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ABSTRACT  

The Solar Ultraviolet Imaging Telescope (SUIT) is an instrument onboard the Aditya-L1 spacecraft, the first 
dedicated solar mission of the Indian Space Research Organization (ISRO), which will be put in a halo orbit at
the Sun-Earth Langrage point (L1). SUIT has an off-axis Ritchey–Chrétien configuration with a combination of 
11 narrow and broad bandpass filters which will be used for full-disk solar imaging in the Ultravoilet (UV)
wavelength range 200-400 nm. It will provide near simultaneous observations of lower and middle layers of the
solar atmosphere, namely the Photosphere and Chromosphere. These observations will help to improve our
understanding of coupling and dynamics of various layers of the solar atmosphere, mechanisms responsible for
stability, dynamics and eruption of solar prominences and Coronal Mass ejections, and possible causes of solar
irradiance variability in the Near and Middle UV regions, which is of central interest for assessing the Sun’s 
influence on climate.  
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1. INTRODUCTION
Aditya-L1 is India's first multi-wavelength solar observatory in space that aims to provide continuous coverage
of the Sun's atmosphere using remote sensing in various wavelength bands1. In addition, it will also provide in-
situ measurement of particle flux as well as heliospheric magnetic field. The spacecraft will be launched by 
Polar Satellite Launch Vehicle-XL and will be stationed in a halo orbit around the first Lagrangian point.
Aditya-L1 will carry a payload composed of seven instruments, namely, the Visible Emission Line Coronagraph 
(VELC), the Solar Ultraviolet Imaging Telescope (SUIT), the High Energy L1 Orbiting Spectrometer 
(HEL1OS), the Soft X-ray Low Energy X-ray Spectrometer (SoLEX), the Plasma Analyzer Package for Aditya
(PAPA), Aditya Solarwind and Particle Experiment (ASPEX) and a Magnetometer. Table 1 lists all the
instruments onboard Aditya L1 along with their science objectives and the lead institutes.  Table 1 shows the

Figure 1: Illustrated model of the Aditya-L1 spacecraft showing the seven instruments (Image credit: ISRO)

spacecraft with the instruments.
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In this paper, we present the main science goals and the details of the SUIT instrument that is being developed 
by the Inter-University Centre for Astronomy and Astrophysics (IUCAA) in collaboration with the Indian Space
Research Organization (ISRO). SUIT is an off-axis telescope designed to take images of the Sun in 11 distinct
science filters in the near ultraviolet (NUV) region between 200-400 nm. SUIT will provide an unprecedented
24x7coverage of the Photosphere and the Chromosphere with low stray light and high contrast. Full disk images
of the Sun have not been taken in this wavelength range from space. Therefore, SUIT will open up an 
unchartered window by providing opportunity to simultaneously study the solar atmospheric dynamics as well 
as measurements of spatially resolved solar spectral irradiance. It will address the following specific topics and 
associated questions: 

1. Coupling and Energetics of the Solar Atmosphere: Which processes channel and transfer the energy from
the Photosphere to the Chromosphere and partly into upper atmosphere?

2. Dynamics of the solar atmosphere: How are dynamic events, such as spicules, chromospheric jets, etc.
initiated?

3. Prominence Studies: What are the mechanisms responsible for stability, dynamics and eruption of solar
prominences?

4. Initiation of CMEs and Space Weather: What are the kinematics of erupting prominences during the early
phase? 

5. Sun-Climate studies: How relevant is the variability of solar UV irradiance for the Earth's climate?

The rest of the paper is structured as follows: In section 2, design requirements and system constraints are
summarized. The sections 3 and 4 provide an overview of the instrument design and various design challenges 
that are being addressed.  

