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ABSTRACT

Context. Observations of the Sun tell us that its granular and subgranular small-scale magnetism has significant consequences for
global quantities such as the total solar irradiance or convective blueshift of spectral lines.
Aims. In this paper, properties of the small-scale magnetism of four cool stellar atmospheres, including the Sun, are investigated, and
in particular its effects on the radiative intensity and flux.
Methods. We carried out three-dimensional radiation magnetohydrodynamic simulations with the CO5BOLD code in two different
settings: with and without a magnetic field. These are thought to represent states of high and low small-scale magnetic activity of a
stellar magnetic cycle.
Results. We find that the presence of small-scale magnetism increases the bolometric intensity and flux in all investigated models. The
surplus in radiative flux of the magnetic over the magnetic field-free atmosphere increases with increasing effective temperature, Teff ,
from 0.47% for spectral type K8V to 1.05% for the solar model, but decreases for higher effective temperatures than solar. The degree of
evacuation of the magnetic flux concentrations monotonically increases with Teff as does their depression of the visible optical surface,
that is the Wilson depression. Nevertheless, the strength of the field concentrations on this surface stays remarkably unchanged at
≈1560 G throughout the considered range of spectral types. With respect to the surrounding gas pressure, the field strength is close to
(thermal) equipartition for the Sun and spectral type F5V but is clearly sub-equipartition for K2V and more so for K8V. The magnetic
flux concentrations appear most conspicuous for model K2V owing to their high brightness contrast.
Conclusions. For mean magnetic flux densities of approximately 50 G, we expect the small-scale magnetism of stars in the spectral
range from F5V to K8V to produce a positive contribution to their bolometric luminosity. The modulation seems to be most effective
for early G-type stars.

Key words. stars: atmospheres – stars: magnetic field – stars: activity – magnetohydrodynamics (MHD) – Sun: atmosphere –
Sun: magnetic fields

1. Introduction

Like the Sun, virtually every cool star exhibits magnetic activity.
This magnetic activity is observable, for example, as X-ray and
chromospheric emissions, as light-curve variability owing to
starspots or flares, or by direct magnetic field measurements (for
reviews see, e.g., Pagano et al. 2006; Donati & Landstreet 2009;
Reiners 2012; Giampapa 2016; Kochukhov et al. 2017). Such
activity is mostly due to the large-scale magnetism as found in
active regions on the Sun, which harbor large-scale magnetic flux
concentrations in the form of sunspots. The effects of small-scale
magnetic flux concentrations, as occurring on the Sun in the
neighborhood of sunspots, in ephemeral active regions but also
outside of active regions, are less accessible in the case of stel-
lar atmospheres. We know little about their stellar existence and
about their physical constitution in function of stellar spectral
type.

From observations of the Sun, it is well established that
small magnetic flux concentrations, often referred to as mag-
netic elements, exist. These magnetic elements preferentially
reside in intergranular space and have a typical horizontal size

of 100 km. They appear in white-light images of the Sun as a
bright structure, not dark like sunspots. The larger of these mag-
netic flux concentrations appear in the form of (bright) faculae,
when located near the limb of the solar disk. On a sufficiently
long timescale (of months), their bolometric brightness over-
compensates the lack of radiation from dark sunspots (Shapiro
et al. 2016). In response, the total solar irradiance (TSI) is
slightly larger at times of high magnetic activity (solar maxi-
mum) than at times of a solar minimum when there are fewer
magnetic elements present on the solar disk (Fröhlich 2013).
Hence, the variation of the TSI with the solar cycle, which
is approximately 0.1%, is an important global manifestation of
the small-scale magnetism of the Sun. Local enhancements of
small-scale magnetism may impede convective motions at the
solar surface, which reduces the convective blueshift of spectral
lines that naturally results from granulation. Depending on the
presence or scarcity of small-scale magnetism over the course
of the solar cycle, this then results in a variation of the disk-
integrated convective blueshift and bisector shape of spectral
lines as another global manifestation of small-scale magnetism
(Meunier et al. 2010; Haywood et al. 2016).
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It is clear that these global effects must also be observable in
the case of solar-like stars, for example, in the form of a depen-
dence of the photometric luminosity or measured radial velocity
on the phase of the stellar magnetic cycle. For solar twins, this
relationship can be expected to behave like on the Sun but it does
not need to be a priori solar-like for other stellar atmospheres.
From a 13–20 yr time series of 32 primarily main-sequence Sun-
like stars, Lockwood et al. (2007) have concluded that on a
year-to-year timescale, young active stars become fainter when
their Ca II emission (which is a measure of magnetic activity)
increases, while older, less active stars such as the Sun become
brighter when their Ca II emission increases. The magnetically
modulated photometric variability and radial velocity, and their
modeling, are of considerable interest for exoplanet detection and
characterization.

Questions regarding the relationships between small-scale
magnetism and global quantities (such as photometric luminos-
ity or radial velocity) in dependence on the stellar spectral type,
can be addressed with the help of three-dimensional, dynamical,
numerical simulations of stellar atmospheres of varying spec-
tral types. Applied to the Sun, these kind of simulations have
achieved a degree of realism that provides confidence in applying
them to solar-like stellar atmospheres as well.

Three-dimensional, realistic numerical simulations of con-
vective flow and overshoot in the near surface layers of stellar
atmospheres have first been carried out by Atroshchenko et al.
(1989a,b), Nordlund & Dravins (1990), and Dravins & Nordlund
(1990a,b). More recently, these early attempts have culminated
in the establishment of grids of three-dimensional stellar model
atmospheres such as the CIFIST grid (Ludwig et al. 2009;
Tremblay et al. 2013), the grid of Trampedach et al. (2013), the
STAGGER grid (Magic et al. 2013a,b), the grid of Tanner et al.
(2013), or the sequence of six representative stellar models along
the cool main-sequence branch by Beeck et al. (2013a,b).

Corresponding three-dimensional stellar atmospheric simu-
lations that include magnetic fields are still rare, unlike the case
of solar magnetohydrodynamic (MHD) models. This state of
affairs is certainly owed to the fact that small-scale magnetic
fields on the Sun can be detected and measured in great detail
and with high precision, while this is not possible for stars. Beeck
et al. (2011) reported on MHD simulations, starting from the
same six models mentioned above but introducing initial homo-
geneous vertical magnetic fields with strengths of 20 G, 100 G,
and 500 G. These authors found distinctive differences between
solar-like small-scale magnetic structures and those forming in
M dwarfs, where the latter are more pore-like. Steiner et al.
(2014) analyzed MHD models of spectral types K8V to F5V1,
concluding that the field strength of the strongest flux concentra-
tions (i) was fairly independent of spectral type when measured
at the optical depth level τR = 1; (ii) assumed thermal super-
equipartition for the Sun and warmer atmosphere, while staying
much weaker for cool atmospheres; and (iii) that their presence
correlates with enhanced bolometric radiative intensity and flux.

Beeck et al. (2015a,b) thoroughly analyzed their main-
sequence models of spectral types M2V to F3V and of various
initial magnetic field strengths and, inter alia, confirmed the
findings (i) to (iii), extending their validity to a wider range of
spectral types and magnetic fluxes. Furthermore, these authors
found that M dwarfs lack bright magnetic structures in unipolar

1 The effective temperatures of the sequence in Steiner et al. (2014) was
the same as investigated in the present paper but the assignment of spec-
tral types was different. We refer to these models with the classification
as given in Table 1.

regions of moderate field strength and that the spatial corre-
lation between velocity and the magnetic field varies signif-
icantly along the model sequence. The presence, abundance,
and strength of the small-scale magnetic fields impact the local
thermodynamical structure and the flow field and thus influ-
ence substantially the measurement of global magnetic field
properties and stellar parameters.

In this paper, we present simulations and their analysis of the
same spectral sequence that was considered in the preliminary
study of Steiner et al. (2014) but now augmented by equiva-
lent comparison runs without magnetic field and for a much
longer simulation time for improving reliability. A central ques-
tion to be answered is whether and to what extent the presence of
small-scale magnetism enhances radiative loss from stellar sur-
faces other than the Sun. Quantitative results are all summarized
in Table 2 to which we refer throughout the paper. In Sect. 2,
we present characteristics of the four simulation runs consid-
ered (Table 1) and give some basic, mostly radiative properties
of the granulation and magnetic flux concentrations in Sect. 3.
Section 4 deals with the magnetic field itself before turning to the
main topic in Sect. 5, which deals with the question how small-
scale magnetism affects the bolometric brightness of the models.
Section 6 concentrates on the physical nature of the magnetic
flux concentrations, still in dependence on the spectral type,
and Sect. 7 discusses the results in comparison to observations
and results from previous work and discusses the fundamental
assumption of the constant deep adiabat. Conclusions are given
in Sect. 8.

2. Models and simulations

We carried out box in a star numerical simulations of the near
surface layers of four different cool stellar models. The over-
all governing parameters in these simulations are the effective
temperature, Teff , gravitational acceleration, g, and chemical
composition. For the latter, we used solar abundances for all
models. The nominal effective temperatures of the four models
are T ∗eff

= 4000 K (K8V), 5000 K (K2V), 5770 K (G2V, solar),
and 6500 K (F5V). The gravitational acceleration, which is that
at the stellar surface, is log g = 4.5 for all models except the
solar model for which the actual solar value of log g = 4.44 was
taken. The approximate spectral types corresponding to these
fundamental parameters were determined according to Gray &
Corbally (2008).

For each of these model atmospheres, we carried out two
separate simulations: one without magnetic field and one with
an initial homogeneous magnetic field of 50 G strength. The
value of 50 G may be a realistic value for the mean magnetic
flux in a predominantly unipolar region of the quiet Sun and it
is about what is expected for the turbulent magnetic field of a
quiet region of mixed polarities (Faurobert-Scholl 1993; Trujillo
Bueno et al. 2004). Values for corresponding quiet stellar regions
are not known but we used the same solar values as a first guess
and for ease of comparison.

