PHYSICAL REVIEW A 89, 042510 (2014)

Relativistic equation-of-motion coupled-cluster method: Application to closed-shell atomic systems
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We report our successful implementation of the relativistic equation-of-motion coupled-cluster (EOMCC)
method. This method is employed to compute the principal ionization potentials (IPs) of closed-shell rare-gas
atoms, He-like ions, Be-like ions, along with Na*t, Al™, K*, Be, and Mg. Four-component Dirac spinors are used
in the calculations, and the one- and two-electron integrals are evaluated using the Dirac-Coulomb Hamiltonian.
Our results are in excellent agreement with available measurements, which are taken from the National Institute
of Science and Technology database. The accuracies of the calculations are estimated to be within one half of a
percent for He-like and Be-like ions and 1% for the heavier systems. We also present results using the second-order
many-body perturbation theory and random-phase approximation in the EOMCC framework. These results are
compared with those of EOMCC at the level of single and double excitations in order to assess the role of the

electron correlation effects in the intermediate schemes considered in our calculations.
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I. INTRODUCTION

High-precision calculations of the spectroscopic properties
of heavy atomic and molecular systems are challenging due
to the complex interplay between relativistic and correlation
effects [1]. However, with the extension of several well-
established nonrelativistic many-body methods to the rela-
tivistic regime and the recent advances in high-performance
computing techniques, such calculations are no longer insur-
mountable. Studies of atomic parity nonconservation (PNC)
and permanent electric dipole moments (EDMs) due to the
violation of parity and time-reversal symmetries [2,3], the
requirement of very accurate atomic properties for a precise
estimate of systematic effects in atomic clock experiments
[4-6], the determination of nuclear moments [7], calculations
of coefficients that are sensitive to relativistic effects to
probe the variation of the fine-structure constant [8—10], etc.,
require the development of powerful relativistic many-body
methods. The spectra of multicharged ions are of immense
interest in many areas of physics, particularly x-ray space
astronomy, plasma physics, and laser physics [11,12]. Accu-
rate values of ionization potentials (IPs), double-ionization
potentials (DIPs), and excitation energies (EEs), especially
from the deep-core orbitals, are required for setting up the
probe and its tunability of the ionizing beam in experiments
such as e-2e, e-3e, y-2e, double Auger decay, etc. [13,14].

Among the various wave-function-based methods, the
coupled-cluster (CC) theory within the single- and double-
excitation (CCSD) approximation is the most elegant way
of calculating the energy or energy differences of atoms
and molecules in the ground state as well as in the excited
states [15]. Green’s function and propagator techniques [16,17]
are the two traditional approaches to calculate direct energy
differences. In the propagator approaches, the ground and
excited states are treated simultaneously, and due to the
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cancellation of common correlation effects, these approaches
provide satisfactory results of these energy differences in a di-
rect manner. In the CC domain, the Fock-space multireference
CC (FSMRCC) [18-24] and the equation-of-motion coupled-
cluster (EOMCC) method [25-27] are the two most familiar
variants for the calculation of direct energy differences.
Many nonrelativistic calculations of IPs and EEs in both the
FSMRCC [28] and EOMCC [29,30] frameworks are available,
but full-fledged relativistic counterparts are far fewer for the
former method, and there are none for the latter.

