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Abstract

The primary objective of this thesis is to conduct theoretical studies of
parity non-conservation (PNC) in atomic systems in order to pave the way
for testing the Standard Model (SM) of the elementary particle physics.

Our present understanding of elementary particle physics is encapsulated
in the SM. Despite the remarkable success of this model, it is widely believed
as being not the ultimate theory of the matter. PNC in atomic systems which
arises primarily from the neutral weak interaction between the electrons and
the nucleus has the potential to probe new physics beyond the SM. By comb-
ing the results of high precision measurements and many-body calculations
of atomic PNC observables, it is possible to extract the nuclear weak charge
(Qw) and compare with the corresponding value in the SM. A discrepancy
between these two values could reveal the possible existence of new physics
beyond the SM. The most accurate data on atomic PNC currently comes
from the 6s 2S;/, — 7s 251, transition in cesium (Cs), where the claimed
experimental and theoretical accuracies are 0.35% [C. S. Wood et al., Science
275, 1759 (1997)] and 0.5% [V. A. Dzuba et al., Phys. Rev. D 66, 076013
(2002)], respectively, and the deviation from the SM is about lo. It would
indeed be desirable to consider other candidates which could yield accurate
values of (Qy. Fortson has proposed an experiment to measure PNC in
6s 251/ — 5d 2Ds)s transition of singly ionized barium (**’Ba*) [Phys. Rev.
Lett. 70, 2383 (1993)] using the techniques of laser cooling and ion trap-
ping. The observable measured in this experiment is a PNC induced light
shift which depends on the electric dipole transition amplitude caused by
the parity non-conserving neutral weak interaction (Elpyc) and the electric
quadrupole (E2) transition amplitude for the 6s *S;/, — 5d ?Ds 5 transition.
One can determine the value of @y by combining the measured light shift
and the values of the F1pyc and E2 amplitudes. From a theoretical point of
view, an accurate calculation of Flpyc is of special importance. The RCC
theory which is an all order theory and based on an exponential ansatz is
known to produce high quality results for atomic and molecular properties. It
has been successfully applied to a wide range of problems; prominent among



them are high precision calculations of transition probabilities and hyperfine
interaction constants.

In this thesis we have applied the RCC theory to calculate E'lpyc for
the 6s 2S;/o — 5d >Dj, transition in Bat. It is the first application of this
theory to the atomic PNC. Blundell [Phys. Rev. Lett. 65, 1411 (1990)] had
used this theory in the linear approximation to calculate E'l1pyc amplitude
for the 6s 29, /2 — 75%S, /2 transition in Cs by sum-over-states approach.
Dzuba et al. [Phys. Rev. A 63, 062101 (2001)] and Geetha [K. P. Geetha,
Ph.D. Thesis, Bangalore University, India (2002)] have calculated this PNC
amplitude for the 6s 2515 — 5d 2Ds/o transition in Bat. The former cal-
culation is based on a variant of all order many-body perturbation theory
and is carried out using a mixed parity approach as well as a sum-over-states
approach, while the latter is based on a RCC sum-over-states approach. Our
calculation of Ba™ PNC is more rigorous than these two calculations and has
an accuracy of less than 1%. If the accuracy of this result can be matched
by that of experiment then PNC in Ba™ can provide an independent atomic
probe of physics beyond the SM.

We have also carried out preliminary studies of the E'1pyc amplitude for
the 6s 2512 — Ts *Si), transition in Cs using the same RCC theory that
had been applied to Ba® PNC. The results we obtained suggest that a sub
one percent calculation for Cs PNC should be possible.

The ratios of the atomic electric dipole moment (D,) to the scalar-
pseudoscalar (S-PS) coupling constant (Cg) for cesium and thallium (T1)
have been calculated using RCC theory with accuracies of 0.5% and 3.3%,
respectively. Electron correlation effects are found to be important, espe-
cially, for Tl. By combining our calculated result for T1 with the measured
value of the electric dipole moment of that atom gives the most accurate
limit of the scalar-pseudoscalar coupling constant to date.
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Chapter 1

Introduction

1.1 Fundamental Particles and Symmetries

According to our present state of knowledge quarks and leptons are the fun-
damental constituents of matter [1, 2]. These particles interact through four
forces: strong, electromagnetic, weak and gravitation forces [1, 2]. The prop-
erties of these particles are studied primarily by high energy accelerators,
although some non-accelerator experiments are in progress in different lab-
oratories in the world. A large body of experimentally verified properties
of quarks and leptons and the forces between them forms the basis of the
Standard Model (SM) of particle physics. This model was developed with
the help of gauge theory [2].

Symmetries play a crucial role in physics [3, 4]. It was thought for a
long time that physical laws are invariant under symmetry transformations.
The notion of gauge symmetry based on group theory is at the heart of
modern particle physics. Here, distinct elements are related to each other by
means of symmetry transformations and form a regular unity. Through these
symmetry properties, Glashow, Weinberg and Salam independently showed
that three of the fundamental forces: strong, electromagnetic and weak are
invariant under SU(3) x SU(2) x U(1) transformation [5]. The SM is based
on this symmetry, but it is unable to explain some basic issues concerning
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the elementary particles and their interactions. These are discussed later in
this chapter.

1.2 Symmetry Transformations

Symmetry transformation in physical systems has important implications
[6, 7]. As it was stated by a German mathematician Emmy Né&ther in her
famous theorem known as 'Noether’s theorem’ [8, 9] that: every symmetry
leads to a conservation of physical quantity. In other words, if a transforma-
tion caused by an operator is invariant then the eigenvalue which corresponds
to a physical property associated with the operator remains constant. For
example, it can be shown that spatial symmetry results in the conservation
of linear momentum, rotational symmetry gives conservation of angular mo-
mentum etc. [3].

The symmetry transformation for any physical system can be classified
as continuous or discrete. If the symmetry transformation is carried out
by a unitary function then the expectation value of the operator remains
unaltered. In the continuous transformation these unitary operators can
be expressed as the exponential function of a hermitian operator, but this
is not true in the case of a discrete transformation. Generally, there are
three different types of discrete transformation: parity (P), time-reversal (T)
and charge conjugation (C). Studies of these discrete transformations have
interesting consequences [1].

1.3 Parity: a discrete symmetry transforma-
tion

The parity operation on a co-ordinate system changes a right-handed (RH)

system into a left-handed (LH) system, i.e. reflection against the origin of

the coordinates of the system. The position vector under this transformation
changes as

7 (1.1)
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where II is defined as parity operator.

The state vector under the operation of II gives
MW (r)) = [(=r)). (1.2)
Operating two times this operator on |¥(r)) brings back the state to itself,
ie.
I (r)) = M¥(-r))
= [¥(r)) (1.3)
which implies I1> = I. Therefore, the eigenvalues of this operator can only
be + 1 or -1. i.e.
() = |(=r))
= +|¥(r)) (1.4)

The wavefunction with positive sign is known as even parity state and the
one with a sign negative is odd parity state.

I1 is a Hermitian operator since it has real eigenvalues. Therefore, IT = II.
Also I12 = I implies II = II"'. Therefore, II' = II™', i.e. II is an unitary
operator. Hence the transformation of an operator under the action of parity
is given by

O — 1o+ (1.5)
The invariance of a system under parity means
IHII '=H
ie.
[H,II] =0 (1.6)

Otherwise parity is not conserved in the system.

Since the electromagnetic force is the dominant force in nature and it
conserves parity, in reality one assumes that this would be universally con-
served. The Hamiltonian corresponding to weak interactions between ele-
mentary particles is not invariant under parity. Therefore, due to weak in-
teractions in atomic systems one encounters parity non-conservation (PNC).
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1.4 Premises of SM

In the SM, matter is said to be consist only of quarks and leptons. And there
four fundamental forces act on these particles are strong, electromagnetic,
weak and gravity. Each quark and lepton has its corresponding anti-quark
and anti-lepton, respectively, with same mass, but opposite charge. Quarks
and anti-quarks do not exist freely, but bound together and possess fractional
charges [2, 3].

The SM of particle physics is based on the following premises:
(i) Matter is made up of six quarks and six leptons.
(il) Quantum theories exist for strong, electromagnetic and weak interactions.
(iii) Electromagnetic and weak interactions are unified.

1.5 Limitations of SM

It is well known in elementary particle physics that SM provides many ex-
perimental verifications in the microscopic world of the elementary particles
which are the basic building blocks of matter. But there is a general belief
that the SM is an intermediate step in the unification of all the interactions
in the nature. One of the most obvious limitations of this model is that
a new particle known as Higgs boson has not yet been found. It does not
satisfactorily explain some of the questions regarding why there are only
three generations of fermions and what is the origin of CP violation. The
other models explain the possibility of extra Z-boson, lepto-quarks, compos-
ite fermions etc [10, 11]. The theories like Grand Unification Theory (GUTs)
[12], Super Symmetry (SUSY) [13] with strong underlying logic put forth
different models for the elementary particles. Therefore, some new type of
physics almost certainly exists beyond the SM.

The study of physics beyond the SM is carried out by accelerator as well
as non-accelerator techniques.
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Figure 1.1: Diagrammatic representation of electro-weak interactions.

1.6 Origin of parity violation

As mentioned earlier there is parity non-conservation at the level of the fun-
damental particles due to weak interactions. Matter is made up of quarks
and leptons. Interaction between quarks and leptons are due to the electro-
magnetic and weak interactions. The electromagnetic interaction is mediated
by photons and is the pre-dominant interaction among these particles. The
weak interaction is a tiny effect and occurs due to the exchange of heavy W+,
W~ and Z; intermediate particles. Since both W and W~ are charged par-
ticles, the current associated with the weak interaction due to them also
posses charge and there is a change in charge among the interacting par-
ticles. These interactions are represented diagrammatically using Feynman
diagrams as shown by figure 1.1.

In atoms or molecules, there are electrons (leptons) and nucleons (con-
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Figure 1.2: Diagrammatic representation of electro-weak interactions be-
tween nucleons and electrons inside an atomic system.

sisting of quarks) and they can interact via the weak interaction. The elec-
tromagnetic interactions due to photons are dominant and they conserve
parity. The wavefunctions resulting from the electromagnetic interactions in
an atom is represented by particular angular momentum and parity. How-
ever, the weak interaction mediated by the neutral boson Z; between the
nucleus and the electrons can also arise in an atom. This is shown diagram-
matically in figure 1.2. This interaction can cause mixing between opposite
parity states. Since the magnitude of this effect is comparatively small, it
can be treated perturbatively. Observing the experimental consequences of
this effect is very challenging. After many years of intense effort, it has been
observed by several groups [14, 15, 16, 17].

There is also an important electromagnetic moment which causes parity
violation in atomic systems called the nuclear ” anapole moment” (NAM).
This arises due to the electromagnetic multipole moment expansions inside
the nucleus. It is time-reversal invariant but odd in parity and interacts
with the atomic electrons at regions close to the nucleus. Atomic parity non-
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Figure 1.3: Spin helix corresponding to electromagnetic interaction which
cause anapole moment due to unpaired nucleon.

conservation experiments are sensitive to both the neutral weak interaction
and the nuclear anapole moment. The nuclear anapole moment has its ori-
gins in parity non-conserving interactions in the nucleus and is related to the
electromagnetic current of unpaired nucleon caused by the spin helix, with
a definite chirality, as shown in figure 1.3. This effect is not significant com-
pared to the neutral weak interaction and it has therefore not been calculated
in this thesis.

1.7 (General principle of atomic PNC experi-
ment
Due to the presence of PNC in an atomic system, states of opposite parity

mix with each other. It is, therefore, possible to have finite transition ampli-
tude between two atomic states of the same parity. The size of this transition
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amplitude is typically of the order of 1 part 10 in atomic unit [18]. The
corresponding transition probability clearly cannot be measured. However,
one can measure the interference of the parity non-conserving electric dipole
(Elpnc) transition amplitude with other electromagnetic transition ampli-
tudes (E2, M1 etc.). For example, the Cs PNC experiment involves the
interference of the E1pyc transition amplitude and E1 transition amplitude
induced by a static external electric field [17] and in the T1 PNC experiment,
the observable arises from the interference of the parity non-conserving E1
and M1 transition amplitudes [14, 19].

1.8 Parity non-conserving Atomic Hamilto-
nian from V-A current

Parity non-conserving interaction arises from combinations of vector and
axial vector currents. In an atom such interactions can exist because of
vector/axial vector currents associated with electron and nucleons and their
total Hamiltonian can be written as

G
Hpne = 22\;—

= HN5G+ HRRE (1.7)

[JN, Jhe +JAJ ‘]

"

which has been further defined as nuclear spin independent PNC Hamiltonian
(HYRL) and nuclear spin dependent PNC Hamiltonian (HXJZ) due to the
fact that the axial-vector currents of the nucleons depend explicitly on the
total spin of the nucleus. The superscript ’N’ and ’e’ represent the nucleus
and electron, respectively. Since HY{E depends on the nuclear spin, the net
interaction nullifies for even nuclei Whereas in the case of an unpaired nucleon
it contributes to the total interaction. Hence the effect due to this term is
very small and has been neglected in our studies. The other term, HAJL,
which is the dominant source of atomic PNC is enhanced by total number
of nucleons present in the system. It scales as Z3, where Z is the number of
protons [20]. Since this is a short range interaction, its magnitude depends
on the density of the electronic wavefunctions in the nuclear region. With
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the above discussions one can easily express possible form of the HAVL as
HE = / Pro [ Y 2ACutntby - Bl — 1) (18)
i=p;n

where C'; are the electron-nucleon neutral weak coupling constants.

Since ¢ = Yy, we get

G
HESE = —= / d’re / dry Y 2Culvovutn - Vi steld(ri — o). (1.9)

1=p,n

Neglecting the off-diagonal terms from the above summation whose contri-
butions would be very small, we get

Hj6 = f Pregiste [ Ery 3 2Cwlels - ). (1.10)
1=p,n

The summation over the nuclear wavefunctions yields the number densi-
ties of the protons and neutrons, which, in simple nuclear models are pro-
portional to the nuclear density and is given by

Z w;%o = Zpn(r)

p

> Uin = Npn(r) (1.11)

where Z and N denote the number of protons and neutrons, respectively,
and py(r) is the nucleon number density normalized to

/dr pnamrr? = 1. (1.12)
In terms of individual terms, it yields

anngé = ji/dsrewl%z/)e/d3TN2[C'1p¢;1/Jp]5(Tp —Te)
+Clnw;:wn]5(rn - Te)] (113)
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which over the nuclear region gives

G
HYe = 575 | @rabbhstedlCZ + CuNlon ()
Gr
= —F= 1.14
5 ﬁQw%pN(r) (1.14)

where we define Qw = 2[C1,Z + C1,N| and is known as nuclear weak charge.

Following similar procedure the operator form for HASE can also be de-

fined as given below by considering the vector and axial vector currents from
the electronic and nuclear parts, respectively.

Now we write
G B B
HIRE = —F/dSTe/d?’T‘N > 2[CudN Y YsUN - Yeute) (i — Te). (1.15)
2\/§ i=p,n
which leads to

G _ _
HERE = ﬁ/d%e/d%N > 2C%[Vivoysthi - Yeyotbe

i=p,n

+ D hivovsti - Yerrte] O(ri — 7). (1.16)

r=1,2,3
Substituting the value of 15, it leads to

G
nggg = ﬁ/df’re/df‘m Z 2021’[@751/%'@%

i=p,n
+¢gar75¢i ) lblaﬂ/)e] 5(Tz - 7”6). (117)

Since 75 is of the order of (v/c) and can be neglected from the above
equation and then we get

G
HENo = ﬁ/d%e/d:;?w Z 2021'1/1;(01/11- lonpeb(ri —re)  (1.18)
i=p,n

where the relation o,y = o has been substituted. Integration over the
nuclear wavefunctions produce a quantity proportional to the spin of the
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nucleus I and the nuclear density py(r). A constant of proportionality is
defined such that

Z 2C%00(r; —1e) = Rwpn(r) = R—WpN(r) (1.19)

1=p,n I
where Ry is called the weak magnetic moment of the nucleus, just as it is
defined for Qw . Therefore, the operator form of the nuclear spin dependent
component of the parity violating interaction Hamiltonian for the atomic
system yields the form

G -

NSD F

= Rwaoe -1 1.20
PNC 2\/§I w & pN(r) ( )

which clearly shows the dependency of nuclear spin I. This term has been
neglected in the present study.

1.9 Nuclear anapole moment

The notion of the nuclear anapole moment was introduced by Zel’dovich [21].
A particle may have a parity violating electromagnetic form factor along with
the usual electromagnetic form factors. Multipole moments arising from the
expansion of the electrostatic and vector potentials as a series in R~!, where
R is the distance from the center of the charge or current distribution. Some
of them obey discrete transformations under C, P and T while some others
violate both P- and T- symmetries. There are also other electromagnetic
multipole moments, which are not usually dealt with in multipole moment
expansions as they give rise to contact potentials instead of long-range po-
tentials. The anapole moment is one such example. It obeys time-reversal
invariance but violates parity conservation and charge conjugation. This
arises from the vector potential of the current distribution j(r) inside the
nucleus. The magnetic field corresponding to this vector potential can be
expressed as

B, =V x A, (1.21)

The electromagnetic interaction energy of an external current distribution
with A, is given by

1 5 o
W= /d?’m'(r) Al (1.22)
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Density of the external current distribution can be expanded as

-
.

Jr)=70)+ FV)§0)+---. (1.23)

Considering just the first term, i.e. assuming that the extent of the ex-
ternal current distribution is small and that j'(r) is essentially uniform, we
get

1, L1,
W=-30) [¢ri=-J0)-a (1.21)

where & = [ d3r A4, is known as the anapole moment of the current distri-

bution. Again, expanding 4, = [ d%% as a series of R™!, the first term
corresponds to the potential of the normal magnetic dipole moment. The

second order term gives rise to,
= 1 3 1
Al (R) = i/d T.](T)Tmrnamanﬁ- (125)

Since j;rm,r, is a reducible tensor whose trace is not zero, the vector
potential contains two irreducible contributions of T- and P- odd magnetic
quadrupole moment and that of the T-even, P- odd anapole moment. The
vector potential due to the anapole moment is thus,

A%r)=4a4d(r) (1.26)
where & = —7 [ d®r r? I(r) can be taken as the definition of anapole moment.
The 6(r) is the result of 9,0, (%) = —4md(r) and it is a rank one operator.

1.9.1 Parity non-conserving Hamiltonian from NAM

As it was shown before the expression for the anapole moment contains the
current vector j: which changes sign under reflection of co-ordinates. Ap-
plying Wigner-Eckart theorem, we can say that the anapole moment vector
must be directed along the nuclear spin I: < a >= —a% and this does not
change sign under coordinate transformation. The different behavior of the
relation < 7“23 > « I under reflection of coordinates means that the existence
of the anapole moment violates parity. General features of the anapole mo-

ment have been discussed by Flambaum and Khriplovich [22, 23]. They have
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used the shell model and assume a nucleon-nucleon parity non-conserving
interaction of the type

a Gr9 (4~ -
Hine = N_il;m[a.p + p.Glpn(r) (1.27)

where ¢ and p are the spin and momentum operators of valence nucleon, m
is the mass of the proton. The dimensionless constant g characterizes the
parity odd interaction of the valence nucleon with the nucleon core. It is
estimated that g, ~ 4 for an external proton and g, <1 for a neutron.

Treating Hf o as a first-order perturbation, it can be shown that the
NAM arises only from the spin part of the current density and it can be
expressed as

5. Grl 2xK,I
N oV2eI(I+1)

(1.28)

where x = (I +1)(=1)"*37 and K, = 2(24a%ugA*?).

Here [ is the orbital angular momentum of the valence electron. The
contribution of the core excitations to the NAM has been found to be small
[22]. Note that the quantity K, contains information about g, the parity
non-conserving nucleon-meson coupling constant. Indeed, an accurate deter-
mination of K, can lead to accurate values of g.

1.10 Parity non-conserving E1 transition am-
plitude

The presence of the above types of weak interaction Hamiltonian causes mix-
ing of different parity states of Dirac-Coulomb (DC)/Dirac-Coulomb-Breit
(DCB) Hamiltonian of the atomic systems. Therefore, an electric dipole
transition between two same parity states is possible. Since the mixing of
states is due to the weak interaction, the amplitude corresponding to such a
transition is very small.
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Figure 1.4: Diagrammatic representation of E1py¢ transition

In figure 1.4, we have considered two same parity states |n(J, 7)) and
|m(J', 7)), where 7 represents the parity eigenvalue. These two states mix
with opposite parity states |n'(J,7")) and |m/(J',7")), respectively, of same
angular momentum. Since the E'l1pyc matrix elements between |n(J, 7)) and
|m/(J',7")) or |m(J',7)) and |n'(J,7")) are very small, one has to measure
the interference of Elpyc with other possible forbidden transition due to
electromagnetic multipoles like (E2/M1) between |n(J, 7)) and |m(J', 7)) or
an induced E1 transition amplitude due to a static electric field.

1.11 Theoretical procedure

From a theoretical point of view, it is important to calculate E'lpyc accu-
rately for the purpose of probing physics beyond the SM. We explain below
the procedure for calculating this quantity.

The original atomic wavefunction (|\IIZ(O))) of the DC/DCB Hamiltonian
given by

HDC’(B) == Z[ZC&I . ﬁi + (Bz - 1)62 + Vnuc(rz)] + Z V(Tij)a (129)

1<j

where V (r;;) represents two-body interactions. ¢; and f; are the usual Dirac
matrices and Vj,,.(r;) is the potential at the site of the 7' electron due to the
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atomic nucleus. The rest mass energy of the electron is subtracted from the
energy eigenvalues. We use atomic units, electric charge |e| = 1 and mass of
electron m, = 1.

The modified atomic wavefunction can be written as
@) = [0 + [T), (1.30)

where [@{") is the first order correction to the wavefunction |¥{”)). Since this
correction is sufficiently small, it is appropriate to evaluate it perturbatively.
Considering the weak interaction only to first order, we can write

U | Hp o0
|\I/§”>=§|w$°>>< e (31

where Hpyc is the Hamiltonian of the appropriate weak interaction Hamil-
tonian, E. the eigenvalue of Hpc(p) for i state wavefunction 10%) . Since

Hpne does not conserve parity, the first order wavefunction |\Ilz(-1)) are of dif-
ferent parity wavefunction than |\Il§0)). Considering the interaction Hamilto-

nian Hpyc from nuclear spin independent PNC effects, we can express the
E1 matrix elements between states (f and i) originally of same parity given
by
Elpne = <\I’f|D‘\I’1)
0 1 1 0
(v |D)w”) + (v |D| e )
VP 1oy (w0 e )

(1.32)

as other terms of the above expression after expansion will vanish due to the
selection rule for E1 and higher order terms are neglected. Now substituting
the explicit values of the first order perturbed wavefunctions, we have

0 0 0 0
S (@ DN Hpno| 2
> I#i Ezo _E?
0 0 0 0
(¥ | Hoxc W) IPIDIED), oo
EY - EY

1
VPP @ e

+2

T£f

Elpye =
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where I and J represent intermediate states.

Many methods including semi-empirical and ab initio have been employed
to determine the above expressions for various atomic systems with suitable
transitions between atomic states on which experimental measurements have
been carried out. Many-body perturbation theory (MBPT) is the widely
used method for such calculations. It is not only necessary to calculate the
correction to the atomic wavefunction, but also it is important to evaluate
accurate atomic DC(B) wavefunctions (\\IIZ(O))) itself. A suitable and very
powerful method is essential for carrying out these calculations in order to
study atomic parity non-conservation. Relativistic coupled-cluster (RCC)
method is known to be one of the most accurate methods for calculating
atomic wavefunctions. It is an all order method [24, 25] with size-consistent
and size-extensivity properties [26]. It can be easily shown that this method
is related to relativistic many-body perturbation theory (RMBPT) and rela-
tivistic configuration interaction (RCI) method [24, 26]. But at a particular
level of approximation, RCC theory has certain higher order excitations that
are not present in RCI method.

1.12 Probing physics beyond SM

As mentioned earlier, it is only possible to measure the interference of E'lpyc
and some other forbidden electromagnetic transition amplitude. We can
express the measured quantity as

(theory)

xtet) — q,, Eleve IP;/VC (1.34)

where X denotes a measured interference between Elpyc and one of the
forbidden transition (Y') amplitudes due to electromagnetic potential (e.g.
E2 or M1). Here Y can be obtained from either theoretical calculations or
experiments. To extract @ from the equation (1.34), all the factors: X,
Elpye and Y have to be found very accurately which later can be compared
with the SM given values.

As shown in figure 1.5, it is also possible to consider the induced stark
effect due to DC electric field instead the electromagnetic forbidden transi-



1.12: Status of NSI PNC in atoms/ions 17

tion (V") for the above purpose. Experiments that have been successful so far
are based on fluorescence and optical rotation in the neutral atoms. In the
former case, the interference is between Flpyc and a Stark-induced electric
dipole transition amplitude [17]. In the latter it is between Elpyc and an
allowed magnetic dipole transition amplitude [14].

By combining the results of atomic parity non-conservation experiments
and calculations, it is possible to extract @y, the nuclear weak charge. The
extraction of @y has important implications for physics beyond the SM. One
can express the deviation of this quantity from its SM value as

AQw = Qw — @y (1.35)
where the SM value of Qyw is given by
wl=Z(1—4sin*0w) — N. (1.36)

Here, 7 is the atomic number, N is the number of neutrons and 6y is the
Weinberg mixing angle. After the inclusion of radiative corrections [27]

o = (0.9793 — 3.8968sin’0y ) Z — 0.9793N. (1.37)

It is possible to parameterize QQy and hence AQ@yw in terms of the isospin
conserving and breaking parameters, S and 7" given by [28]

Qw = (0.9857 £ 0.0004)p(—N + Z[1 — 4.012 + (—0.010)Z|) (1.38)
where
p=1+0.00782T (1.39)
and
z = 0.2323 + 0.00365S5 — 0.002617". (1.40)

If S ~ 1 as predicted by certain model, then Qy clearly must be deter-
mined to at least an accuracy of one percent. It may be shown that Quw
is sensitive to new physics where weak isospin is conserved. In other words
the combined accuracy of atomic PNC experiment and the theory has to be
at least a percent to test physics beyond the SM. Other related implications
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to particle physics are given in the paper by Sandars [29]. The uncertainty
arising from atomic calculations can be circumvented by measuring the frac-
tional difference of Qy-, but that could lead to nuclear structure uncertainties
[30]. The present status of PNC experiments and theories are given in the
next section.

