter 8

Application of Tensor

Minkowski Functionals to the

analysis of PLANCK data

8.1 Introduction

In this chapter, we apply Tensor Minkowski Functionals for the analysis of CMB

maps obtained by the PLANCK satellite. In the observational data, morpholog-

ical features are generated due to the instrumental effects. Here, we study its

effect on the value of α and β of the CMB maps. Then, we analyze and quantify

the consistency of different PLANCK data sets with the theoretical expectation.

This chapter is organized as follows. A description of the PLANCK data is

given in the second section. The effect due to the presence of CMB lensing and

instrumental effects on α and β is studied in the third section. An analysis

and estimate of the level of consistency between different PLANCK data sets and

119
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the prediction from the standard model of cosmology is also presented. These

results are summarized and its implications are discussed in the final section.

8.2 PLANCK data

The PLANCK satellite has provided us with the temperature, Q, and U maps.

It carried two instruments, namely, Low Frequency Instrument (LFI) and High

Frequency Instrument (HFI). The LFI operates in 3 frequency bands, namely,

30GHz, 44GHz, and 70GHz. While the HFI operates in 5 frequency bands,

namely, 100GHz, 143GHz, 217GHz, 353GHz, 545GHz, and 857GHz. The tem-

perature was mapped in all the 9 frequency bands while the polarization in the

first 7 frequency bands mentioned above.

The PLANCK data release includes 8th generation Full Focal Plane simula-

tions, namely, FFP8, for each frequency1 [128]. These simulations are generated

in six different components, namely, lensed scalar perturbation, tensor per-

turbation, non-Gaussian perturbation, two foreground components with and

without bandpass filter, and noise. These components are simulated for each

detector, which includes instrumental, scanning and analysis effects. Then a

realization of CMB map can be constructed by adding all these components with

the weightage of
√
r for tensor component and fNL for non-Gaussian compo-

nent. For the subsequent analysis, we only use lensed CMB component with

scalar perturbation and the noise component. For masking these simulation

maps, we use preferred mask that is provided in the PLANCK data, namely UT78,

for temperature and UPB77 for polarization. Both of these have a sky fraction

1http://pla.esac.esa.int/pla/

http://pla.esac.esa.int/pla/
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of about 77%.

The CMB maps are produced using the observational map from different fre-

quency channels using the following foreground separation methods: COMMANDER,

NILC, SEVEM, and SMICA, which are provided in the PLANCK data [129]. COMMANDER

is a PLANCK software code which is implemented in pixel space. The different

foreground components like synchrotron, free-free and spinning dust are mod-

eled with a few parameters per pixel. These parameters include the amplitude

at the given frequency, a few spectral parameters and instrumental parame-

ters. These are then fitted with the data and the CMB maps are obtained. In

NILC or Needlet-ILC, the CMB maps are constructed from frequency maps using

internal linear combination in needlet space, where needlet is a construction

which is intrinsically spherical but localized in pixel space. These combination

weights depends on the frequency, and varies over the sky and with the multi-

pole. The SMICA also uses linear combination of frequency channel maps with

weights, which are frequency and multipole dependent. But this uses different

parametrizations from the NILC. The SEVEM technique generates clean CMB map

at different frequencies by fitting templates. These templates are constructed

with the lowest and highest frequency channels, where the foreground compo-

nent dominates. These are then subtracted from the frequency channels which

is dominated by CMB signal to get the clean CMB maps. Each of these data

set are further split into five maps, namely, full mission, half mission 1, half

mission 2, half ring 1 and half ring 2. The full mission is constructed using the

data from full PLANCK mission. In order to construct other maps, the CMB maps

are divided into rings of constant latitude. In the case of HFI, these rings are

divided into two distinct sets each containing half of the rings, using which the
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two half mission maps are constructed. For LFI, half mission 1 map is gener-

ated using data from first half of the mission while the half mission 2 map uses

the data from the rest of the mission. Half ring 1 and 2 maps are constructed

using the first half and second half of each of the rings respectively. In total,

there are 20 different maps. Further, note that these polarization maps contain

systematics at large angular scales. Hence all the simulation and observational

polarization maps are high pass filtered, which means that all the multipoles

with ` < 30 are removed.

For masking the Galactic and point sources in the foreground separated

maps, confidence masks provided for each of them are used. The mask for

temperature map has a sky fraction ranging from 81.9% to 96.4%. While the

mask for polarization map ranges from 79.4% to 96.5%. We will also use the

preferred masks for consistency check. But we remove the structures that lie

within ±20◦ from the equator from the CMB maps during the analysis, which

corresponds to a sky fraction of about 77%, hence the choice of mask will not

have any big impact on the results.

