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ABSTRACT

This M. Tech. project is a part of IIA’s internal project of devel-
oping and demonstrating a solar adaptive optics system. The
Earth’s turbulent atmosphere distorts the light wave-fronts pass-
ing through it and thus impairs the resolution and the sensitivity
of the ground-based telescopes. An image stabilization system
aims to arrest the fast image motion induced by the atmosphere
and thus forms the first step in any adaptive optics system. The
main objective of this M. Tech. project is to design and develop
an image stabilization system (ISS) for the KTT. This is achieved
by introducing tilts at re-imaged pupil plane with a plane mirror
mounted on a piezo-electic stage. In this report, the laboratory
experimental setup of the ISS and the calibration of the piezo-
electric stage are presented along with the current status and
the future directions.
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Prologue

IIA is deliberating on building a 2m class solar telescope (named
as the National Large Solar Telescope(NLST)) at Merak near the
Himalayas. This telescope will be equipped with an adaptive
optics facility. In preparation for such a large solar observing
facility equipped with adaptive optics, it is desirable to generate
the necessary expertise by demonstrating solar adaptive optics
on existing small solar telescopes. IIA has initiated an internal
project on solar adaptive optics to accomplish the same.

This M. Tech. project is a part of IIA’s internal project of
developing and demonstrating a solar adaptive optics system.
The Earth’s turbulent atmosphere distorts the light wave-fronts
passing through it and thus impairs the resolution and the sen-
sitivity of the ground-based telescopes. A major component of
this distortion is the random tilting of the wave-front at kHz
rate. This fast random wave-front tilt is manifested as random
motion of the image at the focal plane of the telescope. Conse-
quently, the image is blurred when the exposure time is larger
than a few tens of milli-seconds. An image stabilization system
aims to arrest the fast image motion induced by the atmosphere
and thus forms the first step in any adaptive optics system.
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Chapter 1

Introduction

1.1 A primer on Adaptive Optics

The Earth’s atmosphere through which light from a celestial ob-
ject propagates is turbulent. Temperature fluctuations in the
atmosphere cause fluctuations in the refractive index and this
makes different parts of the light to traverse differently. This
leads to a distorted wave-front (surface of constant phase). As a
result, the image formed by ground-based telescopes is blurred
and the resolution is impaired.

The purpose of an adaptive optics is to actively sense and
correct wave-front distortions at the telescope during observa-
tions. A telescope equipped with an adaptive optics measures
wave-front distortions with a sensor and then applies phase cor-
rections with a deformable mirror on a time scale comparable to
the temporal variations of the atmospheric phase fluctuations.

FIGURE 1.1: Pictorial representation of an AO system. Dis-
torted wave-fronts result in poor resoluion image (top left).
Corrected wave-fronts lead to better resolution (top right).
Wave-front sensing, correction and control computer form the

three major components of an AO system.
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1.2 Parts of an AO system

1.2.1 Wavefront sensors

A wave-front sensor is used to characterize the wave-front dis-
torted by atmospheric turbulence for real time wave front cor-
rection. In a closed loop adaptive optics system, it measures the
residual phase at various points on the wave-front.

1.2.1a Shack-Hartman sensor

An array of lens-lets is used to spatially sample the wave-front
and the form an array of images known as spot-fields. The shifts
in the centroid of the spot-fields measured at the image plane are
related to the local slopes of the wave-front over the lens-lets.
Measurement noise arises from an uncertainty in the determi-
nation of centroid position of each spots. Range and accuracy of
measurement depend on CCD performance and diffraction and
defects of lens-let array. The global shape of the wave-front over
the pupil is estimated from the local slopes.

FIGURE 1.2: The Shack-Harttmann wavefront sensor-
top:wavefront is entering from top, falls on a lens-let array.
Images are formed at the detector placed at the focal plane
of the lens-lets, bottom: A segment of the detector plane

containing a few spot-fields formed by a 2D lens-let array.
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1.2.1b Curvature sensor

The curvature sensor was invented by F.Roddier [Roddier and
Roddier, 1988].15. Figure 1.3 indicates the principle of curvature
sensing. A positive curvature creates more brightness in plane
P1 and negative curvature creates more brightness in plane P2.
This difference in brightness between the planes provides a mea-
sure of local curvature.

FIGURE 1.3: The Curvature wavefront sensor-the wavefront af-
ter being focused is entering from left, l is the distance of the
focus point from the plane P1, P1 and P2 are the planes where

the intensities are measured.

1.2.2 Wavefront correctors

Wave-front correctors are basically mirrors whose surface can
be deformed by attaching an actuators at their backside. The
mirror may either be rigid and segmented or a thin continuous
sheet. When it is rigid, a single mirror segment can correct for
local piston and tip-tilt. For big telescopes many such segments
may be used. When it is a thin continuous sheet, the actuators
act together to produce the desired wave-front surface. Mem-
brane mirrors or Bimorph mirrors fall in this category.

The actuators work based on piezo-electic effect, magneto elec-
tric effect or elecrostatic effect (in micro-opto-electromechanical
systems). They receive their input signals through a control
computer that generates the desired signals based on wave-front
sensing data and a suitable control software (e.g. PID).
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1.2.3 Computer

A fast real time computer is required to process the wave-front
sensor data and generate the correction signals that are to be
sent to the wave-front corrector actuators following certain con-
trol algorithms. The processing of the wave-front sensor data
can be achieved either through hardware (FGPA, DSP boards)
or software.

Software Programming: A computer software carries out the in-
structions of a sequential program (which would be written pre-
viously), performing low level operations (arithmetic, logical...)
on the data made available to it through input/output opera-
tions with the help of intermediate registers, memory, and other
peripherals. The time between the arrival of camera input and
actuation command is higher than that for FPGA. Any changes
required to be made to the program can be easily implemented.

FPGA: FPGA is a Field Programmable Gate Array. It consists of
integrated circuits and as the name suggests, the devices can be
programmed ’in the field’. One of the advantages of using them
is higher speed of image correction 14. But it is more difficult to
make changes in existing code/algorithm.

Digital Signal Processor: It is a kind of microprocessor which
processes images in the form of digital signals. The time be-
tween the arrival of camera input and actuation command is
higher than for FPGA.

For this project we intend to follow the software based ap-
proach.
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1.3 A Brief Survey of the Existing Solar AO sys-
tems

• GREGOR solar telescope at Teide observatory, Tenerife, Spain:
It has a high-order adaptive optics (AO) system with a 256-
actuator deformable mirrors and a 156-subaperture Shack-
Hartmann wave front sensor. The closed-loop bandwidth
of is 130 Hz. The AO uses a classical Shack-Hartmann wave-
front sensor. The number of sub-apertures is 156, each with
an aperture of 10 cm [6].

