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Abstract. We consider motion of charged particles in the field of a charge
placed near the Schwarzschild blackhole. The electromagnetic field -gets
modified owing to gravitational field of the blackhole. The system, charge plus
the hole, is axisymmetric (no longer spherically symmetric) which poses difficulty
in obtaining analytic solutions of equations of motion. However, motion
along the axis and circular orbits about the axis of symmetry are discussed.
In view of the asymmetry in charge distribution, a particle will have circular
orbits only off the equatorial plane.
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1. Introduction

The problem of the electric field generated by a charged object in the vicinity of
a nonrotating uncharged blackhole has been discussed by Cohen & Wald (1971) and
by Hanni & Ruffini (1972). Maxwell’s equations in curved spacetime are
treated in the perturbative approximation for obtaining the field. The multipole
expansion of the field is worked out and it is shown that field remains well behaved
on the horizon. At large distances the multipole moments fall off quickly and only
the monopole term remains, indicating the Coloumbic nature of the electric field as
for the Reissner-Nordstrom blackhole. However close to the charged object and the
blackhole the field differs. The lines of force emanating from the charged object
are no longer radial (Hanni & Ruffini 1972). This is due to the existence of the
higher multipole moments than the monopole.

The system of charge and blackhole produces a composite force field, electro-
static and gravitational. We use the orbits of the charge particles to probe the
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nature of this field. The trajectories in general will not be geodesics but will be
determined by the combined relative strengths and the directions of the two fields.
In the region close to the blackhole the field is complex in nature and it bears no
resemblance to any one field. As one proceeds away from the blackhole the
higher multipole moments fade away and the orbits are essentially determined by the
leading terms of the multipole expansion.

The complex nature of the fields does not yield to a full treatment of charged
particle trajectories. The combined fields do not possess sufficient symmetries to
-provide the requisite number of constants of motion. However one can analytically
deduce the orbits in the following two special cases : (i) The motion along the axis,
and (ii) the circular orbits about the axis of symmetry. In section 2 we specialize
to the first two terms of the multipole expansion. The equations of motion are
considered in section 3 and motion along the axis is discussed in section 4. Circular
orbits about the axis of symmetry are considered in section 5 which is followed by
the concluding remarks.

2. The Cohen and Wald solution

In this section we briefly discuss the electrostatic field of a point charge at rest
near a Schwarzschild blackhole. The background curved spacetime is given by

-1
ds? = — (1 — gﬂ) dr® 4 (1 — %;’—1) dr® + r’dg® -+ r? sin® 8d¢?,

e 21)

where m is the mass of the blackhole. We use here geometric units, G = ¢ = 1.
The covariant Maxwell’s equations to be solved are

1k 1
F‘ S 2 BJC‘ (V=g Fix) = 4xjt, . (2:2)
*Fy =0, - (2.3)
where
Fix = Ay — Arx = Ag,g — Aix ; e (24)

is the electromagnetic field tensor, and A; is the 4-potential. *Fik js the dual of Fik,
Here a semicolon denotes a covariant derivative and a comma denotes ordinary
derivative.

Consider a point charge held at rest at the pomt r = b > 2m, on the axis 6 = 0.
We choose a sufficiently small charge and neglect the back reaction of the electro-
static field (assumed to be perturbative) on the background metric. The field in
this case is static and axially symmetric. Therefore the components of the electric
field will not be functions of ¢ and ¢. Since the charge is at rest the spacelike
components of the 4-current vector j* will be zero. That means j* = 0 and 4 = 0
for « = 1, 2, 3 indicating absence of magnetic field. Thus we have

Ay = (4, 0,0, 0).. D - (2.5)
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‘Then the equation for the vector potential is given by

12 (ot 1 Lo pdh) _ _ 4
= ar\" or ) T = 2mr e a0 \>" 6 W) = — 4zj% ...(2.6)