8.3 α and β for masked CMB fields

Since the values of α and β for a CMB map are computed on the pixel space, it is

straight forward to calculate these quantities for a masked CMB map. Here, we

describe the procedure for the process of smoothing, masking and projecting

onto a plane that we follow in order to obtain the final planar CMB map.

The pixels of a given mask map will have the value of either 0, which are

masked pixels, or 1, which are trustworthy or uncontaminated pixels. The

CMB map is smoothed with appropriate smoothing angle. The mask map is
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separately smoothed with the same smoothing angle as the CMB map. Due to

smoothing, the uncontaminated pixels close to the contaminated pixels in the

mask map also gets contaminated. Hence these new contaminated pixels also

needs to be removed. The mask map now will have values ranging from 0 to 1.

A cut off value is chosen from this range of values which indicates the extent to

which we stay away from the originally contaminated pixels in the mask map.

The pixels in the mask map which have value below the cut off value are all

masked i.e. its value is set as 0 and otherwise set as 1. Now the CMB map and

mask map are projected onto a plane using stereo-graphic projection. Finally,

the structures in the projected CMB map are removed, which have one or more

pixels in common with the masked pixels in the projected mask map.

8.4 Effect of lensing and systematics of instru-

ment on α and β

Here, we study the impact of lensing and instrumental effects such as beam

and noise on the value of α and β. We use the FFP8 simulations of lensed

CMB and noise maps of frequencies 44GHz and 70GHz. The values of α and β

are obtained by averaging over 100 simulations of [lensed CMB + noise] map.

This is then compared with the value obtained from the pure simulations of

Gaussian and isotropic CMB maps in Sec. 7.4 (here the maps are masked and

the E mode map is high pass filtered).

The percentage difference in the value of α and β due to the presence of

CMB lensing and instrumental effects is less than 2%. The effect of CMB lensing

and instrumental beam is to change the shape of the structures, which then
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Temperature field E mode field

Hot spots Cold spots Hot spots Cold spots

σα σβ σα σβ σα σβ σα σβ

44GHz +82.9% +46.4% +84.9% +12.1% +47.9% −7.7% +38.5% +0.0%

70GHz +65.9% +33.9% +64.0% +25.9% +43.7% +5.8% +34.6% +10.9%

Table 8.1: The table shows the percentage difference in σα and σβ due to the CMB lensing

and instrumental effects.

broadens the range of shapes in the distribution of structures. This increases

the size of the error bars, which are σα and σβ, although the mean value may

not be significantly affected. While the effect of noise is to increase the number

of structures, which in turn results in a decrease of σα and σβ. The error bar

of [lensed CMB + noise] map is due to the combination of these two effects. The

Table. 8.1 shows the percentage difference in σα and σβ calculated at |ν| = 1.

We observe from the table that it is getting affected significantly. Overall, the

calculation of percentage difference at different threshold values, |ν| = 0, 1, 2,

shows that the error bars increase due to the presence of CMB lensing and

instrumental effects. Further, σα and σβ of 44GHz at different threshold values

are larger than that of 70GHz.

In the subsequent subsections, we use α, β, σα and σβ corresponding to the

frequency band of 44GHz for the computation of deviations, defined in Eq.

(8.1), for the PLANCK data sets from the theoretical prediction. This will give

a more conservative estimate of the deviation in comparison to that of 70GHz.
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8.5 Application to PLANCK data

The plots showing α and β vs ν for the temperature field of full mission SMICA

map are shown in Fig. 8.1. It is shown for all the structures (top panels), hot

spots (middle panels), and cold spots (bottom panels). The enlarged version

of these plots are shown in Fig. 8.2. The Figs. 8.3 and 8.4 show the same but

for the E mode field. Similar to the Sec. 7.4, we use the superscript T and

E to denote temperature and E mode field respectively. While the subscript

h and c refers to hot spots and cold spots respectively and those without the

subscript indicates that all the structures are being considered.