• Big bear observatory: The low-order compensation system
at the Big Bear solar observatory incorporates a piezoelec-
tric tip-tilt mirror and the respective control electronics. The
tilt range is +/-1mrad, with sub-micro radian resolution.
The higher-order compensation system employs a flexible
mirror with a 77.5 mm clear aperture placed in the re-imaged
pupil plane. The mirror figure is controlled by 97 actuators.
The AO system uses a correlating Shack-Hartmann WFS,
which is sensitive to the gradient of the wave-front phase
across the pupil. The wave-front phase itself is obtained
by using a modal phase reconstructor. A lenslet array (f 24
mm) placed in the re-imaged pupil plane creates 76 images
of the same solar surface region [7].

• MAST(Multi-Application Solar Telescope): The prototype AO
system is being realized in two phases. The first phase is de-
veloping an image stabilization system to compensate the
global tilt of the wave-front. The second phase consists of
sensing and correcting the local tilts of the wave-front by
integrating a micro-machined membrane deformable mir-
ror with the image stabilization system and this phase is
currently in progress [8].

• McMath-Pierce telescope: Telescope is used for AO obser-
vations in the infrared. The AO system has a deformable
mirror with 37 actuators and a fast tip-tilt mirror controlled
by a PC. The wave front sensor is a Shack-Hartmann sensor
with 200 sub-apertures [9].



8 Chapter 1. Introduction

1.4 Jargon

In this section, we describe some of the jargon used in the field
of optics and adaptive optics.

1.4.1 Point Spread Function

The Point-Spread Function (PSF) is the image of a point object
as created by an optical system. The ideal PSF of a just resolved
object or unresolved is a delta function. But any real optical sys-
tem creates a spread of the point object. For ground-based tele-
scopes, the PSF is the convolution of the spreads introduced by
the atmosphere and that of the telescope.

1.4.2 Optical Transfer function

The Fourier transform of the point spread function is the Opti-
cal Transfer Function (OTF). The absolute value of the OTF is the
Modulation Transfer Function (MTF) and the phase of the OTF
is the Phase Transfer Function (PTF). Since the effects of the tele-
scope/atmosphere are convolved with the PSF, the correspond-
ing OTF’s are multiplied. The OTF of telescope/atmosphere
shows the effect of telescope/atmosphere on the image.

OTFe f f ective = OTFtelescopeOTFatmosphere (1.1)

1.4.3 Strehl ratio

The Strehl ratio is the ratio of the central intensity of aberrated
PSF and that of the diffraction limited PSF. Using the Marechal
approximation for the variance σ2 in the wave-front over the
diameter of a telescope is:

S = e−σ2
(1.2)

This holds good only when σ2 is small.
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1.4.4 Fried parameter

The Fried parameter r0 is a length such that for a telescope of
diameter D=r0, the root mean square wavefront error over the
aperture is 1 radian. It is used as a measure of how good the at-
mosphere seeing condition is. A higher r0 indicates a smoother
(less distorted) wavefront and a sharper PSF. In Appendix A, we
demonstrate the relation between r0 and the wave-front distor-
tion/PSF through simulations.

1.4.5 Turbulence

The Earth’s atmosphere is turbulent, as opposed to laminar. In
laminar flow, non-crossing streamlines can be drawn for the flow,
which is not the case for a turbulent flow. In turbulent flow, en-
ergy is dissipated from large vortices (which are approximately
of the size of the container-infinity in case of atmosphere-called
the Kolmogorov outer scale) to smaller and smaller vortices. In
the smallest vortices (their size is called Kolmogorov inner scale
of turbulence), energy is converted to heat through viscous dis-
sipation.

1.4.6 Kolmogorov Model of Turbulence (5/3rd law)

In the equations/expressions for the structure function of the at-
mosphere, residual wave-front phase error etc. we come across
5/3 power. It is related to the Kolmogorov’s 5/3rd law, which
can be derived through dimensional analysis. Let k be the wavenum-
ber. It is loosely associated with vortices of size k−1 and let l be
the scale of the large eddies. l is the outer scale of turbulence.
The 5/3rd law explains how the energy spectrum behaves in the
inertial subrange. The energy spectrum E (in units of m3/s2) is
related to the wave number k (m−1) and rate of energy dissipa-
tion ε (m2/s3) by:

E ∝ k−5/3ε2/3 (1.3)

The law holds good only in the inertial range of k, where the
length dimension is greater than microscale and smaller than
macroscale.
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1.4.7 Kolmogorov Power Spectrum

The power spectrum of the phase fluctuations Φ(k) correspond-
ing to the path-length fluctuations induced by the atmosphere
can be expressed in terms of r0 under Kolmogorov turbulence
as

Φ(k) = 0.023r−5/3
0 k−11/3 (1.4)

Here k is the coordinate of spatial frequency and r0 is the Fried
parameter.

The phase distortions are related to the power spectrum as:

φ(x, y) = F (
√

Φ(k) exp(jp) (1.5)

where F is the Fourier transform operator and p is a random
number uniformly distributed between ±π. This equation is
used to simulate atmospherically induced phase distortions, known
as phase-screens, over a region of space. More details are pre-
sented in Appendix A.

1.4.8 Seeing

Atmospheric seeing refers to image blurring caused by random
phase distortion of the wavefronts entering a telescope. The im-
age formed by a telescope has a full width half maximum(x) as

x = 0.98λ/r0 (1.6)

In a small telescope(D << r0), the image is nearly diffraction
limited and has a full-width half maximum (x) of

x = 1.22λ/D (1.7)

where λ is the wavelength of observation.
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1.4.9 Speckles

Different regions of a wavefront, have different values of phase
at any instant of time. The values of phase change over space
and time depending on the condition of the atmosphere. Con-
sequently, the short exposure image of a point object (star) is
recorded at the focal plane of a large ground-based telescope,
exhibits a cloud consisting of several tiny bright spots knowns
as the speckles. These spots correspond to the regions of con-
structive interference. An example of speckle pattern is shown
in 1.4

FIGURE 1.4: Short exposure (40 ms) image of a red super giant
star ( α Ori) recorded by the 2.34m telescope of the Vainu Bappu
Observatory, Kavalur, India. The image has been presented in

log scale with pseudo color.

1.4.10 Scintillation

If the wave-front is distorted, both the amplitude and the phase
of the wave-front vary as a function of position on the wave-
front. These amplitude fluctuations grow with distance, even
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when the light propagates through regions that have no turbu-
lence. As the turbulent cells are carried with the wind, the inten-
sity seen by a fixed observer on the ground will vary with time.
This is called scintillation. A characteristic timescale for these
variations is τ ∼ r0/v where vis the characteristic wind velocity.

1.4.11 Atmospheric coherence time

τ0 = 0.31r0/v (1.8)

where v is the wind velocity averaged over the altitude. τ0 is a
measure of how fast the AO system needs to correct the wave-
front.

1.4.12 Isoplanatic angle

The angular region on the image over which the effect of atmo-
spherically induced aberrations are the same is called the iso-
planatic patch and the angular radius is called the Isoplanatic
angle. The Isoplanatic angle is a measure of how spatially cor-
related the atmospheric phase distortion is for different object
field angle. For objects lying within an isoplanatic angle, the
distortions are highly correlated.

