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ABSTRACT

Context. Recent results from high-resolution solar granulation observations indicate the existence of a population of small granular
cells that are smaller than 600 km in diameter. These small convective cells strongly contribute to the total area of granules and are
located in the intergranular lanes, where they form clusters and chains.
Aims. We study high-resolution radiation hydrodynamics simulations of the upper convection zone and photosphere to detect small
granular cells, define their spatial alignment, and analyze their physical properties.
Methods. We developed an automated image-segmentation algorithm specifically adapted to high-resolution simulations to identify
granules. The resulting segmentation masks were applied to physical quantities, such as intensity and vertical velocity profiles, pro-
vided by the simulation. A new clustering algorithm was developed to study the alignment of small granular cells.
Results. Small granules make a distinct contribution to the total area of granules and form clusters of chain-like alignments. The
simulation profiles demonstrate a different nature for small granular cells because they exhibit on average lower intensities, lower
horizontal velocities, and are located deeper inside of convective layers than regular granules. Their intensity distribution deviates
from a normal distribution as known for larger granules, and follows a Weibull distribution.
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1. Introduction

New high-resolution solar telescopes provide us with the oppor-
tunity to study the solar photosphere in more detail than ever
before. The recent achievements in high-resolution observations
(∼0.1 arcsec; 1 m telescopes and beyond; New Solar Telescope,
and GREGOR, see e.g. Goode et al. 2010b,a; Schmidt et al.
2012) and the future improvements by the 4 m class ground-
based high-resolution instrument Advanced Technology Solar
Telescope (ATST, Keil et al. 2010) or the European counterpart
European Solar Telescope (EST, Collados 2008) raise interest
in analyzing the solar photosphere and its convective patterns
in previously unachievable detail. The granulation is a distinct
feature of the solar photosphere generated by convection. To
study solar granulation in detail, fully automated segmentation
algorithms were developed and applied to observational data.
Because the segmentation results strongly depend on the qual-
ity of the images, new telescopes with increasing resolution en-
able us to describe these features more precisely and might pave
the way to the discovery of new convective patterns on smaller
scales (see e.g. Roudier & Muller 1986; Schrijver et al. 1997;
Danilovic et al. 2008).

The recent discovery of granular substructures that form
bright granular lanes (see e.g. Steiner et al. 2010; Yurchyshyn
et al. 2011) and of granular cells with scales smaller than
the dominant scale of 1000 km, defined by Roudier & Muller
(1986), has again drawn attention to the topic of the solar granu-
lation. Abramenko et al. (2012) found a distinct subpopulation of
smaller granular cells by studying observational data of the New

Solar Telescope (NST) at Big Bear Solar Observatory (BBSO).
These features, which the authors termed mini-granules, were
found to be located within wide granular lanes where they form
chains and clusters. How they form and dissipate is unclear.
Therefore, Abramenko et al. (2012) suggested to investigate
this in more detail with numeric simulations of solar-magneto
convection.

In this study, we investigate small convective patterns with
high resolution solar radiation hydrodynamics (RHD) simula-
tions to detect and analyze convective patterns smaller than the
characteristic size of the solar granulation. The advantage of
RHD simulation data over magneto hydrodynamics (MHD)1

data regarding the analysis of the solar convection is that we
do not need to consider the influence of magnetic fields on
the convective pattern. For the exclusive investigation of the
newly discovered mini-granules, bright grains originating from
small-scale magnetic fields would be particularly interfering.
Therefore, fields such as magnetic bright points (MBPs, see
e.g. de Wijn et al. 2009; Utz et al. 2010) would have to be
excluded from the analysis, but they inherently not present in
RHD simulations.

For the purpose of detecting small-scale convective patterns,
a new segmentation algorithm was developed. It takes several
physical properties of the convection into account that are pro-
vided by the simulation, such as the vertical velocity and the
emerging intensity which is defined as the outwardly directed

1 More details on the state-of-the-art MHD simulations can be found
in Nordlund et al. (2009).
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Fig. 1. Snapshot of the simulated data com-
puted by the ANTARES code during a 3D
RHD run. In this model, the temperature data
are color coded. Moreover, a temperature iso-
surface of 6000 K, located at a height of
∼750 km below the upper boundary, indicates
the granular pattern. An artificial light source
was placed above the model to accentuate the
structure of iso-surface.

intensity that leaves the computational box through the upper
boundary. Furthermore, a clustering algorithm was developed
and applied to the segmented data to study the alignment of small
granules.