2.1. Simulations

The simulation of the three-dimensional, time-dependent, non-
stationary stellar atmospheres involves the solution of the
time-dependent system of MHD equations for a compress-
ible, partially ionized plasma, taking radiative transfer into
account. The simulations were performed with the CO5BOLD
code (Freytag et al. 2012). The three-dimensional computational
domain has periodic lateral boundary conditions and open top
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and bottom boundaries in the sense that the plasma can freely
flow across these boundaries under the condition of vanishing
net mass flux at the bottom. The specific entropy of the mass that
flows into the physical domain across the bottom boundary was
set to a fixed value. This value was obtained from previous simu-
lation runs during which it was adjusted so as to yield a radiative
flux at the top boundary that closely matches the specified nomi-
nal effective temperature T ∗eff

. The magnetic field is kept vertical
at the bottom and top boundary, but it can freely move in lat-
eral directions. For a reliable comparison of the pair of runs
with and without magnetic field, we used for both runs the same
MHDs module of CO5BOLD, which uses a HLL Harten et al.
1983 approximate Riemann solver (see Freytag et al. 2012) and
the WENO-type (weighted essentially non-oscillatory) recon-
struction scheme FRWENO of Freytag (2013). All numerical
parameters and boundary conditions are kept exactly the same
in both runs.

We carried out the radiation transfer with a modified
Feautrier scheme based on long characteristics as described in
more detail in Freytag et al. (2012).

While the azimuthal angle is restricted to 0, (1/2)π, π, and
(3/2)π, two non-zero inclination angles per quadrant were used
for the altitude in addition to the vertical ray direction according
to Lobatto’s quadrature formula (Davis & Polonsky 1972).

To account for the frequency dependence of the radiative
transfer, we used a multigroup technique, in which opacities of
similar strengths are sorted into a small number of opacity bins.
Within each opacity bin, an average opacity is computed as a
depth-dependent combination of Planck and Rosseland mean
over the bin, except for bin 5 (strongest opacities), which is
a Rosseland mean. The monochromatic opacities entering the
opacity binning scheme were adapted from the MARCS stellar
atmosphere package (Gustafsson et al. 2008) and were kindly
provided by B. Plez (priv. comm.). The radiative transfer of
the present simulations uses five opacity bins. The equation of
state accounts for the ionization balance of HI, HII, H2, HeI,
HeII, HeIII, and a representative metal. Pre-tabulated values of
gas pressure, temperature, and thermodynamic derivatives as
functions of density and internal energy are used.

2.2. The physical domain

The physical size and scale of the simulation boxes are given in
Table 1. The parameter Hp(τR = 1) is the pressure scale height
spatially and temporally averaged over the surface of Rosseland
optical depth τR = 1 and the simulated physical time. This value
increases with increasing effective temperature because Hp is
proportional to the local temperature. The Sun is an exception
here because it has a surface gravity that is 13% less than that
of the other models. The height extent of the boxes above and
below the mean optical depth τR = 1 is given in km and in terms
of pressure scale heights, with

NHp (τR ≥ 1) = ln(pbot/p0) and NHp (τR ≤ 1) = ln(p0/ptop),
(1)

where ptop and pbot are the mean gas pressures at the top and bot-
tom of the box, respectively, and p0 is the mean gas pressure at
z0, which is the spatial and temporal average height of the τR = 1
level, i.e., z0 = 〈z(τR = 1)〉. Vertically, the boxes extend over
about 11–14 pressure scale heights. The heights of the computa-
tional cells, ∆z, are chosen such that the pressure scale height at
the mean τR = 1-level is resolved by about 12 cells. The value ∆z
is kept constant over the entire height extent of the computational
domain.

Table 1. Basic properties of the simulation models.

Spectral type K8V K2V G2V F5V
T ∗eff

[K] (nominal) 4000 5000 5770 6500

log g 4.5 4.5 4.44 4.5
Hp(τR = 1) [km]a 88.1 112.4 149.1 143.2
Box depth [km]

Below τR = 1 744 1785 1333 3413
Above τR = 1 482 690 911 592

Box depth [NHp ]b

Below τR = 1 3.88 5.79 3.85 6.54
Above τR = 1 6.86 8.32 7.93 4.94

Box width [km] 4734 4928 5600 8388
∆z [km] 7 9 12 15
Hp(τR = 1)/∆z 12.6 12.5 12.4 9.5
∆x,∆y [km] 9 11 14 18
Lgran [km] 468 588 772 910
Lgran/∆x 54 53 55 51
Box width [NLgran ] 10.1 8.4 7.3 9.2
Nx,y 526 448 400 466
Nz 176 276 188 268
tstart [min] 33 33 33 33
tend [min] 666 666 666 666
trun [min] 633 633 633 633

Notes. See text in Sect. 2 for more details. For each spectral type two
runs were carried out: one without a magnetic field and one with an
initial homogeneous vertical field of a flux density of 50 G. Where not
univocal, data refer to the magnetic field-free simulation. (a)Hp is the
pressure scale height. (b)NHp is the number of pressure scale heights.

The horizontal extent of the boxes increases with effective
temperature in accordance with the average size of the gran-
ules, which increase as well. Both quantities are also listed in
Table 1; i.e., the average size of granules in kilometers and num-
ber of computational cell widths, ∆x, and the horizontal extent
of the box in kilometers and number of granular scales, Lgran.
From these numbers we see that for all models, the average gran-
ular scale is resolved by 50–55 computational cells. Here, the
granular scale is computed from

Lgran = 〈2
√

A/π〉, (2)

where A is the average surface area of the granules. The sur-
face areas of granules is determined by first searching for the
areas of positive vertical velocities (upflows) at z = z0, followed
by the application of a connected-component labeling algorithm
(Wu et al. 2009). This also includes poorly developed or van-
ishing granules. By this definition, the box sizes are between
NLgran = 7 and 10 mean granular scales. At any time, there
are about 12–25 well-developed granules within the field of
view. These dimensions and spatial resolutions result in boxes
of roughly 500 × 500 × 250 computational cells. The precise
numbers are given in Table 1.

The simulations were started from previously existing
relaxed non-magnetic models of coarser spatial resolution. These
models were then regridded to the present higher resolution
boxes and run for 40 000 s, i.e., ≈11 h physical time. The starting
point for the analysis is 2000 s after the regridding. In the case
of simulations with a magnetic field, they were started from a
snapshot of the corresponding evolved non-magnetic simulation
to which the field was inserted and run for 2000 s before start-
ing the analysis. The concentration to kG magnetic fields from
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Fig. 1. Representative time instants of the vertically directed bolometric radiation of the non-magnetic simulations (left column) and of the magnetic
simulations (middle column), normalized to their respective mean intensities. In the right column are the corresponding time instants of the vertical
magnetic field strength at depth z0 = 〈z(τR = 1)〉. Rows from top to bottom correspond to the spectral types K8V, K2V, G2V, and F5V, respectively.
The snapshots of the bolometric intensities are saturated at Ibol/〈Ibol〉 = 0.65 and 1.35. The black bar on white background in the top right corner
of each panel has a length of 10 × Hp(z0).
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Table 2. Properties of the four spectral types of dynamical non-magnetic and magnetic stellar atmospheres.

Spectral type K8V K2V G2V F5V
initial Bz [G] 0 50 0 50 0 50 0 50

1 rms(Bz MBF(z0)) [G] 1438± 40 1348± 42 1282± 40 1248± 32
2 rms(Bz MBF(τR = 1)) [G] 1575± 53 1598± 93 1480± 84 1565± 81
3 max(|Bz MBF(z0)|) [G] 2204± 79 1871± 63 1739± 73 1675± 85
4 max(|Bz MBF(τR =1)|) [G] 2872± 175 2771± 191 2616± 248 3134± 334
5 Bz strong(z0) [G] 1621± 230 1555± 136 1416± 146 1372± 135
6 Bz strong(τR = 1) [G] 1800± 407 1951± 368 1660± 467 1754± 651
7 rms(Bz(z0)) [G] 249.9± 5.5 248.0± 8.0 238.3± 7.2 237.9± 6.5

8 pgas(z0) [kPa] 26.5± 0.1 26.9± 0.1 14.9± 0.1 15.2± 0.1 10.2± 0.1 10.5± 0.2 7.34± 0.1 7.52± 0.2
9 pmag(z0) [kPa] 8.2± 0.5 7.3± 0.5 6.5± 0.5 6.2± 0.3

10 pdyn(z0) [kPa] 2.3± 0.2 1.8± 0.1 1.9± 0.1 1.7± 0.1 2.2± 0.1 2.0± 0.1 2.3± 0.1 2.2± 0.1
11 ptot(z0) [kPa] 28.8± 0.1 28.6± 0.1 16.7± 0.1 16.9± 0.1 12.4± 0.1 12.5± 0.2 9.68± 0.1 9.66± 0.2
12 Beq th(z0) [G] 2574± 5 2596± 5 1929± 5 1951± 7 1594± 11 1614± 12 1345± 13 1362± 15
13 Beq dyn(z0) [G] 710± 26 629± 18 641± 24 617± 18 703± 21 674± 20 720± 19 696± 17
14 Beq tot(z0) [G] 2685± 4 2681± 5 2048± 5 2058± 7 1762± 10 1765± 11 1552± 11 1550± 13
15 ρint/ρext(z0) [–] 0.75± 0.02 0.54± 0.03 0.46± 0.04 0.36± 0.05
16 β(z0) [–] 2.7± 0.2 1.3± 0.1 0.74± 0.1 0.38± 0.1

17 Teff (actual) [K] 3976± 4 3981± 3 4957± 8 4968± 11 5761± 14 5775± 16 6434± 13 6447± 14
18 Ibol 0 [erg cm−2 s−1 sr−1] 5.15 × 109 1.32 × 1010 2.38 × 1010 3.65 × 1010

19 Fbol 0 [erg cm−2 s−1] 1.42 × 1010 3.42 × 1010 6.25 × 1010 9.71 × 1010

20 〈Ibol〉/〈Ibol 0 sun〉 [–] 0.22 0.22 0.56 0.56 1.0 1.01 1.53 1.54
21 crms [%] 5.6± 0.1 5.5± 0.1 9.8± 0.3 10.4± 0.3 15.3± 0.5 14.9± 0.5 18.7± 0.3 18.4± 0.3
22 cMBF rms [%] 9.3± 1.4 25.6± 3.0 18.7± 2.9 18.8± 1.5
23 cMBF max [%] 49± 11 86± 12 72± 12 61± 16
24 cMBF−gran [%] 0.43± 1.3 14.2± 3.1 0.56± 3.4 −7.8± 3.1

