
Recovery from Maunder-like Grand Minima in a
Babcock–Leighton Solar Dynamo Model

Bidya Binay Karak1,2,3 and Mark Miesch3
1 Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India; karak.app@iitbhu.ac.in, miesch@ucar.edu

2 Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India
3 High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301, USA

Received 2018 May 9; revised 2018 June 4; accepted 2018 June 5; published 2018 June 19

Abstract

The Sun occasionally goes through Maunder-like extended grand minima when its magnetic activity drops
considerably from the normal activity level for several decades. Many possible theories have been proposed to explain
the origin of these minima. However, how the Sun managed to recover from such inactive phases every time is even
more enigmatic. The Babcock–Leighton type dynamos, which are successful in explaining many features of the solar
cycle remarkably well, are not expected to operate during grand minima due to the lack of a sufficient number of
sunspots. In this Letter, we explore the question of how the Sun could recover from grand minima through the
Babcock–Leighton dynamo. In our three-dimensional dynamo model, grand minima are produced spontaneously as a
result of random variations in the tilt angle of emerging active regions. We find that the Babcock–Leighton process can
still operate during grand minima with only a minimal number of sunspots, and that the model can emerge from such
phases without the need for an additional generation mechanism for the poloidal field. The essential ingredient in our
model is a downward magnetic pumping, which inhibits the diffusion of the magnetic flux across the solar surface.

Key words: dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: interior – Sun: magnetic fields –
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1. Introduction

The global magnetic field of Sun oscillates with polarity
reversals every 11years. This oscillation is well reflected by
the number of sunspots observed on the solar surface and thus
it is known as the sunspot cycle or the solar cycle. The solar
cycle, however, is not regular. There was a time in the
seventeenth century when the sunspot number, as well as other
proxies of solar activity (e.g., the auroral occurrence), went to
an unexpectedly low value for about 70years. This is the well-
known Maunder minimum (Eddy 1976). From indirect
terrestrial proxies of solar activity, we now know that this
Maunder minimum is not unique and the Sun had many such
events with different durations in the past (Beer et al. 1990;
Solanki et al. 2004; Usoskin et al. 2007). The interesting fact is
that every time the Sun manages to recover to the normal
magnetic activity from these grand minima. In fact, we now
know that the magnetic field during the Maunder minimum was
oscillating, implying that the underlying process of magnetic
field generation was still occurring during the grand minima
(Beer et al. 1998; Miyahara et al. 2004).

It is believed that a magnetohydrodynamics dynamo process,
operating in the solar convection zone (CZ), is responsible for
producing the solar magnetic cycle. At present, the Babcock–
Leighton type flux transport dynamo model is a popular
paradigm for the solar cycle because of its success in
reproducing observations (Charbonneau 2010; Karak et al.
2014a). In this model, the decay and dispersal of tilted bipolar
magnetic regions (BMRs) near the solar surface produce the
poloidal field—the Babcock–Leighton process (Babcock 1961;
Leighton 1964). The poloidal field is then transported to the
bulk of the CZ through the turbulent diffusion and meridional
circulation, where the winding of this field by differential
rotation generates a toroidal field. This model is constructed
with an assumption that the toroidal flux near the base of the

CZ (BCZ) produces BMRs at the surface. The observed tilt of
BMRs relative to an east–west orientation is attributed to
Coriolis force during the rise of the toroidal flux through the
CZ (e.g., D’Silva & Choudhuri 1993).
The BMR tilt is crucial in producing the poloidal field in this

model (Dasi-Espuig et al. 2010). While in observations the tilt
systematically increases with latitude (Joy’s law), there is a
considerable scatter around this systematic variation (Stenflo &
Kosovichev 2012; Wang et al. 2015; Arlt et al. 2016). This
scatter in the tilt angle causes a variation in the polar field
(Jiang et al. 2014, 2015; Hazra et al. 2017; Karak &
Miesch 2017, hereafter KM17). Based on this idea previous
authors have included a random component in the Babcock–
Leighton source of their flux transport dynamo models, and
have shown that this random component can diminish the
poloidal source and trigger a grand minimum (Charbonneau
et al. 2004; Choudhuri & Karak 2009, 2012; Karak &
Choudhuri 2013; Olemskoy & Kitchatinov 2013; Hazra
et al. 2014; Passos et al. 2014; Inceoglu et al. 2017). However,
these models do not explicitly take into account realistic BMR
properties such as tilt angle scatter, flux distribution, and cycle-
dependent emergence rate. Furthermore, they do not fully
explain how a Babcock–Leighton model can emerge from a
grand minimum without some additional source of poloidal
field such as a turbulent α-effect. Recently, Lemerle &
Charbonneau (2017; hereafter LC17) have developed a
2D×2D coupled surface flux transport and flux transport
dynamo model in which the actual BMRs with observed
properties have been included. They have demonstrated that
explicit tilt angle fluctuations can indeed induce grand minima.
In a newly developed 3D dynamo model (KM17), we have