Relativistic calculations are necessary for the spectral
properties of heavy atoms and molecules as well as for highly
stripped heavy ions. It is therefore desirable in such cases to
have a theory which can simultaneously treat the electron cor-
relation and the effects of relativity on the same footing as they
are nonadditive in nature. Kaldor and coworkers were the first
to develop a relativistic coupled-cluster theory for this purpose.
They applied the relativistic FSMRCC method to atoms as well
as molecules [31-34]. The effective Hamiltonian formalism
of the FSMRCC theory, based on the Bloch equation, acts
within a model space [35,36]. It uses a common vacuum with
respect to which holes and particles are defined. The holes and
particles are further classified as active and inactive depending
on the requirements of the problem. While an increase in the
size of the model space can target more states, it can lead to
convergence problems, which is well known in the literature
as the intruder-state problem [37,38]. The EOMCC method is
basically single reference in nature and is closely related to the
CC linear response theory (CCLRT) [39—41]. Chaudhuri et al.
applied the relativistic CCLRT to the ionization problem [42].
Hirata et al. [43] employed the relativistic EOMCC method
using two-component valence spinors along with a relativistic
effective core potential (RECP) which was supplemented by
the spin-orbit interaction [44]. The approach of Hirata et al.
is clearly not a rigorous description of the relativistic effects,
which can be taken into account by using four-component
orbitals and the Dirac-Coulomb Hamiltonian. An approach
called the configuration interaction (CI) plus the all-order
method has been used to perform several relativistic atomic
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structure calculations [45]. It appears operationally similar to
the EOMCC method, but the treatment of correlation effects in
the two approaches is different. The CI plus all-order method
divides the system into core and valence sectors and then pro-
ceeds in two steps: (i) solution of the linear CCSD (LCCSD)
equations for the closed-shell core and (ii) construction and
diagonalization of an effective Hamiltonian which has the
frozen-core Hamiltonian containing core-valence excitations
and another part that includes the valence-valence interactions
screened by the core electrons. The wave function in the CI
plus all-order method contains the core-valence correlation
at the LCCSD level, while in the EOMCC method, it is
computed using the full CCSD approach. The former is a
Hilbert space approach as calculations based on it are carried
out in a space comprising N electrons. At the CI level, this
method suffers from the redundancy problem, which stems
from the same excited determinant arising from two different
reference determinants. As the EOMCC method treats two
Hilbert spaces in a particular problem (N and N — 1 electron
spaces), it is a Fock-space approach. It also accounts for
the relaxation effects, which is more important for the core
spectrum, and it is free from the redundancy problem. It is
well established that a Fock-space approach performs better
than its Hilbert-space counterpart for the calculations of energy
differences [46]. This method becomes less reliable when the
number of valence electrons is more than 3 or 4 [47]. The lower
part of the valence spectrum can be calculated accurately, but
for energies above the excitation energies of the core, the
results may not be very reliable [48]. EOMCC, on the other
hand, performs well for the whole spectrum and is applicable
for any number of valence electrons.

In the present work, we consider the EOMCC method in
the four-component relativistic framework within the single-
and double-excitation approximation (EOM-CCSD method)
to calculate IPs by removing one electron from a closed-shell
atomic system. This EOMCC method for the ionization
problem is size consistent and is equivalent to the (0,1)
sector of the FSMRCC theory [49,50]. It is capable of
providing the principal as well as shake-up IP values. The (0,1)
sector FSMRCC theory does not address the shake-up states.
Although the EOM-CCSD method is a size-extensive method
for the principal valence sector [51,52], it is not so for the
shake-up states. The error due to the size extensivity is reduced
due to the presence of the two-hole—one-particle (2h-1p) block.
Being an eigenvalue problem, it is not affected by numerical
instabilities due to the intruder states, which are very common
in the FSMRCC method. Two intermediate calculations
are employed to assess the effects of electron correlation.
We refer to these as the EOM-MBPT(2) and EOM-RPA
methods, which are the second-order many-body perturbation
theory [MBPT(2)] and random phase approximation (RPA)
in the EOMCC framework. The former uses a first-order
perturbed ground-state wave function which corresponds to
the MBPT(2) energy as the ground-state energy, and in the
latter, the EOM matrix elements are constructed in the one-hole
(1h-Op) space.

This paper is organized as follows. A brief discussion of the
relativistic method used to obtain the single-particle orbitals
is presented in Sec. II. This is followed by a description
of the EOMCC theory of the ionization problem, and the
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computational details are presented in Sec. III. In Sec. IV,
we give our results and discuss them before making our
concluding remarks in Sec V. Unless stated otherwise, we
have used atomic units throughout the paper.