25 δIbol [%] 0.30± 0.4 ± 0.03 0.65± 1.1 ± 0.03 0.79± 1.5 ± 0.06 0.43± 1.2 ± 0.06
26 δFbol [%] 0.47± 0.5 ± 0.04 0.85± 1.1 ± 0.03 1.02± 1.5 ± 0.07 0.82± 1.2 ± 0.06
27 δFbol − δIbol [%] 0.17 0.20 0.23 0.39
28 WD [km] 46± 16 94± 37 160± 60 231± 108
29 WD/Hp(τR = 1) [–] 0.5± 0.2 0.8± 0.3 1.1± 0.4 1.6± 0.8
30 WDw [km] 60± 14 139± 34 232± 65 388± 113
31 WDw/Hp(τR = 1) [–] 0.7± 0.2 1.2± 0.3 1.6± 0.4 2.7± 0.8
32 AMBF/Atotal [%] 2.17± 0.07 2.29± 0.11 2.03± 0.18 2.17± 0.12
33 Agran/Atotal [%] 56.4± 1.8 57.7± 1.2 53.0± 1.8 52.9± 1.3 55.0± 2.5 54.8± 2.4 57.3± 1.9 56.2± 1.7

Notes. Indicated scatter is the 1σ deviation in the temporal fluctuation of the quantities. For the precise definition of the quantities, see text
(Sects. 3–7) and formulas. For their derivation, data of the full simulation time of 38 000 s with a cadence of 250 s were used, except for rows 17–21
and 25–27 for which the cadence was 10 s.

the initial homogeneous 50 G field takes only a few minutes for
each model. Every 10 s, spatially averaged data and the intensity
of the vertically directed radiation that leaves the box from the
top boundary in each opacity band were stored. This then is the
cadence for the analyses that are based on the radiative quantities
alone. The full box with mass density, internal energy, velocity
field, and magnetic field for every grid cell are stored every 250 s.
Analyses that require detailed information about the spatial dis-
tribution of the magnetic field, such as those that are based on
the masking of magnetic elements, have that cadence.

3. Characteristics of the granulation and the
magnetic filigree

Before studying the details of the small-scale magnetism and
the radiative implications of it, we provide an overview on some
basic properties of the four different stellar model atmospheres.
A compilation of arbitrary time instances of the simulations is
given in Fig. 1, from the coolest model, K8V, in the top row to

the warmest model, F5V, in the bottom row. Table 2 gives the
physical quantities that result from the simulations. The entries
in Table 2 are explained in detail in this and following sections.
The left column of Fig. 1 shows the intensity of the vertically
directed bolometric radiation that leaves the box through the
top boundary of the non-magnetic models. The middle column
shows the intensity for the corresponding magnetic runs. As we
know from the Sun, the visible surface structure in all panels
consist of bright granules, in which plasma rises to the surface,
and dark intergranular lanes, where plasma flows back into the
star.

3.1. Characteristics of the granulation

First, we noticed that the intensity contrast between granules
and intergranular lanes drastically increases from the coolest
to warmest model and substructure of granules and the inter-
granular space becomes increasingly visible. To highlight this
well-known behavior, the same grayscale range is applied for all
the intensity maps of Fig. 1. It can be quantified with the time
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averaged root mean square (rms) of the intensity contrast, given
as

crms =

〈√〈(
Ibol − 〈Ibol〉

〈Ibol〉

)2〉 〉
t

, (3)

where 〈· · · 〉 symbolizes the average over the full intensity map
of a simulation instant, 〈· · · 〉t the average over time, and Ibol the
intensity of the vertically directed bolometric radiation in a sin-
gle pixel. From row 21 of Table 2, one can see that this value
increases from 5.6% for K8V to 18.7% for F5V for the non-
magnetic models, while the solar model has 15.3% and 14.9% for
the non-magnetic and magnetic model, respectively. These solar
values are in line with rms continuum contrasts of 14–15% at
630 nm of a simulation assisted reconstruction by Danilovic et al.
(2008) derived from disk-center intensity maps obtained with
the spectropolarimeter (SP) of the Hinode Solar Optical Tele-
scope (SOT), which gave an original contrast of 7% at 630 nm.
Wedemeyer-Böhm & Rouppe van der Voort (2009) obtained a
value of (16.6 ± 0.7)% from the original (6.2 ± 0.2)% measured
in the red bandpass (centered at 668.40 nm) with the Broad-
band Filter Instrument (BFI) of SOT/Hinode after deconvolution
with the appropriate optical transfer function of the telescope.
The magnetic models have, with the exception of K2V, slightly
smaller rms contrasts because part of the intergranular lanes is
filled with bright magnetic features that are similarly bright as
the granules. Our contrast values are also in satisfactory agree-
ment with those of Magic et al. (2013a, their Appendix C)
obtained with a different simulation code. We tend to get higher
contrast values for models K2V and G2V (9.8 vs. 8.8% and 15.3
vs. 14.6%, respectively) but the agreement is perfect for model
F5V.

The strong increase of the rms granular intensity contrast
with increasing effective temperature can be understood when
examining the relative temperature fluctuation as a function of
optical depth for the various spectral types as in Beeck et al.
(2013a). The rms of the relative temperature fluctuations for the
present four spectral types are shown in Fig. 22. We see that
the fluctuation at the visible optical surface, log τ = 0, increase
from 1.9% for K8V to 4.9% for F5V, which explains the increase
in rms intensity contrast. The peak fluctuations increase from
4% for K8V to 8.7% for F5V, which is because with increasing
effective temperature, the energy throughput increases and the
convective dynamics become more vigorous. Also, the increase
of the fluctuations with optical depth is less steep for the spectral
type K8V than for the warmer types, which is due to the lower
temperature sensitivity of the opacity for the plasma in the state
that prevails around log τ = 0 of cooler (K and M) stars com-
pared to earlier spectral types. Correspondingly, the temperature
fluctuations tend to become hidden from view in the case of K8V,
while it is more pronounced closely beneath the visible surface
in the case of F5V. Therefore, granules of atmospheres cooler
than about K5V are known as veiled granules (low rms contrast)
and granules of warmer atmospheres are known as naked gran-
ules (high rms contrast; Nordlund & Dravins 1990; Magic et al.
2013a; Beeck et al. 2013a,b).

While differences in the temperature fluctuations are vanish-
ingly small between the magnetic and the non-magnetic models
below τ = 1, these fluctuations are systematically higher for the
magnetic models in the deep photosphere, where the hot walls
(see Sect. 6.2) of the magnetic flux concentrations add to the

2 When taking instead rms(T − 〈T 〉τR t)τR t/〈T 〉τR t the curves only differ
very marginally from those shown in Fig. 2.

Fig. 2. Root mean square of the relative temperature fluctuation over
iso-τR surfaces as a function of Rosseland optical depth, τR of the four
models of different spectral types. Solid curves refer to the magnetic
models, dotted curves to the field-free models. The rms is computed as
in Eq. (3), where Ibol is replaced by the temperature T (τR).

fluctuations. Higher up in the photosphere, the amplification of
waves traveling into the rarefied atmosphere and the formation of
shock waves increase the temperature fluctuations of preferen-
tially the magnetic field-free atmosphere, while hydrodynamic
waves and shocks tend to become suppressed by the stiffening
effect of the magnetic field in the magnetic atmosphere.

We also notice tiny bright dots in the intensity maps of the
non-magnetic models, such as the dot at x = 4 Mm and y =
1.3 Mm of model K8V in Fig. 1. These dots occur in all the inves-
tigated spectral types, particularly conspicuous and longevous
in K2V. These originate from swirling downdrafts, which give
rise to non-magnetic bright points (Vögler et al. 2005; Calvo
et al. 2016) due to the low pressure at the center of the vor-
tices, which implies a depression of the optical surface to deeper,
hotter layers.

Finally, we recall the well-known fact that the size of the
granules increases proportional to the pressure scale height, Hp,
which in turn is approximately proportional to the temperature,
both for a given, fixed surface gravity. This can be seen from the
indicated bar of length 10×Hp(z0) in the top right corner of each
panel in Fig. 1. These bars are about the size of the granules for
each model.

3.2. Characteristics of the magnetic filigree

From the middle column of Fig. 1, we see that all the mag-
netic models show conspicuous, bright features in bolometric
intensity, which coincide with concentrations of magnetic fields.
These magnetic field concentrations are shown in the right col-
umn of Fig. 13. The bright features are well known from the
Sun where they are alternatively referred to as magnetic bright
points, facular points, magnetic elements, flux sheets, ribbon
bands, crinkles, etc., depending on their shape and the context.
Broadly, we speak of the magnetic filigree, a term introduced by
Dunn & Zirker (1973), or of magnetic bright features (MBF)4.
From Fig. 1 and corresponding movies, we readily recognize a

3 The magnetic polarity is predominantly positive because of the initial
condition of a homogeneous, unipolar magnetic field.
4 In the following we use the term magnetic filigree for the collectivity
of MBFs, while MBF rather refers to structure elements of the filigree.
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Fig. 3. Left panel: histograms of the (logarithmic) bolometric intensity of the vertically directed radiation. The bin size is 0.01 dex. Right panel:
histograms of the (linear) relative intensity fluctuation. The bin size is 0.02. Solid curves refer to the magnetic models, dotted curves to the field-free
models, and the dot-dashed curves to the masked magnetic models for which areas with Bz(z0) > 1000 G are discarded. The color-coded spectral
types are indicated in the inset of the panel on the right. The histograms are based on the intensity maps of the full time series.

tendency for the magnetic filigree of the coolest model (K8V)
to have a more compact, point-like appearance forming at the
vertices of intergranular lanes, while it has a more sheet-like
shape in all the other models. This may be because the abso-
lute width of the intergranular space decreases with decreasing
effective temperature as can be seen from the rapid decline of
Lgran (see Table 1), while the relative granular area (row 33 of
Table 2) remains almost constant (see also Ludwig et al. 2002;
Beeck et al. 2013b). If it is small enough, the formation of mag-
netic flux sheets between and alongside granule boundaries may
be hampered, leaving mainly the vertices of intergranular lanes
for magnetic flux concentrations strong enough to become con-
spicuous in maps of bolometric intensity. But also the fraction
of the field of view covered by granules (row 33 of Table 2) is
for the magnetic models maximal (58%) for spectral type K8V,
while it continuously drops from 57.2 to 53.3% from F5V to
K2V, respectively, distinguishing K8V as having relatively nar-
row intergranular lanes. This behavior and numbers differ from
Table 1 of Beeck et al. (2013b), which is probably because of the
different determination of the granular area.