Table 1: Science objectives of various instruments onboard the Aditya-L1 Mission 
Instrument Science objectives Institute

Visible Emission Line Coronagraph 
(VELC)

• Plasma and magnetic field dynamics of
solar corona

• The dynamics and origins of Coronal
Mass Ejections (CMEs) 

Indian Institute of Astrophysics (IIA)

Solar Ultraviolet Imaging Telescope
(SUIT)

• Dynamics of the solar atmosphere

• UV irradiance variability of the spatially
resolved Sun

Inter-University Centre for Astronomy 
and Astrophysics (IUCAA) 

Aditya Solar wind Particle EXperiment
(ASPEX) 

• Spectral and spatial characteristics of
Solar wind

• Variability of Solar wind properties

Physical Research Laboratory (PRL)

Plasma Analyzer Package for Aditya
(PAPA) 

• Composition and Energy distribution of
Solar wind

Space Physics Laboratory (SPL)

Solar Low Energy X-ray Spectrometer 
(SoLEXS) 

• X-Ray Flare events
• Heating mechanisms of Solar Corona

ISRO Satellite Centre (ISAC)

High Energy L1 Orbiting X-ray 
Spectrometer 
(HEL1OS) 

• Monitoring dynamics events in of Solar
Corona 

SRO Satellite Centre (ISAC) and Udaipur
Solar Observatory (USO-PRL) 
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Figure 2: Solar spectral radiative flux at 1 AU with the inset showing the operating wavelength range for 
SUIT 

2. DESIGN REQUIREMENTS AND SYSTEM CONSTRAINTS 
The SUIT instrument design has to meet the science objectives discussed in the previous section, taking into 
consideration the mission timeline, spacecraft, operations and component-level constraints. In this section, we 
briefly discuss the requirements and system constraints that drive the design of the instrument.  

2.1 Top Level Science Requirements 
The instrument design and development is based on the top level requirements derived from the science 
objectives (Table 2). The 11 spectral channels with their scientific objectives, central wavelength and bandpass 
are given in Table 3. 

Table 2: Top Level Science requirements for SUIT 
TOP LEVEL SCIENCE REQUIREMENTS 

Spectral Coverage 200-400 nm 
Spectral Channels 11 (3 Broadband & 8 Narrowband- see Table 3 for details) 

Spatial Coverage a) Full disk (up to ~1.2 Solar Radii):  ~38 arcmin 
b) Partial field (~512x512 sq. arcsecond adaptable region of interest on solar disk) 

Temporal coverage 
Uninterrupted 24x7 coverage of: 
a) Full disk: every 30 mins in all 11 filters irrespective of modes of operation 
b) Partial field: every ~40 seconds in all 8 Narrowband filters 

Angular resolution 1.4 arcsec on the Sun 
Minimum Signal to Noise Ratio 100 in dark regions 

Contrast  10:1 contrast between bright and dark features at 10’’ length scales 

Scattered/Stray light 
Combined scattering at 10” scales 
a) For Bright spots: Should be less than 0.11% of mean Solar flux 
b) For dark spots, it is 0.036% of mean Solar flux 
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Table 3: SUIT spectral channels and their Science Description 

Spectral Channels (nm) 
Bandpass (nm) Science 

214 5 Dynamics of the Magnetic bright points in the 
photosphere 

274.7, Blue wing of Mg lines 0.4 Chromospheric and lower transition region dynamics, 
waves, shocks, filaments, and prominences; 

 
Sun-Earth Climate connection 

 

279.6, Mg II h line 0.4 

280.3 Mg II k line 0.4 

283.2, Red wing of the Mg II lines 0.4 

300 1 Sunspot complexity; Dynamics 
388 1 Lower Photosphere, monitoring magnetic flux proxies  

397.8 0.1 Ca II line, Chromosphere 
200-242, O2 Herzberg Continuum, O3 

Hartley Band 42 
Sun-Earth Climate Connection: Ozone balance in 

stratosphere 242-300, O3 Hartley Band 58 

320-360, O3 Huggins Bands 40 

2.2 System Constraints 
The system constraints on the SUIT design were identified based on mission parameters, spacecraft (S/C) level 
mass, power budgets, design standards, bus configuration and availability of components. Some of the critical 
constraints are listed in Table 4. 

Table 4: Critical system constraints for SUIT 

Critical Design Constraints for the SUIT 

Mass budget <35 Kg 

Power budget <33 W 

Volume of the optical bench on S/C ~1100x350x280 mm 

Volume for the electronics box  on S/C ~250x200x200 mm 

Launch  In 2019-20 timeframe 

Orbit  Halo Orbit around L1 

Pointing capabilities Pointing up to 90⁰ away from Sun for calibration 

Availability of critical components Space qualified detector for Qualification and 
Flight models in the mission timeframe 

The most crucial constraint is the delivery timeline for a proposed launch in the 2019-2020 timeframe, which 
requires the instrument to be delivered by 2018-2019. The development and delivery of a CCD in this timeframe 
is a big challenge, and hence, the detector selection and procurement is a major driver in the instrument design 
and development process.  