included the tilt angle fluctuations explicitly, and we have
shown that the observed tilt scatter is capable of triggering
grand minima events. When using the currently observed Gaussian
fluctuations with σδ=15°, the occurrence of grand minima in the
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model is somewhat less frequent than that inferred from terrestrial
proxies (Usoskin et al. 2007). However, a solar-like frequency is
found when we double the scatter. Here we use the enhanced tilt-
angle scatter of 30° (double the observed value of 15°) in order to
facilitate our analysis by producing more frequent grand minima.
However, we emphasize that the mechanism that we describe here
for emerging from a grand minimum is not sensitive to the value
used for the tilt-angle scatter; solar-like models emerge from grand
minima in the same way. The essential emergence mechanism that
we describe (enabled by magnetic pumping) is also insensitive to
other parameters of the model as well; one should be able to
capture it even with a 2D model that does not have any explicit
active regions.

Although previous studies demonstrate that tilt angle scatter
can cause grand minima, they do not explain the recovery
of the Sun from such phases. As BMRs are the only source for
the generation of the poloidal field in the Babcock–Leighton
type dynamos, the generation of poloidal field becomes
negligible during grand minima due to a fewer number of
BMRs. Thus the Babcock–Leighton dynamo may stop operating
during grand minima, and the Sun may not recover. Previous
studies suggested that an additional poloidal source (e.g.,
convective α) is needed in order for the Sun to recover from
grand minima (Karak & Choudhuri 2013; Hazra et al. 2014;
Passos et al. 2014). Indeed, LC17 observed that when their model
enters into an extended grand minimum of the weaker magnetic
field, the generation of poloidal field stops due to a lack of
BMRs, and the model never recovers from that quiescent phase.
Their model recovers only when the magnetic field does not fall
below a certain level.

2. Model

In this Letter, we explore the Babcock–Leighton dynamo
mechanism during grand minima, focusing in particular on how
the dynamo might recover from such episodes through the
Babcock–Leighton process alone. To do so, we first produce
grand minima. In our study, we build on our recent work,
KM17, which is an updated version of the original model
(Miesch & Dikpati 2014; Miesch & Teweldebirhan 2016). In
this model, BMRs are produced near the surface based on the
toroidal flux at the BCZ and most of the statistical properties of
BMRs are based on solar observations. We refer readers to
Section2 of KM17 for the details of this model. From KM17,
we consider RunsB10–11, in which the diffusivity in the
bulk of the CZ is in the order of 1012cm2 s−1. The BMR
flux distribution is fixed at the observed value and the time
delay between two successive BMR emergences is obtained
from the observed log-normal distribution, which changes in
response to the toroidal field at the base of the CZ to allow
more frequent BMRs when the toroidal field is strong and
vice versa. The BMR tilt has a Gaussian scatter around Joy’s
law with standard deviation (σδ) of 30° (15°) for Run B11
(B10). Another key ingredient of the model is the downward
magnetic pumping which has the same form as in KM17 and it
is given by
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where γCZ=2 m s−1 and γS=20 m s−1.
Thus, the pumping g has a value of γS only near the surface,

while in the rest of the CZ it is γCZ.
Pumping is a process in which the magnetic flux can be

transported in a stratified convective medium due to the
topological asymmetry in the convective flow. A variety of
theoretical and numerical models suggest that it is operating
in the solar CZ, particularly near the surface where both the
velocity amplitude and the density stratification are largest
(e.g., Drobyshevski & Yuferev 1974; Krause & Rädler 1980;
Petrovay & Szakaly 1993; Tobias et al. 1998). Although at
present, we do not have a stringent constraint on the strength of
the pumping, previous studies (Käpylä et al. 2006; Karak
et al. 2014b) suggest its value to be at least a few tenths of the
convective velocity. Keeping in mind that the upper layer of the
Sun is highly convective with the observed surface convection
speed of a few km s−1, a value of 20m s−1 pumping speed is
realistic (Spruit 1997; Nordlund et al. 2009). This value is also
large enough to make the magnetic field near the surface
approximately vertical, which improves the agreement between
Babcock–Leighton dynamo models and Surface Flux Transport
(SFT) models.4