Figure 3 shows the histogram of the absolute radiative
intensity (left panel) and the histogram of the relative intensity
fluctuation (right panel) and in each panel the non-magnetic
models (dotted curves) and magnetic models (solid curves).
The cooler spectral types have a distinctly narrower distribution
of intensities than the warmer spectral types, which simply
is expression of the fact that the rms of the relative intensity
fluctuation (contrast) increases from 5.6% for K8V to 18.7% for
F5V (for the non-magnetic models), as discussed in Sect. 3.1.
We also see that the intensity distribution of the magnetic
models show a shoulder at the high end of intensities, which is
absent in the non-magnetic case. This shoulder is particularly
well developed in the case of the model K2V and is due to the
magnetic filigree. To verify the latter statement, the intensity
histograms were also evaluated for the case in which areas of the
magnetic models with a magnetic field strength Bz(z0) > 1000 G
were discarded (dot-dashed curves). These histograms show no,
or no significant shoulder and look very similar to the intensity
distribution of the non-magnetic models, which proves that
the magnetic filigree, which becomes masked by the above
field-strength criterium, is responsible for the shoulders in all

spectral types. We do not find substantial differences in inten-
sities between the magnetic and non-magnetic models in the
range of the most frequent intensities nor when examining plots
such as Fig. 3 with a linear ordinate axis. A minor exception to
this rule is K8V for which the peak occurrence of the magnetic
model is slightly higher than that of the non-magnetic model.

At the low end of intensities, the non-magnetic models of
the warmer types G2V and F5V tend to have a slightly higher
occurrence of dark pixels than the corresponding magnetic mod-
els. For models K2V and K8V, this difference almost disappears.
This is possibly due to the fraction of integranular space that is
filled with MBFs in the magnetic models but remains dark in the
non-magnetic case but may also be due to a more fundamental
difference in the formation of particularly cool downdrafts that
is more developed the earlier the spectral type.

Like Beeck et al. (2013b), Magic et al. (2013a), Trampedach
et al. (2013), or Tremblay et al. (2013), we also find signs of a
bimodality in the intensity distribution, i.e., a bright and a dark
component5, where the bright component gets steadily weaker
relative to the dark component from F5V to K2V but domi-
nates again over the dark component in the model K8V. This
change in trend of model K8V is certainly due to the corre-
sponding change in the areal fraction of granules mentioned
further above and quantified in row 33 of Table 2. Regard-
ing the distribution of the relative intensity fluctuation (Fig. 3,
right panel), the most frequent value is negative for all models
but K8V. While the most frequent relative intensity fluctua-
tion of the magnetic model K8V of +5.73% is close to its rms
contrast, the most frequent relative intensity excursion for the
magnetic models K2V, G2V, and F5V are −5.38, −11.7, and
−12.5%, respectively. For the field-free models, these values
are a bit less accentuated, being +4.34% for model K8V and
−4.24, −10.5, and −10.4% for models K2V, G2V, and F5V,
respectively. Consequences of the differences in the intensity dis-
tributions between magnetic and non-magnetic models for the
mean bolometric intensity and radiative flux is further explored
in Sect. 5.

5 We find this bimodality to be less pronounced with increasing spatial
resolution of the simulation, while the rms intensity contrast, crms, stays
constant.
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Fig. 4. Histograms (solid curves) of the absolute vertical magnetic field component at the z0 level (top) and on the surface of τR = 1 (bottom) of the
four (color-coded) model atmospheres. The bin size is 0.01 dex. The panels on the left-hand side show the area fraction per bin of magnetic field
strength. The panels on the right-hand side show the fraction of magnetic flux per bin of magnetic field strength. The dotted curves show the cdf
with the corresponding ordinate axis on the right-hand side. For a given threshold of magnetic field strength, the cdfs indicate the areal fraction
(left panels) or fraction of magnetic flux (right panels) with a strength below that threshold. The histograms are based on the magnetic field maps
of the full time series.

4. Characteristics of the magnetic flux
concentrations

The first section of Table 2 gives the magnetic properties of
the MBFs. The rms values are evaluated over selected spatial
pixels of the full time sequence of the models. The first row is
the rms of the vertical component of the magnetic field in the
area where |Bz(z0)| > 1000 G (the magnetic mask) at the height
where the horizontal (over the full area) and temporal mean
Rosseland optical depth τR = 1, i.e., at z0 = 〈〈z(τR = 1)〉〉t. This
component is moderately decreasing with increasing effective
temperature because the surrounding mean gas pressure, pgas,
listed in row 8 of Table 2, decreases as well. For a given optical
depth, the column mass density of cooler models is higher than
that of warmer models, which is simply due to the increase
in opacity with increasing temperature in the present range
of temperatures and gas pressures, hence the decrease in gas
pressure with increasing temperature at a given optical depth.
Since the surrounding gas pressure must mechanically balance
the pressure exerted by the magnetic field, pmag = B2/(8π), its
strength must decrease with decreasing external gas pressure.
But the change from K8V to F5V, i.e., from 1438 G to 1248 G,
is a decrease of only 24.7% in magnetic pressure, while the gas
pressure decreases by 72%. In fact, the rms of the magnetic field
strength on the surface τR = 1 proper and for the mask with

|Bz(τR = 1)| > 1000 G, given in row 2 of Table 2, shows no clear
tendency with spectral type and can be considered constant at
approximately 1560 G. We note that values in the second section
of Table 2 are also averages over space and time, but pgas, pdyn,
and ptot are averages over the area outside of the magnetic mask
at z = z0, i.e., where |Bz(z0)| < 1000 G, while pmag is the average
over the area of the magnetic mask.

Instead of comparing with the gas pressure, we can, more
intuitively, compare with the thermal equipartition field strength
Beq th =

√
8π〈pgas〉, which is the field strength that exerts as

much (magnetic) pressure as gas pressure 〈pgas〉. This quantity
is given in row 12 of Table 2. Comparing row 12 with row
1 we readily find that the strength of the magnetic flux con-
centrations, by far, do not reach thermal equipartition for the
K-type atmospheres, but reach close to equipartition for the
model F5V. In fact, maximal field strengths can reach super-
equipartition for models G2V and F5V as already noted by
Steiner et al. (2014). This is now confirmed in the present
work, which shows max(|Bz(z0)|) in row 3. The mean over
all spectral types of the maximal field strength at τR = 1
proper is 2848 G. Within the given standard deviations, max
(Bz(τR = 1)) can be said to be independent of spectral type
from K8V to F5V, which is an important and unexpected
result first found by Steiner et al. (2013); Steiner et al. (2014) and
subsequently confirmed and extended to a wider range of
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spectral types and various initial magnetic field strengths by
Beeck et al. (2015a).

Comparing the field strength of the magnetic elements
with Beq th, we make implicitly use of magnetohydrostatics and
the zeroth order thin flux-tube approximation. In this case,
max(B(z)) cannot surpass Beq th, but this is obviously the case
here for models G2V and F5V. However, in hydrodynamics, we
should add the dynamic pressure pdyn = ρv2/2 to the gas pressure
to obtain the total pressure

ptot(z0) =

〈〈
pgas +

ρv2

2

〉
z0

〉
t

, (4)

where ρ is the mass density and v the absolute velocity, which is
assumed to be due to turbulent motion on relatively small scales
outside of the magnetic flux concentration. Correspondingly, we
can define a total equipartition field strength

Beq tot(z0) =
√

8πptot(z0), (5)

which is listed in row 14 of Table 2. Now, we see that
max(|Bz(z0)|) (row 3) is smaller than Beq tot(z0) (row 14) for all
models but F5V. Clearly, the dynamical pressure is important in
providing the pressure balance for the strongest magnetic flux
concentrations in the Sun and warmer atmospheres. The remain-
ing force to balance super-equipartition in model F5V comes
probably from magnetic tension forces that allow for larger field
strength in the central part of the flux concentration than in its
periphery, even for relatively thin flux tubes (Steiner et al. 1986).
In case of the cooler models, the maximum field strength at z0
is significantly below Beq th, which indicates that their forma-
tion and evacuation is less efficient than in warmer atmospheres
(Rajaguru et al. 2002). This issue is further discussed in Sect. 6.

Figure 4 shows histograms of the magnetic field strength
at the height z = z0 in the top two panels and on the surface
τR = 1 in the bottom two panels. The panels on the left-hand
side show the areal fraction occupied with magnetic fields of a
certain range in strength, which is equivalent to the probability of
finding a certain field strength range in a given area. The panels
on the right-hand side give the fraction of the unsigned magnetic
flux occupied with magnetic fields of a certain range in strength.
Also shown for all these probability densities is the correspond-
ing cumulative distribution function (cdf), i.e., the probability
distribution. The cdf is the running integral of the probability
density; this function gives the fraction of the area (left panels)
or the fraction of the total unsigned magnetic flux (right panels)
that harbors a field strength above or below a certain threshold
(see Steiner 2003, for intuitive examples).

For example, from the top right panel we can now read that
at z = z0 magnetic fields of strengths less than 500 G contribute
to only ≈40% of the total absolute magnetic flux, or, fields of
less than 50 G to only ≈12%; fields stronger than these limits,
respectively, make up for the rest of the flux. On the other hand,
the top left panel tells us that 96% of the total area harbors mag-
netic fields of strengths less than 500 G, or 84% less than 50 G
and only the remaining 4% has fields that surpass the limit of
500 G. We note that in terms of magnetic energy, the weak fields
are even less significant than they are in terms of magnetic flux
because of Emag ∝ B2.