In the following subsections, we quantify the deviation in the value of α and

β of PLANCK data from the standard ΛCDM prediction. In order to make this

comparison, we need simulations of CMB map which includes the features due

to the PLANCK instruments. Then the values of α and β can be computed from

these maps. The PLANCK data includes FFP8 simulations of each frequency band

as described in Sec. 7.4. But the co-addition of the frequency maps requires

weights which has not been provided. Further the comparison using each of

the frequency bands without co addition is computationally costly and hence

it is not a practical option. Hence, we use the frequency bands of 44GHz and

70GHz. These frequency maps have lower signal to noise ratio than that of

other frequencies. The signal to noise ratio of temperature map is about 2.2 for

44GHz and 2.8 for 77GHz. While for E mode map it is about 0.03 for 44GHz

and 0.07 for 77GHz.

In the subsequent analysis, the threshold values of ν = 0, 1, 2 for hot spots

and ν = 0,−1,−2 for cold spots will be chosen. This corresponds to the

threshold levels where the excursion set contains large number of structures.
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Figure 8.1: The top panels show α and β vs ν computed for all the structures of temper-

ature field of PLANCK full mission map. The plots is shown for maps obtained form different

foreground separation method, namely, SMICA (black line), COMMANDER (dark red line), NILC

(blue line) and SEVEM (green line). The middle panels show the same as top panels but for

the hot spots of temperature field. The bottom panels show the same as top panels but for

the cold spots of temperature field.

The temperature field is smoothed with the FWHM of 20′ and 50′ for E mode

field. This corresponds to about 3500 structures at |ν| = 1 and 1000 structures

at |ν| = 0, 2. The extent of deviation in the PLANCK data from the theoretical

expectations in the units of 1− σ error bar is defined using the quantity D as

DX =

∣∣∣∣∣Xobs −Xsim

σX

∣∣∣∣∣ , (8.1)

with X = α, β. Here the superscripts obs and sim indicates that the X is

obtained from the observational data and simulated PLANCK data respectively,
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Figure 8.2: The figure is the same as Fig. 8.1 but enlarged in the range 0 ≤ ν ≤ 2 for hot

spots and −2 ≥ ν ≥ 0 for cold spots.

and the σX is the average of the upper and lower bounds of the 1 − σ error

bar.

8.5.1 Net anisotropy for structures of the PLANCK data

The value of β for temperature and E mode maps corresponding to all the

PLANCK data sets is about 0.68. Similar to the case of simulated CMB maps in

Sec. 7.4.2, here also we correct the β value for the pixelization error. Then we

get β ∼ 0.62.

The deviation, Dβ, of temperature and E mode maps for each of the PLANCK

data sets, for hot spots and cold spots at ν = 0 (top line), |ν| = 1 (middle line),

and |ν| = 2 (bottom line), are shown in the Tables. 8.2 and 8.3. In order to

do a simple comparison of Dβ between different PLANCK data sets, we average
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Figure 8.3: The figure is the same as Fig. 8.1 but for E mode field of PLANCK full mission

maps.

Dβ obtained for hot spots and cold spots corresponding to the threshold values

|ν| = 0, 1, 2 (average over six deviation values), for each of the PLANCK data

sets. The average Dβ of temperature and E mode maps for different PLANCK

data sets are given in the Tables. 8.4. The temperature and E mode maps

corresponding to all the data sets are consistent with the theoretical predictions

within 2−σ, except the NILC half mission 2 data which shows a slightly higher

deviation of 2.1− σ.

In the above shown computations of β, uncertainties originate due to the

following main sources:

• The uncertainties arising from statistical fluctuations is about 0.4%. This

is computed using the simulations of 44GHz described in the Sec. 7.4.

This error is used to quantify the extent of agreement between PLANCK
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Figure 8.4: The figure is the same as Fig. 8.3 but enlarged in the range 0 ≤ ν ≤ 2 for hot

spots and −2 ≥ ν ≥ 0 for cold spots.

data and simulation, Dβ, shown in Table. 8.4.

• The numerical error due to pixelization for the β value of 0.68 is about

9.8%. As described in Sec. 7.2.2, this error depends on the value of β.

The β value for both simulation and PLANCK data is about 0.68. Hence

the pixelization errors for both the data are same and so cancels each

other out.

The percentage deviation of Dβ for both temperature and E mode map corre-

sponding to all the PLANCK data sets is about 0.5%.

