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Abstract. Vacuum fluctuation in the Einstein’s elevator (which mimics a
constant giavitational field) is analysed without introducing a plethora of
extraneous vacuum states. In the elevator there is no particle creation,
though the vacuum appears polarized.
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1. Introduction

A constant electric field can produce charged particle pairs from the vacuum
(Schwinger 1951). Can a constant gravitational field do the same?

While constant electric field is a ‘physical reality’, constant gravitational field is
not. It exists in Einstein’s elevator because of acceleration. Relabelling coordinates
will make it vanish. If the concept of the vacuum is coordinate independent, then
constant gravitational field cannot create particles. However extensive amount of
work in the last decade has shown the vacuum to be a coordinate-dependent
concept. Thus only an analysis in the Einstein’s elevator can answer the question
raised above. ‘

We shall perform such an analysis in this essay and demonstrate the following
facts : (i) a constant gravitational field does not create particles, in contrast with an
electric field; (i) the vacuum fluctuation in the Einstein’s elevator has a Planckian
spectrum ; and (iii) effective action techniques can be used to provide a distinction
between nontrivial vacuum fluctuation patterns (which exist in Einstein’s elevator)
and real particle creation (which does not). We feel that such a distinction will be
very helpful in settling many conceptual ; problems (see e.g. Padmanabhan 1982 ;
Candelas et al. 1983; Unruh & Wald 1984).

We begin by describing briefly the relevant path integral technique as applied to
constant electric field (section 2). This method is applied to the constant gravita-
tional field in section 3. Section 4 summarizes the main conclusions of the paper.

*Received ‘honourable mention’ at the 1985 Gravity Research Foundation essay competition.
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2. Effective Lagrangian in constant electric field

The vacuum persistence amplitude is given in terms of the effective action by the
relation

(0,out |0,in ) = exXpi Aest = €xp i | Lepr d*x. ...(D
If the probability for pair creation (via the decay of the vacuum) per unit spacetime
volume is p, then we have
| (0, out |0, in)|2%=exp(—2Im Aeyy) = exp (— { p d*x), (2
so that
p = 21Im Le. ..(3)

For spinless particles of mass m and charge ¢, Letr can be computed most con-
veniently through the relation

-]

Lett= — i j % exp (— im2X) K (x1,A; xi,0), ...(4)
0

where the kernel K (x3A ; xi0) has the following path integral representation
K(x3X; x10) = [ Dxi(s) exp id[x3A; x10]

o\
dxi dxk dxi

=I DxI(s) exp l: i j ds {—}4-— Stk 7~ ds'_+ g4 —d—s—‘}] . -.(5)
0 ‘

The formal expression in (5) is mathematically ambiguous because of oscillating
phases. As usual, we shall assume that the expression (5) is evaluated in the
Euclidean sector and is analytically continued to Minkowski spacetime. Denoting
the variables in the Euclidean region with a subscript E, we have the analytic con-
tinuation

Kx(x,mAe; x,60) = | @ xu(s) exp (— 4w), ...(6)
where — Ag is obtained from i4 by the substitutions
[ = itE, S = iSE, A = I)g. .(7)

In the presence of a constant electric field along the x-axis (i.e. 4! = 4; = (—Ex,
0,0,0)] in the flat Minkowski space [gyx = nix = dia (1, —1, —1)}, the Euclidean
path integral in equation (6) can be exactly evaluated from the classical path. We
get (Ate = x3 — x5 etc.)

Ke(x:Ag; x,0) = F(Xe) exp (—Ax) .(8)
with
-1 | 9E |
Fd=) = (dn)2Ae  sin( | gE | Ae)’ )

. Az = qEx,Ats+ -‘l‘—qE[AtE)2+(Ax)2] cot (¢EA=) + —}‘: i [(Ap)2+(Az)?].
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Analytically continuing to Minkowski space and taking xi = x5, we get the coinci-
dence limit

1 1 |gE|
i (@n)A sinh [gE 1A’

K(xA; x0) = ...(10)
(The kernel K is normalized for integrations over d4x while Kx is normalized over
d*xs; this leads to the extra i-* factor in equation (10) as compared to equation (9).
The correctness of expression (10) can also be verified in the limit of gE — 0).
Using equation (10) in equation (4) and combining with equation (3) we get the pair
creation probability (spin-0 case) :

w
B _ gE [ dA exp (= im?})
p=2ImLey = — 21Im {(4,:)2 I A? sinh (gE))
0
e o}
g S e (e
= g3 PP E!" M(ll,)

n=1

The vacuum does decay into charged pairs in the presence of constant electric
field. The imaginary part to Lesr signals | ( 0, out |0, in ) |2 < 1. Let us now con-
sider the constant gravitational field.