1.13 Status of NSI PNC in atoms/ions

Table 1.1: Present status of atomic PNC studies in various atomic systems

System Transition Accuracy of Accuracy of
Experiments Theory
Cesium [5p®]651/2 — [5p°] 7512 0.35% ~ 0.5%
Cesium [5p°%]651/2 — [4d'%]5ds 5 - -
Thallium | [65%]6p1/2 — [652]6ps)2 ~ 1% ~ 3%
Thallium | [65%]6p1/2 — [65%]7p12 ~ 15% ~ 5%
Lead 6p2, J =0 — 6p%,J = 1 ~ 1% ~ 10-15%
Bismuth | 6p®,J =2 —6p®, J =2 ~ 2% ~ 10%
Bismuth | 6p®,J =2 — 6p®, J =2 ~ 2% ~ 10%
Barium™®™ | [5p®]6s1/2 — [4d'%]5ds)s - ~ 3%
Ytterbium 652 — 6s5d, J =1 - ~ 15%
Francium | [6p°®]7s1/2 — [6p°]8s1/2 - ~ 1%

The present status of NSI atomic parity non-conservation is summarized
in table 1.1. It is clear from this table that one can only use the results
for cesium (Cs) at this stage to make predictions about physics beyond the
SM. Using the results of X(¢**) and Y in equation (1.34) from the latest
experimental and calculated Flpyc results in Cs, we get [31, 32]

Qw = —T72.57(29)0pt(36)1n (1.41)
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and for theoretical results of Y, we get [32, 33, 34]
Qw = —73.09(39) ezpt (37) th- (1.42)

Corrections from QED was found to be -0.27(3)% [35]. Oblique corrections
have been formulated by Peskin and Takeuchi [27] in terms of weak isospin
conserving and weak isospin breaking parameters S and 7', respectively. For
Cs, these oblique corrections for Qyy is given by [28]

—0.800S — 0.0077. (1.43)
The constraint on S for Cs is recently given by [36]
S = —0.56(60). (1.44)

A lower bound for the Z, boson mass predicted in SO(10) theories which can

be obtained from the deviation of the measured weak charge from theory as
37]

AQw ~ 0.4(2N + Z)(My [/ My,)?. (1.45)

A lower bound on the mass My, from the parity non-conservation in Cs
is derived as [36]

My, > 750 GeV. (1.46)
The SM value for Qy is given by [38]
Qw = —73.09(3). (1.47)

Therefore, it differs from the SM by 1.10. For all the quantities which
have been extracted above, the first and second errors correspond to ex-
perimental and theoretical errors, respectively. The latter must clearly be
improved in order to make definitive predictions about physics beyond the
SM. In the next section, the proposed experiment on singly ionized barium
(137Ba™) ion using laser cooling and trapping is discussed.

Constraints on the upper limit of different parameters from various studies
at different energy scale are presented in table 1.2.
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Table 1.2: Limits on new physics beyond the SM currently obtained from
atomic PNC and directly from high-energy physics (HEP).

New Physics Parameter Constraints from Direct constraints
atomic PNC from HEP
Oblique —0.008S — 0.007T —0.056 £ 1.0 S =-0.28=+0.19
radiative corections T=-20+0.26
Z, boson in M(Z,) > 750 GeV > 425 GeV
SO(10) model
Lepto-quarks M; > 0.7 TeV > 0.28 TeV
composite fermions L > 14 TeV > 6 TeV

1.14 Motivation

As mentioned earlier, PNC in atomic systems arising from the neutral weak
currents has the potential to test the SM of particle physics. By combining
the results of high accuracy measurements and calculations of atomic PNC
observables, it is possible to extract QQw value and compare with its corre-
sponding value in the SM [36].

The most accurate data on atomic PNC currently comes from the
6s 2515 — Ts 2Sy)o transition in Cs, where the claimed uncertainty in Qw
value from the SM value is 1.10% [35]. It would indeed be desirable to con-
sider other candidates which yield accurate values of Q. In this context an
experiment to observe PNC in the 6s 2S;/5 — 5d 2Ds)s transition in *"Ba*
using the techniques of an ion trapping and laser cooling proposed by Fortson
is of special importance [42].

This thesis is concerned with a high precision calculation of the amplitude
of the Elpyc amplitude of 6s 251/ — 5d 2Ds), transition in *"Ba™ using
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RCC theory. It is the first application of this theory to atomic PNC. Blundell
et al. had used this theory in the linear approximation to calculate Elpyc
amplitude for the 6s 25 /o — 7s 2S; ) transition in Cs [39]. Dzuba et al. [32]
and Geetha [40] have calculated this PNC amplitude for 6s 25, — 5d 2Ds 5
transition in Ba™t as discussed later in this thesis.

1.15 PNC in laser cooled ion

In the last two decades, remarkable advances have been made in trapping and
laser-cooling of ions and atoms [41]. Application of strong electromagnetic
fields have made the trapping of ions possible. Trapped ions can be cooled
in various ways. A novel approach to the measurement of PNC in ions by
exploiting some of these advances was proposed by Fortson in 1993 [42]. The
accuracy of this approach would most likely be sufficient to test the SM.

The energy levels of low-lying states of Ba™ are given in figure 1.6. Ba™
has been trapped by a potential with 50 eV depth created by RF fields of
frequency 25 MHz and cooled to an orbital radius , 0.1 wm by Dehmelt and
co-workers. This ensures that the wavelength of the 651/, — 5d3/, transition
which has been proposed for observing parity non-conservation (A = 2.05um)
is much larger than the radius of the ion after it has been trapped and cooled.
This requirement is known as the Lamb-Dicke condition and is necessary to
overcome the first-order Doppler shift. The physical quantity that has been
proposed to be measured in the afore mentioned experiment is a parity non-
conserving light shift (AC Stark Shift) arising from the interference of the
parity non-conserving electric dipole transition amplitude (E1lpy¢) and the
electric quadrupole transition amplitude (E2).

The electric field of the laser inducing the parity non-conserving transition
is given by

[E(F)e ™ + ¢ (1.48)

N | —

E(Ft) =

where w is the frequency of laser and cc refers to complex conjugate.
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Parity non-conserving and electric quadrupole Rabbi frequencies are

1
i
and
1 OF;
Qqu’ad - _ E2m’m i - 1.
= o S B2 (1.50

where m and m' are the magnetic quantum numbers of initial and final states,
respectively. E;(0) and 2E|; are the components of the electric field of laser
J

and its gradient at the position of the ion.

6P/,
6
5
% 5D5/2 32s
e
5 | E 80s
S| g
%9(°§ 5D3/2

6512

Figure 1.5: Energy levels in Ba™ which are used to measure PNC effect.

The parity non-conserving effects are related to

[Quml® = |20 + QAT

QL4124 9 Re(QPNCQuuady (1.51)

m'm m'm

1%
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Light shift of the m'™ sub level of initial state is given by

AW, = E[M

— Q) (1.52)
where Q,, = 3, |Qmim|? and wy is the resonant frequency. Since contribution
to the light shift comes from the parity non-conserving electric dipole and
electric-quadrupole transitions, we get

AW, = RAWENY + hAwIve (1.53)
where
PNC Re{z QPNC*Qquad /Qquad} (154)
and
wiad o Mgggad. (1.55)

Here, (Quuad)2 — 3~ 1024 2A,PNC changes sign when the sign of m
changes, from —|—% to —%, but Aw?“ does not. This is exploited to measure
the difference of the light shift for the magnetic quantum numbers m = 1/2
and m = —1/2, i.e.

Awm—1/2 — Awpme—1/o = Awp NG 12— Awf;]fgl/? (1.56)

For the 651/, — 5d3/2 transition in Ba*, this difference is approximately
1.2 Hz for an electric field equal to about 2 x 10*V/em. Statistical accuracy
of this kind of a PNC experiment is given by

Elpye _ Elpnc

Fioe = h F fVNTt, (1.57)
where f is the efficiency factor, 7 is the coherence time determined by the
decay of the final state, ¢ is the total time available for the measurement
and N = 1 is the number of ions. For f = 0.2, Elpyc¢ can, in principle,
be measured to 1 part in a 1000 in about a day. It is clear from the above
expression that the competitive accuracy of the single ion experiment is due
to the possibility of applying a large electric field to the ion and the long
coherence time associated with the decay of the final state (the lifetime of
the 5d3, is around 80sec).
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1.16 Outline of the chapters

In the next chapter of this thesis, we discuss the basic tools in terms of alge-
braic and diagrammatic representations which are used in the RCC method.
These algebraic and diagrammatic techniques simplify complicated atomic
many-body formulations. We also discuss briefly the application of second
quantization and Wick’s theorem from quantum field theory in the context
of atomic physics.

We discuss the general aspects and formulation of RCC theory in the
third chapter. We also discuss there both the linearized and non-linearized
CC theory. We present all possible Goldstone diagrams arising in these the-
ories at a given level of approximation (LCCSD, CCSD and CCSD(T)). We
also discuss the details of the various expectation values and transition ma-
trix elements calculated in this thesis.

In chapter 4, we extend the RCC method to calculate PNC amplitudes.
We present both working formulae and the procedure for this calculation.
We also give all corresponding Goldstone diagrams used in our calculations
and present the computational procedures for calculating PNC cluster ampli-

tudes and a method for parallelizing the CC equations using Message Passing
Interface (MPI).

We present all the results obtained using our theory in chapter 5. We
compare these results with experimental results and discuss their depen-
dence on different single particle orbitals. We also compare our results with
previous calculated results. We compare our PNC amplitude with previous
calculations. A detailed analysis of contributions from various intermediate
states have been carried out.

We present preliminary results obtained for the Cs PNC in the sixth
chapter. Since the PNC studies which we have carried out have similarities
with atomic electric dipole moment (EDM) studies which again can be used
to study physics beyond the SM, we present and discuss in chapter 6 scalar-
pseudoscalar EDM calculations for both Cs and TI.
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In chapter 7, we conclude our thesis and give an outlook for future studies.
We also discuss the importance of the present results and their implications.
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Chapter 2

Basic Tools for Calculations

2.1 Introduction

In practice one needs basic tools to simplify the computational tasks for the
calculation of properties in atomic systems. It is widely recognized in field
theory that the second quantized formulation, normal order form, Wick’s the-
orem etc. help calculations to be performed easily and enable to understand
all the physical processes [1]. In fact one also uses Feynman-like diagrams to
understand all the physical processes in simpler and realistic approach [1, 2].
In atomic physics we use these tools to consider different processes by modi-
fying some of the above definitions in an appropriate and convenient manner
[3, 4, 5], then we interpret the results in terms of the system’s electrons. Dif-
ferent electron excitations and de-excitations can be well understood using
these basic instruments. In this chapter we define these mathematical tools
and a corresponding diagrammatic approach known as a Goldstone diagram
[3, 4, 5] for both occupied and unoccupied electron states. Different inter-
action forces present inside atomic systems are expressed in terms of these
mechanisms, we also discuss methods to construct single particle wavefunc-
tions. The matrix elements of the interaction operators are then expressed
separately in terms of radial integrals and angular factors of the single par-
ticle orbitals. We also use a diagrammatic approach to calculate the angular
factors [3, 6, 7, 8] and simplify all the complicated products of the complex

30
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Clebsch-Gordan coefficients.

2.2 Relativistic quantum numbers

The Dirac Hamiltonian of a relativistic atomic system without a two-body
interaction can be written as

H= Zc a-p;+ (B~ 1)02 + Vmw(rj) (2.1)
J

where o and (3 are the usual Dirac matrices and V,,.(r;) is the potential at
the position of the j% electron due to the atomic nucleus. In our derivation,
we have employed atomic units (me = 1, |e| =1 and & = 1). The rest-mass
energy of the electron is subtracted from the energy eigenvalues.

The single particle (electron) orbitals can be expressed for the above
Hamiltonian as [9]

CL(P0) Xem(8,0)
‘¢(7”)>—;(z'@(r) xn,m(e,qb)) (2:2)

where P(r) and Q(r) are the large and small components of the wavefunc-
tion.

The angular functions are given by

Xem(0,6) = X {m = o5allfm)Y~7 (0, 6)6, (2.3

—41
o=%3

where the (Im — o30ll3jm) are Clebsch-Gordan coefficients, the ¥, (6, ¢)
are normalized spherical harmonics and the ¢, are the two-component spinors

given by
P12 = <(1)> ; Q12 = (2) : (2.4)

This function gives the simultaneous eigenfunctions of L, S, J and J,
[10, 11]:

J2Xn,m = j(j+1)Xn,m
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LQXn,m = l(l+1)X/<;,m

3
SQXn,m = ZXn,m
Jera,m = an,m (25)
where the relativistic quantum numbers are defined as k = —(j + 3)a [9, 10]

and [ = j — %a, where a = +1 [10, 11]. Note that wavefunctions with the
same quantum number j but with different x eigenvalues (k, —k) belong to
opposite parity states [9)].

2.3 Atomic wavefunctions in second quanti-
zation form

An atomic system consist of many electrons, which satisfy Fermi-Dirac statis-
tics. The wavefunctions for N electrons can be written in the general form
13, 14]

|¢a(1)> |¢a(2)> ‘¢a(N)>
@) — \/% Bo0) 1802)) - (V) (2.6)

116e0) 1662 - [6e(N))

where |¢;(j)) is the single particle wavefunction of the Dirac Hamiltonian

given above for the i** particle in the j™ position, the factor ,/% is the nor-

malization factor. The above determinant is known as a Slater determinant.
The above Slater determinant can also be denoted by the following curly
bracket:

|®) = [{abc---N}) (2.7)
and for any excited state it is defined as

@657y = ajalasaa|{abc- - N})
= [{pgc---N}). (2.8)

az represents the creation of electron 7, whereas a; represents the annihilation
of electron i. Therefore, the above notation of the excited state symbolizes
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that electrons a, b, ¢, - - - are annihilated and electrons p, ¢, - - - are created.

We classify electrons, according to their locations in the atomic systems,
as occupied (holes), unoccupied (particles) and general, due to the second
quantization formalism and to differentiate their algebraic operations. In our
notation we use a,b,c,d---, p,q,7,s---, and 1, j, k,[ - - - for occupied, virtual
and general electrons, respectively.

2.4 Matrix representation of operators

From a computational point of view we express all physical operators on
the atomic systems in terms of second quantized operators with a coefficient
which is the matrix element of the electron orbitals. In this notation a general
single-electron dependent (one-body) operator can be expressed as [3]

F=Y f6i)= Y Zl<j\f(z')u>a}al. (2.9)

i=1,N i=1,N j,

Now we can write the matrix element of the one-body operator in terms
of atomic wavefunctions as

({ab---}[F|{ab---}) = (alf(1)|a) + (b f(2)[b) +------ (2.10)

and

{{ap}|F[{ab}) = (p|f[b)
({pg}|F'{ab}) =0 (2.11)

where the first matrix element represents the expectation value and the lat-
ter two transition matrix elements. Since the operator depends on only one
particle, the two particle transitions are not achievable using this operator.

Similarly, a two-electron dependent operator can be written as [3]

G= > g,i)= > > (kl|glmnyalalamay, (2.12)

i<j=1,N i<j=1,N k,l;m,n

where the restriction is imposed to avoid double counting.
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The matrix elements of this operator between atomic wavefunctions are
then given by

({abc---}|G{abe---}) = (ablg(1,2)|ab) — (balg(1,2)|ab)
+{aclg(1,3)|ac) — {calg(1,3)|ac) + - - (2.13)

and

({ap}|GI{ab}) = > _[{ap|glab) — (palg|ab)

a

({rq}|G[{ab}) = (pql|g|ab) — {(qp|g|ab) - - - . (2.14)

The transition matrix element will vanish if the wavefunctions differ by more
than two occupied electrons.

2.5 Angular momentum calculation

The matrix elements of one-body and two-body operators contain both
purely radial integrals and angular factors in terms of single particle or-
bitals. These angular factors are dealt with by applying simple formulae.
From computational point of view it is difficult to handle the m,; compo-
nents of the angular momentum j of an atomic system. Therefore, in the
actual calculations one separates out m; dependent factors and deals only
with the remaining ones. A specific transition to any specific m; state can
be taken care of in the final calculations. This can be easily understood once
we have discussed various matrix element calculations. First, let us discuss
how to decompose the one-body and two-body matrix elements into m; de-
pendent and independent factors.

According to Wigner-Eckart theorem, a one-body operator of rank ’k’ in
a single particle representation can be expressed as [3, 6, 7]

Gmylflimy) =3 (imy| £E(5'm;)
q

= (v (]

!

DGt @)

kg
q m;
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where (j||f*||7') is called the reduced matrix element and is independent of
m; components. Generally one considers only the reduced matrix elements
in computations of many-electron systems and uses the full operator only in
special cases when it is important for a given m; state.

One can similarly use the Wigner-Eckart theorem for two-body operators
as a product of two individual matrix elements with a coupling factor [10, 12].
A two-particle dependent potential can be factorized as [3]

g(ri,m2) = 32 gi(re,m2) [UP (1).VF (2)] (2.16)

where 'k’ denotes the rank of the factorized operators and gi(r1, ) is the
radial part of the integral with £ dependency. In terms of reduced matrix
elements this can be written as [10, 11]

o B ; kg
< ablg(ry,ry)|cd >= —1)Jamatipmmsth q( Ja ¢ ) X
lg(r1,72)| %( ) —me g me

(7” K jd)Rk(abcd) (2.17)
—mp —q My

where the reduced matrix element (the strength of the interaction) is given
by

R*(abed) = (=1)*(al|U™||c) (bl [V?||d) (2.18)

where (a||U®||c) and (b||V*)||d) are the reduced angular momentum matrix
elements of the respective operators.

2.6 Angular momentum diagrams

To handle the angular factors for complex Clebsch-Gordan coefficients we use
angular momentum diagrams. The one-body matrix element from the above
Wigner-Eckart theorem can be expressed in terms of an angular momentum
diagram as

(Gamal £y 1vme) = (al[f*]17) > Angl (2.19)
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jaMa Jj,m
2 - b-b
Angl=

kq

where the angular momentum diagram represents an m; dependent 3-j fac-
tor. A detailed explanation for the representation of these diagrams can be
found elsewhere [3, 6, 7].

The two-body operator in diagrammatic representation can be expressed
as

< ab|G(ry,m3)|ed >= " RF(abed) x Ang2 (2.20)
k
M oMy,
Ao A
Ang2= — - +
JcmC jdmd

The interpretation of various parts of these angular diagrams including
the arrows and signs are taken from Lindgren et al [3]. Angular factors with
multiples of Clebsch-Gordan coefficients are solved using JLV theorems (see
Appendix A).
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2.7 Special two-body operators

The most crucial part to include in the atomic calculations are two-body
interactions [3]. There are two such interactions possible to lowest order ap-
proximation. The Coulomb interaction due to the longitudinal photons (as
opposed to the classical interpretation due to static charges) [1] is the domi-
nant one, and the Breit interaction due to transverse photons [15] (where the
classical interpretation is a current-current interaction of charges), which is a
factor of o smaller than former one. We discuss here the explicit expressions
for both of the interaction which can be considered in the calculations.

2.7.1 The Coulomb interaction

A general matrix form of the Coulomb interaction (Vo = i) is given by
10, 11]

k

(ab|é|od) = [ [drudnlPur)Pr) + Qa(rl)Qc(rl)]%
[Py(r9) Py(rse) + Qp(12)Qalr2)] X Ang. (2.21)

this expression is derived using Legendre polynomials. In the above equation,
P;(r;) and Q;(r;) are the large and small components of Dirac wavefunctions
of the " orbital at the spatial distance r;. The multi-pole k is given by
lda = del < k < jo+ jo and [y — jal < k < jo+ ja. The angular momentum
part is given by

Ang = 6(mg + me, mp + my Z (Kay Ky k)1 (Kb, Ka, k)
k
( mc,]ama) k(jbmbajdmd) (222)
where the coefficient d*(jm, j'm') is defined as

m+3 (2] +(;]1(ij;; DE iy % = %)C(jj’; —m,m') (2.23)

d*(jm, j'm’) = (-1)

with C(j5'; —m,m’) is the Clebsch-Gordan or vector-coupling coefficient, x =
Jj— %a and ’a’ is the spatial relativistic quantum number as defined earlier.
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The IT¢- function which decides the parity selection rule is defined as [12, 16]
1 i
I¢(k, k', k) = 5[1 — ad' (—1)7HTH] (2.24)
which in orbital angular momentum ensures that

[+ + k= even (2.25)

where [ and [’ are the orbital angular momentums for j and j' total angular
momentums, respectively. The superscript ’e’ in II¢ is used to denote the
above even multipole (k) selection rules.

In terms of 3-j notation the above expression can be written as

Ang = 5(ma + Me, My + md) Z He(ﬂa; Ke, ]C)He(lib, Kd, k)(—l)j“_m“+jb_mb+k_q
k.q
) ] ] i ja k jc jb k jd )
V@it D@+ DI+ D@+ 1) (o 0 ) (2 E
o ok Nk
(= 1)atiothi1 (jl : Jl> (Jlb : Jd )

1 1
2 2 2

2

Therefore, the integral due to Coulomb operator can be expressed as

1
(ab|r—\cd) = 8(mg + me, my +mg) Y TI(Kq, ke, k)T (Kp, Ka, k)
12 k,q

(_1)ja—ma+jb—mb+k—q( Ja k Je ) ( Jb k Jd )Xk(abcd), (2.26)

Mg g M —mp —q My

where

X*(abed) = //d71d7"2[Pa(7'1)Pc(7n1)+Qa(r1)QC(r1)]%
[Py(r2) Py(r2) + Qb(TQ)Qd.(M)] . .
(= 1)detioth+l (]f /8 Jcl) (Jb g Jdl) (2.27)

1 1
2 2 2

2

is the reduced angular momentum matrix element.
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2.7.2 The Breit interaction

The general matrix element for the Breit interaction can also be expressed
in a similar form as that of the Coulomb interaction. The Breit interac-
tion is divided into two parts; namely the Gaunt or magnetic term and the
retardation part [11, 12, 15]. The Gaunt term is given by

Vs = 212 (2.28)
T12
and the retardation term is given by
1,2 -
Vlget = 5( _'.V)l(C_k’.V)erg. (229)

In terms of angular factors they are given by
(ab|VEcd) = §(mq — me, My — mg)(—1)7e maTdsmstk=g

(7 k ey (L K ) yhabed)  (2:30)

—Mg g Mg —mp —q M4

where

Y*(abed) = (—1)7'a+jb+’“+1\/(2ja +1)(25p + 1)(2j. + 1)(2jg + 1)
(jla k jc1>(j1b k jd1>
2 0 —3/\3 0 —3

4
1°(Kq, kic, K)II (K, Ka, k) D 7% (abed) R (abed) — (2.31)

p=1

ri¥s are the angular factor as given in table 2.1 [12, 17, 18] and RY,(abed)s
are the radial integrals which are given in table 2.2 by defining [17, 19, 20]

. 00 poo 7"12
R"(abcd) :/0 /0 drldrgPa(rl)Qc(ﬁ)@Pb(ﬁ)Qd(ﬁ)- (2.32)

Similarly, we can express the integral for the retardation part as
(ab|VE ed) = 6(my — me, My — myg)(—1)JaMetiommeth—q

( Jo K jc)< Jb k jd)Zk(abcd) (2.33)

Mg g M —mp —q M4
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Table 2.1: Corresponding angular factors for ) k(abed).

v=k-—1 v v=k+1
p=1 AK+Ek) K +k) A AK-k-1)(K 1)
p=2 AK-k)(K —-k) A A(K+k+1)(K'+k+1)
p=3 AK+Ek) (K —k) A A(K—k—l)(K’+k+1)
p=4 AK—-k)(K'+k) A AK+k+1)(K' 1)

Table 2.2: Corresponding radial integrals for R} (abed).

p=1 R'(abed) | p=3 R"(acbd)
p=2 R’(cadb) | p =4 R"(cabd)

where

Z*(abed) = (=LYt tE4L (95, 4 1) (24, + 1) (2 + 1) (2 + 1)
(jla k jcl)ab k jd1>
s U —3/\3 0 —3

4
{11°(Ka, ke, k)II° (K, K0, k) D 917" (abed) RY, (abed)

pu=1

+11°(Kq, ke, k — V)T (Kp, Ka, k + 1) Z (abed) S'C (abed)}  (2.34)

where gz’ks and sl’j”“s are the angular factors as given in table 2.3 and 2.5,
respectively [12, 17]. The radial integrals S;(abcd)s are given by table 2.4,
with the following definition

~ o k+1
(Qk + 1) /0 dT‘1/ dTZ[Pa(Tl)Qc(Tl):;TPb(TQ)Qd(TQ)
T1 >

S*(abed) =
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k-1

_pa(rl)Qc(rl)%Pb(TQ)Qd(TQ)]. (2.35)

>

Table 2.3: Corresponding angular factors for g% (abcd).

v=£k-—1 v v=k+1
pu=1 B(K+k)(K'+k) B B(K-k—-1)(K 1)
u=2 B(K-k)(K' —-k) B B(K—i—k-i—l)(K'-i—k-i—l)
u=3 B(K+k)K —-k) B B(K—k—l)(K'+k+1)
u=4 B(K-k)(K'+k) B BK+k+1)(K — 1)

p=1 S*acbd) | p=5 S*(acdb)
p=2 S*¥bdac) | p=6 S*(dbac)
pw=3 S*cadb) | u="7 S*(cabd)
p=4 S*dbca) | p=8 S*(bdca)

The parity selection rules are given by the function [12, 16]
1 o
1°(k, k', k) = 5[1 + ad (—1)717H], (2.36)
We have also used the following constants for determining angular coef-

ficients for Breit interactions given in the above tables

1
A = ——— =k—1
Rk = 1) for v=k
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Table 2.5: Corresponding angular factors for s (abcd).

p=1 C(K+k)(K' )| p=> CKE+k)(K+k+1)
=2 C(K’+k)(K k—l) pu=6 C(K'— )(K—k—l)
p=3 CK—-—k)(K'+k+1)|pu=7 CK-k)(K'-k-1)
pu=4 CK'—-k)(K+k+1)|p=38 C(K’ EYK+FEk+1)
—(Kq + Ke) (Kb + Ka) _
(k+1)(2k+1) for v=*k
1
= ) for v=k+1 (2.37)
~1
B = i@ for v=Fk-1
—1
= @ T 12 1 3) for v=k+1 (2.38)
1
and
K = k¢;— Kq; K' = kg — K. (2.40)

2.8 The Dirac-Fock Model

Next, we consider the DC and DCB Hamiltonian for the atomic system.
Due to the two-body term in the Hamiltonian representing the instanta-
neous Coulomb interaction and/or Breit interaction among the electrons, it
is not possible to exactly solve the equation for this Hamiltonian. As a first
step towards an approximate solution of this equation we can average out
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the interactions between the electrons and construct an one-body potential
that can replace the two-body term and produce a reasonable wavefunction
as an initial solution. This assumption is referred to in many-body literature
as the independent particle model.

The relativistic atomic Hamiltonian at Coulomb-Breit interaction level is
given by

H=Ycd p;+ (B—1)+ Viuelr;) + YV (r) (2.41)
J j<l
where
Vira) = Volra) + Ve(rj)
with
1
Vilra) = —
c(rit) p”
is the Coulomb interaction and
__ o 11 (o - Fji) (0 - i)
VB(T]l) = - + 2[7‘jl {(1/1 (&%) sz,l }]

is the Breit interaction.

We first solve the relativistic Hartree-Fock (Dirac-Fock (DF)) and/or
Hartree-Fock-Breit (Dirac-Fock Breit (DFB)) equations to obtain the single
particle orbitals and their energies. The corresponding DF(B) Hamiltonian
is given by

HDF(B) = ZhO(Tj) = ZC a ﬁj + (,3 - 1)62 + Vnuc(T'j) + U(’f‘j). (2.42)
J J
where hg is called the single particle Fock operator.

The residual interaction is given by

Ves =D V(ra) = Y U(r)). (2.43)

j<i J
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The single particle orbitals are obtained by solving the following equation
self-consistently

ho(rj)l¢g) = (f(r;) + U(r5))|¢5) = €jl¢5), (2.44)
where
fi = ¢d@ P+ (8= 1+ Vauelr;) (2.45)
and
U165(7) = 300 (7)o l60(73)8,73)) = (0ul) 16,73 (7))~ (240

and is known as the DF potential, wherein occ represents the total number
of occupied orbitals.

Equation (2.44) is called the DF equation for a single particle and its solu-
tions are the DF energy eigenvalues for the wavefunction |¢;). Combination
of these solutions give the DF solution for the atomic system.