In the above results, the confidence masks corresponding to SMICA, COMMANDER,

SEVEM, and NILC were used. The calculations were repeated using the preferred

mask. The value of Dβ marginally increases in some data sets while it decreases

in others. But the main results remain the same. This is because we do an
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DT
β Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA

0.25, 0.73 0.32, 1.41 1.08, 1.00 0.53, 1.02 0.73, 0.35

0.45, 0.63 0.90, 0.40 0.32, 0.70 0.17, 0.17 0.57, 0.30

0.89, 2.56 0.68,1.61 0.76, 0.44 0.79, 0.28 0.13, 2.31

COMMANDER

1.19, 1.92 0.92, 1.63 1.81, 2.18 0.98, 1.63 0.98, 1.78

0.67, 1.53 0.02, 1.13 0.10, 1.03 0.00, 1.33 0.02, 1.10

1.66, 1.08 1.14, 2.59 1.06, 0.23 1.58, 1.41 1.66, 0.67

SEVEM

2.64, 3.45 1.96, 3.31 2.55, 2.75 2.43, 2.71 2.42, 2.90

0.20, 0.67 0.77, 0.63 0.57, 1.53 0.42, 0.40 0.30, 0.83

0.44, 1.97 0.24, 1.72 0.45, 0.69 0.13, 0.36 0.63, 1.41

NILC

2.83, 2.53 2.49, 2.84 2.42, 3.06 1.79, 3.12 2.49, 2.86

1.42, 1.73 1.25, 1.77 2.05, 1.73 1.92, 2.57 0.92, 1.87

1.19, 1.13 0.97, 0.51 1.31, 1.95 0.44, 1.92 0.76, 0.15

Table 8.2: The table shows the deviation, Dβ , of hot spots and cold spots for temperature

corresponding to the different PLANCK data sets. In each of the data set, the top line gives

the value for the hot spots and cold spots at ν = 0, middle line for |ν| = 1 and bottom line

for |ν| = 2.

angular cut of ±20◦ from the equator as mentioned in Sec. 7.4. Further, the

numerical computations shown in Table. 8.4 were obtained using the Galac-

tic plane as the stereo-graphic projection plane. Nevertheless, the calculations

were repeated for different projection planes and we obtained similar results.
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DE
β Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA

0.18, 0.79 0.80, 0.02 0.27, 0.22 0.13, 1.29 0.53, 1.76

2.61, 3.18 3.13, 3.64 1.22, 2.27 1.96, 2.91 3.09, 1.36

2.59, 0.55 0.59, 0.14 2.46, 0.44 0.22, 1.25 0.19, 0.30

COMMANDER

1.71, 1.83 0.07, 0.17 1.20, 0.57 0.71, 0.43 0.53, 0.48

2.26, 2.09 2.56, 0.77 1.87, 0.91 3.00, 2.64 1.30, 0.50

1.16, 1.47 1.14, 0.03 0.46, 1.08 1.08, 1.44 0.54, 0.80

SEVEM

2.04, 0.22 2.09, 1.15 0.24, 0.45 2.51, 0.15 0.93, 0.62

1.43, 3.27 1.43, 1.73 2.04, 3.68 1.13, 2.32 2.17, 1.54

0.81, 0.30 0.05, 0.19 0.73, 1.30 0.62, 0.44 0.38, 0.44

NILC

1.11, 0.05 0.38, 1.02 2.51, 1.26 0.14, 0.93 0.51, 0.29

2.17, 3.09 1.52, 2.82 0.56, 1.59 1.13, 1.32 2.96, 1.50

2.62, 0.89 2.08, 0.05 2.89, 2.94 0.92, 1.58 0.27, 1.72

Table 8.3: The table is same as Table. 8.2 but for E mode map.
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Average DT
β Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA 0.92 0.89 0.72 0.49 0.73

COMMANDER 1.34 1.24 1.07 1.15 1.04

SEVEM 1.56 1.44 1.42 1.07 1.41

NILC 1.81 1.64 2.08 1.96 1.51

Average DE
β Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA 1.65 1.39 1.15 1.29 1.20

COMMANDER 1.75 0.79 1.01 1.55 0.69

SEVEM 1.35 1.11 1.41 1.20 1.01

NILC 1.66 1.31 1.96 1.00 1.21

Table 8.4: The tables show the deviation, Dβ , which is the average of six values obtained for

hot spots and cold spots corresponding to the threshold levels |ν| = 0, 1, 2, for temperature

(denoted with superscript T ) and E mode (denoted with superscript E) maps.
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8.5.2 Net orientation for structures of the PLANCK

data

The deviation, Dα, of temperature and E mode map for different PLANCK data

sets are given in the Tables. 8.5 and 8.6. Similar to the previous subsection,

the average Dα are estimated for temperature and E mode map corresponding

to each PLANCK data set which are shown in the Tables. 8.7. We observe that

the temperature map of all the PLANCK data sets are in good agreement with

the theoretical predictions to within 1.23− σ.