All the histograms of Fig. 4 show two maxima. A first max-
imum in the area fractional distribution at z0 is at low magnetic
field strengths of Bz weak ≈ 5−20 G, which is due to the large area
of mostly granular interiors virtually void of magnetic fields. A
second maximum is of strong magnetic field of 1–2 kG, which is

due to the magnetic flux concentrations of the MBFs. The field
strength of this second peak is given in rows 5 and 6 of Table 2
and was determined by a Gaussian fit to this peak of the area
fractional distributions (panels on the left-hand side). Like the
rms-values of the magnetic field strength at both heights (rows 1
and 2), also Bz strong hardly depends on the spectral class and is
consistent with a constant value within the standard deviations.
However, the precise value is sensitive on the bin size of the
histogram.

The panels on the left-hand side of Fig. 4 show high fre-
quency at low field strength and low frequency at high field
strength, which is expression of the fact that only a small area
is covered with strong fields, i.e., the filigree. The panels on the
right-hand side on the contrary have a high peak at strong fields
and a low peak at low field strengths, which tells us that most
magnetic flux occurs in concentrated form of a strength in the
kG range. There are differences between spectral types. While
model K2V has 57% of the total absolute magnetic flux at z = z0
with a field strength of 1 kG or stronger (dotted curves in the
top right panel of Fig. 4), the solar model has only 43% of its
total flux surpassing 1 kG. It seems that the solar model gathers
magnetic flux less efficiently into MBFs than all other models,
of which the most efficient is K2V. This exceptional behavior of
the Sun is probably due to the 12.9% lower surface gravity of the
solar model compared to all other models (see Table 1).

Row 7 of Table 2 gives the rms of Bz over the full horizontal
section A at z = z0. It is again virtually independent of spectral
type. Beeck et al. (2015a) have demonstrated that its value can
be estimated with the help of a two component model having a
strong magnetic field, Bstrong, occupying the area fraction f A and
a weak component Bweak ≈ 0 in the rest of the area. We note that
the total magnetic flux at the start of the simulation is B0A and
that the field remains largely unipolar with the present simulation
setup. We then obtain for this two component model an rms of
〈B2〉1/2 = (B0Bstrong)1/2. Keeping Bweak non-zero, we obtain

rms(Bz) =

√
B2

weak + f (B2
strong − B2

weak), (6)

and for the filling factor

f =
B0 − Bweak

Bstrong − Bweak
=

rms(Bz)2 − B2
weak

B2
strong − B2

weak

. (7)

In the present case, we have B0 = 50 G, Bstrong ≈ 1491 G
(mean of Bz strong(z0) over all models), and Bweak ≈ 10 G (see
Fig. 4, top left panel), which gives according to Eq. (6) rms(Bz) =
245 G in excellent agreement with the actual values in row 7.
For the filling factor results from Eq. (7) f = 0.027, which is in
acceptable agreement with the values given in row 32 of Table 2.

5. Radiative properties

The third and fourth sections of Table 2 present the results
concerning the radiative intensity and radiative flux for each
simulated spectral type of stellar atmospheres and the effect of
small-scale magnetic fields on these quantities.

5.1. Effective temperature and intensity contrasts

First, we look at the actual effective temperature, Teff , of each
model. The effective temperature is listed in row 17 of Table 2
and is computed with the help of the Stefan–Boltzmann law,

Teff =
4
√
〈Fbol〉t/σ, (8)
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where σ is the Stefan–Boltzmann constant and 〈Fbol〉t the time-
averaged, bolometric radiative flux that leaves the computational
domain across its upper boundary. The actual effective temper-
ature, Teff , differs from the corresponding nominal value, T ∗eff

,
given in Table 1, by less than about 1%. Taking the instant
radiative flux, Fbol(t), we can plot the effective temperature as
a function of time, which is done in Fig. 5. Apart from an initial,
approximately 2000 s lasting transient phase (which is due to the
regridding and to the insertion of the magnetic field as explained
in Sect. 2.2), the effective temperature stays fairly constant with
time but fluctuates; increasingly with increasing effective tem-
perature up to G2V. The standard deviation of this fluctuation
is also given in row 17 of Table 2. The origin of the fluctua-
tion is the dynamic nature of the models, which produces bright
granules and dark intergranular lanes of different size and bright-
ness as a function of time and the gas-pressure driven (p-mode)
oscillation in the model. Thus, the larger the model (in terms
of spatial scales) the smaller the fluctuation is expected to be
(because of averaging effects) such that fluctuations of a global
main-sequence atmosphere with log g = 4.5 are expected to be
orders of magnitude smaller (see, e.g., Ludwig 2006; Bastien
et al. 2013; Ludwig & Steffen 2016) than what the present small
boxes produce.

From row 17 of Table 2, one may guess that the models with
magnetic field have a systematically higher effective tempera-
ture, and therefore higher radiative flux, than the non-magnetic
models, but the difference is within the standard deviation of the
fluctuations. In Sect. 5.2 we use a cumulative mean for judging
the significance of the mean values, but first we have again a
look at contrast values. In Sect. 3.1, we discussed the rms gran-
ular contrast in bolometric, vertically directed intensity, given in
row 21 of Table 2, and found no systematic difference between
the magnetic and non-magnetic models. Restricting the evalu-
ation of the intensity fluctuations to the magnetic filigree, we
compute

cMBF rms =

〈 √〈
(Ibol − 〈Ibol〉)2〉

MBF

〈Ibol〉

〉
t
, (9)

where 〈· · · 〉MBF is the average over all areas with Bz(z0) > 1 kG
and 〈Ibol〉 is still the mean bolometric intensity of the magnetic
model. It has a maximum at spectral type K2V (see row 22 of
Table 2) and is significantly larger than crms, except as of F5V for
which the MBFs are significantly less bright than the granules.
The latter statement can be quantified by computing the contrast
between the magnetic filigree and granules as

cMBF−gran =

〈
〈Ibol〉MBF − 〈Ibol〉gran

〈Ibol〉gran

〉
t

, (10)

where 〈Ibol〉gran is the spatially averaged intensity, over all
granules, with granules defined as explained in Sect. 2.2. This
contrast value is given in row 24 of Table 2 from which we
can see that only model K2V has a filigree that is signifi-
cantly brighter than the granules, while for model F5V it is
significantly darker. However, we note that the filigree is still
much brighter than the intergranular space in any case. The
intergranular space is partially replaced by the filigree such that
the magnetic models can be expected to be, over all, brighter
than the non-magnetic models.

The maximum contrast of MBF is given by

cMBF max =

〈
max(Ibol MBF) − 〈Ibol〉

〈Ibol〉

〉
t
, (11)

Fig. 5. Effective temperature as a function of time of the non-magnetic
models (dotted curves) and of the magnetic models (solid curves) for all
four spectral types F5V to K8V from top to bottom, respectively.

where again, Ibol MBF is the intensity within the area where
Bz(z0) > 1 kG. The values are given in row 23 of Table 2 and
vary between 49 and 86%. Especially the spectral type K2V
shows a large maximum; it also exhibits the largest difference
cMBF rms − crms and is the only model whose filigree is signif-
icantly brighter than the granules. For the solar model G2V,
this value is 72%, which renders the brightest magnetic ele-
ments a conspicuous feature even in maps of the continuum
intensity.

For a qualitative comparison, the mean continuum contrasts
of solar magnetic bright points were measured with the 1 m
Swedish Solar Telescope SST to be 10–15% at 588 nm (Wiehr
et al. 2004) and with the 1 m Sunrise balloon-borne solar tele-
scope to be 11% at 525 nm (Riethmüller et al. 2010). These
values are lower but qualitatively comparable to the bolometric
contrast of cMBF rms = 18.7% that we obtain for the solar model.
This, however, has a spatial resolution that is rather comparable
to a 3 m class telescope, unlike the 1 m of the observations.

5.2. Radiative surplus of the magnetic models

Figure 6 shows for the solar model (G2V) the bolometric
intensity of the vertically propagating radiation (left) and the
bolometric radiative flux (right) that leaves the computational
domain through the top boundary as a function of time for both
the magnetic (blue curve) and non-magnetic model (red curve).
Here, the radiative flux is given by

Fbol(t) =

〈 ∫
4π

Ibol(n, t) n · ẑ dΩ
〉
, (12)

where n is the unit vector in propagation direction of the radia-
tive intensity Ibol(n, t), ẑ is the unit vector pointing upward in the
vertical direction (normal to the top boundary), and Ibol(n, t) is
evaluated at the top boundary. The integral is taken over all solid
angles and the average is taken over the top boundary. Corre-
spondingly, the radiative intensity in the left panel of Fig. 6 is
given by

Ibol(t) = 〈Ibol( ẑ, t)〉 . (13)

In Fig. 6 and following figures, Ibol(t) and Fbol(t) are
normalized to the respective time averaged intensity 〈Ibol 0〉t and
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Fig. 6. Bolometric radiative intensity (left) and bolometric radiative flux (right) leaving the computational domain in the vertical direction through
the top boundary as a function of time for both the magnetic (blue curve) and non-magnetic (red curve) solar model (G2V). The cyan and orange
curves are the moving (box car) average of the magnetic and non-magnetic models, respectively, using a time window-width of 5000 s.

Fig. 7. Cumulative means according to Eq. (14). Left: cumulative mean of the bolometric radiative intensity, Eq. (13). Right: cumulative mean of
the bolometric radiative flux, Eq. (12). The solid curves refer to the magnetic models and the dotted curves to the magnetic field-free models. For
better visibility, successive pairs of curves are shifted by 0.02 in ordinate direction and the lowermost (red) curves are unshifted and refer to spectral
type K8V. The subsequent, shifted curves refer (from bottom to top) to spectral types K2V (green), G2V (gold), and F5V (blue).

flux 〈Fbol 0〉t of the non-magnetic model. 〈Ibol 0〉t and flux 〈Fbol 0〉t
are given in, respectively, rows 18 and 19 of Table 2 for reference,
where we omitted the brackets for simplicity. Plots, such as those
of Fig. 6 for spectral types other than the Sun, look similar and
are compiled in Appendix A. Despite the fluctuations, we see a
clear difference between the non-magnetic and magnetic model,
the latter having higher intensities and fluxes.