2. Simulation setup and data

ANTARES (a numerical Tool for astrophysical research) is
an RHD code for numerically simulating the solar near-
surface convection (box-in-a-star approach) developed by
Muthsam et al. (2007, 2010). The FORTRAN90-code solves
the set of RHD equations using weighted essentially non-
oscillatory (WENO) high-resolution numerical schemes (see
also Zaussinger & Spruit 2013; Mundprecht et al. 2013).

Open boundary conditions in the vertical direction allow
free in- and outflow, while in the horizontal directions peri-
odic boundary conditions are used. A detailed description of the
boundary conditions can be found in Grimm-Strele et al. (2014).
In the upper ∼30% of the simulation box the radiative heating
rate is calculated using gray approximation, whereas in the rest
of the box diffusion approximation is valid. The 3D model is ini-
tialized from a 1D model to which a weak perturbation is added
to break the horizontal symmetries. The simulation is then ther-
mally relaxed in an almost two-hour long period, which provides
sufficient time for the development of 3D structures.

The box of the 3D model comprises 9 Mm in horizontal
directions and 5 Mm in vertical direction. The spatial resolu-
tion in the horizontal directions is 32.1 km, in vertical direc-
tion 15.3 km, resulting in 281 by 339 grid cells. To study the
granular cells we processed a data set with a temporal resolution
of ∆t = 30 s. Convective patterns of the simulated two hours of
real solar evolution were analyzed at the calculated bottom of
the photosphere.

Figure 1 illustrates the temperature distribution of a 3D snap-
shot from an ANTARES model run. The granular pattern in the
given temperature iso-surface at 6000 K is clearly visible.

3. Automated granule detection in two dimensions

To analyze of the numeric RHD data we developed a two-
dimensional segmentation algorithm. The automated detection
of granular cells is crucial for processing large datasets and the
successive statistical analysis. Several sophisticated algorithms
to segment the solar granulation in observational data exist and

are publicly available. Among them is the so-called multiple-
level tracking (MLT) algorithm developed by Bovelet & Wiehr
(2001), which was previously tested on ANTARES data (see
Lemmerer et al. 2012). Our algorithm is based on the same basic
idea of using multiple thresholds to segment image data, but it is
also different in several crucial parts and details. The incorpora-
tion of methods of pattern recognition, such as edge-detection
routines and morphological operations as well as of velocity
maps of the surface flows (dopplergrams) resulted in a fast and
reliable segmentation routine, which is not only useful for high-
resolution data from observations, but also for those obtained
from simulations. In addition, we developed a tool analyzing the
clustering behavior of small granular cells.

To segment the granular structures in two dimensions, a ref-
erence level within the segmentation box has to be determined.
To do this, we calculated the geometric height (where the optical
depth τ = 1) to define the bottom of the photosphere2. We eval-
uated the equation of optical depth for each grid point column
by column from model data values. Then we extracted for each
point the height at which the optical depth reaches unity. From
this we were able to construct the surface of optical depth unity,
which we refer to as τ1-iso-surface (see also Leitner et al. 2009;
Lemmerer et al. 2010).

3.1. Two-dimensional segmentation algorithm

The two-dimensional segmentation algorithm was applied to the
afore mentioned τ1-iso-surface. The algorithm differs in some
aspects from segmentation algorithms that are based solely on
intensity observations (filtergrams). Data recorded with high-
resolution telescopes provide in most cases only intensity infor-
mation in the form of gray-level images. Therefore, algorithms
are often based on thresholding of multiple intensity levels (e.g.
MLT) or on image-processing routines such as skeletonization
(e.g. Florio & Berrilli 1998).