2.3 Instrument top-level functional and performance requirements 
Table 5 depicts the top-level functional and performance requirements for the instrument design that were 
derived from science requirements and systems constraints (discussed in section 2.1 and 2.2, respectively). 
These requirements are the drivers for the instrument optical design, analysis and validation.  
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Table 5: Instrument functional and performance requirements 

Spectral Coverage 200-400 nm 
Field of view ~0.8 degrees of arc (Field extending up to ~1.6 Solar Radius) 
Image Quality - Angular Resolution 1.4 arcseconds  
Image Quality- Contrast  MTF at 42 l/mm should be greater than 10 % 
Primary aperture 140.8 mm (2.44λ/Δθ, @280nm for Δθ = 1 arcsecond) 
Effective Focal Length 3500 mm (pixel size/angular coverage per pixel) 
Image Size 4kx4k (Detector) 

3. INSTRUMENT DESIGN OVERVIEW 
The instrument's present design was achieved after several iterations and design trade-offs that are beyond the 
scope of this paper. In this section, we provide an overview of the current status of the instrument design and 
discuss the various subsystems and critical components.  

3.1 Instrument functional description  
SUIT has two main sub-units: the optical bench and the electronics box. The optical bench has a two mirror off-
axis telescope designed and optimized to take high-resolution images in the 200-400 nm region with a passively 
cooled CCD detector. The optical bench consists of the mirrors, focal plane assembly, filter wheel, shutter & 
focusing mechanisms, baffles, aperture filter, enclosure covers and structural support elements. The optical 
bench will be mounted on the top deck of the spacecraft along with some of the other instruments. Figure 3 
depicts the functional layout of the optical bench and the electronics box along with various components. 

There are total 11 science filters (8 Narrow-band and 3 Broadband) that will be mounted on two filter wheels 
each with 8 filter slots (a total of 16 slots). The 5 other slots will have 1 clear glass filter, 3 neutral density filters 
and 1 closed position for taking dark frames. The filter wheels will be driven by two independent drives that will 
bring a predefined combination of neutral density filter and science filter into the beam path. The exposure 
control is done using a diaphragm shutter that is located in front of the first filter wheel. Depending on the 
combination of the science filters chosen, the exposure time can vary between few tens to a few hundred 
milliseconds. 

The SUIT instrument will take images of the Sun 24x7 throughout its operational life, except for the in-orbit 
calibration (initial and periodic) phases of the instrument and the periodic orbit correction maneuvers for the 
spacecraft. The entrance aperture is proposed to have a multi-operation door mechanism that can be opened and 
closed during the calibration and orbit maneuvers.  

The electronics box consists of all the processing and control electronics for the detector and the mechanisms of 
SUIT. This box will be mounted inside the S/C bus below the top deck. The electronics have been separated 
from the optical bench to minimize the contamination of optics due to molecular outgassing. The front-end 
electronics located in the vicinity of the CCD will be interfaced with the readout electronics through interface 
cables for data and power. After the exposure, the shutter will remain closed while the detector is read and the 
filter wheels are moved into the position for the next exposure. 

Figure 3: Functional Diagram of SUIT 
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The aim is to provide a high-degree of autonomy to the system to operate 24x7 with minimum interventions 
from the ground operations team. Nevertheless, there are provisions in the design to override sequences on the 
onboard computers by ground commands. This will provide flexibility for operating the instrument in different 
operations modes as per the requirement of the science team.  

3.2 Optical design 
The optical design of SUIT was done based on the instrument functional performance requirements and the 
design constraints. The two-mirror off-axis configuration was selected to minimize the scattering effects. It also 
prevents any direct straylight from the telescope entrance from reaching the focal plane. The use of aspheric 
surfaces for the mirrors reduces the number of components to correct for abberation all over the field of view 
and only a single element field corrector lens is used just before the image plane. 

The final design configuration of SUIT has a primary mirror with a clear aperture (CA) of 141mm, which is 
sufficient to give diffraction limited images of 1 arcsec diameter at 280nm wavelength. The SUIT image plane 
uses a 4096×4096 CCD sensor with 12 micron square pixels and offers a pixel sampling of 0.7 arcseconds; 
providing a minimum angular resolution of ~1.4 arcseconds.  