Using the axial symmetry of the field and its regularity on the axis of symmetry we
can write the solution in terms of the Legendre polynomials in cos 0 :

Ayr, 8) = IOEOO Ry(r) P (cos 8). ‘ -..(2.7)

In the source free regions where j° = 0, the function R;(r) can be shown to satisfy
the second order differential equation

(1 _ %ﬁ)g;(rzdir R,) _ I+ 1) R(r) = O. 28)

The solutions to this equation have been obtained by Israel (1968) and Anderson &
Cohen (1970). The two linearly independent solutions of equation (2.8) are

(1forl =0,
W(r) = {Izzn I — 1)1 m 4 .(2.9)
£ 'L .((2—1)!).m (r—2m)a;P;(%—l)forl;ﬁ0,
| ! d
f(r) = — zl(l(erlln)L!I; !'mm (r — 2m) 5 O (’% —1 ) ...(2.10)

where P; and Q, are the Legendre polynomials of first and second type respectively.
For a point charge e atrestat r=25, § =0, j°= ed(r — b) 8 (cos 6 — 1) the
equation (2.6) is now solved with the source term and after considerable algebra
one obtains the solution :

lr e g gi(d) fi(r) Py (cos8), r>b
I =0

4y = 9 (211
1 e X fi(b) gu(r) Pi(cosB), r>b.

L I=0 |

In the orthonormal frame
wl = (1 — 2mr™)'2 gdt,
‘wt = (1 —2mr-1)-12dr, w?=rdf, w® = rsinfds.

The nonvanishing components of the field tensor Fj; are

-~ ~ aA -

Fo = —Fo = — 55 wl (2.12)
< - 1 2m\=12 34 B
Fum—Fom = (1= 5

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985BASI...13..372S&amp;db_key=AST

Charged particle trajectories 275

It follows from equation (2.12) that for r ~ 2m, Fyy — 0, while fv‘m remains finite. So
for a stationary observer at r with b > r ~ 2m the field is radial. With r and b both
near 2m and ! £ 0, contribution to the electrostatic field for r > b is mostly tangential
1/2

because Fyo/Fzo ~ (1— 241) l In (1 — sz) which tends to zero as r—2m. However
the dominant contribution to the field in this case comes from the / = 0 term because
the coefficients gy(b) of the higher multipole terms vanish. Hence the total electro-
static field is mostly radial in this case.

The complete solution of the field due to a point charge on the axis is an infinite
series given by equation (2.11) of which we include here only the modes /= 0 and
! = 1. Hence the source of our field will be different from a point charge. As
b —» 2, Ay — efr as in the case of Reissner-Nordstrom solution. The field becomes
radial in this limit. This is in agreement with the no hair theorem for blackholes
(Misner et al. 1973). One may say that the sources are present at r = b, since discon-
tinuity in the field occurs at this radial coordinate. Hence dropping of the terms is
equivalent to having a distribution of charge on the sphere of radius 5. However at
large distance from the blackhole the electrostatic field is the same as that of the point
charge source placed on the axis. Therefore one may expect some similarity between
the structure of the two types of sources.

Corresponding to the first two terms in equation (2.11), we have

[ e{fo(b) 8o(r) Py (cos 8) + fi(b) 8u(r) Py (cos B)}, r < b
Ay = < -.(2.13)

Lelfo(r) go(B) P, (cos 8) + £i(r) gu(®) Py (cos 0)}, r > b

which in view of equations (2.9) and (2.10) finally give :
For r < b (interior field) 5

At'=e{117 2m22m)l:1__ (——l)ln(l—zym)]cose};
‘ | (2-14)

For r > b (exterior field)

1 3(b—2m) m r 2m
At~=e{7+T 1._7 +(2—m—1)1n(1—,—r~)]cosﬂ}.
/ | ’ ..(2.15)

The potential is continuous at r = b. The tangential component of the field is
continuous for 0 < 8 < =, whereas the radial component of the fleld is disconti-
nuous. The above solution corresponds to an axially symmetric nonuniform distri-
bution of charge on the sphere of radius b. Discontinuity in the field falls off as we
go away from the charge (figure 1). The charge density falls off buﬁ the amount of
charge remains the same.