2.9 Dirac-Fock Theory of Closed-shell

For any closed system, equation (2.44) can be written as

hol¢a) = €alda) (2.47)

where a represents occupied electron orbitals. The DF potential for this
system is given by

U(ra)léa) = 3 [{ds]V (ras)|6v) 6a) — (66]V (ras)|da) | 60)] (2.48)

b

Therefore, the single particle energy for the a'® orbital in Dirac-Fock
theory is given by

€a = (Gallc @-Po+ (Ba— 1)02 + Vaue(ra) + U(7a)]l¢a)

= [<¢a|[c a- ﬁa + (Ba - 1)02 + Vnuc(ra)]
+ D {{Pats|V (Tas) [Das) — (Patb|V (Tab)|PoPa) } (2.49)
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The average energy of a closed-shell system is given by

Eavg = Zea
= Y (Palholda)
= Y (2 +1)f(a,a) + > (270 + D{{Bats|V (Tas) | Gabs)

a a,b

- <¢a¢b‘v(7ﬂab) |¢b¢a>}
(2.50)

where the matrix elements from the one-body operators take the form, in
terms of Dirac wavefunctions;

Galflt) = [ cw (20 + 1)(2js + 1)

[CQa( )Pb +cP, (—di + )Qb — 2¢° Q. Qs
_g(Pan + Qab)] (2.51)
and
f(a,a) = (¢a|f|da)- (2.52)

2.10 General form of two-body integrals

It is clear from (2.26), (2.30) and (2.33) that it is difficult to calculate the
two-body integrals along with m; quantum numbers. Therefore, we simplify
further the m,; dependent factors to solve (2.49) as follows. We can express
the general two-body integrals as

L ; ko
< ab|V (ri,72)|cd >= —1)%a"MatIs mb+kq< Ja C)x
Ve mled >= (1) e R

(9” K ]d)Rk(abcd) (2.53)
—my —q Mg

As given in (2.49), we have two special cases, direct and exchange terms,
to solve the Dirac-Fock solutions for the closed-shell system. We give below
proscriptions to evaluate these integrals for both Coulomb and Breit terms.
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2.10.1 Special cases

There are two terms in the two-body integrals in equation (2.49) to solve the
DF equation for a closed system — (i) a = ¢, b = d called the direct integral
part and (ii) @ = d, b = c called the exchange integral term. Below, we
discuss explicitly the simplified expressions for these integrals.

Before discussing the special cases of the integrals, we give the following
two relationships which are used to get simplified angular factors in the
closed-shell system [10, 11]:

—1)i—m; J k ]):;
>.(=1) (_mj 0 m, mék,o (2.54)

mj

and
. o\ 2 1
) ( jo ok ],> - (2.55)
—m; Mg my; 27" +1
A. Coulomb interaction

Casel.a=c,b=d

After summing over b for the Coulomb interaction, we get

;M::Zmﬁmw

b T12

= Y (2 + 1)II*(Kq, ks, 0) /0°° /ooo drydraPa(1)? 4+ Qa(1)?]

b
Lip@)2+ 0201 (2.56)
r>

CaseIl.a=d,b=c

After summing over b for the Coulomb interaction, we get

1
Y Ku = Y {(ab|—|ba)
b T12

b
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koo’
0 1)

1
2

= > (25s +1) Y 1°(Ka, kb, k) (

b k

NS,

/Ooo /000 dT‘ldTQ[Pa(l)Pb(l) + Qa(l)Qb(l)]
TZ—%[PG(2)PI,(2) + Q4(2)Q5(2)]- (2.57)

B. Breit interaction
Casel.a=c, b=d

The direct integral vanishes for the Breit interaction in the closed-shell
system [20, 21].

CaseIl.a=d,b=c
The expression for the magnetic part of the Breit interaction is

2 Lo = D {ab[Vi"|ba)
b

b

_ Z(2jb+1)({ ’g 7 )2Y’“(abba) (2.58)

b 2 -

N[

and from the retardation part we get

> May = ) (ab|VE*|ba)
b

b

= Z(ij-i-l)Z(g ]8 _]1

. )2 Z*(abba)  (2.59)

Therefore, we can write the total average energy in the closed-shell system
as

Fung = Y (270 + 1)/ (aa) + % S 2 + DJap — (Kap + Lay + Mas)]- (2.60)

a a,b
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2.11 Basis functions

The DF single particle orbital |¢;) is constructed as linear combinations of
Gaussian type orbitals (GTOs) as [22]

[6i(r)) = X caulfin(r)) (2.61)

where the GTOs are given by

2

fig(r) = rFe o, (2.62)

where £k =0,1,--- fors, p, - -- type orbital symmetries, respectively. For the
exponents, we have used [23]

o = ot (2.63)
Therefore, we can express the DF orbitals as

[6i(r)) = X calfin(r))

LOP(r) xem\ _ Y[/ Zuchfin(r)  Xem
:r(iw) xm) - (izycfufi,ym xm) (2:64)

where ¢k and ¢, are the coefficients for large (L) and small (S) components
of the DF orbitals.

Substituting equation (2.61) into equation (2.44) and multiplying by (f; |
from the left side, we can construct the following matrix equation for the DF
orbitals:

Z(fi,u hO‘fi,u)Q'u + Z Z{(fi,u¢a|v(ria)|fi,u¢b>ciu - <fi,u¢a|v(/ria)|¢ifb,u>ciu
=6 Y (fiulfip)ci (2.65)

v

or

Z Fuuciu =€ Z(fi,u|fi,u>ciu (266)

j77%
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The definition of new operator (F},,) can be easily understood from both the
equations. For a closed atomic system they can be written in matrix notation
as [23]

FC=¢eS8C (2.67)

where S is the orthogonal matrix with the element (f; ,|fi,). To convert
the above matrix into a symmetric form, we modify the above equation by
multiplying by S~'/2 S'/2 in the above equation as [22]

ﬁg—l/?gl/?é« =c 51/251/26
— G1REG25120 — ¢ §-1/251/2 G120
= FC' =¢eC (2.68)

where F' = S~Y/2FS§-1/2 and C" = §Y/2C'. This matrix is symmetric and has
been used to obtain the DF orbitals.

The kinetic balance condition [24, 25] has been imposed between the large
and small components of the GTOs in order to avoid divergence of the self-
consistent solution of the above DF equation.

For a finite nucleus all orbitals are generated on a grid using a two-
parameter Fermi nuclear distribution approximation given by

0

p= H(;O(W’ (2.69)
where the parameter 'c’ is the half-charge radius, and ’a’ is related to the skin
thickness which is defined as the interval of the nuclear thickness over which
the nuclear charge density falls from near one to near zero. These values are
tabulated by Vries et al. [26] for many atomic systems. We follow Mohanty
and Parpia’s method [27] to determine ’c¢’ and ’a’ for various atomic systems.
The equations determining these parameters are

a = 2.3/4(In3) (2.70)
c = \/grfms—ga%ﬂ (2.71)

where 7., is the root mean square radius of the nucleus.
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CONTINUUM STATES CONTINUUM STATES
S S
r r
q 0 q
p P
Fermi vacuum Fermi vacuum
- Q __________________ a _Q __________________ a
------- O . _____-p ---------Q--------__b
- _Q_ ________ O_______ c  ----- o_ _________ Q___._ c
STt Q- TTTTTTC d S - R d

Single excitation process

(@ (b)

Figure 2.1: Representation of Fermi vacuum and single excitation process.

For point nuclei, we use
P = Po (2.72)

where pg is the average nuclear density.

2.12 Fermi vacuum

The Fermi vacuum consists of certain occupied orbitals as shown in figure
2.1(a). This is also known as a reference state for a closed system, to define
various excitations. An orbital excited out of the Fermi vacuum to an un-
occupied or virtual orbital (e.g. a — ¢) results in the creation of a hole as
well as a particle which as shown in figure 2.1(b). This process is referred to
as a single excitation. It is convenient to express these excitations through
creation and annihilation operators. For example, a single excitation leads to
the state |®%) = afa,|Po), where |®p) is the DF wavefunction for an atomic
system and is generally considered as a Fermi vacuum state. a}; and a, are
unoccupied orbital electron creation or particle creation and occupied orbital
electron annihilation or hole creation operators, respectively.
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holes

particles
+
a
2 a
hol e. P particle
creation anni hil ati ol
hole

anni hi l ation particle

a+ creation
b a
Reference state q

Figure 2.2: Diagrammatic representation of particle creation and annihilation
processes.

2.13 Diagrammatic representation of orbital
lines

To understand the actual process of excitations through electron orbitals we
represent various annihilation and creation operators through diagrammatic
convention. These representations are shown by figure 2.2.

As we explained earlier, all the physical operators can be expressed in
terms of second quantized operators with the necessary matrix element. The
products of such operators can be simplified by applying Wick’s theorem
(see Appendix B for the definition) which give us insight into various physi-
cal processes. In general, we express all the operators in normal order form
(see Appendix B for the definition). When there are two normal order oper-
ators, we use generalized Wick’s theorem (see Appendix B) and simplify the
products.
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0) (ii) (iii) (iv)
Pa, jac| |p P
p r r
v = A Y CTNa
q s qb bd q q
(V) (vi) (vii) (viii) (ix)

a r _?__ __?vp ..... 2 P bvq
_k_)_C_\§7<b r& q o p& Ry N
(x) (i) (xii) (xiii) (xiv)

Figure 2.3: Diagrammatic representation of normal ordered one-body (hy)
and two-body (Vi) operators.

2.14 Diagrammatic representation of opera-
tors

We can express the second quantized operators, which represent electron
orbitals, in a diagrammatic approach as shown in figure 2.2. Extending this
representation we can also express all the normal order operators in terms
of diagrams. Each second quantized operator is expressed and interpreted
diagrammatically as shown in figure 2.2. We put one additional interaction
line to one-body and two-body operators connecting various creation and
annihilation lines. For example, we show a diagrammatic representation of
a normal order Fock operator (hg) and two-body (V) interaction terms in
figure 2.3.
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2.15 Important physical operators

In this subsection we present the single particle representation of important
physical operators. These are used while calculating transition matrix ele-
ments and expectation values later.

2.15.1 Hyperfine structure

The relativistic hyperfine interaction Hamiltonian in the central potential
form is given by [28]

Hyp =S M®.T® (2.73)
k

where M®*) and T®) are spherical tensor operators with rank 'k’ in nuclear
and electronic coordinates, respectively. In first order perturbation theory,
the hyperfine energies for a given atomic state |JM) are given by

W(J) = (IJ;F|YSM®O.1®|1]; F)
k

= S g IRl @)

where {} represents ’six j’ symbol notation, I is the nuclear spin momentum
and F = I+ J is the total angular momentum of the atomic system. Writing
this in terms of multipole expansion, we have

W(J) =Wy + Wgo + WM3 (275)

where W) is the contribution due to the magnetic dipole (M1), Wgy is due
to the electric quadrupole (E2) and W3 is due to the magnetic octopole
(M3) interactions. The explicit form of these terms are given by

Wi = ALJ (2.76)
3TIN+3(LI) —II+1)J(J+1)
21(21 —1)J(2J — 1)
Wiz = C{10(1.3)* +20(L.J)* + 2(L.I)[-3I(I +1)J(J + 1) +
IIT+1)4+JJ+1)+3]—-5I(I+1)J(J+1)}
I(I—1)(21 —1)J(J —1)(2J = 1)

(2.78)
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Where A, B and C are defined as hyperfine magnetic dipole, electric
quadrupole and magnetic octopole constants which are given by [28, 29]

J||TO||T
A = ,U'N[&] (JIIT].T) (2.79)
I3 +1)(2] +1)

2J(2J — 1) X

6Q[(2J+1)(2J+2)(2J+3)] (JI| |1 7) ( )
T@®)
¢ T .
JIT+1)(2] +1)

where yuy is the nuclear magnetic moment, [4] = g; is the nuclear Landé

g- factor, @) is the nuclear electric quadrupole moment in barns and €2 is the
nuclear magnetic moment in barns. These constants are derived from

(IIIMOIT) = pyu (2.82)
1
II|MP|IT) = 5@ (2.83)
(IM@|IT) = —Qpy (2.84)
with
(N M®|Iy = [ e ﬂ(uHMWHm. (2.85)

We use these quantities provided by Raghavan [30] and Harris [31] for
our calculations of A and B.

The electronic parts of the operators are given by
Tq(l) = Ztgl) = Z —ie\/87r/3rj_2aj.Y§2l) (r3)
J
TP = St =" —ier;3C? (r;)

j
: _ 0
Tq(?’) = thf’) = Z —iey/8m/3r; 4aj.Y§q) (r;) (2.86)
j
The single particle expressions for the above operators are given by [28, 29]

o 1]
(kmltPIm) = ~(=rm|COIWm) (x4 #) [ dr—(PQu + PQe)
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(/im\tl(l2)|/£'m’) = —(/{m\CéQ)\m'm')/o drr?(PPo + Q.Qy)
1 o ]
mltP sy = L mmiCP s+ ) [ ar (P + PG
(2.87)
In these expressions [6, 7]
kg
(km|CPm') = (<1 (0 D wICe) (28

and

-/

RICWIR) = (1P R+ DRI+ 1) (1) o 1) 7l kD) @289

with
w(11,12,13) =1
for cases where [1 + (2 + [3 is even, and
7w(11,12,13) =0 (2.90)

otherwise.

2.15.2 Transition operators

Below, we present the reduced matrix elements in terms of single particle
orbitals for different electromagnetic transition operators both in length and
velocity gauges [32, 33].

(I). E1 length:

ldillng) = sl ICO ) [~ dr i ()P By (r) + Qu(r) Qs ()]

+i2(kr) [ (PR Qs (r) + Qulr) Py(r))
+(P(r)Q,(r) — Qu(r) Py(r))]}- (2.91)
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(IT). E1 velocity:

3 00 Ki — K;
(sl = 2l OOy [ {5

() 2 p ()@,) + Q) B
) (b 1)@, r) - Q)P (). (2.92)

(III). E2 length:

(killedl k) = EWHC(?)H@)/Ooodr{jz(kr)[ﬂ(r)l’j(r)+Qi(T)Qj(7°)]

s (k)5 () Q5 (1) + Qi(r) Py(r)
+(P(r)Qs(r) = Qu(r) B ()]} (2.99)

(IV). E2 velocity:

(llesling = otsllClls) [ dr22E (b r)0,) — Qi)

Sy k) + (k)| (P)Qi ) + Qi) Py ()}(2.99)

kr)

(V). M1:

6
ak<

[ dr T (k) ()@ (1) + Qi) Py (r)- (2:95)

(ki [m1||r;) = il |CW] 55

(VI). M2:

30
ak? EA

/ dr "%-;mh(kr)( (1) Q; (1) + Qi(r)Pj(r)). (2.96)

(ril [m2||r;) = kil [CP||r)

In the above expressions we define k = wo, where w = ¢; — ¢; is the
excitation energy, « is the fine structure constant and j;(kr) is a spherical
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Bessel function of order I. When kr is sufficiently small, one can apply the
following approximation to calculate the above matrix elements:
N 1

T 1.35..2n+1)

z "jn(2) (2.97)

The E1, E2, M1 and M2 transition probabilities Ar;(s™!) are given in
terms of line strengths Srr (a.u.)

2.02613 x 10'8

s = [J;]A3 Sii
A2 = 1.11?3;;1018552
A = 2.693;;1013 g
AM2 1.49([)3;7];10135%2 (2.98)

Where [J] = 2J + 1 is the degeneracy of the corresponding state and A is
the corresponding wavelength of the transition.

2.15.3 HHJL matrix elements

Using Wigner-Eckart theorem, the single-particle matrix element of the nu-

clear spin independent PNC Hamiltonian (H}{L) can be written as
lHREI) = (P () 0 )G (2.99)

Writing the matrix element separately, we get

G 0 . —I
GIHEHS) = S Qu [ ar (PO~ @i ()

P(T) Xkj,m;
(iG,r) oum, ) ot

s .G
= (-)¥ m’)5(/€ia—'€j)5(miamj)’tﬁ62w

[ (PIQs0) ~ Q)P o (i, (2.100)
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since
/XLa,mGX*Nb,mbdQ = 0(Ka, —Kp)0 (Mg, mp). (2.101)

Therefore, the reduced matrix element can be written as

Gr 1
Ve Va T e )
[T (P10 ~ QB () oty (2102)

(6l HpNcl|97)
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Chapter 3

Relativistic Coupled-cluster
Theory

3.1 Introduction

It is well known that the Schrodinger equation cannot be solved exactly
for atoms having two or more electrons [1]. The calculation of parity non-
conservation (PNC) observables, which are used for testing the SM of particle
physics require very accurate atomic wavefunctions [2, 3, 4]. Furthermore,
since atomic PNC scales as Z2 [5], these calculations must be based on rela-
tivistic many-body theories. Although the Dirac-Coulomb Hamiltonian is not
covariant, it incorporates the dominant relativistic effects and hence has been
used in our calculations. Contributions from the Breit interaction [6, 7, 8, 9]
have been verified, but a detailed analysis of these contributions are nec-
essary. Quantum electrodynamics (QED) corrections [10, 11] in the bound
electrons of the system have not been considered as their contributions to
the physical effects of interest to us are rather small. The former arises from
the exchange of transverse photons between electrons and is two orders of
magnitude weaker than the Coulomb interaction [6].

Several relativistic many-body theories have been used in atomic structure
calculations. Prominent among them are the relativistic multi-configuration

62
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Dirac-Fock (RMCDF) method [12, 13], relativistic configuration interaction
(RCI) method [14], relativistic many-body perturbation theory (RMBPT)

[15, 16] and its all order generalization, relativistic coupled-cluster theory
(RCC) [17, 18, 19].

The work carried out in this thesis is based on RCC theory as it has some
distinct advantages over the RMCDF and the RCI methods. RCC theory
takes into account a larger class of correlation effects than the other two
theories at the same level of approximation [1, 20]. For example, at the singles
and doubles level, nonlinear combinations of single and/or double excitations
are included in RCC theory in contrast to the RMCDF and RCI methods.
Unlikely the RMCDF and RCI methods, RCC theory is size extensive [1, 21].

3.2 Coupled-cluster wavefunction

Coupled-cluster (CC) theory has been used to study a wide range of many-
body systems and has been referred to as the universal many-body theory
[22, 23, 24]. It has recently been applied to calculate ground and excited-
state properties of nuclei [25]. Although the non-relativistic version of this
theory has been very successfully applied to a variety of light atoms and
molecules [26, 27, 28], its extension to the relativistic regime is rather recent
[2, 7, 29, 30]. There have been relatively few theoretical studies of the prop-
erties of heavy atomic systems based on the RCC theory.

The CC wavefunction for a many-electron atom incorporates the effects of
electron correlation to all orders in many-body perturbation theory (MBPT)
[1, 22]. To derive the explicit form of this wavefunction, we consider the
electron-electron interactions beyond the independent particle model. These
interactions will result in single, double and higher order excitations from the
Fermi vacuum. In addition there will be excitations involving independent
single and double excitations, one single and one double excitation et cetera.
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3.2.1 Closed-shell system

Since the atomic wavefunction is the probability amplitude representing all
the independent excitations, for the closed-shell system it can be written as
17, 21]

1 1 1 1
Uy =[1+T -1-5 12+T2+ §T13+T1T2+ §T22+ET14+"']|(D0> (3.1)

where |®q) represents the independent particle model wavefunction also
known as the reference function or Fermi vacuum. It is customary to take
this is as the Hartree-Fock (HF)/Dirac-Fock (DF) wavefunction. 77 and T
are single and double excitation operators producing one hole-one particle
and two hole-two particle states.

The above equation can be expressed as
[T) = e[ ®o) (3.2)
where
T=T+T+---. (3.3)
In the second quantized notation these operators can be expressed as
T = Th+Th+---

1
= > tPala, + 2 > tlalalayaq + - (3.4)
a,p ab,pq

where t2 and 2] represent amplitudes due to single excitation from core elec-
tron ’a’ to virtual particle 'p’ and double excitation from core electrons ’a
and b’ to virtual particles 'p and q’, respectively.

It can be noted from the explicit form of the 7" operator that it is already
expressed in the normal order form.
3.2.2 Single valence systems

The work described in this thesis deals only with the atomic systems hav-
ing a single valence electron. For such systems the reference state can be
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constructed as
|®,) = al|®o) (3.5)

where |®), as defined earlier, is the DF closed-shell reference state and a} is
the creation operator for the valence electron.

The RCC wavefunction for a single valence system is given by [31]
,) =e" {1+ 5,}|®,) (3.6)

where the operator T is applied only to excite the occupied (core) electrons
and S, produces excitations from the valence sector and the core as well as for
double and higher order excitations. The curly bracket around the operator
S, represents the normal order. The linearized form of the S, operator is a
consequence of the fact that the system has only a single valence electron.
In the second quantized notation the single valence RCC operators can be
written as

S’u = Slv+82v+"'

1
= Y sPala, + 5 > shlalalapa, + - - (3.7)
p#v b,pq

where sP is the amplitude for the excitation of the valence electron and sbf
is the amplitude of the excitation involving the valence and a core electron.

The restriction over the summation for the single excitation ensures that
the excitation from the valence electron v’ to ’v’, which does not correspond
to any physical process, is not counted. A useful way of imagining the single
excitation is by considering the valence electron v to be a spectator and
allowing a hole to excite to any virtual state through the S,, operator by
allowing the virtual electrons denoted by ’p’ or ’¢’ to be valence electron of
the system.

3.2.3 Diagrammatic representation of CC operators

We represent the above CC operators for both closed-shell and open-shell
systems in the diagrammatic approach as shown by figure 3.1 with their
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a P a p b q P 4
—
T
1 T2 \Y S_I_V
Pxv
\'
\
ngap%;a q;§<b .
+ + p
+ T p +
T 2 SlV SZV
SR

Figure 3.1: Diagrammatic representation of CC operators and their conju-
gates. Double arrow represents the valence electron v.

conjugates. They satisfy the time ordering property from bottom to top as
Goldstone diagrams representing MBPT [1, 21].

The double arrow in a particle line represents a valence electron and
cannot be contracted with any core or virtual electron.

3.3 Equivalence of All Order MBPT and CC

In order to establish the equivalence between all order MBPT and CC, we
write the MBPT wavefunction as [1, 20]

WUrgpr) = |@y) + \‘I)S,l)) + |(I)1(12)> +--

= |<1>v>+§01(1)|<1>1)+§CJ(2)|<I>J)+--- (3.8)

where |®(V)) and |®{?)) are the first and second order perturbed wavefunc-
tions. Here |®;) and |® ;) represent intermediate excited determinantal states
and C;(1) and C;(2) are the coefficients for first order and second order per-
turbed wavefunctions, respectively. These corrected wavefunctions are linear
combinations of different excited states. Therefore, one can collect all the
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single, double etc. excitation amplitudes and put them together as

Wyppr) = [®)+ D (CP(1,1) +CE(2,1) +---)|DF)

a‘7p
+ (C(1,1) +CR(2,1) + -+ )| @)
pFv
1
+§ Z(ng(lv 2) + 055(2: 2) + - )‘(ng> +
abpq
+5 Z Cr(1,2) + O (2,2) + -+ )| FF) +
bpq

where CY, Cfl- - represent the coefficients of the single, double etc. excita-
tion states. The first index inside the parentheses represent the order of Vy
included in the term and the second index represents the level of excitation
from the reference state. Expanding in terms of second quantized operators,
we get

Wuppr) = [®y) + D (CE(1,1) + CE(2,1) + - - -)afaq| Do)
ap
+>(CP(1,1) + CP(2,1) + - - )afa, | D)
pFv
1
*3 > (CH(1,2) + CB(2,2) + - - -)afalayaa| o) +

abpq

Z Ch(1,2) + CH(2,2) + - alalaya, | By) +

bpq
= + Zt aa|<1>0) + = Z tquLT JrCL(,CI,G,|(I)0>
abpq
+>" stala,|®,) + 2ZquaT alapa,|®,) + - - -
psév bpg
4= Zt”tq f Tabaaq)o)-i- X
abpq

1
= 1+ + T+ ETE + ) [By) + Sty | o) 4 Sou|®y) +

= e'{1+5,}|9,)
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Figure 3.2: CC diagrams for S, and Sy, and some of their corresponding

MBPT diagrams.

where
te
s
the + tf

Prq
Sub

CP(1,1) 4+ CP(2,1) + - --
CP(1,1) + CP(2,1) + - --
ng(la )+C£g(272)+"'
CP(1,2) + CPI(2,2) + - -
(3.10)

Therefore, ultimately we obtain the CC operators from the MBPT wave-

functions as

T

Slv

> tga;f]a
ap
> sfv’a;a

pFv
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2v vb“'p q by -
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This relationship can be expressed diagrammatically as shown by figure
3.2.

3.4 Equations for determining CC ampli-
tudes

It is necessary to solve the coupled-cluster amplitudes both for closed-shell
and a single valence system in order to obtain the atomic wavefunctions which
can be used to determine various atomic properties. We solve the Dirac-Fock
(DF) wavefunction for the closed-shell as discussed in the previous chapter.
This DF function is considered as the reference state for the closed-shell and
we express different cluster operators as described in the previous sections.

As the CC wavefunctions have an exponential structure, there are non-
linear terms in the amplitude equations. It is clearly difficult to consider
the non-linear terms as well as all core and valence excitations when solving
for the wavefunctions of a heavy atomic system. In practice, one often ap-
proximates by considering only certain non-linear terms and only important
excitations at a reasonable level of approximation depending on the problem
of interest. For important problems single and double excitations give the
largest contributions [1, 32]. Therefore, a large number of calculations are
carried out using only single and double excitations and the method is known
as CCSD.

Sometime it is very difficult, for large systems, to cope with the non-linear
terms even in the CCSD approximations. Therefore, many calculations are
carried out using only the linear terms of the exponential function of the CC
wavefunction [2, 8] and the application of the non-linear formulation of CC
is rather recent. We discuss the cluster amplitude equations for both the
linearized and non-linearized CC method.
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3.4.1 Linearized CC theory

Due to the enormous computational effort needed to solve the CC amplitude
equations for heavy atomic systems, a linearized version of this theory has
been used in the calculations of the properties of these systems. We present
here the working equations for this method. We first solve the closed-shell
system and obtain amplitudes for the T" operators. Using these amplitudes
we find the amplitudes for the S, operators. This procedure simplifies some
of the computational complexities, but the price to be paid is by storing the
closed-shell amplitudes on the hard disk of the computer. Below we give a
detailed description of the computational procedure.

3.4.1.1 Closed-shell equations

N
P a QOb P
Ty T

Figure 3.3: Diagrammatic representation of AE,,,, for LCCSD.

The atomic wavefunction for a closed-shell system in the CC method is
given by [1, 17]

(U) = eT'| ). (3.11)
Therefore, the eigenvalue equation for the state |¥) is given by

H¥) = E|V),
HBT‘©0> = EeT‘(I)0>.
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Subtracting (®|H|®,) and operating from the left by e=7 on both sides
of the above equation, we get

e (H — (o H|®o))e" |@9) = (E — Epr)|®o)

where the DF energy is defined as Epp = (®o|H|Py). From the definition of
the normal order form we obtain

e_THNeT|(b0> = AECO'I"I‘ |(I>O>;
T
(HN@ )|(DO> = AEﬁco'r'7"|q)0>- (312)

The brace in the left hand side of the equation over the operators repre-
sents connected terms. Hy is the normal order form of the Hamiltonian and
AFE,,. is the correlation energy of the system over the DF energy. To eval-
uate the connected terms given in the left hand side of the above equation,
we follow the generalized Wick’s theorem (see Appendix B).