The algorithm introduced here is based on a multiple
threshold-level segmentation and on image-processing tech-
niques. The segmentation additionally profits from the use of
physical quantities, that is the combination of vertical velocity
and intensity or temperature that are offered by the ANTARES
model. The whole scheme is a bottom-up approach. Large frag-
ments are sequentially broken down into smaller structures by

2 Because we used the gray approximation, the wavelength is
irrelevant.
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Fig. 2. Steps of the applied segmentation: a) normalized emerging intensity and b) vertical velocity on the τ1-iso-surface of the ANTARES
simulation, c) initial vertical velocity threshold applied to the vertical velocity on the τ1-iso-surface, d) subsequent lower threshold applied to
the structure, e) lowest threshold applied to the structure, f) edge detection applied to the emerging intensity of the object, g) granular cells still
connected by pixels after applying of the lowest threshold, h) morphological opening to separate connected granular cells, i) final segmentation
mask.

changing threshold levels, that is, changing them to higher ve-
locities, which results in smaller structures3.

The algorithm starts with the pre-processing of the vertical
velocity (Fig. 2b) and the emerging intensity (Fig. 2a). This in-
cludes normalizing both surface profiles to the interval [0, 1]. For
the velocity profile, the value 0 refers to the highest upflow ve-
locity and 1 to the highest downflow velocity. The segmentation

3 The opposite scheme, a top-down approach, is used in the MLT algo-
rithm (see Bovelet & Wiehr 2001). Starting from high-intensity seeds,
the granular segments grow by shifting the threshold level to lower in-
tensity values.

itself is performed by a recursive thresholding routine, which
requires an initial upper threshold and a minimum lower thresh-
old as input parameters4. While the algorithm can be applied
to intensity as well as to vertical velocity profiles, for the cur-
rent study we used the vertical velocity on the τ1-iso-surfaces
(see Fig. 2c) as input for the thresholding. The intensity profiles
are required for later image-processing operations. The resulting

4 Because the intensity distribution varies during the whole time se-
ries, the lowest and highest segmentation thresholds are shifted by the
respective change in the mean image intensity. In particular, this shifting
takes care of the intensity variations caused by the 5 min oscillation.
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structures are more distinctly separated than those obtained from
the intensity segmentation. If vertical velocities are not available,
intensity images can be processed instead.

After applying the initial threshold on the velocity on the
τ1-iso-surface, the resulting binary image is labeled and each
segmented structure is analyzed. After each thresholding step,
the initial threshold is again reduced by a factor that is another
input parameter. Next, this thresholding routine is applied to
each of the previously found and labeled structures (see Fig. 2d).
If the previously found structure is separated because of the cur-
rent thresholding, new labels are applied to the found structures.
This scheme is repeated on these new structures. The thresh-
olding routine is iterated until the lowest threshold is success-
fully applied (see Fig. 2e), that is until the strongest upflows and
smallest (most fragmented) structures are detected or as long as
the segmented objects meet the following conditions:

– the diameter5 of the structure exceeds the largest diameter of
granules6,

– The structure falls below a critical value of its solidity7, in-
dicating that granular objects are still connected.

After the final threshold was applied and objects meet the pre-
vious conditions, morphological operations are executed in the
following way:

– Laplacian-of-Gaussian edge-detection is applied to the pro-
files of the emerging intensity of the structure to detect
closed contours (Gonzalez et al. 2009), see Fig. 2f,

– a morphological opening is performed to separate objects
connected by a few pixels, as illustrated in Fig. 2g, as well as
to preserve the shape of the objects (Gonzalez et al. 2009),
see Fig. 2h.

Applying the edge-detection routine to the emerging intensity
profits from the high-intensity contrast between intergranular
lanes and granular cells, which leads to a well-defined sepa-
ration of merged structures. The high-intensity contrast is ex-
ploited in cases of merging of granules. When the initial phase
of merging occurs in an analyzed velocity profile, the emerg-
ing intensity still shows a dark intergranular lane. These lanes
indicate clear separations between granular cells. On the other
hand, these granules would already appear as a merged structure
in the vertical velocity on the τ1- iso- surface. Hence, addition-
ally using the emerging intensity is of advantage for a correct
segmentation.

Furthermore, incorporating the emerging intensity helps dur-
ing the initial phase of the fragmentation process of exploding
granules8. These features often show a concavity at their cen-
ter caused by downflowing plasma. In the emerging intensity
these downflows appear as a depression on or outside of the
granule. To prevent a loss of information regarding the statis-
tics and physical properties of these granules, holes are automat-
ically filled if the plasma downflow is located at the center of
5 The diameter of a granular cell is defined as the equivalent diameter
of a circle with the same area as the region, computed via

√
4 ∗ A/π.