3. Results and Discussion

A time series of sunspot numbers (SSN) obtained from
RunB11 is shown in Figure 1(a); see Table 1 for parameters
and KM17 for details of how the sunspots are produced in this
model based on the toroidal field in the interior. We note that
this SSN is smoothed using the same procedure as done in
Usoskin et al. (2007); that is, we first bin the monthly SSN in
10-year intervals and then filter the data by averaging over five
neighboring points using Gleissberg’s low-pass filter 1-2-2-2-1
(Gleissberg 1944). The blue shaded areas indicate the grand
minima that are defined when the smoothed SSN goes below
50% of the mean for at least two consecutive decades (the same
procedure as given in Usoskin et al. 2007). To display the
variation of the original SSN, including its 11-year periodicity,
we show the monthly SSN variation for about 1600years in
Figure 1(b). In Figure 1(a), we notice several grand minima;
see Run B11 in Table 1. Durations of some of these grand
minima are similar to the Maunder minimum, and some are
even longer.
To characterize the features of the grand minima produced in

our model, we highlight a few cycles from 8615 to 8740 years
in Figure 2. We notice that the period of the first few cycles
during this grand minimum is slightly longer than the average
period of 10.8 years. This is consistent with the solar activity
during Maunder minimum obtained from 14C data (Miyahara
et al. 2004), although 10Be data gives a somewhat different
picture (Beer et al. 1998; Fligge et al. 1999). The longer cycle
period is expected when there are fewer BMRs at the beginning
of the grand minimum, because with few BMRs the new
poloidal flux needs more time to accumulate and thus reverse

4 Cameron et al. (2012) showed that the inclusion of magnetic pumping in
Babcock–Leighton dynamo models can improve their agreement with SFT
models. The radially downward magnetic pumping makes the field more radial
near the surface and suppresses the vertical diffusion of the magnetic flux. To
do this, the radial advection of the field through downward pumping has to
dominate over the diffusion. They showed that this requires 5l/γS=l2/η,
where l=0.1 Re the depth of the near-surface layer where pumping is
operating, and η is the diffusion coefficient in the near-surface layer. Taking
η=3×1012 cm2 s−1, this gives the pumping speed γS=21.5 m s−1. Thus,
the value of γS used in our simulations is in agreement with this argument.
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the old polar flux. We further note that during grand minima,
BMRs appear near the equator, which is consistent with the
observational findings during the Maunder minimum (Ribes &
Nesme-Ribes 1993). The appearance of low-latitude BMRs in
our model is a consequence of the chosen latitude-dependent
threshold field strength for BMR production; see KM17
for details. Another distinct feature of grand minima is the
hemispheric asymmetry. Around the year 8660 in Figure 2(b),
most BMRs are produced in the southern hemisphere (also see
the parity of the field, which is linked to the hemispheric
asymmetry; KM17). A strong hemispheric asymmetry was also
observed during the Maunder minimum (Ribes & Nesme-
Ribes 1993). All of these features (longer period, BMRs
emergence near equator, and hemispheric asymmetry) are not
limited to the grand minimum shown in Figure 2, they are also
observed in other grand minima.