II. GENERATION OF RELATIVISTIC ORBITALS

The Dirac-Coulomb (DC) Hamiltonian is given by

H = Z I:C“i - P; +(,Bl - 1)62 + Vnuc(ri) + Zrii|» (1)

Jj>i i

where «; and f; are the usual Dirac matrices, Vi (7;) is
the nuclear potential, and % = ﬁ is the electron-electron
repulsion potential. Subtraction of the identity operator from
B means that the energies are scaled with reference to the
rest mass energy of the electron. The nuclear potential is
evaluated using the Fermi-charge distribution of the nuclear
density, which is given by
Po

where the parameter b is the half-charge radius as pyuc(r) =

po/2 for r = b, a is related to the skin thickness, and they are
evaluated by

Pruc(r) = )

a =2.3/4(In3), 3)
b=./3r2— la’n?, 4)

with ryy being the root-mean-square radius of the nucleus.
In relativistic quantum mechanics, the four-component
single-particle electron orbital is given by

_1 P(r) XK,m(91¢)
|¢(7’)> - ’ (i Q(V) X—K,m(9’¢)> ’

where P(r) and Q(r) are the large and small components of
the wave function and the angular functions are given by

Xien(0,9) = Z C(oj;m —0,0)Y"7(0,0)ps  (6)

—41
o=%3;

with C(loj;m — 0,0) being the Clebsch-Gordan (Racah)
coefficient, ¥;" 7 (6,¢) representing the normalized spherical
harmonics, ¢, being the Pauli two-component spinors, and
the relativistic quantum number k = —(j + %)a satisfying the
condition for the orbital angular momentum / = j — %, where
Jj is the total angular momentum.

To generate the single-particle orbitals, we use the relativis-
tic Hartree-Fock [Dirac-Fock (DF)] Hamiltonian given by

HDF = Z[C& : ﬁj + (:3 - 1)02 + Vnuc(rj) + U(rj)]

S)

Jj
= ho(r)) (7)
j

where h is the single-particle Fock operator with the DF
potential

oce

1 1
Ulpj) =D _(bal—16a)16;) = ($ul—16)100)  (8)
ja aj

a=1
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for all the occupied orbitals occ and the residual interaction
Ves = j<i # -> ] U(r;), which is incorporated through
the EOMCC method.

To retain the atomic spherical symmetry property in our
calculations, the matrix form of the Coulomb interaction
operator using the above single-particle wave functions is

expressed as

1
(¢a¢b|a|¢c¢d> = /drl[Pa(rl)Pc(rl)+ Qa(r)Qc(r1)]

< f dral Py(ra) Pars) + Q) Qa(r2)]

k
<

r
X ;ﬁ x Ang, )

with the multipole k determined by |j, — j.| < k < j, + Je
and |jp — jgs| < k < jp + jg. The angular momentum factor
of the above expression is given by

Al’lg = 8(ma — me,myg — mb) Z He(Ka’Kcak)
k
x (k. ka, K)d* Geme, jama)d* Gymy, jama),  (10)
where the coefficient d*(jm, j'm’) is defined as

oot [+ DR+ DI
d*(jm,jm) = (=1) G,

xC (J'kj/; l—l> C(jkj's —m,m’), (11)
22

with TT(k,k’,k) = L[1 — aa'(—=1)/H**] for 141 +k =

even.

The DF single-particle orbitals |¢, ,(r)) with principal
quantum number # and angular quantum number « are initially
constructed as a linear combination of Gaussian-type orbitals
(GTOs) by writing

1 C,ﬁKNLfv(r) Xie,m
[ Pnc()) = 2 (iC,f!_,(Ns (7 +5) A x—mm)

v

12)

where C,, are the expansion coefficients, N is the
normalization constant for the large (small) component of
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the wave function, «, is a suitably chosen parameter for
orbitals of different angular momentum symmetries, and
) =r! e~ is a GTO. For the exponents, we use the
even-tempering condition a2, = ap8"~! with two parameters,
o and B. It can be noticed in the above expression that the
large and small components of the wave function satisfy the
kinetic balance condition. The orbitals are finally obtained
after solving the matrix eigenvalue form of the DF equation
by a self-consistent procedure.