6 The largest diameter was derived from the probability density func-
tion of the granule diameters (see Sect. 4).
7 The solidity of an object is defined as the ratio of its area to the area
enclosed by its convex hull. A solidity of 0.7 is used as the critical value.
8 Exploding granules are the result of the final phase of huge granules
starting with a ceasing upflow in the middle of the granules. The still-
expanding plasma plus the radiative cooling in the central region finally
leads to a flow reversal in the middle of the granule with a downflow
setting in. This downflow either creates a depression in the middle of
the granule or leads to its fragmentation.

the granule. The structure is split into several substructures if the
downflow causes a fragmentation.

The periodic boundaries are taken into account by excluding
granular fragments, separated by the right and lower boundary
(see Fig. 2i), and appending them to the left and upper bound-
ary, respectively. Later, this allows a calculation of the correct
areas, diameters, and centroids of the granule split by the peri-
odic model boundaries. The applied image-processing steps and
a labeling of all objects result in the final segmentation mask (see
Fig. 2i). The border handling of split granules is illustrated by
the assigned labels depicted as gray values. The mask is then ap-
plied to various profiles of physical quantities to extract statisti-
cal information of the identified granules. The final step retrieves
information such as granular area, perimeter, mean intensities et
cetera.

3.2. Clustering algorithm for analyzing the alignment of small
granules

According to Abramenko et al. (2012), mini-granules that form
clusters and chains are situated in the intergranular lanes. To in-
vestigate this observational finding in the ANTARES simulation
and to quantify the finding in a statistical analysis, we developed
a clustering algorithm adapted to the segmented data.

As described in Sect. 3, at each time step a segmentation
mask is produced. The clustering algorithm is based on these fi-
nal segmentation masks. The masks are labeled and statistical
information, such as the area and the centroid of each granules
is derived. The clustering algorithm starts with the detection of
small granules with diameters smaller than the threshold diame-
ter of about 750 km9.

These small granules are labeled in ascending order and sep-
arated from the remaining larger granules. Each of them (shown
in red in Fig. 3a) is examined separately. Euclidean distances
between the centroids (shown in pink in Fig. 3b) of the inves-
tigated granular cells and all other granules are calculated. The
four nearest granules (plotted in black in Fig. 3b) with a mini-
mum distance to the examined one (red) are now analyzed (cor-
responding Euclidean distances are listed in Fig. 3b). Several
criteria define the assignment of the investigated granular cells
to a cluster:

– if the examined granular cell is surrounded only by large
cells and the nearest small cell is by definition located too
far away (distance larger than 1.9 Mm), which is the case in
Fig. 3b, the examined cell is classified as not belonging to a
cluster (Fig. 3c),

– if the examined granule has another small granule within its
closest four neighbors, which does not already belong to a
cluster, this neighboring small granule adopts the pixel value
(label) of the examined granule,

– if a neighboring small cell already belongs to a cluster, the
examined cell receives the same label (pixel value) and is
appended to the cluster.

The algorithm results in an image consisting of labeled clusters,
where each cluster itself consists again of several isolated small
granules uniquely belonging to one of those clusters. Figure 3c
indicates the clusters in different colors. Statistical properties,
such as centroids and eccentricities of the clusters, are deter-
mined. The possibility to allocate clusters formed by several
mini-granules enables us to quantify their spatial distribution

9 This diameter was determined by the global maximum in the proba-
bility density function of the diameters of granules (see Sect. 4).
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Fig. 3. Steps of the clustering algorithm: a) segmented image including identified small granular cells shown in red, b) calculation of Euclidean
distances to neighboring granules, c) final result of the clustering illustrated in different colors.

Fig. 4. a) Application of the segmentation mask to the geometrical depth of the iso-surface of τ = 1 for a single frame. Red indicates the location
below the calculated iso-surface of τ = 1 in the convection zone and blue the location above this calculated level. b) Granular diameter vs. the mean
geometrical depth where τ = 1 for the entire time series. The trend of the scatter is illustrated by linear fits (solid black lines) and a third-order
polynomial fit (dashed dark-gray line).

in the field of view. The determination of the eccentricity10 of
the clusters is used to determine the alignment of small granules
within these clusters.