The focal length of the system is 3500mm with a field of view of approximately 0.8º (up to ~1.6 Solar Radius); 
covering the entire solar disk and leaving sufficient margin for potential misalignments between the optical axes 
of SUIT and VELC. The field correcting lens produces uniform image quality throughout the field of view with 
an acceptable dispersion due to wideband filters. It also allows to compensate for image focus shift due to any 
possible change in the thermal configuration of the instrument. The 2D layout of the optical design for SUIT is 
shown in Figure 4. 

 
Figure 4: 2D layout of the SUIT Optical design 

3.3 Detector 
Considering the cost and availability of space qualified detectors within the stringent schedule, the baseline for 
the SUIT detector is to use an existing space qualified CCD detector that has been developed by E2V. The 
device under consideration for SUIT is e2v CCD 272-84, a 4096 x 4906 back-illuminated detector with 12 
micron pixel size.  
This device is similar to CCD 203-82 that was used in the Atmospheric Imaging Assembly (AIA) and 
Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory.2,3  

For SUIT, the CCD 272-84 will be optimized with anti-reflection coating to minimize ghosting through multiple 
reflections from the focusing lens and/or filters in the UV 200-400 nm region. The baseline specifications for 
the detector are summarized in Table 6.  
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Table 6: Baseline specification for SUIT detector  
Image Area 49.2 mm x 49.2 mm 
Format 4096x4096 
Pixel size 12 μm x 12 μm 
No. of Output amplifiers 4 
Full Well Capacity (Typical) 175,000/pix 
Mean Dark current at -40˚C (Typical) 35 e-/pix/s 
Read out noise at 250 kilohertz ~4 e- rms 
Nominal operational temperature -40˚C 
Quantum Efficiency Min. 25% at 200 nm  

Outgassing Total Mass Loss (TML) ≤0.1% and  
Collected Volatile Condensable Material ≤0.1% 

Radiation Hardness  

End of Life Total ionization dose:   
10 krad (Si) direct exposure from a radiation source at 2 
krads/hour. 
Displacement Damage Equivalent Fluence: 1x1010 cm-2 

3.4 Mechanical Systems  
All the opto-mechanical and electronic systems of SUIT, including mirrors, filters, baffles, mechanisms and 
focal plane assembly, will be mounted on a light-weighted optical bench made of Titanium alloy. The optical 
bench would be covered with an enclosure that will provide protection from external environment, straylight 
and contamination. The optical bench will be mounted on the spacecraft top deck with six mounting legs.  

The control systems for the instrument and the detector readout electronics will be housed separately in a 
electronics box mounted inside the spacecraft below the top deck. The data, control and power cables from the 
mechanisms and the focal plane assembly will be relayed to the electronics box.  

The mechanical system of SUIT, shown in Figure 5, includes:  

1. Optical bench on which the opto-mechanical and electronic systems will be mounted. 

2. Opto-mechanical/optoelectronics assemblies and mechanisms including: 

• Primary Mirror assembly,  

• Secondary Mirror assembly, 

• Thermal Filter assembly, 

• Two filter wheel mechanisms, 

• Focal plane assembly, 

• Shutter mechanism,  

• Focusing mechanisms 

• Door mechanism 

3. Scattered light reduction baffles:  

• Primary, secondary baffle mounted inside the enclosure 

• External baffle is mounted on the front panel of the enclosure. The entrance door mechanism 
is attached on the external baffle with structural elements.  

4. Enclosure made of honeycomb panels and covered with multilayer insulation   

5. Thermal control system 

• Heaters and thermal insulation for optical bench and enclosure 

• Cold finger and radiator plates for passive cooling of detector 
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detector by the excessive in-band and out of band (above 200nm and below 400 nm) flux coming from the Sun. 
Furthermore, the science filters are combined with neutral density filters to prevent the saturation of the detector 
and meet the signal to noise requirement (see section 2.1).   

4.2 Data volume and compression 
The total data volume generated by SUIT per day will be approximately 37 GB. However, due to limited 
visibility of the satellite (downlink window of ~8 hours per day) and available bandwidth (~4Mbits/s), the total 
downlink budget for SUIT is ~8 GB over a 24 hour period. Therefore, SUIT data must be compressed onboard 
by a factor of 5 before the downlink.  

