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weak and strong interactions™
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Abstract. Einstein’s theory which correctly describes gravity at long distances
(low energies) is first compared with Fermi’s theory, which describes weak
interactions at low energies. Analogous to strong interactions at high
energies being described by the gauge invariant finite theory of quantum
chromodaynamics (QCD), gravity at high energies would be described by an
asymptotically free-scale invariant theory. Then just as an effective theory of
pions, describing low energy strong interactions, emerges from QCD at low
energies, Einstein’s theory would be the low energy effective counterpart of
this gauge invariant high energy theory, ironically arising from the scale
invariance being broken by quantum fluctuations. Analogies between QCD
and scale invariant gravity are discussed and the cosmological constant
problem is also considered in this context.
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1. Introduction

Einstein’s general theory of relativity provides within experimental errors a very
good description of the behaviour of gravity at large distances, providing a basis
for the understanding of astronomical systems and the universe at large. However,
when one tries to combine this elegant theory with the laws of quantum mechanics
one runs into problems. For instance the cross-sections and amplitudes for proces-
ses involving the interaction of the quanta of the gravitational field with particles of
other fields diverge at high energies; a dimensionless amplitude of order G® diverg-
ing as GRE®n. This ‘nonrenormalizability’ of the theory may be traced to the
coupling constant (16nG)~! which appears in the Hilbert action for the Einstein
field equations, i.e. Igrayv = (1/16xG) R, R being the curvature scalar, having the
dimensions of (mass)Z.

*Received ‘honourable mention’ at the 1985 Gravity Research foundation essay competition.
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Similar behaviour appears in the case of the Fermi weak interaction theory
which provides a good description of beta-decay processes, like the decay of neutrons
and muons, at low energies. However, the Fermi interaction is also characterized
by a dimensional constant Gr so that the cross-sections for processes like

et + e~ — neutrinos diverge as G2 E® with energy. Thus the Fermi- theory is

another example of a mnon-renormalizable theory which, however, provides a good

description of the low energy; ie. E < =~ 1 /4/- Gr ~ 100 GeV phenomenon. But
now we know that the Fermi theory is only a long-wavelength (i.e. low-energy)
effective theory for the weak interactions. The correct fundamental theory descib-
ing the weak interactions (manifesting at high energies) is a renormalizable gauge
theory with SU(2) x U(1) symmetry and characterized by a dimensionless coupling
constant which, at energies ~ 100 GeV, becomes identical with the electromagnetic
coupling constant thus uniting the two interactions above this energy. This gives

a relation between the electric charge e and Gr as Gr = €®/m? , where my = 100 GeV

is the intermediate boson mass. Perhaps Finstein’s gravity is also similarly only an
effective long-wavelength theory, the correct theory at high energies (now charac-
terized by E ~ 1/4/G ~ 10 GeV) being a renormalizable gauge theory with a
dimensionless coupling constant.

To give another example, we know that the theory of strong interactions at low
energies (~ 1 GeV) between pions and nucleons is not a renormalizable theory; it is
based on a chiral SU(2) x SU(2) symmetry. The coupling constant is> 1 at
these energies and all ‘perturbative’ amplitudes are divergent. There is no renorm-
alizable theory of the pion-nucleon (for e.g. 3-3) resonances. But we know that this
chiral theory like the Fermi theory is only an effective long-wavelength theory. The
underlying theory of strong interactions manifesting at high energies is quantum
chromodynamics (QCD) which describes the fundamental colour interactions
between quarks and gluons. This is a renormalizable gauge theory with local SU(3)
colour as the underlying symmetry. The effective low energy nonrenormalizable
theory of pions (which are bound states of quarks) then emerges from this funda-
mental theory of QCD. So one does not worry about the low energy effective
theory being problematic. This analogy with strong and weak interactions
swrongly suggests that Einstein’s theory of gravity which is badly behaved at
high energies is again an effective long-wavelength theory. The fundamental theory
of gravity at high energies would then not be described by the Einstein-Hilbert
action. It may be based on an asymptotically free (coupling tending to zero at
high energies) scale invariant action like that of Weyl. The quadratic form of the
scale invariant action would also bring gravity in conformity with the gauge-invari-
ant Yang-Mills action characterizing other interactions as these are also of quad-
ratic form.