To examine the charge dlstrlbutlon on the sphere, we compute the dlsconhnulty

AAt’P - (—At’P)P=a+ - (_Atap)p=a.— o S
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fore/m =1, p =r/m and a =b/m. From equations (2.14) and (2.15), it turns
out to be

1 + 3cosb

Ddi,p = =

...(2.16)

This shows that discontinuity in the radial component of the field is maximum
at 6 = 0, and the maximum value is 4/a®. The discontinuity is minimum at 8 = =
and is zero at 0 = 109.47°. Thus we have axially symmetric nonuniform distri-
bution of charge on the sphere with radius a. Figure 1 gives the plots of A4,
against 6 for some values of a.

3. Equations of motion

In this section we consider the motion of a test charged particle in the Schwarzschild
geometry with the superposed electrostatic field due to a point charge at rest at
r = 5,6 = 0. The motion of a charged particle will not only be governed by the
background gravitational field of the blackhole but also by the Lorentz force acting
on the particle due to the perturbative electrostatic field.

AAt,f _'

-1k

Figure 1. Ad:,, versus 8. It reflects the variation of the charge distribution on the sphere of radius
a (charge e islocated at p = a, 8 = 0) with respect to 0. The density of charge is maximum at
6 = 0, it goes to zero at 8 =~ 110° and attains minimum at 6 = .

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985BASI...13..372S&amp;db_key=AST

Charged particle trajectories 377

The equations of motion of a charged particle of rest mass p and charge. q m an
electromagnetic field are given by

dut

Zg— -+ I‘;k wyk = %F:n ym, . \ . ...(3.1)

where #! is the four-velocity of the charged particle. Theright hand side of equation
(3.1) represents the Lorentz force indicating the non-geodesic character of the motion.
These equations can be derived from the Lagrangian

L= dguyEal — % A, | | ..(32)

where a dot denotes the ordinary diﬂ'erentiatioﬁ with respect to the proper time s.
Equations (2.1) and (2.5) lead to

. -1 ,
j:%{—(l—z—r"—')t2+(1—27m) i 4 r2g?
-+ rZ sin? 69'32} —_ 5 Ati. ...(3.3)

Since the electrostatic field is axisymmetric and the background metric is spheri- -
cally symmetric, the Lagrangian will be independent of the azimuthal coordinate ¢.
Further, as both the fields considered are static, the Lagrangian is independent of .
These two symmetries give rise to the two integrals of motion, the canonical angular
momentum and the total energy.

Thus we have

(1—2_’")1‘_13‘—7At ~ .(34)

and r? sin? 8¢ = 1, ‘ | ; ...(3.5)

where E and [ are the energy and - angular momentum per unit'rest mass of the
particle as measured by the observer at rest at infinity. N :
The equations of motion corresponding to » and 6 coordinates are given by

P (=2 e o (1) e (1 = 2 sint 0y

r2 r

_4 4, (1 _‘211)} \ .(3.6)
»® r

and b+ %fé — sin 6 cos 4% — % Adiet. o LB

For convenience we introduce the dimensionless quantities

\li

PZL,aZ—Q’E:isL:La;:i’]

m m m m m L .38)
T i o
t'_m ts —m‘u J .
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Dropping the bars over the dimensionless quantities we can rewrite the equations of
motion as : C

. 1 2\, 1( 2)—1 5
—_ (1 —-= P — (1 =2} (E—2X)? — 4i,p (E— AdY)
P 92( p) e P o) ' e
2\ far , IE 39
ro(1=2){ + it 39
.. 2, cosOL* A - - 2)—1
L2 CosYLT 4 — —Z). ...(3.10
i+ 20— Sy o — 2 Ao (E— M) (1-= | (3.10)

where we have substituted for 7z and § from equations (3.4) and (3.5).
The line element (2.1) itself provides the first integral given by