For the solar model of Fig. 6, the difference of the temporal
mean is 0.79% in intensity and 1.02% in radiative flux. The stan-
dard deviation of the fluctuations in these differences is ±1.5%.
From the running means in Fig. 6 and Appendix A, we see that
there are also long-term trends present in Ibol(t) and Fbol(t), and
notably there is a decline toward the end of the magnetic solar
model, a global decline of the non-magnetic model K8V, an
increase in the second half of the non-magnetic model F5V, and a
decline at the beginning of the magnetic K2V model. The origin
of these trends is unknown but they are less significant than the
differences in intensity and flux between the non-magnetic and
magnetic models. Finally, the intensity and flux of the magnetic

models tend to fluctuate slightly more than those of the corre-
sponding non-magnetic models except for model K8V. This is
probably due to the appearance and vanishing of MBFs in the
magnetic model.

The trends and differences become more apparent than in
Figs. 6 and A.1, when plotting the cumulative mean, which is
done in Fig. 7. It is given by

〈 f 〉 (N; Nstart) =
1

N − Nstart + 1

N∑
i=Nstart

fi, N > Nstart, (14)

where Nstart indicates the index of the start time of the time-series
analysis, i.e., in our case tNstart = 2000 s, N the index of the time
up to which the mean is taken, and fi is the quantity of the time
series, i.e., the vertical bolometric intensity, or radiative flux.
We recall that fi has a cadence of 10 s. From this plot, we see
that the time series are long enough to compute accurate mean
values because fluctuations after t ≈ 20 000 s are much smaller

A78, page 11 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731945&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731945&pdf_id=0


A&A 614, A78 (2018)

than the differences between the non-magnetic (doted curve) and
magnetic models (solid curves).

These differences are given in rows 25 and 26 of Table 2,
which are the mean differences in intensity and flux between
the magnetic and non-magnetic models in the time period from
2000 s to 40 000 s. In terms of cumulative means, these dif-
ferences between the magnetic and non-magnetic models are
formally given as

δIbol (N) =
Ibol mag(N; Nstart) − Ibol 0(N; Nstart)

Ibol 0(N; Nstart)
, (15)

δFbol (N) =
Fbol mag(N; Nstart) − Fbol 0(N; Nstart)

Fbol 0(N; Nstart)
, (16)

where Ibol mag and Fbol mag refer to the magnetic and Ibol 0 and
Fbol 0 to the non-magnetic model and tN = 40 000 s.

There are two standard deviations given in rows 25 and 26.
The first is the standard deviation in the fluctuation of the differ-
ence Ibol mag(t) − Ibol 0(t) and Fbol mag(t) − Fbol 0(t), respectively,
in the time period from 2000 s to 40 000 s. The second set is
the standard deviation in the fluctuation of the difference of the
cumulative mean, i.e., δIbol (N) and δFbol (N) in the time period
for 20 000–40 000 s. This latter σ is a measure for the stability
of the mean difference. It is approximately ten times smaller
than the mean intensity and flux differences between magnetic
and non-magnetic models, indicating that these mean differences
stay very stable in time.

From rows 25 and 26 of Table 2 and Fig. 7 we see that δIbol

and δFbol are always positive, meaning that the magnetic models
have always a larger mean intensity and a larger radiative flux
than the non-magnetic models, where the solar model (G2V) has
the largest surplus in intensity and flux. Also we see that the
surplus in radiative flux always exceeds that of the intensity. This
finding is further explored in Sect. 6.

6. Wilson depression, hot wall effect, and
convective collapse

In this section, we more deeply explore the physics of MBFs.
In particular, we investigate the surface depression at the loca-
tion of MBFs, the effect that this depression has on the radiative
intensity and flux, and on the formation process of MBFs, all
as functions of spectral type of the stellar atmospheres under
consideration.

6.1. Wilson depression

Within a photospheric magnetic flux concentration, the atmo-
sphere is rarified with respect to the surroundings. This follows
from lateral mechanical equilibrium, by which the surrounding
gas and dynamical pressure must balance the magnetic pres-
sure plus internal gas pressure of the flux concentration. Since
in photospheric layers lateral thermal equilibrium is efficiently
established by radiation, the temperature does not vary much in
the horizontal direction and therefore the density must be low
for a correspondingly low internal gas pressure. Because of the
rarified flux-tube atmosphere, its optical depth scale is shifted
downward with respect to the scale in the surrounding atmo-
sphere. In particular, there is a difference in the average height
of the surface of optical depth unity inside the magnetic flux
concentration relative to the surrounding atmosphere (where this
height is at z0). We call this difference WD, in reminiscence of
the Wilson depression of sunspots and speak of a depression of
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Fig. 8. Vertical section through the magnetic solar model (G2V) at
time t = 16 552 s, showing in gray scales the vertical magnetic field
strength. Two neighboring magnetic flux concentrations exhibit each
a distinct WD in the τR = 1 contour (dashed curve) of approximately
180 km depth. The solid white curves are contours of constant density
of ρ = 10−6, 10−7, 10−8, and 10−9 [g cm−3] from bottom to top.

the τR = 1 surface at the location of the magnetic flux concen-
tration. Two example depressions of model G2V are shown in
Fig. 8. The optical depth surface τR = 1 is computed for verti-
cally directed lines of sight. We note the substantial rarefaction
in the surface layers of the flux concentrations that renders these
layers more transparent for radiation than layers at the same
geometrical height in the surrounding medium.

Histograms of the WD of MBFs of the considered stellar
atmospheric models are given in Fig. 9. The histograms in the
panel on the left-hand side depict the number of MBFs, for
each bin of WDs, normalized by the total number of MBFs.
The procedure for computing the number of MBFs is given in
Appendix B. The WD of an individual MBF is in the present
paper determined as the average over 5% of its area with largest
depression with respect to the reference level z0. Since large
MBFs generally have a deeper depression, the corresponding
area weighted histograms are also shown on the right-hand side
of Fig. 9. The corresponding temporal mean values are given in
rows 28–31 of Table 2.

The WD strongly increases with increasing effective temper-
ature in accordance with expectations because of the increase
in pressure scale height, Hp. The latter quantity is listed in
Table 1. However, as was already noted in the preliminary study
of Steiner et al. (2014), the WD increases more rapidly than the
pressure scale height. While its mean value is 0.5−0.7×Hp in the
case of the K8V model, it is 1.6–2.7 × Hp in the case of the F5V
model and 1.1–1.6 × Hp for the solar model. If WD was strictly
proportional to Hp, then Bz(z0) would be proportional to Bz(τR =

1) because Bz(z) ∝ Bz(τR = 1) e−z/(2Hp) according to the zeroth
order thin flux-tube approximation. Since Bz(τR = 1) is approxi-
mately constant with effective temperature, so would Bz(z0). But
since WD grows stronger than Hp, Bz(z0) must decrease with
effective temperature, which is what we observe in our simula-
tions as stated in Sect. 4 and quantified in rows 1 and 3 of Table 2.

6.2. Hot wall effect

The WD enlarges the effective surface from which the radiation
can escape with the consequence of a locally enhanced radiation
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Fig. 9. Histograms of the WD (left) and the same histograms, but weighted by the size (area) of the MBFs (right). The bin size is variable from
4.8 km for K8V to 24.3 km for F5V to keep a constant bin number of 15 for each spectral type. Colors indicate various spectral types according to
the inserted legend on the left panel. The histograms are based on the geometric maps of the τ = 1 surface of the full time series.

field acting as a heat leak at the solar surface. In particular, radi-
ation can escape from the walls of the depression: preferentially
in directions inclined from the vertical (i.e., more perpendicu-
lar to the walls). Since the magnetic flux concentrations rapidly
expand with height, the hot walls do so as well, which makes
them clearly visible also for vertical lines of sight, but also
because the flux concentrations are often inclined with respect
to the vertical direction. This is known as the hot wall effect of
magnetic flux concentrations and is responsible for these con-
centrations to appear bright in the form of MBFs. The cooling
caused by the wall radiation is efficiently compensated for by
convective energy transfer toward the walls in the surroundings
of the field concentration (Spruit 1976). However, it is not only
the walls of the depression proper that enhance the radiative
flux. At least as important is the partial evacuation of the mag-
netic flux concentration, which leads to a rarified, optically more
transparent flux-tube atmosphere across which radiation from a
larger surrounding of the field concentration proper can escape
more easily (Steiner 2005). This effect causes granules limb-
ward of magnetic flux concentrations, when observed near the
limb, to appear bright as facular granules. Again in this case,
the enhanced radiation propagates in directions inclined from the
vertical.

According to Eq. (12), the vertically directed radiative flux
takes intensities propagating in all directions into account, while
Ibol, according to Eq. (13), is the intensity propagating in the
vertical direction alone and is therefore enhanced only in an
area, which is the projection of the hot walls onto the hori-
zontal plane. Since the hot wall effect and the effect of the
rarified atmosphere causes enhanced radiation in preferentially
inclined directions, we expect MBFs to affect Fbol more than
Ibol. This is in fact the case as we can see from rows 25 and
26, where δFbol is always larger than δIbol for all spectral types.
Moreover, since the WD and the degree of evacuation strongly
increases with effective temperature, the difference δFbol − δIbol

(given in row 27 of Table 2) increases toward the hotter end of
the spectral sequence. In other words, cool stellar atmospheres
have WDs that are small in comparison to the horizontal extent
of their MBFs and their magnetic field concentrations are not
much rarefied, which renders the hot wall effect weak and facu-
lar granules feeble. Correspondingly, the difference in radiative
intensity and flux between magnetic and non-magnetic models

is small. Vice versa, in the solar and warmer atmospheres, the
WD is substantial and the degree of evacuation high, which
renders the hot wall effective and facular granules bright and
therefore the difference in radiative intensity and flux between
magnetic and non-magnetic models is large and also the differ-
ence between the radiative intensity and flux surpluses of the
magnetic model is significantly larger than in case of the K-type
atmospheres.