In section 2 we point out similarities and differences between the Fermi and
Einstein theories and in section 3 develop the analogy with QCD to get a theory of
gravity at high energies. Section 4 further explores these ideas and also deals with
the cosmological constant problem.
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2. Weak and gravitational interactions

Many authors (for e.g. Sivaram 1975, 1977; Zee 1979; De Sabbata & Gasperini
1979) have used the fact that both the Newtonian and Fermi constants have dimen-
sions of (mass)~2 to attempt to construct broken-symmetric scalar-tensor theories of
gravity where G is related to the vacuum expectation value (VEV) of a scalar field as

G = 1/$? = Ke/MZ,, ., analogous to the Fermi constant being generated by a

Higgs field VEV as Gr = ¢?/M? which gives masses to the intermediate bosons.

However, there is an important difference between the behaviour of the coupling
constants in the Fermi theory and in the Einstein-Hilbert theory. To see this we
write the effective dimensionless actions in the two cases as (A = c = 1)

Itermi = I d'lx\% @1%@4’4: (1)

where ¢ is fermion field.
We have a four-fermion interaction which characterizes the Fermi theory. ¢ has
dimensions of (mass)3/%, being a spinor field.

The integration measure d*x has dimension (mass)~* thus the action density
Gr({)* must have dimensions (mass)*, so that I is dimensionless. As (¢)* has dimen-
sions (mass)®, it follows that G has dimension (mass)~2. Now in the Einstein-
Hilbert action for gravity,

L_Rr

Igrav = E d*x (—g')l/2 167:G . (2)

R has dimension (mass)?, d*x(—g)3/2 has dimension (mass)™4, so that (16 = G)~! has
dimension (mass)®. As Gr has dimensionality of mass to a negative power, the
dominant contributions to the weak interaction will arise from the lowest mass
intermediate states, i.e. from intermediate bosons of mass ~ 80 GeV. That means
that even a hierarchy of intermediate bosons with larger and larger masses (if they
exist) will not affect the value of Gr much and hence the weak interaction strength.
Also one cannot have weak intermediate bosons of masses less than ~ 80 GeV, as
they will push up the value of Gr to more than what is observed. On the contrary,
the inverse Newton’s constant (16wG)~* which appears in the Hilbert action for
gravity has dimensionality of mass to a positive power and thus the dominant
contribution to G, will come from the highest mass scales, which would be of the
order of the Planck mass Mp; =~ 10'® GeV, to account for the observed G.

All the hierarchy of lower mass scales including My’s, the GUTs mass scales, efc.
would not affect G and hence the gravitational action. An interesting application
of this feature is to show that effects of quantum gravity at Planck mass scales
would not alter much the proton decay rate predicted by GUTs models without
including gravity. The reason is that in these theories the nucleon decays occur
through effective four-fermion interactions of the Fermi type but mediated by
exchanges of superheavy bosons of mass Mx =~ 10'5 GeV, rather than intermediate
bosons of 80 GeV. So by analogy with the Fermi action [equation (1)] it is easily
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seen that the coupling constant Gy in this case would have again dimensions of
(mass)~2, so that the dominant contributions to the nucleon decay would come
from the smallest mass scales (i.e. ~ My) so that the much larger Planck mass
scale (= 10¢ larger) would affect the coupling only by a factor of = 108. Thus
the effects of quantum gravity at My, would not much alter the predicted nucleon
rates of GUT models. The efiect of the spacetime metric guv on the axial vector

constant and on weak interaction rates through terms of the type {y* [Cv 4+
v/ —g Cay®] ¢ has been pointed out by Sivaram & Sinha (1979).

. 3. Gravity and strong interactions

Analogous to the emergence of an effective low energy strong interaction theory of
pions from the underlying high energy gauge theory of QCD, we may expect
Einstein’s theory to emerge as the low-energy effective theory of an underlying
high energy gauge theory of gravity. We explain this below. The strong interac-
tions have a global chiral SU(2) x SU(2) symmetry in the limit of vanishing U and
d quark masses or, generalizing to the limit of massless quarks of » flavours, the
QCD Lagrangian has the symmetry : [SU(n). X SU(2)r](g1oba1y X [SU (3)]cotourqocal)-
At the energy scale below about Aqep ~ 0.5 GeV, the colour coupling constant
between quarks becomes strong, and massless scalar bound states form.