1.4.13 Iso-kinetic angle

The angle of the sky over which the motions of the objects are
correlated. In a tip-tilt AO system, target stars need to lie within
an Iso-kinetic angle of the guide star for the correction to be ef-
fective for both of them.

1.4.14 Phase structure function

The phase structure function is defined as the mean square vari-
ation in the phase of a wavefront.

Dφ(r) =< |φ(x)− φ(x + r)|2 > (1.9)

Similarly the refractive index structure function Dn, and temper-
ature structure function Dt are also defined as the mean square
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variation in the refractive index/temperature. These structure
functions are related to the distances over which they are mea-
sured by the following empirical relations:

Dt = C2
t r2/3 (1.10)

Dn = C2
nr5/3 (1.11)

where Ct, and Cn are the temperature, phase and refractive index
structure constants respectively.

r−5/3
0 = 0.423k2

∫
C2

n(h)dh (1.12)

According to Kolmogorov turbulence,

Dφ(r) = 6.88(
r
r0
)5/3 (1.13)

The mean variance continuously increases with increasing dis-
tance according to Kolmogorov’s model. For three simulated
phase screens, the phase structure function was calculated us-
ing eq.1.9 and verified with theoretical eq.1.13 and the results
shown in Appendix B

1.4.15 Greenwood frequency

The Greenwood frequency is the frequency or the bandwidth
required for optimal correction with an adaptive optics system.
It depends on the transverse wind speed and the turbulence
strength in the atmosphere. It has been shown that the residual
phase variance arising from the limited bandwidth of a servo
system is approximated as:

〈σ2
BW〉 = (τ0 f3dB)

−5/3, (1.14)

where τ0 is the atmospheric time constant. This is true for a
servo system with pure integrator. The inverse of τ0 is called
Greenwood frequency.
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1.5 Zernike Representation

The ray of light entering the atmosphere is an electromagnetic
wave. It can be represented by either the electric field vector or
the magnetic field vector. Usually it is represented by the electric
field vector whose amplitude is Aeiφ. Thus the wave is defined
by two parameters: A, amplitude and φ, phase. Surfaces of a
constant phase are called wavefronts.

Errors in the phase of the wave incoming from celestial objects
lead to loss of clarity and degradation of the image. Errors of
phase are created due to difference in the path length traveled
by different rays.

Zernike showed that deviations of a wavefront from a plane
wavefront can be expressed as a polynomial series and described
an infinite series of polynomials named after him.

φ = Σ∞
i=0aiZi (1.15)

Each polynomial can be written as Zm
n (ρ, θ) where ρ is the radius

and θ is the angle. Here n is called the radial order (based on the
power of ρ occuring in the generating function of the Zernike
series), and m is the azimuthal order. They can also be repre-
sented with single index(Noll’s notation) as Zj(ρ, θ). The j is
determined by:
- ordering the polynomial with lower radial order first
- and for given radial order the sine term is odd numbered and
cosine term is even numbered. Converting between indices (es-
pecially from j to m and n ) is useful because we generate the
polynomials using two indices(m,n) and some formulae are writ-
ten in terms of one index (j). A method of conversion between
the two indices is given in Appendix D.

The generating function for Zernike polynomials is:

Zm
n (ρ, θ) =

{√
2(n+1)
1+δm0

R|m|n (ρ)sin(mθ), i f m ≥ 0√
2(n + 1)R|nm|(ρ)cos(mθ), i f m < 0

(1.16)
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R|m|n (ρ) = Σ(m−n)/2
k=0

(−1)k(n−1)!
k![ n+m

2 −k]![ n−m
2 −k]!ρ

n−2k,

with n ≥ 2m and n− |m|an even number
(1.17)

Zernike polynomials are made up of terms that are of the same
form as the types of aberrations often observed in optical tests.
For example primary spherical aberration (SA)is the sum of terms
of radial order 4, and secondary SA is (Z0

6) and so on. The to-
tal SA is the sum of all orders of SA. Primary Coma is the two
terms Z1

3. Similarly other aberrations can be expressed as sum
of appropriate polynomials.

Zernike polynomials are a complete set of polynomials in co-
ordinates – ρ and θ and are orthogonal in a continuous function
over the interior of a unit circle, and in general they will not be
orthogonal over a discrete set of data points within a unit circle.

Zernike polynomials have three properties that distinguish them
from other sets of orthogonal polynomials:
-They have simple rotational symmetry properties that lead to a
polynomial product of the form R[ρ]g[θ] where g[θ] is a contin-
uous function that repeats itself after every 2π radians.
-The radial function must be a polynomial in ρ of degree 2n and
contain no power of ρ less than m.
-r[ρ] must be even if m is even, and odd if m is odd (Wyant,2003).

1.5.1 Some advantages of modeling wave-front perturbations
with Zernike polynomials

• Once we fit a wavefront with a certain number of terms
and then fit the same wavefront with some more terms, the
initially determined coefficients don’t change after fitting
more number of terms.

• The polynomial generating formula is the same irrespective
of the size of aperture
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• The mean value of each Zernike polynomial is zero (except
piston term, whose mean value is 1). Thus the mean value
of the wavefront to be fit is given only be the coefficient of
the piston term.

• The variance over the polynomial is =1 for all polynomials.
Thus the variance of the estimated wavefront is given by
the sum of coefficients of the terms, which is very useful
while calculating variances of phase screens.

Most of the advantages don’t hold if the aperture is non-circular
or is not a filled circle. Thus Zernike polynomials are useful
only for fully filled apertures. The first 40 Zernike polynomials
are shown in Figure 1.5. These were generated using MATLAB
software.

1.5.2 Residual wave-front error after modeling J Zernike terms

When a phase screen is modeled in terms of a fixed number of
Zernike terms, the residual phase variance σ2 over a pupil of
diameter d after fitting J terms is given by:

σ2 = 0.2944J−
√

3/2(d/r0)
5/3 (1.18)

Where

r0 = Fried parameter. This holds good only for number of terms
more than 15. The mean square wavefront error of an uncor-
rected wavefront is given by:

σ2 = 1.031 ∗ (D/r0)
5/3 (1.19)

It can be found analytically using the formulae or Zernike poly-
nomials that the tip-tilt correction alone can lead to 87% relative
improvement in the mean square phase variance over the pupil.
The plot of residual variance vs. number of terms is as shown in
Fig.1.6
Since the wavefront is modeled as φ = ΣaiZi, making use of
the orthonormal nature of the polynomials, one can write ai =
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FIGURE 1.5: The first 40 zenike polynomials generated using
MATLAB. Images are numbered left to right, top to bottom.
Each image represents the zernike polynomial over a 50 cm
aperture. Each pixel represents 1 mm, size of the image is, size

of the in 128-by-128.
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FIGURE 1.6: Residual variance of wavefront for phase screen
of r0=10 cm (numerically calculated and theoretical values are

plotted).∫
φZids where ds is an infinitesimal area in the region of the

wavefront. This property can be made use of to calculate the
covariance of the coeffficientss ai.
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Chapter 2

Solar Adaptive Optics

2.1 Methods Used

There are three possible methods of wavefront sensing in so-
lar adaptive optics. They are: (1). Correlation Tracking Shack-
Harttmann Wave-front Sensor (CT-SHWFS) (2) Quad-cell or quad-
rant detector (3) Limb tracking. In CT-SHWFS, the sub consec-
utive images to find the overall shift correction required, 2)In
Quad-cell method the image is divided into 4 quadrants and in-
tensity is measured in each quadrant, 3) In limb tracking method,
the motion of a part of the solar image containing the solar limb
is tracked.