The correlation energy (AFE,,) can be obtained by operating by (®g| in
the above equation:

——
<@0|HN€T|(I)O> = AE1corr (313)

and in the linearized approximation this can be expressed as

—N
(®o|Hy + HxT |®g) = AB. (3.14)

where the first term vanishes in accordance with the definition of normal or-
der. In the linearized CC theory with single and double excitations (LCCSD),
the correlation energy diagrams are given by figure 3.3.

The T operator amplitudes are determined by projecting by (®§| from
the left side of equation (3.12), where |®f) denotes necessary single, double
etc. excited states:

—N—
(®F| Hye™ |®g) = 0. (3.15)
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Figure 3.4: Diagrams connecting to 7- amplitude calculation using LCCSD.
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For linearized CC, the above equation yields

—N
(B5| HNT' |@9) = —(®5|Hn|Po)- (3.16)

To solve the amplitude equation given by equation (3.16), we formulate
the following matrix equation

( (P4 Hy|®F) (24| Hy|P5) ) (tg ) _ ( (0| Hy|®o) )
(Pop | Hn|DF)  (Pop| Hn | D) ) \tap (®as | Hn | Do)

which can be written as
A-X = —-B. (3.17)

The j** element of the vector X, which represents the T operator, can be
solved iteratively by

—Bj — Yy A XV
A

X - (3.18)
23

where the 7’ represents the iteration number. Aj; and A;; represent off di-
agonal and diagonal elements of the matrix A, respectively. Obviously, the

diagonal elements are nothing but the single particle orbital energies here.

The B matrix elements and off-diagonal elements of matrix A for the
LCCSD method are given diagrammatically by figure 3.4. The T- amplitudes
are solved by using the Jacobi iterative method where the initial value for
the single and double excited amplitudes are given by

() = o
(pal 5t

0 L A— 3.19
(tos) P —— (3.19)

respectively. The initial value for the (#2)(!) is zero which follows from Bril-
louin’s condition (See Appendix B) and €’s are the DF single particle orbital
energies. Due to the coupling between single and double excited cluster am-
plitudes, the value of ¥ becomes finite at higher order through the iterative
process.
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3.4.1.2 Open-shell CC equations

The open-shell atomic wavefunction with the valence electron 'v’ in the CC
method is given by [31]

|qlv> = eT{l + Sv}|(1)v> (320)
The equation of state is given by

H‘\Ilv> = Ev‘\Ilv>
He™{1+8,}®,) = E,e{1+5,}|®,).

Operating by e~7 and using the definition of normal order form, we have

e THe' {14 5,}|®,) = E{1+5,}®,)
(7" Hye)op + (@ole™ He' |[@0) {1 + S,}[@y) = Ep{1l+ S,}[Py)

((’I}/:T)op + E){1+5,}|®,) = E{1+5S5,}|P,)

)
(HD)op {1+ S} |@0) = (B — Ey){1+ 5.} [0)
)

—
(He")pp{1 + S,}|®,) = AE{1+5,}|®,)

(3.21)

where the term e THel has been decomposed into an open part
((e"THye™),p), which can be contracted with the valence electron of the
reference state by expanding it as |®,) = af|®), and a completely con-
tracted term giving rise to the ground state energy (E,) for the closed-shell
system. AF, is the difference between the energy of the open-shell state with
valence electron 'v’ and the ground state energy of the closed-shell system,
and is defined as the electron affinity energy or the negative of the ionization
potential (IP) for the valence electron (v).

The IP and S, operator amplitudes can be determined by applying (®,|
and (@, respectively, where |®}) denotes necessary single, double, etc. ex-
cited states from |®,), in the left side of the above equation:

(®,|(HyeT)p{l + S, }|®,) = AE, (3.22)
(@|(Hye")op{l + S, }|®,) = AE(®X]S,|P,). (3.23)



3.4.1.2: Open-shell CC equations 75

@ G (i) (iv) (V) (V)

Figure 3.5: Ionization potential diagrams for LCCSD.

In the linearized CC, the above equations can be expressed as
— —N
(Py|Hy + (HNT)op + (HnSy)op| @) = AE,,  (3.24)
* —— " —N "
<(I)v|(HNSv)op‘q)v> = _<¢v‘HN + (HNT)op|q)v> + 6v<q)v|5v‘q)v)- (3-25)

We use only ¢, from AE,, as other terms from equation (3.23) after tak-
ing the product with (®}|S,|®,) will effectively be non-linear terms.

The IP diagrams using the LCCSD method are given by figure 3.5. To
solve the amplitude equations we formulate matrix equations similar to these
for the case of the closed-shell equations,

<<<1>5|HN—eu|@z> (@8] H  |970) )(Sﬁ)z_(<¢€\HN+ﬁﬁ|¢u>>

(Pop [ Hn (D7) (Pl Hy — €| ®h5) ) \ s (O Hy + HyT | ®,)
or,
A-X = -B
(-1)
xi = BT 2 Ak (3.26)
: .

Ajj

where '’ represents the iteration number for the solution of element X; which
stands for the ’j* element of the S, operator. A;; and A;; are the off diagonal
and diagonal elements of the above A matrix. The diagonal elements are
nothing but the single particle orbital energies. The above equation is solved
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Figure 3.6: Diagrams connecting B- matrix of S,- amplitudes using LCCSD.

using the Jacobi iterative method. The initial value for the single and double
excited states are taken following the Brillouin’s condition as

O = 0
L |vb
(= - e (327

7
€pt € —€ — €

respectively. The diagrammatic representation of B and the off diagonal
matrix elements are shown by figures 3.6 and 3.7, respectively.

3.4.1.3 Matrix element of physical operator

The transition matrix elements of any general operator can be expressed
using the CC method for a single valance system as

(Ts{1+ S}te™" O™ {1 + S;}|T;)
(O)yi = Tt T

where 7 and f are the indices used to represent the initial and final states.
For determining the expectation value one can use the special condition that

(3.28)
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Figure 3.7: Diagrams connecting to off-diagonal elements of S,- amplitude
using LCCSD.
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1 is equal to f.

In particular for the linearized CC, the above expression yields

(DY = (Up{1+ S} +THD{1 + T + S;}|T;)
I @+ ST+ T+ T+ 8.}y

(3.29)

In the LCCSD approach, both TtDT and T'T truncate at T; DT, and
T;r T,. But when applying Wick’s theorem one can get a large number of pos-
sible diagrams in the property calculation. Therefore, we decompose these
operators by effective one-body, two-body operators and so on. In principle,
only terms up to effective three-body terms will contribute to the calcula-
tion, because these terms have to be contracted finally with S, and/or its
conjugate operators in order to determine the result. We consider only the
effective one-body terms which are more important and then add the max-
imum contributing two-body terms. Other terms are of higher order and
can be neglected. We have given all the property diagrams for the LCCSD
method in figure 3.8.

3.4.2 Non-linear CC theory

As mentioned earlier, due to the computational complexity required in con-
sidering the non-linear terms in the coupled-cluster theory, many atomic
properties are calculated at the linearized level. However, there are rare
cases where these terms have to be included at the level of single and double
excitations (CCSD). High precision calculations like PNC studies on heavy
atomic systems require inclusion of these terms in order to achieve high ac-
curacy. Considering non-linear terms may cause difficulties in constructing
the matrix equations for solving CC amplitudes. We give here a prescription
for handling such issues which have been applied in the present case.

It should be noted that computing each non-linear term itself directly may
require an enormous amount of time. The total number of computational
operations can be reduced by splitting all the non-linear terms into interme-
diate parts. There are many ways to construct such intermediate terms [32].
It is possible to break the non-linear terms in such a way that it take least
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Figure 3.8: Property evaluation diagrams using LCCSD.

amount of time to compute in a program. But sometimes it is important to
look on a longer time scale and appreciate that the non-linear terms can be
broken up and stored in the computer hard disk and thereafter used several
times in a sequence of programs. The second procedure may not be the least
time consuming case for a single program but it will save more time when
these terms are used repeatedly. Therefore, we follow this method which
seems justified in our case and later this can be clearly understood when we
discuss details of computational procedures in this and later chapters.

As usual we first start with the closed-shell CC equations to solve for
the T amplitudes and using these amplitudes we calculate the S, operator
amplitudes followed by performing the matrix element calculations. Below,
we discuss the detailed computational procedures.

3.4.2.1 Closed-shell equations

We consider the exact equations given by (3.14) and (3.15) for determining
the correlation energy and CC amplitudes. Applying the Hausdorff expansion
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—N
(see Appendix D) one can expand Hye' as

Hye® = Hy =+ (Hy, T)+ y{[Hx), Tl T)+ 5 ([(Hx), )71,

+%[[[[HN], T],T),T), T}

N\

—— 1 - - N -
= Hy+{HNT-THy}+ 5{[HN,T]T—T[HN,T]}

+ 5 [, T, 71T T, 1, 7))

44 (T, 1) 70, 717~ T([H, 10, 71,70)

——

A A
Ve ~ Ve ~

1
41

——
—N 1 —/—
= HN—{—HNT—{—EHNTT%-

1

—N
3 HNTTTT

(3.30)

——
—N
HNTTT +

where the wide caps represent connected terms. Due to the fact that the
atomic Hamiltonian has up to two-body operators (Coulomb or Breit inter-
action potential) maximum of four 7} operators can connect with it and as a
result the exponential function Hye” naturally truncates at the fourth term
as given by equation (3.30). Other terms will not satisfy the Linked diagram
theorem (see Appendix C) and hence they are discarded from the calcula-
tions.

In the CCSD method, the extra diagrams contributing to the correlation
energy calculations over and above the LCCSD method are given by figure
3.9.

The amplitudes are solved by the following non-linear matrix equations.
These can be expressed in a way similar to linearized CC equations as

—— —N—
(@ Hy(e" —1)]82) (@2 Hy (! — 1) [87%) ()= (oo y

e N prq - rq .
(@ Hy (¢! — 1) [879) (@7 Hy (! — 1) |02y ) \lab (us | Hiv|o)

Or in vector form as:
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T L T T

Figure 3.9: Extra diagrams for the calculation of AFE,,,., in CCSD.

(3.31)

The matrix A itself depends explicitly on the T operator amplitudes. The
non-linear terms present in A can be split up as the product of 7" operators,
some effective one-body terms and some intermediate parts with four open
lines (two-body terms). First the effective one-body and intermediate two-
body terms can be calculated and stored in RAM on the computer. These
intermediate parts can be contracted with respective T' operators to form
the matrix elements of A. The solution of the above matrix equation can be
expressed in the Jacobi iterative method as

X = TP B AdOXTT (332)

’ Ajj ’

where the diagonal elements of the matrix A and B are same as for the
linearized CC equations given in the earlier section. To construct the off-
diagonal matrix elements A;;(X), we use the afore mentioned intermediate
procedure. The 7" dependent intermediate terms are calculated using the
solution from linearized CC amplitudes and the whole procedure has to be
followed via the iterative way.

The effective one-body (HH, HP and PP) and two-body intermediate
diagrams (aimsl, aims2, aims3, aims4, aims5, aims6, aims7 and aims8) con-
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structed for the CCSD method are shown by figures 3.10 and 3.11, respec-
tively, and known as f-bar and v-bar diagrams. These terms are constructed
by contracting Vi and T operators obtained from LCCSD. The off-diagonal
elements of A, constructed with these intermediate terms for 77 and 75 am-
plitudes, are shown by figures 3.12 and 3.13, respectively.
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Figure 3.10: Diagrammatic representation of f-bar terms for closed-shell.



Figure 3.11: Diagrammatic representation of v-bar terms for closed-shell.
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Figure 3.12: Diagrammatic representation of off-diagonal elements for singles.
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Figure 3.13: Diagrammatic representation of off-diagonal elements for dou-
bles.
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3.4.3 Open-shell equations

We follow a similar procedure of a non-linear closed-shell method to solve the
amplitude determining equations for the single valence system. The exact
form of equations (3.24) and (3.25) is considered in order to solve for the ion-
ization potential and open-shell cluster amplitudes. The expansion of Hye”
will have linear terms up to the fourth power of T operators as explained
in the closed-shell CC equations. The whole expression can be expressed as
effective one-body and two-body terms which can contract with possible S,
operators in the above equations. The basic difference between such splitting
up in the closed-shell and open-shell case is, in the closed-shell case the T°
operators are not known and the intermediate terms have to be followed by
the iterative procedure with the amplitude determining equations. But in
the case of open-shell, the T" operators are already known and the effective
one-body and two-body terms can be constructed and stored in RAM to use
later. Again, since these operators have to be finally connected with S, oper-
ators, all possible terms from Hye! will contribute as opposed to closed-shell
equations where only a certain set will contribute. So it is simple to construct
all these diagrams by applying various rules such as the level of excitation
procedure [32] or string algebra [26].

In principle, there will be four possible effective one-body terms: particle-
particle (PP), hole-hole (HH), particle-hole (PH) and hole-particle (HP)
types. But PH type one-body terms will not contribute to the calculation.
We have shown all possible effective one-body terms in figure 3.14 which will
contribute to the CCSD approximation. These diagrams are called f-bar di-
agrams.

Similarly, we can have ten possible types of effective two-body diagrams
like Viy as shown in figure 2.3, but not all of them will contribute to the cal-
culations. The contributing intermediate two-body diagrams at CCSD level
are given in figure 3.15. These diagrams are called v-bar diagrams. However,
sometimes a unique term has been considered here as a possible intermediate
term, instead of, calculating this term directly with the S, operator in the
final form. We consider it in the intermediate part in order to store it in
a common variable and make use of it arbitrarily by addressing its location
when necessary.
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Figure 3.14: Diagrammatic representation for f-bar terms in open-shell CCSD
calculation.
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Diagrams corresponding to IP calculations using the non-linear CCSD
method have been shown in figure 3.16.

The amplitude determining equation given by (3.23) can be expressed as

— — —N
(®F] Hye —AE,|®%) (®F] Hye" |@77) ( Spﬁq) _ [ (@ Hye |2,)
(®%5| Hye" |®0)  (@01| Hye' —AE,|@}f) )~ (@51] Hye" |®,)
Or, in vector form
(A-IAE,)-X = -B (3.33)

where I is the identity operator. The matrix A and B depend explicitly on
T operators and are known in this case. The above equation is non-linear
because of the fact that the electron affinity energy (AE,) itself depends on
S, operator amplitudes which can be observed from equations (3.22) and
(3.23). Therefore, it has to be solved iteratively. In the Jacobi iterative
method, the solution for the above equation can be expressed as

. —B;+ (AE, — )XY — v A, x 0D
X! = i+ E)Z iy At (3.34)
Ji

where different indices used here are defined in the earlier equations for the
closed-shell. Here the single particle energy of the valence electron (e,) has
been subtracted from AFE,, because it has been already considered in the di-
agonal elements of matrix A. This can be clearly understood when we choose
the initial values of the solutions for the above equations. The B matrix ele-
ments are P-P and PP-HP block diagrams of f-bar and v-bar terms for single
and double excitation equations, respectively.

The initial values of the equation (3.34) have been considered as

(Sp)(l) - f(pa U)
’ f(p,p) = f(v,0)
(352)(1) _ {pq|V (pg, vb)|vb) (3.35)

f(p,p)+ flg,q) — f(v,v) — f(b,D)
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where f (i, j) represent f-bar value with 7 and j matrix elements and V' (pg, vb)
represent the v-bar values for PP-PH diagram with one of the particle equiv-
alent to the valence electron.

Diagrams corresponding to the off-diagonal elements for calculating S,
amplitudes are given by figure 3.17.

3.4.4 Inclusion of effects from triple excitations

To improve the accuracy of the calculations we consider the leading triple
excitation effects in the S, amplitude determining equations of the CCSD
method. This approximation is called the CCSD(T) method, where the T
in the parenthesis represents partial triple excitations. In this approach, we
construct the most important triple excitations by contracting the Coulomb
operator (Vi) with Ty and Sy, operators [30, 34] as follows:

VT + V5o
SPI — N2 T W . (3.36)

Vi
€y T €+ € — € — € — €

Contributions from these excitations are included by contracting the
above operator with the S, operators and constructing diagrams for the ion-
ization potential (—AE,) calculation, coupled with the solution of equation
(3.35). Therefore, the equation (3.34) after the inclusion of partial triple
excitations can be written as:

—B; + (SE VXY 4 (AB, — ) XV = 2y A XY

X — vhe )5 J (3.37)
! Ajj

The diagrams corresponding to the ionization potential calculation from
partial triple excitation terms are given in figure 3.18.
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Figure 3.17: Diagrams for off-diagonal elements S, determining equations.
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Figure 3.18: Diagrams for ionization potential (IP) calculations from the
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3.4.5 Property evaluation

In many of the studies in quantum chemistry, only the energy of different
states are verified using the CC method [17, 24, 32, 34]. In few atomic sys-
tems where the various atomic properties are calculated with the CC method
[2, 8], the LCCSD approximation is mainly used. Here we discuss the work-
ing procedure using the CCSD method to calculate various properties and
the calculated results are given in the following chapters.

We directly follow equation (3.29) in order to calculate either transition
matrix elements or expectation values of any physical operator. In contrast
to linearized CC, in the nonlinear case 7' DeT will be a non-truncative se-
ries even at the level of the CCSD approximation. It is not possible to solve
these matrix elements directly, but one can truncate the series by verifying
the importance of immediate higher order terms with the required precision
calculation of the results. We decompose the above non-truncative series
as effective one-body, two-body etc. up to five-body terms for the CCSD
method [35, 36, 37]. Since these terms again have to be contracted with
appropriate S, operators and their conjugates, only up to three-body terms
will be valid in this expansion. We consider only effective one-body and two-
body terms in our calculations as others correspond by to higher order terms
and are computationally tedious to handle.

The effective one-body terms are classified as hole-hole (HH), hole-particle
(HP), particle-particle (PP) and particle-hole (PH) types. The diagrams for
each type in the CCSD method are shown in figure 3.19 which are called
Dbar (D) diagrams. Although we have given all possible diagrams, in prac-
tice these terms are calculated using the following procedure. We first cal-
culate half of the HH and PP type diagrams and the other half are retrieved
using the symmetric relationship. From that point of view HP and PH type
diagrams are also symmetric to each other and hence, we calculate one type
of these diagrams and using the aforementioned relationship we retrieve the
other type. These matrix elements are stored in the hard disk after com-
putation and finally, they are read in to another program where they are
contracted with respective S, and its conjugate operators to evaluate the
final results. The final property diagrams obtained after sandwiching with
effective one-body terms are shown in figure 3.20.
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In fact, not all possible two-body terms are important in the property cal-
culation. We have dropped terms (diagrams) corresponding to higher order
terms whilst considering only important two-body terms. We have shown
a schematic example of how the effective two-body terms are obtained dia-
grammatically in figure 3.21. These diagrams are directly computed for the
property calculation. The diagrams corresponding to total effective two-body
terms which are considered in our calculations are shown by figure 3.22.

We also follow the same procedure to compute the non-truncative series
of eT'eT from the denominator of equation (3.29).
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terms.
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3.5 Reduction of angular factors from Gold-
stone diagrams

The Goldstone diagrams given in this chapter can be expressed in terms of
various radial integrals and complex Clebsch-Gordan coefficients. These fac-
tors are considered in terms of the reduced matrix elements of the related
operators (expressions for these operators are given in the previous chapter)
in the respective Goldstone diagrams and an azimuthal quantum number
(m;), of the angular momentum j- of the single particle orbital, dependent
factor. These angular factors can be derived from the Goldstone diagrams
using a set of rules given in Appendix C. The complex angular factors are
further simplified using JLV theorems (see Appendix A).

For simplicity, one cancels m; dependent factors from both sides of the dif-
ferent matrix equations of the amplitude determining CC equations. There-
fore, one can deal with just the reduced matrix elements. It reduces the
number of computational operations by a large amount and helps the JLV
theorems to be used conveniently. It should be noted that the value of dif-
ferent CC amplitudes remains invariant in this procedure.

Again, in the calculation of matrix elements we need only the reduced
matrix elements as we shall see in chapter 5 and therefore, it is not necessary
to deal with the actual matrix elements of the operator. When we evaluate
the expectation value of any physical operator, we deal with the reduced
matrix element in the entire calculation and to obtain the final result, we
multiply by the required m; dependent factor which results in the net reduced
matrix element.
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Chapter 4

Application of Relativistic
Coupled-cluster Theory to
Parity Non-conservation in
Atomic Systems

4.1 Introduction

The importance of accurate calculations of the electric dipole parity non-
conserving amplitude (E1py¢) in testing the Standard Model (SM) of parti-
cle physics has been mentioned earlier in this thesis. A number of calculations
have been carried out on a variety of atomic systems [1, 2, 3, 4]. The most ac-
curate calculation to date has been on 651/ — 7s;/7 transition in Cs 3, 4, 5].
Dzuba et al. have used a Green function-like approach based on a variant
of relativistic many-body perturbation theory [4], while Blundell et al. have
used linearized coupled-cluster (CC) theory [3].

In this thesis, we have developed a full fledged non-linear relativistic CC
theory to calculate E1pye. This approach, which is discussed in detail in
this chapter, is capable of treating the interplay of electromagnetic and weak
interactions in a heavy atomic system to a high degree precision. This is
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achieved by considering the electron correlation effects to all order in the
residual Coulomb interaction for a given level of excitation and the neutral
weak interaction to just one order. Unlike the approach of Blundell et al.
[3], we do not calculate E1pyc by summing over intermediate states. These
states are included implicitly in our approach.

4.2 Theoretical Approach

For atomic PNC studies, we consider only the nuclear spin independent inter-
action Hamiltonian (Hpy¢) type, for the reasons mentioned in the chapter
1. Along with this interaction term the total atomic Hamiltonian can be

written as
H=HY +GrHY (4.1)

where G is the Fermi constant and H©® is the atomic Hamiltonian that has
been considered in the previous chapter for atomic wavefunction calculation
using relativistic coupled-cluster (RCC) method. H® is nothing but the
HAJL except the G factor given in chapter 1.

It is obvious from the properties of H(") that it is responsible for mixing
atomic states of opposite parities but with the same angular momentum. As
its strength is sufficiently weak, we consider only up to first-order perturba-
tion and the modified atomic state wavefunction is given by

) = W) + G| WSY) (4.2)

where 'v’ represents the valence electron.

In RCC, the atomic wavefunction |¥(?)) for a single valence open-shell
system, as discussed in the last chapter is given by [6, 7]

WOy = T(1+ SO} |e,) (4.3)

where |®,) is the reference state for the open-shell defined using the Dirac-
Fock (DF) wavefunction of the closed-shell atomic system (|®)) as

@) = af| o). (4.4)
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In the singles and doubles approximation, we have

7O =7 4 7%
SO = 59 4 50 (4.5)

where Tl(o) and TQ(O) are the single and double particle-hole excitation opera-
tors for core electrons and S§2) and Sé?,) are the single and double excitation
operators for the valence electron, respectively. The amplitudes correspond-
ing to these operators are determined using the procedure explained in the

earlier chapter.

Now, the expression for the Flpyc amplitude from the initial state (i)
to the final state (f) is given by

(Uy|D[W:)
(W f W) (W3] 05)

E]-PNC == (46)
v

Substituting the wavefunctions from equation (4.2) and considering only
up to linear terms in G terms we get

(0) (1) (1) (0)
Epne = (U7 |D[W; ) + (¥}’ | D[w;™) (4.7)
\/ \II(O) \II(O) \I;(O) \I’(O) ’
(57 [0 ) (07 [25)

where D(= er) is the electric dipole (E1) operator. Substituting the expres-
sion from the first order wavefunction in the sum-over-states approach, we
get

1 S (O DIe Oy (e HO T
VPPl e®) iz B~ B
WP HOD) D D|w)
4.8
+ §f . } (4.8)

FElpnc =

where I and J represent intermediate states.

Blundell et al. [3, 8] have used the above sum-over-states method to
determine F1lpyc for the 6s — 7s transition in Cs, where most accurate
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experimental results are available [5]. They have considered the important
intermediate states. Dzuba et al. in one of their approaches [9] and Geetha
[10] calculate the Elpyc amplitude for 6s 2Si» — 5d 2Ds)o transition by
following the approach of Blundell et al. [3]. The drawback of this approach
is that the summation can be performed only over a finite set of intermediate
states which limits the accuracy of the calculation.

The method we have used in the present work circumvents this problem
by solving the first order perturbed equation for the corrected wavefunction

of

(H® — BO)0®) = (Bpyc — HY)[ W) (4.9)
where El(gl])vc = 0 since H® corresponds to the parity non-conserving weak
interaction.

In RCC, the cluster operators for calculating the perturbed wavefunctions
can be written as

T=70 4 GFT(l)
S, =S80 4+ GpsY (4.10)

where T®) and S{V are the first order G corrections to the cluster operators
T© and SV operators, respectively.

We discuss below the detailed procedure for determining the perturbed
RCC amplitudes which are necessary to calculate the Flpyc amplitude.
Like the previous procedure, we first solve the closed-shell cluster amplitudes
followed by the open-shell amplitudes and then the PNC amplitude.

4.3 Closed-shell Theory

With the above modified wavefunction, the eigenvalue equation for the
atomic systems can be written as

HI) = E|T).
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Substituting the wavefunction from the closed-shell RCC method given
in the previous chapter, we get

He'|®) = Ee'|®). (4.11)
Expanding the above equation using the relation (4.1), we get
(HO +GrHD)e [@g) = (BO +GrEW)e" D)
(HY + GrHD)e (@) = (B — EQ) + GrEM)e™ @)

where higher order corrections to the energy eigenvalues are neglected keep-
ing only up to linear terms. Subscript /N represents normal order form (see

Appendix B for the definition). Eg)l)[7 is the DF energy.

Operating by e=T on both sides from the left, we get
eT(HY + GeHD)e(00) = (B — Ef))|0)

0 0
(HY e" +Gr HOEM)) @) = (B© — ESL) ()

—~
since EM) is zero, where e THeT = He” are the connected terms as given
by Hausdorff expansion (see Appendix D).

Substituting expression for T from equation (4.10) and keeping only linear
terms in G, we get

(HY (1 +GpTW) + GrHO(1+ GpTV) @) = (E© — ES))|0)

(HOTO + HD)|@g) = (B — B0 |00)(4.12)

© _ =
where we define Hel' ' = H in the above equation. The final expression has
been obtained by equating the first order terms in G on both sides.

The amplitudes for the 7™ operators are obtained by making the scalar
products with the bra vector of excited states |®*) as

(@ HOTO + HO|9) = 0. (4.13)

The computational procedure for solving this equation has been discussed
later.
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4.4 Open-shell Theory

We start with the equation for single valence system
H|¥,) = E|¥,). (4.14)

Substituting the relation given by equation (4.1) and the single valence
RCC wavefunction formulation, we get

(HO +GrHD)e" {1+ 5,}@,) = (BQ +GrEW)e™{1+5,}[2,)

where higher order correction to the energy eigenvalues are neglected keeping
only up to linear terms. Operating e~7 on both the sides yields

e T(HO + GpHW)e {1+ 5,}|®,) = EOH{1+S,}d,)
—— ——
(HOe' +Gp HYeN) {1+ 5,}®,) = EO{1+S,}|®,)

Substituting the value of T"and S, operators from equation (4.10) and keeping
terms only up to linear order in G, we get

(HO{1+ 59 + Gp(TW + SV} + GpHO{1 + 59 + Gp(TW + S{)1)|2,)

=E9{1 + 59 + GpSV}|®,)

(HOSYH + HOTW 1 + 5Oy 4 HOL1 + 5O |8,) = EO{1 + SD)|a,).
(4.15)

The overline has been defined as HO® = e T HeT as in the case of
the closed-shell equations. The open-shell perturbed amplitudes (Sq()l)) are
solved by projecting the excited states, (|®})) as

(@3|(HY — AB,)SY + (HYTO + HEF){1+ S0} @) =0 (4.16)
where AE, is the negative of ionization potential of the valence electron "v’.