From the Table. 8.7, we observe that the E mode map of all the data sets

show deviations higher than 3 − σ, except the SMICA full mission map which

is about 2.29− σ. The half mission 1 map corresponding to all the foreground

separation methods shows slightly higher deviation of 5−σ. This indicates that

the structures in these E mode maps possesses a significant level of alignment.

The above results were obtained using the Galactic plane as the stereo-

graphic projection plane. In order to detect the presence of any alignment in

the structures which lie on a sphere, the analysis should be done for differ-

ent stereo-graphic projection planes (described in Subsection. 7.3.2). Hence

the above calculations was repeated for SMICA full mission map with differ-

ent stereo-graphic projection planes and overall they show higher deviations.

The possible origin of this alignment are: cosmological source, instrumental

characteristics of the frequency channel. The latter reason being more likely

because we are comparing the CMB observational map obtained by co-adding

all the frequency bands with the simulated map of the specific frequency band

of 44GHz. Further, as mentioned earlier that the signal to noise ratio of E

mode map of 44GHz is very low and hence it is dominated by noise.
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DT
α Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA

1.51, 0.49 0.77, 0.34 1.07, 0.92 1.34, 0.44 1.11, 0.26

0.45, 1.13 0.50, 1.22 0.90, 0.87 0.67, 1.11 0.59, 0.98

0.67, 1.11 0.67, 0.78 0.94, 1.53 0.74, 1.50 0.65, 1.18

COMMANDER

1.76, 0.21 1.83, 1.21 1.44, 0.00 1.62, 0.05 1.44, 0.48

0.79, 1.36 0.29, 1.17 0.49, 1.54 0.65, 1.37 1.09, 1.42

1.31, 1.44 1.16, 1.37 1.31, 1.65 1.33, 1.28 1.34, 1.23

SEVEM

1.67, 0.80 1.48, 0.65 1.27, 0.69 1.51, 0.95 1.55, 0.83

0.70, 1.48 0.45, 1.60 0.90, 1.53 0.64, 1.39 0.72, 1.44

1.71, 1.03 1.38, 1.02 1.44, 0.86 1.70, 0.75 1.55, 1.26

NILC

1.51, 0.80 1.08, 0.82 1.63, 0.40 1.61, 0.00 1.39, 1.00

1.07, 0.98 0.86, 1.13 0.91, 0.96 0.89, 1.20 0.91, 0.94

1.02, 1.39 1.23, 1.32 0.71, 0.58 0.76, 1.28 0.70, 1.01

Table 8.5: The table shows the deviation, Dα, of hot spots and cold spots for temperature

corresponding to the different PLANCK data sets. In each of the data set, the top line gives

the value for the hot spots and cold spots at ν = 0, middle line for |ν| = 1 and bottom line

for |ν| = 2.

There are mainly two sources of uncertainties in the calculations of α. These

sources are listed below:

• The error due to the statistical fluctuations, which is calculated from the

simulations of 44GHz described in Sec. 7.4, is about 0.7%. The extent

of consistency between simulation and data, Dα, is quantified using this

error, shown in Table. 8.7.
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DE
α Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA

1.63, 0.40 2.60, 3.23 0.90, 2.30 2.83, 2.46 2.82, 1.63

2.82, 3.91 7.41, 4.48 4.00, 5.50 3.49, 6.06 4.47, 4.85

1.99, 2.99 5.58, 2.77 3.23, 3.47 2.90, 3.84 3.82, 2.89

COMMANDER

4.05, 3.02 3.84, 4.43 3.04, 3.01 0.88, 3.49 2.53, 1.45

4.04, 5.67 7.41, 5.15 3.53, 6.04 3.76, 6.96 4.45, 3.17

1.24, 4.43 4.42, 4.80 2.32, 4.80 3.20, 3.80 3.66, 3.64

SEVEM

3.61, 2.38 4.87, 2.30 1.79, 2.39 1.79, 3.71 2.12, 5.55

4.53, 4.74 9.82, 6.72 5.02, 5.83 7.12, 8.22 5.80, 4.67

2.97, 4.45 5.38, 2.73 2.53, 2.88 3.49, 4.76 4.63, 3.70

NILC

4.08, 0.22 2.95, 5.40 0.42, 2.48 3.17, 2.70 2.94, 3.54

3.00, 4.09 7.00, 4.96 3.94, 6.52 3.18, 6.09 4.69, 4.78

4.32, 2.68 5.38, 2.08 3.76, 2.51 2.61, 3.39 2.86, 2.92

Table 8.6: The table is same as Table. 8.5 but for E mode map.
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Average DT
α Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA 0.89 0.72 1.04 0.97 0.79