In any Babcock–Leighton dynamo model, the only source of
poloidal field is the tilted BMRs. Thus, BMR emergence is
essential to enable our model to emerge from grand minima. In
our model, the SSN during grand minima goes to a very small
value, but never becomes zero for much more than a year. For
example, the mean spot number during years 8650–8710 in
Figure 1(b) is about 5.8, which is only 13% of the mean spot
number from the entire simulation run. Thus, the question
becomes: how are those fewer sunspots during grand minima

capable of producing enough poloidal flux to maintain the
dynamo?
It turns out that it is the downward magnetic pumping that

enables our model to recover from grand minima even with a
few sunspots. The magnetic pumping near the surface makes
the poloidal field radial and suppresses the diffusion of the
horizontal field through the surface, as shown by Cameron
et al. (2012) and Karak & Cameron (2016). Thus, when a few
sunspots during grand minima produce poloidal flux, it remains
in the CZ for many years. This poloidal flux continuously
produces toroidal flux through the Ω effect. Also, the pumping
does not allow this toroidal flux to diffuse through the solar
surface. (The toroidal flux can diffuse across the equator but
this diffusion can be balanced by its generation.)
To validate this idea, we examine the magnetic field

generated from the decay of two BMRs in this model. We
perform a simulation by depositing one BMR at 5° latitude and
another at −5° latitude as an initial condition, with no other
seed field present. Tilts of these BMRs are given by Joy’s law
with no scatter around it. The flux and other properties of these
BMRs are identical. The polar flux produced from the decay of
these BMRs eventually produces toroidal flux near the BCZ as
shown by the solid line (case: BMRs@5°P) in Figure 3. Now
we repeat the same experiment by switching off the magnetic
pumping. The dashed–dotted line in Figure 3 represents this
simulation (case: BMRs@5°NP). We find that without
pumping the toroidal flux becomes orders of magnitude smaller
and decays indefinitely. Within the context of grand minima,
this implies that the poloidal flux produced by even a few
BMRs will remain in the CZ long enough to be converted to
toroidal flux through the differential rotation. Eventually, the
toroidal flux will become strong enough to trigger more BMR
emergence, bringing the model out of the grand minimum.
We note that the recent 2D×2D model of LC17, which

uses a much smaller tilt scatter than we have used in the present
simulation, shuts off entirely whenever it enters into a
Maunder-like extended minimum. While there are many
fundamental differences between their model and ours, the
major difference is that their model does not take into account
magnetic pumping. In their model, when SSN falls below a
certain level for a few years, the toroidal field decays rapidly,
and once it falls below the threshold for the spot production, no

Figure 1. (a) Temporal variation of the smoothed SSN from a 13,000-year simulation of RunB11. Blue shaded regions below the horizontal line represent the grand
minima. (b) Monthly smoothed (with boxcar average of 3-month width) SSN (black/red: north/south) shown only for a selected 1600-year interval. Vertical dashed
lines indicate the time-window, which is focused in Figure 2.

Table 1
Summary of Simulations

Run Φ0

γCZ, γS
(m s−1) σδ

Tsim
(year)

# of Grand
Minima fGM

B10 2.4 2, 20 15° 11650 17 11%
B11 2.4 2, 20 30° 19214 46 17%
B2* 65 0, 0 30° 589 1 K
B14 2.4 2, 22 30° 2952 5 17%

Note. Parameters of runsB10–B11 are the same as in KM17, while for
RunB2* Φ0 and σδ are different than the ones in KM17. RunB2* failed to
recover after it entered into a grand minimum. Tsim, and fGM denote the length
of simulation, and % of time spent in grand minima (GM), respectively. The
parameter Φ0 is used to boost the observed flux distribution in our model; see
Equation (8) of KM17 for details.
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new spot can form. This makes the dynamo shut off
completely.

To probe the above conclusion even further, we repeat our
grand minima simulation without magnetic pumping (Run
B2*). The tilt scatter and other parameters are the same as in
RunB11. However, the spot flux (parameter Φ0 in the model)
is increased to 65 from 2.4. This change is needed in order to

make the dynamo supercritical because pumping enhances the
dynamo efficiency (Karak & Cameron 2016). The output of
this simulation is shown in Figure 4(c). As expected, when the
magnetic pumping is not included, the model cannot recover
from the grand minimum once it enters into it. Interestingly,
when we restart this simulation with the snapshot right before it
entered into the grand minimum (t= 1750 years) as the initial
condition but with magnetic pumping, then it recovers.
Another feature of our model that is beneficial for recovery

from grand minima is the spontaneous emergence of BMRs at
low latitudes, as evident in Figure 2(b). These low-latitude

Figure 2. Zoomed-in view of a grand minimum from Figure 1. Latitude–time variations of (a) surface radial field, (b) sunspots, and (c) toroidal field at the BCZ. The
red/dashed line in (b) shows the parity of the toroidal field at the BCZ (computed by cross-correlating the field between two hemispheres using Equation(11)
of KM17). We note that for perfect anti-symmetric (symmetric) toroidal field, the parity is expected to be −1 (1). Dotted lines mark the minima of sunspot cycles and
periods in year are labeled in (c). The extrema of Br and Bf are [−1561, 1645] G and [−38, 40] kG, respectively.