III. METHOD OF CALCULATION: EOM-CCSD

In the CC method, the ground-state wave function of a
closed-shell atomic system is defined as

[Wo) = e’ | ), (13)

where |®g) is the DF wave function. The excited states are
defined as

H\Y,) =E,|V,)=E,R,|¥) (14)

for a linear excitation operator R,.

The operators R, commute with T as they are strings of
quasiparticle creation operators (but not necessarily particle
conserving). Premultiplying the above equation with the
nonsingular operator e~ leads to

[H,R,]|Po) = AE,R,|Dy), 5)

where AE, is the energy change associated with the ion-
ization process and H = e THel — (pole T He" |¢y) is a
non-Hermitian operator. This approach is usually known as
the EOM method for the excitation operators in analogy to
Heisenberg’s equation of motion. In the EOM-MBPT(2) and
EOM-RPA approaches, the matrix elements of the effective
Hamiltonian H are replaced appropriately in the above
equation.

In the EOM-CCSD method, the cluster operators are
defined as

r="+9= Zti“a;'ai + Z thiba:a:a,-aj, (16)
i,a

a<b i<j

Rll = Rlli + R2M = Zriai + er,‘ajajaiaja (17)

i i<j a

TABLE I. The «( and B parameters of the even-tempered basis used in calculations.

s P d f g

Atom Qo B o B B Qo B a B

He 0.00075 2.075 0.00155 2.080 0.00258 2.180 0.00560 2.300 0.00765 2.450
Li 0.00750 2.075 0.00755 2.070 0.00758 2.580 0.00760 2.600 0.00765 2.650
Be 0.00500 2.500 0.00615 2.650 0.00505 2.550 0.00500 2.530 0.00480 2.500
Ne 0.00753 2.075 0.00755 2.070 0.00758 2.580 0.00800 2.720 0.00800 2.720
Na 0.00250 2.210 0.00955 2.215 0.00700 2.750 0.00710 2.760 0.00715 2.765
Mg 0.02950 1.630 0.09750 1.815 0.00750 2.710 0.00780 2.730 0.00800 2.750
Ar 0.09850 1.890 0.00720 2.965 0.00700 2.700 0.00700 2.690 0.00700 2.696
K 0.00550 2.250 0.00995 2.155 0.00690 2.550 0.00700 2.600 0.00700 2.600
Kr 0.00020 2.022 0.00720 2.365 0.00700 2.550 0.00700 2.695 0.00700 2.695
Xe 0.00010 2.022 0.00720 2.365 0.00700 2.550 0.00700 2.695 0.00700 2.695
Rn 0.00010 2.280 0.00671 2.980 0.00715 2.720 0.00720 2.710 0.00720 2.695
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where indices i, j are used for the occupied orbitals and a,b
are used for the virtual orbitals.

The matrix elements of the effective Hamiltonian for the
present ionization problem are constructed in the (1h-Op) and
(2h-1p) space and are diagonalized to get the desired roots.
The Davidson algorithm [53] has been implemented for the
diagonalization of H. This is an iterative diagonalization
scheme through which eigenvalues and eigenvectors are
obtained. It avoids computation, storage, and diagonalization
of the full matrix. The EOM-CC method can be regarded as the
diagonalization of the coupled-cluster similarity-transformed
Hamiltonian in configuration space.

IV. RESULTS AND DISCUSSION

To test the performance of our newly implemented four-
component relativistic EOM-CCSD method, we present nu-
merical results of principal ionization potentials. The calcu-
lations are performed for the closed-shell rare-gas atoms (He
through Rn), beryllium-like ions (B through Ar and Kr), and

TABLE 1II. SCF energy EQ;. and correlation energies from the
MBPT(2) (E2),) and CCSD (E %) methods, along with the numbers
of active orbitals from various symmetries taken in the calculations

for different atoms.