In any stellar wave-front sensing system, the motion of the
image centroid determined and the shift in centroid gives the
tilt in the pupil. This method is not suitable for solar images
because sun is an extended source and the centroid does not
give the correct value of tilt required. We use CT-SHWFS for
estimating the local and global slopes of the wave-front over the
telescope pupil.

2.1.1 Correlation method (currently used)

Solar images are correlated to find the overall tip-tilt correction
required. Correlation function is defined as:

h(τ) = f (t)× g(t) =
∫ ∞

−∞
f (t)g(t + τ)dt

whereas a convolution function is defined as:

h(τ) = f (t) ∗ g(t) =
∫ ∞

−∞
f (t)g(τ − t)dt
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If we take the Fourier transform of the correlation function, we
have:

h(τ) =
∫ ∞

−∞
[
∫ ∞

−∞
F(γ)e−2πντdν

∫ ∞

−in f ty
G(ν′)e−2πν′(t+τ)dν′ ]dτ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−in f ty
F(ν)G(ν′)e−2π(ν′−ν)τe−2πν′(t)dνdν′dτdνdν′

Thus h(τ) =
∫

F(ν)G(ν′)e−2πiν′τ[
∫ ∞
−∞ e−2πiτν′−ν)dτ]dνdν′

=
∫ ∞

−∞

∫ ∞

−∞
F(ν)G(ν′)e−2πiν′τδ(ν′ − ν)dν′dν

=
∫ ∞

−∞
F(ν)G(ν)e−2πiντdν

= F [F(ν)G(ν)]

The correlation function h shows how similar the two functions
f and g are. In our case f and g are consecutive solar images.
The maximum of the correlation function shows the maximum
similarity between the images and the location of the maximum
shows the relative shift between the two images. Thus the coor-
dinates of the maximum of the correlation function give the tilt
correction to be applied to the image.

2.1.2 Quad cell

The image space is divided into 4 quadrants as in Fig 2.1. A ref-
erence intensity is fixed: it could be the intensity pattern of the
first image. The shift in intensity relative to the reference gives
the tip-tilt correction required. This method is not useful for so-
lar images except for the case when there is an isolated small
sunspot. However, an isolated small sunspot may not always
be available, especially during the time of minimum activity in
the sunspot cycle.
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FIGURE 2.1: Image in Quad cell-image is divided into four
quadrants

2.1.3 Limb tracking

A small part of the image containing the limb is tracked to de-
termine the tip-tilt correction. This method also may be used for
solar images.
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Chapter 3

Solar Image Stabilization System

3.1 Experimental Setup of the Image Stabilization
System

Figure 3.1 shows the laboratory setup of the proposed solar im-
age stabilization system. A small (≈ 15”× 15”) portion of the so-
lar image formed by the telescope is selected with a pinhole. The
beam diverging from the pinhole is then collimated by a lens.
An one-inch diameter flat mirror mounted on a piezo-electric ac-
tuator at angle of 45 degrees with respect to the collimated beam
diverts the beam towards a beam splitter. The transmitted beam
from the beam splitter is sent to be focused on to a CCD for ob-
serving the Sun (science camera), the reflected beam is focused
onto a CCD to for calculating tip/tilt correction required. The
setup is as shown below: Here the CCD for correction takes the

FIGURE 3.1: The experiment setup as used in the lab

images continuously during image acquisition and stores them
in a computer. Consecutive images from the CCD are then cor-
related with a reference image and the relative shifts between
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them are calculated. The shifts are then converted into incre-
mental voltages using a predetermined calibration procedure.
These voltages are then applied to the piezo-electric actuators
following a control algorithm. The voltages thus applied to the
actuators tilt the mirror at the pupil plane in such a way that the
image motion at the image plane is arrested. Once the image
motion is stabilized, the science camera can record long expo-
sure images without significant loss due to image motion.

Before deploying such an image stabilizing system at the Ko-
daikanal Tower Telescope, we decided to do the system integra-
tion and testing at the adaptive optics laboratory at IIA, Banga-
lore. In the laboratory setup, the solar image will be replaced
with a spatial light modulator containing solar images recorded
at the site.

For the purpose of calibration, we illuminate the pinhole with
a He-Ne Laser in the laboratory.

3.2 Identification of Components

As can be seen from the Figure 3.1, the components of the ISS
are identified and listed as:

S.No Component Name Specification Quantity
1 Lens Diameter=50mm, Focal length ∼ 1m 3
2 Beam Splitter 50-50 1
3 Laser He-Ne, 632.8 nm 1
4 Pinhole 0.5 mm 1
5 CCD imaging, observing 2
6 Mirror Diameter=25 mm 1
7 Piezoelectric Actuator Range=150V in x and y axes 1

3.3 Design parameters of ISS for the KTT

The Kodaikanal Tower Telescope consists of a two mirror coelo-
stat system, a 60 cm diameter flat mirror and a 38 cm diameter
achromatic doublet. The coelostat consists of a two 60 cm op-
tical flats housed on top of a 11 m tower. The primary mirror
of the coelostat is rotated about an axis aligned with the north-
south direction and is elevated at an angle equal to the latitude
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of the place, at half the diurnal rate. The secondary mirror of the
coelostat is adjusted such that the sunlight goes vertically down
through the tower. A 60 cm flat mirror kept at angle of 45 de-
grees to the vertical at the bottom of the tower then directs the
sunlight horizontally on to the achromatic doublet. The achro-
matic doublet forms a 38 cm image of the Sun at a distance of
36 m.
Before starting the experiment, we have estimated the approx-
imate value of the parameters of the components (collimating
and imaging lenses, piezo-electric stage) as follows:
The F-number of the telescope imaging system is 94.7.
The diffraction limited resolution of KTT at 500 nm is 0.33 arc-
sec (1.22λ/D, where λ is the wavelength and D is the diameter
entrance pupil).
Plate scale or image scale of KTT = 1/focal length (in mm) =
206265×1/36000=5.7"/mm. We choose the width of the colli-
mated beam as 10 mm. This choice leads the focal length of the
collimating lens as fc = 94.7 × 10 = 947 mm.
If choose the focal length of the imaging lens as 947 mm, the im-
age scale at the image plane will be 5.7 arc-sec per mm. For a
pixel size of 13 micron, a 3.3 mm image of the solar surface im-
age will occupy about 256 pixels and will correspond to about 19
arc-sec field of view.
By slightly reducing the focal length of the imaging lens and the
camera pixel size we can achieve a field-of-view of 15".
The measured mean square image motion the KTT is about 1.1
arcsec2. Theoretically, this corresponds to r0 of ∼ 4 cm at 550
nm. This approximately corresponds to about 5 µ rad. We have
selected off-the shelf piezo-electric stage from Piezosystemjena
(www.piezosystem.com). It has a maximum of± 4 milli-radians
tilt range and 0.02 µ radians resolution. This is well suited for
our purposes.
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3.4 Component Evaluation