6.3. Convective collapse

When starting the simulations of the magnetic models with a
homogeneous vertical magnetic field of 50 G, MBFs form within
a few minutes. Subsequent to this formation process and mag-
netic field intensification, the MBFs are shuffled around, get
deformed, merge, and break apart to form larger and smaller
MBFs, or, less often, dissolve again. Only a minor fraction of
the magnetic flux remains in the form of a weak field compo-
nent (see Fig. 4) that is available to form MBFs anew. The initial
magnetic intensification is probably best described by the con-
cept of the convective collapse (Parker 1978; Webb & Roberts
1978; Spruit 1979; Spruit & Zweibel 1979), although caution is
indicated, since the real process is more involved than this highly
idealistic, quasi-static process suggests.

If the formation process was highly efficient, then the
magnetic flux concentration would be evacuated and the
field strength would reach thermal or thermal plus dynamic
equipartition. In Sect. 4, we found that in reality only peak field
strengths approach equipartition for the solar atmosphere and
even surpass it for model F5V but that the formation process is
not fully efficient and the field strength at z = z0 stays far below
the equipartition values for the K-type atmospheres. Thus, the
convective intensification seems to be moderately efficient for
cool stellar models but highly efficient for the Sun and warmer
stars.

One important ingredient in the convective collapse theory is
the superadiabaticity in the top layers of the convection zone. In
fact, the convective collapse lives on this potential, which is the
difference between the real and the adiabatic temperature gradi-
ent, δ = ∇ − ∇ad, where ∇ = d ln T/d ln p and likewise ∇ad for
the adiabatic displacement of a plasma parcel. Hence, we can
expect the magnetic field intensification to be the more efficient
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Fig. 10. Superadiabaticity δ = ∇ − ∇ad as a function of optical depth
for spectral types K8V to F5V, color coded according to the legend.
Solid curves refer to the magnetic models, and dotted curves to the
non-magnetic models.

the larger the superadiabaticity δ (Rajaguru et al. 2002). This
is indeed the case as can be seen from Fig. 10, which shows
the superadiabaticity δ as a function of optical depth for all
models. Clearly, the superadiabaticity in the subsurface layers
is well developed for the models F5V and G2V, is less strong
and shifted further down into the convection zone for K2V, and
is poorly developed in K8V. Correspondingly, the intensification
is less efficient in model K8V and the flux concentrations are
far from being evacuated as can be seen from the density ratio
and the plasma β given in rows 15 and 16 of Table 2. There,
ρint/ρext(z0) is the fraction of the mean density at the height
z0 that remains in the rarefied atmosphere of MBFs and β is
the ratio of gas pressure to magnetic pressure within MBFs at
the same height, z0. Both quantities tell us that the degree of
evacuation of MBFs monotonically increases with increasing
effective temperature, which is a consequence of the mono-
tonic increase of the superadiabaticity in the surface layers with
increasing Teff .

For completeness we note that four decades of optical depth
below the surface of τR = 1, the superadiabaticity drops below
2 × 10−2 but continues to stay positive with depth in all mod-
els. The subadiabaticity starts at τ ≈ 0.5 for the model F5V but
already at τ ≈ 1.5 for model K2V such that the convectively
stable layers reaches the deeper (in terms of optical depth) the
cooler the spectral type. In between these limits, the superadia-
baticity assumes a peak value, which shifts to optically deeper
levels when going from warmer to cooler models, hence the
veiled granules of cool spectral types. K8V is an exception in
that its superadiabaticity remains low but positive (with a peak
value of 0.08) all the way from the deep layers up to τ ≈ 0.1.

Similar runs for δ(τ) from non-magnetic simulations of
diverse spectral types using different simulation codes have been
obtained by Beeck et al. (2013a, Fig. 11, right panel) and by
Magic et al. (2013a, Fig. 25).

7. Discussion

In the following, we assess some of the results obtained in the
previous sections in terms of observations and results from pre-
vious work and we review the assumption of the constant deep
adiabat.

7.1. Radiative surplus due to MBFs

A principal result of this paper is that the magnetic models unan-
imously show a surplus in radiative intensity and radiative flux
with respect to their corresponding non-magnetic model for all
stellar types and for the unique initial magnetic flux that we
considered. The surplus is maximal for the solar model, but
depending on the time span taken for the average, the K2V model
has similarly large surpluses. For all models, the surplus in radia-
tive flux is larger than that of the vertically directed radiative
intensity alone. The surplus of radiative flux of the solar mag-
netic model on the order of 1% may appear large in comparison
to the peak-to-peak variation of the total solar irradiance (TSI)
over the solar cycle of ≈1 ‰ (Fröhlich 2013). However, rather
than take the combined effects of spots and small-scale mag-
netism into account, we took the latter alone and we computed
the extremal difference between a model that represents mag-
netic network or plage regions and a model completely void of
magnetic fields. On the real Sun, large areas of the solar disk
may be more quiet than our solar model, even at times of solar
maximum. On the other hand, there is no region completely void
of magnetic fields. Also, the relative variation of TSI may go up
to 0.2% on short timescales of several days. In case of the Sun,
sunspots reduce the TSI and therefore counterbalance the effect
from the small-scale magnetism, which, taken alone, would be
much larger than 1 ‰.

The surpluses of the vertically directed bolometric inten-
sities obtained in Sect. 5.2 are in good agreement with those
preliminarily found by Steiner et al. (2014) for the same spec-
tral types as considered here but with much shorter time series
and an approximative, less expensive method for the determina-
tion of the surpluses. Steiner et al. (2014) had values of δIbol =
0.32, 0.79, 0.62, and 0.46% for the spectral types K8V, K2V,
G2V, and F5V1, respectively, compared to 0.30, 0.65, 0.79, and
0.43% of row 25 of Table 2 of the present work. As in Steiner
et al. (2014), we find again the smallest surplus for the coolest
model (K8V) and a decline from G2V to F5V.

The agreement with the results of Beeck et al. (2015b) is
good as well. These authors also obtained surpluses in the ver-
tically directed bolometric intensities of the magnetic over the
non-magnetic run. From Table 1 of Beeck et al. (2015b), we
derived for their models with 100 G initial field strength δIbol =
0.20, 0.31, 1.08, 1.38, 1.50, and 0.10% for the stellar types M2V,
M0V, K5V, K0V, G2V, and F3V, respectively. Again, the sur-
plus is maximal for the solar model and steeply drops toward
the warmer model (F3V) and the coolest models (M2V and
M0V).

The radiative surpluses of the magnetic over the
non-magnetic models obtained here and previously by Steiner
et al. (2014) and Beeck et al. (2015b) are in sharp disagreement
with the results of Thaler & Spruit (2014) who found a radiative
deficit of −0.34% for a solar magnetic simulation with a mean
flux density of 50 G. At present, we do not know the origin of
this disagreement. To find out if it is a real difference in the
simulation or if it is due to different analytical methods, we plan,
as a first step, to apply the analytical procedure of Thaler &
Spruit (2014) to our present solar model.

7.2. Entropy of the deep adiabat

The underlying fundamental assumption of the present compari-
son between model atmospheres with and without magnetic field
is that the specific entropy of the material entering the com-
putational domain from below across the bottom boundary is
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×

Fig. 11. Specific entropy of the upflowing plasma of the magnetic (solid
curves) and the non-magnetic (dotted curves) atmospheres as a function
of geometrical height z. Colors refer to the various spectral types accord-
ing to the inserted color legend. The dashed curves show the specific
entropy in the downdrafts of the non-magnetic models.

identical in both cases. This means that we assume this entropy
to be unaffected by the presence or absence of surface magnetic
fields. Since the boundary conditions are kept the same for both
magnetic and non-magnetic simulations, the specific entropy of
the entring plasma, sinflow, is the same, in agreement with our
fundamental assumption. Any change of sinflow would change
Teff , which in turn would change the determination of δIbol and
δFbol .

But the question remains whether this fundamental assump-
tion is justified. The ascending plasma is assumed to have the
entropy of the adiabat of the deep convective envelope (Ludwig
et al. 1999). This adiabat is independent of the magnetic field
only if (i) the convective downdrafts mix and thermalize to the
same degree with the ascending flow in both the magnetic and
the non-magnetic simulations, or (ii) there is no mixing of the
continuously ascending plasma with the descending plasma, or
(iii) this mixing and thermalization are unimportant. With regard
to the last point (iii), in fact, the heat capacity of the convection
zone is huge (Spruit 1977), such that the deep adiabat indeed
cannot be significantly affected by any potential extra entropy
deficient downflows caused by the small-scale magnetism, at
least not in the deep convection zone.

Furthermore, also (ii) is to a high degree fulfilled for the
deepest layers of our models. Figure 11 shows that in all but the
solar model, the mixing of plasma in the upflows with down-
flowing, entropy deficient plasma, must be weak because the
entropy of the upflowing plasma in the layers adjacent to the
bottom boundary remains essentially constant (solid curves in
Fig. 11). The constancy of the deep adiabat is not reached only in
the case of the solar model because the model is too shallow and
therefore substantial entropy transfer from the ascending plasma

to the entropy deficient downflows prevails down to the bottom
boundary.

Condition (i) is to a great deal satisfied as well because the
difference of the specific entropy as a function of height between
the magnetic and non-magnetic simulations is very small from
z = 0 down to the bottom boundary (difference between solid
and dotted curves in Fig. 11). Even for the solar model this dif-
ference remains small proving that the degree of mixing and
thermal diffusion of ascending with entropy deficient plasma is
very similar in the magnetic and non-magnetic models.

The dashed curves in Fig. 11 show the entropy of the down-
flowing plasma. These are not constant in the convective layers
but they all approach the respective deep adiabat close to the
bottom boundary. This behavior shows that mixing and thermal
diffusion with ascending fluid takes place in the downflows. On
the other hand, little entropy exchange with downflowing fluid
takes place in the upflows, proving that the assumption of a mag-
netic field independent deep adiabat is a good one. Caution is
indicated regarding the solar model, which is too shallow. We
cannot exclude the possibility that a deeper solar model would
yield smaller values for δIbol and δFbol , which would possibly shift
the maximum in these quantities to spectral type K2V.