4. Results

4.1. Physical characteristics of granules

The developed two-dimensional segmentation algorithm offers
the possibility to retrieve statistical information of the segmented
granular cells. For our analysis we used a two-hour data set con-
sisting of 281 time steps with a temporal resolution of 30 s. Each
time step contains an average of 93 granules, yielding a total
statistical sample of about 20 500 granules. Physical properties,
such as the vertical and horizontal velocity as well as the geomet-
rical depth of the segmented granules are evaluated on surfaces
of the optical depth τ = 1. The emerging intensity of the seg-
mented granules is analyzed at the top of the computational box.
10 The eccentricity of a cluster is defined as the ratio of the distance
between the foci of the ellipse enclosing the cluster and the length of
the major axis. The value of the eccentricity is between 0 and 1.

This can be understood as the intensity that reaches a virtual ob-
server’s telescope. At each time instant the segmentation mask is
applied to the emerging intensity and to the profiles of the verti-
cal and the horizontal velocities, to obtain characteristic parame-
ters for granules, such as mean intensity, geometrical depth, and
horizontal and vertical velocity values. These physical proper-
ties of identified granules are then analyzed with respect to their
equivalent diameters via scatter plots.

Figure 4a shows the segmentation mask colored according to
the vertical position of the surface of optical depth unity. We can
see that small granules are on average located deeper than the
larger ones, which is also apparent in the scatter plot in Fig. 4b.
The ordinate in Fig. 4b indicates the mean geometrical depth of
the detected granules in the simulation box in km. Negative val-
ues indicate the location of a granule within the convective zone.
The scatter is distributed in two distinctive regions with different
trends. Thus, the applied two linear fits separate the scatter for
the two distinctive regimes. The two linear fits intersect at a di-
ameter of ∼1000 km. The group of small granules are apparently
located at larger depths than regular granules, showing a trend of
decreasing depth with increasing diameter, while larger granules
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Fig. 5. a) Application of the segmentation mask to the normalized emerging intensity for a single frame. b) Granular diameter vs. normalized mean
emerging intensity of granules for the entire time series. The trend of the scatter is illustrated by linear fits (solid black lines) and a polynomial fit
(dashed dark-gray line).

are located at a more or less constant depth (only slightly in-
creasing with size).

Figure 5a shows the intensity distribution within granules
and Fig. 5b the mean granular intensity versus its diameter. The
intensity increases with increasing diameter up to a diameter of
∼1000 km, which is also verified by the slope of the third-order
polynomial fit and the linear fits (dashed dark-gray and solid
black lines, respectively). These fits also indicate a weakly de-
creasing trend for the intensities of granules larger than 1000 km
in diameter. Interestingly, the split of granular features into two
populations appears again, illustrated by two opposite linear
trends, obtained for small and large granules.

In Fig. 6a the normalized emerging intensity distribution of
small-, medium- and large-sized granules is analyzed separately.
Large granules show regular Gaussian distributions while for
small- and medium-sized granules the emerging intensity dis-
tributions differ from Gaussians but fit a Weibull distribution, as
illustrated by the solid red and blue lines in Fig. 6a. As a con-
sequence, we regrouped granules according to their diameters
in several subpopulations and analyzed their intensity distribu-
tions separately. In this way, we obtained a family of Weibull
curves with different shape parameters (see Fig. 6b). We plot
these parameters versus the group diameters in Fig. 6c. The fig-
ure demonstrates that the best-fitting Weibull distribution shows
a linear parameter dependence on the mean diameter of gran-
ules. The theoretical interpretation of the shape parameter, its de-
pendence on granular diameters and the meaning of the Weibull
distribution for the physics of the solar granulation has to be in-
vestigated in more detail and will be a possible topic for future
study.

We also analyzed the mean vertical velocity of segmented
granules (Fig. 7a). The distribution of the mean vertical velocity
of identified small granules exhibit a large scatter, which may
be related to different stages of their evolution because they are
predominantly found in deeper layers (see Fig. 7b). The poly-
nomial and linear fits show a strong decrease of vertical veloc-
ity (upward moving plasma) with decreasing granular diameters
and thus support the concept of the existence of two distinct
populations.