3.4.1 The Actuator and its calibration

The Actuator
The actuator is a piezoelectric actuator. Thus it works accord-
ing to the principle of piezoelectric effect. When a piezoelectric
crystal is subjected to strain, it generates an electric potential
difference across it. The potential difference may be in the same
direction as the strain (longitudinal piezo-electric effect) or in
a direction perpendicular to strain (transverse piezoelectric ef-
fect). The reverse effect also occurs: when a differential voltage
is applied across the ends of a piezoelectric crystal, a differen-
tial strain is produced in the crystal. This way a single crystal
produces a certain amount of strain and a stack of crystals, each
with a voltage difference across their ends give a larger amount
of strain. This strain is used to actuate the tip-tilt by attaching a
mirror to one surface of the piezo-electric crystal.

Calibration The actuator has two input channels to input the
voltage (one channel for tilt about each axis). After a mirror is
mounted onto the actuator, we wish to know the following:
We need to know how much the mirror turns for a certain volt-
age applied in each channel. We also need to know about which
axis the mirror is turning when a voltage is applied (rotation
may not be along one axis only. Based on the position in which
the actuator is mounted, the rotation may have components along
two axes). The setup shown in 3.2 was used for the calibration
of the actuators:

3.4.2 Procedure

• The components are assembled and aligned according to
the setup.

• The CCD is connected to power supply and computer and
neutral density filters are placed to prevent it from saturat-
ing.
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FIGURE 3.2: Setup used in lab to calibrate response of actuator

• Through the ANDOR Solis software, the temperature of the
CCD is set to −850C to bring down the levels of dark cur-
rent.

• The actuator is connected to the PC

• Voltage is applied to one of the actuators in appropriately
small steps and the respective images are taken.

• The changes in displacement of the image for changes in
Voltage are as shown below 3.1:

• They are plotted as shown 3.3, 3.4

• The calculation is repeated for Voltage applied in other axis
3.2, 3.5, 3.6

• Next voltage was applied in steps in the other (perpendic-
ular) direction and the shift of image in each direction is
measured
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Vx ∆x ∆y
-15 – –
-10 -32.33 1.4
-5 -66.36 1.86
0 -100.92 2.31
5 -135.33 2.5
10 -170 3.09
25 -204.7 3.7
20 -239.33 4.22
25 -273.62 4.62
30 -307.86 4.86
35 -341.5 5.33
40 -375.2 5.8
45 -408.25 6
50 -440 6.3
55 -471.5 6.5
60 -500 7

TABLE 3.1: Shift in position of image for voltage applied along
the first axis

FIGURE 3.3: Plot of shift of image in x direction vs. voltage
applied along first axis. The small vertical lines are error bars

The interaction matrix of the actuators is given by 3.1[
∆x
∆y

]
=

{
a11 a12

a21 a22

} [
∆Vx

∆Vy

]
(3.1)
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Vy ∆x ∆y
15 – –
20 0.75 46.17
25 0.45 91.36
30 0.2 136.8
35 -0.11 182.22
40 -0.38 227.62
45 -0.43 273.14
50 -1 318.67
55 -1.2 363.8
60 -1.5 408.75
65 -1.67 453.33
70 -2 498.5

TABLE 3.2: Table of specifications-Lens1, average f=988.7mm,
std. deviation=2.1

FIGURE 3.4: Plot of shift of image in y-direction vs. change in
Voltage in x-direction

Thus a11=-6.7579
a12=-0.0017
a21=-0.1288
a22=9.1048
The control voltages to be applied to the actuator are estimated
as the product of control matrix and estimated shifts. The con-
trol matrix is obtained by inverting the interaction matrix as
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FIGURE 3.5: Plot of shift of image in y-direction vs. change in
Voltage in x-direction

FIGURE 3.6: Plot of shift of image in y-direction vs. change in
Voltage in x-direction

shown in Eq. 3.2[
∆Vx

∆Vy

]
=

{
−0.148 −0.00003
−0.002 0.109

} [
∆x
∆y

]
(3.2)



3.5. Uncertainty of measurement 31

3.4.3 Measurement of focal lengths of the Lenses

As shown in setup, two lenses of focal length∼ 1000 mm and
diameter 50 mm were used. A set of readings of object distance
(u) and image distance (v) were noted for each lens to verify
their focal lengths as shown in tables 3.3, 3.4

S.No u (mm) v (mm) f (mm)
1 2000 1960 989.9
2 1900 2070 990.7
3 1800 2200 990
4 1850 2120 987.9
5 1950 1990 984.9
6 2000 1960 989.9
7 1950 1990 984.9
8 1900 2070 990.7
9 1850 2120 987.9
10 1800 2200 990

TABLE 3.3: Table of focal length measurement-Lens1, average
f=988.7mm, std. deviation=2.1

S.No u (mm) v (mm) f (mm)
1 2000 2050 1012.3
2 1950 2080 1006.4
3 2050 1980 1007.2
4 1900 2160 1010.8
5 1850 2210 1007
6 2000 2050 1012.3
7 1950 2090 1008.8
8 2050 1980 1007.2
9 1900 2160 1010.8
10 1850 2210 1007

TABLE 3.4: Table of focal length measurement-Lens2, average
f=1009mm, std. deviation=2.24

3.5 Uncertainty of measurement

Focal length of a lens is given by 1
f = 1

v −
1
u where u is negative

according to the sign convention used. Thus 1
f =

1
v +

1
u if all val-

ues are measured as positive. Here v and u are measured.
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The uncertainty in the measurement of f is given by:

∆ f 2 = [
v4

(u + v)4 ]∆u2 +
u4

(u + v)4 ∆v2 (3.3)

In this case, ∆u = ∆v = 1mm. The values are substituted in the
above formula and the average uncertainty in the measurements
turns out to be = 0.35mm

3.6 Depth of focus

The image detected anywhere within this region is

d = 2× (
f
a
)

2

× λ (3.4)

which is equal to 9mm.
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Chapter 4

Summary & Future work

As all the opto-mechanical components could not be procured
on time, I could not complete the project. Nevertheless, I have
throughly studied the basics of a correlation tracking wave-front
sensor and an image stabilization system both theoretically and
through computer simulations. In what follows, I enumerate
the list of things that have been completed and those that are
pending.

List of completed tasks:

1. Design of the system parameters.

2. Procurement of the major components.

3. Calibration of for the tip/tilt actuator.

4. Procedure to estimate the global wave-front tilt using CT-
SHWFS.

List of tasks to be accomplished:

1. Developing an integrated software for image acquisition,
estimation of relative shifts and the corresponding control
voltages.