COMMANDER 1.14 1.17 1.07 1.05 1.17

SEVEM 1.23 1.10 1.12 1.16 1.23

NILC 1.13 1.07 0.87 0.96 0.99

Average DE
α Full mission Half mission 1 Half mission 2 Half ring 1 Half ring 2

SMICA 2.29 4.34 3.23 3.60 3.41

COMMANDER 3.74 5.01 3.79 3.68 3.15

SEVEM 3.78 5.30 3.41 4.85 4.41

NILC 3.06 4.63 3.27 3.52 3.62

Table 8.7: The tables show the deviation, Dα, which is the average of six values obtained for

hot spots and cold spots corresponding to the threshold levels |ν| = 0, 1, 2, for temperature

(denoted with superscript T ) and E mode (denoted with superscript E) maps.
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• In Sec. 7.2.3, we showed that pixelization results in error in the calcula-

tion of α and the error depends on the value of α. Since the average α

obtained from the 44GHz simulations is not the same as that of PLANCK

data sets, the pixelization error in these two cases are also different. These

errors can be computed by interpolating the values in Table. 7.1. The

percentage deviation for Dα of temperature map is about 0.8%, while for

E mode map it is about −3%. When the simulation and observational

data are corrected for pixelization error, the percentage deviation of Dα

for temperature becomes 2%, while it becomes −7% for E mode. This

indicates that the statistical significance of the net alignment detected

in the E mode data increases when the pixelization error is taken into

account.

The results shown above were obtained using confidence masks provided

for each of foreground separation methods, namely, SMICA, COMMANDER, SEVEM,

and NILC. We repeated these calculations with the preferred mask. We find

that the deviation, Dα, slightly increases for some data sets while it decreases

for others. However, the overall results remain the same. This is as expected

since the structures that fall within ±20◦ from the equator are removed as

mentioned in Sec. 7.4.

8.6 Discussion

We applied the Tensor Minkowski Functionals for the analysis of PLANCK data.

We analyzed the affect of lensing and instrumental systematics on the values

of α and β using the simulations of the frequency channel 44GHz and 70GHz

included in the PLANCK data. We found that the percentage difference in α and
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β due to these effects is less than 2% while their size of error bars significantly

increases. Then we tested the consistency of various PLANCK data sets. For

this testing, we used the simulations of the frequency channel, namely 44GHz,

as the basis and the observational data from different foreground separation

methods. These two were then used to estimate the deviation in α and β of

observational data from the theoretical prediction. We found the net anisotropy

corresponding to all the data sets of temperature and E mode are in good

agreement with the theoretical expectations within 2− σ, except temperature

map of NILC half mission 2 which showed a slightly larger deviation. The net

orientation of temperature map of all data sets was found to agree with the

standard model within 1.2 − σ. While the E mode maps was found to have

deviations higher than 3−σ for all data sets except the SMICA full mission map.

Further, the half mission 1 was found to have consistently higher deviations of

about 5− σ. These calculations indicate that the structures in the E mode of

PLANCK data sets possesses some alignment. It is very likely that this alignment

is caused because we are comparing the simulation of particular frequency

44GHz with the PLANCK data sets obtained by co-adding all the frequency

channels, and further due to the low signal to noise ratio of E mode map of

44GHz, which implies that it is dominated by noise.
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Conclusion

9.1 Summary of the results and conclusions

from the investigations

Our focus in this thesis was the investigation of the features in the CMB polar-

ization, that were induced due to the primordial fluctuations and the statistical

tools. This investigation was conducted along three different lines of thought

process. The results and conclusions from each of these investigation are de-

scribed in the following paragraphs.

In the first part, we studied the local type non-Gaussian features of primor-

dial origin in the CMB polarization fields. We used the PDF of the fields as the

statistical observable for this analysis. We obtained the analytic expression for

the PDF of a general local type non-Gaussian field, which describes the PDF of

CMB fields, namely temperature and E mode. The PDF of polarization inten-

sity field which is constructed from local type non-Gaussian Stokes parameters

field, Q/U , was also analytically obtained. From these analytic expressions, we

139
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found that the non-Gaussian deviation for temperature and E mode is of the

order (fNLσ), while for the polarization intensity it is (fNLσ)2. The numerical

calculations of non-Gaussian deviation in the E mode field showed that its

shape, amplitude and size of error bars are similar to that of the temperature.