We discuss later the computational procedure for solving the above equa-
tion.
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4.5 Evaluation of the EFl1pyc amplitude

The Elpyc amplitude between states W) and |¥;) is given by
(Uy| DIV
\/(‘I’f‘q’fﬂ‘l’im’i)

Substituting the expressions for wavefunction in the RCC method and
keeping terms only up to linear order in perturbed operators, we get

Elpne =

(@ {1+ SV 4 SO L 7Oy
T DT f1 £ TO) 4 T<1>S§°) + 5Wy |9,
Ja+ N}°>)(1 + Ny
(@15 DO(1 + 59 + (1 + 5 DO
+ SO T DO 4+ DOTM)SO 4 (TW'DO 4+ DOTM)SO)|B,)
VA + N1+ NO)

Flpye = GF

(4.17)

o)t 0
T(0) DeT( )

where D() is the effective one-body term of the expression e and

NO = STSO)TeT(O)fDeT(O) S for the valence electron "v’.

We have shown all possible effective one-body terms arising from D© in
the previous chapter. These terms are used directly from the unperturbed
part to evaluate the above E'lpye amplitude. We follow the strategy given
by Lindroth et al. [11] and Blundell et al. [12] to calculate properties in the
linearized RCC method by constructing effective one-body, two-body etc.
operators. We assume D) as an operator and construct effective one-body,
two-body operators etc. by contracting this operator with 7(s and their
adjoints. Then these terms are contracted with corresponding open-shell
perturbed operators and their conjugates to compute the final result. We
have given all possible diagrams to calculate the above E1pyc amplitude in
figure 4.1.
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Figure 4.1: Diagrams for E1pyc evaluating terms.
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4.6 Computational procedure and paral-
lelization techniques

We present the procedure to evaluate the closed-shell and open-shell PNC
cluster amplitudes in this section. We construct matrix equations similar to
the unperturbed closed-shell and open-shell CC equations and solve them
using the Jacobi iterative method. We make use of all the intermediate dia-
grams constructed for unperturbed open-shell CC amplitude equations which
are given in the previous chapter.

Although we use the intermediate diagrams in both the unperturbed and
perturbed amplitude determining equations, it still takes a long time to per-
form a single set of complete calculations to obtain the Elpyc amplitude
and related quantities in heavy systems. Therefore, we have developed a
method to compute our programs parallely by many processors using the
Message Passing Interface (MPI) library routines [13]. We have explained
the detailed procedure in the following subsections.

4.6.1 Computational method for closed-shell ampli-
tudes

In the matrix representation, with the CCSD approximation, one can write
the equation (4.13) as

(@5 HY'|25) (@7 HY|27) <t2<1>>__<<<1>z|H<1>\<I>o>) (4.18)
@ HO|ory (@re B oz )\t (@Y HO|Dg) )

where #2(!) and a‘,f(l) are the perturbed single and double excitation ampli-
tudes, respectively.

Or, in vector form one writes
A-X = -B. (4.19)

The j* element of the vector X, which represents 7" operator, can be
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solved using the Jacobi iterative method by expressing

—Bj — Yy ApX{™Y
A

X; — (4.20)
23

where 7 represents iteration number and j the element number. A; and A;;
are the off-diagonal and diagonal elements of the matrix A. B; is the ;%

element of the matrix B.

The initial values for these elements are considered as,

CAGIILD
f(pap) - f(CL, a)

Wy (P2 HM)|D,)
fap (1) = f(p,p) + f(g,9) — f(a,a) — f(b,b) (4.21)

where f(i,j) represent the i and j element of f-bar terms given in the pre-
vious chapter. Here superscript (1) represents the perturbed operator and
ordinary (1) stands for first iteration.

B0 = -

In equation (4.18), HO = ¢ T HeT™ is same as the open-shell RCC
equations given by equation (3.21) of the previous chapter. Therefore, the
intermediate diagrams given by f-bar and v-bar in the previous chapter can
be used here for solving the above perturbed amplitudes. Since the level of
excitation for the open-shell and closed-shell excitation operators are differ-
ent, therefore, it also requires some extra v-bar diagrams. These extra v-bar
diagrams are presented in figure 4.2.

The B matrix diagrams are shown in figure 4.3. Off-diagonal diagrams
for single and double excitation equations are shown in figures 4.4 and 4.5,
respectively.
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Figure 4.2: Diagrammatic representation of extra v-bar terms for 7() am-
plitude calculation.
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Figure 4.3: Diagrams of B- matrix elements for singles and doubles.
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Figure 4.4: Diagrams for off-diagonal elements for 7} with single excita-
tions.
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Figure 4.5: Diagrams for off-diagonal elements for () with double excita-
tions.
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4.6.2 Computational method for open-shell ampli-
tudes

Using CCSD approximation, the open-shell equation given by (4.16) can be
represented by the following matrix form

(®2|HY — AE,|®?) (@2 HY |07 <%”>
@ HO oy (@ HO — AE, o7 ) \ s

- ( (@2 HOTW 4 HO|3,) )

pq| 17(0) (1) 0 (4.22)
(op| Hy' T + H[D,)

where s and s?%" are the perturbed single and double excitation ampli-
tudes, respectively, with the valence electron ’v’.

In vector notation, the above matrix can be expressed as
A.X=-B. (4.23)

The j* element of the vector X, which represents 51(,1) operator, can be
solved using the Jacobi iterative method by expressing
—Bj — Yy Ay X(

Ajj

X (4.24)

where 7 stands for the iteration number and j for the element number. Aj
and A;; are the off-diagonal and diagonal elements of the matrix A. B; is
the j element of the matrix B.

The initial values for these elements are considered as
<c1>2|H(0)T(1) + HD| D)
f(p,p) — AE,
(OYHOT) + HO)|d,)

$Pa(1) - _
w (1) f(p,p) + f(g,q) — f(b,b) — AE, (4.25)

where f(i,7) represent the i and j element of the f-bar diagrams as given in
the previous section.

£0(1) =
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In equation (4.22), HO = ¢ T HeT™ is same as the open-shell RCC
equations given by equation (3.21) of the previous chapter. Therefore, the
intermediate diagrams given by f-bar and v-bar there can be used here for

solving the above perturbed amplitudes.

The B-matrix diagrams are shown in figures 4.6 and 4.7. The off-diagonal

diagrams are shown in figure 4.8.
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Figure 4.6: Diagrams for B-matrix element for single excitations.
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Figure 4.7: Diagrams for B-matrix element for double excitations.
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4.6.3 Parallelization of CCSD programs using MPI

It is clear from the last three chapters that the numerical computations
for the present studies are of a very large scale. The Elpyc amplitude
calculations are carried out only for the heavy systems because of the fact
that the PNC matrix element depends on cubic power of the atomic number.
Calculations on heavier systems means performing large computations. For
example, if we examine the general formula for the Coulomb integrals, as
given in the chapter 2, the computational procedure requires four outer loops
for the total number of single particle orbitals along with an extra loop for
the possible number of multipoles for each set of single particle orbitals. A
sequential calculation of these integrals will consume lot of CPU time. In
fact, all the intermediate steps and Jacobi iterative procedure will also take
a lot of time. We have developed a parallelized method for computing the
CCSD amplitudes using multiple processors. Although the actual procedure
to parallelize these codes are somewhat subtle, we present here and outline
of the parallelization structure for different parts of the CCSD code which
take comparatively longer time than the other parts of the program.

4.6.4 'Two-body integrals

In atomic properties one has to calculate integrals for Coulomb and/or Breit
interactions. Their selection rules are such that the Coulomb integral al-
lows either odd or even multipoles [15] and the Breit interaction allows both
even and odd multipoles [16]. Therefore, inclusion of Breit interaction which
could be important for heavier systems, will allow all possible multipoles and
the amount of computation needed for these two-body integrations will be
very large. Therefore, it is necessary to parallelize this part of the program.
Again, these integrals have to be calculated repeatedly for closed-shell and
open-shell systems in both the unperturbed and perturbed RCC amplitude
determining equations.

A variable having any number of running indices can be calculated paral-
lely by just dividing the outer loop into total number of processors, provided
that the dimension of the outer index should be greater than or equal to the
number of processors used, by expressing
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Dol =1+ 1IP,Imax, NP
Do J =1, Jmax
Do K =1, Kmax
VI, J, K, ...... ) =---
End do
End do
End do

where I'max, Jmaz, etc. are the dimensions of the I, J, etc running indices,
respectively. NP is the total number of processors available and IP is the
rank or address of each processor assigned by MPI_ COMM _RANK using the
MPT library package [13].

Direct implementation of this simple strategy in the two-body integrals
will not be efficient, because these integrals we have an internal looping vari-
able which depends on four outer indices representing angular momentum
of the single particle orbitals. Again, they need to be stored in a specific
sequence in order to use them later by calling their addresses. We present
the following two steps to parallelise and store in a given sequence with any
number of processors used for the parallelization

Step 1:

Ncount =0
Do I4 = iproc,nproc
Do Ig=1,14

Do I =1, Nmax
Do Ip =1, Nmazx
Do K = [ja — jcl,jB + jp

Ncount = Ncount + 1
V P(Ncount) = X¥(ABCD)

End do
End do
End do
End do
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End do
where Nmax is the total number of basis used in the calculation,
XK(ABCD) is the numerical value of the two-body integrals which depends
on the multipole K and is derived from the angular momentum j of the
orbitals. The restriction over the second loop is to overcome the double
counting of the integrals. Here each processor is assigned an equal number of
integrals from iproc to nproc, where (nproc —iproc) = Nmax/NP with NP
is the total number of processors used. It must be emphasized that the value
of iproc and nproc are different for each processor. After calculation these
integrals are stored as a variable VP and have been tracked by a counting
index Ncount. These variables are then retrieved by the following procedure:

Step 2:
Ncountl =0
Do 14 = iproc,nproc
Do Ig=1,14

Do Ic =1, Nmax
Do Ip =1, Nmax
Do K = [ja — jcl,jB + jp

Ncountl = Ncountl + 1
V(Ia,Ip,Ic,Ip, K) =V P(Ncountl)
End do
End do
End do
End do
End do.

Now all the integrals are stored in a specific format in a given variable
'V’ which can be collected by a single processor (e.g. master processor).
This variable can also be broadcasted using the command MPI_BCAST to
all other processors and can be used by each processor at any time for further
application wherever necessary.
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4.6.5 Intermediate diagrams

As explained earlier, we construct our intermediate steps in terms of effective
one-body terms (f-bar) and two-body terms (v-bar) for the RCC programs
such that, we can use them repeatedly for both unperturbed and perturbed
cluster amplitude equations and save an enormous amount of time instead of
storing them in hard disk and reading them whenever required. Still it takes
very large CPU time to compute them for heavy systems as it involves many
non-linear terms. So we present briefly a parallel scheme to compute these
intermediate terms. In case large hard disk space is not available, then the
parallel computation is more helpful.

The f-bar terms depend only on two outer loops without any internal
dependent index. Therefore, it can be parallelized using the general structure
mentioned earlier. But the difficult part lies with the computation of the
v-bar terms, because, again their structures are similar with the above two-
body integrals with one internal dependent looping index. One can use the
two-body integral strategy to parallelise them, but there is a possibility that
it could cause problems while broadcasting a huge number of elements in a
single variable array. Therefore, instead of following the above procedure, we
parallelise the outer loop of the internal summation variables and compute
them parallely. The price one has to pay in this case is that it is necessary
to broadcast the parallelized variables. To compute them faster, in addition
to the parallelization procedure one can also use string algebra to minimize
internal looping structures as given by Kallay et al. [14] and save a large
amount of computational time.

4.6.6 Jacobi iterative method

The parallelization procedure for the Jacobi iterative method for solving the
RCC matrix equations are simpler compared to the above discussed parts
of the program. One can simply divide total number of equations by total
number of processors available to the user. Each set of equations can be
calculated by an individual processor and then all the equations can be col-
lected in a single array in a common variable and they can be broadcasted
to all the other processors using MPI_ALL_GATHERV command. These
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procedures have been followed in the present thesis work.
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Chapter 5

Results and Discussions

5.1 Introduction

The main thrust of this thesis is to perform a high precision calculation of the
parity non-conserving electric dipole transition amplitude (E1py¢) for the
6s 251/ — 5d 2Ds 5 transition in singly ionized barium (**Ba*) which could
be used in testing new physics beyond the Standard Model (SM) [1, 2, 3, 4].
We employ the relativistic coupled-cluster (RCC) theory by considering all
possible non-linear terms in the calculations at the level of single and dou-
ble excitations (CCSD) arising from the residual Coulomb interaction. We
have also included the leading triple excitations in our calculations, which is
referred as CCSD(T) [6] and has been discussed in the chapter 3. The differ-
ence between the calculated results using the CCSD(T) and CCSD methods
could be set as the error due to the higher order excitations in the present
calculations.

As discussed earlier in section (1.11), the calculation of Flpy¢, depends
on
(i) E1 transition amplitudes
(ii) Excitation energies
and
(iii) Matrix elements of the PNC interaction Hamiltonian.

134
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Therefore, it is necessary to calculate these properties and ascertain their
accuracies in order to determine the error associated with Elpyc for the
above transition. The behavior of these quantities varies at different regions
from the nucleus.

It is now well established that the RCC theory is one of the most powerful
methods for the accurate calculations of atomic properties [7, 8, 9, 10]. This
is further corroborated by the results obtained in this chapter. In order to
obtain accurate atomic wavefunctions it is also necessary to use high quality
single particle orbitals to construct the reference wavefunction in RCC the-
ory as well as in considering excitations from this state. For atomic systems
with few electrons, it is comparatively simple to obtain accurate numerical
orbitals. However, this is not the case for heavy atoms and ions. Therefore,
one adopts a different approach to construct the orbitals for these systems by
considering a suitable analytical form [11]. A linear combination of certain
types complete mathematical functions can be used for this purpose [12]. We
use Gaussian type orbitals (GTOs) in the present study which were explained
in chapter 2. The limitation of this approach is that it is difficult to construct
single particle orbitals which can produce accurate atomic orbitals over all
regions in space. However, an accurate over all average can be obtained for
the aforementioned properties. It is also not always practical to consider a
complete set of orbitals in the calculations due to computational limitations.
To overcome these problems, we calculate the atomic properties related to
PNC for different sets of GTOs. Then we calculate Elpyc with the basis
which is able to produce the best over all results for these properties. Later,
we also discuss estimation of possible errors associated with Elpyc .

5.2 Property calculations

Singly ionized 3"Ba is a heavy system with the electronic configuration
[5p°] 6s'. The electronic configuration is the same for Cs but they have
different nuclear charges. Ba' is ionized and hence the electron orbitals are
more contracted towards the nucleus than for neutral barium. We have used
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GTOs to construct single particle orbitals. From their functional form men-
tioned in chapter 2, it is clear that they contain two parameters (g and ).
The appropriate choice of these parameters is necessary to obtain accurate
orbitals which are suitable linear combinations of GTOs. We have performed
several calculations to study how the atomic properties of interest to us de-
pend on these parameters. Later we also show how the atomic properties
depend on the number of GTOs chosen for a particular choice of g and £.

We now turn to the details of our calculations. As mentioned in the previ-
ous section of this chapter, in order to obtain accurate atomic wavefunctions
we require high quality single particle orbitals. The construction of such or-
bitals is the starting point of our calculations. This involves finding the best
choices of oy and § for the GTOs used in our calculations. Here we have
considered four different values of o ( 0.00425, 0.00525, 0.00625, 0.00725),
whilst keeping the value of 5 = 2.73 fixed. This makes it easier to un-
derstand the behavior of the single particle orbitals with respect to these
two parameters. Comparison of the energies of the orbitals obtained from
the GRASP2 code and those using GTOs with all oy values, are given in
tables 5.1, 5.2, 5.3 and 5.4. The value of «y is listed at the top of each ta-
ble. We have considered 38s1 /2, 40p1 /2, 40ps/2, 35d3/2, 35d5)2, 30 f5/2, 30 f7/2,
30g7/2 and 30gg;2 GTOs. These results show that values of oy = 0.00525
and o = 0.00625 are able to produce good single particle energies. We have
arrived at this conclusion by comparing our results with GRASP2 numerical
orbitals. We have chosen oy = 0.00525 in our calculations. To assess the
accuracy of our single particle wavefunctions, we plot the differences of the
large (P(r)) and small (Q(r)) components for our s, p;/2 and ps/, orbitals
and those from GRASP2 and shown in figures 5.1, 5.2 and 5.3.
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I. With ay = 0.00425 and g = 2.73.

Orbital GRASP2 GTOs

1s1/9 -1384.2767 -1385.0476
2512 -223.01881  -223.2783
351/2 -49.0923 -49.2099
451/2 -10.6961 -10.7309
081/2 -2.0336 -2.0403
6s1/2 -0.3432 -0.3440
751/2 -0.1679 -0.1674
851/2 -0.1003 -0.9776
2p1/2 -209.5299  -209.6011
3p1/2 -43.3980 -43.4316
4p1 /2 -8.9391 -8.5484
op1/2 -1.3877 -1.3870
6p1/2 -0.2609 -0.2606
p1/2 -0.1377 -0.1371
8p1/2 -0.0858 -0.0838
2p3/2 -195.4521  -195.5409
3p3/2 -40.6087 -40.6503
4p3 /2 -7.9532 -7.9639
op3/2 -1.3031 -1.3026
6p3/2 -0.2545 -0.2543
D3/ -0.1353 -0.1347
8p3/2 -0.0846 -0.0829
3d3/2 -30.7394 -30.7749
Ads)s -4.3530  -4.3632
5d3/2 -0.3104 -0.3105
6dss -0.1515  -0.1513
Tds ) -0.0922  -0.0912
3ds /2 -30.1534 -30.1916
4ds 9 -4.2521 -4.2628
5ds2 -0.3083 -0.3084
6ds2 -0.1507 -0.1505
7ds )9 -0.0919 -0.0907

Table 5.1: Comparison of single particle energies from GRASP2 and GTOs

using o = 0.00425.
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IT. With oy = 0.00525 and 8 = 2.73 .

Orbital GRASP2  GTOs

Tsis  -1384.2767 -1385.0341
25155 -223.01881  -223.2585
351/ -49.0923  -49.2112
4s1 /9 -10.6961  -10.7287
581/ -2.0336  -2.0384
651/ -0.3432  -0.3437
751/ -0.1679  -0.1679
851/ -0.1003  -0.9994
21y -209.5209  -209.5894
3p1/2 -43.3980  -43.4346
4py )9 85391  -8.5510
5p1/2 -1.3877  -1.3871
612 -0.2609  -0.2607
P12 -0.1377  -0.1375
8p1/2 -0.0858  -0.0856
sy -195.4521  -195.5284
3ps/2 -40.6087  -40.6527
4pss 279532 -7.9657
5ps/2 213031 -1.3029
6ps/2 -0.2545  -0.2544
Tps/a -0.1353  -0.1352
832 -0.0846  -0.0847
3ds/ -30.7394  -30.7705
4ds), -4.3530  -4.3675
5ds -0.3104  -0.3110
6dls 01515 -0.1513
Tds ) -0.0922  -0.0905
3ds 2 -30.1534  -30.1875
4ds)s 42521 -4.2670
5ds)s -0.3083  -0.3088
6dls 2 -0.1507  -0.1505
7ds ) -0.0919  -0.0901

Table 5.2: Comparison of single particle energies from GRASP2 and GTOs

using o = 0.00525.
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ITI. With o = 0.00625 and 8 = 2.73.

Orbital GRASP2  GTOs

lsyp  -1384.2767 -1385.0299
25155 -223.01881  -223.2558
351/ -49.0923  -49.2048
41/ -10.6961  -10.7286
551/ -2.0336 -2.0384
651/ -0.3432 -0.3437
751/ -0.1679 ~0.1679
851/ -0.1003 -0.1001
21/ 209.5299  -209.5832
3p1/ 243.3980  -43.4370
4py 9 -8.5391 -8.5458
5p1/2 -1.3877 -1.3871
6p1/2 -0.2609 -0.2607
D1/ -0.1377 -0.1373
8p1/2 -0.0858 -0.0847
232 -195.4521  -195.5223
3ps/2 _40.6087  -40.6528
4ps ) _7.9532 _7.9607
5ps/2 -1.3031 -1.3030
632 -0.2545 -0.2544
D3/ -0.1353 -0.1347
7ds ) -0.0922 -0.0905
832 -0.0846 -0.0830
3ds -30.7394  -30.7714
4ds ) -4.3530 -4.3635
5ds -0.3104 -0.3109
6dls/2 -0.1515 -0.1513
7ds ) -0.0922 ~0.0909
3ds -30.1534  -30.1884
4ds -4.2521 -4.2629
5ds -0.3083 -0.3087
6ds 2 -0.1507 -0.1505
7ds ) -0.0919 -0.0906

Table 5.3: Comparison of single particle energies from GRASP2 and GTOs

using o = 0.00625.
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IV. With a = 0.00725 and 3 = 2.73.

Orbital GRASP2  GTOs

sy -1384.2767 -1384.0357
251  -223.01881  -223.2669
3512 -49.0923  -49.1993
4512 -10.6961  -10.7299
551/2 -2.0336  -2.0396
651/2 -0.3432  -0.3438
Ts1 -0.1679  -0.1674
8512 -0.1003  -0.9705
215 -209.52909  -209.5863
3p1/ -43.3980  -43.4368
4py) -8.5391  -8.5402
512 -1.3877  -1.3871
612 -0.2609  -0.2607
Tdss -0.0922  -0.0905
012 01377 -0.1367
81 /2 -0.0858  -0.0803
sy -195.4521  -195.5259
3p3/2 -40.6087  -40.6513
4ps /s 79532 -7.9559
5Ds/2 -1.3031  -1.3029
6p3/2 -0.2545  -0.2544
D32 -0.1353  -0.1341
832 -0.0846 00775
3dss -30.7394  -30.7750
4ds)s -4.3530  -4.3577
5dss -0.3104  -0.3105
6dss -0.1515  -0.1513
Tds/s -0.0922  -0.0916
3ds,s -30.1534  -30.1918
4ds), -4.2521  -4.3577
5ds/s -0.3083  -0.3105
6ds/5 -0.1507  -0.1513
7ds/s -0.0919  -0.0916

Table 5.4: Comparison of single particle energies from GRASP2 and GTOs

using o = 0.00725.
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5.2.1 Ionization Potentials and Excitation Energies

In table 5.5 we present the calculated ionization potentials obtained for dif-
ferent atomic states of Ba™ and compare them with the experimental results
given in the tables compiled by Moore [13] and Karlsson and Litzén [14].
We also compare these results with the previous calculations carried out by
Guet and Johnson [15], Eliav et al. [16], Dzuba et al. [17] and Geetha et
al. [7]. The uncertainties in the experimental results for the ground state is
in the range of £0.001 cm ™! to £0.01 cm ™! in these two data tables. The
improved energy levels used by Karlsson and Litzén yields the ionization
limit as 80686.3(1) cm ™! for the ground state. For most states, we achieved
an accuracy of around 1% in the calculations of the ionisation potentials
for low lying states, but for higher states the deviations are comparatively
larger from the experimental results. This is not surprising as an accurate
description of excited atomic states requires the inclusion of a large number
of orbitals of higher symmetries and this is often computationally prohibitive
for RCC calculations with non-linear terms.

For the calculation of Elec, 6p1/2, 7p1/2, 5d3/2, 6p3/2 and 7p3/2 excita-
tion energies are important, whereas the excitation energies of other states
contribute little. This will be evident later when we discuss the contributions
to the total Elpyc from different states.

We obtain excitation energies by subtracting the calculated ionization
potentials of the relevant states and they are presented in table 5.6. The
errors associated with these calculations are the errors arising from both the
states. From these results, it is clear that for the above states we obtain ac-
curate excitation energies based on RCC theory and these can be used in the
calculation of the E1pyc amplitude for the 6s 2Si/, — 5d 2Ds /5 transition.

To understand how these calculations depend on the core and virtual or-
bitals of different symmetries, we study the trends of the ionization potentials
of 6s, 6p1/2, 6p3/2 and 5dj/, states in the next section.
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Table 5.5: Ionization potentials (cm™') for different states of Ba™.

Ionization Potential

Guet and Eliav Dzuba Geetha This work Experiment
Johnson [15] et al. [16] et al. [17] et al. [7]

State cm™! cm™! cm™! cm™! cm™! (a.u.) cm™!
6s 251/ 81882 80871 80813 80797  80794(0.36812) 80686.87%
80686.3(1)"
7s 251/2 38333 38291(0.17447)  38331.688“
38331.13°
6p 2P1/2 60887 60476 60581 60505  60384(0.27513)  60425.308°
60424.74°
p 2P1/2 31332 31216(0.14223) 31296.82¢
31296.48"
8p 2P1/2 19378 19213(0.08754) 19354.87¢
6p 2P3/2 59140 28769 58860 58778  58690(0.26741)  58734.448%
58733.90°
p 2P3/2 30704 30597(0.13941) 30675.65*
30674.96°
5d 2D?,/z 77194 75605 76404 75989  75481(0.34392) 75813.02%
75812.45°
od 2D5/2 76263 74779 75525 75084  74346(0.33877)  75012.046*
75011.49°
Af 2Fy) 32169(0.14657)  32428.28¢
32427.68
4f 2F7/2 31272(0.14249) 32203.58¢
32202.97

References: @ [13], © [14].
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Excitation Energy

This work

Initial State Final state cm™! (atomic unit)

Experiment
cm~! (atomic unit)

6s 2S1/2
6s 2S1/2
6s 251/
6s 2512
6s 251/

6s 281/2
6s 281/2

6s 2S1/2
6s 251/
6s 2S1/2
5d 2Ds )
5d 2Ds)
5d 2Dy
5d 2Ds )
5d 2Ds)s
5d 2Ds s
5d 2Dy,
5d 2Dy,

5d 2Ds ),

7s 2S1)2
6p 2P1/2
7p 2131/2
6p 2P3/2
7p 2133/2

8p 21D3/2
5d 2D3/2

5d D5 o
Af *Fso
Af 2Frj
6p 2131/2
6p 2P?,/2
7p 2P3/2
Af 2Fso
Af 2Frj
6p 2P3/2
7p 2Pz«;/2
Af 2F5)y

Af 2Fyj

42502.58 (0.193656)
20409.60 (0.092993)
49577.78 (0.225893)
22103.73 (0.100712)
50196.26 (0.228711)

61580.61 (0.280582)
5312.38 (0.024205)

6441.58 (0.029350)

48624.82 (0.221551)
49521.38 (0.225636)
15097.22 (0.068788)
16791.35 (0.076507)
44883.88 (0.204506)
43312.44 (0.197346)
44208.99 (0.201431)
15661.71 (0.071436)
43754.46 (0.19936)

42183.24 (0.192201)

43079.80 (0.196286)

42355.182 (0.192985) [13]
42355.175 (0.192984) [14]
20261.562 (0.092318) [13]
20261.561 (0.092318) [14]
49390.05 (0.225038) [13]
49389.822 (0.225037) [14]
21952.422 (0.100023) [13]
21952.404 (0.100023) [14]
50011.22 (0.227867) [13]
50011.340 (0.227868) [14]
61332.00 (0.279449) [13]
4873.850 (0.022207) [13]
4873.852 (0.022207) [14]
5674.824 (0.025856) [13]
5674.807 (0.025856) [14]
48258.59 (0.219882) [13]
48258.617 (0.219882) [14]
48483.29 (0.220906) [13]
48483.332 (0.220906) [14]
15387.712 (0.070112) [13]
15387.71 (0.070112) [14]
17078.572 (0.077816) [13]
17078.55 (0.077816) [14]
45137.37 (0.205661) [13]
45137.49 (0.205662) [14]
43384.74 (0.197675) [13]
43384.77 (0.197676) [14]
43609.44 (0.198699) [13]
43609.48 (0.198699) [14]
16277.598 (0.74166) [13]
16277.59 (0.074166) [14]
44336.396 (0.202011) [13]
44336.53 (0.202012) [14]
42583.766 (0.194026) [13]
42583.81 (0.194026) [14]
42808.52 (0.195050) [13]
42808.52 (0.195050) [14]

Table 5.6:

Excitation energies (cm™") for different states of Ba™.
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5.2.2 El transition amplitudes

Table 5.7: Transition probabilities A;¢, where ¢ is the initial and f is the final
state, of E1 transition amplitudes from different works in 108 s 1.