Figure 3. Evolution of the absolute value of the toroidal flux density obtained
by averaging from 0° to 30° latitude at BCZ. The solid and dotted lines
represent cases in which BMRs are deposited symmetrically at ±5°
(BMRs@5°P) and ±25° latitudes (BMRs@25°P), respectively. The red lines
(dashed–double-dotted for north and dashed for south) represent the case in
which BMRs are deposited at ±5° but the northern BMR has zero tilt
(BMRs@5°P:TiltN=0). The dashed–dotted line represents the case in which
BMRs are deposited at ±5° but the pumping is set to zero (BMRs@5°NP).

Figure 4. Latitude–time variation of the toroidal field at the BCZ.
(a) Demonstrates a case out of total 19,200 years of simulations (Run B11)
that could not recover from a grand minimum. (b) Obtained from RunB14,
which is the same as (a) except higher pumping. (c) From RunB2* (without
magnetic pumping).
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spots are very efficient in generating poloidal flux in
comparison to the higher latitude spots. To demonstrate that
this is true, we repeat the same simulation of two symmetric
BMRs as shown by the solid line in Figure 3 (BMRs@5°P),
but instead of depositing them at ±5° latitudes, we deposit
them at ±25° latitudes. As usual, the tilt is obtained from Joy’s
law. The dotted line in Figure 3 shows this simulation (note the
log scale of the vertical axis); case: BMRs@25°P. On
comparing with the solid line, we confirm that the BMR pair
closer to the equator produces much larger toroidal flux,
although they have smaller tilt. This is consistent with previous
studies (Jiang et al. 2014; Hazra et al. 2017), which have shown
that when BMR pairs emerge at low latitudes, the cancellation
of flux across the equator is more efficient. As this cancellation
regulates the net flux in each hemisphere, it ultimately leads to
stronger polar fields and, in turn, stronger toroidal fields. In our
model (and also in observations) BMRs during grand minima
are produced closer to the equator, and these few low-latitude
BMRs help the dynamo re-establish normal activity by
enhancing the poloidal field generation.

Furthermore, our model has a strong hemispheric coupling
(through the turbulent diffusion). Due to this, if one hemisphere
(for example, the northern hemisphere around 8660 years in
Figure 2(b)) does not get many BMRs, the other hemisphere can
supply some poloidal flux. Thus, strong hemispheric coupling is
also beneficial for the dynamo to recover from grand minima.

The relatively large tilt scatter in our model (σδ= 30°) can
have a particularly important influence during grand minima,
when the number of BMRs is small. However, if a BMR pair
near the equator gets very different tilts than given by Joy’s law,
then a significant polar flux may be produced, unless when both
BMRs have zero tilts or the same tilts with the same polarity
(i.e., one Hale and the other anti-Hale). For example, when one
pair in one hemisphere has zero tilt and the other pair’s tilt is
given by Joy’s law, they still produce a significant polar flux; see
the red lines (dashed–double-dotted for north and dashed for
south) in Figure 3 (case: BMRs@5°P:TiltN=0).

We may ask if the tilt scatter could ever be large enough to
make the poloidal flux extremely weak and the toroidal flux
remain below the threshold for several years to produce no new
spot. If this happens, then the dynamo may fail to recover from
a grand minimum. To explore this, we initiate different
realizations of RunB11 by using different random seeds for
the tilt angle scatter, the time delay, and the BMR flux
distribution. In about 19200years of total simulation time, we
found a case in which the model failed to recover from a grand
minimum and the dynamo shut off completely; see Figure 4(a).
In this case, the model could not recover because the SSN went
to a very low value for many years and the poloidal field
generated from those few spots could not overcome the
diffusion of the fields. However, the most interesting fact is that
when we repeat this simulation with the same initial condition
and same realizations of fluctuations, but with an increased
magnetic pumping γS of 22m s−1 (instead of 20 m s−1, which
is the value for Runs B10–11), we do not get any dying
dynamo; see RunB14 in Table 1 and Figure 4(b). This slight
increase in the magnetic pumping is enough to enable the
dynamo to recover from all grand minima, as discussed above.