With lossless techniques the compression achieved is around 2 for simulated data. Therefore, feasibility of a 
combination of two data compression algorithms – a lossy compression (square-root4) followed by a modified 
loss-less compression (variable-bit Rice5) is being investigated. In the square-root compression, pixels having a 
DN (Data Number) less than a threshold value are not altered but pixels having higher than threshold values  are 
replaced by taking square-roots of the respective DN. In the variable-bit Rice compression, every pixel DN is 
coded in a different length-word with a prior knowledge of the bit-lengths. A combination of these two 
techniques a compression factor of 2.8 has been achieved. 

Other compression techniques such as JPEG are being investigated to achieve the high compression factor 
required for SUIT. 

4.3 Scattered and Stray light reduction 
The sensitivity of the instrument is strongly affected by the light scattered from different sources: 

1. Micro-roughness of the optical surfaces can cause large angle scatter in the observing band. 

2. Particulate contaminants on critical surfaces can scatter light onto the detector. 

3. Low-spatial frequency deformation (figure errors) of the optical surfaces can cause broadening of PSF 
wings.   

As discussed in section 2.1, the contrast between the bright and dark features on the solar disk is not expected to 
be more than 10:1 (at 10 arcseconds lengths scales). This requires the instrument scattered light into the dark 
regions (in the image) to be within 0.036% of mean Solar flux (for target SNR of 100) and into the bright 
regions within 0.11 % of the mean Solar flux.   

The following design provisions are made to limit the scattered and straylight:  

a) Baffles with vanes: The Primary, secondary and external baffles block any straylight from directly reaching 
the detector. These baffles will have internal vanes and will be black painted with Aeroglaze z306 to 
suppress any first and higher order scattered light to reach the critical surfaces.6,7 Other mechanical surfaces 
in the optical cavity will also be painted with Aeroglaze z306 to prevent any scattering effects.  

b) The secondary mirror followed by the primary mirror is a major contributor to scattered light (based on 
scattering analysis of SUIT optical train with baffles in ASAPTM) and they will be finished to a surface 
roughness of 7 Å or better. K-correlation Bidirectional Scattering Distribution Function (BSDF) model was 
used to study the scatter from optical rough surfaces.10,11 The model parameters were estimated through 
fitting experimental Power Spectral Density (PSD) data on a polished test surface with K-correlation form. 

c) The scatter contribution due to particulate contamination of optical surfaces was estimated by Mie scattering 
simulation in ASAPTM.  The levels of particulate contamination in the optical cavity will be minimized by a 
firm contamination mitigation and control strategy discussed briefly in the next section.  

4.4  Contamination Control  
Contamination control and cleanliness is a critical area of concern for SUIT as it operates in the UV region. 
Both molecular and particulate contaminants on any critical surfaces in the light path significantly degrade the 
performance of the instrument.12,13  
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In order to mitigate the impact of contamination, the Assembly, Integration and Testing (AIT) of SUIT will be 
done in a Class 100 environment. The optical cavity will be purged with ultra-clean Nitrogen after the initial 
assembly. Additionally, the components and instrument will be transported in purged bags and containers to 
protect them from external environment.  

Contamination mitigation and control practices such as screening and selection of materials, vacuum bake-out, 
ultrasonic cleaning and/or solvent cleaning at component level, carefully designed handling and cleaning 
schedules, continuous and periodic monitoring of contamination levels on critical components and strictly 
controlled clean areas with trained personnel for AIT activities. 

5. FUTURE WORK 
The evolution of the design of SUIT and development progress was discussed in this paper including the 
provisions for handling major design challenges. During the development process several questions and 
challenges must be addressed to meet the mission timeline and achieve the scientific objectives of the 
instrument. The following aspects have been recognized as key areas where future work is required during the 
design and development process:  

• Optical design: Ghost image analysis, on-board and ground based calibration procedures 

• Detailed design: Mechanical system, Thermal control system, Control electronics and flight software 

• Development and Qualification: Aperture filter, shutter mechanism and focusing mechanism 

• Development of data pipelines for distribution of science data to end-users 

• Development and Testing of integrated qualification and flight models 
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