Number of active orbitals

Atom s p d f g Epy EG:  EG

He 16 14 12 9 7 —2.8618 —0.0365 —0.0415
Lit 15 14 10 9 8 —7.2372 —0.0395 —0.0430
Nett 16 15 11 9 8 —93.9827 —0.0421 —0.0434
Na’t 16 15 13 10 9 —114.4158 —0.0414 —0.0426
Ar'® 14 11 11 10 8 —314.1995 —0.0409 —0.0417
K+ 22 13 11 10 9 —1296.1641 —0.0237 —0.0240
Be 13 11 11 9 8 —14.5758 —0.0742 —0.0924
B+ 15 14 10 9 8 —24.2451 —-0.0824 —0.1062
c* 15 13 11 10 9 —36.4251 —0.0924 —-0.1215
N+ 15 14 13 10 9 —51.1144 —-0.1026 —0.1369
o* 15 14 12 10 9 —68.3143 —0.1089 —0.1487
> 15 14 13 10 9 —88.0271 —0.1168 —0.1621
Nett 16 15 13 10 9 —110.2559 —0.1237 —0.1744
Na’™* 15 14 11 10 9 —135.0042 —0.1266 —0.1829
Mg¥ 15 14 13 11 9 —162.2763 —0.1352 —0.1966
APt 15 14 13 10 9 —192.0767 —0.1404 —-0.2072
Si'% 15 14 13 11 9 —224.4105 —-0.1461 —-0.2177
Pt 15 14 13 11 10 —259.2833 —0.1513 —0.2278
S 15 14 13 11 10 —296.7011 —0.1561 —-0.2374
a3t 15 14 13 119 —336.6703 —0.1606 —0.2466
Ar' 15 14 13 11 10 —379.1979 —0.1650 —0.2554
K2t 16 15 14 11 10 —1593.0492 —0.2316 —0.3630
Ne 17 17 13 11 10 —128.6919 —-0.3736 —0.3732
Nat 17 15 11 10 9 —161.8958 —0.3691 —0.3715
Mg 20 14 11 10 8 —199.9350 —0.4074 —-0.4174
Alt 15 14 13 10 9 —242.1290 —0.3951 —0.4065
Ar 14 11 11 10 8 —528.6657 —0.6513 —0.6640
K* 15 14 12 10 8 —601.3780 —0.6664 —0.6799
Kr 22 13 11 9 8 —2788.8492 —1.5247 —1.4622
Xe 23 13 129 17 —7446.8108 —2.1180 —2.0009
Rn 21 13 12 10 9 —23595.8070 —3.7880 —3.4583
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heliumlike ions (Li, Ne, Na, Ar, Kr), along with Na™, AT, K+,
Be, and Mg. These calculations are compared with the results
obtained using the EOM-MBPT(2) and EOM-RPA approaches
to assess the role of electron correlation. All these results are
compared with those of the measurements, which are taken
from the National Institute of Science and Technology (NIST)
database [54], where many are measured values and a few
are the results of calculations based on different theoretical
approaches.

For the construction of the single-particle orbitals, we
have used both even-tempered (ET) and universal-basis (UB)
functions depending on the convergence of the results. For
Be-like systems, we use UB with op = 0.004 and 8 = 2.23.
We have used the ET basis for other atomic systems. The
corresponding «y and B parameters for the ET basis for
different atoms are given in Table I. The use of total number
of orbitals generated at the SCF level is impractical in the CC
calculations; as the contributions from the high-lying orbitals
are very small in the present calculations owing to their large
energy values, we consider only the orbitals that are significant
to the calculations, and they are called the active orbitals. In
Table II, we present (SCF) energy which is our zeroth energy
(EQp) and the correlation energies from the MBPT(2) (E2

corr

and CCSD (ESSSP) methods along with the number of active
orbitals of different symmetries used in the calculations.