2. 2\, 242 2 qin2 412 =
1=(1——)ﬁ— 1 —2) o — %% — o2 sin® B2 ..(3.11)
P P
After using the earlier equations, it becomes

-1 -1 . 2
1= (1 —_ %) (E — A4 — (1 — —29—) p* — p26° — pg—fm...(uz)
The first integrals of equations (3.9) and (3.10) seem very difficult to obtain
owing to the absence of any obvious symmetry in the Lagrangian. Also A4 involves
the transcendental function which makes it almost untractable. Since we are unable to
obtain all the first integrals we cannot do the orbit analysis in general. We therefore
resort to some interesting special cases. We consider the following two cases : (a)

Motion along the axis, and (b) circular orbits about the axis of symmetry.

4. The motion along the axis

Along the axis 6 = 0, equation (3.7) implies that § = 0 if 8 = O initially (for the
expression for A, contains sin 8). Thus a particle starting on the axis remains
along the axis. Since 4-velocity has unit norm we obtain from equation (2.1) in
terms of dimensionless quantities

2y 2\
—1=—(1=2)r O——)% (41
(=)o (=3) @
Using equation (3.4) in (4.1) we obtain '
2\_1 _ 2 -1 .
—1=—(1-2) @®—ady @__)2. (42
(- e (-2 e

The effective potential is obtained by solving for E thc equation p = 0 and so we
‘obtain

2 1/2
V=M+O—?). ..(4.3)
We choose positive sign for the radical, because ¢ = E — 4; should be positive for the

future moving particle. Setting 6 = 0 in equations (2.15) and (2.16) and using
equation (4.3) we get :

i
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(1) For interior field (p < a)

e g (1) e(- )

w(1=2)" 44)

(i1) For exterior field (p > a)

A L (5 (1 2)]
+(1 ~ %)1,2' ...(4.5)

It can be seen that the effective potential V' is continuous across p = a. However,
at p = a the derivative of ¥ with respect to p does not exist. This is the reflection
of the fact that the electrostatic field is discontinuous at p = a, indicating the
presence of a source. The 4-momentum of the particle is continuous at p = a
because it depends on the effective potential, although the Lorentz force will have a
discontinuity.

In figure 2, ¥V has extrema at p == a. These extrema are of finite extent because
of approximation of including only the first two terms in the multipole expansion.
When all the terms are taken into account, V' - +oo as p — a indicating the seat of
a point charge there. The Coloumbic force will obviously diverge. We recall
that our approximation is only good at reasonable distance from the charge and not
so good in close vicinity. However, we may take the view that we are essentially
considering a nonuniform spherical charge distribution (figure 1) as is truly described
by the first two terms in the solution. The following discussion refers to such a
charge distribution.

Figure 2 gives the plots of V' effective against p. We observe that for A > 0,
V > 0 always and has a maximum at p = a. This is due to repulsive Coloumbic
force between the charges. Here for E > Vpax particle plunges into the hole while
for E < Vmax the particle will be bounced back as it will meet the potential
barrier.

For A < 0 we always have ¥V < 0 near the hole, which is due to the attractive
electric field. All particles with A < 0 coming in from infinity or having E > ¥V,
do not meet any barrier and directly fall into the hole. If E < ¥V, then the
particle is captured into the potential well and can exhibit the oscillatory motion
about the source charge.

It should be noted that the total energy of the particle with A < 0 can be negative
(figure 2). Hence the Penrose (1969) process of energy extraction can be set up to
extract electrostatic energy (for details see Dhurandhar & Dadhich 1984a, b). The
extent of negative energy region is proportional to A. It is similar to the Reissner-
Nordstrom blackhole where electrostatic energy can be extracted out (Denardo &
Ruffini 1973).
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10}

MOTION ALONG THE AXIS

a=4

Figure 2. The effective potential V for motion along the axis is plotted fora = — 5, — 20, 5, 15.