Applying the segmentation masks on the horizontal velocity
profiles of the RHD model (see Fig. 8a) enables us to estimate

the mean horizontal velocities (Fig. 8b, red), which reveal a
slightly decreasing trend over the whole range of granular di-
ameters (solid black line in Fig. 8b). We then excluded gran-
ules with diameters smaller than 750 km, because they exhibit a
large scatter, and found for the remaining majority of granules a
practically constant behavior, illustrated by the dashed approx-
imately horizontal dark-gray fit. The maximum horizontal ve-
locity (Fig. 8b, blue) is dependent on the granular size. As the
diameter increases, the maximum horizontal velocity increases.
This result coincides with findings in simulations (e.g. Steffen
et al. 1989). The increase in horizontal velocity to balance the
larger plasma volume that ascends to the surface can be under-
stood as a consequence of mass conservation (see e.g. Nordlund
et al. 2009).

4.2. Structural properties of granules

Figure 9 shows the area contribution function defined as the con-
tribution of a given size of a granule to the total area of gran-
ules (Roudier & Muller 1986). The function reveals a local min-
imum located in an area of ∼1.9 Mm2, which corresponds to
an equivalent diameter of ∼1500 km, and a global maximum in
an area of ∼0.43 Mm2 corresponding to an equivalent diameter
of ∼750 km.

The probability density function of the equivalent diameter
(blue line in Fig. 9) shows an increase in the number of detected
granules towards smaller scales. We found a less distinct change
in the slope than Abramenko et al. (2012).

For our statistical analysis the distinct global maximum at a
diameter of 750 km (Fig. 9) was defined as the threshold value
to discern between the population of small granules and larger
ones. Interestingly, this value agrees well with the points of in-
tersection of the linear fits applied to the vertical velocity and
hence might have a real physical meaning.

4.3. Cluster detection and analysis of small granules

According to Abramenko et al. (2012), small granules often
form clusters and chains. Our clustering algorithm enables us
to quantify the spatial arrangement of these small granules with
diameters smaller than 750 km. Figure 10 shows the distribution
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Fig. 6. Analysis of normalized mean emerging intensity: a) comparison of distributions of the normalized mean emerging intensity of large granules
shown in green, medium-sized granules in red, and small granules in blue as well as their Gauss and Weibull fits, respectively, b) family of Weibull
curves derived from regrouping granules according to their diameters in classes, c) shape parameter of the Weibull distributions derived from the
intensity distribution family in b).

of the number of small granules in the clusters. We see that the
majority of clusters consist of two granules. Because apparently
two granules can only form lines and chains, we adjusted the
distribution by neglecting all clusters formed by two granules
and only considered clusters consisting of three or more gran-
ules. The resulting distribution of the eccentricities of clusters is
displayed in Fig. 10b. We found that small granules in clusters
predominantly form chains. The main part of clusters feature an
eccentricity higher than 0.9, that is close to 1 (alignment along a
line; a value towards 0 would represent a circular alignment).

5. Discussion and conclusions

New telescopes and 3D simulations produce huge amounts of
data, which make it necessary to develop algorithms for auto-
mated analysis. High-resolution simulations such as those ob-
tained with the RHD simulation code ANTARES provide syn-
thetic intensity maps and velocity profiles that can be compared
with observations. Additionally, the simulation data allowed us

to infer the characteristic physical quantities on any layers in the
simulation box, which are not accessible to observations. The
segmentation algorithm developed and described here, makes
use of this additional information by combining a multiple-
level thresholding routine applied to the vertical velocities with
image-processing techniques, that use the emerging intensity
profiles at the top of the computational box.

Granular characteristics: the analysis of the horizontal and ver-
tical velocity, and also all intensity distributions of the seg-
mented granular cells, yealded different results for small gran-
ules than for granules larger than 1000 km. Thus we can appar-
ently speak of two distinct populations of granules. The most
distinct characteristics of small granules are their lower intensi-
ties and maximum horizontal velocities. The fits applied to the
scatter plots of the emerging intensity as a function of granular
size indicate a positive slope for granules with diameters smaller
than ∼1000 km. On the other hand, a slight decrease is visible for
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Fig. 7. a) Application of the segmentation mask to the vertical velocity on the τ1-iso-surface for a single frame. b) Scatter plot of the mean vertical
velocity of segmented granules vs. the granular diameter for the entire time series. The trend of the scatter is illustrated by two linear fits (solid
black lines) and a third-order polynomial fit (dashed dark-gray line). Negative values correspond to upflowing plasma.