All the Gaussian-type of orbitals generated at the SCF level
are not important for the ionization potential calculations. To
investigate this, we have studied the convergence pattern of
ionization potentials as a function of basis set through a series
of calculations. The Be atom is chosen for the convergence
study. We started our calculations with 91 GTOs and gradually
increased them to 145 GTOs. It is found that the IP value of
the 25 orbital changes by 8 x 10~* when the number of basis
functions increases from 91 to 145. The change is more for
the 1s orbital, and it is found to be 1.89 x 10~2, which is also
in the accuracy range of 0.01%. We have also investigated
our results by increasing the number of diffuse s and p

TABLEIII. Convergence pattern of ionization potentials of the Be
atom (in eV) as a function of the active orbitals using the EOM-CCSD
method.

IP values

Number of active orbitals 1s 2s

91 (13s,11p,11d,9 f,82) 124.6463 9.3247
100 (14s,12p,12d,10£,9g) 124.6565 9.3248
109 (155,13 p,13d,11 £,10g) 124.6620 9.3249
116 (16s,14p,13d,12f,11g) 124.6639 9.3249
118 (16s,14p,14d,12f,11g) 124.6639 9.3248
125 (17s,15p,15d,12 f,12g) 124.6630 9.3249
132* (20s,17p,15d,12 f,12g) 124.6991 9.3249
135> (21s5,18p,15d,12 f,12g) 124.6992 9.3250
141 (17s,15p,15d,12 f,12g,8h) 124.6632 9.3255
145 (17s,15p,15d,12 f,12g,10h) 124.6652 9.3255
145° (235,20p,16d,13 f,12g) 124.6992 9.3250

*The « for the s and p orbitals are taken as 0.000 50 and 0.000 615,
respectively.
®The a for the s and p orbitals are taken as 0.000 20 and 0.000415,
respectively.
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TABLE IV. Ionization potentials (IPs) of He-like systems (in eV)
using the MBPT(2), RPA, and CCSD methods in the EOM procedure.

PHYSICAL REVIEW A 89, 042510 (2014)

TABLE VI. IPs of noble-gas atoms (in eV) using the MBPT(2),
RPA, and CCSD methods in the EOM procedure.

Atom MBPT(2) RPA CCSD NIST [54] Atom Orbital MBPT(2) RPA CCSD NIST [54]
Lit 75.5517 77.1594 75.6399 75.6400 He 1s12 24.4560 26.1086 24.5802 24.5870
Neb+ 1196.1770 1197.7308 1196.2113 1195.8078 Ne 2p3p 21.4439 25.5832 21.4503 21.5642
Kr34++ 17323.3995 173249869  17323.4104  17296.4200 Lsy)2 872.6377 894.5355 872.3581
Ar 3p3p 15.8278 18.0023 15.7951 15.7594
3pip 16.0152 18.2136 15.9817 15.9369
functions by decreasing the exponent «. It is observed that 23s1/ ’ 228(1)12(6) 22?;;;; ziggggg 29.2390
the 2s ionization-potential value remains almost unchanged ZZ T/ 2 252'3757 26 4'21 43 252'0]1 4
with more diffuse s and p functions, whereas the maximum Kr 4p2; ) ) 4:1339 ) 5:88 40 13:9963 13.9996
change for the Is orbital is found to be 0.0529 eV. The ’
deviation from the NIST value increases when more diffuse Sp3p 12.3916 139572 12,1294 12.1298
s and p functions are included. The inclusion of higher-order ~ Rn 6p3/2 10.8604  11.9900  10.5847  10.7485

relativistic effects becomes relevant for inner-core orbitals. As
we are more interested in the valence ionization potential in the
present work, an active space of a similar basis set is sufficient
to construct the orthogonal space for the inclusion of the
correlation effects for all the systems without compromising
the desired accuracy. The results are given in Table III.