5. Circular orbits about the axis of symmetry

In general it follows from equation (3.10) that the orbits do not remain in the
0 = constant planes. This is because § = 0 and § = 0 can only be satisfied by
discrete values of p. It then suggests that p = constant (circular) orbit can occur in
the 8 = constant plane. For such orbits we should simultaneously have 6 = § = 0

and p = ¢ = 0. The three equations (3.9), (3.10) and (3.12) will determine the
circular orbits when these conditions are imposed. Setting 6 = 0 and § =0 in
equation (3.10) we obtain the relation
2 1n3 -1
L' _Asw’8 p a4y (1 — %) Ay ..(5.1)

o cos®

First of all we note that no circular orbit can occur in the equatorial plane
0 = =/2, since L?/p*+>oo. From the physical view point, the consideration of force
acting on the particle clearly shows that circular orbits cannot occur in the equa-
torial plane. In figure 3 are shown the different forces to be balanced for a circular
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A Z-axis

N g e:=T/2

Fi-centrifugal torce
F.z-gTavitahonal force
F3-electrostatic torce (SCHEMATIC)

Figure 3. The various forces (gravitational, electric and centrifugal) acting on a particle executing
circular orbit are indicated. All those forces have to be properly balanced such that the particle
executes a circular orbit about the axis. !

orbit. It follows that the electric force should point towards the source charge for
the range 0 < 9 < =/2 while it should point away for =/2 < 8 < m. That means
A<Ofor0 <0 <=x/2andX >0forn/2 <6 <m.

Setting p = 0 and 6 = 0 in the equation (3.12) we obtain

1=(1- %)—1 (B — M — 41

T ..(5.2)

By using equations (5.1) and (5.2) we get
- _ 1/2
E =24 + 1 Mietan 0 + 3 {/\2 tan® 642,, + 4(1 — %)} ! . ...(5.3)

The positive sign for the radical has been chosen to ensure that the 4-momentum
vector of the test particle is future pointing. Another relation for E follows from

the requirement p = 0 with p =0 =0, viz.

E = A + A (1 — %)(% Aie tand — Jt,,). (54
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The consistency will now require equating the two expressions for E. Hence we have

YT {29 (1 — %) — 1} tan 6 — 2Apz(l — %) At
- 1/2
— {A'«'Ai,a tan® 0 4 4(1 — %)} =0

Rearranging the above equation and denoting its left hand side by S we write
S(p, 0, a, ) = A2p — 5) Ai,e tan 6 — 2p(p — 2) A';,,

2 12 2 2\
— qA%4  , tan? 8 + 4 (1 — ?) = 0. ...(5.5)

The above equation expresses the fact that for given values of 8, A, and a, only a
finite set of values of p can satisfy the above consistency relation. It should be
noted that particle orbits in general are not confined to a plane (since 8=0 #=> §=0)
as in the spherical symmetric field. We thus have an additional relation to keep
the orbit confined to 6 = constant 7% /2 plane. This condition yields equation

(5.1), whereasp = 0, p = 0 together with equation (5.1) lead to the two expres-

sions for E in equations (5.3) and (5.4).
In equation (5.5), the roots of S = 0 give the radii of circular orbits for fixed
values of A and 6. They are plotted in figure 4. It shows that radius of the

6:1/2

a=10

Figure 4. The radii of circular orbits for various values of » =+ 5, + 10, -+ 100 as function of 6.
The sphere p = 2 represents the blackhole.
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orbits 1s inversely proportional to |A| but as 6 — =/2, it approaches p = 3 for all 2.
However no circular orbit can exist in the plane 6 = n/2. The #6-variation of
the radius is shown for a fixed A. The curves showing locii of the radlus are symmet-
rical about the 6 = =/2 plane for A - — A.