4. Conclusion

We find that the Babcock–Leighton process can still operate
during grand minima even with a few spots. This result was

unexpected and in striking contrast to previous studies (Karak
& Choudhuri 2013; Hazra et al. 2014; Passos et al. 2014;
Lemerle & Charbonneau 2017), which suggested that the
Babcock–Leighton process cannot operate during Maunder-
like minima. The Babcock–Leighton dynamo, of course,
cannot operate when there are no sunspots, and that can
happen if the magnetic field during grand minima goes to a
very small value (below the threshold for spot generation).
However, we expect that this is not happening in the Sun
because during grand minima, at least during the Maunder
minimum, there were still some sunspots (Vaquero et al. 2016;
Zolotova & Ponyavin 2016).
We have demonstrated that magnetic pumping can sustain a

Babcock–Leighton dynamo throughout a grand minimum and
enable it to re-establish normal activity. It achieves this by
suppressing diffusive losses, allowing toroidal magnetic flux to
accumulate and amplify until it is large enough to produce
sunspots (BMRs). The few sunspots during the grand minimum
are enough to sustain the cycle, in part because they tend to
emerge at low latitudes, which maximizes the efficiency of
poloidal flux generation. In contrast to other Babcock–Leighton
models, there is no need to invoke an alternative source of
poloidal field such as a turbulent α-effect. The sporadic
appearance of sunspots at low latitudes in the model, often with
substantial north-south asymmetry, is reminiscent of sunspot
observations during the Maunder Minimum. Our results
therefore suggest that the Babcock–Leighton mechanism may
have been sufficient to sustain the solar cycle throughout the
Maunder Minimum and into its subsequent recovery, with
similar implications for previous grand minima.

We thank the anonymous referee, Mausumi Dikpati, Ricky
Egeland, and Lisa Upton for reading this manuscript and
providing valuable comments. We also thank Robert Cameron
and Dibyendu Nandi for past inspiring discussions related to
this study. B.B.K. is supported by the NASA Living With a
Star Jack Eddy Postdoctoral Fellowship Program, administered
by the University Corporation for Atmospheric Research. The
National Center for Atmospheric Research is sponsored by the
National Science Foundation. Computations were carried out
with resources provided by NASA’s High-End Computing
program (Pleiades) and by NCAR (Yellowstone).

ORCID iDs

Bidya Binay Karak https://orcid.org/0000-0002-8883-3562
Mark Miesch https://orcid.org/0000-0003-1976-0811

References

Arlt, R., Senthamizh Pavai, V., Schmiel, C., & Spada, F. 2016, A&A,
595, A104

Babcock, H. W. 1961, ApJ, 133, 572
Beer, J., Blinov, A., Bonani, G., Hofmann, H. J., & Finkel, R. C. 1990, Natur,

347, 164
Beer, J., Tobias, S., & Weiss, N. 1998, SoPh, 181, 237
Cameron, R. H., Schmitt, D., Jiang, J., & Işık, E. 2012, A&A, 542, A127
Charbonneau, P. 2010, LRSP, 7, 3
Charbonneau, P., Blais-Laurier, G., & St-Jean, C. 2004, ApJL, 616, L183
Choudhuri, A. R., & Karak, B. B. 2009, RAA, 9, 953
Choudhuri, A. R., & Karak, B. B. 2012, PhRvL, 109, 171103
D’Silva, S., & Choudhuri, A. R. 1993, A&A, 272, 621
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T.

2010, A&A, 518, A7
Drobyshevski, E. M., & Yuferev, V. S. 1974, JFM, 65, 33
Eddy, J. A. 1976, Sci, 192, 1189