We present the IP values of the heliumlike ions in
Table IV. All the results are sub-1% accurate; the result for
Lit is the most accurate, and the least accurate is 0.15%
for Kr3*t. Table IV shows that EOM-MBPT(2) results are
always less than those of EOM-CCSD, whereas the EOM-
RPA method overestimates them. Also, the differences in
the results between EOM-MBPT(2) and EOM-CCSD are
less than those of EOM-RPA and EOM-CCSD. The reason
why the EOM-RPA calculations may be overestimating the
results is that the 2h-1p block, which is the major source
of nondynamical correlations, is not taken into account in
this approach. The ground-state wave function at the CCSD
level is responsible for the major source of the dynamical
correlations for which the EOM-MBPT(2) method seems to be
a more valid approximation than the EOM-RPA method. This

suggests that the nondynamical correlations are also important
for the calculations of the excited states. It is worth mentioning
that the calculated EOM-CCSD IP results are larger than the
NIST values for Ne®+ onwards and the deviations are larger in
the heavier systems.

In Table V, we give the IP results for the beryllium-like
systems. The 2s valence IPs of these systems are in excellent
agreement with the NIST values. Our results for the 1s orbital
match reasonably well with the NIST data. We find that the
relative average deviation of the IP values of beryllium-like
systems (~0.03%) is less than that of heliumlike (0.05%)
systems with reference to the NIST data. A relatively larger
deviation is found for the highly charged ions, which also
increases with an increase in the ionic charge of the atom. The
QED effects are non-negligible for the highly charged ions,
where the effects of relativity are greater and increase with an
increase in the ionic charge.

The results for the rare-gas atoms are given in Table VI.
For the Kr, Xe, and Rn atoms, we have calculated only the

TABLE V. IPs of Be-like systems (in V) using the MBPT(2), RPA, and CCSD methods in the EOM procedure.

MBPT(2) RPA CCSD NIST [54]

Ton 1s 2s ls 2s 1s 2s 1s 2s

B* 218.7753 24.6024 223.7170 25.4690 218.6932 25.1510 217.8827 25.1548
c2 340.5912 47.1763 345.3340 48.1961 340.5074 47.8838 47.8877
N3+ 489.5193 76.6082 494.3701 77.7833 489.3987 77.4732 77.4735
O 665.8043 112.8779 670.6873 114.2098 665.6751 113.9003 113.8990
P+ 869.6607 155.9937 874.4161 157.4809 869.5295 157.1714 157.1631
Nef* 1100.7242 205.9558 1105.5077 207.5972 1100.5835 207.2874 1098.7791 207.2710
Na’* 1359.1193 262.7653 1363.9246 264.5608 1358.9780 264.2504 1357.1716 264.1920
Mg8+ 1644.9936 326.4618 1649.9248 328.4010 1644.8387 328.0902 327.9900
AP+ 1958.6549 397.0176 1963.3552 399.1102 1958.5119 398.7986 1955.7950 398.6500
Sjlo+ 2299.5858 474.4895 2304.3242 476.7141 2299.4367 476.4017 2296.5894 476.1800
p!+ 2668.1363 558.8627 2672.8963 561.2228 2667.9846 560.9095 2664.7632 560.6200
gi2+ 3064.3424 650.1586 3069.1229 652.6532 3064.1883 652.3391 3059.9469 651.9600
Cli3+ 3488.2444 748.3994 3493.0728 751.0246 3488.0867 750.7090 750.2300
Arl4t 3941.3783 853.6104 39448161 856.3589 3941.4781 856.0432 3934.7226 855.4700
K32+ 16934.9486 3972.1671 16939.9718 3976.0698 16934.8134 3975.7297 16902.8643 3971.0000
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TABLE VII. IPs of Na*, Al™, KT, Be, and Mg (in eV) using the
MBPT(2), RPA, and CCSD methods in the EOM procedure.