Transition Guet and Dzuba Geetha This work Expt.
States Johnson® et alb et al.®

)d
)e
)f
)d
)

6s 2S12 — 6p 2P | 0918 0923  0.937 0.978 0.95(

0.955(1
0.95(

65 2S1/2 — 6p 2Py)o 1.163 1L.171  1.194 1.218 1.06(
1.17(4)

1.18(8)f

5d D3 — 6p 2Pyje | 0334 0370 0.326 0.331 0.338(19)4

0.33(8)

0.33(4)7
)

= o N o O

€

€

5d 2Dz — 6p P32 | 0.044  0.045  0.043 0.044  0.0469(29)%
0.048(5)¢
0.048(6)7
5d 2Dsjo — 6p 2Py | 0.360  0.345  0.349 0.342 0.377(24)¢
0.37(4)°
0.37(4)7

References: @ [15], ® [17], ¢ [8], ¢ [18], ¢ [19], / [20].

We present in table 5.7 the available experimental data for the probability
coefficient (Einstein co-efficient A;;, where 7 and f represent initial and fi-
nal states, respectively) between different atomic states from Kastberg et al.
[18], Reader et al. [19] and Gallagher et al. [20]. In this table, we compare
our calculated results using length gauge with experiments. These values are
calculated using the expression given in the chapter 2 and employing RCC
theory. We also present calculated results by other groups.
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The calculated transition probabilities depend on two quantities. One is
the excitation energy required to determine the wavelength of the transition
and the other is the magnitude of the reduced matrix element of that tran-
sition. The excitation energies from different calculations have been given
in the previous subsection and we present in table 5.8 the reduced matrix
elements obtained by others. Our reduced matrix elements are in reasonable
agreement with those of Dzuba et al. [17].

In table 5.7, we compare the A;f values from different calculations and
experiments. It is clear from these results that the error bars in the exper-
iments are rather large. Therefore, we consider experimental results with
comparatively smaller error bars.

The calculated values of the reduced matrix elements of the E1 operator
between different atomic states have been presented in table 5.8 and com-
pared with the most accurate measured value which is derived from A;; with
the smallest error (see table 5.7). The discrepancies between our results and
those of other calculations are discussed in the next section.

Among all the transition amplitudes presented here, the 6s - 6ps/» and
5d3/3 - 6p1/2 transitions are of particular interest for studying Elpyc in Ba™.
The dependence of the 6s - 6p1/2, 6s - 6p3/2, 5d3/2 - 6p1/2 and 5d3/2 - 6p3/2
transition amplitudes on different single particle basis is considered in the
next section.



5.2.2: E1 transition amplitudes

149

Table 5.8: Calculated absolute values of E1 reduced matrix elements in a.u

for different states.

Transition Guet and | *Dzuba | Geetha | This work | Expt.
States Johnson® | et al® | et al.®

6s 251/2 — 6p 2P1/2 3.30 4.05 3.33 3.37 3.37(2)4
6s 251/2 — 7p 2P1/2 0.12 0.09

6s 2512 — 8p 2Py o 0.14 0.11

6s 251/ — 6p 2Py)s 4.66 4.05 4.70 4.72 4.67(8)?
65 251/, — Tp 2Py 0.03 0.17

7s 251/2 — 6p 2P1/2 3.05 2.45

7s 251/2 — 7p 2P1/2 8.58 7.11

7s 251/2 — 8p 2P1/2 0.14 0.37

7s 251/2 — 6p 2P3/2 3.36 3.80

7s 251/2 — 7p 2P3/2 8.46 9.92

6p 2P1/2 — bd 2D3/2 3.01 2.65 2.94 3.08 3.03(8)¢
7p 2P1/2 — bd 2D3/2 0.23 0.28

8p 2P1/2 — 5d 2D3/2 0.10 0.13

6p 2P3/2 — 5d 2D3/2 1.31 0.89 1.28 1.36 1.36(4)¢
7p 2P3/2 — bd 2D3/2 0.29 0.16

6p 2P3/2 — bd 2D5/2 4.05 2.66 3.99 4.19 415(13)6
p 2P3/2 — 5d 2D5/2 0.28 0.46

5d 2D3/2 —4f 2F5/2 3.73

5d 2D5/2 — 4f 2F5/2 1.08

5d 21)5/2 — 4f 2F7/2 4.59

References: @ [15],  [17], ¢ [8], ¢ [19], ¢ [18].
! These values are not so reliable due to the fact that it is not clearly specified
to which expressions they correspond.
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5.2.3 Hyperfine constants

The high precision calculations of different hyperfine structure constants re-
quire accurate single particle wavefunctions in the nuclear region. They also
provide a stringent test [21] of ab initio of atomic structure theory. For the
last five decades many experimental techniques have been employed to mea-
sure the hyperfine structure of different low lying states of Ba™. In table
5.9, we present different experimental results for this atomic system. The
systematic errors have been carefully reduced on these experiments over the
years and relatively precise results are currently available. We have under-
lined the results we used from this table which were chosen by considering
the errors specified in the literature.

We have calculated the magnetic dipole (A) and electric quadrupole (B)
hyperfine structure constants for these states using RCC theory. We have
taken g; = 0.6238 and @ = 0.245 barn for this system [22]. We have pre-
sented the theoretical results obtained by this work in table 5.10. Our earlier
calculations and Geetha et al. were carried out using the same theory but
with different basis functions, hence, these results differ. We discuss the
discrepancy between these two sets of results and compare them with other
theoretical studies in the next section.

We also present the Dirac-Fock (DF) values of the ratio of the octopole
(C) hyperfine structure constant and the nuclear octopole moment (Q2) in
barns in the same table and this can be used to extract an approximate value
of €2 in barns by combining it with the measured C results as given in table
5.9.

The magnetic dipole (A) hyperfine structure constants of 6s, 6p1/2, 6ps/2
and 5dz/, are used later to determine the error associated with the matrix
elements of nuclear spin independent PNC interaction Hamiltonian. We
discuss the influence of electron correlation on the hyperfine constants in
the next section.
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Table 5.9: Hyperfine structure constants for different states of Ba™ in MHz.

Experiment
State A B C
6s 251, | 4018.871(2)
4018.8708(3)"
4018.8711(4)™
4015.42(3.3)®
4033.90(10.6)%
4062.38(15.0)
4055.39(24.0)*
6p 2Py /o 743.7(3)"
744.1(1.6)°
741.9(1. 3)b
761(10)4
694.05°
697.05(21.0)*
6p 2Py o 127.1(6)° 89.7(15)
127.2(2)" 92.5(2)
126.44(2.44))°  97.15(1.39)
125.95(22)! 92.53(40)
126.2(4)7 93.3(6)
126.7(1.1)° 95.0(3.7)
125.8(5)7 91.6(1.2)
5d 2Ds3jo | 189.7288(6)¢  44.5417(16) -0.000058(54)
191.2(6)¢ 47.5(13)
189.6(4)" 44.9(6)
5d ?Dsjo | -12.028(11)*  59.533(43)
-7.4(10)%9 60.7(10)
-11.9(10)" 62.5(40)
@ (23], ° [24], © [25], ¢ [26], © [27], 7 [28], ¢ [29], * [30], * [31], 7 [32], * [33], '

[34], ™ [35], ™ [36], * [37], 7 [38]
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Ahmad Geetha Ours This work
et al. [39] | el al. [40] [9]
State A A A A B C (Dirac-Fock)
(x1072/Q in barn)

65 251, | 4208(200) | 4193.02 | 4072.83 | 4078.20

7s 25'1/2 1196.30

6p 2P1/2 783.34 736.98 | 740.77

7p 2Py 264.92

8p 2P, 5 109.93

6p 2P3/2 134.94 130.94 | 128.27 92.87 -0.173223
p 2P3/2 45.77 3291 -0.069126
5d 2D3/2 198.759 188.76 | 189.92 46.23 -0.043025
5d 2D5/2 -11.67  62.17 -0.015177

Table 5.10: Hyperfine structure constants for different states of Bat in MHz.
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Table 5.11: Reduced matrix element of E2 transition of 5d 2D; /2 state.

Transition Guet and Geetha This work  Experiment
States Johnson® et al.b

5d 2Dgjp — 65 2Sy,  ~ 137 1263 1261 1240 + 0.74°

5d 2Dsjp — 65 2S1  ~16.0  ~ 16.0 15.78 16.86 + 1.18¢
13.91 + 3.22¢
16.25 + 0.77/

References: @ [15], ® [8], ¢ [41], ¢ [42], © [43] / [44].

5.2.4 Transition amplitudes of 5d >Djs 5> states

In the context of PNC the 6s 251/, — 5d 2Dj/, transition amplitude in the
E2 channel is important as the interference of this transition amplitude and
the E1pyc amplitude results in a light shift which can be measured [4]. The
total lifetime of this state has been measured [41]. This state decays through
both the M1 and E2 channel, but the E2 transition amplitude is much larger .
We have calculated the reduced matrix elements from this transition through
the M1 and E2 channels separately.

In table 5.11 we present the experimental reduced matrix element derived
from the lifetime measurement of the 5d 2Dy, state by Yu et al. [41] by
neglecting the small contribution from the M1 channel. This contribution we
get as 0.007 in atomic unit from our calculation. We also present our results
calculated using RCC theory as well as those calculated by Guet and Johnson
[15] and Geetha et al. [8] in the same table. Also the E2 reduced matrix
element involving the 5d 2D5/2 state through the E2 channel for different
calculations are given and compared with calculated and experimental results
derived from lifetime measurements made by Nagourney et al. [42] and
Plumelle et al. [43]. All the calculated results except that of Guet and
Johnson [15] are in reasonable agreement with each other and also with
experiment.
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5.3 Discussions

As has been explained, it is not simple to generate optimal core and virtual
orbitals for performing calculations of properties with different spatial de-
pendence. Therefore, we have carried out the calculations with eight sets of
basis functions with various possible combinations of active core and virtual
orbitals using oy = 0.00525 and 8 = 2.73. We generate DF orbitals for the
closed-shell system Ba®™ and then perform closed-shell RCC calculations.
The DF orbitals are used to obtain the self-consistent Field (SCF) energy of
the system and after closed-shell RCC calculations we compute the correla-
tion energy. We then tabulate all these results.

To understand the dependence of various properties on different combi-
nations of GTOs, active core and virtual orbitals, we give their results and
discuss their trends. We find the basis functions which give the least average
error for the properties. We then proceed with these basis functions for our
PNC calculation.

Finally, we present explicitly the contributions to Elpyc from different
RCC terms and analyze the role of electron correlation. We also investi-
gate the relative importance of the different intermediate states by explicitly
determining their individual contributions. We estimate the error in the dif-
ferent properties including Elpyc from the difference in the results of our
RCC calculations with single, double as well as leading triple excitations and
just single and double excitations.

We have performed calculations for two sets of GTOs given in table 5.12
(A) and (B) keeping the values of oy and 3 mentioned above fixed and varying
the number of active core and virtual orbitals. Three different calculations
of ionization potentials, E1 transition amplitudes and hyperfine structure
constants are carried out using the first set and five different calculations of
the same three quantities are carried out using the second set. The first set
of GTOs did not yield accurate values of the hyperfine constants for most of
the states. The second set of GTOs gave better values for these constants.
The importance of exciting all the core electrons was evident by carrying
out calculations with first set of GTOs. Using the second set of GTOs,
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Core orbitals

(Valence+Virtual) orbitals

A.
GTOs Full core 38s, 40p, 30d, 30f, 20g
RCC -1 3s, 4s, bs, 3p, 4p, 6s - 13s, 6p - 12p, 5d - 11d,
5p, 3d, 4d 4f - 12f, 5g - 11g
RCC - 11 3s, 4s, bs, 3p, 4p, 6s - 13s, 6p - 12p, 5d - 11d,
5p, 3d, 4d Af - 12f, 5g - 12g
RCC - 111 Full core 6s - 13s, 6p - 12p, 5d - 11d,
Af - 12f, bg - 12g
B.
GTOs Full core 30s, 25p, 25d, 20f, 20g
RCC -1V Full core 6s - 13s, 6p - 12p,
5d - 11d, 4f - 12f
RCC -V Full core 6s - 13s, 6p - 12p, 5d - 11d,
4f - 12f, 5g - 10g
RCC - VI Full core 6s - 13s, 6p - 12p, 5d - 12d,
Af - 12f, 5g - 11g
RCC - VII Full core 6s - 13s, 6p - 12p, 5d - 12d,
4f - 12f, bg - 12g
RCC - VIII Full core 6s - 13s, 6p - 13p, 5d - 13d,

4f - 13f, bg - 13g

Table 5.12: Total basis functions used in the calculation.

we began our RCC calculations by exciting the full core and considered up
to f- virtual orbitals. We then carefully added g and for the last case p
virtual orbitals. Our computational resources prevented the further addition

of virtual orbitals.

5.3.1 Correlation energy

In table 5.13 we give the total number of closed-shell amplitudes in the RCC
calculations using the different sets of basis states that we have considered.
Although we have two separate sets of GTOs, we obtain the same SCF en-
ergy up to the fifth decimal places. The correlation energies vary significantly
with the total number of T- amplitudes.
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No. of T-amplitude SCF Correlation
equations energy energy
Basis I 341071 -0.813595E+04  -1.344133
Basis 11 358874 -0.813595E+04  -1.369744
Basis 111 598183 -0.813595E+04  -1.672759
Basis IV 399207 -0.813595E+04  -1.496532
Basis V 508017 -0.813595E+04  -1.504341
Basis VI 570440 -0.813595E+04  -1.592781
Basis VII 598183 -0.813595E+04  -1.672998
Basis VIII 737920 -0.813595E+04  -2.056644

Table 5.13: Total basis functions used in the calculation.

We have shown graphically the total number of T- amplitude equations
and correlation energies obtained using different sets of basis functions in
figure 5.4. It is clear from these diagrams that the number of amplitudes in-
crease rapidly for the RCC calculations when more active electrons are added.
The magnitude of the correlation energy also increases rapidly. Adding more
active orbitals from higher symmetries in the non-linear forms of the wave-
function determining equations as have been given in the previous chapters
would require large computational resources.

5.3.2 Ionization Potential

The IP of the valence/virtual orbitals of Ba®™ are calculated using the
method described for open-shell CC theory. As shown in figure 5.5, we have
plotted the difference between the experimental and calculated results for
the 6s, 6p1/2, 6p3/2 and 5d3/; states for different basis functions as given in
table 5.12. The first three points highlight the effect of inner core electrons.
It can be noted from these diagrams that p- and g- symmetry orbitals are
very important for accurate calculations of IPs. For 6s, contributions from
higher g- orbitals show large deviation from the experimental results. This
means that the extra GTOs after this region are not able to construct the 6s
wavefunction so they can be neglected in describing this state. To achieve
more accurate results for d- and f- symmetry states it may also be neces-
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sary to include higher symmetry orbitals like h and maybe even i, but in the
present calculations we do not consider them.

We consider the calculated results with the least deviation from experi-
mental values in our results table. These results are obtained from the last
set of basis functions. Therefore, these basis functions would be an appro-
priate choice for carrying out a PNC study as has been explained earlier.

These results have also been calculated by Guet and Johnson [15], Eliav
et al. [16], Dzuba et al. [17] and Geetha et al. [7]. Dzuba at al. have used
a variant of all order relativistic many-body perturbation theory. Guet and
Johnson had used second order relativistic MBPT' theory to evaluate their
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results. Both Eliav et al. and Geetha et al. used the RCC method for their
calculations. The difference between these calculations and the present one
is that they also considered h- symmetry orbitals in their calculations. In
Geetha et al.’s work partial numerical orbitals from GRASP2 were also used.

We compare results obtained from various works with the corresponding
experimental results by plotting them in figure 5.6. It is obvious that the
RCC theory provides a significant improvement over the second order MBPT
calculations. Guet and Johnson obtained an accuracy of less than 2% and the
EE’s around 4%. The accuracy of their 6s-5d3/, excitation energy calculation
is misleading as it is a consequence of the cancellation of the errors from both
6s and 5d3/, IPs. The accuracy of Eliav et al.’s results are less than 1% and
these are compared with our calculations. In their calculations, approximate
triple excitation effects are not considered, whilst they are included in both
Geetha et al.’s and this calculation. Since Geetha et al.’s work and this work
are calculated with different basis functions the results differ in the third
decimal place. But for the 6s state this calculation is more accurate than her
result.
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5.3.3 El transition amplitudes

We have calculated E1 transition amplitudes in the length gauge and com-
pared our results with the calculations of Guet and Johnson [15] and Geetha
et al. [8]. Dzuba et al. [17] have also calculated these transition probabilities.

Three groups have measured transition probabilities for certain low-lying
states of Ba™: Gallagher et al. [20], Reader et al. [19] and Kastberg et al.
[18]. Out of those Kastberg et al.’s results are the most recent, but all these
results have fairly large systematic errors. We consider the central values of
the experimental results which have the smallest systematic errors, to eval-
uate the deviation of the calculated results.

In figure 5.7, we plot the difference between the calculated and the ex-
perimental results for different basis functions given in table 5.12. From this
graph it appears that it would be necessary to include more virtual orbitals
of different symmetries in order to obtain accurate E1 transition amplitudes.

We also compare the reduced matrix elements of the E1 transition op-
erator from different works along with experimental results for the 6s-6p; s,
6s-6p3/2, 5d3/2-6p1/2 and 5d3z/2-6p3/2 transitions in figure 5.8. The error bars
of corresponding experimental results are also given. In all the cases, our
results are well within the experimental limits. Therefore, more accurate
measurements are necessary to verify the calculated results presented here.
Our calculations are the most rigorous so far. Guet and Johnson have per-
formed their calculations using only second order relativistic MBPT calcula-
tions, which are only a subset of our method. The difference between Geetha
et al. and our method is the fact that the present calculation account con-
tributions from the effective two-body terms e’ DeT, where D is the El
operator, whereas Geetha’s work does not. It seems from our results that
these contributions are essential for achieving high accuracy.
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5.3.4 Hyperfine structure

There are many experiments that have been carried out to measure the mag-
netic dipole (A) and electric quadrupole (B) hyperfine constants for the low
lying states of Ba®™ and we have presented them earlier in this thesis. We
consider only the results with relatively small error bars to compare with our
calculations. Although the origin of the neutral weak and hyperfine inter-
actions are different, the matrix elements of both these interactions depend
on the overlap of single-particle wavefunctions in, or close to, the nuclear re-
gion. Therefore, the products of the square root of the A value, of the states
involving PNC matrix elements, are used to determine error of the latter.
These results are are sensitive to the nuclear region. Hence, it is essential
to understand the role of both of the inner core as well as high lying virtual
orbitals in these studies.

Only a few calculations have previously been carried out for Bat hyper-
fine constants. Ahmad et al. [39] have calculated the A’ value for the ground
state using the relativistic MBPT method. Their result agrees with experi-
ment to about 5%. Geetha et al. [40] have also calculated the same quantity
for a few low-lying states using the same method used in this thesis. But
their results differ from the present work as they have used different basis
functions. As we explain later, the hyperfine studies are very sensitive to
the choice of basis functions, so it is essential to consider accurate orbitals.
Also in their calculations the effective two-body terms from e’ Oe” (where O
represents hyperfine interaction operator) have not been taken into account.
In an earlier work we also calculated these quantities [9], but we considered
only up to f virtual orbitals. To gain better insights into our calculated re-
sults, we consider only four states: 6s, 6pi/2, 6p3/2 and 5ds/2, which are the
most important states in the calculation of Elpyc. We plot the deviation
of the calculated results against the measured values in figure 5.9. This fig-
ure clearly indicates that both the inner core and high lying virtual orbitals
are important for these studies. In figure 5.10, we have shown graphically
contributions from different RCC terms to the A values for the above states.
The difference between O and O gives an indication of the size of the core
correlation effects; they are smaller than the other RCC terms. The domi-
nant contributions to electron correlation come from the OS; and OS, terms
along with their adjoints.
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5.3.5 E2 amplitude of 5d3/; 5/ states

We present the calculated results of reduced E2 matrix element involving
5d3z/; and 6s as well as 5ds/, and 6s states for Ba™. The lifetimes of these d
excited states have been measured, but the errors in both cases are slightly
large. The decay of an electron from the 5dz/, to the 6s ground state is pos-
sible through two channels; E2 and M1. However, through the M1 channel
the transition probability is very small. From our calculation we get the re-
duced matrix element of the M1 transition to be 0.007 in atomic unit. If we
neglect this transition, then the experimental result for the reduced matrix
element for the E2 transition could be considered as 12.4040.74, from the
lifetime measurement by Yu et al. [41]. Since the error bar is very large in
this case, we consider the calculated results which are consistent with many
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basis functions.

In figure 5.11 we plot the graph of the deviation of the calculated results
from the central value of the experimental result, with different basis func-
tions. From this data, we take value of the reduced matrix element for the
E2 operator of the 5d3/ state as 12.61. The interference of E1pyc amplitude
with E2 transition amplitude can in principle be measured . Therefore, an
accurate calculation of this quantity is necessary to study the PNC ampli-
tude in Ba™.

In figure 5.11 we also plot results of calculations for the reduced E2 ma-
trix element by Guet and Johnson [15], Geetha et al. and this work as well
as experiment [41]. Both Geetha’s result and the result obtained by this
work match and are well within the error bounds of the experimental results.
In both the calculations, RCC theory has been employed using the same
approximation. Guet and Johnson have used the relativistic second order
MBPT method.

In table 5.11 we also present the reduced matrix element of the E2 opera-
tor for the 5ds5/, — 65 transition. Results obtained by Guet and Johnson [15]
and Geetha et al. [8] are derived from their lifetime calculations for this state
and these two results are in good agreement. We obtain slightly smaller val-
ues than them. This is because Guet and Johnson have calculated using the
relativistic MBPT method and Geetha has not included contributions from
effective two-body terms of eTTDQeT, where D2 is the E2 operator. However,
all the results are well within the experimental limits obtained by Nagourney
et al. [42] and Plumelle et al. [43].

5.4 Parity non-conserving electric dipole
transition amplitude

The main goal of this thesis is to obtain an accurate numerical value of
the parity non-conserving electric dipole transition amplitude between the
6s 25, /2 — dd 2D, /2 transition based on RCC theory. As has been mentioned
before, it is necessary to test the excitation energies, E1 transition amplitudes
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Table 5.14: Excitation energies (cm™'), reduced E1 transition amplitudes
(a.u.) and magnetic dipole hyperfine structure constants (MHz) for different
low-lying states of Ba™.

Initial state 6s 251/2 6s 281/2 5d 2D3/2 5d 2D3/2
—Final state 6p 2P o 2Py 6p2Pyn  Tp 2Py
Excitation

energy 20410 49578 16795 44884
Experiment 20262 49390 17079 45137
Initial state 6s 251/2 6s 251/2 5d 2D3/2 5d 2D3/2

—TFinal state 6p 2P o 6p 2Py 6p°Pijy 6p > P39
E1 transition
amplitude 3.37 4.72 3.08 1.36

Experiment 3.37(2) 4.67(8)  3.03(8) 1.36(4)

Atomic state 6s 251/2 6p 2P1/2 6p 2P3/2 5d 2D3/2
Hyperfine
constant (A) 4078.18 740.77  128.27 189.92

Experiment | 4018.8708(3) 743.7(3) 127.2(2) 189.7288(6)

and magnetic dipole (A) hyperfine structure constants, in order to determine
an approximate error for the PNC transition amplitude of interest. In table
5.14, we summerize the results of these properties and discuss the accuracy
of each result obtained from the various calculations.

5.4.1 Accuracy of excitation energies

As has been shown in table 5.14, the agreement with experiment of the most
important excitation energy (6p 2P /2) for the calculation of E1pyc is better
than one percent. The accuracy of the next important state (7p 2P /2) for the
initial PNC perturbed state is just 0.5%. The excitation energy of 5d 2D3/2 -
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6p 2P /2 is around 1.6%. But this may not affect the E1py¢ result very much
as the 5d 2Ds/, state does not contribute significantly to the PNC amplitude.

5.4.2 Accuracy of El transition amplitudes

All the E1 transition amplitudes given in table 5.14 are within the quoted
experimental errors. This is an indication that an accurate calculation of
FE1pyc amplitude can be carried out. As we have discussed earlier, most of
the other calculated results do not fall within the experimental error and are
further away from the central values than ours.

5.4.3 Accuracy of PNC matrix elements

There is no direct procedure to determine the accuracy of the calculated PNC
matrix elements between different states. An alternative method has been
followed to calculate the error associated with this quantity, by calculating
the square root of the product of the corresponding states connecting to the
PNC operator as shown in [9, 45].

In table 5.15 we present the values of the square root of the product
of \/Ass 251/2A6p 2p,,, and \/Aﬁp 2P3/2A5d 2p,,,- 1he accuracies of these two

quantities give an indication of the accuracies of the PNC matrix elements
between 6s 2512 and 6p 2Py, states as well as the 6p 2P3/, and 5d 2Dy
states. Both of them are in excellent agreement with experiment, suggesting
that the two leading PNC matrix elements for the Flpyc calculation are
very accurate as shown later in this section.

5.4.4 ElPNC result

Our calculated results for various atomic properties that were discussed ear-
lier, suggest that it is possible to obtain an Elpy¢c amplitude accurate to
within 1%. We calculate this quantity with the last basis functions (Case
VIII), with which we are able to obtain most of the calculated results ac-
curately. As we have mentioned earlier, we apply RCC theory to calculate
the first order PNC perturbed wavefunctions. Therefore, the present method
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Table 5.15: Square root of the magnetic dipole hyperfine constants (MHz)
and their deviations from experimental results.

Experiment This work Deviation (%)

\/AGS 25, A6p 2Py 5 1728.83 1738.1 0.5
\/A6p 2p, ), Asd 2Dy, 155.35 156.08 0.5

involves all intermediate states intrinsically. The exact procedure that had
been followed to calculate them are discussed in earlier chapters.

The contributions from the different terms in the E1pyc amplitude cal-
culation for the 6s 25, /2 — 5d 2D, /2 transition are presented in table 5.16.

It is clear that the largest contribution comes from DSP which represents
the DF term and a certain sub class of core polarization as well as pair cor-
relation effects. This is due to the relatively large (6s1/2 — 6p1/2) SY cluster

amplitude. Two different types of core polarization effects; DTl(l) and DSél)
as well as its conjugate also make significant contributions. The former is
mediated by the neutral weak interaction and involves the 6s valence and core
electrons. Correlation effects corresponding to S§0”DS§1) and SéO)TDSfl) are
non negligible, but their signs are opposite. Contributions from other terms
are comparatively small.