2. Developing a control software suitable for closed loop op-
erations with suitably tuned digital PID controller.

3. Demonstration of the closed loop operation in the lab with
solar images loaded in SLMS. SLMs are yet to be procured.

4. Deploying the system at KTT and evaluating the perfor-
mance.
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Prospects for a Ph. D. Thesis:

1. Once the image stabilization system is deployed, the project
can be continued to develop and deploy a low order adap-
tive optics system.

2. Next, an high order AO system can be developed to en-
hance the Strehl ratio (contrast in the case of solar images)
further.

3. This can further be followed up by the development of multi-
conjugate AO system that corrects over a wide field of view.
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Appendix A

Simulation of Point Spread
Function for a given r0

A.1 Introduction

The atmosphere through which the light from a celestial object
propagates is turbulent and distorts the wave front. Thus the
image quality is significantly deteriorated.

A.2 Creating a phase screen

Phase screen: A phase screen is the atmospheric path length
fluctuations over a region of space. Wave front is a surface of
constant phase. Mathematically wave front is represented by a
complex number (e.g., Aeiφ). Phase screens occur in real and
complex pairs. We are interested only in the real part of the
phase screen since that is the one which is measured.
The spatial power spectrum Φ(k) which was given by Kolmogorov
is:

Φ(k) = 0.023r−5/3
0 k−11/3 (A.1)

Here k is spatial frequency, r0 is Fried parameter.

Then we created 3 phase screens of side 40.98m were created.
The phase screens are shown below.

A.3 Point Spread Function:

The point spread function is obtained through the following
steps:
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FIGURE A.1: Phase screen of size 40.96 m for r0=0.1 m with each
pixel=1 cm

• An aperture function w is created: w=1 if radial coordinate
<= R, 0 if radial coordinate >R, where R is the radius.
In this case the radius is taken to be R = 19 cm to match with
that of KTT.

• The aperture function superposed on a phase screen gives
the phase fluctuation over the aperture.

• Instantaneous intensity PSF is given by

PSF = |F ( f )|2 (A.2)

where f is the phase function

• The aperture function is shifted along the phase screen and
the superposed apertures represent the phase over the aper-
ture at different times. The average PSF of many instanta-
neous PSFs is calculated and shown.

The shapes of actual PSF A.7 and ideal psf A.8 are shown.
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FIGURE A.2: Phase screen of size 40.96 m for r0=0.15 m with
each pixel=1 cm

FIGURE A.3: Phase screen of size 40.96m for r0=0.2 m with each
pixel = 1 cm
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FIGURE A.4: Real part of complex wavefront over a 38cm di-
ameter aperture with each pixel=1cm

FIGURE A.5: Real part of complex wavefront over a 38cm di-
ameter aperture with each pixel=1cm. r0 = 20 cm.
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FIGURE A.6: Average Point spread function for r0=0.1m; 1 pixel
=

FIGURE A.7: 3D shape of a PSF of an aperture of diameter 38
cm and r0 =20 cm
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FIGURE A.8: 3D shape of an PSF of an aperture of diameter 38
cm (formed by a flat wavefront, does’t depend on r0).
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Appendix B

Assessment of phase screens

B.1 The R.M.S fluctuations of phase

As shown in previous chapter, a phase screen is a plot of fluc-
tuations of phase over a region. The Fried parameter can be
used to indicate how good the seeing condition happens to be.
Generally, the magnitude of phase fluctuations increases with
decreasing Fried parameter r0. In the phase screens simulated
in the previous chapter the values in a row across the plot are
plotted and their r.m.s value is calculated for each phase screen
as show in figure.

B.2 The phase structure function

The phase structure function is defined as the mean square vari-
ance of phase. According to the empirical law of Kolmogorov
power spectrum, the phase structure function is expressed as

Dφ(r) = 6.88(
r
r0
)

5/3
(B.1)

The phase structure function can also be measured across a re-
gion using

Dφ(r) =< |φ(x)− φ(x + r)|2 > (B.2)

x is the location in space, r is the distance for which Dφ is calcu-
lated, ideally all possible x’s have to be averaged.

B.3 Full Width at Half Maximum of PSF

FWHM: The width of the plot measured between those points
with value = 1/2 of function’s maximum value. It is a measure
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FIGURE B.1: Phase fluctuations (in rad) over the length of the
phase screen and their rms values for 3 values of r0. The plot
for each r0 is offset by a certain constant value for clarity. Thus
only the magnitude of fluctuations (not the total value along

the y-axis is significant.

of the extent of the function. A plot of cross section of the PSF is
shown. The FWHM of the PSF according to theory is

0.98(
λ

r0
) (B.3)

Here λ is 550 nm and r0 is 0.1 m. Thus FWHM = 0.56". No. of
pixels per diffraction limit = 128

38 = 3.36.
Diffraction limit of telescope = 1.22 λ

D = 0.331".
1 pixel = 0.331

3.36 = 0.108". Therefore theoretically FWHM in pixels
= 1.12

0.108 = 10.36 pixels
In the plot, FWHM = 12 pixels.
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FIGURE B.2: Simulated and theoretical plots of the phase struc-
ture function over a distance of 5 m

FIGURE B.3: Plot of magnitude of PSF across its cross section,
r0=0.1 m
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Appendix C

Creation of phase screen by
identifying the Zernike polynomial
series

Aim: To create a phase screen using Zernike polynomials: ΣaiZi.

In order to do so, the Zernike coefficients ai must be determined.
They can be derived by first calculating the residual error after
correction for a certain number of modes. The coefficients were
first obtained by Fried(1988) for polynomials defined by Fried.
Using the properties of Zernike polynomials, it can be written,
as shown in Noll(1975), the covariance matrix of zernike coeffi-
cients aj in the Fourier domain(with radial coordinate k) can be
written as:

< aja∗j′ >= (0.046/π)(R/r0)
5/3[(n + 1)(n′ + 1)]1/2(−1)(n+n′−2n)/2δmm′×∫

k−8/3 Jn+1(2πk)Jn′+1(2πk)
k2 dk (C.1)

r0: Fried parameter,
Jn(k) is bessel funtion of nth order at location k.
Here j is the index of the Zernike polynomials numbered consec-
utively from 1, n and m are another type of indices of Zernike
polynomials depending on degree of radial polynomials. It is
shown in Appendix C how to convert one notation to the other.

This integral has to be solved to obtain the covariance matrix.
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In the same paper Noll(1975) it is shown that

Inn′ =
∫ ∞

0
k−8/3 Jn+1(k)Jn′+1(k)

k2

=
Γ(14

3 Γ[(n + n′ − 14
3 + 3)/2]

214/3Γ[(−n + n′ + 14
3 + 1)/2]Γ[(n− n′ + 14

3 + 1)/2]Γ[(n + n′ + 14
3 + 3)/2]

(C.2)

where Γ is the Gamma function.
From this the integral in the covariance formula can be calcu-
lated to be = < ajaj′ >= (0.046/π)(R/r0)5/3[n = 1)(n′+ 1)]1/2(−1)(n+n′−2n)/2δmm′ Inn′(2π)11/3

Thus we can obtain the covariance matrix of Zernike coefficients
upto any specified j. Next we obtain a set of Gaussian distributed
random variables with a covariance matrix specified by < aja′j >
for the element jj’ and mean zero.