Atom Orbital MBPT(2) RPA CCSD NIST [54]

Na* 2p3p 471177 51.2511 47.1286  47.2863
2p1)2 47.3000 51.4556 473105  47.4557
2512 79.9745 85.4228 80.0303 80.0741
Isi, 10905239 1112.3845 1090.3169

Al* 3512 18.6480 19.1227 18.8248 18.8285
2p3p 92.0692 97.8533 91.9647  91.7116
2pip 92.5141 98.3291 924092  92.1604
2512 137.4759  143.6488  137.4202
Is;p 15823139 1605.2003 1582.0885

K+t 3p3p 31.6687 33.9023 31.6434  31.6249
3pip 31.9497 34.2071 31.9232  31.8934
3512 48.4814 55.1066 48.4795  47.8182
2p3p 309.0471  320.6904  308.7081
2p1)2 311.9336  323.6745  311.5935

Be 2512 8.9442 9.6603 9.3247 9.3226
Lsi2 1247175 129.7139  124.6463  123.6344

Mg 3512 7.5057 7.9519 7.6508 7.6462
2p3p 58.3976 64.1697 58.2235  57.5603
2pip 58.6898 64.4875 58.5154  57.7983
2512 98.3383  104.1001 98.2824

outer-valence IPs. The most accurate EOM-CCSD result we
obtain among them is for the Xe atom. The 2p3/, valence
ionization energy for the Ne atom differs from the experimental
result by 0.1139 eV. The differences are 0.0357, 0.0033,
and 0.0004 eV for the Ar, Kr, and Xe atoms, respectively,
for their valence orbitals. The reason for these differences
could be due to the possible double-excitation character of
the p orbitals, and the difference decreases along the group.
The IPs of the EOM-CCSD method predominantly account
for contributions from the single excitations and, to some
extent, from the double excitations. The discrepancies could be
mitigated by the inclusion of the triple excitations in the ground
and excited states, which is computationally very expensive
for relativistic calculations, so they are not incorporated in
the present implementation. The deviation is 1.54% for the
Rn atom, which is expected as higher-order relativistic effects
are non-negligible for heavy elements and also because of the
finite size of the basis sets.

In Table VII, we present the results for Nat, Al™, Kt, Be,
and Mg. The largest deviation is found in the 2p3/, state of
Na™ and is about 0.33%. This could be due to the possible
dominance of the double excitations. In the case of KT it is
reduced to 0.05%, and for Mg it is 0.06%.

In order to quantify the errors in our calculations, we
take into account the close agreement of our EOM-MBPT(2)
and EOM-CCSD results, the convergence obtained using
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the basis sets in our calculations, and the omitted higher-
order relativistic and correlation effects. We estimate the
uncertainties in the results of the He-like ions reported in
Table IV to be below one half of a percent based on the
above-mentioned factors. It has been found recently that the
dominant contributions to the IPs of the Be-like ions given in
Table V come from electron correlation effects at the DC level,
which have been taken into account in this work to all orders
via the EOM-CCSD method, and contributions from the QED
effects are reported to be below one half of a percent [55]. We
therefore assign a conservative uncertainty estimate of 0.5%
to the IPs of the He-like systems that we have calculated.
Unlike in the highly charged ions, correlation effects play a
dominant role in the evaluations of the atomic properties of the
neutral and singly charged atomic systems. Our EOM-CCSD
method is capable of accounting for the correlation effects
very accurately for light and medium-size atoms and ions, but
triple and other higher higher-order excitations could become
non-negligible as the system gets heavier. It would therefore
be reasonable to estimate the errors in these calculations for
such systems to be within 1%.

V. CONCLUSION

The present work describes the four-component relativistic
implementation of the equation-of-motion coupled-cluster
method at the level of single and double excitations for
the ionization problem in closed-shell atomic systems. To
test the reliability of this method, we have computed the
ionization potentials of atomic systems from different groups
in the periodic table. The calculations are performed using
EOM-MBPT(2) and EOM-RPA in addition to EOM-CCSD to
understand the role of electron correlation at all three levels
of approximation. The second-order many-body perturbation
method is found to underestimate the results, while the
random-phase approximation overestimates them. The EOM-
CCSD results are in excellent agreement with the NIST data
wherever available, and we estimate the errors to be within
one half of a percent and 1% for the light and heavy systems,
respectively.
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