7.3. Wilson depression

The values for the WD listed in rows 28–31 of Table 2 and shown
in the histograms of Fig. 9 are different from the values given in
Steiner et al. (2014) and Beeck et al. (2015a). There are vari-
ous reasons for this discrepancy. Steiner et al. (2014) gave the
maximal depression of all MBF found in any of a small num-
ber of snapshots, while the present work gives the average of the
maximal depression found in every individual MBF over each
snapshot of the full time series. Therefore, the depressions listed
in Steiner et al. (2014) are deeper than those found in the present
work. In fact, the maximal occurring depressions can be found
from a histogram such as that of Fig. 9, but with smaller bin size
to be WDmax = 100, 214, 404, and 660 km for the spectral types
K8V, K2V, G2V, and F5V, respectively. These are peak values
over the full time period of 10.55 h and are therefore larger in
turn than the values of Steiner et al. (2014), which are 70–80%
of WDmax.

On the other hand, the values of Beeck et al. (2015a) tend
to be smaller than those given in the present work because
they represent areal averages of the depression over areas of
B(τR) > 750 G. Here, the area is defined as B(τR) > 1000 G
(which should increase WD by only ≈10% according to Beeck
et al. 2015a) but probably more important is that the present
WD is not the areal average but an average of maximal values
as explained in Sect. 6.1.

7.4. Approximative determination of the radiative surplus

Steiner et al. (2014) computed the radiative surplus of the
magnetic model from that model alone, without using a com-
parative magnetic field-free run, which is a procedure suggested
by Steiner et al. (2013). Instead, these authors mimicked the
comparative non-magnetic model by applying a mask to the
magnetic model, which would hide the magnetic filigree from
sight completely, or, alternatively, replace it with average dark
intergranular lane. This method is computationally half as expen-
sive as the procedure chosen in the present paper. As shown in
Sect. 7.1 the results obtained in this way are well comparable
to the results when carrying out the full non-magnetic compar-
ative run, at least for the present range of spectral types from
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K8V to F5V and for the unique initial magnetic field strength of
50 G.

This good agreement can be understood when examining
Fig. 3, which reveals that for each spectral type, the histogram
of the masked magnetic model and the histogram of the non-
magnetic model are very similar. The difference at low intensi-
ties can be taken into account by replacing the mask with the
average intensity of intergranular lanes as in Steiner et al. (2014).
Hence, for the present spectral range and the purpose of intensity
distributions, this finding validates the approach taken in Steiner
et al. (2014).

7.5. Connection to the stellar bolometric flux

In order to relate the effect of small-scale magnetism that
we found with the help of our numerical simulations to the
global variations of stellar photometric fluxes, we need to relate
the bolometric radiative intensity and flux as found in our
simulations to this global quantity. This relationship can be
straightforwardly established when assuming that the star has a
quasi-homogeneous surface that is well represented by the small
section that our simulation box presents. In this case, one can use
the calculations of Mihalas (1978, Figs. 1–3 and corresponding
text) to show that the energy flux fbol received from the star by a
distant observer is rather accurately given by

fbol ∝ Fbol, (17)

where Fbol is the radiative flux that leaves the computational box
across its top boundary as given by Eq. (12). Correspondingly,
the change in the relative bolometric radiative flux of a star over
a stellar cycle from a virtually field-free surface to one with a
mean magnetic field strength of 50 G is equal to δ fbol = δFbol given
in row 26 of Table 2. This is the contribution due to small-scale
magnetism alone, which may become counter balanced by the
large-scale magnetism in the form of starspots.

8. Conclusions

Simulations of the atmospheres and adjacent convective layers
of four different cool main-sequence stars with effective temper-
atures of 4000 K (K8V), 5000 K (K2V), 5770 K (G2V, solar),
and 6500 K (F5V) were performed. Each model was run in two
separate settings with the only difference of starting once with
an initial vertical homogeneous magnetic field with a flux den-
sity of 50 G (magnetic models), and once without a magnetic
field (non-magnetic models). The two settings were intended to
represent temporal phases (or spatial regions) of high and low
small-scale stellar magnetic activity. Each model and setting was
run for 11.1 h of which 10.5 h served for the subsequent analysis.

Basic properties of the simulation models are given in
Table 1. Granular contrasts agree well with observed contrast
for the solar model and with contrasts from other simulations for
the stellar models. In particular, there is the steep increase of the
granular contrast from the coolest to the warmest model and the
proportionality of the granular size with the pressure scale height
at fixed surface gravity.

All magnetic models show in bolometric intensity con-
spicuous, bright features that coincide with concentrations of
magnetic fields, which we call magnetic bright features (MBFs),
collectively also the magnetic filigree. The distributions of the
bolometric intensity (intensity histograms) for the two settings
show a clear difference for all model atmospheres: the magnetic
models show a shoulder on the high end of the distribution that

is absent in the magnetic field-free models. This is expression of
the fact that the magnetic models have a slightly higher occur-
rence of bright pixels, which is entirely due to the magnetic
filigree.

Turning to the magnetic properties of the MBFs, we find
as follows: (i) at the mean height of Rosseland optical depth
τR = 1, i.e., at z0 = 〈z(τR = 1)〉, the magnetic field strength
moderately decreases with increasing effective temperature. At
optical depth τR = 1 proper, it stays approximately constant at
around 1560 G, independent of spectral type. (ii) When compar-
ing the field strength at z0 with the surrounding gas pressure,
we find that its energy density approaches the thermal energy
density of the surrounding gas (thermal equipartition) for the
warmest model F5V and is similarly high for the solar model
but lower (sub-equipartition) for the models cooler than the solar
model (K8V and K2V). (iii) The distribution (histogram) of the
magnetic flux density at the surface τR = 1 is remarkably similar
for all models. It has a bimodal shape with a sharp peak around
1800 G owing to the MBFs and a broad, moderate peak in the
hecto-Gauss range in case of the magnetic flux fractional distri-
bution. Most magnetic flux is concentrated, occurring as MBFs.
(iv) The Wilson depression (WD) of MBFs strongly increases
with increasing effective temperature – more so than the pressure
scale height. While the mean WD is 0.5−0.7 × Hp in the case of
model K8V, it is 1.6−2.7 × Hp in the case of the F5V model and
is 1.1−1.6×Hp for the solar model. Likewise, the degree of evac-
uation increases from ρint/ρext(z0) = 0.75 for model K8V to 0.36
for model F5V. (v) The superadiabaticity δ = ∇−∇ad in the sub-
surface layers decreases with decreasing effective temperature
from spectral type F5V to K2V and its peak value is gradually
shifted to deeper layers. For model K8V, this superadiabatic peak
is poorly developed. Correspondingly, the convective collapse is
highly efficient for the warmer spectral types but feeble in case
of K8V, which explains the low degree of evacuation of MBFs
in this case.

Regarding the radiative properties of MBFs, we find as fol-
lows: (a) for each spectral type considered here, the magnetic
model has always a higher mean intensity and a higher radia-
tive flux than the corresponding non-magnetic model. The solar
magnetic model (G2V) has the largest surplus in intensity and
flux. (b) The surplus in radiative flux of the magnetic over the
non-magnetic models, δFbol always exceeds that of the intensity
of the vertically propagating radiation, δIbol . (c) The difference
δFbol − δIbol monotonically increases with increasing effective
temperature, owing to the monotonically increasing WD and
degree of evacuation. (d) At disk center, MBFs of spectral type
K8V and G2V are equally bright as granules. Model K2V shows
MBFs that are 14.2% brighter than average granules. The MBFs
of spectral type F5V, on the other hand, are 6.2% darker than
the average granules of F5V, which explains the decline of the
radiative surpluses for stars warmer than the Sun despite the
increasing WD.

The result of item a) was already found in the preliminary
study of Steiner et al. (2014) for the same spectral type sequence
and by Beeck et al. (2015b) for an even wider range of spectral
types and initial field strengths. But for the solar model this is
in disagreement with the results of Thaler & Spruit (2014) who
found a radiative deficiency instead of surplus. The reason for
this discrepancy remains to date an open issue.

For mean magnetic flux densities up to 50 G, we expect
the small-scale magnetism of solar-like stars in the spectral
range from F5V to K8V to produce a positive contribution to
their bolometric luminosity. The modulation seems to be most
effective for early G-type stars.
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Appendix A: Ibol(t) and Fbol(t) of the stellar models

Figure A.1 shows the bolometric intensity (left) and bolometric
radiative flux (right) as a function of time for models F5V, K2V,
and K8V from top to bottom, respectively.

Fig. A.1. Bolometric radiative intensity (left) and bolometric radiative flux (right) leaving the computational domain in the vertical direction
through the top boundary as a function of time for both the magnetic (blue curve) and the non-magnetic (red curve) models. From top to bottom:
models K8V, K2V, and F5V. The cyan and orange curves are the moving (box car) average of the magnetic and non-magnetic model, respectively,
with a time window width of 5000 s.
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Appendix B: Counting of MBFs

In the present work, the magnetic filigree is defined as the
area where the absolute value of the vertical component of
the magnetic field, |Bz(z0)| > 1000 G at the spatial and tem-
poral mean height of Rosseland optical depth τR = 1, i.e., at
z0 = 〈z(τR = 1)〉. We refer to this as the magnetic mask in
Sect. 4. To establish the histogram for the WD in Fig. 9, we
need to count the individual MBFs, which is carried out by
performing a connected-component labeling as, for example,
in Wu et al. (2009). With this algorithm, cells that are con-
nected to each other within the magnetic mask are given the

same label. Thus, cells with a common label constitute a sin-
gle MBF and the labeling subdivides the filigree into individual
MBFs. Thereby, the periodic side-boundary conditions must be
taken into account. However, we found that this procedure also
includes very small areas that cannot be identified as MBF and
are often found within granules. Therefore, magnetic features of
an area smaller than 15 grid cells have been filtered out. To fur-
ther remove the bias toward small MBFs, we include in Fig. 9
the area weighted histogram. We consider this a more adequate
representation of the WD because larger MBFs have greater
influence on the radiative properties of the models than smaller
MBFs.
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