3. Effective Lagrangian in constant gravitational field

The constant gravitational field in Einstein’s elevator is represented by the line
element,

ds® = (1 + gx)? dt® — dx®* — dy* — dz*. ‘ ...(12)

A physicist located at x = 0 in the elevator refuses to look at any other frame of
reference, and will (justifiably) proceed to evaluate L in this frame. To do this
one has to evaluate the path integral kernel (5) in the analytically continued (¢ = itg)
region of equation (12). Since we are only ‘interested in the coincidence limit
(x; = x,) the Dyx(s) Dzx(s) integrations can be performed leaving one with

KE(t:, x5, 0,0; d; £, 57, 0, 0; o)

AE

= X Dxx(s) exp[-— 41T§ dse { (1 + gxe)2t® 4 rfn}]

AE
= [ D50 91 g | o[ =5 [ (1 + gy

th 3 dXE 2
X E] + Es}])]" L ..(13)
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For simplicity we shall consider the m = g =0 case.

We note the well known fact that the metric in (#&, xg) plane is analogous to that of
polar coordinates, (dr? 4 r?d6%). The coordinate singularity at xg = — g~ implies
periodicity of gtz with a period of 2x. Therefore paths in (#g, x&) plane can be
separated into various classes labelled by a winding number » which denotes the
number of times the projection of an arbitrary path onto (fe, x&) plane, ‘winds’
around xg = g~1. The kernel in equation (13) is the sum of kernels for each n.

The exact calculation is straightforward but lengthy. The final expression is the
coincidence limit of x, = x; = x is however quite simple :

KE(tIE + tg, x, A} L, X, 0)

= I:AFIAE:F zoo: exp [— (I_T*-Afx—)?‘(m — 2‘?“11)2] . ...(14)

n=—aw

One can provide a heuristic derivation of equation (14): Consider in equation (13)
only the paths with constant xg (i.e. dxg/dsz = 0). Since xg is analogous to r and
te is analogous to g™10 of the (r, 8) polar coordinates, the problem reduces to that
of a quantum particle constrained to a circle. Summing over paths that go around
the circle » times exactly reproduces equation (14). A more tedious computation,
allowing for variations of x(s) as well, is required to fix the correct factor, (4nAr)~2,
that multiplies the exponent.

Note that as g— 0 we recover the standard expression for Ke. In the limit of
g — 0, only n = 0 contributes to the sum.

The analytic continuation to Minkowski space gives the kernel

K(t, X, 0, 0) = K(z, 1)
= 71,(471?‘)2 "_Zw exp[zix(l + gx)* (t — 2”;" )Z]
T | ..(15)

We can now compute Ley from K(0, A) by straightforward integration. Taking
m = 0 in equation (4) and using the notation

2
B="2(1 + gx),
8
©
we get Lejt = — I j dTA K(O, A)
0

=)

S [N S e () e

The n = 0 term is just the Les; which one would have calculated from the kernel in
the absence of any gravitational field. Denoting this (formally divergent)
Minkowski contribution by L,, we get
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' 1 1 .,
Lren = Lett — Lo = + e Tﬁn
n=0
> o]
1 1 -1 4
= 2 = 55 e T ) -

The effective Lagrangian has no imaginary part and thus there is no particle creation,

ie.](0,0ut|0,in ) > = 1. However, the real part of the L is to be interpret-

ed as the potential energy density ¥, which is the standard practice in all effective
potential calculations (see e.g. Huang 1982)
Defining V' (x) via

0, out O,in 0 )
20, out Eo, iniizo = CXP( 'S d* x (Lett —Lo))

= exp(i ‘ d*x V(x)) .--(18)
we get ' o |
" e r_8 . 1
V=7 5T S O rgn) +(19)

which is the thermal energy density at the temperature g/2= redshifted to the loca-
tion x by (1 + gx)~!. Thus vacuum fluctuations in Einstein’s elevator contribute
a thermal energy density but do not produce any particles.

The energy spectrum of the vacuum fluctuations can be obtained from the Fourier
transform of the Green’s function

a@) = ]?dAK(t, A)=( ) z (t—zpn)z' ..(20)
0 n=—cw

We have taken x = 0; ¢ is actually # — je with ¢ - 0*. The Fourier transform
gives

1
9B =5 { 3 E+ gz — b .21

wherein 3E comes from the n = 0 term (representing the vacuum energy density
with g = 0) and the Planck spectrum arises from n 3% 0 part, and represents the
contribution of g to the vacuum energy density. Also note that the total energy
density from n 7 0, given by V in equation (19), is finite while the n = 0 term
gives the divergent L, term in equation (17).

4. Conclusions

The contrast between electric and gravitational fields highlights the contrast between
real particle creation (with | (out | in) |2 < 1) and a change in the energy density
of vacuum fluctuations (with | (out|in) |2 = 1). There are no ‘real’ (based on the
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above criterion) particles in Einstein’s elevator, though the virtual particles have
thermal energy density. Two additional points deserve special mention :

(i) The<|in )’ and ¢ [out )’ vacua in constant gravitational field should be
defined in exact amalogy with the vacua of constant electric field with suitable
adiabatic switching etc. We do not require a plethora of vacuum states (inertial
vacuum, accelerated vacuum, etc.) to study the physics in Einstein’s elevator.

(il We have shown elsewhere that when an accelerated detector is excited, it
absorbs energy from the accelerating source. Thus detector results cannot be con-
strued to prove reality of particles (Padmanabhan 1985).

Einstein’s elevator was a powerful heuristic tool in the early days of relativity.
It continues to be of value even today.
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