For the polarization intensity, the non-Gaussian deviation has an amplitude

which is about an order of magnitude lower than that of temperature with

error bars which are two times larger. Further, the shape of this deviation

is distinct from the temperature. These analysis implies that from the the-

oretical point of view, the E mode field is capable of providing independent

constraint on fNL similar to the temperature field. While the polarization in-

tensity field is not capable of providing an independent constraint. But in the

realistic situation the statistical significance of these findings will decrease as

the observational data contains instrumental systematics.

Then we analyzed the local type non-Gaussian features of polarization

fields using the geometrical and topological properties, namely SMFs and Betti

numbers. The non-Gaussian deviation calculated using these observables also

showed the shape, amplitude and size of error bars similar to that of tempera-

ture. We found that the non-Gaussian deviation corresponding to the polariza-

tion intensity has an amplitude much smaller in comparison to the temperature

at lower smoothing angles. While at higher smoothing angles, this amplitude

becomes comparable to that of temperature. The shape of its non-Gaussian

deviation has different shape in comparison to temperature. But the error bars

are very large. These theoretical analysis, similar to the results from the PDF

analysis, also suggests that the E mode field can give an independent con-

straint on fNL while the polarization intensity field cannot give an independent

constraint. Here also the instrumental systematics in the observational data
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will decrease statistical significance of these results.

For the second part, we addressed the theoretical aspects related to the

usage of the Stokes parameters Q/U of CMB as a complementary analysis of

CMB. We analytically proved that the SMFs of Gaussian Q/U fields are invari-

ant under rotation transformation about the line of sight. This holds only for

the full sky coverage and hence it breaks down when the observational data is

considered, where the Galactic and point sources needs to be masked leading

to the incomplete sky. We studied the local type non-Gaussian features in the

Stokes parameters field. We found that the non-Gaussian deviation in the SMFs

of Q/U is about an order of magnitude lower than that of temperature. Ad-

ditionally, their shape is distinct from that of temperature. Then we analyzed

the effect on the SMFs of Q, U and IP , and the number density of singularities

in IP due to the presence of primordial tensor perturbations. We found that all

these quantities are sensitive to the presence of primordial tensor perturbations

and their amplitudes decrease with the tensor-to-scalar ratio. This finding can

be useful in the future experiments for the analysis and the searches of B mode

in the polarization data. But the statistical significance of these results will

reduce when the observational effects are included.

These kind of studies has become important as the observational polar-

ization data has started to become more and more accurate. The sensitivity

of the present CMB experiments is not good enough to detect the primordial

non-Gaussianity. We can expect that the future experiments will be capable

of detecting it. Since the presence of primordial local type non-Gaussianity

results in different morphological features in Q/U and IP from that of tem-

perature and E mode. Hence all these fields can be used together for the

analysis of non-Gaussianity in the observational data and they will be useful



Chapter 9 142

in distinguishing between different sources of local type non-Gaussianity.

As the final part, we introduced TMFs, particularly W 1,1
2 , as new statistical

observable for the analysis of CMB data. This quantifies new morphological

characteristics of a given field, which are the net anisotropy, β, and the net

orientation, α, of the structures in the field. We a developed a code, referred

as TMFCode, for numerical computation of α and β for a 2-dimensional field

on an Euclidean plane. We analyzed the numerical errors in α and β due to

the pixelization of the planar data by using the analytic formula of W 1,1
2 for

an elliptical shaped structure. We found that the error in the net anisotropy

increases with the increasing curvature of the boundaries of the structure. In

the case of net orientation, the error is negligible for a given distribution of

structures which are completely unoriented with other. But as the structures

become more and more oriented with each other, the error increases and even-

tually becomes equal to the error in net anisotropy. Then we applied the

TMFCode for computing α and β of CMB fields, where we used stereo-graphic

projection to map the field values on a sphere onto a plane. We obtained the

theoretical prediction for the values of α and β for simulated Gaussian and

isotropic CMB fields according the standard model of cosmology. We found the

net anisotropy of hot spots and cold spots to be β = 0.62 for temperature

and 0.63 for E mode, where the values are corrected for the numerical errors

due to pixelization. We found the net orientation for both temperature and

E mode to be one, which means that there is no net orientation among the

structures in the fields. These are the values expected for any general Gaussian

and isotropic field.