Finally the wavefront is constructed from φ = σn
i=1aiZi. The

program for generation of Zernike coefficients was written in
Matlab as shown below:

C.1 Matlab Code

clear b coa coa1
clc
r0 = 5;
c=(0.046/pi)*(19/10) ∧ (5/3)*(2*pi)∧(11/3);
k=0:0.1:21;

for n=1:9
b(n,:)=besselj(n,2*pi*k);

end %gives n*k matrix with n as order of bessel function of first
kind, k is variable argument if besel function
for j=1:40

r=roots([1/2,3/2,-j]);
n=double(ceil(vpa(max(r),5))); %to find n of the zernike polyno-

mial corresponding to row
if rem(n,4)==1 ||rem(n,4)==2 %this if loop is to find the m’s
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if xor(rem(j,2),rem(n,2))
m=double(j-n*(n-1)/2-n);

else
m=double(j-n*(n-1)/2-n+1);

end
else

if xor(rem(j,2),rem(n,2))
m=double(j-n*(n-1)/2-n+1);

else
m=double(j-n*(n-1)/2-n);

end
end
for j1=1:40 % to create 27*27matrix if we require 27 Zernike poly-

nomials, I have arbitrarily chosen 27 Zernike polynomials
r1=roots([1/2,3/2,-j1]);
n1=double(ceil(vpa(max(r),5))); %to find n of zernike polyno-

mial corresponding to column
if rem(n,4)==1 ||rem(n,4)==2

if xor(rem(j1,2),rem(n1,2))
m1=double(j1-n1*(n1-1)/2-n1);

else
m1=double(j1-n1*(n1-1)/2-n1+1);

end
else

if xor(rem(j1,2),rem(n1,2))
m1=double(j1-n1*(n1-1)/2-n1+1);

else
m1=double(j1-n1*(n1-1)/2-n1);

end
end
if m==m1 %since the kronecker delta occurs in the equation

jj=b(n+1,:).*b(n1+1,:);
ij=integrate(jj);
ij=ij(end);
coa(j,j1)=c*((-1)∧ ((n+n1-2*n)/2))*ij*sqrt((n+1)*(n1+1)); %eq

2.5 as in Noll’s paper
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coa1(j,j1)=double(c*((-1)∧ ((n+n1-2*n)/2))*sqrt((n+1)*(n1+1))*gamma(14/3)*gamma((n+n1-
14/3+3)/2)/(2∧ (14/3)*gamma((-n+n1+14/3+1)/2)*gamma((n-
n1+14/3+1)/2)*gamma((n+n1+14/3+3)/2)));

else
coa1(j,j1)=0; %eq2.5
coa(j,j1)=0;

end
end
[j,n,m]% to count/display j,n,m, can be commented

end

figure,contour3(coa1) an=mvnrnd(zeros(size(coa,1),1),double(coa1).*eye(size(coa)));
%to get the gaussian distributed variables which will be coefficients ai

C.2 Result

A plot of a′is looks likeC.2:

FIGURE C.1: Plot to show magnitudes of Zernike coefficients

According to Fried(1988), the tip and tilt (linear corrections)
contribute to 87% of all the corrections. It can be seen in the fig-
ure above that the first two terms are much larger in magnitude
than the rest and the magnitude decreases with higher order of
the terms.
Next a phase screen is constructed using the Zernike coefficients
obtained:
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FIGURE C.2: Wavefront created from the a′is

C.3 Verification

In this section it is verified whether the coefficients generated
as random numbers produce a phase screen of r0 close to the r0

used to generate the coefficients.
According to the definition of r0, the mean square variation of
phase over a region of diameter 5cm = r0 is 1.
The figure of wavefront shown above represents the phase over
an aperture of diameter 38cm. 1mm is scaled to 1pixel. Here the
mean square variation of phase over a region at of diameter 50
mm (=r0), (which is 50 pixels) situated at the center is calculated.

In the simulated wavefront, variation over a circle of diameter
60 mm∼ 1. The reason may be the limited number of Zernike
terms calculated.
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How to convert the index of
Zernike from single index notation
j to two indices n & m

When creating Zernike polynomials the notation Rm
n was used(as

shown in previous apppendix). The polynomials can also be
numbered sequentially starting from 0 (piston).

Thus the polynomials fit into a table as shown below:

TABLE D.1: Zernike polynomial indices: column and row
headings are n and m respectively, the entries are j

m|n 0 1 2 3...

0 0 3
1 1,2 6,7
2 4,5
3 8,9

For odd n, the m’s start from 1 and take the values of all odd
numbers upto n. For even n, the m’s start from 0 and take the
values of all even numbers upto n.

For any m=0, there is 1 term for one value of n. For any n and for
any m not equal to 0, there are 2 terms corresponding to cosmθ
and sinmθ.
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D.1 Determination of n

Consider any odd value of n. The number of terms with index
n are 2(n+1

2 ) = N + 1.

Consider any even value of n. The number of terms with in-
dex N are 2(N

2 ) + 1 = N + 1.

Happily the same formula for number of terms corresponding
to a particular value of n is the same irrespective of whether
n is even or odd. Then applying the summation over n+1 to
get the number of terms with n less than or equal to N, we get
J = ∑N

1 (n + 1) = N(N+1)
2 + N. This is the case if we count all the

m’s of n=N. But we may stop at m=M. So we count the all the
m’s upto N-1:j1 = ∑N−1

1 (N + 1) = N(N−1)
2 + N − 1.

Thus
N2

2
+

N
2

= J

has to be solved for n. Say each n corresponds to maximum M
values of m. Then a particular j may or may not correspond
to the last value of m. So the floor value of n obtained from
the quadratic equation has to be taken. Or one can solve the
equation

N2

2
+

3N
2

= J

and the ceil of n has to be taken.

D.2 Determination of m

If n is odd, there are N+1
2 values of m and if n is even, there are

N
2 + 1 values of m. In both cases, the number of terms with index
N and m upto M = M+1 if both the sinMθ and cosMθ terms are
counted. and = M if either sinMθ or cosMθ is counted. But given
only a value of j, we cannot determine which is the case. So it
has to be determined from other trends in the table. So far there
are 2 formulae: m = j− n(n−1)

2 − n + 1 and m = j− n(n−1)
2 − n.
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From the table we write down which formula is applicable de-
pending on whether j is odd and whether n is odd as follows:

It can be seen that:
For n=1,2,5,6...
If both n and j are odd and if both n and j are even, the first for-
mula applies.
If either n or j but not both are odd, the second formula applies.