In other words the local SU(3)corour singlet operator ¢(x) = Aj% du(x) ¢;(x)

@, j=1, ..., N) develops a VEV, ( ¢1;(x) ) ~ 813, thus breaking the global chiral
symmetry down to diagonal SU(#)r,r, producing (N% — 1) massless Goldstone
bosons; and the low energy (i.e. < Aqep) effective action must rerain the full
original chiral symmetry. This constrains it to be of the type

Lets ~ § d*x)2_ Tr (8. u¢*) +..., which is invariant under ¢ —Scé S,

QCD

Si,r € SU(n)r,z. The pion fields represent small fluctuation about the vacuum and
are related to ¢ through the ‘phase’ ¢(x) = exp (iAgh ) = (x). The n-fields trans-

QCD
form linearly under the unbroken SU(n)r.z but nonlinearly under the broken
SU@m). x SU(0)=/SU (n)r,r = SU(n)r-= (e.g. Peskin 1982). A similar situation can
be envisaged for gravity, with the group of general coordinate transformations
(GCT) playing the role of the global [SU(n)r X SU(n)z] chiral symmetry in QCD
and the corresponding counterpart of SU(3)coiour Would be S, the subgroup of
the conformal group generated by Lorentz (Ma,p), dilatation (D), and special con-
formal (k,) transformations (i.g. all generators except translations). Then in four
dimensions the unique action which has the invariance GCT X Sjgcar and has
no dimensional coupling is the Weyl action (de Wit 1981)

Io = a [ dx A —g C*BY5Cypys

where «(q)?, the running coupling constant for Sica1 is dimensionless and asymptotically
free. tlis also the unique locally scale invariant action. C*BY# is constructed out of the
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corresponding Riemann curvature tensor, the covariant derivatives involving the gauge
fields associated with the generators [P, M, K, D] of the conformal group. Analogous
to QCD, various local S invariant operators would acquire non-zero VEVs at
energy scales below Epjanck, Where a becomes large and dimensional. A set of second
rank S invariant tensor operators would be given by

Su(®) = [ f2 () fp () man; [ =detf3;

fs are the vierbeins gauge fields for P. S,, can now develop a non-zero VEV, a
simple choice being ( Suv (X) ) ~ Npv-

We note that here the metric is no longer a fundamental field; the vierbeins (i.e.
spinor fields) are the basic entities, the expectation values of their product (i.e.
analogous to bound states) generate the metric at energies ~ Mpianck. The above
VEYV does not break Sioca1. It breaks GCT invariance which has been broken to the
Poincare subgroup; and associated with this symmetry breaking there are massless
spin-2 Goldstone fields described by S,v (i.e. gravitons). But in analogy with QCD
the low energy effective action must retain the full original invariance, (i.e.
SU(n). X SU(n)z in the case of strong interactions and general coordinate trans-
formations in case of gravity). Thus the effective low energy action which in this
case must retain the GCT invariance is constrained to be of the form

Pl |

Ter =X dx =8 x (aM%, + p M2 R + yR®
48R, + MR+ ..+ wMERD)

2
ocM:',I would be identified with the cosmological constant term, and M, R with the
Hilbert action characterizing the low energy Einstein gravity with M2 = (16zG)™.

It turns out that the terms involving higher powers of the curvature are suppressed
at ordinary energies E by powers of (E/Mpianck), the term with Rr by factor of
(E/Mz1anck)®®* <€ 1. Thus for all practical purposes the low energy effective action
for gravity would just have the usual Hilbert term R/16nG of general relativity
and a cosmological constant. However, observational limits on the cosmological
constant would require the constant to be ridiculously small, i.e. ay =~ 10-120. We
shall discuss this in the next section.

We have thus made precise the philosophy that the usual theory of general
relativity only emerges at large distances and that at distances of the Planck length,
conformal gauge theory of gravity dominates. If we write out above action with
the couplings explicitly containing G, it would have the form (omitting the cosmolo-
gical constant for present)

N R ZG -ﬁG n—2
It = Xdix‘\[—gl:l—m-l-'ﬁRz—l——ﬁa:;—R?’—l—...-I—'ﬁ(ﬁ) Rre ]

We note the remarkable fact that apart from the usual Hilbert-Einstein term
involving R, the higher powers of the curvature have G appearing in the nume-
rator. This is similar to the case of the weak interaction action where Gr (which
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like G has dimensions of (mass)~?) also appeared in the numerator. In the weak
interaction case we had argued that this implied that the dominant contribution
will arise from the lowest mass intermediate states. Here the lowest mass states
are of the Planck mass, which means that even at energies much larger than Planck
energies, the gravitational interaction would chiefly be determined by Planck mass
states as the effects of larger mass states fall off as M+*-2e for the Rn term.