In the following we consider some special cases for limiting values of the para-
meters. They will help us in getting physical understanding of the motion. Let
us first compute the derivatives of 4 :

‘Forp<a

Atp = [1 — i + (7— 1) In (1 — %)] cos 0, ...(5.6)

oo = — 2 (o —2) [1 — 1 (—; — 1) In (1 — %)] sinf. ...(5.7)

Forp > a

di,p = — o -i-i(a—_—a[— +3iln (1 ——) 1:lcose .-.(5.8)

Adio=—35@—2)[1—pt+Gp—1DIn(l —2pY)]sinb. .59
We analyse equation (5.5) as follows :

Case I: A J oo, p<a.

Case II: A —» — oo, p—> oo.

Case IIl: p— oo.

Case I : For A> £+ oo, p < a, equation (5.5) reduces to

(2p — 5) Ai,e tan 8 — 2p(p — 2) 4, F |Atetan 0] = 0, ...(5.10)

where the upper sign is for A — oo while the lower is for A - — oo. As noted

earlier for A = 0 the corresponding range for6is n/2 < 6 < =x and 0 <0 < =w/2
respectively. In both cases, equation (5.10) reduces to

(p — 3) Ai,o tan 8 — p(p — 2) At,p = 0. ..(5.11)
Using equations (5.6) and (5.7) in (5.11) we obtain after simplification
p = 3sin? 0. -..(5.12)

We note that as A - &+ oo equations (5.3) and (5.1) imply that both E and L tend
to infinity. Hence equation (5.12) corresponds to photon orbits. However photon
orbit must have radius > 2, i.e. 3sin? 8 > 2 which restricts 8 = 8, = sin™! s 2/3

~ 54.7°. This is for the case A —+ — oo while for A > o0, 6§ < m — 68, The
maximum radius of the photon orbit tends to p = 3 as § —» -r:/2 from either side.
Figure 5 shows how the orbit radius approaches the horizon as p varies on either
sides of # = x/2. Outside the given 0 range, no circular orbit exterior to the black-
hole exists. '

Case II : Lift of orbits over § = r/2 plane—In the following, we consider the
interesting case when A — — oo together with p— co. For A — o0, 0 < 6 < /2
we have equation (5.11). Substitution from equations (5.8) and (5.9) in equation
(5.11) we get
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54-7 9\~

547N

\ Ta L5 6 7612

Figure 5. The circular orbit radii for the limiting case of A — + o are shown for p < a. These
are limiting photon orbits. The orbits occur in the range 6, < 6 << =/2 for A - — 0 and in the
range n/2 < 6 < m — 6, fot A > 4 o« where 6, = 54.7°. For 2 < p < 3, 6 cannot range upto =2
from either side.

a0+ £0(1-2)+ T
-{-(% — l)ln(l —%):I} cosze—gng—_zz))cose
(o —3) [1 _1?+(_"2__ I)ln(l _%)] — 0. (513)

For large p we can expand the logarithmic terms in this equation and keeping the
first order terms in 1/p, we obtain

3 1 — 2/ 1

3 cos® 0 + H cos 6 — o = 0, ...(5.149)
which finally leads to

pcosf = (a —2). ...(5.15)

This represents the equation of a plane. This shows that as A > — oo and p— oo
plane circular orbits are possible. All these circular orbits lie in a plane lifted above
the equatorial plane with height (@ — 2). As a — 2 the plane collapses to the
equatorial plane and the field goes over to that of the Reissner-Nordstrém hole.