For n==3,4,7,8...
If both n and j are odd and if both n and j are even, the second
formula applies.
If either n or j but not both are odd, the first formula applies.
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Results of measurements of some
lenses

S.No u (mm) v (mm) f (mm)
1 1800 2570 1058
2 1800 2585 1061
3 1850 2450 1054
4 1850 2450 1054
5 1900 2410 1062
6 1900 2430 1066
7 1950 2325 2295
8 1950 2295 1054
9 2000 2270 1063
10 2000 2280 1065
11 2050 2250 1073
12 2050 2230 1068
13 2100 2170 1067
14 2100 2175 1068
15 2150 2050 1049
16 2150 2045 1048
17 2200 2070 1066
18 2200 2060 1064
19 2250 1990 1056
20 2250 1985 1055

TABLE E.1: Table of specifications-Lens1, average f=1061mm,
std. deviation=6.66

It is noted that Lens2 has an amount of astigmatism. The
horizontal and vertical lines of the object are focused at different
distances:

The astigmatism is reduced by reducing the aperture diame-
ter of the lens,. Thus:
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S.No u (mm) v (mm) f (mm)
1 1700 1935 905
2 1700 1940 906
3 1750 1860 902
4 1750 1840 897
5 1800 1810 902
6 1800 1810 902
7 1850 1750 899
8 1850 1745 898
9 1900 1710 900
10 1900 1720 903
11 1950 1635 889
12 1950 1640 891
13 2000 1550 873
14 2000 1560 876
15 2050 1684 925
16 2050 1685 925
17 2100 1630 918
18 2100 1640 921
19 2150 1815 948
20 2150 1815 984

TABLE E.2: Table of specifications-Lens2, average f=910mm,
std. deviation=28
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S.No u (mm) v (mm) f (mm)
1 1700 2080 935
2 1700 2090 937
3 1750 2015 936
4 1750 2010 936
5 1800 1935 932
6 1800 1940 934
7 1850 1880 932
8 1850 1860 927
9 1900 1825 931
10 1900 1830 932
11 1950 1760 925
12 1950 1780 930
13 2000 1750 933
14 2000 1750 933
15 2050 1710 932
16 2050 1700 929
17 2100 1660 927
18 2100 1680 933
19 2150 1635 929
20 2150 1635 929

TABLE E.3: Table of specifications-Lens3, average f=932mm,
std. deviation=3.22
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Actuator Specifications

F.1 Working the actuator

The actuator has two rotational degrees of freedom. The actu-
ator has two input voltages for each direction of rotation, each
of which is applied through controller(evd300). Physically, the
amplifier for the actuator F.1 and actuator F.2 look as shown

FIGURE F.1: Amplifier evd300-it amplifies the signal sent from
the computer before applying it to the actuator

F.2 Starting up the power supply

• Open packaging of the evd300 and set it on its stand with
display facing front. Connect the power cable from the
socket at the back to the mains supply and switch on the
power switch of the evd30.

• Press the on/off switch beside the front display-all the LED’s
will glow for a few seconds indicating the self test and soft-
ware set automatically performed by the EDS. Then a single
green LED glows steadily without flickering indicating that
evd300 is ready for use.
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FIGURE F.2: The actuator with mirror attached and mounted

• The knob below the display is a potentiometer control for
the input voltage.

• Initially upon switching on, the display shows -20V. This is
the default input voltage of the EDS.

• Turn the potentiometer knob clockwise to increase the volt-
age upto 130V and then in anticlockwise direction upto -
20V.

• Thus the evd300 and its power supply is working

• Switch off the EDS by pressing the on/off switch beside the
display for more than two seconds

• Switch off power supply to evd300 by switching off the
black switch at the back.

• Caution: If the actuator is idle for more than 24 hrs, it is
advisable to switch off power supply from the mains.

F.3 Attaching the mirror

A double-sided tape may be used to attach mirror above the
actuator. Stick tape neatly on black surface around the center
of the top surface of the actuator and place mirror over tape.
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Caution: Do not at any time apply considerable pressure directly
on the actuator or on the sides of the actuator.

F.4 Applying voltages to the mirror

The actuator needs to be connected to the EDS via the coaxial
cables provided for the purpose. Each cable is for voltage along
each axis. Each cable has to be connected to each EDS. While
connecting cables, the red dot on the cable from actuator must
be aligned with red dot on cable form EDS. Once the cables are
connected, the voltages displayed on the EDS are applied to the
actuator.

F.5 Operating via computer’s hyperterminal

Notice that the evd300 has two kinds of ports and may be con-
nected to a computer through either of them:
RS232 port
ftd2 port
We have connected the actuator via the USB port using the ap-
propriate cables provided. In the computer, it can be seen that
two com ports are connected(for each axis).
Using hyperterminal: To operate it from a windows computer,
a hyperterminal may be downloaded and installed. After in-
stalling the hyperterminal, select the port to which EDS is con-
nected. The following are some of the commands (which are be
used more frequently) which may be typed in hyperterminal:
The commands are supposed to be typed as: command,channel,value
and the command gives the value to the channel. If the value is
not specified, the command shows the existing value.

Command meaning/output
stat sets the value of Voltage(open loop) or microns displacement(closed loop)
mess measures the value in the channel
ktemp sets the temperature in degree Celsius
fan switches the fan on(1) off(0)

TABLE F.1: table showing some of the commands which may
be used in hyperterminal
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Using Matlab:

In order to operate from Matlab, first some assembly files need
to be loaded in workspace. Assembly files usually have the ex-
tension .dll. The following are some of the commands used:

1. The commands to load the appropriate assembly files are:
asm1 = NET.addAssembly(’c:\PSJ\piezojenad-Drive\Piezojena.
Protocols.dll’)
asm2 = NET.addAssembly(’c:\PSJ\piezojenad-Drive\Piezojena.
Ftd2xx.dll’)
asm3 = NET.addAssembly(’c:\PSJ\piezojenad-Drive\Piezojena.
Visa.dll’)
asm4 = NET.addAssembly(’c:\PSJ\piezojenad-Drive\Piezojena.
Protocols.Ddrive.dll’)
The commands create 4 assembly variables called asm1, asm2,
asm3 and asm4 of type dll.

2. Next certain call commands have to be activated. For this
the call constructor command has to be given:
service = Piezojena.Protocols.Ddrive.DdriveServices();

3. Next the device has to be connected. in this step the port
where the actuator is connected needs to be specified: ddrive
= service.ConnectDdriveToSerialPort(’COM1’);
This is a function with argument COM1. It creates a vari-
able called ’ddrive’ which is of variable-type ’drive’. This
command connects ’ddrive’ to COM1.

4. To set a desired voltage in the channel,
ddrive.SetDesiredOutput(0, 10)
This function has two arguments (0 and 10). The first argu-
ment specifies the slot to which voltage is applied(we are
only concerned with slot 0). The next argument specifies
the amount of voltage to be applied (10). But if the oop
is closed, the second argument specifies the required dis-
placement.
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5. Once we have completed operating the port, we have to
disconnect the drive variable from the port:
ddrive.Dispose()

The above commands can be used as part of an integrated code
for implementing tip-tilt correction. They have been used in a
loop to increment the input voltage in steps for calibration ex-
periment.
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