We consider the most important contributions given in table 5.16 and an-

alyze them below. We also plot the magnitudes of the different contributions
to Flpyc amplitude in figure 5.12.

5.5 Lower order MBPT contributions

We calculate the lowest order E1pyc amplitude for the 6s 2S)/2 — 5d Dy o
transition using the MBPT method to provide insights into the different all
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Table 5.16: Contributions to the E1pyc calculation in x 10~ ieaq(—Qw /N)
using RCC calculation.

Initial pert.  6s 28112 Final pert.  6s 25’9)2 —
terms 5d 2D") /2 terms 5d QDS)Q
DHBRL 2.018 HYSL D -0.3 x1075
b 0.0003 TO'D 0.418
DOSY 2.634 SH'DO -0.179
DO -0.242 S DO -0.166
SPTDOSE  0.149 S{TDOSY  0.003
SYTDOSE  0.007 SYTDOSE  0.008
st f”Dw)S( ) _0.116 SYTDOSY  -0.009
S$YTDOSE  -0.001 S$YTDOSE 0.001
Norm. -0.046 -0.001
Total 2.375 0.087

order RCC terms. The important MBPT diagrams are shown in figure 5.13.
Contributions arising from these diagrams are given in table 5.17.

We get Elpye = 1.98 x (—Qw/N) ieay x 107! from this calcu-
lation. From the diagrams given in figure 5.13, it is clear that dlag
(24+20+21+422+23) are the corresponding lowest order terms to the DSlZ
term of RCC. The pair correlation diagrams which also contribute to this
term are not calculated as they are two orders in the Coulomb interaction
and one order in the PNC interaction and hence their contributions are rel-
atively small. Diagrams (22+423) are called pseudo diagrams and have been
defined by Venugopal et al. [46]. As we have shown earlier, the contribution

from DSS ) is 2.634 and its lowest order diagrams yield around 2.351.
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Contribution to the final perturbed state from S%}D mainly comes
through diagram (6+8). To lowest order these results are higher than the all

order contribution, -0.179.

Table 5.17:  Contributions to the Elpyc calculation in units of

10" 4eao(—Qw/N), using MBPT diagrams.

Initial pert. 6s 25’9)2 — Final pert.

terms 5d 2D§(})2 terms

6s 259)2 —
5d 2D5))

3/2
diag. (2) 2.018 diag. (1)  -0.3 x107°
diag. (3) -0.142 diag. (b) 0.0
diag. (4) 0.032 diag. (6) -0.235
diag. (9) ~0.0 diag. (7) 0.0
diag. (10) -0.006 diag. (8) 0.016
diag. (13) ~0.0 diag. (11) ~0.0
diag. (14) -0.004 diag. (12) -0.017
diag. (20) 0.0 diag. (15) ~0.0
diag. (21) 0.167 diag. (16)  -0.008
diag. (22) 0.0 diag. (24) ~0.0
diag. (23) 0.166 diag. (25) ~0.0
diag. (26) ~0.0 diag. (28) ~0.0
diag. (27) 0.003 diag. (29)  -0.002
diag. (17) ~0.0 diag. (30) ~0.0
diag. (31) -0.006 diag. (32)  -0.001
Total 2.226 -0.247
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Figure 5.13: Important MBPT diagrams to calculate PNC amplitude.
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5.5.1 Role of intermediate states

It is important to understand the role of different intermediate states in the
calculation of the E1pyc amplitude of the 6s Sy /o — 5d D35 transition in
Ba™. It is also possible to determine the error in this quantity by identifying
important intermediate states and estimating the accuracies of the different
properties of those states that are related to the PNC amplitude. As has
been mentioned, in our method it is possible to include implicitly all inter-
mediate states through the RCC theory with the PNC interaction as a first
order perturbation. It is not possible to find the individual contributions
from different intermediate states in this approach. However, we have made
a special effort to investigate their contributions by computing the first order
perturbed wavefunctions which involve summing over various intermediate
states. In tables 5.18 to 5.24 we present these contributions at various levels.
In table 5.17, we present the reduced E1 matrix elements for different tran-
sitions at the DF level which are used to calculate the intermediate states
contributions to the above E'lpyc amplitude.



5.5.1: Role of intermediate states 177

Table 5.18: Reduced E1 matrix elements for different intermediate states.

(5ds/o|| D|[np1/2)pr  (np3)2]|D||6s) pr

n=4 0.75 0.07
n= 1.94 0.91
n==6 3.73 5.48
n=717 0.36 0.31
n=2~8 0.19 0.18
n= 0.47 0.07
n =10 0.23 0.08
n=11 0.04 0.04

Table 5.19: Contributions to the Elpyc calculation at Dirac-Fock level in
x 107 ieag(—Qw /N) using RCC calculation.

(5p3j2|DInp1j2)prx (5dsja| HENG|nps/2) pF ¥

(np1/2| Hp i |65) pr (nps3/2| D|6s) pr
n= 1.860 -2.6x1076
n="7 0.045 -2.9%1078
n=38 0.013 -9.5%1078
n=9 0.075 8.1x107?

n =10 0.024 5.1x107°

n=11 0.002 1.1x107°
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Table 5.20: Contributions to the Elpyc calculation from core-excitation
operators in x10™"jeay(—Qw /N) using RCC calculation.

(5ds 5| Dnp1 j2) pr(npr 2| TV |65)  (5dssa|TL) [npssa) (npsya| D]68) pr

n=4 -0.0005 -0.00003
n=2>9 0.4188 0.0004

Table 5.21: Contributions to the Elpy¢e calculation from leading DF and
pair-correlation diagrams in x10 '*ieaq(—Qw /N) using RCC calculation.

<5d3/2|D|np1/2>DF<np1/2|SS)|63> <5d3/2|51r§v1)|nP3/2><np3/2|D|63>DF

n==6 2.407 -0.181
n="7 0.066 -0.003
n=23a 0.019 -0.001
n=9 0.111 0.008
n =10 0.032 4x10*

n=11 0.003 2x107°
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Table 5.22: Contributions to the Elpyc calculation from pair-correlation
from Coulomb and PNC interactions in x10~"ieao(—Qw/N) using RCC

calculation.

(52| ST [mps o) x
(mps/2|D|ns) prx

(ns|S1? |6s)

(52| ST kda2)
<kd3/2|Dup1/2>DF><
{lp1y2 \Sﬁ) 65)

0.007
-0.005
0.001
0.002
-0.0002
-0.002

Il
EN RSN BEN N

SN NN NN S S S~
|

ST BEN I NN o)

>
|

0.175
-0.089
0.024
0.349
-0.0004
-0.041

Table 5.23: Contributions to the E1pxy¢ calculation due to core-polarization
effects from p1 o orbitals in x10~"éeaq(—Qw /N) using RCC calculation.

(5d3/2mp1/2|S%)\n86$) <5d3/2mp1/2\5’;}1)\ns65>

x(mp1/2|D|ns)DF

x(mpl/g\D|ns>DF

n=4m==6
n=5m=2~6
n=4,m=7
n=95m=717
n=>5m=3§8
n="7m=2>5
n=8 m=2>5

-5x107°
-0.0006
-8x10°¢
-0.0002
-0.0001
-0.0001
-4%x1076

1.6x107°
0.0003
3x10°6
7x107°
4%x107°
4x107°
2x107°
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Table 5.24: Contributions to the El1py¢ calculation due to core-polarization
effects from ps/s orbitals in x10~ieaq(—Qw /N) using RCC calculation.

(5d3/2mp3 /2 |S§) Ins6s)  (5ds/omps)s |S;§c1) |ns6s)

X (mps/2|D|ns) pr X (mps/2|D|ns) pr
n=5m==6 -9%107° 6x107°
n=95m=717 0.0001 4x107°
n=7m=35 -0.005 0.0005
n=8m=5 -0.002 0.0001
n=9, m=5 -0.012 0.0009
n=10,m =23 -0.003 0.0001

Table 5.25: Contributions to the El1py¢ calculation due to core-polarization
effects from higher symmetry orbitals in x10™"jea(—Qw/N) using RCC
calculation.

(5302|585 |$165)  (5ds/atha|Say |16s5)

x(¢2|D|¢1) pr x(¢2|D|¢1) pr
\gbl = 4p3/2>, |¢2 = 6d3/2> -2x1077 -0.0002
‘(ﬁl = 5p3/2>, |¢2 = 6d3/2> -0.0011 -0.0005
‘¢1 = 5p3/2>, |¢2 = 7d3/2> -0.0004 -0.0002
(1 = 4ds)0), |d2 = 6p3/2) -3x1076 -2x1076
‘¢1 = 4d3/2>, ‘¢2 = 7p3/2> -1X10_6 —6X10_7
‘¢1 = 4d3/2>, ‘¢2 = 4f5/2> -3)(10_5 —5X10_5
|¢1 = 4d5/2>, |¢2 = 4f5/2> -3x10°6 -2x10°
|¢1 = 4d5/2>, |¢2 = 4f7/2> -5x107° -0.0001
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5.6 Preliminary studies on the Breit interac-
tion

Table 5.26: Difference between the CCSD(T) results with and without the
Breit interaction for the ionization potential (em™!), E1 transition ampli-
tudes (a.u.) and magnetic dipole hyperfine structure constant (MHz) for
different low-lying states of Ba™*.

Atomic state | 6s Sy, 6p 2Py 6p 2Pyy  5d 2Dy
Tonization
potential 18.82 -14.89 -32.59 24.46

Initial state 6s 251/2 6s 251/2 5d 2D3/2 5d 2D3/2
—Final state | 6p 2Py 6p 2Py 6p %P1y 6p 2Py
E1 transition
amplitude 0.001 -0.003 0.0006 -0.0002

Atomic state | 6s 251/2 6p 2P1/2 6p 2P3/2 5d 2D3/2
Hyperfine
constant (A) 6.05 -2.42 -0.12 0.97

We have carried out preliminary studies on the contributions from the
Breit interaction to different properties for a few low-lying states that are
important in determining the F1pyc amplitude of the 6s 25, /2 — dd 2D, /2
transition in Bat. This contribution is less than 0.1% at the DF level, but
we find that it is a little higher in the case of the RCC calculations. In
table 5.26, we present the difference between the calculated results with and
without the Breit interaction at the CCSD(T) level. The contribution to the
Elpyc result is -0.003 x10™"jeag(—Qw /N). Since this is the first study of
the Breit interaction in Ba™, our work should be regarded as preliminary.
Therefore, we consider this contribution as an error in our calculation which
has been carried out in the Dirac-Coulomb approximation.
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5.7 Summary

The result of Elpyc for the 6s 2512 — 5d 2Ds)s transition from our cal-
culation is 2.462 x 10 ieaq(—Qw/N). In table 5.27, we compare it with
other calculations. Our result is larger in magnitude than those obtained by
Dzuba et al [17] and Geetha [40]. The former work is based on a variant
of all order many-body perturbation theory, but it has some semi-empirical
features. It is carried out by using two different approaches: one of them
is similar to the sum-over-states approach and the other is known as the
mixed approach, where the PNC interaction explicitly mixes states of oppo-
site parities. However, both calculations do not include contributions from
certain correlation effects; i.e. structural radiation, weak correlation poten-
tial and normalization of states [17], that are included in our calculation.
Their 6p >Pi/» — 5d >Djj» E1 matrix element which is important for the
above mentioned PNC transition amplitude, is not as accurate as ours. Fur-
thermore, the accuracies of their PNC matrix elements are not known, as
they have not performed calculations of the hyperfine constants of the rel-
evant states. The reason for the discrepancy between our calculation and
Geetha’s is that our approach implicitly includes several intermediate states;
particularly doubly excited opposite parity states which her sum-over-states
approach omits.

Table 5.27: Comparison of Elpyc results from different calculations in
X]_Oill’L.@CL()(—Qw/N).

Dzuba et al [17] Geetha [40] Present work
(mized parity) (sum-over-states)

217 2.34 2.35 2.462 £+ 0.018 £ 0.003

The contribution from the Breit interaction, which is two orders
of magnitude weaker than the Coulomb interaction, is found (-0.003
x107 " ieag(—Qw/N)) to be around 0.1%. This can be considered as an
error in our calculation at the Dirac-Coulomb level.
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The error accrued in our calculation of Elpyc can be determined from
the errors in the excitation energies, E1 transition amplitudes and hyper-
fine constants. We have not estimated the errors in the calculated values
of these quantities by comparing with measurements, since the error bars in
the E1 transition amplitudes are rather large. Instead, we have taken the
differences of our RCC calculations to single, double and leading triple exci-
tations (CCSD(T)) and also just to single and double excitations (CCSD),
as the errors. We have shown the variation between different results for the
important contributing intermediate states using these two methods in table
5.28. The quadrature formula used for estimating error is given below. By
expressing Elpyc as

X=22 (5.1)

the error can be evaluated using the relationship

B? A? A?B?

AC?, (5.2)

where the A values are the results of the differences between CCSD(T) and
CCSD for the quantities given in table 5.28.

The error in Elpyc (0.018) has been obtained by adding the errors for
the different quantities it depends on in quadrature given in the above for-
mula, for the leading intermediate states 6p 2P, 2 and 6p 2p; /2 and using a
scale factor to estimate the errors for the other intermediate states.

In conclusion, we have performed a sub-one percent error calculation of
Elpyc for the 65 2S; /2 — 5d 2Ds 5 transition in Ba™ using the RCC method.
We have included single, double as well as the leading triple excitations and
highlighted the importance of various many-body effects. Given the promise
that the Ba™ PNC experiment holds, it does indeed appear that in future the
result of that experiment combined with our calculation would constitute a
new and an important probe of physics beyond the SM.
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6s 251/2 — 6p 2P1/2

5d 2D3/2 — 6p 2P3/2

Excitation || CCSD(T) CCSD(T) - | CCSD(T) CCSD(T) -
energy CCSD CCSD
20410 “19.89 16795 12.45

6s 251/2 — 6p 2P3/2

5d 2D3/2 — 6p 2P1/2

E1 transition || CCSD(T) CCSD(T) - | CCSD(T) CCSD(T) -
amplitude CCSD CCSD
4.72 -0.004 3.08 -0.01
\/A65 251/2A6p 2Py \/AGP 21:’3/2A5d 2D3/9
Hyperfine CCSD(T) CCSD(T) - | CCSD(T) CCSD(T) -
constant (A) CCSD CCSD
1738.1 10.26 156.1 1.28

Table 5.28: Excitation energy (cm™'), E1 transition amplitudes (a.u.) and
magnetic dipole hyperfine structure constant (MHz) for different low-lying
states of Ba™.
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Chapter 6

Parity Non-conservation in
Cesium and Electric Dipole
Moment Arising from a
Scalar-Pseudoscalar Interaction

6.1 Introduction

In this chapter, we present the results of preliminary calculation of parity
non-conserving electric dipole (E1pnc¢) amplitude for the 6s 2S; /2 — 7s 2512
transition in cesium by the relativistic coupled-cluster (RCC) approach de-
veloped in this thesis. This quantity as mentioned earlier has been calculated
by a number of different methods [1, 2, 3|. Its current accuracy is about 0.5%
[3]. Tt is indeed worthwhile to explore whether this accuracy can be improved.

We have also applied RCC theory and combined it with experiment to
determine the scalar-pseudoscalar (S-PS) electric dipole moment (EDM) cou-
pling constants for cesium (Cs) and thallium (T1). The S-PS EDM Hamilto-
nian has a mathematical structure similar to that of nuclear spin independent
(NSI) parity non-conserving Hamiltonian, although the physics underlying
the two phenomena are very different. EDMs arise from violations of P and

189



6.2: Cs PNC 190

T symmetries and can provide important information about physics beyond
the Standard Model (SM) [10] of particle physics. Until 1964 it was thought
that the combined operation of charge conjugation and parity (CP) was a
good symmetry, but then Christenson et al. observed its violation in the
decay of the Ky [11]. From the CPT theorem, it is well known that the
three discrete symmetries - charge conjugation (C), space inversion or parity
(P) and time-reversal (T) are related [12, 13]. According to this theorem
any physical system which is described by a local field theory can violate
any one of these symmetries independently, but remains invariant under the
combined operation of these three symmetries in any order. Therefore, CP
violation for the K, decay implies T violation. However, this is not a di-
rect evidence of T violation. Observation of an EDM in a non-degenerate
physical system would be a direct signature of the violations T as well as P
symmetries [16]. There are two main sources of an EDM in paramagnetic
atoms. They are the electron EDM and the S-PS interaction between the
electron and the nucleus which violates P as well as T symmetries. While the
former has been dealt with extensively [14], the latter has received relatively
little attention. Barr has shown that in two Higgs doublet models [15], the
contribution of the S-PS interaction to an atomic EDM can exceed that due
to the EDM of an electron for certain values of the model parameters.

6.2 Cs PNC

It is well known that the most accurate experimental and theoretical results
for PNC studies currently available are for Cs [3, 4]. Our RCC approach to
atomic PNC is novel and it is capable of including all intermediate states
in the calculation of the first order perturbed wavefunctions, unlike earlier
calculations by Blundell et al. [1]. We have carried out Elpyc amplitude
for the 6s Sy — 7s 251, transition in Cs and we present the result in
this section. We have used a common single particle basis to calculate this
transition amplitude and S-PS EDM in Cs. The details of the basis are given
later while presenting the EDM results in Cs.

In table 6.1, we present the calculated results of properties which are im-
portant in evaluating the accuracy of the PNC amplitude. These results have
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Table 6.1: Excitation energy (cm™!), E1 elements (a.u.) and magnetic dipole
hyperfine structure constant (MHz) intermediate states in cesium.

Initial state 651/2 — 65172 — 6p1/2 — prj2 —
— Final state 6p1/2 7p1/2 781/2 781/2
Excitation
energy 11229.38 21796.31 7307.71 3259.23
Experiment 11177.84%% 21765.30%" 7356.79%" 3226.28%°
E1 transition
amplitude 4.53 0.292 4.23 10.37
Experiment 4.52(1)¢ 0.284(2)¢ - -
Atomic state 6512 7512 6p1/2 p1/2
Hyperfine
constant(A) 2292.32 545.53 284.86 94.67
Experiment 2298.16¢  545.90(4)° 291.90(9)¢ 94.35(4)¢

Reference (a): [5].

Reference (b): [6].

Reference (c): [7].

Reference (d): [8].
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an accuracy of 1-2%, but can be improved further using a part numerical and
part analytical basis [9]. It therefore appears that a sub 1% accuracy for Cs
PNC is possible.

In table 6.2, we present the contributions of the RCC terms to the above
PNC amplitude. We obtain a total of 0.902 x10~"jeaq(—Qw /N) for our
calculation. The trend in the contributions from different RCC terms differs
significantly from that of the 65 2S; /2 — od 2D, /2 transition in Ba™ presented
in the previous chapter. In contrast to the case of Ba™, the maximum con-
tribution for Cs comes from the final PNC perturbed state, 7s 25; /2 Again,

S%O)JrDSP and S{l)TDSgo) contribute significantly to the total result.

Table 6.2: Contributions to the FElpyc calculation in wunits of
107 eag(—Qw/N) times those obtained using the RCC calculation.

Initial pert. 6s 25112 Final pert.  6s 25{(/))2 —
terms 7s 251/2 terms 7s 255)2
DHNSL, 0.297 HNSL D -1.026
DT 0.039 TW'D -0.037
D(O)S{}) 0.234 SHTDO -1.855
DO S 0.029 S( ”D<0> -0.00004
SO DOSE  0.240 s§ f”Dw)sﬁ?) 0.429
SOTDOSE  -0.005 SPTDOSY  -0.007
SYTDOSE  0.034 S$YTDOSY  -0.004
S“’”Dw)s(? -0.011 S$YTDOSE  -0.001
Norm -0.012 0.032
Total 0.566 -1.468

We present the zeroth and first order many-body perturbation theory
(MBPT) contributions in table 6.3. The corresponding diagrams for these
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terms are given in figure 5.13 of the previous chapter. The importance of
correlation effects are clear from the table below, particularly those arising
from DS{I) and S%O)TDSP as well as their conjugates.

Table 6.3: Contributions to the FElpyc calculation in wunits of
107" 4eag(—Qw/N), using MBPT diagrams given in figure 5.13.

Initial pert. 6s QSS)Q — Final pert. 6s 259)2 —
terms 7s QSS))Q terms 7s 2592
diag. (2) -0.297 diag. (1) 1.026
diag. (3) -0.032 diag. (b) 0.0
diag. (4) 0.005 diag. (6) 0.095
diag. (9) ~0.0 diag. (7) 0.0
diag. (10) -0.001 diag. (8) 0.101
diag. (13) ~0.0 diag. (11) ~0.0
diag. (14) 0.001 diag. (12)  -0.001
diag. (18) -0.006 diag. (15) ~0.0
diag. (19) -0.004 diag. (16)  -0.001
diag. (22) 0.0 diag. (24) ~0.0
diag. (23) -0.033 diag. (25) ~0.0
diag. (26) ~0.0 diag. (28) ~0.0
diag. (27) 0.001 diag. (29) 0.001
diag. (17) -0.007 diag. (30)  -0.008
diag. (31) ~0.0 diag. (32) ~0.0
Total 0.817

6.3 General Features of EDM

In general, there are various sources of atomic EDMs. They can arise from
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(i) an intrinsic EDM of an electron,

(i) an intrinsic EDM of a nucleon or T and P violating nucleon-nucleon in-
teractions

and

(iii) T and P violating electron-nucleon interactions.

Systems with degenerate states with opposite parity can have non-zero
permanent EDMs, but this is not due to T and/or P violation. Closed-shell
(diamagnetic) atoms which have a non-zero nuclear spin are sensitive to CP
violation in the nuclear sector and the T and P violating tensor-pseudotensor
electron-nucleus interaction; while single valence electron (paramagnetic)
atoms are sensitive to the electron EDM and the T and P violating S-PS
electron-nucleus interaction.

Let us consider an atomic system with non-zero spin that has a permanent
EDM, D,. This can be either parallel or anti-parallel to J, the total angular
momentum of the system [16]. Under the actions of P and T, we have

—

= P: f—)f,Da—>
= T: J = JD—)

—D,;
D,.

The above equations imply that since Da is proportlonal to J T invari-
ance gives D, =0. Similarly, P invariance also gives D, =0. Therefore, one
concludes that P and T must be violated independently for the existence of
a non-zero EDM.

Sandars first showed that an atom can have a non-zero EDM if the elec-
tron has an intrinsic EDM [17]. He performed calculations to demonstrate
that T1 and Cs EDMs are two orders of magnitude larger than the EDM of
the electron. A few experiments that have been carried out on these two
systems [18, 19, 20]. New experiments based on laser cooling and trapping
of Cs have been proposed [21, 22, 23]. Accurate atomic calculations are
needed in combination with experiments to extract a variety of T violat-
ing coupling constants. A number of relativistic many-body calculations on
atoms of experimental interest have been carried out in the last two decades
[21, 22, 18, 19], these are discussed later. But these calculations are based on
certain approximations and do not deal extensively with the electron correla-
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tion effects. Our present method treats electron correlation effects rigorously
and can be applied to study the T and P violating S-PS electron-nucleus
interaction.

6.3.1 S-PS interaction Hamiltonian

The S-PS interaction Hamiltonian, which violates T and P, can be con-
structed by considering the scalar current from the nucleus and pseudoscalar
current from the electron, as follows:

1G
HES’DIITJS - F /dgre/dng Z 2 sszwN we’yu’}%@/}e](s( e)- (63)
_p’
Expanding in 1’s we obtain:
1G
Hgﬁlji/fq =z /d3re/d37nN Z 2[CSZ¢N701/JN Q/JT’YO’YM’YE’)Q/%] (ri —7¢).(6.4)
Z p’

Neglecting the off-diagonal terms from the above summation over the sum-
ming index '’ whose contributions would be very small, this reduces to

H%Jf—zGF/d%mwwm/drNEjm%¢wh(-—n) (6.5)

=p,n

The summation over the nuclear wavefunctions yield the number densities of
protons and neutrons, which, in simple nuclear models are proportional to
the nuclear density which is given by

Z @D},lﬂ,, = Zpn(r)
Sl n = Npw(r) (6.6)

where Z and N denote the number of protons and neutrons, respectively,
and py(r) is the nucleon number density normalized so that

/dr pydnr® = 1. (6.7)
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In individual terms, this yields

1G
HsfPS — ME d3rew175we/d37”]v2 [ Cspw;wp]d(rp - ’/’e)

EDM 2\/5
+ Csnw;gfl/]n](s(rn_re)] (68)

which over the nuclear region gives

_ 1G

i = "5 [ @redbstdCunZ + ConNlpw ()
1Gp

= —C4A 6.9

V2 sAvspn(r) (6.9)

where C,, and Cj, are the proton-electron and neutron-electron S-PS cou-
pling constants and Cjg is the dimensionless S-PS constant defined by
Cs =[CspZ + CsnN]/A and "A’ is atomic mass number of the system.

6.4 Single particle representation

Using Wigner Eckart theorem [25], the single-particle matrix element of the
CP violating interaction Hamiltonian can be expressed as

_ . . 0 -1
(il HEDE103) = CsA [ (Pt = QX ) (O )

P(T) Xkjm;
(5 o Y

= (1) 5k, )0 (mi, m)CsA [ (P.Q; + QiFy)pw (r)dr,  (6.10)
since
/XLa,maX*Nb,mbdQ = 0(Ka, —kp) (Mg, Mp). (6.11)

Hence, the reduced matrix element is given by
Gr 1
ECSA Wé(m,—nj)

[T (PQir) + QP r)on(r)dr. (612)

(@il Hgpar llgs) =
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6.5 Method of calculation

H }g Dl;f is responsible for mixing states of opposite parities but with the same

angular momentum. The strength of the interaction Hamiltonian is suffi-
ciently weak for it to be considered as a first-order perturbation. Therefore,
it is possible to write the atomic wavefunction as

1T) = [Ty 4 Gp|TW), (6.13)

We obtain |¥(9)) using relativistic coupled-cluster theory (RCC) as ex-
plained in the chapter 3.

Using equation (6.20) the EDM of an atom in the ground state is given
by

(w,|D|w,)
DulCs) = 5,0
(O DED) + (v 9 D] ) 614
(O 1wy

where terms non-linear in the perturbed wavefunctions are neglected and D
is the electric dipole (E1) operator. Using the explicit expression for the first
order perturbed wavefunction, we get

(WO D] (| HE 5w 0)

Da(CS) = {Z

<\IJ T#v E EI
w0 |H§D 7o) (vl | D|w)
4 6.15
I;, oo } (6.15)
o2 (WD) UPIHETFIN) 6 g
wP ey 2 (E, — Er)

since both the operators are hermitian. In the above equation |U;) represents
an intermediate state. We can express the above equation as

= Da(CS) = CSXEDM- (617)
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The accuracy of the calculation of D, depends on the excitation energies
of the different intermediate states, the matrix elements of Hy4? and D.

Similar to the argument used for the PNC perturbed wavefunctions, we
obtain the first order EDM perturbed wavefunction as the solution of the
equation

(HO — BO)wP) = (BY ~ H5H) w0 (6.18)

where E() vanishes for an odd parity first order perturbation. In this ap-
proach, |¥(V) implicitly contains all the intermediate states.