Case III : We now consider the case p — oo asymptotically. From equations
(5.8) and (5.9) in (5.5) we get
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ga(zp__s)(a_z)[l _i+(_"_—1)ln (1 —%)]tanesinﬂ

+2e0 - {-L+1@-2 5+

+ 1 ln(l — %)] cosB} -+ {%z\z(a —_ 2)2[1 —ip
—l—(i — 1) In (1 — 3)]2 tan® 0 sin? 0 + 4 (1 _2_)}1/2 = Q.
2 P P

...(5.16)

For p—> oo we can expand the logarithmic terms and keeping the second order
terms in 1/p we obtain

AM2p — 5)(a—2)( )sme tan 6 -+ 22p(p — 2) {-——Pl_—— g(a?’;z)cos 0}

1/2
+ {—pz (a — 2)® sin®0 tan® 0 - 4(1 — %)} =0....5.17)
Proceeding to the limit as p - oo we obtain
A=1. ...(5.18)

This shows that in the asymptotic limit as p - oo, circular orbits exist only for the
range n/2 < 0 <= for A » 1 implying the balance between electrostatic and gravita-
tional forces.

6. Concluding remarks

In section 2 we have retained the monopole and dipole modes in the multipole
expansion of the field. Under this assumption the charge gets distributed non-
uniformly over the sphere p = a as shown in the figure 1. However thisfield approxi-
mates to the field due to a charge at p = a in the two limits (i) A > o= and (ii) @ ~ 2.
Outside these two limits the field is not that of a charge at a point but is due to the
nonuniform spherical distribution.

Although there is axial symmetry there is no reflection symmetry about the
0 = n/2 plane. It is this asymmetry which reflects on the nature of the orbits. There
are no orbits constrained to the 8 = =/2 plane as constrasted to Schwarzschild or
Reissner-Nordstrém cases. It is this fact that makes it difficult to analytlcally treat
general orbits other than the ones considered here.

In the asymptotic limit as p - oo the circular orbits cxist only for the range r/2
< 6 < = for A—> + 1 implying the balance between electrostatic and gravitational
forces. Since for large p both forces have inverse square behaviour. For the limit
A— 4 oo we obtain the analogue of photon threshold orbit for the Schwarzschild
blackhole as p = 3 sin? 8 in the range n/2 < 6 < = and 0 < 0 < =/2. This limit
will lie outside the event horizon only for 6 > 54.7°. For 8 just over 54.7° circular
orbits can exist very close to event horizon. This is similar to the Reissner-Nord-
strom case where the presence of charge on the blackhole pulls closer the photon orbit
threshold (Dadhich & Kale 1977). Another very interesting feature occurs when we
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consider A - —oo together with p — oo. In this case all the circular orbits lie in a plane
at a height (a — 2) above the equatorial plane. As a — 2 the plane collapses to the
equatorial plane and the field goes over to that of Reissner-Nordstrom. As noted
above these limiting cases distinctly exhibit the asymmetrical features due to the lack
of reflection symmetry in the 8 = =/2 plane.

An astrophysical body is known not to have significant quantity of electric charge
on it. However there may occur some kind of a charge distribution in the region
around blackholes. The presence of magnetic field around blackhole is now an
established fact. The setting of a charged objects in the vicinity of blackhole is
rather unlikely to occur. If at all there exists some kind of charge distribution inthe
vicinity of a blackhole then the nonuniform charge distribution as in our case is
more probable. Since the electrostatic field is assumed to be perturbative, the
magnitude of the point charge should be small so as not to alter the background
Schwarzschild geometry which will however retain its spherically symmetric character
for the neutral test particle motion.

It is clear, as in the case of a charged blackhole, negative energy orbits (figure 2)
can occur outside the event horizon. The cause for their occurrance is the electro-
static interaction. Hence the electric field energy can be extracted by the Penrose
process (Penrose 1969).

It will be interesting to study this problem by restoring the reflection symmetry.
That is by putting another charge symmetrically at p = ¢, 8 = =. That will allow
orbits in the equatorial plane. Then the results will bear greater resemblance with
those of the Reissner-Nordstrém blackhole.
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