Fig. 8. a) Application of the segmentation mask to the horizontal velocity on the τ1-iso-surface for a single frame. b) Scatter plot of granular
diameter vs. mean horizontal velocity of segmented granules for the entire time series, shown in red and the maximum horizontal velocity in blue.
The trends for granules across the whole range of diameters are illustrated by linear fits as solid black lines and for granules with diameters larger
than 750 km by a linear fit as a dashed dark-gray line (only shown for the mean horizontal velocity).

the population of regular granules. A detailed study of the inten-
sity distribution leads us to the conclusion that a Weibull distri-
bution fits the results obtained for small and medium-sized gran-
ules very well, while the intensity distribution for larger granules
(diameters larger than 1.9 Mm) can equally be approximated
by a Gaussian. From the family of Weibull intensity distribu-
tions for classes of granules with different diameters we de-
duced a linear relationship between the Weibull shape param-
eter and mean granular class diameters. The larger the diameter,
the more Gaussian-like the intensity distribution. These results
agree in so far with findings in Yu et al. (2011), as they found that
small granules do not satisfy Gaussian distributions, whereas the
continuum intensity distribution of large granules is similar to a
Gaussian.

The analysis of the vertical velocity as depicted in Fig. 7b il-
lustrates a considerable scatter for small granules. Especially the
smallest among them show downflowing motions, while larger
granules are in a predominately upflowing state. This was con-
firmed by observations (Yu et al. 2011) and by results from

simulations (Gadun et al. 2000). To study the origin of these
motions, detailed analysis of the temporal evolution of granules
has to be carried out.

Structural appearance and clustering: the area contribution
function (Fig. 9) agrees with findings in previous studies. We
determined the global maximum at a diameter of 750 km, which
is smaller than the dominant scale. This might be because of the
high contrast of the data and the possibility to segment gran-
ules without loosing information due to the detectability of the
smallest variations of intensity levels within detected granules.
Another finding is that granules with diameters smaller than
∼750 km contribute significantly to the total area of granules.

The determined probability density function of the diame-
ters of identified granules (Fig. 9) differs from the results in
Abramenko et al. (2012), where the probability density function
shows a decrease from small diameters to diameters of up to
600 km. This probably results from over-segmentation because
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Fig. 9. Area contribution function shown in red.
The black curve indicates the probability den-
sity function of the granular area and the blue
solid curv the equivalent diameter of segmented
granules.

Fig. 10. Analysis of the structural alignment of clusters: a) histogram of the number of granules forming a cluster. b) Probability density of the
eccentricity of detected clusters that consist of more than two granules.

they used single thresholds to detect granules. While the authors
stated that they excluded magnetic bright points11, some of them
might still have escaped the exclusion. Hence, these small gran-
ules may have contributed to their analysis, which might be an-
other reason for the occurrence of many granules identified with
a diameter smaller than 300 km, which cause the steep increase
of their curve toward smaller sizes.

The eccentricity distribution derived for the clusters indi-
cates that small granules form clusters that show chain-like
alignments. This coincides well with observational results in
Abramenko et al. (2012).

General remarks and outlook: when studying time series with
an interval of 30 s as used in this analysis, small granules appear
for only a few time steps and rarely reach the same intensity
as the neighboring larger granules. This behavior suggests that
small granules, which are situated in the intergranular lanes, are

11 Small-scale magnetic flux concentrations that appear bright in filter-
gram observations at scales of ∼200 km in diameter.

not evolving to the same geometrical height as larger granular
cells. Movies suggest that small granules may not result from
fragmentation of larger granular cells but instead evolve and dis-
solve in regions of intergranular lanes, rarely merging with other
granules. For a detailed automated analysis of their evolution a
higher time-cadence is necessary. An increase of the temporal
resolution by an order of magnitude is desirable for the con-
tinuous investigation of the granular evolution. This will con-
sequently lead to a better understanding of the evolution of the
plasma upflow, manifested in two dimensions at photospheric
levels, as granules. In the future, a more complete understand-
ing of the behavior of small granules will be gained by studying
the 3D evolution of the upstreaming hot plasma plumes in the
convection zone. For this purpose, we plan to develop a general-
ization of the segmentation algorithm that can be applied to three
dimensions.
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