The perturbed cluster operators can be written as

T = TO 4+ GpTW,
S, = SO 4GSy, (6.19)

where T and S{!) are the first order Gy corrections due to EDM weak
interaction to the unperturbed cluster operators 7® and S{®) which are
discussed in chapter 3, respectively. The amplitudes of these operators are
solved, keeping only linear terms in EDM perturbed amplitudes, by following
equations

(@2 HPTO + HE0%| @) = 0,
(®XHYTO + H 5| ®g) =

=

(6.20)

and

(@ HYSO + (HPTY + Hyph#){1 + SO} ®,) = (825D, ) I P,
(@ HY' SO + (HPTO + HE ) {1+ SO} |@,) = —(02¢|SV|®,) I P(6.21)

Where H(© is the Dirac-Coulomb (DC) Hamiltonian and H is defined as
e T He™” which is computed after determining T®. IP is the ionization
potential for the valence electron v’ and the subscript N denotes the normal
form of an operator. |®?) and |®P7) are the single and double excited states,
respectively, with respect to the |®,). Using equations (6.13), (6.15), (6.19)
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and only keeping terms linear in G'g, the expression for D, can be written as

< Byl {14 5O + 7O 4+ 5
}6T(0) D@T(O){l +T (1 —+ T( )51(10) + Sz(;l)}|q)” >

Pa=Gr 1+ N
< ®,|SODO (1 + SO + (1 + SOYDO SO +
SONTODO) + DOTWYSO + (TOTDO) + DOTM) S0P, >
=Gp - NQSO) .
(6.22)
In the above expression we define DO = e D™ and NO =

+
SOTT® T 5(0) for the valence electron *v’ and each term is connected.
This is evaluated using the procedure for calculating electric dipole transition

amplitude as given in chapter 4.

6.6 Principle of Measurement

The EDM of an atom or any other neutral system is determined experimen-
tally by applying an external static field to the atom and measuring energy
shift that results from the interaction of the EDM with the electric field.
Consider an atom which has a permanent EDM as well as a magnetic dipole
moment. In the presence of a static electric field E and a magnetic field B,
the interaction Hamiltonian is given by

H;,=-D.E — i.B (6.23)

where D and [i are the electric and magnetic dipole moment operators, re-
spectively.

The application of the external field leads to precession of the atom. The
precession (Larmor) frequency is primarily due to the magnetic dipole mo-
ment, but there is also a small contribution from the EDM. The observable in
an EDM experiment is the difference in the Larmor frequency corresponding
to parallel and anti-parallel configurations of E and B - reversal of E relative
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to B. This change in frequency is

2D, E
h
Awg = 107% Hz for D, ~ 107?° e-cm and FE = 10 KV /cm. This frequency

shift corresponds to a magnetic field of 107 G for a diamagnetic atom and
1072 G for a paramagnetic atom.

One of the most important systematic errors in the EDM experiment is
the magnetic field that is produced by the motion of the atoms. This field

to first order in 7, in the moving frame of the atoms is given by:

—
—

Bn="xE. (6.25)
C

For v = 300 m/s and £ = 10 KV/cm, the dynamic magnetic field
B,, = 3 x 1075G. This magnetic field can give rise to a frequency shift
which can mimic an EDM. In the Tl experiment, two beams propagating in
opposite directions are used to minimise this effect [26]. EDM experiments
using optically pumped atoms in a cell have a zero average velocity and are,
therefore, not affected very much by the dynamic magnetic field [20]. Both
the beam and the cell experiments have their advantages and disadvantages.
While it is possible to apply large electric fields in the beam experiments, the
coherence times are longer in the cell experiments. The dynamic magnetic
fields often limit the sensitivity of the former, while leakage currents give rise
to systematic errors in the later, which cannot be easily estimated.

6.7 Laser Cooling and Trapping Approach

EDM experiments based on laser cooled and trapped atoms in principle have
the advantages of both the beam and cell experiments [23]. In these exper-
iments, one can apply large electric fields and consider long the coherence
times. The leakage current problem can be overcome using a suitable config-
uration for the laser trap. The systematic error due to the dynamic magnetic
field is virtually non-existent because of the extremely low average velocity
of the cold atoms.



6.8: Results and Discussions 201

The procedure of the atomic EDM measurements with cold diamagnetic
atoms [24] is as follows: First, a fast atomic beam from a hot oven is slowed
down by using the Zeeman-tuning method. After this pre-cooling stage, the
atoms are trapped and cooled by a magneto-optical trap (MOT). A high
density and large number of atoms is then loaded into the MOT within sev-
eral seconds. Then the atomic beam and the magnetic field for the MOT is
switched off, the detuning of the trapping laser is increased and its intensity
reduced. This results in further cooling to the micro-Kelvin region by the
polarization-gradient method. The next step is to perform optical pumping
to polarize the nuclear spin by the application of a circularly polarized res-
onant light pulse after completely switching off the laser fields. Finally, a
high power laser for a far blue-detuned dipole forced trap and a high static
electric field for the EDM measurement are switched on. A probe laser beam
will be used to measure the Larmor precession frequency. The loading and
measurement procedure is repeated many times to reduce the statistical un-
certainty.

Groups in the US have proposed EDM searches with laser cooled cesium
atoms [21, 22].

6.8 Results and Discussions

We have taken the value of o as 0.00525 and S as 2.73 for all the symmetries
for both the systems. To obtain the Dirac-Fock (DF) wavefunction, we have
considered 3681/2, 34p1/2, 34;03/2, 32d3/2, 32d5/2, 30f5/2, 30f7/2, 2097/2 and
2099/2 GTOs in Cs and 3881/2, 36p1/2, 36p3/2, 36d3/2, 36d5/2, 30f5/2, 30f7/2,
25972 and 25g9/2 GTOs in T1. All core (occupied) electrons are excited for
both the systems.

We have presented in table 6.4 properties related to the EDM in the
ground states of atomic Cs and in table 6.5 for T1. The square root of the
products of the relevant hyperfine matrix elements provide an estimate of ac-
curacy of the EDM matrix elements. We have used nuclear g; = 0.7377208
for Cs and g; = 3.27642922 for T1, respectively [28] for calculating hyperfine
structure constants. The results of the various properties of Cs and T1 are
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Table 6.4: Excitation energy (cm™'), E1 elements (a.u.) and magnetic dipole
hyperfine structure constant (MHz) of intermediate states in cesium.

Initial state 6s1/2 — 6p1/2 65172 = Tp12
— Final state

Excitation

energy 11229.38 21796.31
Experiment, 11177.84%° 21765.30%°
E1 transition

amplitude 4.53 0.292
Experiment 4.52(1)¢ 0.284(2)¢
Atomic state 6519 6p1/2 p1/2
Hyperfine

constant(A) 2292.32 284.86 94.67
Experiment — 2298.16¢ 291.90(9)? 94.35(4)¢
Reference (a): [5].

Reference (b): [6].

Reference (c): [7].

Reference (d): [8].

in most cases in very good agreement with the measured values.

We have calculated the ratio of D,/Cys for Cs and Tl. The contributions
from significant RCC terms are given in table 6.6. The leading contribu-
tions for both Cs and Tl come from DSS)). These diagrams represent the
DF, important pair correlations and a sub class of core-polarization effects.
The DF contributions are -0.578 and 3.217 in the units given in the table
for Cs and T1, respectively. Two different types of core-polarization effects
represented by the terms DTl(l) and DSS,) make very large contributions but
with opposite signs in the case of T1. This is primarily due to the strong
Coulomb and S-PS interactions between the 6p;, valence and the 65,5 core
electrons. However, these interactions are much weaker in the case of the
65s1/2 valence and core electrons for Cs. The corresponding core-polarization
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Table 6.5: Excitation energy (cm™'), E1 elements (a.u.) and magnetic dipole
hyperfine structure constant (MHz) of intermediate states in thallium.

Initial state 6p1/2 — Ts1/2 6p1/2 — 8512
— Final state

Excitation

energy 26038.62 10462.32
Experiment 26477.50¢ 10520.01¢
E1 transition

amplitude 1.84 0.57
Experiment 1.81(2)° -

Atomic state  6p1/o 751/2 8512
Hyperfine

constant(A) 21025.98 11992.11 4118.57
Experiment 21311° 12297°

Reference (a): [5].
Reference (b): [29, 30].

contribution is, therefore, much smaller for Cs. It is interesting to note that
the contributions of two other correlation effects represented by the terms
Sg”DS&) and Ség)TDS&) are non-negligible.

The results of previous calculations of D,/Cys along with ours are pre-
sented in table 6.7. Bouchiat’s calculation is based on an one electron poten-
tial and relativistic corrections are added to the wavefunctions. Venugopal’s
result is obtained using a hybrid method which combines certain impor-
tant features of the MBPT and the multi-configuration Dirac-Fock (MCDF)
method. Martensson-Pendrill and Lindroth have computed the Dirac-Fock
and various types of core-polarization effects [31]. However, unlike our work
they have not considered pair-correlation effects.

We have estimated the error in D,/Cs by taking the difference of our
RCC calculations with single, double and leading triple excitations and just
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Table 6.6: Contributions from important RCC terms for D,/Cyg calcula-
tions of 6s ?S1/2 and 6p >Py» states for cesium and thallium, respectively in
1078 — em.

Important Cesium Thallium
terms 6s QSS)Q 6p 2P1(/1%
Contributions from DF

DHy 8 + Hophe D -0.578 3.217
Contributions from RCC

pT + TW' D -0.035 3.056
DOSY + sWT Do) -0.878 4.453
DOSY 4+ sV DO 0.043 -3.835
S(O)J‘D( )5 4+ sWOTpOs® | 0.015 -0.304
S( 0 H) S(l) +S( D) 55?) 0.041 0.174
S( 01 0] S(l) +STDOSO | 0.004 0.023
S“’”D( S(” + S“”D< )59 | -0.008 -0.036
Norm. 0.019 -0.032

Total -0.801 4.056
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Table 6.7: Comparison of D,/Cys results with others in x10'®e — cm.

Cesium Thallium
D,/Cs D,/Cs
Martensson-Pendrill
and Lindroth [31]  -0.72(1£0.03) 742
Bouchiat [32] -0.689 -
Venugopal [33] -0.805 -
Present -0.801(£0.004)  4.056(£0.137)

single and double excitations. We consider measured values D, = (—1.8 +
8.5) x 1072* ¢ — c¢m for Cs by Murthy et al. [18] and D, = (—4.036 +
4.329) x 107?° e—cm for T1 by Regan et al. [26] and obtained new limits for
Cs as (2.247 £6.809 4+0.011) x 107% and (0.995 +1.756 £0.033) x 1077
for cesium and thallium, respectively. In these results the first uncertainty
comes from the errors associated with the measurements and secondly from
the calculations. Our new limit for T1 is a significant improvement over the

previous limit (2 +7) x 1077 [31].
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

Parity non-conservation (PNC) in atoms arising from neutral weak cur-
rents has the potential to test the Standard Model (SM) of particle physics
[1, 2]. Accurate theoretical calculation of parity non-conserving electric
dipole (Elpyn¢) amplitude and high precision measurements [2] are required
for this purpose. The most accurate data on atomic PNC currently comes
from the 6s 251/2 — Ts 251/2 transition in cesium (Cs), where the claimed
experimental [3] and theoretical [4] accuracies are 0.35% and 0.5%, respec-
tively, and the deviation from the SM is about 1o [4]. An experiment to
observe parity non-conservation in trapped and laser cooled singly ionised
barium (*3"Ba™) [5, 6, 7] has been proposed.

The most important achievement of this thesis is the successful comple-
tion of a sub one percent calculation of the E1py¢ amplitude for 6s 25, /2 =
5d >Djj, in Ba™ using the relativistic coupled-cluster (RCC) theory. This is
important for the following two reasons:

(i) If the accuracy of this calculation can be matched by that of experiment,

which seems very probable in the not-too-distant future, then PNC in Ba*t
would be a second independent atomic probe of physics beyond the Standard

209



7.1: Conclusion 210

Model (SM).

(ii) It is the first application of RCC theory to atomic PNC and therefore
advances the field of relativistic many-body theory.

A significant feature of our work is that it is concerned with two different
fundamental interactions (electromagnetic and weak) and their interplay. It
would certainly be of interest to theorists in different areas of many-body
physics. Furthermore, it would be of great interest to particle physicists as
it addresses the issue of new physics beyond the Standard Model (SM). As
mentioned, if our sub one percent calculation of Bat PNC can be matched
by the proposed experiment on this ion, then the combination of the two
results would provide an independent test of the SM of the particle physics.

As mentioned in chapter 3, we apply the full fledged RCC theory which
incorporates all the single, double and leading triple excitations to calcu-
late atomic wavefunctions. Blundell et al. had earlier used the linearized
approximation to this theory to calculate the Elpyc amplitude of the
6s 2S1o — Ts 2Sijp transition in Cs [8, 9]. As mentioned in chapter 4,
our approach implicitly takes into account all the intermediate states in the
PNC perturbed wavefunctions. Our present calculation of the E'1pyc ampli-
tude for the 6s 251/, — 5d 2D35 transition in Ba™ is more accurate than the
previous calculations by Dzuba et al. [4] and Geetha [10] since it includes
larger range of physical effects.

Our method of evaluating the error in the calculation of the E'1pxyc ampli-
tude is more rigorous than those used in the previous calculations [8, 9]. The
difference between the calculations for different properties related to Flpyc
based on the single, double and leading triple excitations and just the sin-
gle and double excitations have been computed and added in quadrature to
determine the error bars for EFlpyc. We have also carried out preliminary
calculations of the Breit interaction and its contribution is taken as one of
the errors (0.1%) in the Dirac-Coulomb approximation.

We have also carried out preliminary studies of the E1pyc amplitude for
the 6s 251/2 — Ts 251/2 transition in Cs as well as related properties. The
errors in the various quantities are about 1-2%. As in the case of Ba™ PNC,
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non-linear clusters have been included in the calculation of Cs PNC and the
first order perturbed wavefunction takes into account all the intermediate
states in an implicit way.

We have calculated the ratios of the atomic electric dipole moment (D,) to
the scalar-pseudoscalar coupling constant (Cg) for cesium and thallium (T1)
using RCC theory with accuracies of 0.5% and 3.3%, respectively. Many-
body effects were found to be of crucial importance, particularly for T1. Our
calculated value of this quantity for T1 in combination with the experimental
result of the electric dipole moment (EDM) for the same atom gives the most
accurate limit for the scalar-pseudoscalar (S-PS) coupling constant to date.
It would be possible to improve this limit even further if the new generation
of EDM experiments using cold cesium atoms reach their expected levels of
accuracies [11, 12, 13, 14]. The results of these experiments could then be
combined with our calculation of D,/Cs for Cs (0.5% accuracy) to yield this
new limit.

7.2 Outlook

Although the precision we have achieved in our E'1pyc and EDM calculations
are better than the existing results for these quantities, it may be necessary
to improve them even further in order to test the SM of the particle physics.
This is an extremely challenging task as it would require improving the qual-
ity of the single particle basis wavefunctions and the RCC theory used in this
thesis. It would indeed be worthwhile to explore different methods for opti-
mizing the basis wavefunctions. The simplest step in this direction would be
to use a part numerical and part analytical basis [15]. Going beyond RCC
with single, double and leading triple excitations calls for a reformulation
of the computational techniques in calculating the cluster amplitudes. The
work of Kallay which makes the solution of the coupled-cluster (CC) equa-
tions at any level of excitation more tractable than before deserves special
mention [16]. It would be desirable to first apply this approach with full sin-
gle, double and triple excitations to PNC in Ba' and Cs as well as EDM in
Cs. A simpler solution to this problem would be to use the unitary coupled-
cluster (UCC) method [17] which has certain advantages over the ordinary



7.2: QOutlook 212

CC method. The important thing is that at a given level of approximation
UCC contains certain higher order excitations that are not present in CC.
For example, at level of the singles and doubles, UCC has some important
triple and even quadrupole excitations.

Beyond the Dirac-Coulomb approximation, it is necessary to include the
Breit and important quantum electrodynamics (QED) corrections as accu-
rately as possible. The accuracies of the nuclear structure corrections which
contribute at the level of 0.2% in Cs PNC [18] and 0.3% in Ba™ PNC [19]

must be improved.

One can indeed expect exciting new theoretical developments in atomic
parity non-conservation and electric dipole moments in the years to come.
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Appendix:A

JLV theorems

We present a series of theorems developed by Jucys, Lenson and Vanagas
in 1962 which are known as JLV theorems. These theorems provides formu-
las to simplify complex angular factors represented by angular momentum
diagrams in the many-electron matrix element calculations. The basic prin-
ciple of this theorem is, ” if a complex angular momentum diagram can be
divided into a closed part with any number of open lines then simpler angular
factors can be found out using the following rules which are known as JLV
theorems” .

Let us consider an angular momentum diagram such that it has a closed
part represented by @ and an open part represented by [ as shown by Fig.
(i). Using the orthogonality relationships given by Fig.s (ii) and (iii), one
could arrive the simpler form of angular momentum diagrams with one, two,
three, four etc. open lines using the formulas given by Fig.s (iv), (v), (vi),
(vii) etc., respectively.
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Appendix:B

Generalized Wick’s Theorem

B.1 Normal order

A string of creation and annihilation operators are said to be in normal or-
der if a! and a, always appear to the right of ay and afl, where a, b and p, q
represent for holes and particles, respectively.

The expectation value with respect to the Fermi vacuum of any operator
string in normal order is zero, since

al|®) =0
and
a,| @) = 0. (B.1)
It is therefore possible to express an operator O as
O = Oy + (®]|0|®) (B.2)

where Oy represents normal order of the operator O which is sometime
denoted by ordinary curly bracket (e.g. {O}) and (®|O|®) as the vacuum
expectation value, where |®) is the Dirac-Fock (DF) wavefunction.

B.2 Wick’s theorem

Let A, B, C,- - - represent a string of creation and annihilation operators. As
per the notation, a normal ordered operator made of A, B, C --- can be
written as {ABC'---}. Hence any normal order operator taken between the
reference state denoted as |®) is equal to zero. i.e.,

(B|{ABC---}|®) = 0. (B.3)
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We define the contraction of two creation/absorption operator as follows:
if x and y are arbitrary creation and absorption operators, then the contrac-
tion of x and y is defined as the difference between the ordinary and the
normal product of the operators. i.e.,

7y = zy — {xy}. (B4)

These creation and absorption operators obey the anti-commutation rules
given by

{ai, aj} =0.
{af,a]} =0.
{ai,aj} =0.

Consider the four different cases where x and y being core or virtual or-
bitals.

Case I: x and y being core (aya;)
apaf = apal — {apa}. (B.5)
Using the normal order property, {aya} } = apa;. Therefore,
apal = 0. (B.6)

Case II: x and y being core (a, a)

ata, = ata, — {aa}. (B.7)
Using the normal order property, {a}ay} = —aya;. Therefore,
aﬁb = 5ab- (B8)

Case III: x and y being virtual (a,a;)

aaf = ayal — {a.al}. (B.9)
Using the normal order property, {a,a]} = —a'a,. Therefore

—_

a,at = 0y (B.10)
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Case IV: x and y being virtual (a/a,)
ata, = afa, — {ala,} (B.11)
Using the normal order property, {afa,} = a}a,. Therefore,
ata, = 0. (B.12)

From the above four cases we can infer that the contraction is non van-
ishing only for the combination a,a} and afa,. This rule will be used in
the construction of Goldstone diagrams for the further calculations. Wick’s
theorem can be formulated as follows:

If A is a product of creation and absorption operators, then
A={A}+{4) (B.13)

where {A} represents the normal form of A and {A} represents the sum of
the normal-ordered terms obtained by making all possible single, double, - - -
contractions within A.

B.3 Generalized Wick’s theorem

The above theorem can be generalized for products of normal ordered oper-
ators and this leads to the generalized Wicks’s theorem given by

{ABCY{DE}{FGH}... = {ABCDEFGH}
+ > {ABC}{DE}{FGH}

singlecontractions

A

+ > {:4BC}{DE}{FGH}‘+...

doublecontractions

+ > {ABC}{DE}{FGH} (B.14)

Sfullycontracted

The graphical interpretation of Wick’s theorem goes like this. If A and B are
two operators in normal form represented by Goldstone diagrams, then the
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graphical representation of the operator product AB is the sum of diagrams
obtained by joining zero, one, two,... lines at the bottom of the diagram A
with lines at the top of the diagram of B in all possible ways so that the
direction of the arrows is continuous.

Let us introduce the concept of an object. An arbitrary operator contain-
ing the same number of creation and annihilation operators standing inside
a normal product is called an object.

Let A and B be two different objects. By generalized Wick’s theorem we
can write

AB = {AB} + {AB} (B.15)
BA = {BA} + {BA} (B.16)

Since A and B are composed of an even number of creation and annihilation
operators, we have

{AB} = {BA} (B.17)
Therefore,
AB — BA = A, B] = {AB} — {BA} (B.18)

Thus any commutation of two objects contains only contracted terms. This
simple result can be interpreted also in the diagrammatic formalism. In terms
of a diagrammatic interpretation, the commutation [A, B] is equal to the sum
of all possible non-equivalent connected diagrams that are composed of A and
B vertices with at least, one hole or particle internal line (contraction), the
closed elementary loops are strictly forbidden.

B.4 Brillouin’s theorem

If 'a’ represents an occupied orbital of an atomic system and a discrepancy
causes a small admixtures of virtual orbitals 'r’ to this occupied orbital, i.e.

|a) = [a) +nlr) (B.19)
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where 7 is very small and a real number, then the multi-electron Dirac-Fock
statefunction with occupied electrons (|®)) will lead to an admixture of single
substations |®")

|®) — |®) + |DF) (B.20)
and the Dirac-Fock energy shifts to the value
Eprp = (Q|H|®) — (B|H|®) + n((P;|H|P) + (B[H|D7)) (B.21)
neglecting higher order in 7.

To minimize the effect in the shift of the energy, one obtains
(PF|H|®) =0 (B.22)
This is known as Brillouin’s theorem.

Following this fact for the single particle (Dirac-)Fock Hamiltonian as
given in chapter 2 satisfies the relationship

(@4 |Ho|®) = (rl|hola) =0 (B.23)

This condition is called as Brillouin’s condition.



Appendix:C

The Goldstone Evaluation Rules

C.1 Goldstone Diagrams

To assign various factors to Goldstone diagrams we prescribe the following
rules

(i) A creation (absorption) operator for each free outgoing (incoming) orbital
line. These are written in normal form

[P
{aiajak ccc Qg Qg Qg }

where a}L , a; etc., originate from the same vertex or from vertices connected
by orbital lines.

(ii) A matriz element for each interaction line.
(iii) A summation over all internal orbital lines.

(iv) A phase factor equal to (—1)"*!, where 'h’ is the number of internal lines
representing core (hole) orbitals and I’ the number of closed loops of orbital
lines.

(Closed loop of a diagram is calculated by considering a closed path which
flows continuously from a starting point and returns back to it. This defini-
tion is followed from I. Lindgren, but sometime it changes by other authors.
Effectively all the signs are accounted same by these rules and the definition
is immaterial.

(v) A factor 1/2 for each two-particle interaction and an equivalence factor
equal to the number of topological equivalent diagrams.
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(vi) A factor of 1/2 for each symmetry operation — like reflection in a vertical
plane or interchange of the vertices of an interaction line — which transforms
the diagram into itself or to any other diagram appearing in the erpansion.

C.2 The Linked-diagram Theorem

We define a diagram as closed if it has no free orbital lines and a digram is
unlinked if it has a disconnected closed diagram. According to linked-diagram
theorem:

” Discard all the unlinked diagrams from the calculations”.

C.3 Angular Momentum Diagrams

We discuss here the rules to extract angular momentum diagrams from the
corresponding Goldstone diagrams. The rules are:

(a) Remove all single particle potential interaction lines.

(b) Replace each orbital line by the corresponding angular-momentum line
and add an arrow on outgoing lines from each interaction.

(c) Replace each Coulomb and/or Breit interaction line by a directed angular
momentum line with an appropriate rank ’k’.



Appendix:D

Hausdorff Expansion

Let us consider e~7 Ae®', where A is an object and T is the excitation operator.
The Hausdorff Expansion formula for this expression is

> 1
e TAe" = —[4, ™ (D.1)
n=0 n.
Proof:
Let us define
A'()\) = e AT (D.2)
Taking the first derivative of the above expression with A, we get
%A’(A) T, T]T (D.3)
Taking the second derivative of it, we get
d’ —AT AT
et cetera. Therefore,
A'(\) = A'(0) + AiA'(O) + lAQd—QA'(O) 4 (D.5)
dA 217 d)\? )
which is nothing but
1
AN =A+NAT+ 5/\2[[,4, T, T)+ - (D.6)

For A =1,

1
—T AT
e Ae’ = A+[A,T]+a[[A,T],T]+---

= ¥ L (0.7

3

Hence proved.
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Fundamental Constants, Units and Conversions

Conversions:

1 electron mass = 5.4857990 x 10™* a.u. = 9.1093897 x 1073 Kg
ag = ;125 = 0520177249 x 10~8em= 0.50.5291772494

1 fm = 107¥cm= 1.88973 x 107> bohr

1 a.u. of time = - = 2.4188843265 x 10™'s

Compton wavelength \, = 2.4263 x 10~ %cm

Electric field E = £ = 0.51422082 x 10 V/m

Magnetic field B = ;72— = 2.350518 x 10° tesla = 2.350518 x 10° Gauss

Energy:

lcal =4.184 J

1 Debye = 0.393456 a.u.

1 Hartree (la.u.) = % = 4.3597438110 x 107!8 J = 27.2113961 eV
= 219474.63068 cm~! = 627.50956 kcal /mol

1 eV = 3.67493260(14) x 10~2a.u. = 1.6022 x 10719 J

1 K =3.1668153(55) x 10 %a.u., (K — Kelvin)

1 a.u. = 6.579683920735(50) x 10" Hz (= v)

1 em™! = 4.556335252750(35) x 10 %a.u. = 1.4387752 K

1 Kaysers = 1 cm™!

Constants:
1 Avogadro’s no. = 6.0221367 x 10%
1 Rydberg = 0.5a.u.

Transition rates: S =1/7
1leV/h =1.6022 x 107 J/h = 1.5192 x 10'® sec™! = 3.6748 x 10~?(a.u.) ™"

Wavelength:

A (A%) =ag Af;@;%ﬁ x 10° = AAL?EE)(S?:L)

A (nm) = Qo AE(a.u.)

A (em™) = %ﬁAE(a.u.) = 219474.63068AE(a.u.), AE — Excitation en-

ergy



Physical constants

Physical quantity Symbol Numerical value
speed of light in vacuum c 299 792 458 m s~ !
Boltzman’s constant kg 1.380 6503 x10~2* J/K
Plank’s constant I 1.054 57266 (63) x1073* J s
6.582 122 0 (20) x10~16 eV s
elementary charge e 1.602 177 33 (49) x1071% C
electron mass Me 9.109 389 7 (54) x1073! kg
proton mass M, 1.672 623 1 (10) x1072" kg
atomic mass unit u 1.660 540 2 (10) x1072" kg
classical electron radius To 2.817 940 92 (38) X107 m
Bohr radius ao 5.201 772 49 (24) x10~" m
inverse fine-structure constant 1/« 137.035 989 5 (61)
Hartree energy E,, 27.211 396 1 (81) eV
8065.540 320 7 (81) Kaysers
Atomic units: ii=1 me=1,e=1

unit of length

unit of time

unit of velocity

unit of energy

unit of electric charge
unit of electric potential
unit of electric field

5.291 772 49 x 10" fm
2.418884 3 x10~7 fm
2.187 691 4 x10% m s~
27.211 396 1 eV

1.602 177 33 x107%° C
27.211 396 1 eV

5.142 208 24 x10~* V/fm
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