5

The Astrophysical Journal Letters, 860:L26 (6pp), 2018 June 20 Karak & Miesch

https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://doi.org/10.1051/0004-6361/201629000
http://adsabs.harvard.edu/abs/2016A&amp;A...595A.104A
http://adsabs.harvard.edu/abs/2016A&amp;A...595A.104A
https://doi.org/10.1086/147060
http://adsabs.harvard.edu/abs/1961ApJ...133..572B
https://doi.org/10.1038/347164a0
http://adsabs.harvard.edu/abs/1990Natur.347..164B
http://adsabs.harvard.edu/abs/1990Natur.347..164B
https://doi.org/10.1023/A:1005026001784
http://adsabs.harvard.edu/abs/1998SoPh..181..237B
https://doi.org/10.1051/0004-6361/201218906
http://adsabs.harvard.edu/abs/2012A&amp;A...542A.127C
https://doi.org/10.12942/lrsp-2010-3
http://adsabs.harvard.edu/abs/2010LRSP....7....3C
https://doi.org/10.1086/426897
http://adsabs.harvard.edu/abs/2004ApJ...616L.183C
https://doi.org/10.1088/1674-4527/9/9/001
http://adsabs.harvard.edu/abs/2009RAA.....9..953C
https://doi.org/10.1103/PhysRevLett.109.171103
http://adsabs.harvard.edu/abs/2012PhRvL.109q1103C
http://adsabs.harvard.edu/abs/1993A&amp;A...272..621D
https://doi.org/10.1051/0004-6361/201014301
http://adsabs.harvard.edu/abs/2010A&amp;A...518A...7D
https://doi.org/10.1017/S0022112074001236
http://adsabs.harvard.edu/abs/1974JFM....65...33D
https://doi.org/10.1126/science.192.4245.1189
http://adsabs.harvard.edu/abs/1976Sci...192.1189E


Fligge, M., Solanki, S. K., & Beer, J. 1999, A&A, 346, 313
Gleissberg, W. 1944, TeMAE, 49, 243
Hazra, G., Choudhuri, A. R., & Miesch, M. S. 2017, ApJ, 835, 39
Hazra, S., Passos, D., & Nandy, D. 2014, ApJ, 789, 5
Inceoglu, F., Arlt, R., & Rempel, M. 2017, ApJ, 848, 93
Jiang, J., Cameron, R. H., & Schüssler, M. 2014, ApJ, 791, 5
Jiang, J., Cameron, R. H., & Schüssler, M. 2015, ApJL, 808, L28
Käpylä, P. J., Korpi, M. J., Ossendrijver, M., & Stix, M. 2006, A&A, 455, 401
Karak, B. B., & Cameron, R. 2016, ApJ, 832, 94
Karak, B. B., & Choudhuri, A. R. 2013, RAA, 13, 1339
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R.

2014a, SSRv, 186, 561
Karak, B. B., & Miesch, M. 2017, ApJ, 847, 69
Karak, B. B., Rheinhardt, M., Brandenburg, A., Käpylä, P. J., & Käpylä, M. J.

2014b, ApJ, 795, 16
Krause, F., & Rädler, K. H. 1980, Mean-field Magnetohydrodynamics and

Dynamo Theory (Oxford: Pergamon)
Leighton, R. B. 1964, ApJ, 140, 1547
Lemerle, A., & Charbonneau, P. 2017, ApJ, 834, 133

Miesch, M. S., & Dikpati, M. 2014, ApJL, 785, L8
Miesch, M. S., & Teweldebirhan, K. 2016, AdSpR, 58, 1571
Miyahara, H., Masuda, K., Muraki, Y., et al. 2004, SoPh, 224, 317
Nordlund, Å., Stein, R. F., & Asplund, M. 2009, LRSP, 6, 2
Olemskoy, S. V., & Kitchatinov, L. L. 2013, ApJ, 777, 71
Passos, D., Nandy, D., Hazra, S., & Lopes, I. 2014, A&A, 563, A18
Petrovay, K., & Szakaly, G. 1993, A&A, 274, 543
Ribes, J. C., & Nesme-Ribes, E. 1993, A&A, 276, 549
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. 2004,

Natur, 431, 1084
Spruit, H. 1997, MmSAI, 68, 397
Stenflo, J. O., & Kosovichev, A. G. 2012, ApJ, 745, 129
Tobias, S. M., Brummell, N. H., Clune, T. L., & Toomre, J. 1998, ApJL,

502, L177
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, A&A, 471, 301
Vaquero, J. M., Svalgaard, L., Carrasco, V. M. S., et al. 2016, SoPh, 291,

3061
Wang, Y.-M., Colaninno, R. C., Baranyi, T., & Li, J. 2015, ApJ, 798, 50
Zolotova, N. V., & Ponyavin, D. I. 2016, SoPh, 291, 2869