The interaction above Planck energies does not have the R term, so it will be
dominated by the quadratic R* terms with dimensionless coupling constant. At
energies below the Planck scale, the Hilbert term is induced and will be determined
by the highest mass scale now present as G now apears in the denominator, this
being the Planck mass as already discussed. We also note the Hilbert term is the
only one not having f; thus the other terms are to be pictured as quantum gravity
corrections appearing at Planck energy and above. We therefore see why gravity
at low ernergies is determined only by the Hilbert term (the usual GR). At very
high energies the quadratic terms will dominate. The field equations at very
high energies will be of the form :

2n

n

> M {Rn-l(Rab — o ganR) — ggan(R)00 — (Rn*l);ab} =0.
Of course for simlpicity we have ignored terms of type R, R*’ and higher products.

4. Concluding remarks

The scale invariant Weyl action which is quadratic in the curvature is the gravity
analogue of the QCD action quadratic in the Yang-Mills field. At the appro-
priate high energy scale Weyl and QCD actions describe gravity and strong inter-
actions respectivly. They have some remarkable properties in common. For
instance in QCD, colour strong interaction between quarks is linear, V o< r, i.e. only
systems with zero total colour have finite energy. For the scale invariant Weyl gravity,
the potential also grows linearly with distance as the corresponding Poisson equa-
tion is y—*md3(y) ~ my, the field equations being of fourth order. Thus for scale
invariant gravity only systems with zero total energy have finite energy, i.e. enérgy
is confined, analogous to colour in QCD. The Einstein-Hilbert term breaks the
scale invariance of the Weyl action. '

Another way of looking at it is as follows. We can insist by analogy with Yang-
Mills fields describing other interactions that the ‘true’ gravity action be quadratic in
the fields and scale invariant. This would make it of the form 7~ aC*BY5C,gy5 + DR2.

However, scale and conformal invariance is always broken by quantum
fluctuations. The only term which is not scale invariant but invariant under
general coordinate transformations alone is the Einstein term xR. Thus when
quantum fluctuations are turned on, the Einstein term is brought into the original
action as the scale invariance is now broken. With regard to Einstein’s well known
attitude to quantum mechanics it is indeed ironic that quantum fluctuations should
lead to general relativity.
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Of course a large cosmological constant should also be generated in the breaking
of scale invariance. To understand then why it is so small, we draw the analogy
again with QCD, where one expects strong violations of CP symmetry induced by
actions of the type 8 F,y F,v, whereas in reality it is very weak, i.e. § < 10-%. The
solution proposed in this case (Peccei & Quinn 1977) involves absorbing into the
phases of a Higgs field ¢(x) by performing a chiral transformation removing such a
term, i.e. $(x) - #(x) exp [i(x(x) + 0)], a(x) being the phase. A similar attempt
can be made to remove the cosmological constant (Sivaram 1985, in preparation).

We had pointed out in the last section that the quadratic terms will dominate at
well above Planck energies. It may be pertinent to ask what would be the conse-
quences of the modified field equations with say the Robertson-Walker metric for
the very early universe. It turns out thatthe usual singularity still persists, and
one cannot get a nonsingular solution. The only effect of the quadratic and higher
terms seems to be a modulation of the collapse by small oscillations around the
standard Friedmann solution. Briefly the usual radiation dominated solution
R = (2at)'? is modified to

R = Qa2 [1 + (v/e/t) sin (/e + §)], € = 6y + 23,

v, & being the coefficients of the R? and R,y R* term.

The following two points should be noted.

() A combination of the Hilbert and Weyl terms, i.e. xR 4 aR? 4 etc., gives
field equations whose solution has a ‘Newtonian’ limit i.e. given by modified Poisson

equation v* ¢ + y%¢ = 0 with the potential given by ¢ =~ —f - i:- exp (— Mei/r)

which simply means that we have the usual GR and Newton’s law at distances
> Planck length. This once again explains why gravity behaves the way it does.

(i) As stated in the last section, all classical solutions of the field equations
following from the action I ~ aC? - bR?, have zero total energy for ab > 0. This
would have interesting consequences for the very earliest phases of the universe
when gravity would have been described by such equations. The initial state would
have been a fluctuation with zero total energy, thus explaining the equality between
kinetic and potential energies to about 107¢° at the Plank era. Breaking of the scale
invariance near about the Planck epoch would have brought in the Einstein term
which would then have dominated the large-distance behaviour subsequently as
discussed earlier.
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