Then we applied W 1,1
2 for the analysis of PLANCK data. We studied the

effect of gravitational lensing and instrumental systematics on the value of α
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and β by using the simulations corresponding to the frequency channels 44GHz

and 70GHz containing the gravitational lensing and instrumental effects which

are provided in the PLANCK data. These frequency channels have low signal to

noise ratio compared to others. We found that the percentage difference in the

value of α and β due to the presence of gravitational lensing and instrumental

effects is less than 2% but the size of error bars increases significantly. We

used the simulations corresponding to the 44GHz frequency channel as the

basis for testing the consistency the simulations with the observational data.

This will give a conservative estimate of deviations in the value of α and β

of PLANCK data from ΛCDM prediction. Then we estimated the deviation α

and β for the various PLANCK data sets foreground cleaned CMB maps namely

SMICA, COMMANDER, SEVEM and NILC corresponding to full mission, half mission

1, half mission 2, half ring 1 and half ring 2. We found that the value of β is

consistent with the standard model within 2−σ for different PLANCK data sets of

temperature and E mode, except the temperature map of NILC half mission 2

which showed slightly higher deviation. For the case of α for temperature map

of all the different data sets, we found good agreement with standard model

within 1.2 − σ. While for the case of α for E mode map, the deviation in all

data sets are higher than 3−σ except the SMICA full mission data. Further, the

value of α for E mode map corresponding to the half mission 1 of all data sets

showed consistently higher deviation of 5−σ. These calculations indicates that

the PLANCK’s E mode data has certain level of alignment in its structures. The

possible origin of this alignment are: cosmic origin or instrumental systematics.

Here, the later reason is more probable as we are comparing the simulations

with the instrumental characteristics of a specific frequency channel, namely

44GHz, with that of the PLANCK maps which are obtained by co-adding all
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frequency channels. Further, as the signal to noise ratio of E mode map is low

for the 44GHz frequency channel, it is mostly dominated by noise.

9.2 Future course of investigation

The investigation conducted so far opens up several lines of thinking. A list of

our ongoing and planned research work are as follows:

Our analysis of primordial non-Gaussianity lacks in the analysis of instru-

mental systematics. Hence we plan to analyze the CMB polarization including

the instrumental systematics and its effect on our results. Then we plan to

analyze the local type non-Gaussianity in the observational data by using all

the different fields, namely temperature, E mode, IP and Q/U , in conjunction.

Further, the primordial tensor perturbations can also have non-Gaussian fea-

tures which will leave an imprint on the B mode field. We plan to extend our

study to the non-Gaussian features in the tensor perturbed B mode field.

For the analysis of CMB fields using TMFs, it is desirable to compute α and β

directly on the sphere. Hence, we have generalized the definition of translation-

invariant TMFs, specifically W 1,1
2 and W 0,2

2 , to the curved 2-dimensional surface

of a sphere. Then these translation-invariant TMFs for a general field on a sphere

are obtained in terms of the covariant derivatives of the field. Further, analytic

expression for the case of isotropic Gaussian and isotropic Rayleigh distributed

field was also obtained. In the analysis of CMB so far with W 1,1
2 , we had ig-

nored the B mode field originating from the primordial tensor perturbation and

gravitational lensing due to the large scale structure. The gravitational lensing

will affect the anisotropy in the shape of the structures in the B mode field.

Hence we plan to use α and β to study this effect and analyze its usefulness to
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distinguish the primordial origin from the gravitational lensing in the B mode

field. Further, we plan to study the non-Gaussianity of CMB fields by incorpo-

rating not just α and β but also all the components of the tensor W 1,1
2 . The

morphological features due to the physical mechanisms during the very early

Universe is dominant at angular scales larger than 1◦. Therefore, we plan to

use this idea to study the prospect of using the TMFs of CMB fields to distinguish

morphological features of primordial origin from the late time effects. We also

plan to do a detailed study of the effect of different cosmological parameters

on the TMFs of the CMB fields. This will result in a better understanding about

its sensitivity for different factors and will help us to develop methods for its

efficient application to the CMB analysis.

The TMFs are general statistical tool and can be applied to any random

field on two or more dimensional space. Our analysis using the TMFs for a

2-dimensional space can be extended for the study of 21cm emissions from

the epoch of reionization by using the 2-dimensional redshift slices, which can

then be used to probe different models of reionization. Further, we plan to

extend the analysis with TMFs to 3-dimensional data [133], in order to constrain

cosmological models with 21cm data from future radio interferometers and large

scale structure data.
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