6

The Astrophysical Journal Letters, 860:L26 (6pp), 2018 June 20 Karak & Miesch

http://adsabs.harvard.edu/abs/1999A&amp;A...346..313F
https://doi.org/10.1029/TE049i004p00243
http://adsabs.harvard.edu/abs/1944TeMAE..49..243G
https://doi.org/10.3847/1538-4357/835/1/39
http://adsabs.harvard.edu/abs/2017ApJ...835...39H
https://doi.org/10.1088/0004-637X/789/1/5
http://adsabs.harvard.edu/abs/2014ApJ...789....5H
https://doi.org/10.3847/1538-4357/aa8d68
http://adsabs.harvard.edu/abs/2017ApJ...848...93I
https://doi.org/10.1088/0004-637X/791/1/5
http://adsabs.harvard.edu/abs/2014ApJ...791....5J
https://doi.org/10.1088/2041-8205/808/1/L28
http://adsabs.harvard.edu/abs/2015ApJ...808L..28J
https://doi.org/10.1051/0004-6361:20064972
http://adsabs.harvard.edu/abs/2006A&amp;A...455..401K
https://doi.org/10.3847/0004-637X/832/1/94
http://adsabs.harvard.edu/abs/2016ApJ...832...94K
https://doi.org/10.1088/1674-4527/13/11/005
http://adsabs.harvard.edu/abs/2013RAA....13.1339K
https://doi.org/10.1007/s11214-014-0099-6
http://adsabs.harvard.edu/abs/2014SSRv..186..561K
https://doi.org/10.3847/1538-4357/aa8636
http://adsabs.harvard.edu/abs/2017ApJ...847...69K
https://doi.org/10.1088/0004-637X/795/1/16
http://adsabs.harvard.edu/abs/2014ApJ...795...16K
https://doi.org/10.1086/148058
http://adsabs.harvard.edu/abs/1964ApJ...140.1547L
https://doi.org/10.3847/1538-4357/834/2/133
http://adsabs.harvard.edu/abs/2017ApJ...834..133L
https://doi.org/10.1088/2041-8205/785/1/L8
http://adsabs.harvard.edu/abs/2014ApJ...785L...8M
https://doi.org/10.1016/j.asr.2016.02.018
http://adsabs.harvard.edu/abs/2016AdSpR..58.1571M
https://doi.org/10.1007/s11207-005-6501-5
http://adsabs.harvard.edu/abs/2004SoPh..224..317M
https://doi.org/10.12942/lrsp-2009-2
http://adsabs.harvard.edu/abs/2009LRSP....6....2N
https://doi.org/10.1088/0004-637X/777/1/71
http://adsabs.harvard.edu/abs/2013ApJ...777...71O
https://doi.org/10.1051/0004-6361/201322635
http://adsabs.harvard.edu/abs/2014A&amp;A...563A..18P
http://adsabs.harvard.edu/abs/1993A&amp;A...274..543P
http://adsabs.harvard.edu/abs/1993A&amp;A...276..549R
https://doi.org/10.1038/nature02995
http://adsabs.harvard.edu/abs/2004Natur.431.1084S
http://adsabs.harvard.edu/abs/1997MmSAI..68..397S
https://doi.org/10.1088/0004-637X/745/2/129
http://adsabs.harvard.edu/abs/2012ApJ...745..129S
https://doi.org/10.1086/311501
http://adsabs.harvard.edu/abs/1998ApJ...502L.177T
http://adsabs.harvard.edu/abs/1998ApJ...502L.177T
https://doi.org/10.1051/0004-6361:20077704
http://adsabs.harvard.edu/abs/2007A&amp;A...471..301U
https://doi.org/10.1007/s11207-016-0982-2
http://adsabs.harvard.edu/abs/2016SoPh..291.3061V
http://adsabs.harvard.edu/abs/2016SoPh..291.3061V
https://doi.org/10.1088/0004-637X/798/1/50
http://adsabs.harvard.edu/abs/2015ApJ...798...50W
https://doi.org/10.1007/s11207-016-0908-z
http://adsabs.harvard.edu/abs/2016SoPh..291.2869Z

	1. Introduction
	2. Model
	3. Results and Discussion
	4. Conclusion
	References



